
Wonderware Historian Concepts

Guide

Invensys Systems, Inc.

Revision F

Last Revision: December 3, 2009

Copyright
© 2002-2005, 2009 Invensys Systems, Inc. All Rights Reserved.
All rights reserved. No part of this documentation shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of
Invensys Systems, Inc. No copyright or patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been
taken in the preparation of this documentation, the publisher and the author
assume no responsibility for errors or omissions. Neither is any liability assumed
for damages resulting from the use of the information contained herein.
The information in this documentation is subject to change without notice and does
not represent a commitment on the part of Invensys Systems, Inc. The software
described in this documentation is furnished under a license or nondisclosure
agreement. This software may be used or copied only in accordance with the terms
of these agreements.

Invensys Systems, Inc.
26561 Rancho Parkway South
Lake Forest, CA 92630 U.S.A.
(949) 727-3200
http://www.wonderware.com
For comments or suggestions about the product documentation, send an e-mail
message to productdocs@wonderware.com.

Trademarks
All terms mentioned in this documentation that are known to be trademarks or
service marks have been appropriately capitalized. Invensys Systems, Inc. cannot
attest to the accuracy of this information. Use of a term in this documentation
should not be regarded as affecting the validity of any trademark or service mark.
Alarm Logger, ActiveFactory, ArchestrA, Avantis, DBDump, DBLoad, DT Analyst,
Factelligence, FactoryFocus, FactoryOffice, FactorySuite, FactorySuite A2, InBatch,
InControl, IndustrialRAD, IndustrialSQL Server, InTouch, MaintenanceSuite,
MuniSuite, QI Analyst, SCADAlarm, SCADASuite, SuiteLink, SuiteVoyager,
WindowMaker, WindowViewer, Wonderware, Wonderware Factelligence, and
Wonderware Logger are trademarks of Invensys plc, its subsidiaries and affiliates.
All other brands may be trademarks of their respective owners.

http://www.wonderware.com

3

Contents

Welcome.. 11
Wonderware Historian Documentation Set.....................11
Documentation Conventions...12
Technical Support ...13

Chapter 1 Introduction 15
The Wonderware Historian Solution................................15

Process Data ...16
About Relational Databases ..16
Limitations of Relational Databases17
Wonderware Historian as a Real-Time Relational

Database...17
Integration with Microsoft SQL Server18

Support for SQL Clients...19
Wonderware Historian Subsystems19

Chapter 2 System-Level Functionality 21
About Tags ...21

Types of Tags ..21
Sources of Tag Values ..22
Naming Conventions for Tags23

Security ..24
Windows Operating System Security............................24
SQL Server Security...25
Wonderware Historian Concepts Guide

4 Contents
Management Console Security31
Default Access Rights for Different Operating

Systems ..32
Time Handling...32
System Parameters ...33
System Messages...38
Wonderware Historian Services40
The System Driver and System Tags...............................42

Error Count Tags ...42
Date Tags..42
Time Tags ...43
Storage Space Tags ..43
I/O Statistics Tags..43
System Monitoring Tags ..44
Miscellaneous (Other) Tags ...45
Event Subsystem Tags...46
Replication Subsystem Tags..47
Performance Monitoring Tags48

Supported Protocols ..50
Modification Tracking ...51

Modification Tracking for Configuration Changes.......52
Modification Tracking for Historical Data Changes53

Data Quality ..54
Viewing Quality Values and Details55
Acquisition and Storage of Quality Information59
Client-Side Quality...61

Chapter 3 Configuration Subsystem63
Configuration Subsystem Components............................64
About the Runtime and Holding Databases65

The Runtime Database ..65
The Holding Database..66

About the Configuration Service67
Dynamic Configuration...67

Effects of Configuration Changes on the System68
Cases in Which Configuration Changes are not

Committed..70
Wonderware Historian Concepts Guide

Contents 5
Chapter 4 Data Acquisition Subsystem 71
Data Acquisition Components ..72
Data Acquisition from I/O Servers73

I/O Server Addressing ..74
About IDASs ...75
I/O Server Redundancy ..86
Redirecting I/O Servers to InTouch HMI Software87
Time Synchronization for Data Acquisition..................87

Data Acquisition by Means of INSERT and UPDATE
Statements..90

Data Acquisition from MDAS ...90
Importing Data from a CSV File91

Chapter 5 Data Storage Subsystem........................ 93
Storage Subsystem Components94
Storage Data Categories ...94

About the Real-Time Data Window...............................97
Data Modification and Versioning....................................98
Storage Modes ...99
"Forced" Storage ..99
Delta Storage ...100

Time and Value Deadbands for Delta Storage100
"Swinging Door" Deadband for Delta Storage101

Cyclic Storage ..111
Data Conversions and Reserved Values for Storage112
History Blocks ...113

History Block Notation...113
History Block Creation...114
History Block Storage Locations115
Automatic Deletion of History Blocks117

About the Active Image...119
Automatic Resizing of the Active Image120
How the Active Image Storage Option Affects Data

Retrieval ...121
Dynamic Configuration Effects on Storage....................122
Memory Management for Data Storage.........................122
About Snapshot Files ..124

How Snapshot Files are Updated126
Wonderware Historian Concepts Guide

6 Contents
Chapter 6 Data Retrieval Subsystem 127
Data Retrieval Components..128
Data Retrieval Features ...129
History Blocks: A SQL Server Remote Data Source129
Retrieval Service ...130
About the Wonderware Historian OLE DB Provider....130

Extension (Remote) Tables for History Data..............132
Query Syntax for the Wonderware Historian

OLE DB Provider...133
Wonderware Historian OLE DB Provider

Unsupported Syntax and Limitations137
Linking the Wonderware Historian OLE DB

Provider to the Microsoft SQL Server146
Wonderware Historian Time Domain Extensions.........147
Wonderware Historian I/O Server149

Chapter 7 Data Retrieval Options 151
Understanding Retrieval Modes.....................................151

Cyclic Retrieval ..152
Delta Retrieval ...156
Full Retrieval..163
Interpolated Retrieval..165
“Best Fit” Retrieval ..171
Average Retrieval...176
Minimum Retrieval ..182
Maximum Retrieval ...188
Integral Retrieval ...194
Slope Retrieval ...197
Counter Retrieval ...200
ValueState Retrieval..205
RoundTrip Retrieval ..212

Understanding Retrieval Options217
Which Options Apply to Which Retrieval Modes?......217
Using Retrieval Options in a Transact-SQL

Statement ...218
Cycle Count (X Values over Equal Time Intervals)

(wwCycleCount) ...219
Resolution (Values Spaced Every X ms)

(wwResolution)...222
About “Phantom” Cycles ..224
Time Deadband (wwTimeDeadband)227
Value Deadband (wwValueDeadband)........................231
Wonderware Historian Concepts Guide

Contents 7
History Version (wwVersion).......................................235
Interpolation Type (wwInterpolationType).................237
Timestamp Rule (wwTimestampRule)........................240
Time Zone (wwTimeZone) ..242
Quality Rule (wwQualityRule)244
State Calculation (wwStateCalc).................................252
Analog Value Filtering (wwFilter)254
Selecting Values for Analog Summary Tags

(wwValueSelector) ...261
Edge Detection for Events (wwEdgeDetection)264

Chapter 8 Query Examples275
Querying the History Table ..275
Querying the Live Table ...276
Querying the WideHistory Table....................................277
Querying Wide Tables in Delta Retrieval Mode............278
Querying the AnalogSummaryHistory View279
Querying the StateSummaryHistory View....................280
Using an Unconventional Tagname in a Wide

Table Query ..281
Using an INNER REMOTE JOIN..................................281
Setting Both a Time and Value Deadband for

Retrieval ...282
Using wwResolution, wwCycleCount, and

wwRetrievalMode in the Same Query285
Determining Cycle Boundaries.......................................286
Mixing Tag Types in the Same Query............................286
Using a Criteria Condition on a Column of

Variant Data...287
Using DateTime Functions ...288
Using the GROUP BY Clause...290
Using the COUNT() Function...290
Using an Arithmetic Function..291
Using an Aggregate Function ...292
Making and Querying Annotations294
Using Comparison Operators with Delta Retrieval294
Using Comparison Operators with Cyclic Retrieval

and Cycle Count ...299
Using Comparison Operators with Cyclic Retrieval

and Resolution..302
SELECT INTO from a History Table.............................306
Wonderware Historian Concepts Guide

8 Contents
Moving Data from a SQL Server Table to an Extension
Table ...307

Using Server-Side Cursors ...308
Using Stored Procedures in OLE DB Queries310
Querying Data to a Millisecond Resolution using SQL

Server 2005...310
Getting Data from the OPCQualityMap Table..............312
Using Variables with the Wide Table312
Retrieving Data Across a Data "Hole"313
Returned Values for Non-Valid Start Times315
Retrieving Data from History Blocks and the

Active Image...315
Querying Aggregate Data in Different Ways316

Chapter 9 Replication Subsystem 319
About Tiered Historians ...319
How Tags are Used During Replication.........................321
Simple Replication ..323
Summary Replication..324

Analog Summary Replication325
State Summary Replication...326

Replication Schedules ...327
Replication Schedules and Daylight Savings Time....328

Replication Groups..330
How Replication is Handled for Different Types of

Data ..331
Streaming Replication ...332
Queued Replication ..332

Tag Configuration Synchronization between Tiered
Historians ...333

Replication Components ...334
Replication Run-time Operations...................................335

Replication Latency..336
Replication Delay for “Old” Data.................................336
Continuous Operation..336
Overflow Protection..337

Security for Data Replication ...337
Using Summary Replication instead of Event-Based

Summaries..338
Wonderware Historian Concepts Guide

Contents 9
Chapter 10 Event Subsystem..............................339
Event Subsystem Components340
Uses for the Event Subsystem..341
Event Subsystem Features and Benefits342
Event Subsystem Performance Factors343
Event Tags ...344
Event Detectors ...345

SQL-Based Detectors ...345
Schedule Detectors ...348
External Detectors ...349

Event Actions...349
Generic SQL Actions ..349
Snapshot Actions ..350
E-mail Actions ..350
Deadband Actions...351
Summary Actions ...351
Event Action Priorities...353

Event Subsystem Resource Management353
Detector Thread Pooling ..354
Action Thread Pooling..355
Event Subsystem Database Connections....................356
Handling of Event Overloads and Failed Queries......356

Event Subsystem Variables ..358

Index ...361
Wonderware Historian Concepts Guide

10 Contents
Wonderware Historian Concepts Guide

11
Welcome

This guide provides information about the general
architecture of the Wonderware Historian and describes the
different subsystems and components that make up the
product. This guide can be used as a reference guide for all
conceptual information about the Wonderware Historian
components.

Wonderware Historian Documentation Set
The Wonderware Historian documentation set includes the
following guides:

• Wonderware Historian Installation Guide
(InSQLInstall.pdf). This guide provides information on
installing the Wonderware Historian, including
hardware and software requirements and migration
instructions.

• Wonderware Historian Concepts Guide
(InSQLConcepts.pdf). This guide provides an overview of
the entire Wonderware Historian system and describes
each of the subsystems in detail.

• Wonderware Historian Administration Guide
(InSQLAdmin.pdf). This guide describes how to
administer and maintain an installed Wonderware
Historian, such as configuring data acquisition and
storage, managing security, and monitoring the system.

• Wonderware Historian Database Reference
(InSQLDatabase.pdf). This guide provides
documentation for all of the Wonderware Historian
database entities, such as tables, views, and stored
procedures.
Wonderware Historian Concepts Guide

12 Welcome
• Wonderware Historian Glossary (InSQLGlossary.pdf).
This guide provides definitions for terms used throughout
the documentation set.

In addition, the Wonderware® ArchestrA License Manager
Guide (License.pdf) describes the ArchestrA License
Manager and how to use it to install, maintain, and delete
licenses and license servers on local and remote computers.

A PDF file for each of these guides is available on the
Wonderware Historian installation CD. You can easily print
information from the PDF files. The Wonderware Historian
documentation is also provided as an online help file, which
can be accessed from the System Management Console
management tool.

Documentation Conventions
This documentation uses the following conventions:

Convention Used for

Initial Capitals Paths and file names.

Bold Menus, commands, dialog box names,
and dialog box options.

Monospace Code samples and display text.
Wonderware Historian Concepts Guide

Technical Support 13
Technical Support
Wonderware Technical Support offers a variety of support
options to answer any questions on Wonderware products
and their implementation.

Before you contact Technical Support, refer to the relevant
section(s) in this documentation for a possible solution to the
problem. If you need to contact technical support for help,
have the following information ready:

• The type and version of the operating system you are
using.

• Details of how to recreate the problem.

• The exact wording of the error messages you saw.

• Any relevant output listing from the Log Viewer or any
other diagnostic applications.

• Details of what you did to try to solve the problem(s) and
your results.

• If known, the Wonderware Technical Support case
number assigned to your problem, if this is an ongoing
problem.
Wonderware Historian Concepts Guide

14 Welcome
Wonderware Historian Concepts Guide

15
Chapter 1

Introduction

The Wonderware Historian, formally known as
IndustrialSQL Server™, bridges the gap between a real-time
high-volume plant monitoring environment and an open,
flexible business information environment. The historian:

• Acquires plant data from high-speed Wonderware I/O
Servers, DAServers, InTouch HMI software, Wonderware
Application Server, and other devices.

• Compresses and stores data.

• Responds to SQL requests for plant data.

The historian also contains event, summary, configuration,
security, backup, and system monitoring information.

The historian is tightly coupled to Microsoft SQL Server.

The Wonderware Historian Solution
The Wonderware Historian is a real-time relational database
that stores plant data. The historian acquires and stores
process data at full resolution or at a specified resolution and
provides real-time and historical plant data together with
configuration, event, summary, and associated production
data to client applications on the desktop. The historian
combines the power and flexibility of Microsoft SQL Server
with the high speed acquisition and efficient data
compression characteristics of a real-time system.
Wonderware Historian Concepts Guide

16 Chapter 1 Introduction
Process Data
Process data is any relevent information to successfully run a
process. The following information is considered to be process
data:

• Real-time data - What is the current value of this tag?

• Historical data - What was the value of this tag every
second last Monday?

• Summary data - What is the average of each of these five
tags?

• Event data - When did that boiler trip?

• Configuration data - How many I/O Servers am I using
and what are their types?

To improve performance and quality while reducing cost,
process data must be available for analysis. Process data is
typically analyzed to determine:

• Process analysis, diagnostics, and optimization.

• Predictive and preventive equipment maintenance.

• Product and process quality (SPC/SQC).

• Health and safety; environmental impact (EPA/FDA).

• Production reporting.

• Failure analysis.

About Relational Databases
A relational database management system (RDBMS) stores
data in multiple tables that are related or linked together.
Storing and accessing information in multiple tables makes
data storage and maintenance more efficient than if all of the
information was stored in a single large table. For example,
Microsoft SQL Server is a relational database.

SQL, is the language to communicate with relational
databases. SQL is an industry "super-standard," supported
by hundreds of software vendors. SQL provides an openness
unmatched in the plant environment. Relational databases
are mature and are the accepted IT workhorses in database
applications today. Power and flexibility are far superior in
SQL than in the proprietary interfaces that have come out of
the plant environment.
Wonderware Historian Concepts Guide

The Wonderware Historian Solution 17
Limitations of Relational Databases
A typical relational database is not a viable solution to store
plant data because of the following limitations:

• Cannot handle the volume of data produced by plants.

• Cannot handle the rapid storage rate of plant data.

• SQL does not effectively handle time-series data.

Industrial plants have thousands of tags, all changing at
different rates. Several months of plant history result in
hundreds of gigabytes of data in a normal relational
database.

For example, a plant with 10,000 variables changing on the
average of every two seconds generates 5,000 values per
second. 5,000 rows of data must therefore be inserted into the
database each second to store a complete history, which is
unsustainable by typical relational databases like Oracle or
SQL Server on standard computer hardware.

Wonderware Historian as a Real-Time Relational
Database

As a real-time relational database, Wonderware Historian is
an extension to Microsoft SQL Server, providing more than
an order of magnitude increase in acquisition speeds, a
corresponding reduction in storage volume, and elegant
extensions to structured query language (SQL) to query time
series data.

• High-speed data capture

The comprehensive range of Wonderware I/O Servers and
DAServers are used to connect to over 500 control and
data acquisition devices.
Designed for optimal acquisition and storage of analog,
discrete, and string data, the Wonderware Historian
outperforms all normal relational databases on similar
hardware by a wide margin, making the storage of
high-speed data in a relational database possible. The
historian acquires and stores process data many times
faster than a RDBMS.
Wonderware I/O Servers and DAServers support the
SuiteLink™ protocol. SuiteLink allows for time and
quality stamping at the I/O Server and further improves
the rate of data acquisition.
Wonderware Historian Concepts Guide

18 Chapter 1 Introduction
• Reduced storage space

The Wonderware Historian stores data in a fraction of
the space required by a normal relational database. The
actual disk space required to store plant data depends on
the size and nature of the plant and the length of the
plant history required.

• Time domain extensions to SQL

The SQL language does not support time series data. In
particular, there is no way to control the resolution of
returned data in SQL. An example of resolution would be
an evenly spaced sampling of data over a period of time.
Microsoft SQL Server supports its own extensions to the
SQL language, called Transact-SQL. The Wonderware
Historian further extends Transact-SQL, allowing control
of resolution and providing the basis for time-related
functions such as rate of change and process calculations
on the server.

Integration with Microsoft SQL Server
A large amount of plant-related data has the same
characteristics as normal business data. For example,
configuration data is relatively static and does not change at
a real-time rate. Over the life of a plant, tags are added and
deleted, descriptions are changed, and engineering ranges
are altered. A Microsoft SQL Server database, called the
Runtime database, stores this type of information.

The Runtime database is the SQL Server online database for
the entire Wonderware Historian. The Runtime database is
shipped with a set of standard database entities, such as
tables, views, and stored procedures to store configuration
data for a typical factory. You can use the Configuration
Editor within the System Management Console to easily add
configuration data to the Runtime database that reflects your
factory environment.

Microsoft SQL Server Object Linking and Embedding for
Databases (OLE DB) is used to access the real-time plant
data that the historian stores outside of the SQL Server
database. You can query the Microsoft SQL Server for both
configuration information in the Runtime database and
historical data on disk, and the integration appears
seamless.

Because the historian is tightly coupled to and effectively
extends a Microsoft SQL Server, it can leverage all of the
features that Microsoft SQL Server has to offer, such as
database security, replication, and backups.
Wonderware Historian Concepts Guide

Wonderware Historian Subsystems 19
Support for SQL Clients
The client/server architecture of Wonderware Historian
supports client applications on the desktop, while ensuring
the integrity and security of data on the server. This
client/server architecture provides common access to plant
and process data: real-time and historical data, associated
configuration, event, and business data. The computing
power of both the client and the server is exploited by
optimizing processor intensive operations on the server and
minimizing data to be transmitted on the network to improve
system performance.

The gateway for accessing any type of information in the
historian is the Microsoft SQL Server. Thus, any client
application that can connect to Microsoft SQL Server can
also connect to the historian.

Two categories of client applications can be used to access
and retrieve information from the historian:

• Clients developed specifically to access data from
historian. Wonderware provides a number of client tools
to address specific data representation and analysis
requirements. Third-party query tools that specifically
support Wonderware Historian are also available. These
client tools remove the requirement for users to be
familiar with SQL and provide intuitive point-and-click
interfaces to access, analyze, and graph both current and
historically acquired time-series data.

• Any third-party query tool that can access SQL or ODBC
data sources. Numerous commercial query and reporting
tools are available that provide rich, user-friendly
interfaces to SQL-based data. All client tools with an
interface to Microsoft SQL Server or ODBC are suitable
for historian data access and reporting.

Wonderware Historian Subsystems
The Wonderware Historian is made up of specialized
subsystems, which work together to manage data as it is
acquired or generated, stored, and retrieved, as follows.

• Configuration Subsystem

• Data Acquisition Subsystem

• Data Storage Subsystem

• Data Retrieval Subsystem
Wonderware Historian Concepts Guide

20 Chapter 1 Introduction
• Event Subsystem

• Replication Subsystem

The following figure shows the overall architecture of the
historian:

Client Computer
Historian Client

Software

Configuration
Editor

Management
Console

Historian OLE DB Provider

Client Computer
T-SQL Data

INSERT/UPDATE

System Driver
Data

(aahDrvSvc.exe)

IDAS 1
(aahIDASSvc.exe)

S/F
Blocks

I/O Server 1

Active Image

Real-Time Data
Storage Process

(aahStoreSvc.exe)

"Manual" Data
Storage Process

(aahManStSvc.exe)

Retrieval
Service

(aahRetSvc.exe)Configuration
Service

(aahCfgSvc.exe)

Event System
(aahEventSvc.exe)

Historian
I/O Server

(aahIOSvrSvc.exe)

Client Computer
Custom

 Application

Client Computer
InTouch HMI

Software

History Blocks

Configuration & Event
System Database

(Runtime.mdf)

IDAS 2
(aahIDASSvc.exe)

S/F
Blocks

I/O Server 3

I/O Server 2

Wonderware
Historian

Remote Computer
Remote Computer Remote Computer

Client Computer

Client Computer
Microsoft SQL
Server Client

Client Computer
Custom Query

 Application

System
Management

Console
(SMC)

(to Configuration Service)

Client Computer
ActiveEvent

Control

Indexing
(aahIndexSvc.exe)

Snapshot Buffers.CSV File
Data

Replication
(aahReplicationSvc.exe)

Tier-2 Wonderware Historian

S/F
Blocks

store-and-forward data real-time data

Tier2Storage Engine
(aahStorageEngine.exe)

MDAS Server
(aahMDASServerSvc.exe)

History
Blocks

Historian SDK
Application

S/F
Blocks

Client Computer

Wonderware
Application

Server

S/F
Blocks

Remote Client
Computer

old/late data
Wonderware Historian Concepts Guide

21
Chapter 2

System-Level Functionality

Some concepts apply across the entire Wonderware
Historian, such as time handling, system parameters,
security, and data quality.

About Tags
A tag is the atomic unit of storage in the Wonderware
Historian. A tag is a variable that typically represents a
single attribute of some physical process or device. A tag is
characterized by a unique name in the historian. A tag has
many attributes, such as type (for example, analog), how its
values are acquired, or how its values are stored (cyclic or
delta).

Types of Tags
The following table describes the types of tags in the system.

Tag Type Description

Analog An analog value is a variable that measures
a continuous physical quantity. For example,
the temperature of a boiler would be
measured as an analog value.

Discrete A discrete value is a variable that only has
two states: '1' (True, On) or '0' (False, Off).

String A string value is a text expression treated as
a single data item. A string does not require
a special format or syntax.
Wonderware Historian Concepts Guide

22 Chapter 2 System-Level Functionality
Sources of Tag Values
Sources for tag values are as follows:

• Automatically acquired I/O Server data, either in
real-time or later.

• I/O Server data arriving late from an IDAS
store-and-forward cache.

• Data generated internally for system monitoring tags.

• Data inserted or updated with a Transact-SQL
statement.

• Data contained in a properly formatted .CSV file, which
you import.

• Data sent from client applications developed with the
Wonderware Historian Software Development Toolkit
(SDK).

• Data from ArchestrA applications.

• Replicated data from one or more tier-1 Wonderware
Historians

Event An event tag is a name for an event
definition in the system. For example, if you
wanted to detect when the temperature of
tank reached 100 degrees, you might define
an event tag and name it "TankAt100."

Analog
Summary

An analog summary tag contains
summarized data (minimum, maximum,
average, and so on) that is configured to be
replicated from one historian to another.

State
Summary

An state summary tag contains summarized
data (minimum time in state, maximum time
in state, average time in state, and so on)
that is configured to be replicated from one
historian to another.

Tag Type Description
Wonderware Historian Concepts Guide

About Tags 23
Naming Conventions for Tags
Tagnames may contain letters, digits, and special characters,
where:

• letter = any letter as defined by the Unicode Standard.
The Unicode definition of letters includes Latin
characters from a through z and from A through Z, in
addition to letter characters from other languages.

• digit = any numerical character

• special character = any graphics character except the
following: characters whose ASCII table code is 0 through
32 -(non-graphic characters) and . + - * / \ = () ` ~ ! ^ & @
[] { } | : ; ’ , < > ? “ space

It is highly recommended that you adhere to the rules for
SQL Server identifiers as well.

For "conventional" tagnames the first character may be a:

• Letter

• Digit

• Dollar sign ($) or pound sign (#)

Subsequent characters may be:

• A digit, but then the tagname must contain at least one
letter

• Any of the supported special characters.

Due to storage formatting requirements, you cannot use
either a quotation mark (") or one or more single quotation
marks (') at the beginning or at the end of a tag name.

Tag names that do not comply with these rules are regarded
as "unconventional."

In a SQL query against a wide table, unconventional tag
names must be delimited with brackets ([]), because the tag
name is used as a column name. For more information, see
"Using an Unconventional Tagname in a Wide Table Query"
on page 281.
Wonderware Historian Concepts Guide

24 Chapter 2 System-Level Functionality
Security
The Wonderware Historian uses two security mechanisms:

• Windows operating system security

• Microsoft SQL Server security

For clients to access the historian, they must pass through
both of these security levels. The historian Management
Console (within the System Management Console) in
particular adds an additional level of security checking to
restrict access to functions affecting the state of the historian
to only authorized users. Also, some of the historian
components require Windows and SQL Server logins.

For more information on configuring user rights assignments
for local security policies, see the Microsoft documentation.

For information on how to manage security, see Chapter 8,
"Managing Security," in your Wonderware Historian
Administration Guide.

Windows Operating System Security
To log on to Wonderware Historian as a client, the first thing
a user must be able to do is to log on to the operating system
on their computer. For the Windows operating system, a
valid user account, consisting of a login ID (username) and
password, is required to log on to the computer. This
Windows user account can also be used to gain access to
network resources in the domain.

SQL Server also requires authentication in order for clients
to connect to it. You can use either Windows authentication
or SQL Server authentication. For more information, see
"SQL Server Security" on page 25.

Default Windows Login for Wonderware Historian
Services
All of the modules in the Wonderware Historian, except for
the Management Console and the Configuration Editor, run
as Windows services, and therefore require a valid Windows
user account (the ArchestrA administrative user account) to
ensure proper operation. This ArchestrA user account is
specified during installation.

The ArchestrA account must be a member of the local
administrators group on the server hosting the historian, as
well as on all computers hosting a remote IDAS.
Wonderware Historian Concepts Guide

Security 25
You can change the ArchestrA user account by using the
ArchestrA Change Network Account Utility.

WARNING! Changing the ArchestrA user account affects all
ArchestrA components that run as services, not just historian
services. If you change this account, you must restart the
computer.

Do not configure historian services (including remote IDASs)
to run under a specific user account. All services should be
configured by default to log on to the Windows operating
system using the LocalSystem account. The historian
services will impersonate the ArchestrA user account, and
this impersonation will fail if the service is not run using the
LocalSystem account.

SQL Server Security
Because the Wonderware Historian contains an embedded
Microsoft SQL Server, it uses and takes advantage of the
security features that Microsoft SQL Server has to offer. The
purpose of security for a SQL Server is to control who can
access the server, access specific databases within a server,
and perform certain actions within a database.

A database user must pass through two stages of security for
the historian:

• Authentication, which validates the user’s identity to the
server itself.

• Database authorization, which controls the database(s)
that user can access, as well as the types of actions that
the user can perform on objects within the database.

User authentication and database authorization are
managed from Microsoft SQL Server Management Studio.

To access information in the Wonderware Historian
databases, users need to be granted access to the databases.
The historian is shipped with pre-configured database roles
and user accounts to serve as a starting point for your
security model. Database roles, SQL Server login IDs, and
user accounts are managed using the Microsoft SQL Server
Management Studio.
Wonderware Historian Concepts Guide

26 Chapter 2 System-Level Functionality
Authentication
Microsoft SQL Server authenticates users with individual
login account and password combinations. After the user’s
identity is authenticated, if authentication is successful, the
user is allowed to connect to a SQL Server instance. There
are two types of authentication:

• Windows authentication, in which users must connect to
the SQL Server using a Windows user account (a
Windows login ID and password that is provided during
the Windows login session).

• SQL Server authentication, in which users must connect
to the SQL Server using SQL Server login account (a SQL
Server login ID and password).

SQL Server can operate in one of two security modes, which
control the type of accounts that must be used for access to
the server:

• Windows authentication mode. In this mode, the SQL
Server only uses Windows authentication.

• Mixed mode. In this mode, the SQL Server uses both
Windows authentication and SQL Server authentication.
If the login name matches the Windows network
username, then validation is handled by the Windows
security mechanisms. If the user login name does not
match the Windows network username, then Microsoft
SQL Server security mechanisms are used.

SQL Server authentication is provided for backward
compatibility only. Microsoft recommends that you use
Windows authentication, when possible.

For more information about authentication, see your
Microsoft SQL Server documentation.

Default Windows Security Groups
The following Windows security groups are created by
default on the Wonderware Historian computer. Use these
groups to assign different levels of database permissions to
users.

• aaAdministrators

• aaPowerUsers

• aaUsers

• aaReplicationUsers
Wonderware Historian Concepts Guide

Security 27
Each group is automatically configured to be a member of the
SQL Server database role with the same name. For example,
the aaAdministrators Windows security group is a member of
the default aaAdministrators SQL Server database role. If
you add Windows users to the aaAdministrators security
group, they will automatically be given permissions of the
aaAdministrators SQL Server database role.

Wonderware Historian Default Logins
When the Wonderware Historian is installed, default SQL
Server logins are created that you can use for logging on to
the historian from client applications. These default logins
provide "out of the box" functionality in that you do not have
to create logins to start using the system. The following table
describes the pre-configured logins:

Login
Name Password Description

aaAdmin pwAdmin A user who can access and modify
all data and create objects.
Cannot drop the database or
truncate tables.

aaPower pwPower A user with full read access and
the ability to create objects and
modify the contents of the
non-core tables.

aaUser pwUser A read-only user who can access
all data, but cannot modify data
or consume database resources.

aadbo pwddbo Database owner. Full
permissions.

The default database for each of these logins is the historian
Runtime database. This default security model is provided as
a starting point for system security and is suitable for many
types of installations.

These logins are valid if the Microsoft SQL Server is set to
mixed mode security. If only Windows authentication is used,
you must configure the access rights for each user.

Important Never use blank passwords for logins.
Wonderware Historian Concepts Guide

28 Chapter 2 System-Level Functionality
The following logins are provided for backward compatibility
only. They will be deprecated in a future release. Do not use
these logins.

Login Name Password Description

wwUser wwUser Same as aaUser.

wwPower wwPower Same as aaPower.

wwAdmin wwAdmin Same as aaAdmin.

wwdbo pwddbo Same as aadbo.

Database Authorization
After a user successfully connects to the Microsoft SQL
Server, the user needs authority to access databases on the
server. This is accomplished by user accounts for each
database. A database user consists of a user name and a
login ID. Each database user must be mapped to an existing
login ID.

User names are stored in the sysusers table in each
database. When a user tries to access a database, the
Microsoft SQL Server looks for an entry in the sysusers table
and then tries to find a match in the syslogins table in the
master database. If the Microsoft SQL Server cannot resolve
the username, database access is denied.

The types of actions the user can perform in the database are
based on authority information defined in the user account.
The authority to perform a certain action is called a
permission. There are two types of permissions: object
permissions and statement permissions.

Permission Description

Object Regulates the actions that a user can
perform on certain database objects that
already exist in the database. Database
objects include things such as tables,
indexes, views, defaults, triggers, rules, and
procedures. Object permissions are granted
and revoked by the owner (creator) of the
object.
Wonderware Historian Concepts Guide

Security 29
Users can be grouped into roles, which is a single unit
against which you can apply permissions. Permissions
granted to, denied to, or revoked from a role also apply to any
members of the role.

Wonderware Historian Default Users and Roles
The Wonderware Historian is shipped with a number of
pre-configured user accounts and roles.

The following table describes the default SQL Server
usernames, the login IDs and database roles to which they
belong, and the actions that they are allowed to perform in
the Runtime database. You can add additional users and
roles using SQL Server Enterprise Manager.

Statement Controls who can issue particular
Transact-SQL statements. Database
statements include commands such as
SELECT, INSERT, or DELETE. Statement
permissions, also called command
permissions, can only be granted and
revoked by the system administrator or the
database owner.

Permission Description

Login ID
Username in
Database Member of Role Permissions

aaUser aaUser aaUsers SELECT on all tables
INSERT, UPDATE, DELETE on
PrivateNameSpace and Annotation

aaPower aaPower aaPowerUsers CREATE Table
CREATE View
CREATE Stored procedure
CREATE Default
CREATE Rule
SELECT on all tables
INSERT, UPDATE, DELETE on
grouping tables
Wonderware Historian Concepts Guide

30 Chapter 2 System-Level Functionality
The following users and roles are provided for backward
compatibility only. They will be deprecated in a future
release. Do not use these users and roles.

Login ID
Username in
Database Member of Role Permissions

wwUser wwUser wwUsers Same as for aaUser.

wwPower wwPower wwPowerUsers Same as for aaPower.

wwAdmin wwAdmin wwAdministrators Same as for aaAdmin.

wwdbo wwdbo db_owner Same as for aadbo.
Each default role contains the corresponding SQL Server
user account, as well as the corresponding default Windows
security group. For more information on the default Windows
security groups, see "Default Windows Security Groups" on
page 26.

aaAdmin aaAdmin aaAdministrators CREATE Table
CREATE View
CREATE Stored procedure
CREATE Default
CREATE Rule
DUMP Database
DUMP Transaction
SELECT, INSERT, UPDATE,
DELETE on all tables

aadbo dbo db_owner Full database owner capabilities

Login ID
Username in
Database Member of Role Permissions
Wonderware Historian Concepts Guide

Security 31
Default SQL Server Login for Wonderware Historian
Services
Some components of the Wonderware Historian require a
SQL Server login ID to access the master, Runtime, and
Holding databases. By default, the historian uses the
ArchestrA user account to log on to the Microsoft SQL
Server, using Windows authentication.

For Microsoft SQL Server, if the Windows user account is an
administrative account on the local computer, it will map the
account to the sysadmin fixed server role. (This user will be
granted the same permissions as the sa SQL Server user
account.) Because the ArchestrA user account is always a
local administrative account, it will always have
administrative permissions (sysadmin) within the SQL
Server.

Management Console Security
The Wonderware Historian Management Console (which is
part of the overall System Management Console) runs in the
context of the logged on Windows user account. To protect
against unauthorized access to the Wonderware Historian,
you must specify a separate Windows user account that the
Management Console will use to connect to the historian.
You can specify this account when you set up the server
registration properties. For more information on registration,
see Chapter 1, "Getting Started with Administrative Tools,"
in your Wonderware Historian Administration Guide.

If the account specified is not a member of the local
administrators group on the computer hosting the historian,
the Management Console has "read-only" access. That is, you
may view all the information shown in the Management
Console, but you cannot perform any control actions on the
historian, such as starting or stopping the system, creating
new history blocks, and so on.

Important To prevent possible unauthorized access, the password
for the Management Console login account must NOT be blank.
Wonderware Historian Concepts Guide

32 Chapter 2 System-Level Functionality
Default Access Rights for Different Operating
Systems

By default, in the Windows XP operating system, all users
are given the right to shut down the local computer.
Therefore, for these operating systems, all users are
automatically given "level 2" access to the historian. A "level
2" user in the Wonderware historian can shut down the local
computer. To prevent users from being able to start or stop
the historian on these operating systems, you must take
away the "Shut Down the System" right in the Windows local
security policy.

For the Windows Server 2003 operating system, "power
users" are given the right to shut down the local computer.
Power users are members of "Shut Down the System" right
in the Windows local security policy. Therefore, for this
operating system, power users are automatically given "level
2" access to the historian.

For the Windows Server 2008 and Windows Vista operating
systems, "power users" are not given the right to shut down
the local computer. Power users are not members of "Shut
Down the System" right in the Windows local security policy.
Therefore, for these operating systems, power users are
automatically given "level 1" access to the historian.

Time Handling
Timestamps for all data are stored in Coordinated Universal
Time (UTC), also known as Greenwich Mean Time. The
current UTC time is derived from the current local time and
the time zone setting in the operating system of the computer
on which the Wonderware Historian is running. During data
retrieval, timestamps are returned in local time, by default.
You can convert the timestamps so that they are shown in
local time by using a special query parameter.

You should use the international date/time format for all
timestamps used in queries. The format is:

YYYYMMDD HH:MM:SS.000

where,

YYYY = year

MM = month

DD = day

HH = hour

MM = minutes
Wonderware Historian Concepts Guide

System Parameters 33
SS = seconds

000 = milliseconds

The format for timestamps returned from queries is
controlled by the default language settings of the SQL Server
login. Make sure that you configure the default language
setting for SQL Server logins correctly, especially in
environments with mixed languages/regional settings.

If you have multiple historians and/or are using remote data
sources, it is very important that you synchronize the time
between the computers. For more information, see "Time
Synchronization for Data Acquisition" on page 87.

Make sure that you have selected the operating system
setting to automatically adjust time for daylight savings, if
the time zone in which the computer is located observes
daylight savings time.

System Parameters
A system parameter is a parameter that controls some aspect
of the overall Wonderware Historian behavior. The following
table describes the default system parameters:

Name Description

AIAutoResize Controls the automatic resizing of the active
image. 1 = Automatic resizing enabled; 0 =
Automatic resizing disabled. The default is
1. For more information, see "About the
Active Image" on page 119.

AIResizeInterval Interval, in minutes, that the system will
resize the active image, if the AIAutoResize
parameter is enabled.

AllowOriginals Used to allow the insertion of original data
for I/O Server tags. You must set this
parameter to 1 before importing .lgh original
data. For more information, see "Data
Acquisition by Means of INSERT and
UPDATE Statements" on page 90.

AnalogSummaryTypeAbbreviation Abbreviation used when generating analog
summary tagnames. For more information,
see "Specifying Naming Schemes for
Replication" in Chapter 7, "Managing and
Configuring Replication," in your
Wonderware Historian Administration
Guide.
Wonderware Historian Concepts Guide

34 Chapter 2 System-Level Functionality
AutoStart Used to start the historian automatically
when the computer on which the
Wonderware Historian is running is started:
1 = Autostart enabled; 0 = Autostart
disabled. For more information, see
"Configuring Wonderware Historian to
AutoStart" in Chapter 1, "Getting Started
with Administrative Tools," in your
Wonderware Historian Administration
Guide. If you change this parameter, you
must commit the changes to the historian
system.

Note You cannot change the Autostart system
parameter using the SMC if SQL Server is not
installed to run as an administrator. The SQL
Server instance is used to change the service
settings on behalf of the SMC.

ConfigEditorVersion (Not editable.) The minimum version
number of the Configuration Editor that can
edit the Runtime database. Used internally
by the system.

DatabaseVersion (Not editable.) Current version number of
the database.

DataImportPath Path to the CSV file for an import of
external data. For more information, see
"Importing Data from a CSV File" on page
91. If you change this parameter, a restart of
the system is required.

EventStorageDuration Maximum duration, in hours, that event
records are stored in the EventHistory table.

HeadroomXXXX Number of tags for which to pre-allocate
memory in the system. For more
information, see "Pre-allocating Memory for
Future Tags" in Chapter 2, "Configuring
Tags," in your Wonderware Historian
Administration Guide.

HistorianVersion (Not editable.) Current version number and
build number of the Wonderware Historian.
The value for this parameter is
automatically supplied when the system
starts.

Name Description
Wonderware Historian Concepts Guide

System Parameters 35
HistoryCacheSize Allocation of system memory, in MB, for tag
information. The default is 0. For more
information, see "Memory Management for
Data Storage" on page 122. If you change
this parameter, you must commit the change
and then rescan the history blocks to flush
the cache.

HistoryDaysAlwaysCached The duration, in days, for which history
block information is always loaded in
memory. The default is 0.

HoursPerBlock Duration, in hours, for history blocks. Valid
values are: 1, 2, 3, 4, 6, 8, 12, 24. The default
is 24 hours. The history block size must
always be greater than the highest scan
rate. For more information, see "History
Blocks" on page 113.

InterpolationTypeInteger The type of interpolation for data values of
type integer. 0=Stair-step; 1=Linear. The
default is 0. For more information on
interpolation, see "Interpolation Type
(wwInterpolationType)" on page 237.

InterpolationTypeReal The type of interpolation for data values of
type real. 0=Stair-step; 1=Linear. The
default is 1.

LateDataPathThreshold Controls the store-and-forward threshold for
late data.

LicenseRemoteIDASCount (Not editable.) The number of allowed
remote IDASs for the historian. This value is
determined from the license file. Used
internally by the system.

LicenseTagCount (Not editable.) The number of allowed tags
for the historian. This value is determined
from the license file. Used internally by the
system.

ManualDataPathThreshold Controls the store-and-forward threshold for
manual data.

Name Description
Wonderware Historian Concepts Guide

36 Chapter 2 System-Level Functionality
ModLogTrackingStatus Turns modification tracking on or off. The
value you specify will determine what
modifications are tracked. For more
information, see "Turning Modification
Tracking On/Off" in Chapter 9, "Viewing or
Changing System-Wide Properties," in your
Wonderware Historian Administration
Guide.

OldDataSynchronizationDelay Time delay, in seconds, between when
changes for “old” data (inserts, updates, and
store-and-forward data) must be sent from
the tier-1 historian to the tier-2 historian.

QualityRule Indicates whether the system should use
values having a quality of Good and
Uncertain, or having only a quality of Good.
0 = Good and Uncertain; 1 = Good only. The
default is 0. For more information on the
quality rule, see "Quality Rule
(wwQualityRule)" on page 244.

RealTimeWindow The maximum delay, in seconds, for which
data is considered real-time data for
swinging door storage. The delay is relative
to the current time. Valid values are
between 30 and 300 milliseconds. The
default is 60. For more information, see
"About the Real-Time Data Window" on
page 97.

ReplicationConcurrentOperations Limits the total number of retrieval client
objects performing calculations in a retrieval
based calculations for a time cycle.

ReplicationDefaultPrefix The default prefix for replication tags on the
tier-2 historian. If you change
ReplicationDefaultPrefix system parameter,
all replication tags that use the old prefix
are not updated to use the newer prefix. For
more information, see "Specifying Naming
Schemes for Replication" in Chapter 7,
"Managing and Configuring Replication," in
your Wonderware Historian Administration
Guide.

Name Description
Wonderware Historian Concepts Guide

System Parameters 37
ReplicationTCPPort The TCP port number the tier-2 historian
listens on for any incoming-connection
requests from a tier-1 historian. It must
match the port number the tier-1 is sending
on for replication to succeed. When
modifying this system parameter on a tier-2
historian node, you must also modify the
port number in the Windows Firewall
exception list for the historian replication
service to the same value. This port number
must unique on the tier-2 node; that is, no
other applications on the tier-2 node should
be listening on this port number.

RevisionLogPath The file path to the write-ahead log for tier-2
insert/update transactions.

SimpleReplicationNamingScheme The default naming scheme used for
configuring simple replication tags. For
more information, see "Specifying Naming
Schemes for Replication" in Chapter 7,
"Managing and Configuring Replication," in
your Wonderware Historian Administration
Guide.

StateSummaryTypeAbbreviation Abbreviation used when generating state
summary tagnames. For more information,
see "Specifying Naming Schemes for
Replication" in Chapter 7, "Managing and
Configuring Replication," in your
Wonderware Historian Administration
Guide.

SuiteLinkTimeSyncInterval Frequency, in minutes, that IDASs will
attempt to synchnronize the timestamping
mechanism for associated I/O Servers. If this
parameter is set to 0, no time
synchronization will occur. For more
information, see "Time Synchronization for
Data Acquisition" on page 87.

SummaryCalculationTimeout The maximum expected delay, in minutes,
for calculating summary data for replicated
tags. Setting this parameter too high will
delay associated summary calculations
unnecessarily. Setting it too low will cause
the system to prematurely calculate
summaries and then later require additional
processing to correct those calculations.

Name Description
Wonderware Historian Concepts Guide

38 Chapter 2 System-Level Functionality
System Messages
System messages include error messages and informational
messages about the state of the Wonderware Historian as a
whole or for any of the internal subsystems and individual
processes. System messages are logged to the:

• ArchestrA Logger.

• Windows event log, which can be viewed with the
Windows Event Viewer. Not all messages are logged to
the Windows event log. In general, only user actions and

SummaryReplicationNamingScheme The default naming scheme used for
configuring summary replication tags. For
more information, see "Specifying Naming
Schemes for Replication" in Chapter 7,
"Managing and Configuring Replication," in
your Wonderware Historian Administration
Guide.

SummaryStorageDuration Maximum duration, in hours, that summary
records will be stored in the legacy
SummaryHistory table.

SysPerfTags Used to turn on performance monitoring
tags for the Wonderware Historian system.
0 = Off; 1 = On. The default is 1. For more
information, see "Performance Monitoring
Tags" on page 48.

TimeStampRule Used to determine which timestamp within
a retrieval cycle to use for a data value. 0 =
Use the timestamp at the start of the cycle; 1
= Use the timestamp at the end of the cycle.
The default is 1. For more information, see
"Timestamp Rule (wwTimestampRule)" on
page 240.

TimeSyncIODrivers If enabled, the Wonderware Historian will
send time synchronization commands to all
associated remote IDASs. For more
information, see "Time Synchronization for
Data Acquisition" on page 87.

TimeSyncMaster Name of the computer that the Wonderware
Historian will use as a time synchronization
source.

Name Description
Wonderware Historian Concepts Guide

System Messages 39
exceptional events are written to this log. The messages
are logged with the "Historian" or the name of the
Wonderware Historian service as the source.

System messages are divided into the following categories:

Category Description

FATAL The process cannot continue. An error of
this severity results in a system shutdown.

CRITICAL These types of errors will cause
malfunctions in the data storage or
retrieval systems, such as data loss or
corruption.

ERROR General errors. For example, address
validation errors during system startup.
These errors may result in an orderly
shutdown of the system, but will not
preclude system operation in most cases.

WARNING Messages that simply notify the operator
of parameter settings or events that have
occurred. For example, failure to link a
dynamically-linked procedure entry point
for a non-obligatory function will be logged
as a warning.

INFO Messages relating to startup progress or
the commencement of active data storage.

DEBUG Debugging messages, which will not
typically appear in released versions of the
system.

Wonderware Historian messages are logged to the Log
Viewer as follows:

• Critical, fatal, and error messages are logged as "Error"
messages. The appropriate indicator, either "CRITICAL,"
FATAL," or "ERROR," will be prefixed to message.

• Warnings will be logged as "Warning" message, with no
prefix.

• Informational messages will be logged as "Info"
messages, with no prefix.

• Debug messages will be logged as "Trace" messages, with
no prefix.

For information on monitoring the system, see Chapter 10,
"Monitoring the System," in your Wonderware Historian
Administration Guide.
Wonderware Historian Concepts Guide

40 Chapter 2 System-Level Functionality
Wonderware Historian Services
The following Wonderware Historian processes run as
Windows services:

Display Name (Service
Name) Executable Name Description

Wonderware Historian
Configuration
(InSQLConfiguration)

aahCfgSvc.exe Handles all configuration
requests, as well as hosts
the interfaces for manual
data input and retrieval.
For more information, see
Chapter 3, "Configuration
Subsystem."

Wonderware Historian
DataAcquisition
(InSQLDataAcquisition)

aahIDASSvc.exe Acquires data from local or
remote IDASs and
forwards it on to the
storage subsystem. For
more information, see
Chapter 4, "Data
Acquisition Subsystem."

Wonderware Historian
EventSystem
(InSQLEventSystem)

aahEventSvc.exe Searches through history
data and determines if
specific events have
occurred. For more
information, see Chapter
10, "Event Subsystem."

Wonderware Historian
Indexing (InSQLIndexing)

aahIndexSvc.exe Manages the indexing of
history data on disk. For
more information, see
Chapter 5, "Data Storage
Subsystem."

Wonderware Historian
IOServer
(InSQLIOServer)

aahIOSvrSvc.exe Provides realtime data
values from the historian
to network clients. For
more information, see
Chapter 6, "Data Retrieval
Subsystem."

Wonderware Historian
ManualStorage
(InSQLManualStorage)

aahManStSvc.exe Accepts all incoming
non-realtime plant data
and stores it to disk. For
more information, see
Chapter 5, "Data Storage
Subsystem."
Wonderware Historian Concepts Guide

Wonderware Historian Services 41
For more information on Windows services, see your
Microsoft documentation.

Wonderware Historian
MDASServer
(aahMDASServer)

aahMDASServerSvc.exe Manages data and
communications between
tier-1 and tier-2
historians. For more
information, see Chapter
4, "Data Acquisition
Subsystem."

Wonderware Historian
Replication
(HistorianReplication)

aahReplicationSvc.exe Performs data
transformations on a tier-1
historian and sends the
results to one or more
tier-2 historians. For more
information, see Chapter
9, "Replication
Subsystem."

Wonderware Historian
Retrieval
(InSQLRetrieval)

aahRetSvc.exe Retrieves data from
storage. For more
information, see Chapter
6, "Data Retrieval
Subsystem."

Wonderware Historian
SCM (InSQLSCM)

aahSCM.exe Provides status
information regarding the
historian. Used internally
by the historian. This
service runs continuously,
even if the historian is
stopped.

WonderwareHistorian
Storage (InSQLStorage)

aahStoreSvc.exe Accepts all incoming
real-time plant data and
stores it to disk. For more
information, see Chapter
5, "Data Storage
Subsystem."

WonderwareHistorian
SystemDriver
(InSQLSystemDriver)

aahDrvSvc.exe Generates data values for
various system monitoring
tags. For more
information, see "The
System Driver and System
Tags" on page 42.

Display Name (Service
Name) Executable Name Description
Wonderware Historian Concepts Guide

42 Chapter 2 System-Level Functionality
The System Driver and System Tags
The system driver is an internal process that monitors key
variables within an operating Wonderware Historian and
outputs the values by means of a set of system tags. The
system driver runs as a Windows service and starts
automatically when the storage system is started.

The system tags are automatically created when you install
the historian. Also, additional system tags are created for
each IDAS and replication server you configure.

The current value for an analog system tag is sent to the
storage subsystem according to a specified rate, in
milliseconds. All date/time tags report the local time for the
historian.

Error Count Tags
The following analog tags have a storage rate of 1 minute
(60000 ms). All error counts are since the Wonderware
Historian is restarted or since or the last error count reset.

TagName Description

SysCritErrCnt Number of critical errors

SysErrErrCnt Number of non-fatal errors

SysFatalErrCnt Number of fatal errors

SysWarnErrCnt Number of warnings

Date Tags
The following analog tags have a storage rate of 5 minutes
(300000 ms).

TagName Description

SysDateDay Day of the month

SysDateMonth Month of the year

SysDateYear Four-digit year
Wonderware Historian Concepts Guide

The System Driver and System Tags 43
Time Tags
All of the following tags are analog tags. Each value change
is stored (delta storage).

TagName Description

SysTimeHour Hour of the day

SysTimeMin Minute of the hour

SysTimeSec Second of the minute

Storage Space Tags
The following analog tags have a storage rate of 5 minutes
(300000 milliseconds). Space remaining is measured in MB.

TagName Description

SysSpaceAlt Space left in the alternate storage
path

SysSpaceBuffer Space left in the buffer storage path

SysSpaceMain Space left in the circular storage
path

SysSpacePerm Space left in the permanent storage
path

I/O Statistics Tags
The following analog tags can be used to monitor key I/O
information.

TagName Description

SysDataAcqNBadValues* Number of data values with bad quality
received. This tag has a storage rate of 5
seconds. The maximum is 1,000,000.

SysDataAcqNOutsideRealtime* The number of values per second that were
discarded because they arrived outside of
the real-time data window. This tag has a
storage rate of 5 seconds. The maximum is
1,000,000.

SysDataAcqOverallItemsPerSec The number of items received from all data
sources. This tag has a storage rate of 10
seconds. The maximum is 100,000.
Wonderware Historian Concepts Guide

44 Chapter 2 System-Level Functionality
*This status tag will exist for each defined IDAS. The
identifying number (N) in the is the IODriverKey from the
IODriver table. The number 0 designates MDAS and only
applies to the SysDataAcqNBadValues and
SysDataAcqNOutsideRealtime tags.

System Monitoring Tags
Unless otherwise noted, for the following discrete tags, 0 =
Bad; 1 = Good.

SysDataAcqRxItemPerSecN* Tag value update received per second. This
tag has a storage rate of 10,000
milliseconds. Updated every 2 seconds for
this IDAS.

SysDataAcqRxTotalItemsN* Total number of tag updates received since
last startup for this IDAS. This tag has a
storage rate of 10,000 milliseconds.

SysStatusRxItemsPerSec Tag value update received per second.
Updated every 2 seconds for the system
driver (aahDrvSvc.Exe). This tag has a
storage rate of 1,000 milliseconds.

SysStatusRxTotalItems Total number of tag updates received since
last startup for the system driver. This tag
has a storage rate of 10,000 milliseconds.

SysStatusTopicsRxData Total number of topics receiving data.

TagName Description

Tag Description

SysConfiguration Status of the configuration service (aahCfgSvc.exe).
This parameter is set to 1 as long as a dynamic
configuration is required or in progress.

SysDataAcqN* Status of the IDAS service (aahIDASSvc.exe).

SysEventSystem Status of the event system service (aahEventSvc.exe).

SysIndexing Status of the indexing service (aahIndexSvc.exe).

SysInSQLIOS Status of the Wonderware Historian I/O Server
(aahIOSvrSvc.exe).

SysManualStorage Status of the manual storage service
(aahManStSvc.exe).

SysMDAServer Status of the MDASServer service
(aahMDASServerSvc.exe).
Wonderware Historian Concepts Guide

The System Driver and System Tags 45
*This status tag will exist for each defined IDAS. The
identifying number (N) appended to the end of the tag is the
IODriverKey from the IODriver table.

Miscellaneous (Other) Tags
The following table describes miscellaneous tags.

SysOLEDB Status of the OLE DB provider (loaded by SQL
Server).

SysPulse Discrete "pulse" tag that changes every minute.

SysReplication Status of Replication service (aahReplSvc.exe).

SysRetrieval Status of the retrieval service (aahRetSvc.exe).

SysStorage Status of the storage service (aahStoreSvc.exe).

SysSystemDriver Status of the system driver (aahDrvSvc.exe).

SysTier2Storage Status of tier-2 storage.

Tag Description

Tag Description

SysConfigStatus Number of database items affected by a
dynamic configuration (that is, the
number of entries in the
ConfigStatusPending table when the
commit is performed). This value is
cumulative and not reset until the
system is completely restarted.

SysHeadroomXXX Used to monitor the number of
"headroom" tags still available. Analog
tags are divided by byte size: 2, 4, or 8
byte. For more information, see
"Pre-allocating Memory for Future Tags"
in Chapter 2, "Configuring Tags," in your
Wonderware Historian Administration
Guide.

SysHistoryCacheFaults The number of history blocks loaded
from disk per minute. The maximum
value is 1,000. The storage rate for this
analog tag is 60 seconds. For more
information on the history cache, see
"Memory Management for Data Storage"
on page 122.
Wonderware Historian Concepts Guide

46 Chapter 2 System-Level Functionality
Event Subsystem Tags
The following table describes the event subsystem tags.

TagName Description

SysEventCritActionQSize Size of the critical action queue.
For more information, see
"Action Thread Pooling" on page
355.

SysEventDelayedActionQSize Number of entries in the delayed
action queue.

SysEventNormActionQSize Size of the normal action queue.

SysEventSystem A discrete tag that indicates the
status of the event system
service (aahEventSvc.exe). 0 =
Bad; 1 = Good.

SysStatusEvent Snapshot event tag whose value
changes every hour.

SysHistoryCacheUsed Number of bytes used for history block
information. The maximum value is
3,000,000,000. The storage rate for this
analog tag is 30 seconds.

SysHistoryClients The number of clients that are connected
to the Indexing service. The maximum
value is 200. The storage rate for this
analog tag is 30 seconds.

SysMinutesRun Minutes since the last startup. The
storage rate is 60000 milliseconds for
this analog tag.

SysString String tag whose value changes every
hour

SysRateDeadbandForcedValues The total number of values that were
forced to be stored as a result of using a
swinging door storage deadband. This
number reflects all forced values for all
tags since the system was started.

Tag Description
Wonderware Historian Concepts Guide

The System Driver and System Tags 47
Replication Subsystem Tags
The Replication Service collects the following custom
performance counters about its own operation, where N is a
primary key of the tier-2 historian in the Runtime database
of the tier-1 historian. These values are stored cyclically
every 10 seconds.

TagName Description

SysReplicationSummaryCalcQueueItemsTotal Current number of summary
calculations stored in the
summary calculation queue of all
tier-2 historians.

SysReplicationSummaryClientsTotal Current number of concurrent
retrieval clients performing
summary calculations on the tier-1
historian for all tier-2 historians.

SysReplicationSyncQueueItemsN Current number of items stored in
the synchronization queue on the
tier-2 historian of key N.

SysReplicationSyncQueueItemsTotal Current number of items stored in
the synchronization queue on the
tier-1 for all tier-2 historians.

SysReplicationSyncQueueValuesPerSecN Average synchronization queue
values per second sent to the tier-2
historian of key N.

SysReplicationSyncQueueValuesPerSecTotal Average values processed by the
replication synchronization queue
processor for all tier-2 historians.

SysReplicationTotalTagsN Total number of tags being
replicated to the tier-2 historian of
key N.

SysReplicationTotalValuesN Total number of values sent to the
tier-2 historian of key N since the
startup of the replication service.

SysReplicationTotalValuesTotal Total number of values sent to all
tier-2 historians since the startup
of the replication service.

SysReplicationValuesPerSecN Average values per second sent to
the tier-2 historian of key N

SysReplicationValuesPerSecTotal Average values per second sent to
all tier-2 historians.
Wonderware Historian Concepts Guide

48 Chapter 2 System-Level Functionality
Performance Monitoring Tags
You use performance monitoring tags to monitor CPU
loading and other performance parameters for various
Wonderware Historian processes. (All of these values map to
equivalent counters that are used in the Microsoft
Performance Logs and Alerts application.)

The following tags allow you to monitor the percentage CPU
load for each processor (up to a total of four), as well as the
total load for all processors:

• SysPerfCPU0

• SysPerfCPU1

• SysPerfCPU2

• SysPerfCPU3

• SysPerfCPUTotal

The remaining system tags are used to monitor performance
for each historian process that runs as a Windows service
and for the Microsoft SQL Server service. For more
information on services, see "Wonderware Historian
Services" on page 40.

There are six system performance tags per each service.
These tags adhere to the following naming convention, where
XXX designates the service (Config, DataAcq, EventSys,
Indexing, InSQLIOS, ManualStorage, MDASServer,
Replication, Retreival, SQLServer, Storage, SysDrv, or
Tier2Storage):

SysPerfXXXCPU

SysPerfXXXHandleCount

SysPerfXXXPageFaults

SysPerfXXXPrivateBytes

SysPerfXXXThreadCount

SysPerfXXXVirtualBytes

These tags have a cyclic storage rate of 5 seconds.

Note The six performance tags will exist for each defined IDAS.
The identifying number (N) appended to the end of the "DataAcq"
portion of the tagname is the IODriverKey from the IODriver
table. For example, 'SysPerfDataAcq1CPU'.
Wonderware Historian Concepts Guide

The System Driver and System Tags 49
The following table describes the suffixes assigned to the
names of system performance tags:

Suffix Description

CPU Current percentage load on the
service.

HandleCount Total number of handles currently
open by each thread in the service. A
handle is a identifier for a particular
resource in the system, such as a
registry key or file.

PageFaults Rate, per second, at which page faults
occur in the threads executing the
service. A page fault will occur if a
thread refers to a virtual memory page
that is not in its working set in main
memory. Thus, the page will not be
fetched from disk if it is on the standby
list (and already in main memory) or if
it is being used by another process.

PrivateBytes Current number of bytes allocated by
the service that cannot be shared with
any other processes.

ThreadCount Current number of active threads in
the service. A thread executes
instructions, which are the basic units
of execution in a processor.

VirtualBytes Current size, in bytes, of the virtual
address space that is being used by the
service.
Wonderware Historian Concepts Guide

50 Chapter 2 System-Level Functionality
Supported Protocols
Wonderware Historian supports the following protocols:

Protocol Description

DDE DDE is the passage of data between
applications, accomplished without user
involvement or monitoring. In the Windows
environment, DDE is achieved through a
set of message types, recommended
procedures (protocols) for processing these
message types, and some newly defined
data types. By following the protocols,
applications that were written
independently of each other can pass data
between themselves without involvement
on the part of the user. For example,
InTouch HMI software and Excel.

SuiteLink SuiteLink is a protocol that provides
substantially more application level
functionality than that provided by DDE.
The SuiteLink protocol allows for the
passing of time stamp and quality
information with process data in the data
packets.

System
protocol

The system protocol in an internal means of
passing data from system variables to the
historian.

Note DDE is not supported if the historian is running on the
Windows Server 2003, Windows Server 2008, or Windows Vista
operating system.
Wonderware Historian Concepts Guide

Modification Tracking 51
Modification Tracking
Wonderware Historian tracks modifications (inserts,
updates, and deletions) to columns in the Runtime database.
If your plant tracks changes for compliance with regulatory
agencies, you can configure the historian to use modification
tracking.

Modification tracking is system-wide; it is controlled by the
ModLogTrackingStatus system parameter. You cannot turn
modification tracking on or off at a table level. Enabling
modification tracking decreases the historian's performance
when making changes to the system. This is due to the extra
work and space required to track the changes. However,
there is no performance degradation during run-time
operation.

Information in the modification tracking tables are stored in
the data files of the Microsoft SQL Server database. If
modification tracking is turned on, the amount of data that is
stored in these files is greatly increased.

All of the objects for which modifications can be tracked are
stored in the HistorianSysObjects table.

You can track two types of modifications:

• Changes to configuration data. For example, additions or
changes to tag, I/O Server, and storage location
definitions. For more information, see "Modification
Tracking for Configuration Changes" on page 52.

• Changes to history data. For example, data inserts and
updates by Transact-SQL statements or CSV imports.
For more information, see "Modification Tracking for
Historical Data Changes" on page 53.

The types of changes that will be tracked is controlled by the
ModLogTrackingStatus system parameter. You can track
inserts, updates, and deletes, as well as various
combinations. For more information, see "Turning
Modification Tracking On/Off" in Chapter 9, "Viewing or
Changing System-Wide Properties," in your Wonderware
Historian Administration Guide.
Wonderware Historian Concepts Guide

52 Chapter 2 System-Level Functionality
Modification Tracking for Configuration Changes
For configuration data, when a modification is made to a
table in the database, a record for the modification is inserted
into the ModLogTable table. One row will be inserted for
each separate type of modification, either an insert, update,
or delete.

The actual value changes are recorded in the ModLogColumn
table. Each column that is modified will result in a row
inserted into the ModLogColumn table. The entry in the
ModLogColumn table includes both the column value before
the change and the new column value.

For example, if you added (inserted) a single analog tag to
the system, the following changes would be reflected in the
modification tracking tables:

• Two rows would be added to the ModLogTable table, one
to track the change to the Tag table and one to track the
change to the AnalogTag table.

• One row for each of the columns in both of the Tag and
AnalogTag tables will be added to the ModLogColumn
table.

As another example, if you updated for a single analog tag
the StorageType column in the Tag table and the
ValueDeadband and RateDeadband columns in the
AnalogTag table, the following changes would be reflected in
the modification tracking tables:

• Two rows would be added to the ModLogTable table, one
to track the change to the Tag table and one to track the
change to the AnalogTag table.

• Three rows would be added to the ModLogColumn table
to record the changes to the StorageType,
ValueDeadband, and RateDeadband columns.

• Important things to note:

For a tier-2 historian, modification tracking for a replicated
tag appears as the being made by the system account that
the configuration service is running under, which is typically
NT AUTHORITY\SYSTEM. To find out who modified a tag,
examine the ModLogTable of the tier-1 historian.
Wonderware Historian Concepts Guide

Modification Tracking 53
Modification Tracking for Historical Data
Changes

Modifications to history data can be performed by either
executing Transact-SQL statements or by using the CSV
import functionality. In the case of Transact-SQL
statements, the Wonderware Historian OLE DB provider
provides the change information to the modification tracking
tables by means of a stored procedure. This stored procedure
is also used by the storage subsystem to communicate
changes that are the result of a CSV import.

Although the history data that is changed is physically
stored on disk in the history blocks, for the purposes of
modification tracking, the data is considered to reside in the
History_OLEDB extension table. For more information on
extension tables, see "Extension (Remote) Tables for History
Data" on page 132.

When a modification is made to history data, a record for the
modification is inserted into the ModLogTable table. One row
will be inserted for each separate type of modification, either
an insert or an update, for each tag.

The ModLogColumn table is used to store details for the
column modification in the History_OLEDB table. The
modified column will always be the vValue column. The total
count of consecutive value changes attempted per tag is
stored in the NewValue column of the ModLogColumn table.

The OldValue column contains the value stored in the
column before the modification was made, if the modification
was to a configuration table. For modifications to history
data using SQL INSERT and UPDATE statements, this
column contains the timestamp of the earliest data affected
by the INSERT or UPDATE operation. If multiple changes
are made to the same data, then only the most recent change
will be contained in this column. This column is not used for
modifications made to history data using a CSV file.
Wonderware Historian Concepts Guide

54 Chapter 2 System-Level Functionality
For example, if you insert 20 data values into history for the
ReactTemp analog tag using a CSV import, the following
changes would be reflected in the modification tracking
tables:

• One row would be added to the ModLogTable table, to
track the change to the History_OLEDB table. The
UserName column will contain the name of the user as
contained in the CSV file header.

• One row would be added to the ModLogColumn table to
record that the value change occurred. A value of 20 will
be stored in the NewValue column to indicate that 20
values were inserted.

Data Quality
Data quality is the degree of validity for a data value. Data
quality can range from good, in which case the value is
exactly what was originally acquired from the plant floor, to
invalid, in which the value is either wrong or cannot be
verified. As a data value is acquired, stored, retrieved, and
then shown, its quality can degrade along the way, as
external variables and events impact the system. There are
three aspects of quality handling for the system:

• Data quality assignment by data acquisition devices
(OPCQuality)

• Storage subsystem quality for the Wonderware Historian
(QualityDetail)

• Client-side quality definitions (Quality

The historian uses three distinct parameters to indicate the
quality of every historized data value: Quality,
QualityDetail, and OPCQuality. OPCQuality is strongly
related to QualityDetail. Quality is a derived measure of the
validity of the data value, while QualityDetail and
OPCQuality indicate either a good quality for the data value,
or the specific cause for degraded quality of the data value.
Wonderware Historian Concepts Guide

Data Quality 55
The historian persists four bytes of quality information for
every data value that is historized. (This does not imply that
four bytes of quality data are actually stored for every data
value, but it guarantees that every data value can be
associated with 4 bytes of quality information when the value
is retrieved.) The 4 bytes of quality information comprises 2
bytes for QualityDetail and 2 bytes for OPCQuality.
QualityDetail and OPCQuality are related, but may have
different values.

In essence, OPCQuality is provided as a migration path for
future client applications that are fully aware of the OPC
data quality standard, while QualityDetail (and Quality) are
maintained to ensure proper operation of existing and legacy
client applications. OPCQuality is sent by the data source,
and QualityDetail is added by the Wonderware Historian.

Viewing Quality Values and Details
The currently supported OPCQuality values are stored in the
OPCQualityMap table of the Runtime database. To view
OPCQuality values and descriptions, execute the following
query:
SELECT OPCQuality, Description FROM OPCQualityMap

The currently supported QualityDetail values are stored in
the QualityMap table of the Runtime database. To view the
complete list of QualityDetail values and descriptions,
execute the following query:
SELECT QualityDetail, QualityString FROM QualityMap

The following notes apply to the QualityDetail values:

• The boundary point for a QualityDetail of 448 is 1 second.

• Although a quality detail of 65536 is used to indicate
block gaps for tier-2 tags, NULL values are not produced
for block gaps for tier-2 tags.
Wonderware Historian Concepts Guide

56 Chapter 2 System-Level Functionality
Basic QualityDetail Codes
Quality detail codes are metadata used to describe data
values stored or retrieved using the Wonderware Historian.
Quality details are 2 byte values that use the low order byte
for the basic quality detail and the high order byte to store
quality detail flags. The basic quality detail and quality
detail flags are OR'd together.

The following table lists the basic quality detail codes. These
codes use the low order byte, and the individual bit values do
not have independent significance. For information on how to
retrieve the complete list of quality detail codes, see Viewing
Quality Values and Details on page 55.

QualityDetail Quality String Description Created By

0 Bad Quality of
undetermined state

Bad quality. Storage

1 No data available, tag did
not exist at the time

For cyclic, delta, full,
interpolated, and
best-fit, retrieval started
before the tag was
created (NULL value).

Retrieval

2 Running insert Not used in
IndustrialSQL Server
8.0 or later. Obsolete.

--

10 Communication loss Pipe disconnect, goes
with 248.

Storage

16 Good value, received out of
time sync (cyclic tag)

Not used in
IndustrialSQL Server
8.0 or later. Obsolete.

--

17 Duplicate time stamp;
infinite slope

Slope calculation of a
vertical line.

Retrieval

20 IDAS overflow recovery An IDAS data buffer
overflow was detected,
and all overflow values
were discarded to
recover.

IDAS

24 IOServer communication
failed

I/O Server
communication failure.
Application Server
sends quality of 24 or 32.

Storage,
MDAS

33 Violation of History
Duration license feature

You have queried
beyond the licensed time
range limit.

Retrieval
Wonderware Historian Concepts Guide

Data Quality 57
44 Pipe reconnect First value received
after start up or pipe
reconnect. MDAS sends
QualityDetail 44 for
slow changing tags after
fail-over.

Storage,
MDAS

64 Cannot convert The calculated point was
based on points of
different QualityDetails:
Good, Doubtful, or Bad.
This is, for example,
used in the integral and
average retrieval modes.

Retrieval

150 Storage startup Storage startup. Storage

151 Store forward storage
startup

Store-and-forward
storage startup.

Storage

152 Incomplete calculated
value

Incomplete calculated
value.

Replication,
Storage

192 Good Good value. Storage,
MDAS

202 Good point of version
Latest

Current value is the
latest update which
“masks” a previous
original value.

Storage

212 Counter rollover has
occurred

Counter count reached
the roll-over value.

Retrieval

248 First value received in
store forward mode

First value received
from pipe re-connect,
delta retrieval, goes with
QualityDetail 10. MDAS
injects QualityDetail of
248 with the first value
into the store-and-
forward engine.

Storage,
MDAS

249 Not a number Value received was not a
number, infinite value
(NaN).

Storage,
MDAS

252 First value received from
IOServer

First value received
after an I/O Server
reconnect.

Storage

QualityDetail Quality String Description Created By
Wonderware Historian Concepts Guide

58 Chapter 2 System-Level Functionality
QualityDetail Flags
The following bit flags are stored in the high order byte of the
quality detail. Each bit is a flag that carries specific meaning.

0x0000 - Basic QualityDetail.
The following hi-byte flags are or'ed with the basic
QualityDetail. The three flags cannot coexist; only one is set
at any point in time.

0x0100 - Value received in the future.
0x0200 - Value received out of sequence.
0x0400 - Configured for server time stamping.

The following hi-byte flag can coexist with any of the prior
four combinations.

0x0800 - Point generated by Rate Deadband filter.
The following hi-byte flag can coexist with any of the prior
eight combinations.

0x1000 - Partial cycle, advance retrieval results.
The following hi-byte flag can coexist with any of the prior
eight combinations.

0x2000 - Value has been modified by filter.
This bit is set during retrieval to indicate that retrieval has
modified a value or time stamp due to applying a filter such
as SnapTo() or ToDiscrete().

65536 No data stored in history,
NULL

NULL value.

Note Although this quality
detail is used to indicate
block gaps on Tier 1 tags,
NULL values are not
produced for block gaps
for Tier 2 tags.

Retrieval

QualityDetail Quality String Description Created By
Wonderware Historian Concepts Guide

Data Quality 59
QualityDetail Bit Layout
The QualityDetail bit layout is as follows:

Acquisition and Storage of Quality Information
When a data value is acquired for storage in the Wonderware
Historian, it is usually accompanied by a quality indicator
generated at the source of the data. In general, the historian
passes the source-supplied quality indicator to the storage
subsystem unmodified, but there are instances where the
data acquisition subsystem actually modifies the quality of
the data value.

Quality for Data Acquired from I/O Servers
A data value acquired from a Wonderware I/O Server by an
IDAS always has 2 bytes of quality information attached to it
by the I/O Server. The IDAS presents the 2 bytes of quality
information supplied by the I/O Server to the Wonderware
Historian storage subsystem as OPCQuality, and the
QualityDetail is set to 192. An exception to this is if the
quality value sent by the I/O Server is 24, in which case both
OPCQuality and QualityDetail are set to 24.

However, in some instances, IDAS will overwrite
QualityDetail with a special value to indicate a specific event
or condition. For more information on these values, see
"Viewing Quality Values and Details" on page 55. When
IDAS overwrites QualityDetail with one of the reserved
values, it does not modify the OPCQuality value. Thus,
QualityDetail contains the reserved value set by IDAS, while
OPCQuality retains the value provided by the data source.

The SysDataAcqNBadValues system tag tracks the number
of data values with bad quality that are coming from an
IDAS. If this value is high, you should make sure that there
is not problem with the IDAS or I/O Server. For more
information on system tags, see "The System Driver and
System Tags" on page 42.
Wonderware Historian Concepts Guide

60 Chapter 2 System-Level Functionality
Quality for Data Not Acquired from I/O Servers
The Wonderware Historian supports data acquisition from a
variety of sources other than Wonderware I/O Servers. These
sources include properly formatted CSV files, SQL queries,
and the Wonderware Application Server.

Quality for data acquired from these sources is handled the
same as for data received from Wonderware I/O Servers,
with a few additional exceptions:

• For data acquired from CSV files, the specified quality is
always interpreted as OPCQuality, and the QualityDetail
is set to 192, unless the specified quality is 24, in which
case both OPCQuality and QualityDetail are set to 24.

• If MDAS is responsible for acquiring the data (as is the
case for SQL queries and Wonderware Application
Server), the quality value presented by the source is
preserved in OPCQuality, and QualityDetail is set to 192.
Exceptions to this are:

• If a quality value of 32 presented by the source to
MDAS, OPCQuality is set to 32 and QualityDetail is
set to 24.

• If the data value presented by the source is infinite or
NaN (not a number), OPCQuality contains the actual
quality presented by the source, and QualityDetail is
set to 249.

• If a special condition or event occurs, MDAS will
substitute a reserved value for QualityDetail. For
more information, see "Viewing Quality Values and
Details" on page 55.
Wonderware Historian Concepts Guide

Data Quality 61
Client-Side Quality
Three quality indicators are exposed to clients:

• A 1-byte short quality indicator (Quality)

• A 4-byte long quality detail indicator (QualityDetail)

• A 4-byte long OPC quality indicator (OPCQuality)

Quality contains summary information that essentially falls
into the categories of Good, Bad, Doubtful, or InitialValue.
This implicit information is derived from the data source as
well as the Wonderware Historian.

Quality is a 1-byte indicator that provides a summary
meaning for the related data item. Quality is an enumerated
type with the following values:

Hex Dec Name Description

0x00 0 Good Good value.

0x01 1 Bad Value marked as invalid.

0x10 16 Doubtful Value is uncertain.

0x85 133 Initial Value
(Good)

Initial value for a delta
request.

Initial Value and Doubtful are derived from QualityDetail.
The Initial Value is dependent on the type of query that is
executed. For more information, see "Using Comparison
Operators with Delta Retrieval" on page 294, "Using
Comparison Operators with Cyclic Retrieval and Cycle
Count" on page 299, and "Using Comparison Operators with
Cyclic Retrieval and Resolution" on page 302.

QualityDetail contains detailed information that is
potentially specific to the device which supplied it. Quality
values may be derived from various sources, such as from I/O
Servers or from the Wonderware Historian storage system.

To retrieve a listing of the quality values that are used by the
historian, see "Viewing Quality Values and Details" on page
55.
Wonderware Historian Concepts Guide

62 Chapter 2 System-Level Functionality
Wonderware Historian Concepts Guide

63
Chapter 3

Configuration Subsystem

Configuration data is information about elements that make
up the Wonderware Historian, such as tag definitions, I/O
Server definitions, and storage locations for historical data
files. Configuration data is relatively static and does not
change frequently during normal plant operation. The
configuration subsystem stores and manages configuration
data.

Setting up the required databases and included entities (such
as tables, stored procedures, and views) to support a typical
factory environment would take countless hours. However,
when you install the historian, all of these entities are
defined for you, allowing you to quickly start using
Wonderware Historian.

Configuration data is stored in SQL Server tables in the
Runtime database. If you are already using InTouch® HMI
software, you can easily import much of this information
from existing InTouch applications, thus preserving your
engineering investment. If you are using Application Server,
much of the Wonderware Historian configuration is handled
automatically by Application Server. You can also use the
System Management Console to manually add definitions
and configure the system. You can make bulk modifications
to your historian configuration or migrate the configuration
from one historian to another using the Wonderware
Historian Database Export/Import Utility.
Wonderware Historian Concepts Guide

64 Chapter 3 Configuration Subsystem
You can reconfigure the system at any time with no
interruption in the acquisition, storage, and retrieval of
unaffected tags. Configuration data can be stored with a
complete revision history.

For information on how to configure your system, see
Chapter 1, "Getting Started with Administrative Tools," in
your Wonderware Historian Administration Guide.

Configuration Subsystem Components
The components of the configuration subsystem are:

Component Description

Runtime database SQL Server database that stores all
configuration information.

Configuration and
management tools

Consists of the System Management
Console client application, the
Wonderware Historian Database
Export/Import Utility, and the
configuration tools shipped with
Microsoft SQL Server. For more
information, see Chapter 1, "Getting
Started with Administrative Tools," in
your Wonderware Historian
Administration Guide.

Configuration Service
(aahCfgSvc.exe)

Internal process that handles all status
and configuration information
throughout the system. This process
runs as a Windows service.

For a complete diagram of the Wonderware Historian
architecture, see "Wonderware Historian Subsystems" on
page 19.
Wonderware Historian Concepts Guide

About the Runtime and Holding Databases 65
About the Runtime and Holding Databases
A relational database management system (RDBMS) such as
Microsoft SQL Server can contain many databases. A
database is a collection of objects such as:

• Tables

• Stored procedures

• Views

• User-defined data types

• Users and groups

The Wonderware Historian is shipped with two
pre-configured databases: the Runtime and Holding
databases.

The historian embeds a full-featured Microsoft SQL Server.
The historian supports all system tables associated with SQL
Server. For more information on the Microsoft SQL Server
tables, see your Microsoft documentation.

Note When installed on a case-sensitive Microsoft SQL Server, the
Runtime and Holding databases are case-sensitive. Be sure that
you use the correct case when performing queries.

The Runtime Database
The Runtime database is the online database against which
the Wonderware Historian runs. The tables within the
Runtime database store all configuration information, such
as:

• System configuration.

• Tag definitions.

• InTouch integration information.

• System namespaces and grouping information.

• Event configuration information.

• User-entered annotations.
Wonderware Historian Concepts Guide

66 Chapter 3 Configuration Subsystem
Runtime database tables are usually used as references or
lookup tables by the historian and client applications. Any
changes to the historian are reflected in these configuration
tables. The configuration tables exist as normal SQL Server
tables and data within them can be modified by using the
Microsoft Transact-SQL query language. For more
information on Transact-SQL, see your Microsoft
documentation.

The Runtime database also stores some types of history data:

• Modification tracking data

• Event subsystem data

Tables that store modification tracking and event data are
also normal SQL Server tables.

Finally, the Runtime database is used to logically store
historized tag values. Although the tag values are stored in
the history block files on disk, the values appear to be saved
to tables in the Runtime database. For more information on
history blocks, see "History Blocks" on page 113. For more
information on retrieving historized tag values, see Chapter
6, "Data Retrieval Subsystem."

Note You cannot change the name of the Runtime database.

The Holding Database
The Holding database temporarily stores topic and
configuration data imported into Wonderware Historian from
an InTouch node. When you import configuration data from
an InTouch application, the data is first mapped to table
structures in the Holding database. Then, the data is moved
into the Runtime database.

Important Do not modify any entities in the Holding database.

For more information about importing configuration
information from an InTouch application, see Chapter 3,
"Importing and Exporting Configuration Information," in
your Wonderware Historian Administration Guide.
Wonderware Historian Concepts Guide

About the Configuration Service 67
About the Configuration Service
The Configuration Service is an internal process that accepts
configuration changes and updates the Runtime database.
Thus, the Configuration Service is the only component that
interacts with the configuration store.

The Configuration Service runs as a Windows service and
accepts and distributes configuration information to and
from different parts of the system by a set of interfaces. The
Configuration Service also serves as a gateway for all
information pertaining to the status of the different
components of the Wonderware Historian.

Dynamic Configuration
The Wonderware Historian supports dynamic configuration;
that is, you can modify the configuration of tags and other
objects in the historian database while the system is running.
The historian automatically detects and applies the
modifications to its internal run-time state without requiring
the system to be restarted. In addition, clients do not
experience interruptions due to configuration changes.

The dynamic configuration feature in the historian caters for
all possible database modifications that affect the run-time
operation of the system. For some types of configuration
modifications, the system automatically creates a new
history block. The configuration subsystem is designed to
ensure that no loss of data occurs for tags that are not
affected by the modifications being applied. However, tags
that require a change in data acquisition configuration will
obviously lose data during the reconfiguration.

In most cases, the system continues to run uninterrupted. In
the following cases, a restart of the system is required:

• When you change the main historization path in the
system, a parameter that is rarely modified after
installation.

• When you modify the DataImportPath system
parameter.

For a description of the effect of various types of
modifications made while the system is running, see "Effects
of Configuration Changes on the System" on page 68.
Wonderware Historian Concepts Guide

68 Chapter 3 Configuration Subsystem
Dynamic configuration is usually a two-step process:

1 Add, modify, or delete one or more objects in the
database, using the System Management Console,
Transact-SQL statements, or the database modification
tool of your choice.
As soon as you make a change, the Runtime database is
updated to reflect the change. For example, when you add
an analog tag using the wizard within the Configuration
Editor, the database is updated as soon as you click
Finish.

2 After making all of the modifications, you must commit
the changes, which triggers the dynamic configuration
process in the server. Modifications made to the system
are done in a transactional fashion.
The database modifications are not reflected in the
running system until you commit the changes. You are
committing changes to the system, not to the database.

You can commit changes to the configuration of the system as
often as you want. You can also commit changes in batches or
individually. There is no limit on the number of changes that
may be committed to the system. Configuration changes
typically take effect within 10 seconds under maximum data
throughput conditions, unless a new history block is
required, in which case the changes take longer (3 to 5
minutes) to take full effect.

For information on cases in which a commit is prevented, see
"Cases in Which Configuration Changes are not Committed"
on page 70.

Effects of Configuration Changes on the System
Different types of dynamic changes to the database affect the
system in different ways.

Some types of modifications require a new history block to be
created. To reduce the need to create new history blocks, the
system includes "headroom" tags, which allocate extra space
in the blocks to accommodate new tags. For more information
on headroom tags, see "Pre-allocating Memory for Future
Tags" in Chapter 2, "Configuring Tags," in your Wonderware
Historian Administration Guide.
Wonderware Historian Concepts Guide

Dynamic Configuration 69
A summary of typical changes and their effect on the system
after a commit is as follows.

• Modifying system parameters

A modification to system parameters usually takes effect
immediately (a new history block will not be created).
The exception is adding headroom for one or more tag
types, which requires a new history block. Also, if you
change the HistoryCacheSize parameter and commit the
change, the cache is not immediately flushed to bring the
cache size to less than or equal to the new value. You
must rescan the history blocks to flush the cache.

• Modifying storage locations

Modifying the circular storage location requires a
shutdown and restart of Wonderware Historian. Changes
to the other storage locations take effect immediately.

• Adding, deleting, and modifying tags

Adding one or more tags to the system generally results
in a new history block being created, unless sufficient
headroom is available for that particular tag type, in
which case a new block is not required. If the headroom is
exceeded, a new block is created and the headroom is
replenished to the amount specified in the
SystemParameter table.
Deleting one or more tags takes effect immediately.
Certain modifications to tags result in a new history
block. Those include changing the integer size, changing
the raw type, changing strings tags from fixed length to
variable length or vice versa, changing storage type from
"Not stored" to "Stored," changing a string tag from
ASCII to Unicode or vice versa, and changing tag
acquistion type from"IOServer" to "Manual" or vice versa.
As a general guideline, modifications to a tag that
changes its footprint on disk will result in a new history
block. If only data acquisition or retrieval characteristics
of a tag are modified, the changes take effect without
requiring the system to create a new history block.
Modifying data acquisition characteristics of a tag could
result in a brief period of data loss, for that tag. As a
guideline, any change to the source of data for the tag (for
example, modifying the item name, topic name, or I/O
server name of the tag) will result in a short gap in data
for the tag, while the system disconnects from the old
data source and connects to the new data source.
Wonderware Historian Concepts Guide

70 Chapter 3 Configuration Subsystem
• Adding, deleting, and modifying IDASs

Adding a new IDAS to the system results in a new set of
system tags being added (the status and performance
system tags associated with that IDAS). While adding an
IDAS in itself does not require a new history block, the
new system tags will result in a new block, unless
sufficient headroom is available.
Deleting an IDAS takes effect immediately. Modifying an
IDAS never requires a new history block, but may result
in data loss for the tags serviced by that IDAS (for
example, moving an IDAS to another computer causes a
disconnect from the data sources).

• Adding, deleting, and modifying I/O Servers and
topics

Adding or deleting I/O Servers and/or topics does not
require a new history block. Modifying I/O Server or topic
characteristics may result in data loss for their tags, if
the modification implies a disconnect from the data
source.

Cases in Which Configuration Changes are not
Committed

 If the system is not running, or storage is stopped, any
commit is ignored and the contents of the
ConfigStatusPending table are cleaned up. The exceptions
are changes to the following fields in the SystemParameter
table: HistoryCacheSize, HistoryDaysAlwaysCached, and
AutoStart.

If the system is running, a commit will be disallowed:

• While a previous dynamic configuration is still in
progress.

• While a new history block is in progress (whether the
block is the result of a scheduled block changeover, a
dynamic configuration, or a user request). A block
changeover is in progress for five minutes after it has
been created, and also ten minutes before the next
scheduled block changeover.

For each case, a message appears, indicating that the commit
is disallowed.
Wonderware Historian Concepts Guide

71
Chapter 4

Data Acquisition Subsystem

The Wonderware Historian has been designed for high-speed
acquisition of data, acquiring and storing process data many
times faster than a traditional relational database.

Wonderware Application Server, DA Servers, and I/O
Servers are the main sources of plant data. The historian can
acquire data from over 500 Wonderware and third-party I/O
Servers, ensuring access to the industry's most
comprehensive list of data acquisition and control devices.
I/O Servers that use the SuiteLink protocol can provide time
and quality stamping at the I/O Server level. Data can be
acquired simultaneously from multiple I/O Servers over a
variety of physical links, with a remote store-and-forward
capability to prevent data loss in the event of failed network
connection.

Custom client applications can be another source for
real-time historical data. Clients that are developed with the
Wonderware Historian Manual Data Acquisition Service
(MDAS) can send historical tag values directly to the system.

You can batch import historical data formatted in a
comma-separated values (CSV) file, allowing you to migrate
existing data from other historians. You can also use the
InTouch History Importer to easily import history data from
InTouch HMI applications.

Finally, the historian generates data for key internal status
variables, which allow you to monitor the health of the
system.
Wonderware Historian Concepts Guide

72 Chapter 4 Data Acquisition Subsystem
Data Acquisition Components
The following table describes the components of the data
acquisition subsystem. Many of the components run as
Windows Services.

Component Description

I/O Server
(DAServer)

Wonderware-compatible software
application that reads values from
PLCs and other factory devices and
forwards the real-time data to
Wonderware applications.

IDAS Service Process that accepts real-time data
from one or more I/O Servers and
forwards it to a single Wonderware
Historian.

Query Tools Any database query tool capable of
issuing Transact-SQL INSERT or
UPDATE statements. For example,
Microsoft SQL Server Query
Analyzer.

Data Import
Folder

Defined file folder to batch import tag
values to the historian.

InTouch History
Importer

Utility to import data from one or
more InTouch history files (.lgh). For
more information, see "Importing
Data from an InTouch History File" in
Chapter 6, "Importing, Inserting, or
Updating History Data," in your
Wonderware Historian
Administration Guide.

Manual Data
Acquisition
Service (MDAS)
DLL

Process that can accept non-I/O
Server data and send it to the
historian to be historized. Data is
passed to MDAS through a COM
interface. MDAS is used by
Wonderware Application Server, the
Wonderware Historian OLE DB
provider, the event subsystem, and
custom client applications.
Wonderware Historian Concepts Guide

Data Acquisition from I/O Servers 73
For a complete diagram of the historian architecture, see
"Wonderware Historian Subsystems" on page 19.

Data Acquisition from I/O Servers
An I/O Server provides data to Wonderware Historian from
the DDE or SuiteLink protocols. I/O Servers accept data
values from programmable logic controllers (PLCs), Remote
Telemetry Units (RTUs), and similar devices on the factory
floor and can forward them on to other software applications,
such as InTouch HMI software or the Wonderware Historian.

Note FastDDE is not supported. DDE is not supported if the
historian is running on the Windows Server 2003, Windows Server
2008, or Windows Vista operating system.

"Server" and "client" are relative terms. In order for data to
be transmitted from the factory floor to a client application
on the business LAN, it must be "served up" through a chain
of applications. Any application that accepts data from a
lower source is a client. Any application that sends data to a
higher source is a server. The historian is both a client and a
server; it is a client to the I/O Servers and a server to the
desktop clients.

Manual Data
Acquisition
Service (MDAS)
Server

Windows service that can accept
non-I/O Server data and send it to the
historian to be historized. Data is
passed to MDAS through a data layer.
MDAS is used the replication
subsystem.

System Driver
Service

Internal process that monitors the
entire historian system and reports
the status with a set of system tags.
The system driver also sends data
values to the storage subsystem for
the current date and time, as well as
for pre-defined "heartbeat" tags, such
as a discrete system pulse. For more
information, see "The System Driver
and System Tags" on page 42.

Component Description
Wonderware Historian Concepts Guide

74 Chapter 4 Data Acquisition Subsystem
To acquire data from an I/O Server, you must add the I/O
Server addressing information to the historian database and
then associate the I/O Server with an IDAS.

For information on configuring I/O Servers and IDASs, see
Chapter 4, "Configuring Data Acquisition," in your
Wonderware Historian Administration Guide.

I/O Server Addressing
All Wonderware-compatible I/O Servers use DDE
addressing, which includes the following distinct parts:

• Computer name. This is the node name of the computer
runnning I/O Server software.

• Application name. This is the name of the application
supplying data. The application name can include the
name of the computer on which the application is
running.

• Topic name. A topic is an application-specific subgroup
of data elements.

• Item name. An item is a data value placeholder.

The format for the addressing is as follows:

\\<computername>\<applicationname>\<topicname>!<item
name>

The following table provides some examples of DDE
addressing.

Address
Information I/O Server InTouch Microsoft Excel

application
name

\\Computer1\Modbus \\Computer1\VIEW \\Computer1\Excel

topic name ModSlave5 Tag name Spreadsheet1

item name Status ReactLevel A1 (cell name)
For the Wonderware Historian to acquire data from an I/O
Server, the I/O Server addressing information must be added
to the overall system configuration. You can use the System
Management Console to manually add I/O Server definitions
to the system, or you can import I/O Server definitions from
existing InTouch applications.
Wonderware Historian Concepts Guide

Data Acquisition from I/O Servers 75
For more information about manually adding I/O Server
definitions, see Chapter 4, "Configuring Data Acquisition," in
your Wonderware Historian Administration Guide.

For more information on importing I/O Server definitions
from InTouch HMI software, see Chapter 3, "Importing and
Exporting Configuration Information," in your Wonderware
Historian Administration Guide.

About IDASs
A Wonderware Historian Data Acquisition Service (IDAS) is
a small software application that accepts data from one or
more I/O Servers or DAServers. An IDAS runs as a Windows
service named SysDataAcq. The IDAS processes the acquired
data, if necessary, and then sends the data to the
Wonderware Historian, where it is subsequently stored.

Note An IDAS was previously called an I/O Driver. IDAS
configuration information is stored in the IODriver table in the
Runtime database.

When you add an I/O Server definition to the historian, a
topic object is created in the associated IDAS. A separate
topic object exists for each unique combination of I/O Server
computer, application, and topic. Each topic object maintains
its own state: idle, connecting, connected, disconnecting,
disconnected, overloaded, or receiving. Also, each topic object
is assigned a data time-out value based on your assessment
of how often data changes for that particular topic.

An IDAS can accept data from one or more I/O Servers, but
only sends data to a single historian.

An IDAS can run on the same physical computer as the
historian, or on a remote computer. However, only one
instance of an IDAS can run on any single computer. Both
the IDAS and the historian use NetBIOS network names for
communication. Computers must be accessible by those
names. Use the Ping command to check the availability of
the remote IDAS or historian computers.

IDAS seamlessly handles data values, irrespective of their
time. For each data point acquired by IDAS, the timestamp,
value, and quality are historized in accordance with the
storage rules for the tag to which the data value belongs.

For information on configuring an IDAS, see Chapter 4,
"Configuring Data Acquisition," in your Wonderware
Historian Administration Guide.
Wonderware Historian Concepts Guide

76 Chapter 4 Data Acquisition Subsystem
IDAS Configuration
During normal operation, when the historian is started, it
configures an IDAS by sending it information about the tags
(including their data sources) for which the IDAS is to
acquire data. When the historian storage subsystem is ready
to accept data, IDAS automatically connects to its data
sources, starts acquiring data, and sends the data to the
historian storage subsystem for historization.

The primary purpose for IDAS configuration files is to
minimize network traffic and provide information for IDASs
configured for autonomous startup. For more information on
autonomous startup, see "IDAS Autonomous Startup" on
page 81.

The IDAS saves configuration information to a file on the
local hard drive in the following folder of the IDAS computer:
Document and Settings\All Users\Application
Data\ArchestrA\Historian\IDAS\Configurations.

The IDAS configuration file is named as follows:

 idatacfg_SERVERNAME_IDASKEY.dat

where:

• SERVERNAME is the NetBIOS name of the historian
computer

• IDASKEY is the value of the IODriverKey column for the
IDAS in the Runtime database

You can change the IDAS configuration from the System
Management Console. The historian dynamically
reconfigures itself. If the IDAS is on a remote computer, the
historian sends the updated configuration information to the
IDAS. The IDAS reconfigures itself and updates the local
configuration file. The IDAS continuously acquires and sends
data during the reconfiguration process. The historian saves
its copy of the updated IDAS configuration file in the
following folder of the historian computer: Document and
Settings\All Users\Application
Data\ArchestrA\Historian\Configuration\IDAS
Configurations.

After a successfully configuring IDAS, a copy of the IDAS
configuration file is stored on the historian computer. The
IDAS configuration file stored on the IDAS computer is
identical.

Important IDAS configuration files have a proprietary binary
format. Do not modify these files.
Wonderware Historian Concepts Guide

Data Acquisition from I/O Servers 77
If there is more than one autonomous configuration file on
the IDAS computer (for example, if you deleted an IDAS on a
node while it was disconnected and then added one again),
only the newest file is used. A warning is logged on the IDAS
computer. For more information on autonomous startup, see
"IDAS Autonomous Startup" on page 81.

IDAS Data Processing
An IDAS performs minimal processing on the data values it
receives from an I/O Server. The IDAS converts data values
into storage data types, depending on the type of the tag
associated with the value. For example, if the data value is
associated with a floating point analog tag, the incoming
value is converted to a floating point value before
transmission to the storage subsystem. However, no
timestamp conversion is applied because both the I/O Servers
and the Wonderware Historian storage subsystem base time
on Universal Time Coordinated (UTC).

An IDAS does not apply any storage rules (for example, delta
or cyclic storage) unless it is disconnected from the historian
and is operating in store-and-forward mode. If the IDAS is
operating in store-and-forward mode, all storage rules are
applied before the data is stored locally in the
store-and-forward history blocks.

Data Transmission to the Storage Subsystem
Data received by the IDAS are stored in a series of 64 KB
buffers and are periodically sent to the storage subsystem in
packets.

The IDAS sends data from a buffer after the buffer is full, or
every second, whichever comes first. The number of
pre-allocated buffers is configurable for each IDAS. If you
have high data rates for an IDAS and you see log messages
indicating the buffers are full, you may need to increase the
default buffer count.

For more information, see "Editing Advanced Information for
an IDAS" in Chapter 4, "Configuring Data Acquisition," in
your Wonderware Historian Administration Guide.
Wonderware Historian Concepts Guide

78 Chapter 4 Data Acquisition Subsystem
IDAS Security and Firewalls
A remote IDAS uses the network account specified at the
time of the IDAS installation to communicate with the
historian. The historian uses the network account specified
at the time of the historian installation to communicate with
remote IDASs. You can also change this account after
installation using the ArchestrA Change Network Account
utility.

To communicate with the historian, the IDAS relies on the
security provided by the Microsoft Windows operating
system and does not send/receive any user names or
passwords over the network.

An IDAS uses named pipes to communicate with the
historian and Microsoft file sharing for transmission of
store-and-forward history blocks. If a firewall exists between
a remote IDAS and the historian computer, the firewall must
allow communication using ports from 135 through 139
(TCP/UDP) and port 445 (TCP/UDP).

For more information on IDAS file sharing requirements, see
"IDAS Store-and-Forward Capability" on page 79.

IDAS Error Logging
An IDAS logs all errors to the ArchestrA Logger Service. If
the IDAS is installed on a remote computer, the ArchestrA
Logger Service will also be installed on the remote computer.
During normal operation, remote IDAS errors are logged to
both the local logger and the logger on the Wonderware
Historian computer.

If the network connection between the remote IDAS and the
historian fails, no error messages are sent to the logger on
the historian computer. Therefore, you should periodically
use the System Management Console to check the log on the
remote IDAS computer to ensure that no problems occurred.
After the network connection is restored, error messages are
not forwarded to historian computer.
Wonderware Historian Concepts Guide

Data Acquisition from I/O Servers 79
IDAS Store-and-Forward Capability
IDAS includes "store-and-forward" capability, which protects
against a temporary loss of data in the event that a remote
IDAS cannot communicate with the Wonderware Historian.

Note The store-and-forward option is not available if you have
specified a failover IDAS.

If the remote IDAS cannot communicate with the historian,
all data currently being processed can be stored (cached)
locally on the computer running IDAS. This hard drive
location is called the store-and-forward path and is
configurable using the System Management Console.

If the IDAS is unable to send the data to the historian, data
is written to this path until the minimum threshold for the
cache is reached, at which point no more data is stored. An
error message is logged. Remote store-and-forward paths are
not supported.

The following actions occur after the historian becomes
available again:

• The historian verifies that the IDAS configuration
information did not change while the IDAS was
disconnected. The historian attempts to restore data
transmission from the IDAS. The IDAS stops local data
caching and resumes sending data acquired from its data
sources to the historian.

• If historian detects a difference between its version of the
IDAS configuration, and the IDAS version, it dynamically
reconfigures the IDAS to synchronize configuration
information. The IDAS applies the changes and updates
its local IDAS configuration file. Then, the historian
requests restoring data transmission from the IDAS.

• When the IDAS detects availability of the running
historian, it sends the store-and-forward data to the
historian at the same time it is sending real-time data.
Wonderware Historian Concepts Guide

80 Chapter 4 Data Acquisition Subsystem
The store-and-forward data is copied to the InSQL8SF$
network share on the historian computer. The data is sent to
the historian in chunks, pausing for a configurable amount of
time between chunks. The remote IDAS uses the network
account specified during the IDAS installation to access the
network share.

If the data stored on the remote IDAS node does not
constitute a complete history block (for example, due to a
power failure), the data is still forwarded to the historian and
historized. A message is logged that an incomplete block was
processed.

If an error occurs when a store-and-forward block is
processed, the block is moved to the \Circular\Support
directory. A message is logged. Blocks are not automatically
deleted from the \Support directory. You must manually
delete blocks to prevent them from consuming disk space
allocation for the circular storage location. If you upgraded
from the Wonderware Historian 8.0.x, then the block is
moved to the existing \Log directory.

After data from the store-and-forward cache is sent to the
historian, the cache is deleted from the IDAS computer.

Enabling IDAS store-and-forward mode increases system
resources used by the IDAS service because the
store-and-forward subsystem must be initialized and then
maintained in standby mode, ready to accept data.

If the historian computer has sufficient system resources,
you can configure the local IDAS to continue
store-and-forward data collection even if the storage
subsystem is stopped.

IDAS Redundancy
For each IDAS that you define for the system, you can specify
a "failover" IDAS. If the Wonderware Historian stops
receiving data from the primary IDAS, it automatically
switches to the failover IDAS. The switch may take some
short period of time, and some data may be lost during the
transition.

Note You cannot specify a failover IDAS for an IDAS that has
store-and-forward functionality enabled. These two features are
mutually exclusive. Applications that require both failover and
store-and-forward functionality should use a redundant
Wonderware Application Server with RedundantDIObjects.
Wonderware Historian Concepts Guide

Data Acquisition from I/O Servers 81
IDAS Autonomous Startup
Normally, the Wonderware Historian Configuration Service
starts an IDAS. However, a remote IDAS that is enabled for
store-and-forward can be configured to start independently of
the historian. Autonomous startup is useful when the
historian is unavailable due to a network failure or when the
historian is not running when the remote IDAS computer
starts. Using autonomous startup, the IDAS starts caching
store-and-forward data without waiting for a command from
the historian.

For an IDAS to autonomously start, it must be configured to
acquire data from at least one data source. During the
configuration process, the IDAS must be connected to the
historian to ensure that the configuration file is created on
the local IDAS computer. An autonomous startup requires an
existing local IDAS configuration file on the IDAS computer,
so that it has all of the information it needs to begin
acquiring data. For more information, see "IDAS
Configuration" on page 76.

An IDAS can start autonomously by being started manually
from the Windows Services console or by starting
automatically after a computer restart.

When an IDAS starts, it attempts to load the configuration
information from the local configuration file. If it is able to do
so, the IDAS uses that information to connect to its data
sources and start acquiring data. As soon as the internal
IDAS data buffers are full, the IDAS switches to
store-and-forward mode and stores data to the local hard
drive.

If there is more than one autonomous configuration file on
the IDAS computer (for example, if you deleted an IDAS on a
node while it was disconnected and then added one again),
only the newest file is used. A warning is logged on the IDAS
computer.
Wonderware Historian Concepts Guide

82 Chapter 4 Data Acquisition Subsystem
If the local configuration information cannot be loaded, the
IDAS remains in an idle state until contacted by the
historian. If the IDAS is not contacted by the historian
within the default start time-out of 60 seconds, the IDAS
shuts down. Note that the IDAS startup time-out is different
than the time-out used by the IDAS during autonomous
startup. Information on changing the default IDAS startup
time-out is provided in a TechNote, which is available from
technical support.

When the historian becomes available, data transmission
from the IDAS will be restored. For more information, see
"IDAS Store-and-Forward Capability" on page 79.

Even if the IDAS is configured for autonomous startup,
under certain circumstances it may be started by the
Wonderware Historian Configuration service. The
autonomous startup time-out is the time, in seconds, that an
autonomous IDAS waits for configuration commands when
started by the Configuration service before switching to
autonomous mode. The autonomous startup time-out does
not apply when you start the IDAS either manually using the
Windows Services console or by configuring the IDAS to
automatically start (autostart) using the Windows Services
console.

If an IDAS is configured as autonomous, the startup type for
the SysDataAcq service are changed to Automatic, and the
IDAS starts every time the IDAS computer is restarted. If
the IDAS is then changed to be non-autonomous, the startup
type will be changed back to Manual. Information on
changing this default behavior is provided in a TechNote,
which is available from technical support.

IDAS Late Data Handling
"Late" data arrives at the Wonderware Historian with a
timestamp later than 30 seconds of the current historian
time. The storage subsystem can cater for processing
different types of late data from an I/O Server. For example:

• Data that is late, but is sent in steady stream. For
example, because of communications delays, a topic
defined in an I/O Server might send a stream of data
values that is consistently two to three minutes behind
the Wonderware Historian time. Although this type of
data is late, it is handled by the real-time data storage
process if the topic is configured for late data.
Wonderware Historian Concepts Guide

Data Acquisition from I/O Servers 83
• Data that is sent in periodic bursts. For example, a topic
defined in an I/O Server might represent an RTU that
sends a block of data values every few hours. Late data of
this type is handled by the "manual" data storage
process.

• Late data must not encompass more than six history
blocks at any given point of time."

The late date option must be enabled for the topic in order for
late data to be processed. If the late data option is not
enabled, any data values from that topic later than 30
seconds behind the Wonderware Historian are discarded.
Any discarded data is reflected in the
SysPerfDataAcqNOutsideRealtime system tag for the IDAS.

 For more information on enabling late data, see "Editing
Advanced Information for an IDAS" in Chapter 4,
"Configuring Data Acquisition," in your Wonderware
Historian Administration Guide.

Important Support for late data is not intended to accommodate
time synchronization problems between the IDAS, I/O Servers,
and the historian. It is imperative that you properly synchronize
the IDAS, I/O Servers, and historian time. If the IDAS is sending
data in a steady stream outside of the real-time window, it is
likely there is a time synchronization problem. For more
information, see "Time Synchronization for Data Acquisition" on
page 87.

Regarding data throughput, the following rules apply:

• If the late data option has been enabled for a topic and
the data is within the real-time window, the system will
support a late data throughput equal to its real-time
throughput capability.

• If the late data option has been enabled for a topic and
the data is outside the real-time window, the system will
support a late data throughput of one percent of its
real-time throughput capability.
Wonderware Historian Concepts Guide

84 Chapter 4 Data Acquisition Subsystem
If you enable late data for a topic, you need to configure the
following two parameters:

• Idle duration. The idle duration is a delay in processing
the data from the topic. For example, an idle delay of 60
seconds means that data from the topic is cached and
only processed by the historian storage subsystem after
no more data has been received from the topic for at least
60 seconds. By default, the idle duration is set to 60.

The idle duration is important if you anticipate bursts of
late data being sent to the IDAS. The setting you choose
depends on your specific historian implementation and
application requirements, because the higher you set the
idle duration, the longer it will take to see the data, for
example, in a historian client application. Also, if you are
trending blocks of late data, there will be no gap (NULL
values) to indicate the end of the data burst. Instead, the
trend pen will "flat line" until the next block of late data
starts.

• Processing interval. The processing interval is a safety
precaution. In case the nature of the data is such that the
idle duration is never satisfied, the historian storage
subsystem will process data from the topic at least once
every processing interval. By default, the processing
interval is set to twice the idle duration. The processing
interval cannot be set to a value less than the idle
duration.

The processing interval is important if you anticipate a
steady stream of late data being sent from the IDAS. The
higher you set the processing interval, more memory will be
used by the historian, but no more than 32 MB in total. When
that limit is reached, all accumulated data is processed.

Whenever possible, it is better to set up a remote IDAS on
the I/O Server computer to handle the data processing,
instead of using the late data settings for the topic.

If you are using a remote IDAS with several late data topics,
the lowest settings for any topics configured for the IDAS will
apply.
Wonderware Historian Concepts Guide

Data Acquisition from I/O Servers 85
All data values received as late data from an autonomous
IDAS are stored in delta mode, regardless of whether a tag is
configured for cyclic storage. Therefore, you should configure
the tag to be stored in delta mode, if you expect the data to be
late. Also, if late data is enabled for a topic, the timestamp
for the initial value will never be overwritten by the storage
subsystem, no matter how early it is. This differs from how
real-time data is handled. For real-time data, if the storage
subsystem receives an initial data value that has a
timestamp that is older that the system start time, it will
change the timestamp of the first value to be the current
time of the historian.

If you enable late data for an autonomous IDAS, the topic
time-out will automatically be set to 0 and disabled.

Important If the topic is configured to receive late data, the
storage subsystem never receives disconnect/reconnect values
from the IDAS for tags belonging to that topic. You may see "flat
line" on a trend even if the data source is disconnected from the
historian.

Support for Slow and Intermittent Networks
You can configure an IDAS to accommodate data transfer
over a slow and/or intermittent network. A network is
considered intermittent if it fails for short periods (a few
seconds at a time) at random intervals. A slow network can
have transfer rates as low as 56Kb/s or periods of large data
transfers that use most of the available bandwidth.

For an intermittent network, you may need to set the
minimum store-and-forward duration to a value higher than
the default. This prevents the IDAS from frequently going in
and out of store-and-forward mode due to the brief periods of
network unavailability. Typically, the default duration is
appropriate in all but the worst cases.
Wonderware Historian Concepts Guide

86 Chapter 4 Data Acquisition Subsystem
For a slow network, you can make the following adjustments:

• Set the file chunk size to a smaller value. The file chunk
is the block of data that is sent from the IDAS to the
Wonderware Historian at one time. Sending smaller
chunks reduces the network load at any given time. A
good indication that the file chunk size is too big is that
when the forwarding operation starts, the IDAS
immediately goes back into store-and-forward mode; the
forwarded chunk is large enough to overload the network,
causing the IDAS to detect a problem and switch into
store-and-forward mode.

• Increase the forwarding delay. The delay is the interval
at which the IDAS sends chunks of the store-and-forward
data to the historian. Increasing the delay further
spreads out the network load for the forwarding
operation.

• Increase the autonomous start time-out for IDASs
configured to autonomously start. An indicator that the
time-out period is too small is that when the remote IDAS
starts by the Wonderware Historian Configuration
service, it goes into store-and-forward mode, and then
later restores the connection to the historian.

• Increase the connection time-out. One symptom that the
time-out is too small is that the network connection is
physically fine, but you see error messages in the log
regarding IDAS time-out problems.

A remote IDAS can sustain a network interruption as long as
there is disk space available to hold the local
store-and-forward data.

I/O Server Redundancy
You can edit an I/O Server definition to include a "failover"
I/O Server. This alternate I/O Server can be installed on the
same computer as the primary IDAS or on another computer.
If the network connection between the primary I/O Server
and the IDAS fails, the IDAS automatically switches to the
alternate I/O Server, provided that the alternate I/O Server
is running. The switch may take some short period of time,
and some data points may be lost during the transition.
Wonderware Historian Concepts Guide

Data Acquisition from I/O Servers 87
Redirecting I/O Servers to InTouch HMI Software
When you redirect an I/O Server to InTouch HMI software,
you are specifying to acquire tag values from a particular
InTouch node that is using an I/O Server, instead of
acquiring them directly from the I/O Server. This feature is
useful when you need to reduce the loading on the I/O Server,
or if the InTouch node is more accessible on the network.

When you redirect the I/O Server, the computer name and
I/O Server type will reflect the InTouch node as the I/O
Server from which data is acquired. For example, suppose
you were using the a Modicon Modbus I/O Server on
computer "I23238." The application name for the I/O Server
address appeared as \\I23238\modbus. If you redirect this
I/O Server to the InTouch node "InTouchNode1," then the
address will be modified to reflect \\InTouchNode1\view.

Time Synchronization for Data Acquisition
All I/O Servers that support SuiteLink timestamp plant data
as it is acquired. It is important to understand how
synchronization is handled between the timestamps for I/O
Server, the computer clock for the IDAS(s), and the computer
clock for the Wonderware Historian(s). An overview of time
synchronization is as follows:

1 If you have multiple historians on your network, you
should synchronize all computer clocks to a single
historian designated as a master time server. You could
then synchronize this master historian to an external
time source. Designate the master historian using the
TimeSyncMaster system parameter.

2 Periodically, a historian automatically synchronizes the
computer clock of any remote IDASs to its own computer
clock. The IDAS synchronization is enabled by means of
the TimeSyncIODrivers system parameter.
Wonderware Historian Concepts Guide

88 Chapter 4 Data Acquisition Subsystem
3 Every hour, an IDAS automatically synchronizes the
timestamping mechanism of any associated I/O Servers
with its own computer clock. This does not actually
change the system clocks of any I/O Server computers.
Instead, the difference in the system clocks on the two
computers (I/O server and Historian) are determined,
and a bias is calculated that is then applied to all values
from that I/O server computer. For example, if the
historian clock is seven seconds ahead of the I/O Server
computer's clock, SuiteLink adds seven seconds to every
timestamp from the I/O Server. If a topic is
disconnected/reconnected due to a topic time-out or other
communications failure, the I/O Server timestamping is
not updated until the time synchronization interval has
passed. You can change the frequency of the
synchronization using the SuiteLinkTimeSyncInterval
system parameter.
The SuiteLink protocol also does some time adjustments
to keep timestamps consistent across nodes. SuiteLink
bases this adjustment on the time difference detected at
startup and each hour. For example, NodeA and NodeB
have a time difference of 17 seconds. The I/O Server is on
NodeA, and the IDAS is on NodeB (either local to the
historian or a remote IDAS for a historian on another
NodeC). When the I/O Server on NodeA timestamps a
value at 12:00:00.000, it is transmitted to NodeB with an
adjusted timestamp of 12:00:17.000. If the historian is
configured to timestamp at the source, this value is
stored with a timestamp of 12:00:17.000. If, instead, the
historian is configured to timestamp at the server, and
there is a two-second communications latency, then the
value is stored with a timestamp of 12:00:19.000.
For normal operations on systems with synchronized
clocks, there is no adjustment made by SuiteLink and
everything operates as expected. However, when either
the systems are out of synch, or even were out of synch
when SuiteLink communications between the nodes
started, the timestamps will be adjusted. Because of the
way SuiteLink adjusts timestamps, it is easy to produce
misleading results if system tests involve adjusting
system clocks on the systems, because SuiteLink does not
immediately update its time skew.

Note Time synchronization does not apply to I/O Servers that use
DDE because these servers do not perform timestamping. The
time of the IDAS computer is always used for data coming from
DDE from I/O Servers.
Wonderware Historian Concepts Guide

Data Acquisition from I/O Servers 89
For more information on setting system parameters, see
"Editing System Parameters" in Chapter 9, "Viewing or
Changing System-Wide Properties," in your Wonderware
Historian Administration Guide.

The following diagram shows an example of how computers
can be synchronized to a single time:

Historian 1:
Master Server

Historian 3
IDAS 3

Historian 2

IDAS 1 IDAS 2
I/O Server 2

I/O Server 3

I/O Server 1

For an MDAS-enabled client application, you can use the net
time command (for the Windows operating system) to
synchronize the client computer's clock to your master
historian.

A good indicator that a time synchronization problem is
occurring is if the value of the SysDataAcqNOutsideRealtime
system tag is high. This tag indicates how many values
received from a particular IDAS are outside the limits of the
real-time window. For more information on system tags, see
"The System Driver and System Tags" on page 42. For more
information on the real-time window, see "About the
Real-Time Data Window" on page 97.
Wonderware Historian Concepts Guide

90 Chapter 4 Data Acquisition Subsystem
Data Acquisition by Means of INSERT and
UPDATE Statements

You can insert or update history data in the Wonderware
Historian extension tables using Transact-SQL INSERT and
UPDATE statements.

For more information, see Chapter 6, "Importing, Inserting,
or Updating History Data," in your Wonderware Historian
Administration Guide.

Data Acquisition from MDAS
The manual data aquisition service (MDAS) accepts data
(real-time data, as well as inserts and updates) from its host
and forwards it to the Wonderware Historian storage
subsystem. For example, Wonderware Application Server
uses MDAS to send history data to the historian. Replicated
data from a tier-1 historian is sent to the historian using
MDAS.

The storage subsystem merges data acquired from MDAS to
existing historized data. All data can be accessed from the
History, WideHistory, and Live extension tables.

MDAS is implemented in two ways within the system: one as
a client-side Windows DLL and one as a Windows service.

The DLL version of MDAS uses DCOM and file shares to
send data to the historian. For both the MDAS and
Wonderware Historian computers, make sure that DCOM is
enabled (not blocked) and that TCP/UDP port 135 is
accessible. The port may not be accessible if DCOM is
disabled on either of the computers or if there is a firewall
between the two computers that blocks the port. For
information on enabling DCOM communication through a
firewall, see your Microsoft Windows operating system
documentation.
Wonderware Historian Concepts Guide

Importing Data from a CSV File 91
The Windows service version of MDAS is used only for the
replication subsystem. The MDAS service manages data
transmission between tier-1 and tier-2 servers. The Windows
service version of MDAS communicates using TCP-based
communication layer through an open port that you specify
when you set up the replication server. The MDAS service
also handles security-related error reporting on the tier-2
historian.

Note Data acquired through the manual data acquisition service
is NOT stored in the ManualAnalogHistory, ManualDiscreteHistory,
or ManualStringHistory tables. Prior to Wonderware Historian
version 8.0, these tables were the only mechanism to store
manually acquired data. Currently, these tables are provided for
backward compatibility only.

Importing Data from a CSV File
Legacy data can be batch imported into the Wonderware
Historian from a CSV file. A batch import allows you to
import legacy data from other historians. If you want to
import history data from an InTouch application, you can use
the InTouch History Importer, which converts InTouch
history files to the required CSV format. Imported data is
integrated with data currently stored in history blocks,
providing you with seamless access to all your data.

For more information, see Chapter 6, "Importing, Inserting,
or Updating History Data," in your Wonderware Historian
Administration Guide.
Wonderware Historian Concepts Guide

92 Chapter 4 Data Acquisition Subsystem
Wonderware Historian Concepts Guide

93
Chapter 5

Data Storage Subsystem

The Wonderware Historian storage subsystem saves plant
data from various sources to disk. The storage subsystem
stores data for analog, analog summary, discrete, state
summary, string, and system tags in sets of files on disk
called history blocks.

Historical data can be retrieved by sending SQL queries
through the Wonderware Historian OLE DB provider, which
is part of the data retrieval subsystem. At retrieval, the
historized tag data is presented as if it resided in SQL Server
tables. For more information, see Chapter 6, "Data Retrieval
Subsystem."

The storage subsystem processes only historical data; it does
not handle configuration data. For more information about
saving configuration data, see Chapter 3, "Configuration
Subsystem."

Also, the storage subsystem does not handle event data,
including summarized data created by the event subsystem.
For more information about event data, see Chapter 10,
"Event Subsystem."

You use the System Management Console to configure all
aspects of the storage subsystem. For more information, see
Chapter 5, "Managing Data Storage," in your Wonderware
Historian Administration Guide.
Wonderware Historian Concepts Guide

94 Chapter 5 Data Storage Subsystem
Storage Subsystem Components
The components of the storage subsystem are:

Component Description

Realtime Data Storage
Service (aahStoreSvc.exe)

Internal process that stores real-time data to disk. This
process runs as a Windows service.

Manual Data Storage
Service
(aahManStSvc.exe)

Internal process that processes non-real-time data and
stores it to disk. This process runs as a Windows
service. This process is also called "alternate" storage.

Active Image Memory segment that temporarily hold all real-time
data while the storage subsystem stores the actual
values to disk.

History Blocks Set of folders and files on disk that contain historical
data.

History Cache Allocation of memory in which history block
information is loaded to increase data retrieval
efficiency.

Tier-2 Storage Process
(aahStorageEngine.exe)

Secondary storage process that handles replication
data on a tier-2 historian. This is not a Windows
service.

For a complete diagram of the Wonderware Historian
architecture, see "Wonderware Historian Subsystems" on
page 19.

Storage Data Categories
Data saved to the Wonderware Historian belongs in the
following categories: real-time data, "late" data, and "old"
data. Each type of data has a separate set of characteristics
and is handled differently by the historian. These
characteristics are:

• Time sequential data flow. The data acquired by the
historian can be in either time sequential order or in any
order. For time sequential data, each consecutive data
value received has a timestamp that is later than the
previously received value. Data coming from an I/O
Server is typically time sequential. Blocks of data that
are imported into the system do not necessarily follow
each other in time and would be an example of non-time
sequential data.
Wonderware Historian Concepts Guide

Storage Data Categories 95
• Relationship to the system-wide real-time data "window."
The real-time window is the maximum delay, relative to
current time of the server, for which data is considered
real-time by the system. For more information, see
"About the Real-Time Data Window" on page 97.

• Support for "future" data. If the incoming data has a
timestamp that is in the future, relative to the server
time, it will be handled differently based on what data
category it falls in.

Real-Time Data Late Data Old Data

Data Flow Timestamps must
be in time
sequential order.

Timestamps must be
in time sequential
order.

Timestamps can be
in any order.

Real-time
Window
Application

The timestamp for
the data value
must fall within
the time window.

The timestamp for the
data value can fall
either inside or
outside of the time
window, depending on
whether the late date
setting is enabled for
the topic.

The data can have
any timestamp.

Support for
Future Data

Yes. If a value with
a future
timestamp is later
overwritten by
another data
value, the
QualityDetail
value will reflect
the overwrite.

N/A. Late data always
has a timestamp in
the past, relative to
the server time.
Timestamps for
consecutive late data
values can shift
forward and
backward in time and
still be considered
late. If the timestamp
for a received late
data value is earlier
than the last stored
value, then the value
with the later
timestamp is
overwritten, and the
QualityDetail value
reflects the overwrite.

No. Old data with a
timestamp in the
future is discarded.
Wonderware Historian Concepts Guide

96 Chapter 5 Data Storage Subsystem
If necessary, incoming data timestamps are converted to
Universal Time Coordinated (UTC) before storing the data.

The Realtime Data Storage Service (aahStoreSvc.exe) and
the Manual Data Storage Service (aahManStSvc.exe) work
together to store all of data to disk, organize the data in such
a way that, upon retrieval, the data is as seamless and
integrated as possible.

Typical Sources
of Values

• I/O Servers

• System tags

• Transact-SQL
INSERT
statements
where
wwVersion =
REALTIME

• Data from
Wonderware
Application
Server

• Tier-1
historian

• Historian SDK

• I/O Servers
(RTUs)

• "Fast load" .CSV
imports.

• Tier-1 historian

• Historian SDK

• Transact-SQL
statements

• Regular .CSV
imports

• Tier-1 historian

• Historian SDK

Storage Service Data is processed
by the Realtime
Data Storage
Service
(aahStoreSvc.exe).

Data can be processed
by either type of
storage, depending on
whether or not the
timestamps fall
within the block of
data that is currently
being processed (the
current snapshot).
Data is always
processed by Realtime
Data Storage Service
(aahStoreSvc.exe)
first.

Data is processed
by the Manual
Data Storage
Service
(aahManStSvc.exe)

Real-Time Data Late Data Old Data
Wonderware Historian Concepts Guide

Storage Data Categories 97
About the Real-Time Data Window
The real-time "window" is the maximum delay, relative to
current time of the server, in which data is considered
real-time by the system. The real-time window can range
from -30 seconds to +999 milliseconds of the current server
time.

The following rules apply when storing data with timestamps
relative to the real-time window:

• If the late data setting for a tag topic is not enabled and
the received data is more than 30 seconds late, the value
is discarded, and a warning is logged. If the received data
value is within 30 seconds of the server time, it is stored
as received.

• If the late data setting for a tag topic is enabled and the
received data value is within the real-time window, then
the value is stored by the real-time storage service with
no changes. If the received data value is outside of the
real-time window, then the value is passed to the
alternate storage services and stored without changes.

• If the late data setting for a tag topic is enabled, the
received data value is stored in delta mode, even if the
tag is configured for cyclic storage and the received data
value is within the real-time window.

For more information on the late data setting for a topic, see
"IDAS Late Data Handling" on page 82.

You can adjust the real-time window for “late” data topics by
configuring the RealTimeWindow system parameter. The
real-time window for regular real-time data (not "late") is
fixed as 30 seconds. For more information, see "Editing
System Parameters" in Chapter 9, "Viewing or Changing
System-Wide Properties," in your Wonderware Historian
Administration Guide.

You must balance the need for a larger real-time window
with the amount of memory available on your computer. If
your system has a large tag count or high data throughput,
increasing the real-time window increases the memory
requirements for storage because the storage system must
process more data as real-time data, which is more
resource-intensive than the storage of late or old data.

Adjusting the real-time window also has implications if you
are using delta storage with a swinging door deadband. For
more information, see ""Swinging Door" Deadband for Delta
Storage" on page 101.
Wonderware Historian Concepts Guide

98 Chapter 5 Data Storage Subsystem
If the system does not have enough memory to adequately
process real-time data, the window is adjusted internally. An
appropriate message is logged. The value of the
RealTimeWindow system parameter, however, remains
unchanged.

Important The real-time window is not intended to
accommodate time synchronization problems between an IDAS
and the historian. It is imperative that you properly synchronize
the IDAS and historian. If the IDAS is sending data in a steady
stream outside of the real-time window, it is likely there is a time
synchronization problem. For more information, see "Time
Synchronization for Data Acquisition" on page 87.

If a data value is discarded because it did not fit the
requirements of the real-time window, the historian logs a
warning message. Warning messages are logged at one
intervals during the period when data is being discarded.

Data Modification and Versioning
You can use the Wonderware Historian to modify historized
data by either inserting one or more new values into history
after the original data for that time period had been
historized, or by updating a value or a time region of values.
All modifications are versioned, and previous versions are
preserved in all cases, allowing you to view the original data
before the modifications.

The term "original data" refers to the original set of values
historized for a tag. For example, a real-time stream of data
from an I/O Server represents original data. Inserts or
updates performed on the original stream of data results in a
new version. Data modification can be performed on any tag
category (I/O Server tags, system tags, or manual tags). For
manual and I/O Server tags, new data can be presented as
either original data (non-versioned) or inserted data
(versioned).

The historian supports the viewing of only the original
version or the latest version of data. Interim versions are
preserved in history but are not exposed through the
retrieval layer. The QualityDetail column contains a special,
unique value to indicate that the data represents a
"modified" value. That is, the current value is the latest
version of the data, but an earlier version of the data is
present in history.
Wonderware Historian Concepts Guide

Storage Modes 99
Storage Modes
When you define a tag, you need to specify a storage method,
which specifies how the tag’s data is saved as historical
records. For example, the system may be receiving 100
values per millisecond for an I/O Server tag, but you might
not want to store all of these values. How you configure the
storage method affects the number of values written to disk
and the resolution of the data that will be available later for
retrieval.

The following types of storage modes are available:

• No data values are stored.

• All data values are stored (forced storage).

• Only changed data values are stored (delta storage).

• Only data values that occur at a specified time interval
are stored (cyclic storage).

"Forced" Storage
Forced storage is the storage of each value as it comes in
from the plant floor or from a client application, without
filtering applied (that is, no delta or cyclic storage mode is
used).

Forced storage is useful, for example, if you have an I/O
Server that collects data by exception from the plant floor
device (instead of using a polling interval). You can allow the
I/O Server to filter the values by exception, instead of the
Wonderware Historian.

If the I/O Server uses a polling interval, then storage with no
filtering is similiar to cyclic storage. However, the cyclic
storage rate determines the values that are stored, and that
rate can only go down to a one second resolution. If you use
storage with no filtering, the I/O Server controls which
values are stored, and these can be at a finer resolution than
one second. For forced storage, if the data source is sending
the same values at each internal scan cycle, then each value
is stored.
Wonderware Historian Concepts Guide

100 Chapter 5 Data Storage Subsystem
Delta Storage
The Delta storage mode stores data based on a change in a
value. Delta storage writes a historical record only if the
current value changes from the previous value. Delta storage
is also called "storage by exception." Delta storage is typically
used to store discrete values, string values, and analog
values that remain constant for long periods of time. For
example, you don’t want to store the value of the discrete tag
"PUMPON" every ten seconds if the pump usually stays on
for months at a time. The value is stored along with a
timestamp of when the change occurred, to an accuracy of 1
ms.

The following types of deadbands can be applied for delta
storage:

• Time deadband

• Value deadband

• Rate of change (swinging door) deadband

Note You can retrieve down to the millisecond by using a
CONVERT clause in an OPENQUERY statement with specific style
specifiers of the Wonderware Historian. For more information,
see "Querying Data to a Millisecond Resolution using SQL Server
2005" on page 310.

Time and Value Deadbands for Delta Storage
To further decrease the resolution of tag values stored in
delta mode, use a time deadband or a value deadband.

• A time deadband is the minimum time, in milliseconds,
between stored values for a single tag. Any value changes
that occur within the time deadband are not stored. The
time deadband applies to delta storage only. A time
deadband of 0 indicates that the system will store the
value of the tag each time it changes.

• A value deadband is the percentage of the difference
between the minimum and maximum engineering units
for the tag. Any data values that change less than the
specified deadband are not stored. The value deadband
applies to delta storage only. A value of 0 indicates that a
value deadband will not be applied.
Wonderware Historian Concepts Guide

Delta Storage 101
"Swinging Door" Deadband for Delta Storage
A "swinging door" deadband is the percentage of deviation in
the full-scale value range for an analog tag. The swinging
door (rate) deadband applies to delta storage only. Time
and/or value deadbands can be used in addition to the
swinging door deadband. Any value greater than 0 can be
used for the deadband. A value of 0 indicates that a swinging
door deadband will not be applied.

The swinging door deadband is essentially a rate of change
deadband, based on changes in the slope of the incoming data
values. For example, specifying a swinging door deadband
value of 10 percent means that points will be stored if the
percentage change in slope of the consecutive data values
exceeds 10 percent. The percentage of allowable "swing" in
the data values gives this type of deadband its name.

����

����

	
���

�

�

�

�

���������

��������

�

�

�
�
��
�

Benefits of the Swinging Door Deadband
One benefit of using a swinging door deadband is that it
reduces the disk space required to store data. Another benefit
of the swinging door deadband is that it captures the data
value before the rate change, which is something that a value
deadband does not do. If you trend data, the peaks and
valleys of the trend curve are more defined to provide a more
accurate picture of what is happening in your plant.

Generally, using a swinging door (rate) deadband provides
better representation of the value change curve with the
same or less number of values stored than regular value or
time deadbands for delta storage.

The following graphics compare the trend curves of the same
raw data, but with different deadbands applied.
Wonderware Historian Concepts Guide

102 Chapter 5 Data Storage Subsystem
The following graph shows the trend of the actual raw data
values:

1 2 3
4 5

6

7

8

9
10 11

12

13

14

15

16

17
18 19

The following graph shows the trend of the data values with
a value deadband applied. Notice how only the first data
value that deviates by the deadband from the previous value
will be stored, and not any of the values between the starting
value and the first deviating value.

2 3 4 5

6

7

8

9 10 11 12

13

14

15

16

17
18 19

Value Deadband

1

Wonderware Historian Concepts Guide

Delta Storage 103
The following graph shows the data values that will be stored
for both a value deadband and a swinging door deadband.
Notice how the swinging door deadband captures data before
the deadband change, allowing for a more complete view of
the data.

2 3 4 5

6

7

8

9 10 11 12 13

14

15

16

17
18

19

Value Deadband

1

Swinging Door

A swinging door deadband is most useful for tags that have a
steady increase and decrease in slope, such as a tank level or
tank temperature that rises and falls. A swinging door
deadband may not be appropriate for "noisy" signals, in
which the value of the tag constantly fluctuates around a
certain point for long periods of time. Also, the reduction in
storage requirements offered by the swinging door deadband
may not have much of an impact if you have an application
with a small tag count (for example, 500 tags). In this case, it
may not be necessary to use a deadband at all.

A swinging door deadband is applicable for analog tags that
receive data from the following sources:

• Real-time data values from I/O Servers or MDAS

• Store-and-forward data from a remote IDAS

• Late data from an I/O Server topic that was configured
for late data

• A "fast load" .CSV import

• Real-time inserts of data using a Transact-SQL
statement
Wonderware Historian Concepts Guide

104 Chapter 5 Data Storage Subsystem
A swinging door deadband is not applicable for manual
inserts of data through a .CSV import of a Transact-SQL
statement.

To best visualize the tag that uses swinging door storage,
plot a trend using the Historian Client Trend application and
set the plot type from to "line" (rather than "step-line").

Additional Options that Affect the Swinging Door
Deadband
The swinging door deadband (the rate deadband) can
optionally be combined with a value deadband and/or a
deadband override period, the combination of which will
affect which values are actually stored. The behavior of the
swinging door algorithm also depends on the value of the
real-time window in the Wonderware Historian, as specified
by the RealTimeWindow system parameter.

• Value deadband

When combined with rate deadband (with or without a
deadband override period), the value deadband is always
applied first, followed by the other deadbands. For the
value deadband, the system checks the difference in
value between the received point from the value of the
last stored point. Only when this difference exceeds the
value deadband does the system consider the point for
rate evaluation.

• Deadband "override" period

If the elapsed time since the last stored point exceeds the
deadband override period, the last received point before
the time at which the deadband override period expired is
stored, regardless of value and rate deadband.

• Real-time window

The real-time window setting (RealTimeWindow system
parameter) allows for the expansion of the time window
for which the storage system considers data to be
"real-time." The real-time window is important for
swinging door deadbanding because it determines the
maximum length of time that a point will be "held" by the
storage system without storing it, while waiting for the
next point. For more information, see "About the
Real-Time Data Window" on page 97.
Real-time window and deadband override periods are two
independent modifiers that force the storage of received
points that may have otherwise been discarded due to the
setting of either the rate deadband or the value
deadband.
Wonderware Historian Concepts Guide

Delta Storage 105
• The real-time window specification is more likely to select
points for storage when the time period between points
received from the source is less than the real-time
window, but the slope of the incoming data values is such
that the rate deadband excludes the points from being
stored.

• The deadband override period is more likely to select
points for storage if the rate at which points are received
from the data source is slow (slower than the real-time
window) and the rate deadband excludes the points from
being stored.

For an illustration of how these factors work together to
determine the actual values to be stored, see "Swinging Door
Deadband Example" on page 105.

Whatever the combination of rate deadband, value
deadband, and deadband override period specified, only
points actually received from the data source are stored on
disk. That is, points to be stored on disk are never
"manufactured" by the swinging door algorithm. This is
particularly relevant in understanding the behavior implied
by specifying the real-time window and the deadband
override period.

Swinging Door Deadband Example
The following examples illustrate the effects of the different
swinging door options.

All of the examples are based on the following raw data. The
numbered points represent actual values received from a
data source.

0

1 2 3 4 5 131211

10

9

8

7

6

18

17

16

15

14

2019
Wonderware Historian Concepts Guide

106 Chapter 5 Data Storage Subsystem
Swinging Door Deadband: Rate Only
The following diagram depicts an ideal case, where the
incoming signal is noise-free and with a proper rate
deadband specification only (no value deadband or deadband
override period).

2 3 4
131211

10

9

8

7

6

18

17

16

15

14

2019

0

1 5

Real time
window +30.0

seconds

Assume point 0 has been stored on disk. The system waits for
point 2 to arrive before making its next storage decision.
When point 2 is received, the storage engine calculates the
change in slope as follows:

Slope0_1 is considered the base slope, and Slope1_2 is
considered the current slope.
Slope0_1 = (Value1 - Value0) / (Time1 - Time0)
Slope1_2 = (Value2 - Value1) / (Time2 - Time1)
Slope_Change_Percent = 100* | (Slope1_2 - Slope0_1) /
Slope0_1 |
If
Slope_Change_Percent > Rate_Deadband_Specified

In other words, if the percentage change in slope is greater
than the specified rate deadband, the storage engine goes
ahead and stores point 1 on disk. Next, it receives point 3.
The base slope for point 2 will be the slope between points 1
and 2. The current slope will be the slope between points 2
and 3 only if point 1 was stored. If point 1 was not stored,
then the base slope for point 2 will be the slope between
points 0 and 1, and the current slope will be the slope
between points 2 and 3.

The base slope for an evaluation point is not changed unless
the previous point is stored; otherwise, the base slope will be
the last known current slope that caused a point to be stored
on disk.
Wonderware Historian Concepts Guide

Delta Storage 107
Assuming point 1 is stored, because the slope between points
2 and 3 is about the same as the slope between points 1 and
2, the rate deadband criterion is not satisfied, and point 2 is
discarded. When point 4 is received, the slope change
calculation results in point 3 being discarded, and so on until
point 6 arrives. Now the rate deadband criterion is satisfied
(slope change between points 5 and 6 and points 1 and 2 is
greater than the rate deadband specified), and point 5 is
stored on disk.

The arrival of point 7, likewise, discards point 6 even though
the actual slope between point 6 and point 7 may be quite
high, and may even be higher than the rate deadband
specified, it is not sufficiently different from the slope
between points 5 and 6 to qualify point 6 to be stored.
Following this logic through until point 12 is received results
in the storage on disk of points 10 and 11, discarding all the
other points in between.

Point 13 illustrates the effect of the real-time window setting.
Under normal circumstances, point 12 would not qualify to
be stored. If, however, the elapsed time between receiving
point 12 and point 13 exceeds the time window in which the
storage engine is able to store point 12 as a real-time point,
point 12 is stored anyway, and the value of the
SysRateDeadbandForcedValues system tag is incremented.
In other words, if, while the system waits for point 13 to
arrive, the timestamp of point 12 becomes so old that it
reaches the limit for the real-time window, point 12 is stored
regardless of whether it is outside the deadband.

The SysRateDeadbandForcedValues system tag counts the
number of "extra" points stored as a result of an insufficient
real-time window for swinging door storage.

When point 14 arrives, the base slope for evaluating point 13
is between points 11 and 12, and not between points 12 and
13, because point 12 was stored due to the real-time window
expiration. A point stored due to the real-time window does
not re-establish the base slope; only points stored due to
exceeding the rate change causes the base slope to be
re-established. Then "normal" rate change evaluation
resumes, resulting in point 13 being stored, and so on.
Wonderware Historian Concepts Guide

108 Chapter 5 Data Storage Subsystem
Swinging Door Deadband: Rate and Value
In the following diagram, a signal with some "noise" is
shown. The effect of applying both a rate and value deadband
to swinging door storage is illustrated. The value deadband
is indicated by two horizontal dashed lines.

Value
deadband

2 4 6 8 10

3 5 7 9 11

1

12

13

14

15

16

17

Assume that point 1 has been stored to disk. Point 3 passes
the value deadband check, allowing points 2 and 3 to be
evaluated for rate change. Assuming that the point exceeds
the rate change requirement, then point 2 is stored. Until
point 13 is received, all intermediate points are discarded by
the value deadband filter. In this example, it is assumed that
the change in slope between points 2 through 3 and points 12
through 13 is greater than the rate deadband, so point 12 is
stored on disk. When point 14 is received, the normal
operation begins.

If a rate deadband is applied without a value deadband, all of
the "noisy" points (3 through 11) would have been stored,
because the slope of the signal changes radically between
successive points. The value deadband removes the noise, but
also introduces some amount of distortion in the resultant
signal.
Wonderware Historian Concepts Guide

Delta Storage 109
Swinging Door Deadband: Rate, Value, and Deadband
Override Period
The following graphic illustrates the effect of a rate
deadband combined with a value deadband and a deadband
override period.

Value
deadband

2 4 6 8 10

3 5 7 9 11

1

12

13

14

15

16

17

Deadband
override
period

Assume point 1 is stored to disk. Point 3 makes it through
the value deadband check, allowing points 2 and 3 to be
evaluated for rate change. Assuming the point exceeds the
rate change requirement, then point 2 is stored.

Adding a value deadband alone could result in distortion of
the stored data.

For example, suppose that the rate deadband is specified
such that point 12 does not get stored. That is, the change in
slope between points 2 through 3 and points 12 through 13 is
not greater than the rate deadband. In that case, the data
representation (points 1, 2, and 15) is grossly distorted
because the value deadband is discarding key points.

To allow for better representation, a deadband override
period may optionally be specified. If the elapsed time
between the last stored point and the currently received
point is more than the specified deadband, then the point
immediately prior to the currently received point is stored. In
this example, the elapsed time between point 2 and point 10
is more than the deadband, so point 9 is stored. The data
actually stored to disk (points 1, 2, 9, and 15) is a better
approximation of the original data.

It is important to note that after point 9 is stored, subsequent
rate calculations use the slope between points 2 and 3 as the
baseline for subsequent storage decisions because point 2
was last point that was stored normally by storage.

The deadband override period can have any value and is not
related to the the real-time window value.
Wonderware Historian Concepts Guide

110 Chapter 5 Data Storage Subsystem
Determining If the Real-Time Window Is Configured
Appropriately for All Tags
To determine if the real-time window is configured correctly
for a swinging door deadband, look at the number of data
values that are forced to be stored while the system waits for
the next valid data point to make the filtering calculation.

The SysRateDeadbandForcedValues system tag counts the
number of "extra" points forced to be stored as a result of an
insufficient real-time window for swinging door storage. Also,
you can determine the number of points forced to be stored
for an individual tag by executing a query that uses the full
retrieval mode and specifies a quality detail of 2240, which
indicates that these points were stored because of an
insufficient real-time window.

If you find a large number of forced storage points, you can
either reconfigure the tag to use delta storage or increase the
real-time window.

Note The first two points received for a tag configured for
swinging door storage are always stored.

Disk Requirements and Performance Considerations
for a Swinging Door Deadband
One of the benefits of using the swinging door deadband is
better data compression. However, because the storage
system already provides a good compression ratio, the
amount of disk space that is saved by applying this type of
deadband for slow-changing tags (changing less than twice in
a 15-minute interval) is negligible. For example, a tag that
changes 12 times per hour will use 2K bytes of disk space in a
24-hour period. Even if only every fifth point is stored, the
savings is only 1.5K bytes per day.

Also, use caution when setting the real-time window to
accommodate a swinging door deadband.

• If your system has a large tag count or high data
throughput, increasing the real-time window will
increase the memory requirements for storage, because
the storage system will have to process more data as
real-time data, which is more resource-intensive than the
storage of late or old data.

• If you increase the real-time window and you apply a
swinging door deadband to a slow-changing tag, the
amount of storage space required increases because the
tag value is forced to be stored more often than if you
used delta storage with no deadband.
Wonderware Historian Concepts Guide

Cyclic Storage 111
Cyclic Storage
Cyclic storage is the storing of analog data based on a time
interval. Cyclic storage writes a record to history at the
specified interval, only if a data changes during the time
interval. For example, you could store the value of an analog
tag every five seconds.

The time interval for cyclic storage is called the storage rate.
Each analog tag has its own storage rate. The storage rate
you should select depends on the minimum timestamp
resolution with which you want to be able to retrieve the data
sometime in the future. Storing data using a very low time
interval will result in a very high resolution of data being
stored over a small time span. Storing data using a very high
time interval, however, may result in significant data values
being missed. An exception to this will be values received or
generated due to a connect or disconnect event.

Available storage rates for analog tags are:

• 1, 2, 3, 5, 6, 10, 15, 30 seconds

• 1, 2, 3, 5, 6, 10, 15, 20, 30 minutes

• 1 hour

The timestamp for the first data value received during the
cyclic time span will be used. For example, you might have
specified a 10 second storage rate for a particular analog tag.
The last data value received during the 10 second lapse will
be stored, along with the corresponding timestamp.

The storage subsystem physically stores cyclically stored
values in the same manner as it does value stored by delta.
That is, it keeps track of repeated values in time in a logical
manner and will "fill in" the missing values upon retrieval.
For example:
Wonderware Historian Concepts Guide

112 Chapter 5 Data Storage Subsystem
Data Conversions and Reserved Values for
Storage

The Wonderware Historian can store values up to 32-bits. If
the data source sends a 64-bit real number to Wonderware
Historian, the number is converted to a 32-bit real number
and, consequently, loses precision to six or seven decimal
places. (The range depends on the number of binary digits,
which does not exactly map to a fixed number of decimal
places.) As a result, values that differ in the data source
system beyond the seventh digit will not register as a change
for delta storage and will not be re-stored. For example, a
value of 1.0449991 followed by a 1.0450001 would both round
to 1.045000, and the second point would not be stored.

Reserved values for storage are:

• -2,147,483,648, which represents an inserted NULL
value for 32-bit tags.

• -32767, which represents an inserted NULL value for
16-bit tags.

• The last stored value for all types of tags.

• The last received value for analog tags stored cyclically.

• The last received value for tags that are configured for
swinging door storage.

• Invalid values for all tag types except for variable length
strings.

The maximum length of a string value that can be stored is
513 characters. Any characters over this limit are truncated.
This limit does not apply to variable-length strings.
Wonderware Historian Concepts Guide

History Blocks 113
History Blocks
The Wonderware Historian historizes data in sets, or blocks,
of files on disk. A history block is essentially a sub-folder of
the main historian data storage folder, defined during
installation or by subsequent dynamic configuration changes.
A history block is self-contained, containing all the
information necessary to retrieve data for the period
represented by the history block. You specify the duration of
history blocks. The default duration of a history block is one
day, and the minimum allowed duration is one hour. The
historian automatically creates a new history block at system
startup, at scheduled block changeover times, at your
request, or in response to certain dynamic configuration
actions.

Note Configuration data and event history are not stored in the
history blocks; they are stored in the Runtime database file.

As data is acquired from the plant, the size of these history
blocks grows on a continual basis, being limited only by the
size of the hard disk on which the historian resides.

By storing plant data in the history blocks instead of in
normal SQL Server tables, the historian can store data in a
fraction of the space that would be required by a normal
relational database. Compact storage formats reduce the
storage space requirements than would be required in a
standard relational database. Upon retreival, historical data
is presented by the Wonderware Historian OLE DB provider
as if it were stored in SQL Server tables.

History Block Notation
Each history block is contained in a single sub-directory in
the circular storage directory. The sub-directory name
includes the date stamp of the Wonderware Historian
computer at the time the block was created. Also, a
numerical suffix is used to differentiate blocks of historical
data created on the same day as a result of, for example,
multiple restarts of the system, or where the block time
interval configured is less than one day. The block duration
can be configured by changing the HoursPerBlock system
parameter. For more information on editing system
parameters, see "Editing System Parameters" in Chapter 9,
"Viewing or Changing System-Wide Properties," in your
Wonderware Historian Administration Guide.
Wonderware Historian Concepts Guide

114 Chapter 5 Data Storage Subsystem
In the following example, the "010912" portion of the
directory name is the date that the history block was created.
The "_001" portion is the numerical suffix that identifies this
history block as the first block created that day.

��������������

����������

��
� �������
������

!""##$$%

��
� �������

By default, history blocks are 24 hours in size. In the
following example, the system was restarted on September
12, 2001, resulting in two blocks existing for that date. The
two blocks together span the 24 hours for that period.

History Block Creation
A single history block is created at system startup. After
that, new history blocks are automatically created upon
expiration of a designated time interval as stipulated in the
database. The default value is 24 hours. You can change the
time interval using the HoursPerBlock system parameter.
For more information on editing system parameters, see
"Editing System Parameters" in Chapter 9, "Viewing or
Changing System-Wide Properties," in your Wonderware
Historian Administration Guide.
Wonderware Historian Concepts Guide

History Blocks 115
You can manually start a new history block at any time by
either:

• Executing a menu command from within the System
Management Console. For more information, see
"Starting a New History Block" in Chapter 5, "Managing
Data Storage," in your Wonderware Historian
Administration Guide.

• Using the xp_NewHistoryBlock extended stored
procedure. For more information, see
"xp_NewHistoryBlock" in Chapter 4, "Stored
Procedures," in your Wonderware Historian Database
Reference.

A new block is also created automatically if any of the storage
data files becomes larger than 1.5 GB.

Note The system supports 999 history blocks per day. If this limit
is reached, the system begins overwriting data in the first block
for the day. A warning message will be issued in the Wonderware
Historian Console when the limit is about to be reached. To
reduce the number of history blocks created per day, increase
your standard history block size (if it is less than 24 hours).

History Block Storage Locations
There are four types of storage locations for history blocks:
circular, alternate, buffer, and permanent. The paths to the
circular, buffer, and permanent storage locations are initially
defined during installation. The alternate storage location
can be defined later using the System Management Console.

Certain restrictions apply when specifying a path to the
storage location. The circular storage location must be a local
drive on the server machine, and the path must be specified
using normal drive letter notation (for example,
c:\Historian\Data\Circular). For a tier-1 historian, the
alternate, buffer, and permanent storage locations can be
anywhere on the network. For a tier-2 historian, the buffer
and permanent storage locations can be anywhere on the
network, but the alternate storage location must be on a local
drive. The ArchestrA service user must have full access to
network locations. The locations must be specified using
UNC notation. Mapped drives are not supported.

When planning your storage strategy, be sure to allow
enough disk space for storing your plant data for the required
length of time.
Wonderware Historian Concepts Guide

116 Chapter 5 Data Storage Subsystem
Circular Storage Location
Circular storage is used for the main historical data storage.
When the storage subsystem starts for the first time, the first
history block is created, and data starts being written to that
history block. The block of historical plant data is saved as a
subdirectory in the circular storage directory.

The circular storage location consists of a single location,
written to in a "circular buffer" fashion. When the free disk
space on the disk containing the circular storage location
drops below a minimum threshold or when the data is of a
specified age, the oldest data is deleted out of this storage
location and replaced with the new data to be stored. You
can also limit the size of the circular storage location. When
the contents of the circular storage location reach or exceed
this limit, the oldest data will be deleted. "Automatic
Deletion of History Blocks" on page 117.

Instead of data being deleted from the circular storage
location, it can be moved into the alternate storage location,
if this location is defined. As long as the free disk space for
the circular storage location is below the threshold, the oldest
data will be continuously migrated to the alternate storage
location to make room for the new historical data.

It is the responsibility of the system administrator to monitor
disk space and back up history blocks to storage media (such
as DAT tape) on a periodic basis.

Alternate Storage Location
When the free disk space in the circular storage location goes
below the defined threshold, the circular directory exceeds
the specified maximum size, or the blocks reach a certain
age, the storage subsystem will start moving the oldest
history blocks to one or more alternate locations, if defined.

History blocks in the alternate storage area are managed in
the same way as the blocks in the circular storage area.
However, blocks will not be deleted based on age until the
sum of the specified ages for both the circular and alternate
storage has passed.

Note Only one alternate storage location is supported for this
release.

Alternate storage locations are numbered. A block of data
moves sequentially through the alternate locations until it is
finally moved to the end of the last alternate location space,
at which point the data is deleted from the system.
Wonderware Historian Concepts Guide

History Blocks 117
At a minimum, the alternate storage location must reside on
a different logical drive than the circular storage location. A
separate partition or physical drive would be better; a
separate system is highly recommended. This storage
location is optional.

Permanent Storage Locations
Permanent storage locations are used to store critical data
(for example, reactor trips) that must not be overwritten. The
storage subsystem will never attempt to delete data in this
location. Data in a permanent storage location can be
accessed and viewed along with the data stored in the
circular storage location.

Use the xp_DiskCopy extended stored procedure to move
history blocks to this storage location. For more information,
see "xp_DiskCopy" in Chapter 4, "Stored Procedures," in your
Wonderware Historian Database Reference.

Buffer Storage Locations
Buffer locations are used for temporary purposes, such as
retrieval from a data archive. This storage location can reside
on the same hard disk as the circular storage location or on a
different disk. Data stored in the buffer storage location can
be accessed and viewed along with the data stored in the
circular storage location. Data is never deleted from this
location by the storage subsystem.

Automatic Deletion of History Blocks
History blocks in the circular and alternate storage locations
may be automatically deleted to make room for new history
blocks. Whether or not the blocks are deleted is determined
by the minimum threshold and the maximum size and/or age
specified for the storage location.

The Configuration Service will check for available space in
the circular and alternate locations if it detects any changes
made by other subsystems or the user in controlled
directories. If the realtime storage service is running, this
check is performed every 20 seconds (which is the update
time of the block.inf file).

When the Configuration Service computes the sum of the
sizes of all history blocks (including the current one) in the
circular storage location and determines if there is enough
space on the drive to hold all of the blocks.
Wonderware Historian Concepts Guide

118 Chapter 5 Data Storage Subsystem
If the space available on the storage location drive is below a
certain threshold, the storage subsystem will delete enough
of the oldest history blocks to bring the available disk drive
space back to a positive value and then move the new history
block in.

If an alternate storage location exists, the older block(s) will
be moved there instead of being deleted. The alternate
storage location functions exactly like the circular storage
location. However, when the blocks exceed the set limits
(minimum threshold, maximum size, or maximum age), the
oldest blocks will be deleted from disk.

To avoid this loss of data, it is important that the system
administrator regularly monitors the disk availability and
periodically backs up old blocks to long term storage before
they are deleted.

For example, a history block is stored in the circular storage
location. The maximum size of the disk drive for circular
storage is 120 MB. In addition to the circular storage
location, an alternate location with a maximum disk drive
size of 120 MB is defined. For both locations, the minimum
threshold value is 50 MB. Essentially, this means that there
is 70 MB of actual storage space.

Note The sizes in this example are purposely small; the disk
drives for storage locations should be much larger.

You should typically set the minimum threshold to a value
that is 1.5 times larger than the size of the biggest history
block. This will provide the Configuration Service enough
time to copy oldest history block from the circular location to
the alternate, and then delete block from the circular
location.
Wonderware Historian Concepts Guide

About the Active Image 119
If you monitor the disk drive space available in the circular
or alternate storage location over time, the value will
fluctuate between the threshold value and the maximum size
of the location, with sharp increases when blocks are moved
out. While the system is moving a block(s) out, the space
available will dip just below the threshold value before the
increase.

If the maximum threshold is reached before the age of the
block reaches the specified limit, the block is moved or
deleted. A block will be moved or deleted within one history
block duration of it reaching the age limit. If, for any reason,
the system is unable to move a block that is past the age
limit, the block will not be deleted until the size or space limit
is reached.

About the Active Image
The active image is an allocation of memory in which copies
of values of acquired data are temporarily held so as to
service client requests while the actual data is being written
to disk. The rate at which values are acquired into the active
image depends on the rate of change of the incoming values
for a particular tag. Values will collect in the active image
until the default number of values to be held is reached. This
value limit is initially set to 65 values (samples) per tag.

Note The rate at which values are acquired by the active image is
NOT related to the value that is stored in the AcquisitionRate
column of the Tag table.

When the sample limit for the active image is reached, the
oldest tag values will start to be overwritten with new tag
values. Overwriting the older tag values makes room for new
tag values, with a default number of 65 values for each tag
being held in the active image at any given time. Also, all of
the values stored in the active image may not be stored to
disk: it depends on the storage rate (from the StorageRate
column in the Tag table). If the samples in the active image
are acquired at a rate that is faster than the storage rate, tag
values will be acquired into the active image at a higher
resolution than they will be stored.

To prevent data values in the active image from being
overwritten, the number of samples held would need to be
increased to cover the time gap required for the storage
subsystem to store the actual values to disk.
Wonderware Historian Concepts Guide

120 Chapter 5 Data Storage Subsystem
Automatic Resizing of the Active Image
The system continuously recalculates the optimum number
of samples for each tag based on the data rates received.
Beginning at one minute after startup and every five
minutes thereafter, the system will perform a test to see if
the amount of memory allocated for the active image needs to
be increased. The system will calculate an average time span
for a sample for a tag, based on the timestamp of the first and
last samples in the active image and the number of samples.
If necessary, the system will increase the number of samples.
However, if the calculated time span is greater than 65
seconds, the system will not change the value from the
default 65 values.

In short, if you receive more than 65 changes in a value
within a 65-second interval, the system will increase the
number of SamplesInActiveImage in the Tag table and
increase the size in memory accordingly to accommodate the
additional samples for the fast-changing tag values.

The new calculated sample number is the number of values
required in the active image to hold data for 1 min (+15%), as
calculated by the system. This value is updated only if the
AIAutoResize system parameter is set to 1 and the number of
required samples is greater than 65. This value is written to
the SamplesInActiveImage column of the Tag table at system
startup.

To turn off the automatic increasing of the active image, set
the value of the AIAutoResize system parameter to 0. Also,
you can change the rate at which the system recalculates the
samples to be used for each tag in the active image using the
AIResizeSecInterval system parameter. For more
information, see "System Parameters" on page 33.

The number of samples in the active image never
automatically decreases, but you could manually decrease it
using the ww_SetAISamples stored procedure. However,
the changes will not take effect until the next system startup;
the running system will not automatically detect that the
new number specified is lower than number of samples
required to hold values in active image for one minute. For
information, see Chapter 4, "Stored Procedures," in your
Wonderware Historian Database Reference.

Resizing the active image is a very resource extensive
operation. To prevent unnecessary "noise," after the active
image adjusts the samples for a particular tag, it will change
this number only if the increase in samples more than 10
percent of the previous number of samples.
Wonderware Historian Concepts Guide

About the Active Image 121
You could use the active image to optimize your system,
because the retrieval subsystem will first check the active
image to see if the start time for all tags is in the active
image. If so, only the active image is queried. If a tag does not
exist in the active image at the start time, data is retrieved in
parallel from both the active image and disk and then
merged together. If duplicate values are encountered during
the merge, the value from disk will be used.

For example, if you need to create hourly reports for a week
of production based on the "SysTimeHour" tag, then you
might want to increase the number of samples in the active
image for that tag to 144 (24 * 7 = 144). This way, the system
will never go to disk to retrieve data for "SysTimeHour," and
both the overall time for retrieving data and the CPU load
will decrease.

Important Although you can manually set the active image
samples for a variable length string to a value other than 0, NULL,
or 65, this is not recommended. The performance impact will be
extremely high, because each sample for a variable length string
is 1038 bytes allocated in memory.

How the Active Image Storage Option Affects
Data Retrieval

You can configure whether to see the data in the active image
as it comes into the system or based on the storage
algorithm. You can specify this when you configure the
storage options for the tag. For more information, see
Chapter 2, "Configuring Tags," in your Wonderware
Historian Administration Guide.

If you configure the active image to hold all received values,
you may see a discrepancy between tag values for the same
time period, depending on when you ran the query. This is
true for tags that are stored cyclically or by exception (delta)
with value or time deadbands.

For example, if you run a query for data between 20011206
1:00:00:000 and 20011206 1:02:00:000, and data during this
time period is being held in the active image, data will be
returned at the resolution it was acquired.

However, if you run the same query later, and the values are
now stored in the history blocks on disk, you may not see
such a high resolution of data. Some values may be discarded
if the storage rate is slower than the acquisition rate. It may
appear that you have "lost" some of the values when, in fact,
they were never configured to be stored in the first place.
Wonderware Historian Concepts Guide

122 Chapter 5 Data Storage Subsystem
Dynamic Configuration Effects on Storage
During dynamic configuration, the Configuration Service will
determine if the changes require the creation of a new
history block.

The storage of existing tags will not be interrupted during
dynamic reconfiguration; however, storage for new or
affected tags may not begin until five to ten minutes after the
reconfiguration was committed, unless you have already
allocated memory for the new tags. For more information, see
"Pre-allocating Memory for Future Tags" in Chapter 2,
"Configuring Tags," in your Wonderware Historian
Administration Guide.

If the storage subsystem cannot complete the reconfiguration
for some reason, a critical or fatal error is generated and
written to the error log. An error is also generated if the
reconfiguration process takes so long that the storage buffer
overflows and data is lost.

Memory Management for Data Storage
By default, the Wonderware Historian loads all tag
information for the history blocks into memory so that it can
more efficiently service requests for data. This tag
information includes tag properties and indexing information
and allows for quick navigation through the files containing
real-time data. The process that manages the tag
information in memory is the Wonderware Historian
Indexing Service (aahIndexSvc.exe).

For large systems, it is possible that loading the tag
information from all of the history blocks will require more
memory than the 2 GB limit that is imposed by the Windows
operating system for a single process. The actual limit may
be even be less than 2 GB, if the amount of installed RAM is
insufficient.

The total amount of tag information for the history blocks
depends not only on the total number of tags, but also on the
number of tag versions, which are created during
modifications to old data. Therefore, it is recommended that
you monitor the memory consumption for all systems, large
and small, if you are regularly performing data inserts,
updates, or CSV file imports.
Wonderware Historian Concepts Guide

Memory Management for Data Storage 123
To avoid excessive memory consumption by the Wonderware
Historian Indexing Service, tune and monitor the service for
your system using the following system parameters and
system tags.

• HistoryCacheSize and HistoryDaysAlwaysCached system
parameters

You can limit the maximum amount of memory the
Indexing Service can use for tag information by adjusting
the value of the HistoryCacheSize system parameter.
When this parameter is set 0 (default), the Indexing
Service selects a default cache value automatically by
taking into account the amount of installed physical
memory and the maximum available address space for
the process. In some rare cases when some specific
performance tuning is needed, you may want to set the
HistoryCacheSize parameter manually. In this case, the
Indexing Service uses the specified value, but still may
automatically change the effective HistoryCacheSize if
the specified value is too low or two high.
Regardless of whether the effective HistoryCacheSize
was selected automatically (default) or specified by you,
the Indexing Service manages the cache using a
"least-recently used" algorithm. In this algorithm, when
there is a request to access a history block that is not
currently cached, the Indexing Service unloads the tag
information from the least-recently used history block
and then loads the tag information from the requested
block.
All of these operations are performed automatically in
the background, but you may notice a slowness data
retrieval if the data is retrieved from a block that is not
currently loaded into memory. Keep in mind that the
smaller the amount of memory that you allocate for the
cache, the potentially longer it may take to service data
requests.
To guarantee the maximum retrieval performance for the
newest history blocks (for example, if you a running a
trend application for the last week), you can "lock" a
certain number of the most recent history blocks in the
cache. To do this, set the number of days to be locked in
the cache by changing the HistoryDaysAlwaysCached
system parameter.
Wonderware Historian Concepts Guide

124 Chapter 5 Data Storage Subsystem
• SysHistoryCacheFaults and SysHistoryCacheUsed
system tags

To determine if you need to clamp the memory used by
the Indexing Service, use the Windows Task Manager
application or the Performance console to see how much
memory is used by the aahIndexSvc.exe process. Also,
you can monitor the SysHistoryCacheFaults and
SysHistoryCacheUsed system tags. A high number of
cache faults may be indicating that the cache size is
insufficient. The SysHistoryCacheUsed system tag shows
the number of bytes currently used for keeping the tag
information. This tag may be helpful to see how much
memory is consumed by the tag information, even if the
memory management is not enabled.

At any time, you can observe the current status of the history
blocks in the Wonderware Historian Management Console.
When the tag information from a history block is not loaded
into memory, the history block icon is dimmed. You can
manually refresh the console window to see changes in the
status for the history blocks.

About Snapshot Files
Each history block consists of a set of "snapshot" files (.sdt) in
which the data values are actually stored.

Note Replication will add some additional files in this folder.
Wonderware Historian Concepts Guide

About Snapshot Files 125
The snapshot file notation is as follows:

<type>DX_x

where,

<type> = "value" for discrete and analogs or "string" for
strings.

X = The byte size of the value. For strings of fixed length that
are 128 bytes or less, this value will be the actual length in
bytes. For strings of fixed length that are more than 128
bytes, this value will be 1024.

_x = The number for the data "stream." For a snapshot file
storing original real-time data, the value will be 1. To handle
other data, such as for inserts of old data and updates, the
storage subsystem may create additional snapshot files to
hold the values, instead of inserting them into the initial
snapshot file. By using multiple snapshot files, the storage
subsystem can store the different parallel data streams
simultaneously and more efficiently.

A snapshot file exists for each byte size of data values:

Snapshot Description Value type stored

-1 Used to store values other
than 1-bit, 16-bit, or 32-bit
values.

Fixed-length strings,
variable-length strings

0 Used to store quality
detail.

Quality detail

1 Used to store 1-bit values. Discretes

2 Used to store 16-bit
values.

Analogs, integers

4 Used to store 32-bit
values.

Reals (floats), longs, and integers

8 (Future) Used to store 64-bit
values.

Integers
Wonderware Historian Concepts Guide

126 Chapter 5 Data Storage Subsystem
How Snapshot Files are Updated
Before tag values are stored to disk in snapshot files, they
collect in memory in dynamically allocated buffers. (These
buffers are different than the active image.) Values in the
buffers are stored to snapshot files according to the image
time rate, which is every 30 seconds by default.

Within each snapshot file, there are sets of value snapshots.
A snapshot contains a copy of all of the stored tag values at a
certain point in time.

&�''��

(��	�)
��*����!+���%

(��	�)
���

(��	�)
���

�

�

�

���������
���� ���

���������������

�������	�)
���������

����)���)
��������
�

���	�)
����,�������

When the system is first started, the first snapshot is
generated in the .sdt file. This snapshot contains the initial
values for the stored tags. Every 30 seconds, new values for
each tag are retrieved from the snapshot buffer and are
added to the current snapshot.

When the size of the current snapshot reaches a particular
limit (by default, 2 MB) or when an hour has elapsed, a
second snapshot is generated. When the size limit for the
second snapshot is reached or an hour has passed, a third
snapshot is created, and so on.

Every 30 seconds, the system checks how many values are
collected for each tag. If the number exceeds 15000, a new
snapshot is automatically generated.
Wonderware Historian Concepts Guide

127
Chapter 6

Data Retrieval Subsystem

The Wonderware Historian data retrieval subsystem receives
SQL queries from clients, locates the requested data,
performs necessary processing, and then returns the results.
For configuration and event data, retrieval is made possible
by normal SQL queries, because these types of data are
stored in standard SQL Server database tables. Historical
data, however, must be retrieved from history blocks and
then sent to clients as if it is stored in SQL Server tables.

To accomplish retrieval from both data repositories, the
retrieval subsystem includes:

• An implementation of a SQL Server data provider, which
determines whether the requested data is saved in
normal SQL Server tables or in history blocks.

• A retrieval service, which is responsible for extracting the
requested data from the history blocks and presenting to
the Wonderware Historian OLE DB provider as "virtual"
history tables.

• A set of SQL Server extensions, which are implemented
as columns in the history tables. You can use these
extensions to specify the nature of the rowset that is
returned, such as the number of rows returned, the
resolution of the data, or the retrieval mode.

For more information on data storage, see Chapter 5, "Data
Storage Subsystem."
Wonderware Historian Concepts Guide

128 Chapter 6 Data Retrieval Subsystem
Data Retrieval Components
The following table describes the components of the data
retrieval subsystem.

Component Description

Runtime database SQL Server database in which
configuration and event data are
stored.

History Blocks Files in which plant history data is
stored. In the context of Microsoft
SQL Server, history blocks are
considered a non-local data source.

Retrieval Service
(aahRetSvc.exe)

Process that retrieves data from the
history blocks and presents it as data
sets. This process runs as a Windows
service.

Manual Data
Acquisition
Service (MDAS)

Component that allows data
retrieval, data insertions, and
configuration functions, such as tag
creation.

Wonderware
Historian OLE DB
Provider

A SQL Server software component
used to query data in history blocks.
The Wonderware Historian OLE DB
provider can expose history data to
client applications as if it were
formatted as normal SQL Server
tables.

Wonderware
Historian Time
Domain
Extensions

Special Transact-SQL syntax
extensions that allow for increased
retrieval functionality for history
data.

Wonderware
Historian I/O
Server
(aahIOSvrSvc.exe)

Internal process that allows clients to
access current tag values from the
active image using the SuiteLink or
DDE protocols.

Query
Application(s)

Either a command-line application or
point-and-click query tool that can
connect to the Microsoft SQL Server
and that uses Transact-SQL
statements to retrieve data.

For a complete diagram of the Wonderware Historian
architecture, see "Wonderware Historian Subsystems" on
page 19.
Wonderware Historian Concepts Guide

Data Retrieval Features 129
Data Retrieval Features
Some of the main features of the data retrieval subsystem
are:

• All tag types can be included in the same query when
retrieving from the History table. Any combination of
tags can be submitted in a single query.

• Both fixed length and variable length strings are
supported.

• All internal time computation and manipulation is done
using the Win32 FILETIME type. The resolution of
FILETIME is 100 nano-seconds. The resolution exposed
in queries depends on the version of SQL Server used.

• All times are handled internally as absolute time (UTC).
Conversions to and from local time are handled going in
and out of retrieval so the external interface is local time.

• Non-real-time data is supported (for example,
store-and-forward data or data imported from a
comma-separated values (CSV) file.

• Retrieval of different versions is supported.

History Blocks: A SQL Server Remote Data
Source

Remote data sources are data repositories that exist outside
of a SQL Server database file (.MDF). Microsoft sometimes
refers to these types of data sources as "non-local data
stores." In the case of the Wonderware Historian, a remote
data source is the set of history block files. All tag data is
stored in history blocks. For more information on history
blocks, see "History Blocks" on page 113.

OLE DB technology can be used to access data in any remote
data store. This access is accomplished though a software
component called an OLE DB provider.
Wonderware Historian Concepts Guide

130 Chapter 6 Data Retrieval Subsystem
Retrieval Service
The retrieval service (aahRetSvc.exe) retrieves history data
from both the active image and history blocks on disk. The
retrieval service:

• Formats data so that it can be passed up through the
system to the Wonderware Historian OLE DB provider or
other MDAS-enabled client applications.

• Returns information regarding the history blocks, such as
the start and end dates and the location.

Linear scaling for analog tags is performed within retrieval
using the following formula.

V_out = (V_in - MinRaw)*(MaxEU - MinEU)/(MaxRaw -
MinRaw) + MinEU

where:

V_out = scaled output value
V_in = stored raw value
MinRaw = minimum raw value for the tag
MaxRaw = maximum raw value for the tag
MinEU = minimum engineering unit value
MaxEU = maximum engineering unit value

About the Wonderware Historian OLE DB
Provider

Object Linking and Embedding for Databases (OLE DB) is
an application programming interface (API) that allows
COM-based client applications to access data that is not
physically stored in the SQL Server to which they are
connecting.

The benefit of using OLE DB is that it provides access to
different types of data in a broader manner. By using OLE
DB, you can simultaneously access data from a variety of
sources, such as from a SQL Server database, an Oracle
database, and a Microsoft Access database. A query that
accesses data from multiple, dissimilar data sources such as
these is called a "heterogeneous query," with "heterogeneous"
meaning "dissimilar." A heterogeneous query can also be
called a "distributed query," because the data can be
distributed across various data sources.
Wonderware Historian Concepts Guide

About the Wonderware Historian OLE DB Provider 131
SQL Server uses OLE DB to process heterogeneous queries
and makes linking data between the data sources much
easier. Through OLE DB, Microsoft SQL Server supports
Transact-SQL queries against data stored in one or more
SQL Server and heterogeneous databases without any need
for specialized gateway server applications.

The interface required to access data in a non-local data store
(such as the Wonderware Historian history blocks) is
provided by a "virtual" server, called an OLE DB provider.
OLE DB providers allow you to use the power of the SQL
Server query processor to make linking data stored in the
SQL Server databases and from history blocks much easier
and more robust. Also, the Wonderware Historian OLE DB
provider has a rich set of query capabilities.

The name of the Wonderware Historian OLE DB provider is
"INSQL." The Wonderware Historian OLE DB provider is
installed during Wonderware Historian installation and then
associated, or linked, with the Microsoft SQL Server. For
information on the syntax for linking the Wonderware
Historian OLE DB provider, see "Linking the Wonderware
Historian OLE DB Provider to the Microsoft SQL Server" on
page 146.

To access Wonderware Historian historical data using OLE
DB, any COM-based client application must connect directly
to the SQL Server and then specify to use the Wonderware
Historian OLE DB provider in the syntax of the query.

When you execute a query and specify the Wonderware
Historian OLE DB provider in the syntax, the Microsoft SQL
Server parser will pass the appropriate parts of the data
request to the Wonderware Historian OLE DB provider. The
Wonderware Historian OLE DB provider will then interface
with the retrieval service to locate the data store, extract the
requested information, and return the data to the Microsoft
SQL Server as a rowset. Microsoft SQL Server will perform
any other processing required on the data and return the
data to the client application as a result set and a set of
output parameters, if applicable.

The Wonderware Historian OLE DB provider must be
present on the server running Microsoft SQL Server. The set
of Transact-SQL operations that can be used to retrieve data
in the history blocks depends on the capabilities of the
Wonderware Historian OLE DB provider. The Wonderware
Historian OLE DB provider is SQL-92 compliant.

For more information on OLE DB, see your Microsoft
documentation.
Wonderware Historian Concepts Guide

132 Chapter 6 Data Retrieval Subsystem
Extension (Remote) Tables for History Data
Some of the history tables are rowset representations that
provide a means for handling acquired plant data. These
tables are not part of normal SQL Server functionality. A
normal SQL Server table stores data directly in the
database's data device file (.mdf). An extension table,
however, presents data as if it were a real table, but it does
not physically exist in the data device. An extension table is a
logical table that is populated from other types of data files;
thus, the data is stored "remotely" from SQL Server. In the
case of the Wonderware Historian, the data files are the
history blocks generated by the storage system.

Note Extension tables are also called remote tables.

Data access from the history blocks is made possible by SQL
Server's OLE DB provider technology. Client applications
must connect directly to the Microsoft SQL Server and then
specify to use the Wonderware Historian OLE DB provider in
the syntax of the query.

The extension tables are:

• AnalogSummaryHistory
(INSQL.Runtime.dbo.AnalogSummaryHistory)

• History (INSQL.Runtime.dbo.History)

• HistoryBlock (INSQL.Runtime.dbo.HistoryBlock)

• Live (INSQL.Runtime.dbo.Live)

• StateSummaryHistory
(INSQL.Runtime.dbo.StateSummaryHistory)

• StateWideHistory
(INSQL.Runtime.dbo.StateWideHistory)

The AnalogHistory, DiscreteHistory, StringHistory,
AnalogLive, DiscreteLive, StringLive, AnalogWideHistory,
DiscreteWideHistory, StringWideHistory, and
v_SummaryData tables are provided for backward
compatibility. For more information, see Chapter 6,
"Backward Compatibility Entities," in your Wonderware
Historian Database Reference.

The AnalogHistory, DiscreteHistory, StringHistory, and
History tables are the only tables which are updateable. The
remaining tables are read-only.

For more information on the history extension tables, see
"History Tables" in Chapter 1, "Table Categories," in your
Wonderware Historian Database Reference.
Wonderware Historian Concepts Guide

About the Wonderware Historian OLE DB Provider 133
Query Syntax for the Wonderware Historian OLE
DB Provider

The most common Wonderware Historian query is a
SELECT statement:
SELECT select_list

FROM table_source
WHERE search_condition

[GROUP BY group_by_expression]
[HAVING search_condition]
[ORDER BY order_expression [ASC | DESC]]

A WHERE clause is mandatory when issuing a SELECT
query against any extension table except HistoryBlock.

There are four variations for issuing a SELECT statement to
the Wonderware Historian OLE DB provider to retrieve
history data:

• Using the Four-Part Naming Convention

• Using a Wonderware Historian OLE DB Provider View

• Using the OPENQUERY Function

• Using the OPENROWSET Function

You should use the four-part name or a provider view to
specify the extension table, whenever possible. However,
there are instances when the OPENQUERY or
OPENROWSET function must be used, such as for queries
on wide tables.

For general information on creating SQL queries, see your
Microsoft SQL Server documentation.

Using the Four-Part Naming Convention
The linked server name is simply a name by which the
Wonderware Historian OLE DB provider is known to the
Microsoft SQL Server. In order for a query to be passed on to
the Wonderware Historian OLE DB provider, you must
specify the linked server name and the extension table name
as part of a four-part naming convention.

For example, this query specifies to retrieve data from the
History extension table in the Wonderware Historian OLE
DB provider:
SELECT * FROM INSQL.Runtime.dbo.History

WHERE TagName = 'SysTimeSec'
AND DateTime >= '2001-09-12 12:59:00'
AND DateTime <= '2001-09-12 13:00:00'
Wonderware Historian Concepts Guide

134 Chapter 6 Data Retrieval Subsystem
The four-part naming convention is described in the
following table:

Part Name Description

linked_server Linked server name. By default, INSQL.

catalog Catalog in the OLE DB data source that
contains the object from which you want to
retrieve data. For Microsoft SQL Server type
databases, this is the name of the database.
To use the Wonderware Historian OLE DB
provider, the catalog name will always be
"Runtime."

schema Schema in the catalog that contains the
object. For Microsoft SQL Server type
databases, this is the name of the login ID for
accessing the data. To use the Wonderware
Historian OLE DB provider, the catalog
name will always be "dbo."

object_name Data object that the OLE DB provider can
expose as a rowset. For the Wonderware
Historian OLE DB provider, the object name
is the name of the remote table that contains
the data you want to retrieve. For example,
the History table.

In the case of four-part queries, SQL Server produces the
statement that is sent to the Wonderware Historian OLE DB
provider from the statement that the user executes.
Sometimes this produced statement is incorrect, too complex,
or lacks portions of the WHERE clause required for the
Wonderware Historian OLE DB provider to return data.

A typical error message when executing unsupported syntax
is:
Server: Msg 7320, Level 16, State 2, Line 1

Could not execute query against OLE DB provider
'INSQL'.

[OLE/DB provider returned message: InSQL did not
receive a WHERE clause from SQL Server. If one was
specified, refer to the InSQL OLE DB documentation]
Wonderware Historian Concepts Guide

About the Wonderware Historian OLE DB Provider 135
For four-part queries against non-English SQL Servers
running on non-English operating systems, the default date
format might differ from the English versions. For example,
for a French or German SQL Server running on the
corresponding operating system, the date/time in a four-part
query must be:

yyyy-dd-mm hh:mm:ss.fff

For example:

2003-28-09 09:00:00.000

The default SQL date format is dependent on SQL Server
and not on the operating system used. However, you can
modify the format using the SQL Server Convert() method.
The output of this method can be determined by the regional
settings configured for the operating system.

Using a Wonderware Historian OLE DB Provider View
Microsoft SQL Server views have been provided that will
access each of the extension tables, eliminating the need to
type the four-part server name in the query. These views are
named the same as the provider table name.

Note Backward compatibility views are named according to the
v_ProviderTableName convention.

For example:
SELECT * FROM History

WHERE TagName = 'SysTimeSec'
AND DateTime >= '2001-09-12 12:59:00'
AND DateTime <= '2001-09-12 13:00:00'

Using the OPENQUERY Function
You can use the linked server name in an OPENQUERY
function to retrieve data from an extension table. The
OPENQUERY function is required for retrieving from the
wide table. For example:
SELECT * FROM OPENQUERY(INSQL, 'SELECT * FROM History

WHERE TagName = "SysTimeSec"
AND DateTime >= "2001-09-12 12:59:00"
AND DateTime <= "2001-09-12 13:00:00"
')

The following example retrieves data from a wide table:
SELECT * FROM OPENQUERY(INSQL, 'SELECT DateTime,

SysTimeSec
FROM WideHistory

WHERE DateTime >= "2001-09-12 12:59:00"
AND DateTime <= "2001-09-12 13:00:00"

')
Wonderware Historian Concepts Guide

136 Chapter 6 Data Retrieval Subsystem
The OPENQUERY portion of the statement is treated as a
table by SQL Server, and can also be used in joins, views, and
stored procedures. SQL Server sends the quoted statement,
unchanged and as a string, to the Wonderware Historian
OLE DB provider. Consequently, only the syntax that the
Wonderware Historian OLE DB provider can parse is
supported. Also, be sure that you do not exceed the 8000
character limit for the statement. Consider the following
example:
SELECT * FROM OpenQuery(INSQL, 'XYZ')

where "XYZ" is the statement to pass. You should be sure
that the value of "XYZ" is not more than 8000 characters.
This limit is most likely to cause a problem if you are
querying many tags from a wide table.

Also, you should supply the datetime in an OPENQUERY
statement in the following format:

yyyy-mm-dd hh:mm:ss.fff

For example:

2001-01-01 09:00:00.000

You cannot use variables in an OPENQUERY statement. For
more information, see "Using Variables with the Wide Table"
on page 312.

Using the OPENROWSET Function
The linked server name can be used as an input parameter to
an OPENROWSET function. The OPENROWSET function
sends the OLE DB provider a command to execute. The
returned rowset can then be used as a table or view reference
in a Transact-SQL statement. For example:
SELECT * FROM OPENROWSET('INSQL',' ', 'SELECT DateTime,

Quality, QualityDetail, Value
FROM History
WHERE TagName in ("SysTimeSec")
AND DateTime >= "2001-09-12 12:59:00"
AND DateTime <= "2001-09-12 13:00:00"
')
Wonderware Historian Concepts Guide

About the Wonderware Historian OLE DB Provider 137
Syntax Options Supported
The following table indicates the syntax options that are
available for queries that use either the four-part naming
convention (or corresponding view name) or the
OPENQUERY function.

Syntax Element Four-Part Query OPENQUERY

ORDER BY Yes No. Does not work within
the OPENQUERY function.
However, will work if used
outside of the function.

GROUP BY Yes No

TagName IN (..) Yes Yes

TagName LIKE '..' Yes Yes

Date and time functions (for
example, DateAdd)

Yes Yes

MIN, MAX, AVG, SUM,
STDEV

Yes MIN, MAX, AVG, SUM only

Sub-SELECT with one normal
SQL Server table and one
extension table

Yes, with
restrictions

No

Sub-SELECT with two
extension tables

No No

Wonderware Historian OLE DB Provider
Unsupported Syntax and Limitations

The Wonderware Historian OLE DB provider does not
support certain syntax options in queries. In general, these
limitations are due to underlying limitations in the current
Microsoft SQL Server OLE DB Provider implementation.

For general information on creating SQL queries, see your
Microsoft SQL Server documentation.
Wonderware Historian Concepts Guide

138 Chapter 6 Data Retrieval Subsystem
No Notion of Client Context
The OLE DB provider has no notion of a client context. The
OLE DB provider is entirely stateless, and there is no
persistence across queries in the same connection. This
means that you must set the value of a Wonderware
Historian time domain extension (for example, cycle count)
each time you execute a query.

Also, the OLE DB provider cannot continuously return data
(similar to a "hot" link in InTouch HMI software). The OLE
DB specification (as defined by Microsoft) does not permit a
provider to return rows to a consumer without a request from
the consumer.

Limitations on Wide Tables
Wide tables do not have a fixed schema, but a schema which
varies from query to query. They are transient tables,
existing for the duration of one query only. For this reason,
they must be accessed using the OPENQUERY function,
which bypasses many of the tests and requirements
associated with fixed tables. Wide tables support up to 1024
columns.

For more information on wide tables, see ""Wide" History
Table Format" in Chapter 1, "Table Categories," in your
Wonderware Historian Database Reference.

LIKE Clause Limitations
The LIKE clause is only supported for the TagName and
Value columns. The syntax " ... Value LIKE 'a string'
... " is only supported for a string table. For example:
SELECT TagName, Value FROM History

WHERE TagName LIKE 'Sys%'
AND DateTime > '1999-05-24 14:30:00'
AND DateTime < '1999-05-24 14:32:00'

IN Clause Limitations
If you are querying analog, discrete, or string tags from the
AnalogTag, DiscreteTag, or StringTag tables (respectively),
you cannot use the LIKE clause within an IN clause to
condition the tagname unless you are returning the vValue
column. This restriction applies if you are using the four-part
naming convention or an extension table view.
Wonderware Historian Concepts Guide

About the Wonderware Historian OLE DB Provider 139
For example:
SELECT DateTime, TagName, vValue, Quality,

QualityDetail
FROM History

WHERE TagName IN (SELECT TagName FROM StringTag
WHERE TagName LIKE 'SysString')

AND DateTime >='2001-06-21 16:00:00.000'
AND DateTime <='2001-06-21 16:40:00.000'
AND wwRetrievalMode = 'Delta'

However, it is more efficient to use an INNER REMOTE
JOIN to achieve the same results. For more information, see
"Using an INNER REMOTE JOIN" on page 281.

OR Clause Limitations
You cannot use the OR clause to specify more than one
condition for a time domain extension. For more information,
see "Wonderware Historian Time Domain Extensions" on
page 147.

Using Joins within an OPENQUERY Function
Joins are not supported within a single OPENQUERY
statement. For example, the following query contains an
implicit join between the Tag and Live tables, and will fail:
SELECT * FROM OPENQUERY(INSQL, 'SELECT v.DateTime,

v.TagName, v.Value, t.Description
FROM Tag t, Live v

WHERE t.TagName LIKE "%Date%"
AND v.TagName = t.TagName

')
A work-around is to place the join outside of the
OPENQUERY. For example:
SELECT v.DateTime, v.TagName, v.Value, t.Description

FROM OPENQUERY(INSQL, 'SELECT DateTime, TagName,
Value
FROM Live

WHERE TagName LIKE "%Date%"
') v, Tag t

WHERE v.TagName = t.TagName

Explicit joins are also not supported within OPENQUERY.
For example, the following query will fail:
SELECT * FROM OPENQUERY(INSQL, 'SELECT v.DateTime,

v.TagName, v.Value, e.Unit
FROM Live v
JOIN AnalogTag t ON v.TagName = t.TagName
JOIN EngineeringUnit e ON t.EUKey = e.EUKey

WHERE v.TagName LIKE "%Date%"
')
Wonderware Historian Concepts Guide

140 Chapter 6 Data Retrieval Subsystem
A work-around is to place the join outside the OPENQUERY.
For example:
SELECT v.DateTime, v.TagName, v.Value, e.Unit

FROM OPENQUERY(INSQL, 'SELECT DateTime, TagName,
Value FROM Live

WHERE TagName LIKE "%Date%"
') v
JOIN AnalogTag t ON v.TagName = t.TagName
JOIN EngineeringUnit e ON t.EUKey = e.EUKey

ORDER BY t.TagName

In general, use four-part syntax wherever possible. All of the
previous queries are more conveniently expressed in
four-part syntax. For example, the syntax for the preceding
query would be:
SELECT v.DateTime, v.TagName, v.Value, e.Unit

FROM INSQL.Runtime.dbo.History v
JOIN AnalogTag t ON v.TagName = t.TagName
JOIN EngineeringUnit e ON t.EUKey = e.EUKey

WHERE v.TagName LIKE '%Date%'
ORDER BY t.TagName

Using Complicated Joins
You can only use simple joins between SQL Server tables and
the Wonderware Historian OLE DB extension tables. Joins
typically require use of the INNER REMOTE JOIN syntax.

For an example of the INNER REMOTE JOIN syntax, see
"Using an INNER REMOTE JOIN" on page 281.

Using a Sub-SELECT with a SQL Server Table and an
Extension Table
Using a sub-SELECT with a query on a normal SQL Server
table and an extension table should be avoided; it is very
inefficient due to the way SQL Server executes the query. For
example:
SELECT TagName, DateTime, Value

FROM INSQL.Runtime.dbo.History
WHERE TagName IN (select TagName FROM
SnapshotTag WHERE EventTagName =
'SysStatusEvent')

AND DateTime = '2001-12-20 0:00'
Wonderware Historian Concepts Guide

About the Wonderware Historian OLE DB Provider 141
Instead, it is recommended that you use the INNER
REMOTE JOIN syntax:
SELECT h.TagName, DateTime, Value

FROM SnapshotTag st INNER REMOTE JOIN
INSQL.Runtime.dbo.History h

ON st.TagName = h.TagName
AND EventTagName = 'SysStatusEvent'
AND DateTime = '2001-12-20 0:00'

The results are:

TagName DateTime Value

SysPerfCPUTotal 2001-12-20 00:00:00.000 15.0

SysSpaceMain 2001-12-20 00:00:00.000 1302.0

In general, use the following pattern for INNER REMOTE
JOIN queries against the historian is:

<SQLServerTable> INNER REMOTE JOIN
<HistorianExtensionTable>

For more information on INNER REMOTE JOIN, see your
Microsoft documentation.

WHERE Clause Anomalies
In some rare cases, the SQL Server query processor
truncates the WHERE clause in an attempt to optimize the
query. If you execute a query with a WHERE clause, but an
error message is returned stating that no WHERE clause
was received by the SQL Server, simply add another
condition clause to the query.

For example, in the following query, the SQL Server query
processor optimizes out the WHERE clause, because it is
superfluous.
SELECT DateTime, Value, QualityDetail

FROM History
WHERE TagName LIKE '%'

A workaround is to add another condition clause. For
example:
SELECT DateTime, Value, QualityDetail

FROM History
WHERE TagName LIKE '%'
AND wwRetrievalMode = 'delta'
Wonderware Historian Concepts Guide

142 Chapter 6 Data Retrieval Subsystem
CONVERT Function Limitations
The CONVERT function is not supported on the vValue
column in an OPENQUERY statement. If you are using
OPENQUERY on the History table, you must filter on the
vValue column outside of the query.

In the following example, the value of the vValue column is
converted to a float. Note that no string tags are included in
the query.
SELECT * FROM OpenQuery(INSQL, 'SELECT DateTime,

Quality, OPCQuality, QualityDetail, Value, vValue,
TagName
FROM History

WHERE TagName IN ("SysTimeMin", "SysPulse")
AND DateTime >= "2001-12-30 04:00:00.000"
AND DateTime <= "2001-12-30 09:00:00.000"
AND wwRetrievalMode = "Delta"

')
WHERE convert(float, vValue) = 20.0

You can also use the following formats:
WHERE convert(float, vValue) = 0

WHERE convert(float, vValue) = 0.0

WHERE convert(float, vValue) = 1.0

WHERE convert(float, vValue) = 1

WHERE convert(float, vValue) = 20

WHERE convert(float, vValue) = 2.0000e01

The following example includes a string tag and converts the
vValue value to a char or varchar datatype. All values
returned can be converted to a string.
SELECT * FROM OpenQuery(INSQL, 'SELECT DateTime,

Quality, OPCQuality, QualityDetail, Value, vValue,
TagName
FROM History

WHERE TagName IN ("SysString", "SysTimeMin",
"SysPulse")

AND DateTime >= "2001-12-30 04:00:00.000"
AND DateTime <= "2001-12-30 09:00:00.000"
AND wwRetrievalMode = "Cyclic"
AND wwCycleCount = 300

')
WHERE convert(varchar(30), vValue) = '2001-12-30
14:00:00'

You can also use the following formats:
WHERE convert(varchar(30), vValue) = '20'

WHERE convert(varchar(30), vValue) = '1'

WHERE convert(varchar(30), vValue) = '0'
Wonderware Historian Concepts Guide

About the Wonderware Historian OLE DB Provider 143
SQL Server Optimization of Complex Queries
The SQL Server query optimizer may incorrectly parse a
complex query and not send certain query criteria to the
Historian OLE DB provider for handling. This can cause
unexpected results for the data.

If you suspect that this is happening, use SQL Server
Management Studio tools to examine the query plan that the
optomizer is using and then modify your query so that the
needed criteria gets directed to the Historian OLE DB
provider.

For example, the following query will be incorrectly parsed:
SELECT GETDATE()

DECLARE @TagList TABLE (TagName nvarchar(256))

INSERT @TagList
SELECT 'SysTimeSec' UNION
SELECT 'SysPerfCPUTotal'

-- Prevent the TagName criteria from being sent to the
Historian OLE DB provider (incorrect)

SELECT DateTime, h.vValue, h.TagName
FROM History h
INNER REMOTE JOIN @TagList l
ON h.TagName = l.TagName
WHERE DateTime >= DATEADD(hour,-1,GETDATE())

AND DateTime < GETDATE()
AND wwRetrievalMode = 'AVG'
AND wwCycleCount=1

GO
Wonderware Historian Concepts Guide

144 Chapter 6 Data Retrieval Subsystem
To correct this issue, rewrite the query so that the tagname
criteria is passed to the Historian OLE DB provider correctly.
SELECT GETDATE()

DECLARE @TagList TABLE (TagName nvarchar(256))

INSERT @TagList
SELECT 'SysTimeSec' UNION
SELECT 'SysPerfCPUTotal'

-- Force the TagName criteria to be sent to the InSQL
OLE DB Provider (correct)

SELECT DateTime, h.vValue, h.TagName
FROM @TagList l
INNER REMOTE JOIN History h
ON h.TagName = l.TagName
WHERE DateTime >= DATEADD(hour,-1,GETDATE())

AND DateTime < GETDATE()
AND wwRetrievalMode = 'AVG'
AND wwCycleCount=1

GO

Using Columns of a Variant Type with Functions
If you use a column of a variant type as the parameter for
some functions, SQL Server returns a syntax error. However,
the error is not passed to the Historian OLE DB provider to
return to clients.

For example, in the following query, the rounding is specified
for the vValue column, which is of type variant. The query
does not work, but no error is returned by the Historian OLE
DB provider.
SELECT DateTime, round(vValue, 2)

FROM History
WHERE TagName IN ('SysTimeSec')

AND DateTime = getdate()
AND wwRetrievalMode = 'Cyclic'
Wonderware Historian Concepts Guide

About the Wonderware Historian OLE DB Provider 145
Using StartDateTime in the Query Criteria
You cannot use StartDateTime in the query criteria intead of
DateTime. For example, the following query works, except
that it does not apply the StartDateTime >= @StartDate
clause.
SET NOCOUNT ON

DECLARE @StartDate DateTime

DECLARE @EndDate DateTime

SET @StartDate = DateAdd(mi,-30,GetDate())

SET @EndDate = GetDate()

SET NOCOUNT OFF

SELECT History.TagName, DateTime = convert(nvarchar,
DateTime, 21), Value, vValue, StateTime,
StartDateTime
 FROM History

 WHERE History.TagName IN ('Reactor1Level')
 AND wwRetrievalMode = 'RoundTrip'
 AND wwStateCalc = 'AvgContained'
 AND vValue = convert(SQL_VARIANT, '1')
 AND wwCycleCount = 1
 AND wwTimeStampRule = 'Start'
 AND wwQualityRule = 'Good'
 AND wwFilter = 'ToDiscrete(5.0,>)'
 AND wwVersion = 'Latest'
 AND DateTime >= @StartDate
 AND DateTime <= @EndDate
 AND StartDateTime >= @StartDate

Comparison Statements and NULL Values
SQL Server returns an error for a query that contains a
comparison statement like 'Value > 0' whenever a NULL is
returned. Be sure that you always include 'AND Value IS
NOT NULL', so that the NULL values are filtered out.

OPENQUERY and Microsoft Query
Microsoft Query is not able to process an OPENQUERY
statement.
Wonderware Historian Concepts Guide

146 Chapter 6 Data Retrieval Subsystem
Linking the Wonderware Historian OLE DB
Provider to the Microsoft SQL Server

Because the Wonderware Historian OLE DB provider
retrieves data from the history blocks and presents it to
Microsoft SQL Server as a table, it can be thought of as a
type of server. The Wonderware Historian OLE DB provider
must be added to the Microsoft SQL Server as a "linked"
server before it can be used to process queries.

This linking is performed automatically during the
Wonderware Historian installation. If, for some reason, you
need to re-link the Wonderware Historian OLE DB provider
to the Microsoft SQL Server, the statements for linking are
as follows:
sp_addlinkedserver

@server = 'INSQL',
@srvproduct = '',
@provider = 'INSQL'
go
sp_serveroption 'INSQL','collation compatible',true
go
sp_addlinkedsrvlogin 'INSQL','TRUE',NULL,NULL,NULL
go

"INSQL" is the name of the Wonderware Historian OLE DB
provider as the linked server. Use this name to specify the
Wonderware Historian OLE DB provider in a query.

To perform joins between the legacy analog history tables
and discrete history tables, the installation program also
creates an alias for the same Wonderware Historian OLE DB
provider:
sp_addlinkedserver

@server = 'INSQLD',
@srvproduct = '',
@provider = 'INSQL'
go
sp_serveroption 'INSQLD','collation
compatible',true
go
sp_addlinkedsrvlogin 'INSQLD','TRUE',NULL,NULL,NULL
go

For example, if you want to execute a query that performs
this type of join, use the normal alias in specifying the first
table (the analog history table), and use the second alias in
specifying the second table (the discrete history table, hence
the "D" added to the alias name).
Wonderware Historian Concepts Guide

Wonderware Historian Time Domain Extensions 147
Wonderware Historian Time Domain
Extensions

Data in the extension tables can be manipulated by using
normal Transact-SQL code, as well as the specialized SQL
time domain extensions provided by the Wonderware
Historian. The Wonderware Historian extensions provide an
easy way to query time-based data from the history tables.
They also provide additional functionality not supported by
Transact-SQL.

The time domain extensions are:

• wwCycleCount

• wwResolution

• wwRetrievalMode

• wwTimeDeadband

• wwValueDeadband

• wwEdgeDetection

• wwTimeZone

• wwVersion

• wwInterpolationType

• wwTimeStampRule

• wwQualityRule

• wwValueSelector

• wwStateCalc

• wwFilter

Note The wwParameters and wwMaxStates parameters are
reserved for future use. The wwRowCount parameter is still
supported, but is deprecated in favor of wwCycleCount.

The extensions are implemented as "virtual" columns in the
extension tables. When you query an extension table, you can
specify values for these column parameters to manipulate
the data that will be returned. You will need to specify any
real-time extension parameters each time that you execute
the query.
Wonderware Historian Concepts Guide

148 Chapter 6 Data Retrieval Subsystem
For example, you could specify a value for the wwResolution
column in the query so that a resolution is applied to the
returned data set:
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-02 10:00:00'
AND DateTime <= '2001-12-02 10:02:00'
AND Value >= 50
AND wwResolution = 10
AND wwRetrievalMode = 'cyclic'

Because the extension tables provide additional functionality
that is not possible in a normal SQL Server, certain
limitations apply to the Transact-SQL supported by these
tables. For more information, see "Wonderware Historian
OLE DB Provider Unsupported Syntax and Limitations" on
page 137.

Although the Microsoft SQL Server may be configured to be
case-sensitive, the values for the virtual columns in the
extension tables are always case-insensitive.

Note You cannot use the IN clause or OR clause to specify more
than one condition for a time domain extension. For example,
"wwVersion IN ('original', 'latest')" and
"wwRetrievalMode = 'Delta' OR wwVersion =
'latest'" are not supported.

For general information on creating SQL queries, see your
Microsoft SQL Server documentation.
Wonderware Historian Concepts Guide

Wonderware Historian I/O Server 149
Wonderware Historian I/O Server
The Wonderware Historian I/O Server (aahIOSvrSvc.exe) is
the interface for clients to access data from the active image
of a Wonderware Historian by the SuiteLink protocol. The
Wonderware Historian I/O Server can update items with
current values for given topics, providing "real-time" I/O
Server functionality. Tag values in the Wonderware
Historian I/O Server are acquired from the active image. For
more information on the active image, see "About the Active
Image" on page 119.

Note NetDDE is not supported.

The Wonderware Historian I/O Server is pre-configured with
a single topic, Tagname. The Wonderware Historian I/O
Server will listen for clients (such as WWClient or
WindowViewer™) that are attempting to establish a
connection using the pre-configured topic. After a client
connects with the Wonderware Historian I/O Server, a "hot"
link is established between the client and the Wonderware
Historian I/O Server. For more information on I/O Server
addressing conventions, see "I/O Server Addressing" on page
74.

For example, the Wonderware Historian I/O Server could be
used by InTouch WindowViewer to access system tag values
provided by the Wonderware Historian to monitor system
health. You could configure WindowViewer to generate an
alarm when abnormal behavior is detected within the
Wonderware Historian.

By default, the Wonderware Historian I/O Server runs as a
Windows service and can be started and stopped using the
System Management Console. You can also monitor the
Wonderware Historian I/O Server from within the System
Management Console. For more information on the System
Management Console, see Chapter 1, "Getting Started with
Administrative Tools," in your Wonderware Historian
Administration Guide.

The Wonderware Historian I/O Server is a read-only server;
clients cannot update data in the active image.

The Wonderware Historian I/O Server sends the original
OPC quality as it was stored in the Wonderware Historian.
The OPC quality remains the same throughout the system,
including storage, retrieval, and the Wonderware Historian
I/O Server.
Wonderware Historian Concepts Guide

150 Chapter 6 Data Retrieval Subsystem
Wonderware Historian Concepts Guide

151
Chapter 7

Data Retrieval Options

You can use a variety of retrieval modes and options to suit
different reporting needs and applications.

Understanding Retrieval Modes
Different retrieval modes allow you to access the data stored
in a Wonderware Historian in different ways. For example, if
you retrieve data for a long time period, you might want to
retrieve only a few hundred evenly spaced data points to
minimize response time. For a shorter time period, you might
want to retrieve all values that are stored on the server to get
more accurate results.

A Wonderware Historian with a version earlier than 9.0
supports two retrieval modes:

• Cyclic Retrieval

• Delta Retrieval

A Wonderware Historian with a version of 9.0 or higher
supports various additional modes:

• Full Retrieval

• Interpolated Retrieval

• “Best Fit” Retrieval

• Average Retrieval

• Minimum Retrieval

• Maximum Retrieval

• Integral Retrieval
Wonderware Historian Concepts Guide

152 Chapter 7 Data Retrieval Options
• Slope Retrieval

• Counter Retrieval

• ValueState Retrieval

A Wonderware Historian with a version of 10.0 or higher
supports the following additional mode:

• RoundTrip Retrieval

Cyclic Retrieval
Cyclic retrieval is the retrieval of stored data for the given
time period based on a specified cyclic retrieval resolution,
regardless of whether or not the value of the tag(s) has
changed. It works with all types of tags. Cyclic retrieval
produces a virtual rowset, which may or may not correspond
to the actual data rows stored on the Wonderware Historian.

In cyclic retrieval, one row is returned for each “cycle
boundary.” You specify the number of cycles either directly or
by means of a time resolution, that is, the spacing of cycle
boundaries in time. If you specify a number of cycles, the
Wonderware Historian returns that number of rows, evenly
spaced in time over the requested period. The cyclic
resolution is calculated by dividing the requested time period
by the number of cycle boundaries. If you specify a resolution,
the number of cycles is calculated by dividing the time period
by the resolution.

If no data value is actually stored at a cycle boundary, the
last value before the boundary is returned.

The default retrieval mode is cyclic for retrieval from analog
tables, including analog and state summary tables.

Cyclic retrieval is fast and therefore consumes little server
resources. However, it may not correctly reflect the stored
data because important process values (gaps, spikes, etc.)
might fall between cycle boundaries. For an alternative, see
“Best Fit” Retrieval on page 171.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 153
Cyclic Retrieval - How It Works
The following illustration shows how values are returned for
cyclic retrieval:

Data is retrieved in cyclic mode with a start time of TC0 and
an end time of TC2. The resolution has been set in such a way
that the historian returns data for three cycle boundaries at
TC0, TC1, and TC2. Each dot in the graphic represents an
actual data point stored on the historian. From these points,
the following are returned:

• At TC0: P2, because it falls right on the cycle boundary

• At TC1: P7, because it is the last point before the cycle
boundary

• At TC2: P11, for the same reason
Wonderware Historian Concepts Guide

154 Chapter 7 Data Retrieval Options
Cyclic Retrieval - Supported Value Parameters
You can use various parameters to adjust which values are
returned in cyclic retrieval mode. For more information, see
the following sections:

• Cycle Count (X Values over Equal Time Intervals)
(wwCycleCount) on page 219.

• Resolution (Values Spaced Every X ms) (wwResolution)
on page 222.

• History Version (wwVersion) on page 235.

• Timestamp Rule (wwTimestampRule) on page 240 (only
on Wonderware Historian 9.0 and above).

Cyclic Retrieval - Query Examples
To use the cyclic retrieval mode, set the following parameter
in your query.
wwRetrievalMode = 'Cyclic'

Query 1
The following query returns data values for the analog tag
'ReactLevel'. If you do not specify a wwCycleCount or
wwResolution, the query will return 100 rows (the default).
SELECT DateTime, Sec = DATEPART(ss, DateTime), TagName,

Value
FROM History

WHERE TagName = 'ReactLevel'
AND DateTime >= '2001-03-13 1:15:00pm'
AND DateTime <= '2001-03-13 2:15:00pm'
AND wwRetrievalMode = 'Cyclic'
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 155
The results are:

DateTime Sec TagName Value

2001-03-13 13:15:00.000 0 ReactLevel 1775.0

2001-03-13 13:15:00.000 36 ReactLevel 1260.0

2001-03-13 13:16:00.000 12 ReactLevel 1650.0

2001-03-13 13:16:00.000 49 ReactLevel 1280.0

2001-03-13 13:17:00.000 25 ReactLevel 1525.0

2001-03-13 13:18:00.000 1 ReactLevel 585.0

2001-03-13 13:18:00.000 38 ReactLevel 1400.0

2001-03-13 13:19:00.000 14 ReactLevel 650.0

2001-03-13 13:19:00.000 50 ReactLevel 2025.0

2001-03-13 13:20:00.000 27 ReactLevel 765.0

2001-03-13 13:21:00.000 3 ReactLevel 2000.0

2001-03-13 13:21:00.000 39 ReactLevel 830.0

2001-03-13 13:22:00.000 16 ReactLevel 1925.0

.

.

.

(100 row(s) affected)

Cyclic Retrieval - Initial Values
No special handling is done for initial values. The initial
value will behave like a normal cycle boundary at the start
time. For information on initial values, see Delta Retrieval -
Initial Values on page 161.

Cyclic Retrieval - Handling NULL Values
No special handling is done for NULL values. They are
returned just like any other value.
Wonderware Historian Concepts Guide

156 Chapter 7 Data Retrieval Options
Delta Retrieval
Delta retrieval, or retrieval based on exception, is the
retrieval of only the changed values for a tag(s) for the given
time interval. That is, duplicate values are not returned. It
works with all types of tags.

Delta retrieval always produces a rowset comprised of only
rows that are actually stored on the historian; that is, a delta
query returns all of the physical rows in history for the
specified tags, over the specified period, minus any duplicate
values. If there is no actual data point at the start time, the
last data point before the start time is returned.

Delta retrieval is the default mode for discrete and string
tables and from the History table.

Delta Retrieval - How It Works
The following illustration shows how values are returned for
delta retrieval:
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 157
Data is retrieved in delta mode with a start time of T1 and an
end time of T2. Each dot in the graphic represents an actual
data point stored on the historian. From these points, the
following are returned:

• P2, because there is no actual data point at T1

• P5, P8, P9, P10, and P11, because they represent changed
values during the time period

For delta retrieval for replicated summary tags on a tier-2
historian, if a point with doubtful quality is returned as the
result of a value selection from an input summary point with
a contained gap, the same point can be returned again with
good quality if the same value is selected again from the next
input summary point that has good quality.

Delta Retrieval - Supported Value Parameters
You can use various parameters to adjust which values are
returned in delta retrieval mode. For more information, see
the following sections:

• Time Deadband (wwTimeDeadband) on page 227

• Value Deadband (wwValueDeadband) on page 231

• History Version (wwVersion) on page 235

Delta Retrieval - Query Examples
To use the delta retrieval mode, set the following parameter
in your query.
wwRetrievalMode = 'Delta'

Query 1
As an example of how delta mode works, consider the
following query:
SELECT TagName, DateTime, Value, QualityDetail

FROM History
WHERE TagName = 'A001'

AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwRetrievalMode = 'Delta'
Wonderware Historian Concepts Guide

158 Chapter 7 Data Retrieval Options
This query can be run against the following sample data:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:11 1.0 192

A001 2009-09-12 00:13 1.6 192

A001 2009-09-12 00:16 1.3 192

A001 2009-09-12 00:21 2.0 192

A001 2009-09-12 00:24 1.2 192

A001 2009-09-12 00:27 1.2 192

A001 2009-09-12 00:28 0.0 249

A001 2009-09-12 00:29 0.0 249

A001 2009-09-12 00:32 0.6 192

A001 2009-09-12 00:35 0.0 249

A001 2009-09-12 00:37 1.5 192

A001 2009-09-12 00:43 1.3 192

A graphical representation of the data is as follows:

The results are:

Tagname DateTime Value QualityDeta
il

A001 2009-09-12 00:20 1.3 192

A001 2009-09-12 00:21 2.0 192

A001 2009-09-12 00:24 1.2 192

A001 2009-09-12 00:28 NULL 249

A001 2009-09-12 00:32 0.6 192

A001 2009-09-12 00:35 NULL 249

A001 2009-09-12 00:37 1.5 192

The sample data points and the results are mapped on the
following chart. Only the data falling between the time start
and end marks at 2009-09-12 00:20 and 2009-09-12 00:40
(shown on the chart as dark vertical lines) are returned by
the query.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 159
Because there is no value that matches the start time, an
initial value at 2009-09-12 00:20 is returned in the results
based on the value of the preceding data point at 2009-09-12
00:16. Because there is no change in the value at 2009-09-12
00:27 from the value at 2009-09-12 00:24, the data point
appears on the chart but does not appear in the results.
Similarly, the second 0.0 value at 2009-09-12 00:29 is also
excluded from the results.

You can further control the number of rows returned by
using the wwTimeDeadband, wwValueDeadband, and
wwCycleCount extensions. The use of a cycle count returns
the first number of rows within the time range of the query.
For more information, see Using wwResolution,
wwCycleCount, and wwRetrievalMode in the Same Query on
page 285.

Also, the use of a time deadband and/or value deadband with
delta retrieval produces differing results. For more
information, see Time Deadband (wwTimeDeadband) on
page 227 and Value Deadband (wwValueDeadband) on page
231.

Query 1

SELECT DateTime, TagName, Value
FROM History

WHERE TagName IN ('SysTimeSec','SysTimeMin')
AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:36'
AND wwRetrievalMode = 'Delta'

The results are:

DateTime TagName Value

2001-12-09 11:35:00.000 SysTimeSec 0

2001-12-09 11:35:00.000 SysTimeMin 35

2001-12-09 11:35:01.000 SysTimeSec 1

2001-12-09 11:35:02.000 SysTimeSec 2

2001-12-09 11:35:03.000 SysTimeSec 3

2001-12-09 11:35:04.000 SysTimeSec 4

.

.

.
2001-12-09 11:35:58.000 SysTimeSec 58

2001-12-09 11:35:59.000 SysTimeSec 59

2001-12-09 11:36:00.000 SysTimeSec 0

2001-12-09 11:36:00.000 SysTimeMin 36
Wonderware Historian Concepts Guide

160 Chapter 7 Data Retrieval Options
Query 2

SELECT * FROM OpenQuery(INSQL,'SELECT DateTime, Value,
Quality, QualityDetail
FROM AnalogHistory

WHERE TagName = "SysTimeSec"
AND wwRetrievalMode = "Delta"
AND Value = 10
AND DateTime >="2001-07-27 03:00:00.000"
AND DateTime <="2001-07-27 03:05:00.000"

')
The results are:

DateTime Value Quality QualityDetail

2001-07-27 03:00:10.000 10 0 192

2001-07-27 03:01:10.000 10 0 192

2001-07-27 03:02:10.000 10 0 192

2001-07-27 03:03:10.000 10 0 192

2001-07-27 03:04:10.000 10 0 192

Query 3
For a delta query, if both a wwCycleCount and a Value
comparison are specified, the query will return the first
number of rows (if available) that meet the value indicated.
SELECT * FROM OpenQuery(INSQL,'SELECT DateTime, Value,

Quality, QualityDetail
FROM AnalogHistory

WHERE TagName = "SysTimeSec"
AND wwRetrievalMode = "Delta"
AND Value = 20
AND wwCycleCount = 10
AND DateTime >="2001-07-27 03:00:00.000"
AND DateTime <="2001-07-27 03:20:00.000"

')

The results are:

DateTime Value Quality QualityDetail

2001-07-27 03:00:20.000 20 0 192

2001-07-27 03:01:20.000 20 0 192

2001-07-27 03:02:20.000 20 0 192

2001-07-27 03:03:20.000 20 0 192

2001-07-27 03:04:20.000 20 0 192

2001-07-27 03:05:20.000 20 0 192

2001-07-27 03:06:20.000 20 0 192

2001-07-27 03:07:20.000 20 0 192

2001-07-27 03:08:20.000 20 0 192

2001-07-27 03:09:20.000 20 0 192
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 161
Delta Retrieval - Initial Values
Initial values are special values that can be returned from
queries that lie exactly on the query start time, even if there
is not a data point that specifically matches the specified
start time. If there is not a value exactly on the query start
time, the last point before the start time will be returned
with its DateTime set to the query start time and its Quality
set to 133. If no value exists at or prior to the query start
time, a NULL value will be returned at start time with
QualityDetail set to 65536, OPCQuality set to 0, and Quality
set to 1.

Querying the start time in exclusive form with the > operator
indicates that a value should not be returned for the query
start time if one does not exist. Querying the start time in
inclusive form with the >= operator indicates that an initial
value should be returned.

For example, the following exclusive query statement does
not return an initial value for 2009-01-01 02:00:00.
DateTime > '2009-01-01 02:00:00'

However, the following inclusive query statement does
return an initial value for 2009-01-01 02:00:00.
DateTime >= '2009-01-01 02:00:00'

No special final value is returned.

Delta Retrieval - Handling NULL Values
The initial NULL value after a non-NULL is always
returned. Multiple NULL values are suppressed. The first
non-NULL after a NULL is always returned even if it is the
same as the previous non-NULL value.
SELECT TagName, DateTime, Value, QualityDetail

FROM History
WHERE TagName = 'A001'

AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwRetrievalMode = 'Delta'
Wonderware Historian Concepts Guide

162 Chapter 7 Data Retrieval Options
This query can be run against the following sample data:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:17 0.8 192

A001 2009-09-12 00:24 0.0 249

A001 2009-09-12 00:27 0.0 249

A001 2009-09-12 00:28 0.5 192

A001 2009-09-12 00:31 0.0 249

A001 2009-09-12 00:33 0.0 24

A001 2009-09-12 00:35 0.0 24

A001 2009-09-12 00:36 0.5 192

The following is a graphical representation of the data:

The results are:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:20 0.8 192

A001 2009-09-12 00:24 NULL 249

A001 2009-09-12 00:28 0.5 192

A001 2009-09-12 00:31 NULL 249

A001 2009-09-12 00:36 0.5 192

The sample data points and the results are mapped on the
following chart. Only the data falling between the time start
and end marks at 00:20 and 00:40 (shown on the chart as
dark vertical lines) are returned by the query.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 163
Because there is no value that matches the start time, an
initial value at 00:20 is returned in the results based on the
value of the preceding data point at 00:16. Because there is
no change in the value at 00:27 from the value at 00:24, the
data point appears on the chart but does not appear in the
results. Similarly, the two 0.0 values at 00:33 and 00:35 are
also excluded from the results. However, the non-NULL
value at 00:36 is returned, even though it is the same as the
value at 00:28, because it represents a delta from the
preceding (NULL) value at 00:35.

Full Retrieval
In full retrieval mode, all stored data points are returned,
regardless of whether a value or quality has changed since
the last value. This mode allows the same value and quality
pair (or NULL value) to be returned consecutively with their
actual timestamps. It works with all types of tags.

By using full retrieval in conjunction with storage without
filtering (that is, no delta or cyclic storage mode is applied at
the historian), you can retrieve all values that originated
from the plant floor data source or from another application.

Full retrieval best represents the process measurements
recorded by the Wonderware Historian. However, it creates a
higher load for the server, the network and the client system
because a very large number of records may be returned for
longer time periods.

For full retrieval for replicated summary tags on a tier-2
historian, if a point with doubtful quality is returned as the
result of a value selection from an input summary point with
a contained gap, the same point can be returned again with
good quality if the same value is selected again from the next
input summary point that has good quality.
Wonderware Historian Concepts Guide

164 Chapter 7 Data Retrieval Options
Full Retrieval - How It Works
The following illustration shows how values are returned for
full retrieval:

Data is retrieved in full mode with a start time of T1 and an
end time of T2. Each dot in the graphic represents an actual
data point stored on the historian. From these points, the
following are returned:

• P2, because there is no actual data point at T1

• P3 through P12, because they represent stored data points
during the time period

Full Retrieval - Supported Value Parameters
You can use various parameters to adjust which values are
returned in full retrieval mode. For more information, see the
following sections:

• History Version (wwVersion) on page 235

Full Retrieval - Query Examples

Query 1

SELECT DateTime, TagName, Value
FROM History

WHERE TagName IN ('SysTimeSec','SysTimeMin')
AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:36'
AND wwRetrievalMode = 'Full'
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 165
Full Retrieval - Initial Values
Full retrieval mode handles initial values the same way as
delta mode. For more information on initial values, see Delta
Retrieval - Initial Values on page 161.

Interpolated Retrieval
Interpolated retrieval works like cyclic retrieval, except that
interpolated values are returned if there is no actual data
point stored at the cycle boundary.

This retrieval mode is useful if you want to retrieve cyclic
data for slow-changing tags. For a trend, interpolated
retrieval results in a smoother curve instead of a
"stair-stepped" curve. This mode is also useful if you have a
slow-changing tag and a fast-changing tag and want to
retrieve data for both. Finally, some advanced applications
require more evenly spaced values than would be returned if
interpolation was not applied.

By default, interpolated retrieval uses the interpolation
setting specified for the tag in the Wonderware Historian.
This means that if a tag is set to use stair-step interpolation,
interpolated retrieval gives the same results as cyclic
retrieval.

Interpolation is only applied to analog tags. If you retrieve
data for other types of tags, stair-step interpolation is used,
and the results are the same as for cyclic retrieval.

Interpolated retrieval is a bit slower than cyclic retrieval. It
shares the limitations of cyclic retrieval in that it may not
accurately represent the stored process data.
Wonderware Historian Concepts Guide

166 Chapter 7 Data Retrieval Options
Interpolated Retrieval - How It Works
The following illustration shows how the values for an analog
tag that is configured for linear interpolation are returned
when using interpolated retrieval.

Data is retrieved in interpolated mode with a start time of
TC0 and an end time of TC2. The resolution has been set in
such a way that the historian returns data for three cycle
boundaries at TC0, TC1, and TC2. P1 to P12 represent actual
data points stored on the historian. Of these points, eleven
represent normal analog values, and one, P7, represents a
NULL value due to an I/O Server disconnect, which causes a
gap in the data between P7 and P8.

The green points (P2, PC1, PC2) are returned. The yellow
points (P7, P11, P12) are used to interpolate the returned value
for each cycle. The red points are considered, but not used in
calculating the points to return.

Because P2 is located exactly at the query start time, it is
returned at that time without the need for any interpolation.
At the following cycle boundary, point PC1 is returned, which
is the NULL value represented by P7 shifted forward to time
TC1. At the last cycle boundary, point PC2 is returned, which
has been interpolated using points P11 and P12.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 167
Interpolated Retrieval - Supported Value Parameters
You can use various parameters to adjust which values are
returned in interpolated retrieval mode. For more
information, see the following sections:

• Cycle Count (X Values over Equal Time Intervals)
(wwCycleCount) on page 219

• Resolution (Values Spaced Every X ms) (wwResolution)
on page 222

• History Version (wwVersion) on page 235

• Interpolation Type (wwInterpolationType) on page 237

• Timestamp Rule (wwTimestampRule) on page 240

• Quality Rule (wwQualityRule) on page 244

Interpolated Retrieval - Query Examples
To use the interpolated mode, set the following parameter in
your query.
wwRetrievalMode = 'Interpolated'

Query 1
Two analog tags and a discrete tag are retrieved from the
History table, using linear interpolation. The start and end
times are offset to show interpolation of the SysTimeMin tag.
The data points at all cycle boundaries are interpolated for
the two analog tags, while the values returned for the
discrete tag are stair-stepped.
SELECT DateTime, TagName, Value, wwInterpolationType

FROM History
 WHERE TagName IN ('SysTimeMin', 'ReactTemp',
'SysPulse')

 AND DateTime >= '2005-04-11 12:02:30'
 AND DateTime <= '2005-04-11 12:06:30'
 AND wwRetrievalMode = 'Interpolated'
 AND wwInterpolationType = 'Linear'
 AND wwResolution = 60000
Wonderware Historian Concepts Guide

168 Chapter 7 Data Retrieval Options
The results are:

DateTime TagName Value wwInterpolationType

2005-04-11 12:02:30.000 SysTimeMin 2.5 LINEAR

2005-04-11 12:02:30.000 ReactTemp 23.2 LINEAR

2005-04-11 12:02:30.000 SysPulse 1.0 STAIRSTEP

2005-04-11 12:03:30.000 SysTimeMin 3.5 LINEAR

2005-04-11 12:03:30.000 ReactTemp 139.96753 LINEAR

2005-04-11 12:03:30.000 SysPulse 0.0 STAIRSTEP

2005-04-11 12:04:30.000 SysTimeMin 4.5 LINEAR

2005-04-11 12:04:30.000 ReactTemp 111.49636 LINEAR

2005-04-11 12:04:30.000 SysPulse 1.0 STAIRSTEP

2005-04-11 12:05:30.000 SysTimeMin 5.5 LINEAR

2005-04-11 12:05:30.000 ReactTemp 17.00238 LINEAR

2005-04-11 12:05:30.000 SysPulse 0.0 STAIRSTEP

2005-04-11 12:06:30.000 SysTimeMin 6.5 LINEAR

2005-04-11 12:06:30.000 ReactTemp 168.99531 LINEAR

2005-04-11 12:06:30.000 SysPulse 1.0 STAIRSTEP

Query 2
If you omit the interpolation type in the query, the historian
determines which interpolation type to use for an analog tag
based on the value of the InterpolationType column in the
AnalogTag table, in conjunction with the
InterpolationTypeInteger and InterpolationTypeReal system
parameters.

In the following query both analog tags are set to use the
system default through the AnalogTag table, while the
InterpolationTypeInteger and InterpolationTypeReal system
parameters are set to 0 and 1, respectively. Because
SysTimeMin is defined as a 2-byte integer and ReactTemp is
defined as a real we see that only rows for ReactTemp are
interpolated.
SELECT DateTime, TagName, Value, wwInterpolationType

FROM History
WHERE TagName IN ('SysTimeMin', 'ReactTemp',
'SysPulse')

AND DateTime >= '2005-04-11 12:02:30'
AND DateTime <= '2005-04-11 12:06:30'
AND wwRetrievalMode = 'Interpolated'
AND wwResolution = 60000
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 169
The results are:

DateTime TagName Value wwInterpolationType

2005-04-11 12:02:30.000 SysTimeMin 2.0 STAIRSTEP

2005-04-11 12:02:30.000 ReactTemp 23.2 LINEAR

2005-04-11 12:02:30.000 SysPulse 1.0 STAIRSTEP

2005-04-11 12:03:30.000 SysTimeMin 3.0 STAIRSTEP

2005-04-11 12:03:30.000 ReactTemp 139.96753 LINEAR

2005-04-11 12:03:30.000 SysPulse 0.0 STAIRSTEP

2005-04-11 12:04:30.000 SysTimeMin 4.0 STAIRSTEP

2005-04-11 12:04:30.000 ReactTemp 111.49636 LINEAR

2005-04-11 12:04:30.000 SysPulse 1.0 STAIRSTEP

2005-04-11 12:05:30.000 SysTimeMin 5.0 STAIRSTEP

2005-04-11 12:05:30.000 ReactTemp 17.00238 LINEAR

2005-04-11 12:05:30.000 SysPulse 0.0 STAIRSTEP

2005-04-11 12:06:30.000 SysTimeMin 6.0 STAIRSTEP

2005-04-11 12:06:30.000 ReactTemp 168.99531 LINEAR

2005-04-11 12:06:30.000 SysPulse 1.0 STAIRSTEP

Query 3

SELECT TagName, DateTime, Value, QualityDetail,
wwInterpolationType
FROM History

WHERE TagName = 'A001'
AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwRetrievalMode = 'Interpolated'
AND wwResolution = '10000'
Wonderware Historian Concepts Guide

170 Chapter 7 Data Retrieval Options
This query can be run against the following sample data:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:09 0.2 192

A001 2009-09-12 00:15 1.3 192

A001 2009-09-12 00:17 0.8 192

A001 2009-09-12 00:22 0.6 249

A001 2009-09-12 00:26 0.9 192

A001 2009-09-12 00:28 0.0 249

A001 2009-09-12 00:29 0.0 249

A001 2009-09-12 00:33 1.1 192

A001 2009-09-12 00:35 1.6 192

A001 2009-09-12 00:38 0.5 192

A001 2009-09-12 00:42 0.8 192

The following is a graphical representation of the data:

The results are:

Tagname DateTime Value QualityDetail wwInterpolationType

A001 2009-09-12 00:20 0.8 192 STAIRSTEP

A001 2009-09-12 00:30 NULL 249 STAIRSTEP

A001 2009-09-12 00:40 0.5 192 LINEAR

The sample data points and the results are mapped on the
following chart. Only the data falling between the time start
and end marks at 00:20 and 00:40 (shown on the chart as
dark vertical lines) are returned by the query.

Because there is no value that matches the start time, an
initial value at 00:20 is returned in the results based on the
preceding data point at 00:17 because the following data
point at 00:22 is NULL. Because a NULL value precedes the
00:30 cycle boundary at 00:29, the NULL is returned at the
cycle boundary. The value at 00:40 is an interpolation of the
data points at 00:38 and 00:42.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 171
Interpolated Retrieval - Initial and Final Values
A value is returned at the start time and end time of the
query using interpolation of the surrounding points.

Interpolated Retrieval - Handling NULL Values
When a NULL value precedes a cycle boundary, that NULL
will be returned at the cycle boundary.

If a valid value precedes a cycle boundary, but is followed by
a NULL value after the cycle boundary, no interpolation will
be used and wwInterpolationType will be set to STAIRSTEP
for that value.

“Best Fit” Retrieval
For the “best fit” retrieval mode, the total time for the query
is divided into even sub-periods, and then up to five values
are returned for each sub-period:

• First value in the period

• Last value in the period

• Minimum value in the period, with its actual time

• Maximum value in the period, with its actual time

• The first “exception” in the period (non-Good quality)

“Best fit” retrieval allows for a compromise between delta
retrieval and cyclic retrieval. For example, delta retrieval can
accurately represent a process over a long period of time, as
shown in the following trend. However, to achieve this
representation, a large number of data values must be
returned.
Wonderware Historian Concepts Guide

172 Chapter 7 Data Retrieval Options
If cyclic retrieval is used to retrieve the data, the retrieval is
much more efficient, because fewer values are returned.
However, the representation is not as accurate, as the
following trend shows.

“Best fit” retrieval allows for faster retrieval, as typically
achieved by using cyclic retrieval, plus the better
representation typically achieved by using delta retrieval.
This is shown in the following trend.

For example, for one week of five-second data, 120,960 values
would be returned for delta retrieval, versus around 300
values for best-fit retrieval.

Best-fit retrieval uses retrieval cycles, but it is not a true
cyclic mode. Apart from the initial value, it only returns
actual delta points. For example, if one point is both the first
value and the minimum value in a cycle, it is returned only
one time. In a cycle where a tag has no points, nothing is
returned.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 173
As in cyclic retrieval, the number of cycles is based on the
specified resolution or cycle count. However, the number of
values returned is likely to be more than one per cycle.

All points are returned in chronological order. If multiple
points are to be returned for a particular timestamp, then
those points are returned in the order in which the
corresponding tags were specified in the query.

The best-fit algorithm is only applied to analog and analog
summary tags. For all other tags, delta results are returned.

Best Fit Retrieval - How It Works
The following illustration shows how the best-fit algorithm
selects points for an analog tag.

Data is retrieved in best-fit mode with a start time of TC0 and
an end time of TC2. The resolution has been set in such a way
that the historian returns data for two complete cycles
starting at TC0 and TC1 and an incomplete cycle starting at
TC2. P1 to P12 represent actual data points stored on the
historian. Of these points, eleven represent normal analog
values, and one, P7, represents a NULL value due to an I/O
Server disconnect, which causes a gap in the data between P7
and P8.

Because P2 is located exactly at the start time, no initial
value needs to be interpolated at the start time. Therefore,
point P1 is not considered at all. All other points are
considered, but only the points indicated by green markers
on the graph are returned.
Wonderware Historian Concepts Guide

174 Chapter 7 Data Retrieval Options
From the first cycle, four points are returned:

• P2 as the initial value of the query, as well as the first
value in the cycle

• P4 as the minimum value in the cycle

• P6 as both the maximum value and the last value in the
cycle

• P7 as the first (and only) occurring exception in the cycle

From the second cycle, three points are returned:

• P8 as the first value in the cycle

• P9 as the maximum value in the cycle

• P11 as both the minimum value and the last value in the
cycle

• As no exception occurs in the second cycle, none is
returned.

Because the tag does not have a point exactly at the query
end time, where an incomplete third cycle starts, the end
value PC2 is interpolated between P11 and P12, assuming that
linear interpolation is used.

Best Fit Retrieval - Supported Value Parameters
You can use various parameters to adjust which values are
returned in best-fit retrieval mode. For more information, see
the following sections:

• Cycle Count (X Values over Equal Time Intervals)
(wwCycleCount) on page 219

• Resolution (Values Spaced Every X ms) (wwResolution)
on page 222

• History Version (wwVersion) on page 235

• Interpolation Type (wwInterpolationType) on page 237

• Quality Rule (wwQualityRule) on page 244

Best Fit Retrieval - Query Examples
To use the best fit retrieval mode, set the following
parameter in your query.
wwRetrievalMode = 'BestFit'
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 175
Query 1
An analog tag is retrieved over a five-minute period using the
best-fit retrieval mode. The wwResolution parameter is set to
60000, thus specifying five 1-minute cycles. Within each
cycle, the retrieval sub-system returns the first, minimum,
maximum, and last data points. There are no exception
(NULL) points in the time period. Notice how the points at
the query start time and at the query end time are
interpolated, while all other points are actual delta points.
SELECT DateTime, TagName, CONVERT(DECIMAL(10, 1),

Value) AS Value, wwInterpolationType AS IT FROM
History

WHERE TagName = 'ReactTemp'
AND DateTime >= '2005-04-11 12:15:00'
AND DateTime <= '2005-04-11 12:20:00'
AND wwRetrievalMode = 'BestFit'
AND wwResolution = 60000

The results are:

DateTime TagName Value IT

(initial,
first, min)

2005-04-11 12:15:00.000 ReactTemp 40.7 LINEAR

(max in
interval 1)

2005-04-11 12:15:38.793 ReactTemp 196.0 STAIRSTEP

(last in
interval 1)

2005-04-11 12:15:58.810 ReactTemp 159.2 STAIRSTEP

(first, max in
interval 2)

2005-04-11 12:16:00.013 ReactTemp 156.9 STAIRSTEP

(last, min in
interval 2)

2005-04-11 12:16:58.857 ReactTemp 16.3 STAIRSTEP

(first, min in
interval 3)

2005-04-11 12:17:00.060 ReactTemp 14.0 STAIRSTEP

(last, max in
interval 3)

2005-04-11 12:17:58.793 ReactTemp 151.0 STAIRSTEP

(first in
interval 4)

2005-04-11 12:18:00.107 ReactTemp 156.0 STAIRSTEP

(max in
interval 4)

2005-04-11 12:18:10.057 ReactTemp 196.0 STAIRSTEP

(last, min in
interval 4)

2005-04-11 12:18:58.837 ReactTemp 106.3 STAIRSTEP

(first, max in
interval 5)

2005-04-11 12:19:00.040 ReactTemp 104.0 STAIRSTEP

(min in
interval 5)

2005-04-11 12:19:31.320 ReactTemp 14.0 STAIRSTEP

(last in
interval 5)

2005-04-11 12:19:58.773 ReactTemp 26.0 STAIRSTEP

(end bounding
value)

2005-04-11 12:20:00.000 ReactTemp 30.7 LINEAR
Wonderware Historian Concepts Guide

176 Chapter 7 Data Retrieval Options
Best Fit Retrieval - Initial and Final Values
A point will be returned at the query start time and the query
end time for each tag queried. The values of the initial and
final points will be determined by interpolating the points
preceeding and following the query start or query end time.

Standard interpolation rules will be used to return the initial
and final values. For more information, see Interpolated
Retrieval on page 165.

Best Fit Retrieval - Handling NULL Values
When any of the four good points are returned from a cycle
that contains gaps or from an incomplete cycle with the query
end time located inside of the calculation cycle the quality
detail of each of the non-null points returned is modified to
alert the user to this fact. This is done by performing a logical
OR operation of the value 4096, which means partial cycle,
onto the existing quality detail. (This is the delta point
equivalent to the use of PercentGood for cyclic.)

Average Retrieval
For the time-weighted average (in short: “average”) retrieval
mode, a time-weighted average algorithm is used to calculate
the value to be returned for each retrieval cycle.

For a statistical average, the actual data values are used to
calculate the average. The average is the sum of the data
values divided by the number of data values. For the
following data values, the statistical average is computed as:

(P1 + P2 + P3 + P4) / 4) = Average
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 177
For a time-weighted average, values are multiplied by the
time difference between the points to determine the
time-weighted value. Therefore, the longer a tag had a
particular value, the more weight that value holds in the
overall average. The overall average is determined by adding
all of the time-weighted values and then dividing that
number by the total amount of time.

Which values are weighted depends on the interpolation
setting of the tag. For a tag that uses linear interpolation, the
midpoints between values are weighted. For a tag that uses
stair-step interpolation, the earlier of two values is weighted.

For the following data values of a tag that uses linear
interpolation, the time-weighted average is computed as:

(((P1 + P2) / 2) x (T2 - T1)) + (((P2 + P3) / 2) x (T3 - T2)) +
(((P3 + P4) / 2) x (T4 - T3)) / (T4 - T1) = Average

If the same tag uses stair-step interpolation, the
time-weighted average is:

((P1 x (T2 - T1)) + (P2 x (T3 - T2)) + (P3 x (T4 - T3))) / (T4 - T1)
= Average

The SQL Server AVG aggregate is a simple statistical
average. Using the average retrieval mode with a cycle count
of 1 returns data much faster than the AVG aggregate, and
usually more accurately due to the time weighting. The event
subsystem also returns a simple statistical average.

Average retrieval returns one row for each tag in the query
for each cycle. The number of cycles is based on the specified
resolution or cycle count.
Wonderware Historian Concepts Guide

178 Chapter 7 Data Retrieval Options
The time-weighted average algorithm is only applied to
analog and analog summary tags. If you use average
retrieval with other tags, the results are the same as when
using regular cyclic retrieval.

Average Retrieval - How It Works
The following illustration shows how the time-weighted
average is calculated for an analog tag that uses linear
interpolation.

Data is retrieved in average mode with a start time of TC0
and an end time of TC2. The resolution has been set in such a
way that the historian returns data for two complete cycles
starting at TC0 and TC1 and an incomplete cycle starting at
TC2. P1 to P9 represent actual data points stored on the
historian. Of these points, eight represent normal analog
values, and one, P5, represents a NULL due to an I/O Server
disconnect, which causes a gap in the data between P5 and
P6. Assume that the query calls for timestamping at the end
of the cycle.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 179
Results are calculated as follows:

• The “initial value” returned at the query start time (TC0)
is the time-weighted average of the points in the last
cycle preceding TC0.

• The value returned at TC1 is the time-weighted average of
the points in the cycle starting at TC0.

• The value returned at the query end time (TC2) is the
time-weighted average of the points in the cycle starting
at TC1.

To understand how the time-weighted average is calculated,
observe the last cycle as an example. First, the area under
the curve must be calculated. This curve is indicated by the
red line through P6, P7, P8 and PC2, where PC2 represents the
interpolated value at time TC2 using points P8 and P9. The
data gap caused by the I/O Server disconnect does not
contribute anything to this area. If a quality rule of "good"
has been specified, then points with doubtful quality will not
contribute anything to the area, either.

To understand how the area is calculated, consider points P6
and P7. The area contribution between these two points is
calculated by multiplying the arithmetic average of value P6
and value P7 by the time difference between the two points.
The formula is:

((P6 + P7) / 2) x (T7 - T6)
When the area for the whole cycle has been calculated, the
time-weighted average is calculated by dividing that area by
the cycle time, less any periods within the cycle that did not
contribute anything to the area calculation. The result is
returned at the cycle end time.

If you take a closer look at points P4 and P5 in the example,
you can see that the red line through point P4 is parallel to
the x-axis. This is because P5 represents a NULL, which
cannot be used to calculate an arithmetic average. Instead,
the value P4 is used for the whole time period between points
P4 and P5.

The area calculation is signed. If the arithmetic average
between two points is negative, then the contribution to the
area is negative.
Wonderware Historian Concepts Guide

180 Chapter 7 Data Retrieval Options
Average Retrieval - Supported Value Parameters
You can use various parameters to adjust which values are
returned in average retrieval mode. For more information,
see the following sections:

• Cycle Count (X Values over Equal Time Intervals)
(wwCycleCount) on page 219

• Resolution (Values Spaced Every X ms) (wwResolution)
on page 222

• History Version (wwVersion) on page 235

• Interpolation Type (wwInterpolationType) on page 237

• Timestamp Rule (wwTimestampRule) on page 240

• Quality Rule (wwQualityRule) on page 244

Average Retrieval - Query Examples
To use the average mode, set the following parameter in your
query.
wwRetrievalMode = 'Average'

Query 1
The time-weighted average is computed for each of five
1-minute long cycles.

Note that the wwTimeStampRule parameter is set to "Start"
in the query. This means that the value stamped at
11:18:00.000 represents the average for the interval 11:18 to
11:19, the value stamped at 11:19:00.000 represents the
average for the interval 11:19 to 11:20, and so on. If no
timestamp rule is specified in the query, then the default
setting in the TimeStampRule system parameter is used.

In the first cycle there are no points, so a NULL is returned.
In the second cycle value points are found covering 77.72
percent of the time as returned in PercentGood. This means
that the returned average is calculated based on 77.72
percent of the cycle time. Because the same OPCQuality is
not found for all the points in the cycle, OPCQuality is set to
Doubtful. In the remaining three cycles, only good points
occur, all with an OPCQuality of 192.

Because no quality rule is specified in the query using the
wwQualityRule parameter, the query uses the default as
specified by the QualityRule system parameter. If a quality
rule of Extended is specified, any point stored with doubtful
OPCQuality will be used to calculate the average, and the
point time will therefore be included in the calculation of
PercentGood.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 181
SELECT DateTime, TagName, CONVERT(DECIMAL(10, 2),
Value) AS Value, OPCQuality, PercentGood FROM History
WHERE TagName = 'ReactTemp'

AND DateTime >= '2005-04-11 11:18:00'
AND DateTime < '2005-04-11 11:23:00'
AND wwRetrievalMode = 'Average'
AND wwCycleCount = 5
AND wwTimeStampRule = 'Start'

The results are:

 DateTime TagName Value OPCQuality PercentGood

(cycle 1) 2005-04-11
11:18:00.000

ReactTemp NULL 0 0.0

(cycle 2) 2005-04-11
11:19:00.000

ReactTemp 70.00 64 77.72

(cycle 3) 2005-04-11
11:20:00.000

ReactTemp 153.99 192 100.0

(cycle 4) 2005-04-11
11:21:00.000

ReactTemp 34.31 192 100.0

(cycle 5) 2005-04-11
11:22:00.000

ReactTemp 134.75 192 100.0

Query 2
This query demonstrates the use of the average retrieval
mode in a wide query. Time-weighted average values are
returned for the analog tags ReactTemp and ReactLevel,
while regular cyclic points are returned for the discrete tag,
WaterValve.
SELECT * FROM OpenQuery(INSQL,

'SELECT DateTime, ReactTemp, ReactLevel, WaterValve
FROM WideHistory

WHERE DateTime >= "2004-06-07 08:00"
AND DateTime < "2004-06-07 08:05"
AND wwRetrievalMode = "Average"
AND wwCycleCount = 5

')

The results are:

DateTime ReactTemp ReactLevel WaterValve

2004-06-07 08:00:00.000 47.71621 1676.69716 1

2004-06-07 08:01:00.000 157.28076 1370.88097 0

2004-06-07 08:02:00.000 41.33734 797.67296 1

2004-06-07 08:03:00.000 122.99525 1921.66771 0

2004-06-07 08:04:00.000 105.28866 606.40488 1

For an additional example, see Querying Aggregate Data in
Different Ways on page 316.
Wonderware Historian Concepts Guide

182 Chapter 7 Data Retrieval Options
Average Retrieval - Initial and Final Values
If wwTimeStampRule = END, the initial value is calculated
by performing an average calculation on the cycle leading up
to the query start time. No special handling is done for the
final value.

If wwTimeStampRule = START, the final value is calculated
by performing an average calculation on the cycle following
the query end time. No special handling is done for the initial
value.

Average Retrieval - Handling NULL Values
Gaps introduced by NULL values are not included in the
average calculations. The average only considers the time
ranges with good values. TimeGood indicates the total time
per cycle that the tags value was good.

Minimum Retrieval
The minimum value retrieval mode returns the minimum
value from the actual data values within a retrieval cycle. If
there are no actual data points stored on the historian for a
given cycle, nothing is returned. NULL is returned if the
cycle contains one or more NULL values.

As in cyclic retrieval, the number of cycles is based on the
specified resolution or cycle count. However, minimum
retrieval is not a true cyclic mode. Apart from the initial
value, all points returned are delta points.

Minimum retrieval only works with analog tags. For all other
tags, normal delta results are returned.

All returned values are in chronological order. If multiple
points are to be returned for a particular timestamp, they are
returned in the order in which the tags were specified in the
query. If the minimum value occurs several times in a cycle,
the minimum value with the earliest timestamp is returned.

Using the minimum retrieval mode with a cycle count of 1
returns the same results as the SQL Server MIN aggregate;
however, the data is returned much faster.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 183
Minimum Retrieval - How It Works
The following illustration shows how the minimum value is
selected for an analog tag.

This example has a start time of TC0 and an end time of TC2.
The resolution has been set in such a way that the historian
returns data for two complete cycles starting at TC0 and TC1,
a “phantom” cycle starting at TCP, and an incomplete cycle
starting at TC2. The phantom cycle has the same duration as
the first cycle in the query period, extending back in time
from the query start time.

For the queried tag, a total of 18 points are found throughout
the cycles, represented by the markers P1 through P18. Of
these points, 17 represent normal analog values. The point
P13 represents a NULL due to an I/O Server disconnect,
which causes a gap in the data between P13 and P14.

The minimum value for the “phantom” cycle starting at TCP
is returned as the initial value at TC0. Point P18 is not
considered at all because it is outside of the query time
frame. All other points are considered, but only the points
indicated by green markers on the graph are returned (P10,
P13, and P17).
Wonderware Historian Concepts Guide

184 Chapter 7 Data Retrieval Options
In total, four points are returned:

• P4 as the minimum value of the “phantom” cycle and the
initial point

• P10 as the minimum value in the first cycle

• P13 as the first and only exception occurring in the first
cycle

• P17 as the minimum value in the second cycle

No points are returned for the incomplete third cycle starting
at the query end time, because the tag does not have a point
exactly at that time.

If the minimum value of the first cycle is located exactly at
the query start time, both this value and the minimum value
of the phantom cycle are returned.

Minimum Retrieval - Supported Value Parameters
You can use various parameters to adjust which values are
returned in minimum retrieval mode. For more information,
see the following sections:

• Cycle Count (X Values over Equal Time Intervals)
(wwCycleCount) on page 219

• Resolution (Values Spaced Every X ms) (wwResolution)
on page 222

• History Version (wwVersion) on page 235

• Quality Rule (wwQualityRule) on page 244

Minimum Retrieval - Query Examples
To use the minimum mode, set the following parameter in
your query:
wwRetrievalMode = 'Min'

or
wwRetrievalMode = 'Minimum'
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 185
Query 1
In this example, an analog tag is retrieved over a five minute
period, using the minimum retrieval mode. Because the
wwResolution parameter is set to 60000, each cycle is exactly
one minute long. The minimum data value is returned from
each of these cycles.
SELECT DateTime, TagName, CONVERT(DECIMAL(10, 2),

Value) AS Value FROM History
WHERE TagName = 'ReactTemp'
AND DateTime >= '2005-04-11 11:21:00'
AND DateTime <= '2005-04-11 11:26:00'
AND wwRetrievalMode = 'Minimum'
AND wwResolution = 60000

The initial value at the query start time is the minimum
value found in the phantom cycle before the start time of the
query.

The results are:

 DateTime TagName Value

(phantom cycle) 2005-04-11 11:21:00.000 ReactTemp 104.00

(cycle 1) 2005-04-11 11:21:30.837 ReactTemp 14.00

(cycle 2) 2005-04-11 11:22:00.897 ReactTemp 36.00

(cycle 3) 2005-04-11 11:23:59.567 ReactTemp 18.60

(cycle 4) 2005-04-11 11:24:02.083 ReactTemp 14.00

(cycle 5) 2005-04-11 11:25:59.550 ReactTemp 108.60

Query 2
In this example, the minimum retrieval mode is used in a
manner equivalent to using the SQL Server MIN aggregate.
Note that the cycle producing the result is the five-minute
phantom cycle just before the query start time.
SELECT TOP 1 DateTime, TagName, CONVERT(DECIMAL(10, 2),

Value) AS Value FROM History
WHERE TagName = 'ReactTemp'

AND DateTime >= '2005-04-11 11:31:00'
AND DateTime <= '2005-04-11 11:31:00'
AND wwRetrievalMode = 'Minimum'
AND wwResolution = 300000

The results are:

 DateTime TagName Value

(phantom cycle) 2005-04-11 11:31:00.000 ReactTemp 14.00
Wonderware Historian Concepts Guide

186 Chapter 7 Data Retrieval Options
Query 3
This example shows how the minimum retrieval mode marks
the QualityDetail column to indicate that a minimum value
is returned based on an incomplete cycle. In this case, an
incomplete cycle is a cycle that either contained periods with
no values stored or a cycle that was cut short because the
query end time was located inside the cycle. All values
returned for the QualityDetail column are documented in the
QualityMap table in the Runtime database.
SELECT DateTime, TagName, Value, QualityDetail FROM

History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2005-04-11 11:18:50'
AND DateTime <= '2005-04-11 11:20:50'
AND wwRetrievalMode = 'Minimum'
AND wwResolution = 60000

The results are:

 DateTime TagName Value QualityDetail

(phantom
cycle)

2005-04-11 11:18:50.000 SysTimeSec NULL 65536

(cycle 1) 2005-04-11 11:19:13.000 SysTimeSec 13.0 4140

(cycle 2) 2005-04-11 11:20:00.000 SysTimeSec 0.0 192

(cycle 3) 2005-04-11 11:20:50.000 SysTimeSec 50.0 4288

Minimum Retrieval - Initial and Final Values
For analog tags, the minimum value of the tag in the cycle
leading up to the query start time is returned with its
timestamp changed to the query start time. If there is no
point exactly at the “phantom” cycle start time, the point
leading up to the phantom cycle is also considered for the
minimum calculation.(No adjustments are made to the
quality of the initial point even though the timestamp may
have been altered.) Apart from the initial value, all points
returned are delta points. (For more information on initial
values, see Delta Retrieval - Initial Values on page 161.)

If a point occurs exactly on the query end time, that point will
be returned with the partial cycle bit, 4096, set in quality
detail. If there is more than one such point, only the first
point will be returned.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 187
Minimum Retrieval - Handling NULL Values and
Incomplete Cycles
The first NULL value in a cycle is returned.

When a minimum value is returned from a cycle that
contains gaps (including a gap extended from the previous
cycle) or from an incomplete cycle with the query end time
located inside of the calculation cycle, the point’s quality
detail is modified to flag this. This is done by performing a
logical OR operation of the value 4096, which indicates a
partial cycle, onto the existing quality detail.

As an example of how minimum retrieval mode handles
NULLs, consider the following query:
SELECT TagName, DateTime, Value, QualityDetail

FROM History
WHERE TagName = 'A001'

AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Minimum'

This query can be run against the following sample data:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:09 0.2 192

A001 2009-09-12 00:15 1.3 192

A001 2009-09-12 00:17 0.8 192

A001 2009-09-12 00:22 0.5 192

A001 2009-09-12 00:26 0.9 192

A001 2009-09-12 00:28 0.0 249

A001 2009-09-12 00:29 0.0 249

A001 2009-09-12 00:33 1.1 192

A001 2009-09-12 00:35 1.6 192

A001 2009-09-12 00:38 0.5 192

A001 2009-09-12 00:42 0.8 192

The following is a graphical representation of the data:
Wonderware Historian Concepts Guide

188 Chapter 7 Data Retrieval Options
The results are:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:20 0.2 192

A001 2009-09-12 00:22 0.5 4288

A001 2009-09-12 00:28 NULL 249

A001 2009-09-12 00:38 0.5 4288

The sample data points and the results are mapped on the
following chart. Only the data falling between the time start
and end marks at 00:20 and 00:40 (shown on the chart as
dark vertical lines) are returned by the query. The resolution
is set at 10,000 milliseconds.

Because there is no value that matches the start time, an
initial value at 00:20 is returned based on the minimum
value of the preceding cycle, which is the data point at 00:09.
In the two subsequent cycles, the minimum values are at
00:22 and 00:38. The quality for these two values is set to
4288 (4096 + 192). The remaining data points are excluded
because they are not minimums. In addition, the first NULL
at 00:28 is included, but the second NULL (at 00:29) is not.

Maximum Retrieval
The maximum value retrieval mode returns the maximum
value from the actual data values within a retrieval cycle. If
there are no actual data points stored on the historian for a
given cycle, nothing is returned. NULL is returned if the
cycle contains one or more NULL values.

As in cyclic retrieval, the number of cycles is based on the
specified resolution or cycle count. However, maximum
retrieval is not a true cyclic mode. Apart from the initial
value, all points returned are delta points.

Maximum retrieval only works with analog tags. For all
other tags, normal delta results are returned.

All returned values are in chronological order. If multiple
points are to be returned for a particular timestamp, they are
returned in the order in which the tags were specified in the
query. If the maximum value occurs several times in a cycle,
the maximum value with the earliest timestamp is returned.

Using the maximum retrieval mode with a cycle count of 1
returns the same results as the SQL Server MAX aggregate;
however, the data is returned much faster.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 189
Maximum Retrieval - How It Works
The following illustration shows how the maximum value is
selected for an analog tag.

This example has a start time of TC0 and an end time of TC2.
The resolution has been set in such a way that the historian
returns data for two complete cycles starting at TC0 and TC1,
a “phantom” cycle starting at TCP, and an incomplete cycle
starting at TC2. The phantom cycle has the same duration as
the first cycle in the query period, extending back in time
from the query start time.

For the queried tag, a total of 18 points are found throughout
the cycles, represented by the markers P1 through P18. Of
these points, 17 represent normal analog values. The point
P13 represents a NULL due to an I/O Server disconnect,
which causes a gap in the data between P13 and P14.

The maximum value for the “phantom” cycle starting at TCP
is returned as the initial value at TC0. Point P18 is not
considered at all because it is outside of the query time
frame. All other points are considered, but only the points
indicated by green markers on the graph are returned (P12,
P13, and P15).

In total, four points are returned:

• P6 as the maximum value of the “phantom” cycle and the
initial point

• P12 as the maximum value in the first cycle
Wonderware Historian Concepts Guide

190 Chapter 7 Data Retrieval Options
• P13 as the first and only exception occurring in the first
cycle

• P15 as the maximum value in the second cycle

No points are returned for the incomplete third cycle starting
at the query end time, because the tag does not have a point
exactly at that time.

If the maximum value of the first cycle is located exactly at
the query start time, this value and the maximum value of
the phantom cycle are returned.

Maximum Retrieval - Supported Value Parameters
You can use various parameters to adjust which values are
returned in maximum retrieval mode. For more information,
see the following sections:

• Cycle Count (X Values over Equal Time Intervals)
(wwCycleCount) on page 219

• Resolution (Values Spaced Every X ms) (wwResolution)
on page 222

• History Version (wwVersion) on page 235

• Quality Rule (wwQualityRule) on page 244

Maximum Retrieval - Query Examples
To use the maximum mode, set the following parameter in
your query:
wwRetrievalMode = 'Max'

or
wwRetrievalMode = 'Maximum'

Query 1
In this example, an analog tag is retrieved over a five-minute
period, using the maximum retrieval mode. Because the
wwResolution parameter is set to 60000, each cycle is exactly
one minute long. The maximum data value is returned from
each of these cycles.
SELECT DateTime, TagName, CONVERT(DECIMAL(10, 2),

Value) AS Value FROM History
WHERE TagName = 'ReactTemp'

AND DateTime >= '2005-04-11 11:21:00'
AND DateTime <= '2005-04-11 11:26:00'
AND wwRetrievalMode = 'Maximum'
AND wwResolution = 60000

The initial value at the query start time is the maximum
value found in the phantom cycle before the start time of the
query.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 191
The results are:

 Cycle DateTime TagName Value

(phantom cycle) 2005-04-11 11:21:00.000 ReactTemp 196.00

(cycle 1) 2005-04-11 11:21:00.853 ReactTemp 101.70

(cycle 2) 2005-04-11 11:22:40.837 ReactTemp 196.00

(cycle 3) 2005-04-11 11:23:00.833 ReactTemp 159.20

(cycle 4) 2005-04-11 11:24:59.613 ReactTemp 146.00

(cycle 5) 2005-04-11 11:25:12.083 ReactTemp 196.00

Query 2
In this example, the maximum retrieval mode is used in a
manner equivalent to using the SQL Server MIN aggregate.
Note that the cycle producing the result is the five-minute
phantom cycle just before the query start time.
SELECT TOP 1 DateTime, TagName, CONVERT(DECIMAL(10, 2),

Value) AS Value FROM History
WHERE TagName = 'ReactTemp'

AND DateTime >= '2005-04-11 11:31:00'
AND DateTime <= '2005-04-11 11:31:00'
AND wwRetrievalMode = 'Maximum'
AND wwResolution = 300000

The results are:

 DateTime TagName Value

(phantom cycle) 2005-04-11 11:31:00.000 ReactTemp 196.00

Query 3
This example shows how the maximum retrieval mode marks
the QualityDetail column to indicate that a maximum value
is returned based on an incomplete cycle. In this case, an
incomplete cycle is a cycle that either contained periods with
no values stored or a cycle that was cut short because the
query end time was located inside the cycle. All values
returned for the QualityDetail column are documented in the
QualityMap table in the Runtime database.
SELECT DateTime, TagName, Value, QualityDetail FROM

History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2005-04-11 11:19:10'
AND DateTime <= '2005-04-11 11:21:10'
AND wwRetrievalMode = 'Maximum'
AND wwResolution = 60000
Wonderware Historian Concepts Guide

192 Chapter 7 Data Retrieval Options
The results are:

 DateTime TagName Value QualityDetail

(phantom
cycle)

2005-04-11 11:19:10.000 SysTimeSec NULL 65536

(cycle 1) 2005-04-11 11:19:59.000 SysTimeSec 59 4288

(cycle 2) 2005-04-11 11:20:59.000 SysTimeSec 59 192

(cycle 3) 2005-04-11 11:21:10.000 SysTimeSec 10 4288

Maximum Retrieval - Initial and Final Values
For analog tags, the maximum value of the tag in the cycle
leading up to the query start time is returned with its
timestamp changed to the query start time. If there is no
point exactly at the phantom cycle start time, the point
leading up to the phantom cycle is also considered for the
maximum calculation. No adjustments are made to the
quality of the initial point even though the timestamp may
have been altered. Apart from the initial value, all points
returned are delta points. (For more information on initial
values, see Determining Cycle Boundaries on page 286.)

If a point occurs exactly on the query end time, that point is
returned with the partial cycle bit, 4096, set in quality detail.
If there is more than one such point, only the first point is
returned.

Maximum Retrieval - Handling NULL Values and
Incomplete Cycles
The first NULL value in a cycle is returned.

When a maximum value is returned from a cycle that
contains gaps (including a gap extended from the previous
cycle) or from an incomplete cycle with the query end time
located inside of the calculation cycle, the point’s quality
detail is modified to flag this. This is done by performing a
logical OR operation of the value 4096, which indicates a
partial cycle, onto the existing quality detail.

As an example of how maximum retrieval mode handles
NULLs, consider the following query:
SELECT TagName, DateTime, Value, QualityDetail

FROM History
WHERE TagName = 'A001'

AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Maximum'
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 193
If you run this query against the following sample data:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:09 0.2 192

A001 2009-09-12 00:15 1.3 192

A001 2009-09-12 00:17 0.8 192

A001 2009-09-12 00:22 0.5 192

A001 2009-09-12 00:26 0.9 192

A001 2009-09-12 00:28 0.0 249

A001 2009-09-12 00:29 0.0 249

A001 2009-09-12 00:33 1.1 192

A001 2009-09-12 00:35 1.6 192

A001 2009-09-12 00:38 0.5 192

A001 2009-09-12 00:42 0.8 192

The results are:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:20 1.3 192

A001 2009-09-12 00:26 0.9 4288

A001 2009-09-12 00:28 NULL 249

A001 2009-09-12 00:35 1.6 4288

The sample data points and the results are mapped on the
following chart. Only the data falling between the time start
and end marks at 00:20 and 00:40 (shown on the chart as
dark vertical lines) are returned by the query. The resolution
is set at 10,000 milliseconds.
Wonderware Historian Concepts Guide

194 Chapter 7 Data Retrieval Options
Because there is no value that matches the start time, an
initial value at 00:20 is returned based on the maximum
value of the preceding cycle, which is the data point at 00:15.
In the two subsequent cycles, the maximum values are at
00:26 and 00:35. The quality for these two values is set to
4288 (4096 + 192). The remaining data points are excluded
because they are not maximums. In addition, the first NULL
at 00:28 is included, but the second NULL (at 00:29) is not.

Integral Retrieval
Integral retrieval calculates the values at retrieval cycle
boundaries by integrating the graph described by the points
stored for the tag. Therefore, it works much like average
retrieval, but it additionally applies a scaling factor. This
retrieval mode is useful for calculating volume for a
particular tag. For example, if one of your tags represents
product flow in gallons per second, integral retrieval allows
you to retrieve the total product flow in gallons during a
certain time period.

Integral retrieval is a true cyclic mode. It returns one row for
each tag in the query for each cycle. The number of cycles is
based on the specified resolution or cycle count.

Integral retrieval only works with analog tags. For all other
tags, normal cyclic results are returned.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 195
Integral Retrieval - How It Works
Calculating values for a cycle in integral retrieval is a
two-step process:

• First, the historian calculates the area under the graph
created by the data points. This works the same as in
average retrieval. For more information, see Average
Retrieval on page 176.

• After this area has been found, it is scaled using the
value of the IntegralDivisor column in the
EngineeringUnit table. This divisor expresses the
conversion factor from the actual rate to one of units per
second.

For example, if the time-weighted average for a tag during a
1-minute cycle is 3.5 liters per second, integral retrieval
returns a value of 210 for that cycle (3.5 liters per second
multiplied by 60 seconds).

Integral Retrieval - Supported Value Parameters
You can use various parameters to adjust which values are
returned in integral retrieval mode. For more information,
see the following sections:

• Cycle Count (X Values over Equal Time Intervals)
(wwCycleCount) on page 219

• Resolution (Values Spaced Every X ms) (wwResolution)
on page 222

• History Version (wwVersion) on page 235

• Interpolation Type (wwInterpolationType) on page 237

• Timestamp Rule (wwTimestampRule) on page 240

• Quality Rule (wwQualityRule) on page 244

Integral Retrieval - Query Examples
To use the integral retrieval mode, set the following
parameter in your query.
wwRetrievalMode = 'Integral'
Wonderware Historian Concepts Guide

196 Chapter 7 Data Retrieval Options
Query 1
In this example, the integral is computed for each of five
1-minute long cycles. The wwQualityRule parameter is used
to ensure that only points with good quality are used in the
computation, which means that points with doubtful quality
are discarded. The rules used to determine the returned
OPCQuality are the same as described for a time weighted
average query.
SELECT DateTime, TagName, CONVERT(DECIMAL(10, 2),

Value) AS Flow, OPCQuality, PercentGood FROM History
WHERE TagName = 'FlowRate'

AND DateTime >= '2004-06-07 08:00'
AND DateTime < '2004-06-07 08:05'
AND wwRetrievalMode = 'Integral'
AND wwCycleCount = 5
AND wwQualityRule = 'Good'

The results are:

 DateTime TagName Flow OPCQuality PercentGood

(interval
1)

2004-06-07
08:00:00.000

FlowRate 2862.97 192 100.0

(interval
2)

2004-06-07
08:01:00.000

FlowRate 9436.85 192 100.0

(interval
3)

2004-06-07
08:02:00.000

FlowRate 2480.24 192 100.0

(interval
4)

2004-06-07
08:03:00.000

FlowRate 7379.71 192 100.0

(interval
5)

2004-06-07
08:04:00.000

FlowRate 6317.32 192 100.0

Also, the “phantom” cycle affects the integral retrieval mode
just as it does the average retrieval mode. For examples, see
Querying Aggregate Data in Different Ways on page 316.

Integral Retrieval - Initial and Final Values
If wwTimeStampRule = END, the initial value is calculated
by performing an integral calculation on the cycle leading up
to the query start time. No special handling is done for the
final value.

If wwTimeStampRule = START, the final value is calculated
by performing an integral calculation on the cycle following
the query end time. No special handling is done for the initial
value.

Integral Retrieval - Handling NULL Values
Gaps introduced by NULL values are not included in the
integral calculations. The average only considers the time
ranges with good values. TimeGood indicates the total time
per cycle that the tags value was good.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 197
Slope Retrieval
Slope retrieval returns the slope of a line drawn through a
given point and the point immediately before it, thus
expressing the rate at which values change.

This retrieval mode is useful for detecting if a tag is changing
at too great a rate. For example, you might have a
temperature that should steadily rise and fall by a small
amount, and a sharp increase or decrease could point to a
potential problem.

The slope retrieval mode can be considered a delta mode.
Apart from the initial value and a value at the query end
time, all returned points are calculated delta points returned
with the timestamp of an actual delta point.

Slope retrieval only works with analog tags. For all other
tags, normal delta results are returned.

All returned values are in chronological order. If multiple
points are to be returned for a particular timestamp, they are
returned in the order in which the tags were specified in the
query.

Slope Retrieval - How It Works
The following illustration shows how the slope is calculated
for an analog tag.

This example has a start time of TS and an end time of TE.
Wonderware Historian Concepts Guide

198 Chapter 7 Data Retrieval Options
For the queried tag, a total of nine points are found,
represented by the markers P1 through P9. Of these points,
eight represent normal analog values. The point P5
represents a NULL due to an I/O Server disconnect, which
causes a gap in the data between P5 and P6.

For every point in the time period, slope retrieval returns the
slope of the line going through that point and the point
immediately before it. For two points P1 and P2 occurring at
times T1 and T2, the slope formula is as follows:

(P2 - P1) / (T2 - T1)
The difference between T1 and T2 is measured in seconds.
Therefore, the returned value represents the change in
Engineering Units per second.

In this example, point P2 is located at the query start time,
and because there is a prior value (P1), the slope of the line
through both points is calculated and returned at time TS.
Similarly, slopes are calculated to be returned at times T3, T4,
T7, and T8. The slope is also calculated for the line through P8
and P9, but that value is returned as point PTE at the query
end time.

For point P6, there is no prior point with which to perform a
slope calculation. Instead, the slope of the flat line going
through the point (that is, the value 0) is calculated. At the
time of P5, NULL is returned.

The quality detail and OPC quality returned with a slope
point is always directly inherited from the point that also
provides the time stamp. In this example, this means that
point P2 provides the qualities for the slope point returned at
the query start time, TS.

Slope Retrieval - Supported Value Parameters
You can use various parameters to adjust which values are
returned in slope retrieval mode. For more information, see
the following sections:

• History Version (wwVersion) on page 235

• Quality Rule (wwQualityRule) on page 244

Slope Retrieval - Query Example
To use the slope retrieval mode, set the following parameter
in your query.
wwRetrievalMode = 'Slope'
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 199
Query 1
The following query calculates and returns the rate of change
of the ReactTemp tag in °C/second. The initial value in the
Quality column at the query start time shows no value is
located exactly at that time, so the slope returned is the same
as the one returned at the next delta point. (For more
information on initial values, see Determining Cycle
Boundaries on page 286.)

At 08:01:17.947 the tag has two delta points, so a slope is
calculated and returned for the first point, while a NULL is
returned at the second one with a special QualityDetail of 17,
indicating that no slope can be calculated as it is either plus
or minus infinite.
SELECT DateTime, TagName, CONVERT(DECIMAL(10, 4),

Value) AS Slope, Quality, QualityDetail FROM History
WHERE TagName = 'ReactTemp'

AND DateTime >= '2005-04-17 08:00'
AND DateTime <= '2005-04-17 08:05'
AND wwRetrievalMode = 'Slope'

The results are:

DateTime TagName Slope Quality QualityDetail

2005-04-17 08:00:00.000 ReactTemp 3.8110 133 192

2005-04-17 08:00:00.510 ReactTemp 3.8110 0 192

2005-04-17 08:00:01.713 ReactTemp 4.1563 0 192

2005-04-17 08:00:02.917 ReactTemp 4.1563 0 192

2005-04-17 08:00:04.230 ReactTemp 3.8081 0 192

2005-04-17 08:00:05.433 ReactTemp 4.1563 0 192

… … …

2005-04-17 08:01:16.743 ReactTemp -1.7517 0 192

2005-04-17 08:01:17.947 ReactTemp -27.0158 0 192

2005-04-17 08:01:17.947 ReactTemp NULL 1 17

2005-04-17 08:01:19.260 ReactTemp -1.7530 0 192

2005-04-17 08:01:20.463 ReactTemp -1.9119 0 192

2005-04-17 08:01:21.667 ReactTemp -1.9119 0 192

2005-04-17 08:01:22.977 ReactTemp -1.7517 0 192

… … …
Wonderware Historian Concepts Guide

200 Chapter 7 Data Retrieval Options
Slope Retrieval - Initial and Final Values
An initial value is always generated. If a point is stored
exactly at the query start time, the slope is returned as the
slope between that point and the previous point. Otherwise,
the slope is calculated using the slope of the points before and
after the query start time.

A final value is always generated. If a point is stored exactly
at the query end time, the slope is returned as the slope
between that point and the previous point. Otherwise, the
slope is calculated using the slope of the points before and
after the query end time.

Slope Retrieval - Handling NULL Values
The first NULL following a non-NULL value is returned.
Subsequent NULL values are not. If a point is preceded by a
NULL, the slope for that point will be zero.

Counter Retrieval
Counter retrieval allows you to accurately retrieve the delta
change of a tag’s value over a period of time even for tags that
are reset upon reaching a “rollover value.” The rollover value
is defined in the Wonderware Historian for each tag.

This retrieval mode is useful for determining how much of an
item was produced during a particular time period. For
example, you might have an integer counter that keeps track
of how many cartons were produced. The counter has an
indicator like this:

The next value after the highest value that can be physically
shown by the counter is called the rollover value. In this
example, the rollover value is 10,000. When the counter
reaches the 9,999th value, the counter rolls back to 0.
Therefore, a counter value of 9,900 at one time and a value of
100 at a later time means that you have produced 200 units
during that period, even though the counter value has
dropped by 9,800 (9,900 minus 100). Counter retrieval allows
you to handle this situation and receive the correct value. For
each cycle, the counter retrieval mode shows the increase in
that counter during the cycle, including rollovers.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 201
Counter retrieval also works with floating point counters,
which is useful for flow meter data. Similar to the carton
counter, some flow meters “roll over” after a certain amount
of flow accumulates. For both examples, the need is to
convert the accumulating measure to a “delta change” value
over a given period.

Counter retrieval is a true cyclic mode. It returns one row for
each tag in the query for each cycle. The number of cycles is
based on the specified resolution or cycle count.

The counter algorithm is only applied to analog tags and to
discrete tags. For integer analog tags, the result will be an
integer returned as a float data type For a real analog tag,
the rollover value and the result may be real values and can
include fractional values. If a query contains tags of other
types, then no rows are returned for those tags. For discrete
tags, the rollover value is assumed to be 2.

The rules used to determine the OPCQuality returned with a
counter value are the same as for a time weighted average
query. For more information, see Quality Rule
(wwQualityRule) on page 244. When a rollover has occurred
in the calculation cycle, a special quality detail of 212 is
returned in all non-NULL cases.

Counter Retrieval - How It Works
The following illustration shows how the counter algorithm
determines the count for an analog tag.
Wonderware Historian Concepts Guide

202 Chapter 7 Data Retrieval Options
This example has a start time of TC0 and an end time of TC3.
The resolution has been set in such a way that the historian
returns data for three complete cycles starting at TC0, TC1,
and TC2, and an incomplete cycle starting at TC3.

For the queried tag, a total of twelve points are found
throughout the cycles represented by the markers P1 through
P12. Of these points, eleven represent normal analog values.
The point P9 represents a NULL due to an I/O Server
disconnect, which causes a gap in the data between P9 and
P10. Point P12 is not considered because it is outside of the
query time frame.

All points are considered in the counter calculation, but only
the yellow ones are actually used to determine which values
to return to the client. The returned points are PC0, PC1, PC2
and PC3, shown in green at the top to indicate that there is no
simple relationship between them and any of the actual
points.

All cycle values are calculated as the delta change between
the cycle time in question and the previous cycle time, taking
into account the number of rollovers between the two points
in time. The counter algorithm assumes that a rollover
occurred if the current value is lower than the previous value.
The initial value at the query start time (PC1) is calculated
the same way, only based on a phantom cycle before the
query start time.

For example, the formula to calculate PC1 is as follows:

PC1 = n * VR + P6 - P1

where:

n = the number of rollovers that have occurred during the
cycle
VR = the rollover value for the tag

If either n or VR are equal to zero, PC1 is simply the difference
between the values P1 and P6.

In the case of cycle C2, there is no value at the cycle time, so
the NULL value represented by point P9 is returned. In the
case of cycle C3, a NULL is again returned, because there is
no counter value at the previous cycle boundary to use in the
calculation. There must be a full cycle of values in order for
the counter to be calculated.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 203
If a gap is fully contained inside a cycle, and if points occur
within the cycle on both sides of the gap, then a counter value
is returned, even though it may occasionally be erroneous.
Zero or one rollovers are assumed, even though the counter
might have rolled over multiple times.

Calculations for a Manually Reset Counter
If you have a counter that you typically reset manually before
it rolls over, you must set the rollover value for the tag to 0 so
that the count is simply how much change occurred since the
manual reset.

For example, assume that you have the following data values
for five consecutive cycle boundaries, and that the value 0
occurs as the first value within the last cycle:

100, 110, 117, 123, 3
If you set the rollover value to 0, the counter retrieval mode
assumes that the 0 following the value 123 represents a
manual reset, and returns a value of 3 for the last cycle,
which is assumed to be the count after the manual reset. The
value 0 itself does not contribute 1 to the counter value in
this case.

If the rollover value is instead set to 200, then the counter
retrieval mode assumes that the value 0 represents a normal
rollover, and a count of 80 is calculated and returned (200 -
123 + 3). In this case, the value 0 contributes 1 to the counter
value, and that is the change from the value 199 to the value
200.

Counter Retrieval - Supported Value Parameters
You can use various parameters to adjust which values are
returned in integral retrieval mode. For more information,
see the following sections:

• Cycle Count (X Values over Equal Time Intervals)
(wwCycleCount) on page 219

• Resolution (Values Spaced Every X ms) (wwResolution)
on page 222

• History Version (wwVersion) on page 235

• Timestamp Rule (wwTimestampRule) on page 240

• Quality Rule (wwQualityRule) on page 244
Wonderware Historian Concepts Guide

204 Chapter 7 Data Retrieval Options
Counter Retrieval - Initial and Final Values
An initial value is returned using the period leading up to the
query start time.

A data point that has a cycle time is used to generate the
counter value for its preceeding cycle. A NULL point with
cycle time will cause the preceeding cycle to end in a gap and
the following cycle to start with a gap.

Counter Retrieval - Handling NULL Values
If wwQualityRule is configured as OPTIMISTIC, NULL data
points will not be used in calculation. 0.0 will be used as the
starting base value for the query unless the query data starts
with a NULL.

Otherwise, if any points considered in a cycle have
UNCERTAIN quality, the result for that row will also have
UNCERTAIN quality. Any cycle that starts or ends in a gap
will have a quality detail of 65536.

The quality detail of DOUBTFUL will be used with the
counter result for the cycles, if a NULL point is considered for
the cycle and the counter result is not NULL.

Counter Retrieval - Handling Illegal Values
If the configured rollover value is larger than 0.0, then the
data points whose values are greater than or equal to the
rollover value causes the counter value for the cycle to be set
to 0.0, with qdIO_FILTEREDPOINT applied to the quality
detail.

Similarly, if any data point with a value less than 0.0 is found
in a cycle, the counter value for the cycle is set to 0.0, with
qdIO_FILTEREDPOINT applied to the quality detail.

Counter Retrieval - Query Example
To use the counter mode, set the following parameter in your
query.
wwRetrievalMode = 'Counter'
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 205
In the following example, the rollover value for the
SysTimeSec system tag is set to 0. In a two-minute time
span, the SysTimeSec tag increments from 0 to 59 two times.
The following query returns the total count within the
two-minute time span. The QualityDetail of 212 indicates
that a counter rollover occurred during the query time range.
select DateTime, TagName, Value, Quality, QualityDetail

as QD from History
where TagName = 'systimesec'

and DateTime >= '2009-08-13 1:00'
and DateTime < '2009-08-13 1:02'
and wwRetrievalMode = 'counter'
and wwCycleCount = 1

The results are:

DateTime TagName Value Quality QD

2009-08-13 01:00:00.0000000 SysTimeSec 120 0 212

ValueState Retrieval
ValueState retrieval returns information on how long a tag
has been in a particular value state during each retrieval
cycle. That is, a time-in-state calculation is applied to the tag
value.

This retrieval mode is useful for determining how long a
machine has been running or stopped, how much time a
process spent in a particular state, how long a valve has been
open or closed, and so on. For example, you might have a
steam valve that releases steam into a reactor, and you want
to know the average amount of time the valve was in the
open position during the last hour. ValueState retrieval can
return the shortest, longest, average, or total time a tag
spent in a state, or the time spent in a state as a percentage
of the total cycle length.

When you use ValueState retrieval for a tag in a trend chart,
you must specify a single value state for which to retrieve
information. ValueState retrieval then returns one value for
each cycle—for example, the total amount of time that the
valve was in the “open” state during each 1-hour cycle. This
information is suitable for trend display.

If you don’t specify a state, ValueState retrieval returns one
row of information for each value that the tag was in during
each cycle. For example, this would return not only the time
a valve was in the “open” state, but also the time it was in the
“closed” state. This information is not suitable for meaningful
display in a regular trend. You can, however, retrieve this
type of information in a query and view it as a table.
Wonderware Historian Concepts Guide

206 Chapter 7 Data Retrieval Options
ValueState retrieval works with integer, discrete, string, and
state summary tags. For other types of tags, no rows are
returned. NULL values are treated like any other distinct
state.

The values returned at the query start time are the result of
applying the algorithm to a “phantom” cycle preceding the
query range. It is assumed that the tag value at the start of
the cycle is located at that point in time.

To specify the type of calculation, set the wwStateCalc
parameter in the query. For more information, see State
Calculation (wwStateCalc) on page 252.

ValueState Retrieval - How It Works
The following illustration shows how ValueState retrieval
returns values for a discrete tag.

Time

Value

1 2 3 4 5 6 7 8 9

ON

 ValueState Retrieval

 TC2

C2

TC0

C0

TC1

1 C1

 TC3

C3

11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29

OFF

PC0 PC1 PC2 PC3

Gap

This example has a start time of TC0 and an end time of TC3.
The resolution has been set in such a way that the historian
returns data for three complete cycles starting at TC0, TC1,
and TC2, and an incomplete cycle starting at TC3. Time is
measured seconds.

A gap in the data occurs in the third cycle due to an I/O
Server disconnect.

The state calculation is based on each cycle, and the values
returned at the query start time are not regular initial
values, but are the resulting values that occur after applying
the algorithm to the last cycle preceding the query range. The
returned points are PC0, PC1, PC2 and PC3, shown in green at
the top to indicate that there is no simple relationship
between the calculated values and any of the actual points.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 207
Assume the query is set so that the total time (wwStateCalc
= ‘Total’)in the two states are returned. The timestamping is
set to use the cycle end time.

• For TC0, the query returns two rows (one for the “on”
state and one for the “off” state), calculated as a result of
the “phantom” cycle that preceeds the query start time.
The values have a timestamp of the query start time.

• For TC1, one row is returned for the “on” state. The “on”
state occurred twice during the cycle--one time for four
seconds and again for two seconds before the cycle
boundary, and the total time returned is six seconds. The
state was “off” twice during the cycle for a total time of
four seconds, and one row is returned with that value.

• For TC2, one row is returned for the “on” state, and one
row is returned for the “off” state. The “on” state occurred
for a total of nine seconds between the cycle boundaries,
and the “off” state occcured for a total of one second.

• For TC3, one row is returned for the “on” state, and one
row is returned for the “off” state. The “on” state occurred
for a total of four seconds between the cycle boundaries,
and the “off” state occurred for a total of three seconds.
An additional row is returned for the NULL state
occurring as a result of the I/O Server disconnect.

Using the same data, if you queried the total contained
time for the states, the following is returned:

• For TC0, the query returns two values (one for the “on”
state and one for the “off” state), calculated as a result of
the “phantom” cycle the preceeds the query start time.
The value has a timestamp of the query start time.

• For TC1, one row is returned for the “on” state, and one
row is returned for the “off” state. The “on” state occurred
one time for four seconds within the cycle. The two
seconds of “on” time that crosses the cycle boundary does
not contribute to the total time. The state was “off” one
time during the cycle for two seconds completely within
the cycle boundary.

• For TC2, the state was not “on” for any contained time
between the cycle. Both occurrances of the “on” state
cross over a cycle boundary, so no rows are returned for
this state. One row is returned for the “off” state. The
state was “off” one time during the cycle for one seconds
completely within the cycle boundary.
Wonderware Historian Concepts Guide

208 Chapter 7 Data Retrieval Options
• For TC3, one row is returned for the “on” state, and one
row is returned for the “off” state. The state was “on” for a
single contained time of two seconds between the cycle
boundaries. The state was “off” three times during the
cycle for three seconds completely within the cycle
boundary. An additional row is returned for the NULL
state occurring as a result of the I/O Server disconnect.
The state was NULL for a total of three seconds. The I/O
Server disconnect that “disrupted” the off state is treated
as its own state, thereby changing what would have been
a single “off” state instance of five seconds into two
instances of the “off” state for one second each.

ValueState Retrieval - Supported Value Parameters
You can use various parameters to adjust which values are
returned in ValueState retrieval mode. For more
information, see the following sections:

• Cycle Count (X Values over Equal Time Intervals)
(wwCycleCount) on page 219

• Resolution (Values Spaced Every X ms) (wwResolution)
on page 222

• History Version (wwVersion) on page 235

• Timestamp Rule (wwTimestampRule) on page 240

• Quality Rule (wwQualityRule) on page 244

• State Calculation (wwStateCalc) on page 252

ValueState Retrieval - Query Examples
To use theValueState retrieval mode, set the following
parameter in your query.
wwRetrievalMode = 'ValueState'

To specify the type of aggregation, set the wwStateCalc
parameter in the query, such as:
wwStateCalc = 'Total'

Be sure that you use the "<=" operator for ending date/time.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 209
Query 1: Minimum Time in State
 The following query finds the minimum time-in-state for the
SteamValve discrete tag. Note that minimum times are
returned for each state for both the five-minute phantom
cycle before the query start time and for the single retrieval
cycle between 10:00 and 10:05.
SELECT DateTime, TagName, vValue, StateTime,

wwStateCalc FROM History
WHERE TagName IN ('SteamValve')

AND DateTime >= '2005-04-17 10:00:00'
AND DateTime <= '2005-04-17 10:05:00'
AND wwCycleCount = 1
AND wwRetrievalMode = 'ValueState'
AND wwStateCalc = 'Min'

The results are:

DateTime TagName vValue StateTime wwStateCalc

2005-04-17 10:00:00.000 SteamValve 0 35359.0 MINIMUM

2005-04-17 10:00:00.000 SteamValve 1 43749.0 MINIMUM

2005-04-17 10:05:00.000 SteamValve 0 37887.0 MINIMUM

2005-04-17 10:05:00.000 SteamValve 1 43749.0 MINIMUM

Query 2: Minimum Time in State for a Single Tag
 The following query finds the minimum time-in-state for the
SteamValve discrete tag for the “on” state. Note that
minimum times are returned for each state for both the
five-minute phantom cycle before the query start time and
for the single retrieval cycle between 10:00 and 10:05.
SELECT DateTime, TagName, vValue, StateTime,

wwStateCalc FROM History
WHERE TagName IN ('SteamValve')

AND DateTime >= '2005-04-17 10:00:00'
AND DateTime <= '2005-04-17 10:05:00'
AND wwCycleCount = 1
AND wwRetrievalMode = 'ValueState'
AND wwStateCalc = 'Min'
AND State = '1'

The results are:

DateTime TagName vValue StateTime wwStateCalc

2005-04-17 10:00:00.000 SteamValve 1 43749.0 MINIMUM

2005-04-17 10:05:00.000 SteamValve 1 43749.0 MINIMUM
Wonderware Historian Concepts Guide

210 Chapter 7 Data Retrieval Options
Query 2
The following query finds the maximum time-in-state for the
SteamValve discrete tag in the same time period as in Query
1. Note how both the minimum and maximum values for the
"1" state are very similar, while they are very different for the
"0" state. This is due to the "cut-off" effect.
SELECT DateTime, TagName, vValue, StateTime,

wwStateCalc FROM History
WHERE TagName IN ('SteamValve')

AND DateTime >= '2005-04-17 10:00:00'
AND DateTime <= '2005-04-17 10:05:00'
AND wwCycleCount = 1
AND wwRetrievalMode = 'ValueState'
AND wwStateCalc = 'Max'

Query 3
The following query returns the total of time in state for a
discrete tag. In this example, the TimeStampRule system
parameter is set to "End" (the default setting), so the
returned values are timestamped at the end of the cycle. The
returned rows represent the time-in-state behavior during
the period starting at 2005-04-13 00:00:00.000 and ending at
2005-04-14 00:00:00.000.
SELECT DateTime, vValue, StateTime, wwStateCalc FROM

History
WHERE DateTime > '2005-04-13 00:00:00.000'

AND DateTime <= '2005-04-14 00:00:00.000'
AND TagName IN ('PumpStatus')
AND wwRetrievalMode = 'ValueState'
AND wwStateCalc = 'Total'
AND wwCycleCount = 1

The results are:

DateTime vValue StateTime wwStateCalc

2005-04-14 00:00:00 NULL 1041674.0 TOTAL

2005-04-14 00:00:00 On 56337454.0 TOTAL

2005-04-14 00:00:00 Off 29020872.0 TOTAL

DateTime TagName vValue StateTime wwStateCalc

2005-04-17 10:00:00.000 SteamValve 0 107514.0 MAXIMUM

2005-04-17 10:00:00.000 SteamValve 1 43750.0 MAXIMUM

2005-04-17 10:05:00.000 SteamValve 0 107514.0 MAXIMUM

2005-04-17 10:05:00.000 SteamValve 1 43750.0 MAXIMUM
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 211
Query 4
The following query returns the percentage of time in state
for a discrete tag for multiple retrieval cycles. The
TimeStampRule system parameter is set to "End" (the
default setting), so the returned values are timestamped at
the end of the cycle. Note that the first row returned
represents the results for the period starting at 2003-07-03
22:00:00.000 and ending at 2003-07-04 00:00:00.000.

The "Percent" time-in-state retrieval mode is the only mode
in which the StateTime column does not return time data.
Instead, it returns percentage data (in the range of 0 to 100
percent) representing the percentage of time in state.
SELECT DateTime, vValue, StateTime, wwStateCalc FROM

History
WHERE DateTime >= '2003-07-04 00:00:00.000'

AND DateTime <= '2003-07-05 00:00:00.000'
AND TagName IN ('PumpStatus')
AND Value = 1
AND wwRetrievalMode = 'ValueState'
AND wwStateCalc = 'Percent'
AND wwCycleCount = 13

The results are:

DateTime vValue StateTime wwStateCalc

2003-07-04 00:00:00 1 50.885 PERCENT

2003-07-04 02:00:00 1 82.656 PERCENT

2003-07-04 04:00:00 1 7.082 PERCENT

2003-07-04 06:00:00 1 7.157 PERCENT

2003-07-04 08:00:00 1 55.580 PERCENT

2003-07-04 10:00:00 1 28.047 PERCENT

2003-07-04 12:00:00 1 47.562 PERCENT

2003-07-04 14:00:00 1 74.477 PERCENT

2003-07-04 16:00:00 1 40.450 PERCENT

2003-07-04 18:00:00 1 78.313 PERCENT

2003-07-04 20:00:00 1 54.886 PERCENT

2003-07-04 22:00:00 1 39.569 PERCENT

2003-07-05 00:00:00 1 50.072 PERCENT
Wonderware Historian Concepts Guide

212 Chapter 7 Data Retrieval Options
Query 5: Querying State Summary Values
If state summary values are queried and the cycle boundaries
match the summary periods, the ValueState calculations are
supported and return valid results.

If state summary points are queried and the cycle boundaries
do not match the summary periods, the ValueState
calculations are supported, but they return DOUBTFUL
(QualityDetail = 64) results.

State summaries are included in the cycle where the
summary end time occurs. This causes results that do not
match queries against the source tag and may cause
inaccurate results, such as a total state time that is greater
than the cycle time.

For example, this can occur if SysTimeSec is summarized
with a state summary with one minute resolution, but then
queried with 10 second intervals. In most of the retrieval
cycles, there will be no values, but in the cycle that includes
the summary end time (one in six of the retrieval cycles), all
60 states would be returned with each state having a state
time of 1 second for a total of 60 seconds of state time in a 10
second retrieval cycle.

ValueState Retrieval - Initial and Final Values
The values returned at the query start time are the result of
applying the algorithm to the last cycle preceding the query
range.

ValueState Retrieval - Handling NULL Values
NULLs are considered a state and are reported along with
the other states.

RoundTrip Retrieval
RoundTrip retrieval is very similar to ValueState retrieval in
that it performs calculations on state occurrences in the
within a cycle period you specify. However, ValueState
retrieval uses the time spent in a certain state for the
calculation, and RoundTrip retrieval uses the time between
consecutive leading edges of the same state for its
calculations.

You can use the RoundTrip retrieval mode for increasing the
efficiency of a process. For example, if a process produces one
item per cycle, then you would want to minimize the time
lapse between two consecutive cycles.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 213
The RoundTrip mode returns a rows for each state in any
given cycle. RoundTrip retrieval only works with integer
analog tags, discrete tags, and string tags. If real analog tags
are specified in the query, then no rows are returned for
these tags. RoundTrip retrieval is not applied to state
summary or analog summary tags. NULL values are treated
as any other distinct value and are used to analyze the round
trip for disturbances.

RoundTrip retrieval is supported for the History and
StateWideHistory tables.

Any point on the boundary of the end cycle will be considered
to the next cycle. The point on the boundary of the end query
range is not counted in the calculation except that it is used
to indicate that the previous state is a contained state.

If no roundtrip state is found within the cycle for a supported
tag, a NULL StateTime value is returned. If there is no valid
point prior to the phantom cycle, a NULL state is returned
for the phantom cycle.

RoundTrip Retrieval - How It Works
The following illustration shows how RoundTrip retrieval
returns values for a discrete tag.

TC1

1 C1

Time

Value

1 2 3 4 5 6 7 8 9

ON

 RoundTrip Retrieval

 TC2

C2

TC0

C0

 TC3

C3

11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29

OFF

PC0 PC1 PC2 PC3

Gap

Round-trip

Round-trip

This example has a start time of TC0 and an end time of TC3.
The resolution has been set in such a way that the historian
returns data for three complete cycles starting at TC0, TC1,
and TC2, and an incomplete cycle starting at TC3. Time is
measured seconds.

A gap in the data occurs in the third cycle due to an I/O
Server disconnect.
Wonderware Historian Concepts Guide

214 Chapter 7 Data Retrieval Options
The state calculation is based on each cycle, and the values
returned at the query start time are not regular initial
values, but are the resulting values that occur after applying
the algorithm to the last cycle preceding the query range. The
returned points are PC0, PC1, PC2 and PC3, shown in green at
the top to indicate that there is no simple relationship
between the calculated values and any of the actual points.

Assume the query is set so that the total contained time in
the two states are returned. The timestamping is set to use
the cycle end time. The RoundTrip retrieval mode returns
values for states that are completely contained within the
cycle boundaries. The following is returned:

• For TC0, the query returns two values (one for the “on”
state and one for the “off” state), calculated as a result of
the “phantom” cycle that preceeds the query start time.
The value has a timestamp of the query start time.

• For TC1, one row is returned for the “on” state, and one
row is returned for the “off” state. The round-trip for the
“on” state occurred one time for four seconds completely
within the cycle boundary. The round-trip for the “off”
state occurred one time during the cycle for five seconds.

• For TC2, a round-trip did not occur for either state within
the cycle boundaries. One NULL row is returned for this
cycle.

• For TC3, one row is returned for the “on” state, and one
row is returned for the “off” state. The state was “on” for a
single contained time of two seconds between the cycle
boundaries. The state was “off” one time during the cycle
for one second completely within the cycle boundary. An
additional row is returned for the NULL state occurring
as a result of the I/O Server disconnect.
Wonderware Historian Concepts Guide

Understanding Retrieval Modes 215
• For TC3, one row is returned for the “on” state, and one
row is returned for the “off” state. The state was “on” for a
single contained time of three seconds between the cycle
boundaries. One row is returned for the “off” state for a
total contained time of seven seconds. (The first
round-trip for the “off” state includes the I/O Server
disconnect for a length of four seconds. The second
round-trip has a length of three seconds.) An additional
row is returned for the NULL state occurring as a result
of the I/O Server disconnect, and the returned value is
NULL because there is no round-trip during the cycle for
it. The I/O Server disconnect that “disrupted” the off state
is treated as its own state, thereby changing what would
have been a single “off” state instance of five seconds into
two instances of the “off” state for one second each.

RoundTrip Retrieval - Supported Value Parameters
You can use various parameters to adjust the values that
must be returned in the RoundTrip retrieval mode. For more
information, see the following sections:

• Timestamp Rule (wwTimestampRule) on page 240

• Quality Rule (wwQualityRule) on page 244

• State Calculation (wwStateCalc) on page 252

RoundTrip Retrieval - Query Examples
To use the RoundTrip retrieval mode, set the following
parameter in your query:
wwRetrievalMode = ‘RoundTrip’

The following queries compare the results between
ValueState retrieval and RoundTrip retrieval.

This first ValueState retrieval query returns the average
amount of time that the 'Reactor1OutletValve' tag is in “on”
state and the average amount of time it is in the “off” state
for a single cycle. Any state changes that occur across the
cycle boundaries are not included.
SELECT DateTime, vValue, StateTime

FROM History
WHERE TagName IN ('Reactor1OutletValve')
AND DateTime >= '2009-09-16 12:35:00'
AND DateTime <= '2009-09-16 12:55:00'
AND wwRetrievalMode = 'ValueState'
AND wwStateCalc = 'AvgContained'
AND wwCycleCount = 1
Wonderware Historian Concepts Guide

216 Chapter 7 Data Retrieval Options
The results are:

DateTime vValue StateTime

2009-09-16 12:35:00.0000000 0 215878

2009-09-16 12:35:00.0000000 1 61729

2009-09-16 12:55:00.0000000 1 62827.5

2009-09-16 12:55:00.0000000 0 212856

The first two rows are for the “phantom” cycle leading up to
the query start time and have a timestamp of the query start
time.

The second two rows show the average amount of time for
each state and have a timestamp of the query end time (the
default).

Compare these results to same basic query that instead uses
RoundTrip retrieval:

DateTime vValue StateTime

2009-09-16 12:35:00.0000000 1 277607

2009-09-16 12:35:00.0000000 0 278580

2009-09-16 12:55:00.0000000 0 275683.5

2009-09-16 12:55:00.0000000 1 273845

SELECT DateTime, vValue, StateTime
FROM History

WHERE TagName IN ('Reactor1OutletValve')
AND DateTime >= '2009-09-16 12:35:00'
AND DateTime <= '2009-09-16 12:55:00'
AND wwRetrievalMode = 'RoundTrip'
AND wwStateCalc = 'AvgContained'
AND wwCycleCount = 1

RoundTrip Retrieval - Initial and Final Values
The values returned at the query start time are the result of
applying the algorithm to the last cycle preceding the query
range.

RoundTrip Retrieval - Handling NULL Values
Like in the ValueState retrieval mode, the NULL state is
treated as a valid distinct value. This allows you to analyze
round trips for disturbances.
Wonderware Historian Concepts Guide

Understanding Retrieval Options 217
Understanding Retrieval Options
In all retrieval modes, you can adjust which values the
historian returns by specifying retrieval options. The
retrieval options are implemented as special parameters that
you set as part of the retrieval query. This section explains
each of these options. For an overview of which options apply
to which retrieval modes, see Which Options Apply to Which
Retrieval Modes? on page 217.

•

Which Options Apply to Which Retrieval Modes?
The following table shows which retrieval options apply to
which modes. If you specify an option in a mode where it isn’t
applicable, the option is ignored.

Cy
cl

e
Co

un
t

(X
 V

al
ue

s
ov

er

Eq
ua

l T
im

e
In

te
rv

al
s)

Re
so

lu
ti

on
 (

Va
lu

es
 S

pa
ce

d
Ev

er
y

X
m

s)
 (

w
w

Re
so

lu
ti

on
)

Ti
m

e
D

ea
db

an
d

(w
w

Ti
m

eD
ea

db
an

d)
Va

lu
e

D
ea

db
an

d
(w

w
Va

lu
eD

ea
db

an
d)

H
is

to
ry

 V
er

si
on

 (
w

w
Ve

rs
io

n)

In
te

rp
ol

at
io

n
Ty

pe

(w
w

In
te

rp
ol

at
io

nT
yp

e)
Ti

m
es

ta
m

p
Ru

le

(w
w

Ti
m

es
ta

m
pR

ul
e)

Q
ua

lit
y

Ru
le

(w

w
Q

ua
lit

yR
ul

e)
St

at
e

Ca
lc

ul
at

io
n

(w
w

St
at

eC
al

c)

Cyclic Retrieval *

Delta Retrieval

Full Retrieval

Interpolated Retrieval

“Best Fit” Retrieval

Average Retrieval

Minimum Retrieval

Maximum Retrieval

Integral Retrieval

Slope Retrieval

Counter Retrieval

ValueState Retrieval
Wonderware Historian Concepts Guide

218 Chapter 7 Data Retrieval Options
* (only on Wonderware Historian 9.0 and later)

Using Retrieval Options in a Transact-SQL
Statement

You can retrieve data in the Wonderware Historian extension
tables using normal Transact-SQL code, as well as the
specialized SQL time domain extensions provided by the
Wonderware Historian. The Wonderware Historian
extensions provide an easy way to query time-based data
from the history tables. They also provide additional
functionality not supported by Transact-SQL.

Note The wwParameters extension is reserved for future use. The
wwRowCount parameter is still supported, but is deprecated in
favor of wwCycleCount.

The extensions are implemented as "virtual" columns in the
extension tables. When you query an extension table, you can
specify values for these column parameters to manipulate the
data that will be returned. You will need to specify any
real-time extension parameters each time that you execute
the query.

For example, you could specify a value for the wwResolution
column in the query so that a resolution is applied to the
returned data set:
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-02 10:00:00'
AND DateTime <= '2001-12-02 10:02:00'
AND Value >= 50
AND wwResolution = 10
AND wwRetrievalMode = 'cyclic'

RoundTrip Retrieval

Cy
cl

e
Co

un
t

(X
 V

al
ue

s
ov

er

Eq
ua

l T
im

e
In

te
rv

al
s)

Re
so

lu
ti

on
 (

Va
lu

es
 S

pa
ce

d
Ev

er
y

X
m

s)
 (

w
w

Re
so

lu
ti

on
)

Ti
m

e
D

ea
db

an
d

(w
w

Ti
m

eD
ea

db
an

d)
Va

lu
e

D
ea

db
an

d
(w

w
Va

lu
eD

ea
db

an
d)

H
is

to
ry

 V
er

si
on

 (
w

w
Ve

rs
io

n)

In
te

rp
ol

at
io

n
Ty

pe

(w
w

In
te

rp
ol

at
io

nT
yp

e)
Ti

m
es

ta
m

p
Ru

le

(w
w

Ti
m

es
ta

m
pR

ul
e)

Q
ua

lit
y

Ru
le

(w

w
Q

ua
lit

yR
ul

e)
St

at
e

Ca
lc

ul
at

io
n

(w
w

St
at

eC
al

c)
Wonderware Historian Concepts Guide

Understanding Retrieval Options 219
Because the extension tables provide additional functionality
that is not possible in a normal SQL Server, certain
limitations apply to the Transact-SQL supported by these
tables. For more information, see Wonderware Historian
OLE DB Provider Unsupported Syntax and Limitations on
page 137.

Although the Microsoft SQL Server may be configured to be
case-sensitive, the values for the virtual columns in the
extension tables are always case-insensitive.

Note You cannot use the IN clause or OR clause to specify more
than one condition for a time domain extension. For example,
"wwVersion IN ('original', 'latest')" and
"wwRetrievalMode = 'Delta' OR wwVersion =
'latest'" are not supported.

For general information on creating SQL queries, see your
Microsoft SQL Server documentation.

Cycle Count (X Values over Equal Time Intervals)
(wwCycleCount)

In retrieval modes that use cycles, the cycle count determines
the number of cycles for which data is retrieved. The number
of actual return values is not always identical with this cycle
count. In “truly cyclic” modes (Cyclic, Interpolated, Average,
and Integral), a single data point is returned for every cycle
boundary. However, in other cycle-based modes (Best Fit,
Minimum, Maximum, Counter, ValueState, and RoundTrip),
multiple or no data points may be returned for a cycle,
depending on the nature of the data.

The length of each cycle (the “resolution” of the returned
values) is calculated as follows:

DC = DQ / (n – 1)
Where DC is the length of the cycle, DQ is the duration of the
query, and n is the cycle count.

Instead of specifying a cycle count, you can specify the
resolution. In that case, the cycle count is calculated based on
the resolution and the query duration. For more information,
see Resolution (Values Spaced Every X ms) (wwResolution).
Wonderware Historian Concepts Guide

220 Chapter 7 Data Retrieval Options
This option is relevant in the following retrieval modes:

• Cyclic Retrieval

• Interpolated Retrieval

• “Best Fit” Retrieval

• Average Retrieval

• Minimum Retrieval

• Maximum Retrieval

• Integral Retrieval

• Counter Retrieval

• ValueState Retrieval

• RoundTrip Retrieval

The application of the cycle count also depends on whether
you are querying a wide table. If you are querying the History
table, the cycle count determines the number of rows
returned per tag. For example, a query that applies a cycle
count of 20 to two tags will return 40 rows of data (20 rows
for each tag). If you are querying a WideHistory table, the
cycle count specifies the total number of rows to be returned,
regardless of how many tags were queried. For example, a
query that applies a cycle count of 20 to two tags returns 20
rows of data.

Values chosen:

• If wwResolution and wwCycleCount are not specified,
then a default of 100 cycles are chosen.

• If wwResolution and wwCycleCount are set to 0, then a
default of 100000 cycles are chosen.

• If wwResolution and wwCycleCount are both set, then
wwCycleCount is ignored.

• If wwCycleCount is specified and is less than 0, then a
default of 100 cycles are chosen.

• For ValueState retrieval, if the start time of the cycle is
excluded, no states are returned for the first cycle.

• For ValueState retrieval, if the end time of the cycle is
excluded, no states are returned for the last cycle.
Wonderware Historian Concepts Guide

Understanding Retrieval Options 221
Cycle Count - Query Examples
The following queries demonstrate the cycle count behavior if
applied to a single tag or to multiple tags in the same query.

Query Using a Single Tag

SELECT DateTime, TagName, Value
FROM History

WHERE TagName = 'SysTimeSec'
AND DateTime >= '2001-12-09 11:35'
AND DateTime < '2001-12-09 11:36'
AND wwRetrievalMode = 'Cyclic'
AND wwCycleCount = 300

The results are:

DateTime TagName Value

2001-12-09 11:35:00.000 SysTimeSec 0

2001-12-09 11:35:00.200 SysTimeSec 0

2001-12-09 11:35:00.400 SysTimeSec 0

2001-12-09 11:35:00.600 SysTimeSec 0

.

.

.
2001-12-09 11:35:59.200 SysTimeSec 59

2001-12-09 11:35:59.400 SysTimeSec 59

2001-12-09 11:35:59.600 SysTimeSec 59

2001-12-09 11:35:59.800 SysTimeSec 59

Query Using Multiple Tags

SELECT DateTime, TagName, Value
FROM History

WHERE TagName IN ('SysTimeMin','SysTimeSec')
AND DateTime >= '2001-12-09 11:35'
AND DateTime < '2001-12-09 11:36'
AND wwRetrievalMode = 'Cyclic'
AND wwCycleCount = 300

The results are:

DateTime TagName Value

2001-12-09 11:35:00.000 SysTimeMin 35

2001-12-09 11:35:00.000 SysTimeSec 0

2001-12-09 11:35:00.200 SysTimeMin 35

2001-12-09 11:35:00.200 SysTimeSec 0

2001-12-09 11:35:00.400 SysTimeMin 35

2001-12-09 11:35:00.400 SysTimeSec 0

2001-12-09 11:35:00.600 SysTimeMin 35
Wonderware Historian Concepts Guide

222 Chapter 7 Data Retrieval Options
Notice that the values of the two tags are mixed together in
the same column.

Resolution (Values Spaced Every X ms)
(wwResolution)

In retrieval modes that use cycles, the resolution is the
sampling interval for retrieving data, that is, the length of
each cycle.

The number of cycles, therefore, depends on the time period
and the resolution:

number of cycles = time period / resolution
The number of actual return values is not always identical
with this cycle count. In “truly cyclic” modes (Cyclic,
Interpolated, Average, and Integral), a single data point is
returned for every cycle boundary. However, in other
cycle-based modes (Best Fit, Minimum, Maximum, Counter,
and ValueState), multiple or no data points may be returned
for a cycle, depending on the nature of the data.

Note The rowset is guaranteed to contain one row for each tag in
the normalized query at every resolution interval, regardless of
whether a physical row exists in history at that particular instance
in time. The value contained in the row is the last known physical
value in history, at that instant, for the relevant tag.

Instead of specifying a resolution, you can specify the cycle
count directly. In that case, the resolution is calculated based
on the cycle count and the query duration. For more
information, see Cycle Count (X Values over Equal Time
Intervals) (wwCycleCount) on page 219.

2001-12-09 11:35:00.600 SysTimeSec 0

.

.

.
2001-12-09 11:35:59.200 SysTimeMin 35

2001-12-09 11:35:59.200 SysTimeSec 59

2001-12-09 11:35:59.400 SysTimeMin 35

2001-12-09 11:35:59.400 SysTimeSec 59

2001-12-09 11:35:59.600 SysTimeMin 35

2001-12-09 11:35:59.600 SysTimeSec 59

2001-12-09 11:35:59.800 SysTimeMin 35

2001-12-09 11:35:59.800 SysTimeSec 59
Wonderware Historian Concepts Guide

Understanding Retrieval Options 223
This option is relevant in the following retrieval modes:

• Cyclic Retrieval

• Interpolated Retrieval

• “Best Fit” Retrieval

• Average Retrieval

• Minimum Retrieval

• Maximum Retrieval

• Integral Retrieval

• Counter Retrieval

• ValueState Retrieval

• RoundTrip Retrieval

For delta retrieval, you can achieve similar results by using a
time deadband. For more information, see Time Deadband
(wwTimeDeadband) on page 227.

Resolution - Query Examples
The following query returns rows that are spaced at 2 sec
(2000 msec) intervals over the requested time period. Data is
retrieved cyclically.
SELECT DateTime, TagName, Value

FROM History
WHERE TagName IN ('SysTimeMin','SysTimeSec')

AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:36'
AND wwRetrievalMode = 'Cyclic'
AND wwResolution = 2000
Wonderware Historian Concepts Guide

224 Chapter 7 Data Retrieval Options
The results are:

DateTime TagName Value

2001-12-09 11:35:00.000 SysTimeMin 35

2001-12-09 11:35:00.000 SysTimeSec 0

2001-12-09 11:35:02.000 SysTimeMin 35

2001-12-09 11:35:02.000 SysTimeSec 2

2001-12-09 11:35:04.000 SysTimeMin 35

2001-12-09 11:35:04.000 SysTimeSec 4

2001-12-09 11:35:06.000 SysTimeMin 35

.

.

.
2001-12-09 11:35:54.000 SysTimeMin 35

2001-12-09 11:35:54.000 SysTimeSec 54

2001-12-09 11:35:56.000 SysTimeMin 35

2001-12-09 11:35:56.000 SysTimeSec 56

2001-12-09 11:35:58.000 SysTimeMin 35

2001-12-09 11:35:58.000 SysTimeSec 58

2001-12-09 11:36:00.000 SysTimeMin 36

2001-12-09 11:36:00.000 SysTimeSec 0

About “Phantom” Cycles
The phantom cycle is the name given to the cycle that leads
up to the query start time. It is used to calculate which initial
value to return at the query start time for all retrieval modes.
Some retrieval modes use the phantom cycle to simply find
the last known value prior to the query start time, whereas
other retrieval modes use the entire cycle to calculate
aggregates. The different uses of the phantom cycle can be
seen in the following table.

Simple use of
phantom cycle

Cycles not defined, but
similar simple use of time
before query start time

Phantom cycle used to calculate
aggregates

Cyclic Delta Min

Interpolated Full Max

Best Fit Slope Average

Integral

Counter
Wonderware Historian Concepts Guide

Understanding Retrieval Options 225
It’s common to expect a single aggregate row returned for a
particular time interval. You can accomplish this in several
ways.

The following example is querying for hourly averages. It
returns a single row time stamped at the query start time. If
the query included the query end point by including an equal
sign for it, the query would also have returned an additional
row at the query end time.
SELECT DateTime, Value, Quality, QualityDetail,

OPCQuality
FROM History

WHERE TagName IN ('SysTimeSec')
AND DateTime >= '2009-10-16 08:00:00'
AND DateTime < '2009-10-16 09:00:00'
AND wwRetrievalMode = 'Avg'
AND wwResolution = 3600000

The results are:

DateTime Value Quality QualityDetail OPCQuality

2009-10-16
08:00:00.0000000

29.5 0 192 192

What may be confusing in this example is the calculation of
the average in the returned row for the phantom cycle
leading up to the query start time. The query specifies a
positive one hour time interval between the query start time
and the query end time. You may therefore expect that the
calculated and returned average should be for the specified
interval.

However, the time difference between start and end time in
the above query is actually not required because the
resolution has been provided explicitly (wwResolution =
36000000). If the query specified an end time equal to the
specified start time and if it included the equal sign for the
end time, the query would still return the same single row of
data.
SELECT DateTime, Value, Quality, QualityDetail as QD,

OPCQuality
FROM History

WHERE TagName IN ('SysTimeSec')
AND DateTime >= '2007-12-11 08:00:00'
AND DateTime <= '2007-12-11 09:00:00'
AND wwRetrievalMode = 'Avg'
AND wwCycleCount = 1

ValueState

RoundTrip

Simple use of
phantom cycle

Cycles not defined, but
similar simple use of time
before query start time

Phantom cycle used to calculate
aggregates
Wonderware Historian Concepts Guide

226 Chapter 7 Data Retrieval Options
The results are:

DateTime Value Quality QD OPCQuality

2009-10-16 08:00:00.0000000 29.5 0 192 192

This second example also asks for hourly averages and it also
returns only a single row of data stamped at the query start
time. This query, however, must specify a time difference
between the start and end time, because the resolution is not
explicitly defined in the query.

As in the preceding query, the specified interval and cycle
count of 1 may look like the returned row has been calculated
for the specified interval, but the returned row is once again
for the phantom cycle leading up to the start time.

The StartDateTime makes it easier to see which time
interval was used to calculate the returned aggregate. This
column returns the time stamp of the beginning of the cycle
used for the aggregate calculation. The time stamp is always
returned in accordance with the specified time zone and
always has the same offset as the time stamp returned in the
DateTime column, even when the two time stamps are on
different sides of a DST change.

Assuming results are timestamped at the end of the cycle (as
is done by default when wwTimeStampRule is set to END),
the initial rows in the examples above would return a
DateTime equal to '2009-10-16 08:00:00', and the
StartDateTime column would return '2009-10-16 07:00:00'
making it easy to interpret the result.

If instead the query were to ask for results time stamped at
the beginning of the cycle with wwTimeStampRule set to
START, the initial rows in the same examples would still
return a DateTime equal to '2009-10-16 08:00:00', but the
time stamp has now been shifted in accordance with the time
stamp request. The result is therefore calculated for the
specified time interval between 8 a.m. and 9 a.m. In this
example, the new StartDateTime column would return the
same time stamp as the DateTime column, '2009-10-16
08:00:00', again making it easier to interpret the result.

For retrieval modes for which cycles are defined, the
StartDateTime column returns the cycle start time. These
modes are:

• Cyclic

• Interpolated

• BestFit

• Min
Wonderware Historian Concepts Guide

Understanding Retrieval Options 227
• Max

• Average

• Integral

• Counter

• ValueState

• RoundTrip

In the remaining retrieval modes, the StartDateTime column
returns the same time stamp as the DateTime column.

For an additional example, see Querying Aggregate Data in
Different Ways on page 316.

Time Deadband (wwTimeDeadband)
A time deadband for retrieval controls the time resolution of
data returned in delta mode. Any value changes that occur
within the time deadband are not returned.

Time deadbands can be applied to analog, discrete, and
string tags.

The deadband “base value” is reset each time that a value is
returned, so that the last value returned acts as the basis for
the deadband.

The following illustration shows an example of applying a
time deadband:
Wonderware Historian Concepts Guide

228 Chapter 7 Data Retrieval Options
Data is retrieved for the time period starting with TS and
ending with TE. All points in the graphic represent data
values stored on the historian. The grey areas represent the
time deadband, which starts anew with every returned value.
Only the green points (P2, P4, P7, P8, P9, P11) are returned.
The other points are not returned because they fall within a
deadband.

Time Deadband - Query Examples
To apply a time deadband, set the wwTimeDeadband
parameter in your query.

The following queries return data values for the analog tag
'SysTimeSec'.

Query 1
This query specifies to only return data that changed during
a 5 second time deadband.
SELECT DateTime, TagName, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:37'
AND wwRetrievalMode = 'Delta'
AND wwTimeDeadband = 5000

The results are:

DateTime TagName Value

2001-12-09 11:35:00.000 SysTimeSec 0

2001-12-09 11:35:06.000 SysTimeSec 6

2001-12-09 11:35:12.000 SysTimeSec 12

2001-12-09 11:35:18.000 SysTimeSec 18

2001-12-09 11:35:24.000 SysTimeSec 24

2001-12-09 11:35:30.000 SysTimeSec 30

2001-12-09 11:35:36.000 SysTimeSec 36

2001-12-09 11:35:42.000 SysTimeSec 42

2001-12-09 11:35:48.000 SysTimeSec 48

2001-12-09 11:35:54.000 SysTimeSec 54

2001-12-09 11:36:00.000 SysTimeSec 0

2001-12-09 11:36:06.000 SysTimeSec 6

2001-12-09 11:36:12.000 SysTimeSec 12

2001-12-09 11:36:18.000 SysTimeSec 18

2001-12-09 11:36:24.000 SysTimeSec 24

2001-12-09 11:36:30.000 SysTimeSec 30

2001-12-09 11:36:36.000 SysTimeSec 36

2001-12-09 11:36:42.000 SysTimeSec 42
Wonderware Historian Concepts Guide

Understanding Retrieval Options 229
Query 2
This query specifies to only return data that changed during
a 4900 millisecond time deadband.
SELECT DateTime, TagName, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:37'
AND wwRetrievalMode = 'Delta'
AND wwTimeDeadband = 4900

The results are:

DateTime TagName Value

2001-12-09 11:35:00.000 SysTimeSec 0

2001-12-09 11:35:05.000 SysTimeSec 5

2001-12-09 11:35:10.000 SysTimeSec 10

2001-12-09 11:35:15.000 SysTimeSec 15

2001-12-09 11:35:20.000 SysTimeSec 20

2001-12-09 11:35:25.000 SysTimeSec 25

2001-12-09 11:35:30.000 SysTimeSec 30

2001-12-09 11:35:35.000 SysTimeSec 35

2001-12-09 11:35:40.000 SysTimeSec 40

2001-12-09 11:35:45.000 SysTimeSec 45

2001-12-09 11:35:50.000 SysTimeSec 50

2001-12-09 11:35:55.000 SysTimeSec 55

2001-12-09 11:36:00.000 SysTimeSec 0

2001-12-09 11:36:05.000 SysTimeSec 5

2001-12-09 11:36:10.000 SysTimeSec 10

2001-12-09 11:36:15.000 SysTimeSec 15

2001-12-09 11:36:20.000 SysTimeSec 20

2001-12-09 11:36:25.000 SysTimeSec 25

2001-12-09 11:36:30.000 SysTimeSec 30

2001-12-09 11:36:35.000 SysTimeSec 35

2001-12-09 11:36:40.000 SysTimeSec 40

2001-12-09 11:36:45.000 SysTimeSec 45

2001-12-09 11:36:50.000 SysTimeSec 50

2001-12-09 11:36:55.000 SysTimeSec 55

2001-12-09 11:37:00.000 SysTimeSec 0

2001-12-09 11:36:48.000 SysTimeSec 48

2001-12-09 11:36:54.000 SysTimeSec 54

2001-12-09 11:37:00.000 SysTimeSec 0
Wonderware Historian Concepts Guide

230 Chapter 7 Data Retrieval Options
Query 3
This query specifies to only return data that changed during
a 2000 millisecond time deadband.
SELECT DateTime, TagName, Value

FROM History
WHERE TagName IN ('SysTimeSec','SysTimeMin')

AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:36'
AND wwRetrievalMode = 'Delta'
AND wwTimeDeadband = 2000

The results are:

DateTime TagName Value

2001-12-09 11:35:00.000 SysTimeSec 0

2001-12-09 11:35:00.000 SysTimeMin 35

2001-12-09 11:35:03.000 SysTimeSec 3

2001-12-09 11:35:06.000 SysTimeSec 6

2001-12-09 11:35:09.000 SysTimeSec 9

2001-12-09 11:35:12.000 SysTimeSec 12

2001-12-09 11:35:15.000 SysTimeSec 15

2001-12-09 11:35:18.000 SysTimeSec 18

2001-12-09 11:35:21.000 SysTimeSec 21

2001-12-09 11:35:24.000 SysTimeSec 24

2001-12-09 11:35:27.000 SysTimeSec 27

2001-12-09 11:35:30.000 SysTimeSec 30

2001-12-09 11:35:33.000 SysTimeSec 33

2001-12-09 11:35:36.000 SysTimeSec 36

2001-12-09 11:35:39.000 SysTimeSec 39

2001-12-09 11:35:42.000 SysTimeSec 42

2001-12-09 11:35:45.000 SysTimeSec 45

2001-12-09 11:35:48.000 SysTimeSec 48

2001-12-09 11:35:51.000 SysTimeSec 51

2001-12-09 11:35:54.000 SysTimeSec 54

2001-12-09 11:35:57.000 SysTimeSec 57

2001-12-09 11:36:00.000 SysTimeSec 0

2001-12-09 11:36:00.000 SysTimeMin 36
Wonderware Historian Concepts Guide

Understanding Retrieval Options 231
Value Deadband (wwValueDeadband)
A value deadband for retrieval controls the value resolution
of data returned in delta mode. Any data values that change
less than the specified deadband are not returned. The
deadband is a percentage of a tag’s full scale in engineering
units.

The deadband “base value” is reset each time that a value is
returned, so that the last value returned acts as the basis for
the deadband.

Changes in quality will force a value to be returned even if
the value deadband has not been met.

The following illustration shows an example of applying a
value deadband:

Data is retrieved for the time period starting with TS and
ending with TE. All points in the graphic represent data
values stored on the historian. The grey areas represent the
value deadband, which starts anew with every returned
value. Only the green points (P2, P5, P6, P7, P9, P10, P11) are
returned. The other points are not returned because they fall
within a deadband.

Value Deadband - Query Examples
The following queries return data values for the analog tag
'SysTimeSec'. The minimum engineering unit for
'SysTimeSec' is 0, and the maximum engineering unit is 59.
Wonderware Historian Concepts Guide

232 Chapter 7 Data Retrieval Options
Query 1
This query specifies to return only data that changed by more
than 10 percent of the tag's full engineering unit range.
Using a value deadband of 10 percent equates to an absolute
change of 5.9 for 'SysTimeSec.'
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:37'
AND wwRetrievalMode = 'Delta'
AND wwValueDeadband = 10

The results are:

DateTime Value

2001-12-09 11:35:00.000 0

2001-12-09 11:35:06.000 6

2001-12-09 11:35:12.000 12

2001-12-09 11:35:18.000 18

2001-12-09 11:35:24.000 24

2001-12-09 11:35:30.000 30

2001-12-09 11:35:36.000 36

2001-12-09 11:35:42.000 42

2001-12-09 11:35:48.000 48

2001-12-09 11:35:54.000 54

2001-12-09 11:36:00.000 0

2001-12-09 11:36:06.000 6

2001-12-09 11:36:12.000 12

2001-12-09 11:36:18.000 18

2001-12-09 11:36:24.000 24

2001-12-09 11:36:30.000 30

2001-12-09 11:36:36.000 36

2001-12-09 11:36:42.000 42

2001-12-09 11:36:48.000 48

2001-12-09 11:36:54.000 54

2001-12-09 11:37:00.000 0
Wonderware Historian Concepts Guide

Understanding Retrieval Options 233
Query 2
This query specifies to only return data that changed by more
than 5 percent of the tag's full engineering unit range. Using
a value deadband of 5 percent equates to an absolute change
of 2.95 for 'SysTimeSec.'
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:37'
AND wwRetrievalMode = 'Delta'
AND wwValueDeadband = 5

The results are:

DateTime Value

2001-12-09 11:35:00.000 0

2001-12-09 11:35:03.000 3

2001-12-09 11:35:06.000 6

2001-12-09 11:35:09.000 9

2001-12-09 11:35:12.000 12

2001-12-09 11:35:15.000 15

2001-12-09 11:35:18.000 18

2001-12-09 11:35:21.000 21

2001-12-09 11:35:24.000 24

2001-12-09 11:35:27.000 27

2001-12-09 11:35:30.000 30

2001-12-09 11:35:33.000 33

2001-12-09 11:35:36.000 36

2001-12-09 11:35:39.000 39

2001-12-09 11:35:42.000 42

2001-12-09 11:35:45.000 45

2001-12-09 11:35:48.000 48

2001-12-09 11:35:51.000 51

2001-12-09 11:35:54.000 54

2001-12-09 11:35:57.000 57

2001-12-09 11:36:00.000 0

2001-12-09 11:36:03.000 3

2001-12-09 11:36:06.000 6

2001-12-09 11:36:09.000 9

2001-12-09 11:36:12.000 12

2001-12-09 11:36:15.000 15

2001-12-09 11:36:18.000 18

2001-12-09 11:36:21.000 21
Wonderware Historian Concepts Guide

234 Chapter 7 Data Retrieval Options
2001-12-09 11:36:24.000 24

2001-12-09 11:36:27.000 27

2001-12-09 11:36:30.000 30

2001-12-09 11:36:33.000 33

2001-12-09 11:36:36.000 36

2001-12-09 11:36:39.000 39

2001-12-09 11:36:42.000 42

2001-12-09 11:36:45.000 45

2001-12-09 11:36:48.000 48

2001-12-09 11:36:51.000 51

2001-12-09 11:36:54.000 54

2001-12-09 11:36:57.000 57

2001-12-09 11:37:00.000 0
Wonderware Historian Concepts Guide

Understanding Retrieval Options 235
History Version (wwVersion)
The Wonderware Historian allows you to overwrite a stored
tag value with later versions of the value. The original
version of the value is still maintained, so that effectively,
multiple versions of the tag value exist at the same point in
time.

When retrieving data, you can specify whether to retrieve the
originally stored version or the latest version that is
available. To do this, set the history version option to
“Original” for the original version or “Latest” for the latest
available version. If you do not specify the version, the latest
version is returned.

To distinguish between a latest value and an original value,
the historian returns a special QualityDetail value of 202 for
a latest point with good quality.

This option is relevant in all retrieval modes.

History Version - Query Example
For example:
SELECT TagName, DateTime, Value, wwVersion

FROM History
WHERE TagName IN ('SysTimeHour', 'SysTimeMin')

AND DateTime >= '2001-12-20 0:00'
AND DateTime <= '2001-12-20 0:05'
AND wwRetrievalMode = 'Delta'
AND wwVersion = 'Original'

The results are:

TagName DateTime Value wwVersion

SysTimeMin 2001-12-20 00:00:00.000 0 ORIGINAL

SysTimeHour 2001-12-20 00:00:00.000 0 ORIGINAL

SysTimeMin 2001-12-20 00:01:00.000 1 ORIGINAL

SysTimeMin 2001-12-20 00:02:00.000 2 ORIGINAL

SysTimeMin 2001-12-20 00:03:00.000 3 ORIGINAL

SysTimeMin 2001-12-20 00:04:00.000 4 ORIGINAL

SysTimeMin 2001-12-20 00:05:00.000 5 ORIGINAL

When retrieving the latest version, the wwVersion
parameter always returns with a value of LATEST for all
values, even though many of the values may actually be the
original values that came from the I/O Server. To distinguish
between an actual latest value and an original value, a
special QualityDetail of 202 is returned for a good, latest
point.
Wonderware Historian Concepts Guide

236 Chapter 7 Data Retrieval Options
For example:
SELECT DateTime, Value, Quality, QualityDetail,

OPCQuality, wwVersion FROM History
WHERE TagName IN ('PV')

AND DateTime >= '2005-04-17 11:35:00'
AND DateTime <= '2005-04-17 11:36:00'
AND wwRetrievalMode = 'Delta'
AND wwVersion = 'Latest'

The results are:

DateTime Value Quality QualityDetail OPCQuality wwVersion

2005-04-17
11:35:00.000

12.5 0 192 192 LATEST

2005-04-17
11:35:15.000

17.3 0 192 192 LATEST

2005-04-17
11:35:30.000

34.0 0 202 192 LATEST

2005-04-17
11:35:45.000

43.1 0 192 192 LATEST

2005-04-17
11:36:00.000

51.2 0 192 192 LATEST
Wonderware Historian Concepts Guide

Understanding Retrieval Options 237
Interpolation Type (wwInterpolationType)
For various retrieval modes, you can control how analog tag
values at cycle boundaries are calculated if there is no actual
value stored at that point in time. The options are as follows:

• Stairstep: No interpolation occurs. The value at the cycle
boundary is assumed to be the same value as the last
stored value before the cycle boundary.The last known
point is returned with the given cycle time. If no valid
value can be found, a NULL is returned.
Wonderware Historian Concepts Guide

238 Chapter 7 Data Retrieval Options
• Linear: The historian calculates a new value at the cycle
boundary by interpolating between the last stored value
before the boundary and the first stored value after the
boundary. If either of these values is NULL, it returns
the last stored value before the boundary.

Expressed as a formula, Vc is calculated as:
Vc = V1 + ((V2 - V1) * ((Tc - T1) / (T2 - T1)))

The type of data that you want to retrieve usually determines
the interpolation type to use. For example, if you have a
thermocouple, the temperature change is linear, so it’s best to
use linear interpolation. If you have a tag that contains
discrete measurements, such as a set point, then you
probably want to use stair-stepped values. In general, it is
recommended that you use linear interpolation as the general
setting, and use stair-stepped values for the exceptions.

This option is relevant in the following retrieval modes:

• Interpolated Retrieval

• “Best Fit” Retrieval

• Average Retrieval

• Integral Retrieval
Wonderware Historian Concepts Guide

Understanding Retrieval Options 239
The quality of an interpolated point is determined by the
wwQualityRule setting. For more information, see Quality
Rule (wwQualityRule) on page 244.

The interpolation type can be set on three levels:

• The Wonderware Historian system-wide setting. The
system-wide setting must be either stair-step or
interpolated. For more information, see System
Parameters on page 33. This setting is configured using
the Wonderware Historian Configuration Editor.

• The individual analog tag setting. You can configure an
individual analog tag to use the system-wide setting or
either stair-stepped values or linear interpolation. The
individual tag setting will override the system-wide
setting. This setting is configured using the Wonderware
Historian Configuration Editor.

• The setting for the wwInterpolationType parameter in
the query. This setting overrides any other setting for all
tags in the query.

The wwInterpolationType parameter is dynamically used
both for input for the query, when you need to override the
individual tag settings, and for output for each individual
row to show whether a particular row value was calculated
using linear interpolation (returned as "LINEAR") or if it is a
stair-stepped value (returned as "STAIRSTEP").

To force a query to always use linear interpolation whenever
applicable, specify the following in the query:
AND wwInterpolationType = 'Linear'

To force a query to always return stair-stepped values,
specify the following in the query:
AND wwInterpolationType = 'StairStep'
Wonderware Historian Concepts Guide

240 Chapter 7 Data Retrieval Options
Timestamp Rule (wwTimestampRule)
For various cycle-based retrieval modes, you can control
whether the returned values are timestamped at the
beginning or at the end of each cycle.

To force a query to timestamp results at the start of a cycle,
specify the following in the query:
AND wwTimeStampRule = 'Start'

To force a query to timestamp results at the end of a cycle,
specify the following in the query:
AND wwTimeStampRule = 'End'

If you include the wwTimeStampRule column in your
SELECT statement, it will show which timestamp rule has
been applied for the individual row, if applicable.

The options are as follows:

• Start: The value for a given cycle is stamped with the
cycle start time. For example, in the following illustration
of a cyclic query, the following values are returned at the
cycle boundaries:

• At TC0: P7, because it falls on the cycle boundary. In
cyclic mode, if there is a value right on the cycle
boundary, it is considered to belong to the cycle before
the boundary. In this case, this is the cycle starting at
TC0 and ending at TC1, and because the Start
timestamp rule is used, the value is timestamped at
TC0.

• At TC1: P11, because it is the last value in the cycle
starting at TC1 and ending at TC2
Wonderware Historian Concepts Guide

Understanding Retrieval Options 241
• At TC2: The last value in the “phantom” cycle starting
at TC2

• End: The value for a given cycle is stamped with the cycle
end time. For example, in the following illustration of a
cyclic query, the following values are returned at the
cycle boundaries:

• At TC0: P1, because it is the last value in the
“phantom” cycle ending at TC0. Because the End
timestamp rule is used, the value is timestamped at
TC0.

• At TC1: P7, because it falls on the cycle boundary. In
cyclic mode, if there is a value right on the cycle
boundary, it is considered to belong to the cycle before
the boundary. In this case, this is the cycle starting at
TC0 and ending at TC1, and because the End
timestamp rule is used, the value is timestamped at
TC1.
Wonderware Historian Concepts Guide

242 Chapter 7 Data Retrieval Options
• At TC2: P11, because it is the last value in the cycle
ending at TC2

• Server default: Either Start or End is used, depending on
the system parameter setting on the Wonderware
Historian.

This option is relevant in the following retrieval modes:

• Cyclic Retrieval (only for Wonderware Historian 9.0 and
later)

• Interpolated Retrieval

• Average Retrieval

• Integral Retrieval

• Counter Retrieval

• ValueState Retrieval

• RoundTrip Retrieval

Time Zone (wwTimeZone)
For Wonderware Historian version 8.0 and later, all history
data is stored in Coordinated Universal Time (UTC). The
wwTimeZone extension allows you to specify the time zone to
be used for the timestamps of the returned data values. The
retrieval subsystem will convert the timestamps to local time
in the specified time zone.
Wonderware Historian Concepts Guide

Understanding Retrieval Options 243
The wwTimeZone extension may be assigned any of the
values stored in the TimeZone column of the TimeZone table
in the Runtime database. In addition to specifying the name
of the timezone in the wwTimeZone parameter, you can also
specify the TimeZoneID (as a string). For example, on a
typical US English system, specifying " wwTimeZone =
'Mountain Standard Time' " and " wwTimeZone = '64'"
yields the same result.

The TimeZone table is repopulated at every system startup
from Microsoft operating system registry entries, and will
therefore reflect the time zones available from the server
operating system, including any new or custom time zones
which might be added by operating system service packs or
installed software.

The retrieval subsystem will automatically correct for
daylight savings time in the requested time zone. When
computing daylight savings and time zone parameters, the
settings of the server operating system are used. The
retrieval sub-system does not provide any means for using
client-side settings.

If wwTimeZone is not specified, the time zone for retrieval
defaults to the time zone of the Wonderware Historian
computer.

For example:
SELECT TagName, DateTime, Value, wwTimeZone

FROM History
WHERE TagName IN ('SysTimeHour', 'SysTimeMin')

AND DateTime >= '2001-12-20 0:00'
AND DateTime <= '2001-12-20 0:05'
AND wwRetrievalMode = 'Delta'
AND wwTimeZone = 'W. Europe Standard Time'

The results are:

TagName DateTime Value wwTimeZone

SysTimeMin 2001-12-20 00:00:00.000 0 W. Europe Standard Time

SysTimeHour 2001-12-20 00:00:00.000 15 W. Europe Standard Time

SysTimeMin 2001-12-20 00:01:00.000 1 W. Europe Standard Time

SysTimeMin 2001-12-20 00:02:00.000 2 W. Europe Standard Time

SysTimeMin 2001-12-20 00:03:00.000 3 W. Europe Standard Time

SysTimeMin 2001-12-20 00:04:00.000 4 W. Europe Standard Time

SysTimeMin 2001-12-20 00:05:00.000 5 W. Europe Standard Time

If you are using date/time functions and the wwTimeZone
parameter, you will need to use the faaTZgetdate()
function.
Wonderware Historian Concepts Guide

244 Chapter 7 Data Retrieval Options
Quality Rule (wwQualityRule)
For various retrieval modes, you can explicitly exclude values
with uncertain quality from data retrieval in modes that
calculate return values.

Where applicable, the quality rule can be used to specify
whether values with certain characteristics are explicitly
excluded from consideration by data retrieval. This
parameter will override the setting of the QualityRule system
parameter. Valid values are GOOD, EXTENDED, or
OPTIMISTIC.

• A quality rule of GOOD means that data values with
uncertain (64) OPC quality are not used in the retrieval
calculations and are ignored. Values with bad
QualityDetail indicate gaps in the data.

• A quality rule of EXTENDED means that data values
with both good and uncertain OPC quality are used in the
retrieval calculations. Values with bad QualityDetail
indicate gaps in the data.

• A quality rule of OPTIMISTIC means that calculations
that include some good and some NULL values do not
cause the overall calculations to return NULL.

You can apply a quality rule to all retrieval modes.

The OPTIMISTIC setting for the quality rule lets you
retrieve information that is possibly incomplete but may
nevertheless provide better results in the counter and
integral retrieval modes where the calculation cycle contains
data gaps. This setting calculates using the last known good
value prior to the gap (if possible). The logic for determining
the quality of the points returned remains unchanged in both
retrieval modes. The integral retrieval mode is an exception
to this where the integral is scaled up to cover gaps. For more
information, see Integral Retrieval on page 194.

The following figure shows a counter retrieval situation in
which three of the four shown cycle boundaries are located in
data gaps. Without using OPTIMISTIC, counter queries
Wonderware Historian Concepts Guide

Understanding Retrieval Options 245
would return a NULL at all cycle boundaries because the
mode needs valid good values at each end of the cycle
calculate a precise difference.

If the query were to specify OPTIMISTIC, the counter mode
will always return rows with numeric counter values and
good quality. These rows may or may not be precise. The
PercentGood column of the row returns the percentage of
time in each cycle in which retrieval was able to find values
stored with good quality, so if the PercentGood is anything
less than 100, then the returned row may be incorrect.
Quality is returned as uncertain if percent good is not 100
percent.

Now look at the counter values that are returned using
OPTIMISTIC quality in the preceding illustration The query
skips the value to be returned at the first cycle boundary,
because there is not enough information about the cycle prior
to that boundary. At the second cycle boundary, the value 0
will be returned, because there was a gap in the data for the
entire first cycle. In the second cycle, there are two points, P1
and P2. The query uses P2 as the end value of the cycle and
infers a start value of the cycle from P1. At the third cycle
boundary, Tc2, the query returns P2 – P1. Similarly, at the
last cycle boundary, the query returns P4 – P3.
Wonderware Historian Concepts Guide

246 Chapter 7 Data Retrieval Options
For the integral retrieval mode, the query does not
summarize data for gaps because there is no way to know
which value to use for the summarization. However, if the
query specifies OPTIMISTIC quality, the query uses the last
known good value for the summarization in the gap. As
described for the counter retrieval example, the PercentGood
column also expresses the quality of the calculated value in
integral retrieval, so if the PercentGood is anything less than
100, then the returned row may be incorrect.

Quality Rule - Query Examples
To force a query to exclude points with doubtful OPC quality,
specify the following in the query:
AND wwQualityRule = 'Good'

To force a query to use points with both good and doubtful
OPC quality, specify the following in the query:
AND wwQualityRule = 'Extended'

If you include the wwQualityRule column in a SELECT
statement, it will show which quality rule was used for the
individual row, if applicable.

You can combine OPC qualities in a query. For example, if
you combine a mixture of good OPC qualities (such as 192 to
219), a good OPC quality (192) will be returned as a combined
result.
SELECT TagName, DateTime, Value, QualityDetail,

OPCQuality, wwRetrievalMode
FROM History

WHERE TagName = 'I0R5'
AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Avg'

If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

I0R5 2009-09-12 00:07 2 193

I0R5 2009-09-12 00:14 3 195

I0R5 2009-09-12 00:22 0 196

I0R5 2009-09-12 00:25 1 199

I0R5 2009-09-12 00:27 0 200

I0R5 2009-09-12 00:29 2 207

I0R5 2009-09-12 00:33 3 215

I0R5 2009-09-12 00:36 0 216

I0R5 2009-09-12 00:39 1 219
Wonderware Historian Concepts Guide

Understanding Retrieval Options 247
The results are:

Tagname DateTime Value QualityDetail OPCQuality wwRetrievalMode

I0R5 2009-09-1
2 00:20

2.6 192 192 AVERAGE

I0R5 2009-09-1
2 00:30

1.0 192 192 AVERAGE

I0R5 2009-09-1
2 00:40

1.6 192 192 AVERAGE

Similarly, if you combine a mixture of doubtful OPC
qualities, a doubtful OPC quality (64) will be returned as the
combined OPC quality.
SELECT TagName, DateTime, Value, QualityDetail,

OPCQuality, wwRetrievalMode
FROM History

WHERE TagName = 'I0R5'
AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Integral'

If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

I0R5 2009-09-12 00:07 2 65

I0R5 2009-09-12 00:14 3 68

I0R5 2009-09-12 00:22 0 71

I0R5 2009-09-12 00:25 1 74

I0R5 2009-09-12 00:27 0 79

I0R5 2009-09-12 00:29 2 80

I0R5 2009-09-12 00:33 3 88

I0R5 2009-09-12 00:36 0 92

I0R5 2009-09-12 00:39 1 64

The results are:

Tagname DateTime Value QualityDetail OPCQuality wwRetrievalMode

I0R5 00:20 26.0 64 64 INTEGRAL

I0R5 00:30 10.0 64 64 INTEGRAL

I0R5 00:40 16.0 64 64 INTEGRAL
Wonderware Historian Concepts Guide

248 Chapter 7 Data Retrieval Options
When you combine the same OPC quality then that OPC
quality will be returned. However, when there is no good
point in a cycle for cyclic modes such as Integral, Average,
Counter, or AnalogSummary, the returned NULL value will
have an OPC quality of 0 and a Quality Detail of 65536,
regardless of combined qualities.
SELECT TagName, StartDateTime, EndDateTime, OPCQuality,

PercentGood, wwRetrievalMode, first
FROM AnalogSummaryHistory

WHERE TagName = 'F0R5'
AND StartDateTime >= '2009-09-12 00:20'
AND EndDateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Cyclic'

If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

F0R5 2009-09-12 00:07 1.6 78

F0R5 2009-09-12 00:14 3.1 78

F0R5 2009-09-12 00:22 0.2 78

F0R5 2009-09-12 00:25 0.8 78

F0R5 2009-09-12 00:27 0.4 78

F0R5 2009-09-12 00:29 2.2 78

F0R5 2009-09-12 00:33 3.3 78

F0R5 2009-09-12 00:36 0.3 78

F0R5 2009-09-12 00:39 1.2 78

The results are:

Tagname StartDate
Time

EndDate
Time

OPCQuality PercentGood wwRetrievalMode first

F0R5 2009-09-12
00:20

2009-09-12
00:30

78 100 CYCLIC 0.200

F0R5 2009-09-12
00:30

2009-09-12
00:40

78 100 CYCLIC 3.300

SELECT TagName, DateTime, Value, QualityDetail,
OPCQuality, wwRetrievalMode
FROM History

WHERE TagName = 'F0R5'
AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Avg'
Wonderware Historian Concepts Guide

Understanding Retrieval Options 249
If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

F0R5 2009-09-12 00:07 1.6 15

F0R5 2009-09-12 00:14 3.1 15

F0R5 2009-09-12 00:22 0.2 15

F0R5 2009-09-12 00:25 0.8 15

F0R5 2009-09-12 00:27 0.4 15

F0R5 2009-09-12 00:29 2.2 15

F0R5 2009-09-12 00:33 3.3 15

F0R5 2009-09-12 00:36 0.3 15

F0R5 2009-09-12 00:39 1.2 15

The results are:

Tagname DateTime Value QualityDetail OPCQuality wwRetrievalMode

F0R5 2009-09-12
00:20

NULL 65536 0 AVERAGE

F0R5 2009-09-12
00:30

NULL 65536 0 AVERAGE

F0R5 2009-09-12
00:40

NULL 65536 0 AVERAGE

When you combine a mixture of good, bad, and uncertain
OPC qualities, a doubtful OPC quality (64) will be returned
as a combined result.
SELECT TagName, DateTime, Value, QualityDetail,

OPCQuality, wwRetrievalMode
FROM History

WHERE TagName = 'F0R5'
AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Avg'
AND wwQualityRule = 'Optimistic'

If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

F0R5 2009-09-12 00:07 1.6 15

F0R5 2009-09-12 00:14 3.1 69

F0R5 2009-09-12 00:22 0.2 78

F0R5 2009-09-12 00:25 0.8 200

F0R5 2009-09-12 00:27 0.4 15

F0R5 2009-09-12 00:29 2.2 92

F0R5 2009-09-12 00:33 3.3 88

F0R5 2009-09-12 00:36 0.3 199

F0R5 2009-09-12 00:39 1.2 196
Wonderware Historian Concepts Guide

250 Chapter 7 Data Retrieval Options
The results are:

Tagname DateTime Value QualityDetail OPCQuality wwRetrievalMode

F0R5 2009-09-12
00:20

2.012 64 64 AVERAGE

F0R5 2009-09-12
00:30

0.820 64 64 AVERAGE

F0R5 2009-09-12
00:40

1.751 64 64 AVERAGE

For RoundTrip, StateSummary, and ValueState modes, the
OPC qualities are only combined with the same state in a
cycle. If the state only occurs once in a cycle, then the
qualities of that state will be returned. The returned NULL
state will always have an OPC quality of 0 and Quality Detail
of 65536. The same qualities are returned for a state that has
no roundtrip in RoundTrip mode.
SELECT TagName, DateTime, Value, QualityDetail,

OPCQuality, StateTime
FROM History

WHERE TagName = 'I001'
AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'RoundTrip'
AND wwStateCalc = 'MaxContained'

If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

I001 2009-09-12 00:12 1 90

I001 2009-09-12 00:15 2 65

I001 2009-09-12 00:22 1 85

I001 2009-09-12 00:23 2 75

I001 2009-09-12 00:26 1 75

I001 2009-09-12 00:29 2 70

The results are:

Tagname DateTime Value QualityDetail OPC-
Quality

StateTime

I001 2009-09-12 00:20 NULL 65536 0 NULL

I001 2009-09-12 00:20 1.0 90 90 NULL

I001 2009-09-12 00:20 2.0 65 65 NULL

I001 2009-09-12 00:20 1.0 64 64 4000

I001 2009-09-12 00:20 2.0 64 64 6000
Wonderware Historian Concepts Guide

Understanding Retrieval Options 251
The returned Quality Detail is the same as OPC quality
unless there is special flag for certain indication for example
when there is indication for role over in counter mode.
SELECT TagName, DateTime, Value, QualityDetail,

OPCQuality
FROM History

WHERE TagName = 'I0R5'
AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Avg'

If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

I0R5 2009-09-12 00:07 2 218

I0R5 2009-09-12 00:14 3 218

I0R5 2009-09-12 00:22 0 218

I0R5 2009-09-12 00:25 1 218

I0R5 2009-09-12 00:27 0 218

I0R5 2009-09-12 00:29 2 218

I0R5 2009-09-12 00:33 3 218

I0R5 2009-09-12 00:36 0 218

I0R5 2009-09-12 00:39 1 218

The results are:

Tagname DateTime Value QualityDetail OPCQuality

I0R5 2009-09-12 00:20 2.6 218 218

I0R5 2009-09-12 00:30 1.0 218 218

I0R5 2009-09-12 00:40 1.6 218 218

For Interpolated mode only the returned row with Linear
wwInterpolationType will have combined qualities.
SELECT TagName, DateTime, Value, QualityDetail,

OPCQuality, wwRetrievalMode, wwInterpolationType
FROM History

WHERE TagName = 'I0R5'
AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Interpolated'
AND wwInterpolationType = 'Linear'
Wonderware Historian Concepts Guide

252 Chapter 7 Data Retrieval Options
If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

I0R5 2009-09-12 00:07 2 193

I0R5 2009-09-12 00:14 3 195

I0R5 2009-09-12 00:22 0 196

I0R5 2009-09-12 00:25 1 199

I0R5 2009-09-12 00:27 0 200

I0R5 2009-09-12 00:29 2 207

I0R5 2009-09-12 00:33 3 215

I0R5 2009-09-12 00:36 0 216

I0R5 2009-09-12 00:39 1 219

The results are:

Tagname DateTime Value QualityDetail OPCQuality

I0R5 2009-09-12 00:20 0.8 192 192

I0R5 2009-09-12 00:30 2.3 192 192

I0R5 2009-09-12 00:40 1.0 192 219

Note Cyclic, Full, Delta, Maximum, Minimum, and BestFit do not
have combined qualities; therefore, the rules are not applied to
these modes.

State Calculation (wwStateCalc)
The state calculation setting applies to ValueState and
RoundTrip retrieval.

For ValueState retrieval, you can choose the type of state
calculation (aggregation) to be performed on the data:

• Minimum: The shortest amount of time that the tag has
been in each unique state.

• Maximum: The longest amount of time that the tag has
been in each unique state.

• Average: The average amount of time that the tag has
been in each unique state.

• Total: The total amount of time that the tag has been in
each unique state.

• Percent: The total percentage of time that the tag has
been in each unique state.
Wonderware Historian Concepts Guide

Understanding Retrieval Options 253
• MinContained: The shortest amount of time each tag has
been in each unique state for each cycle, disregarding the
occurrences that are not fully contained with the
calculation cycle.

• MaxContained: The longest amount of time that the tag
has been in each unique state for each cycle, disregarding
the occurrences that are not fully contained with the
calculation cycle.

• AvgContained: The average amount of time that the tag
has been in each unique state for each cycle, disregarding
the occurrences that are not fully contained with the
calculation cycle.

• TotalContained: The total amount of time that the tag has
been in each unique state for each cycle, disregarding the
occurrences that are not fully contained with the
calculation cycle.

• PercentContained: The percentage of time that the tag
has been in each unique state for each cycle, disregarding
the occurrences that are not fully contained with the
calculation cycle.

All results except Percent are in milliseconds. Percent is a
percentage typically between 0.0 and 100.0. The percentage
can be higher than 100 in certain circumstances.

The nature of the data and how you set the cycle count
determines whether you should use a “contained” version of
the aggregation. The calculations apply to each unique value
state that the tag was in during each retrieval cycle for the
query. The total and percent calculations are always exact,
but the minimum, maximum, and average calculations are
subject to “arbitrary” cycle boundaries that do not coincide
with the value changes. Therefore, non-intuitive results may
be returned. This is most apparent for slowly-changing tags
queried over long cycles.

For example, a string tag that assumes only two distinct
values changing every 10 minutes is queried with a cycle
time of two hours. Going into a cycle, the value (state) at the
cycle boundary is recorded. If the value then changes a short
while into the cycle, the state found at the cycle start time
will most likely end up being the minimum value. Likewise,
the state at the cycle end time is cut short at the cycle end
time. The two cut-off occurrences in turn skew the average
calculation.
Wonderware Historian Concepts Guide

254 Chapter 7 Data Retrieval Options
For RoundTrip retrieval, you can only specify the following
types of state calculations (aggregations) to be performed on
the data. The calculations are for each unique state within
each retrieval cycle for the query.

• MinContained. The shortest time span between
consecutive leading edges of any state that occurs
multiple times within the cycle, while disregarding state
occurrences that are not fully contained inside of the
cycle.

• MaxContained. The longest time span between
consecutive leading edges of any state that occurs
multiple times within the cycle, while disregarding state
occurrences that are not fully contained inside of the
cycle.

• AvgContained. The average time span between
consecutive leading edges of any state that occurs
multiple times within the cycle, while disregarding state
occurrences that are not fully contained inside of the
cycle. (This is the default.)

• TotalContained. The total time span between
consecutive leading edges of any state that occurs
multiple times within the cycle while disregarding state
occurrences that are not fully contained inside of the
cycle.

• PercentContained. The percentage of the cycle time
spent in time span between consecutive leading edges for
a state that occurs multiple times within the cycle while
disregarding value occurrences that are not fully
contained inside of the cycle.

Analog Value Filtering (wwFilter)
You can use the following analog filters for all retrieval
modes:

• Statistical removal of outliers

• Analog to discrete conversion

• Zero around a base value

These filters are applied in a query to retrieve data from the
History table, WideHistory table, or StateWideHistory table.
These filter only apply to analog tags. All other types of tags,
including analog summary tags, are not supported.
Wonderware Historian Concepts Guide

Understanding Retrieval Options 255
You need to specify a filter name in the virtual column
wwFilter, with or without an override, to the set of
parameters that are defined for the specified filter. The
filters are specified as C-like functions: parentheses are
always required, even when you choose not to override the
default parameters by passing no parameters.

The default value for the wwFilter column is ‘NoFilter’. If the
query does not specify the wwFilter element at all, or if its
default value is not overridden, then no filter is applied.

When you use the analog filters in a query that uses
wwQualityRule, wwQualityRule is applied first and wwFilter
is applied later. You can only use one filter per query.

Statistically Removing Outliers (SigmaLimit)
This analog filter removes outliers from a set of analog points
based on the assumption that the distribution of point values
in the set is a normal distribution.

The following illustration shows an example of outliers.

Outliers

You can filter outliers by specifying a filter called
‘SigmaLimit()’. This filter has one parameter defined for
specifying the value of n. This parameter is of type double. If
the parameter is omitted, then a default parameter of 2.0 is
used.
Wonderware Historian Concepts Guide

256 Chapter 7 Data Retrieval Options
When this filter is specified in any retrieval mode, a time
weighted mean, μ (mu), and time weighted standard
deviation, σ (sigma), are found for each analog tag for the
entire query range including phantom cycles if any, and
points falling outside of the range [μ - nσ, μ + nσ] are removed
from the point set before the points are processed further. In
other words, the value will be filtered out if value > μ + nσ or
value < μ – nσ.

Time weighted standard deviation is calculated as:

Math.Sqrt((integralOfSquares - 2 * timeWeightedAverage *
integral + totalTime * timeWeightedAverage *
timeWeightedAverage)/totalTime);

This is the single pass equivalent to the formula:

s2
weighted = ? wi (xi -µ *)2

i=1

N

Ranges where the value is NULL are excluded from these
calculations.

A cyclic query example using a ‘SigmaLimit()’ filter without
specifying the n value would look like this:
SELECT DateTime, Value, wwFilter

FROM History
WHERE TagName = ('TankLevel')

AND DateTime >= '2008-01-15 15:00:00'
AND DateTime <= '2008-01-15 17:00:00'
AND wwRetrievalMode = 'Cyclic'
AND wwFilter = 'SigmaLimit()'

Not specifying the n-value as done here is the same as
specifying ‘SigmaLimit(2)’. The result set might look like this:

DateTime Value wwFilter

2008-01-15 15:00:00.000 34.56 SigmaLimit()

2008-01-15 16:00:00.000 78.90 SigmaLimit()

2008-01-15 17:00:00.000 12.34 SigmaLimit()

If the first value would be filtered out by the SigmaLimit
filter, the value will be replaced with the time weighted
mean.
Wonderware Historian Concepts Guide

Understanding Retrieval Options 257
Converting Analog Values to Discrete Values
(ToDiscrete)
The analog to discrete conversion filter allows you to convert
value streams for any analog tag in the query tag list into
discrete value streams. The filter can be used with all the
retrieval modes.

To convert analog values to discrete values, specify the
ToDiscrete() filter in the wwFilter column. This filter has two
parameters:

Parameter Valid Values Default Value

CutoffValue any double value 0.0

Operator >, >=, or <= >

The following are supported syntaxes.

• ToDiscrete()

• ToDiscrete(2)

• ToDiscrete(2, >=)

The following are unsupported syntaxes.

• ToDiscrete(2,)

• ToDiscrete(, >=)

• ToDiscrete(>=)

The cutoff value holds the value that signifies the boundary
between values that are to be interpreted as OFF and values
that are to be interpreted as ON.

The operator parameter controls the value range relative to
the cutoff value to convert to the ON value and vice versa.

NULLs encountered in the analog value stream are copied
unchanged to the discrete value stream. The quality of each
discrete point is copied from the analog point that causes its
production. However, the quality detail for values modified
with this filter will have the QualityDetail flag 0x2000 (value
changed by filter) set. For example, consider the following
ValueState query:
SELECT DateTime, vValue, StateTime, wwFilter

FROM History
WHERE TagName IN ('SysTimeSec')

AND DateTime >= '2008-01-15 15:00:00'
AND DateTime <= '2008-01-15 17:00:00'
AND wwRetrievalMode = 'ValueState'
AND wwStateCalc = 'MinContained'
AND wwResolution = 7200000
AND wwFilter = 'ToDiscrete(29, >)'
Wonderware Historian Concepts Guide

258 Chapter 7 Data Retrieval Options
Here the operator is specified as >, so values greater than but
not including 29 are internally converted to ON, whereas
values from 0 to 29 are converted to OFF. This query could
return the following rows:

DateTime vValue StateTime wwFilter

2008-01-15 15:00:00.000 0 30000 ToDiscrete(29, >)

2008-01-15 15:00:00.000 1 30000 ToDiscrete(29, >)

2008-01-15 17:00:00.000 0 30000 ToDiscrete(29, >)

2008-01-15 17:00:00.000 1 30000 ToDiscrete(29, >)

The values returned in the StateTime column show that the
shortest amount of time that SysTimeSec had values
equivalent to either ON or OFF and remained in that state
was 30 seconds. A similar RoundTrip query would look like
this:
SELECT DateTime, vValue, StateTime, wwFilter

FROM History
WHERE TagName IN ('SysTimeSec')

AND DateTime >= '2008-01-15 15:00:00'
AND DateTime <= '2008-01-15 17:00:00'
AND wwRetrievalMode = 'RoundTrip'
AND wwStateCalc = 'MaxContained'
AND wwResolution = 7200000
AND wwFilter = 'ToDiscrete(29, <=)'

Here the operator is specified as <=, so the resulting
conversion is exactly opposite to that performed in the
previous query. Now values smaller than or equal to 29 are
internally converted to ON, whereas values from 30 to 59 are
converted to OFF. This query could return the following
rows:

DateTime vValue StateTime wwFilter

2008-01-15 15:00:00.000 0 60000 ToDiscrete(29, <=)

2008-01-15 15:00:00.000 1 60000 ToDiscrete(29, <=)

2008-01-15 17:00:00.000 0 60000 ToDiscrete(29, <=)

2008-01-15 17:00:00.000 1 60000 ToDiscrete(29, <=)

The values returned in the StateTime column now show that
the longest amount of time found between roundtrips for both
the OFF and the ON state within the 2-hour cycles was 60
seconds.
Wonderware Historian Concepts Guide

Understanding Retrieval Options 259
Using the ToDiscrete() filter is similar to using edge
detection for event tags. Edge detection returns the actual
value with a timestamp in history for when a value matched
a certain criteria. The ToDiscrete() filter returns either a 1 or
0 to show that the criteria threshold was crossed. The
ToDiscrete() filter is more flexible, however, in the following
ways:

• You can use it with delta and full retrieval.

• You can combine it with “time-in-state” calculations to
determine how long a value is above a certain threshold
or the duration between threshold times.

Use the ToDiscrete() filter if you are mostly interested in
when something occurred, and not necessarily the exact
value of the event.

For more information on edge detection, see Edge Detection
for Events (wwEdgeDetection) on page 264.

“Zeroing” around a Base Value (SnapTo)
This analog filter lets you force values in a well-defined range
around one or more base values to “snap to” that base value.
For example, you can use this filter when a tank is known to
be empty, but the tag that stores the tank level returns a
“noisy” value close to zero.

The filter can be used with all retrieval modes, but its main
benefits are in the aggregate retrieval modes: average,
integral, minimum, and maximum.

To zero values around the base value, specify the SnapTo()
filter in the wwFilter column of the query.

The syntax for this filter is:
SnapTo([tolerance[,base_value_1[, base_value_2]…]])

This filter has two parameters:

Parameter Valid Values Default Value

Tolerance any double value 0.01

BaseValue zero, one, or up to 100
comma-separated
double values

single base value
of 0.0
Wonderware Historian Concepts Guide

260 Chapter 7 Data Retrieval Options
The following are supported syntaxes.

• SnapTo() – Same as SnapTo(0.1, 0.0)

• SnapTo(3.7) – Same as SnapTo(3.7, 0.0)

• SnapTo(3,) – Syntax Error

• SnapTo(,0) – Syntax error

• SnapTo(,) – Syntax error

• SnapTo(3, 4, -5) – Tolerance=3, Base Values 4 and -5.

When the Snap to filter is specified, point values falling
inside any of the ranges [Base value – Tolerance, Base value
+ Tolerance] will be forced to the base value before the point
goes into further retrieval processing. The result is undefined
if the base value +/- tolerance exceeds the range of the double
data type. The range is calculated using this expression:
If (x <= Base value + Tolerance AND x >= Base value –

Tolerance)
x = Base value

where x is the value of the point then

If ranges overlap, the first matching base value will be used.

A query example from the History table looks like this:
SELECT DateTime, Value, wwFilter

FROM History
WHERE TagName = ('TankLevel')

AND DateTime >= '2008-01-15 15:00:00'
AND DateTime <= '2008-01-15 17:00:00'
AND wwRetrievalMode = 'Average'
AND wwResolution = 3600000
AND wwFilter = 'SnapTo(0.01, 0, 1000)'

The following rows might be returned:

DateTime Value wwFilter

2008-01-15 15:00:00.000 0 SnapTo(0.01, 0, 1000)

2008-01-15 16:00:00.000 875.66 SnapTo(0.01, 0, 1000)

2008-01-15 17:00:00.000 502.3 SnapTo(0.01, 0, 1000)

When a value is snapped, the QualityDetail bit flag 0x2000 is
set.

If the filter syntax is not correct, a syntax error is returned
and no rows are returned.
Wonderware Historian Concepts Guide

Understanding Retrieval Options 261
Selecting Values for Analog Summary Tags
(wwValueSelector)

For an analog summary tag, multiple summarized values can
be stored in the historian for a single summarization period.
When you query analog summary data, a single value, time,
and quality (VTQ) must first be extrapolated from the
summarized values.

You set the value selector in the query to specify which
summarized value to return. The possible values are as
follows:

Value Selector Setting Value Returned Timestamp Returned

AUTO The retrieval mode
determines the value. See
the following table for how
AUTO applies to the value
selection. This is the
default value.

The retrieval mode
determines the
timestamp. See the
following table for how
AUTO applies to the
value selection. This is
the default value.

FIRST The first value that occurs
within the summary period.

The actual timestamp of
the first value occurrance
within the summary
period.

LAST The last value that occurs
within the summary period.

The actual timestamp of
the last value occurrance
within the summary
period.

MIN or MINIMUM The first minimum value
that occurs within the
summary period.

The actual timestamp of
the first minimum value
occurrance within the
summary period.

MAX or MAXIMUM The first maximum value
that occurs within the
summary period.

The actual timestamp of
the first maximum value
occurrance within the
summary period.

AVG or AVERAGE A time-weighted average
calculated from values
within the summary period.

The summary period
start time.

INTEGRAL An integral value
calculated from values
within the summary period.

The summary period
start time.
Wonderware Historian Concepts Guide

262 Chapter 7 Data Retrieval Options
The following table describes the value to be considered if the
value selector is set to AUTO:

STDDEV or
STANDARDDEVIATION

A standard deviation
calculated from values
within the summary period.

The summary period
start time.

Value Selector Setting Value Returned Timestamp Returned

Retrieval Mode Analog Summary Behavior

Cyclic The last value within the summary period is used. The actual
timestamp of the last value occurrance within the summary
period is used.

Delta The last value within the summary period is used. The actual
timestamp of the last value occurrance within the summary
period is used.

Full The last value within the summary period is used. The actual
timestamp of the last value occurrance within the summary
period is used.

Interpolated The retrieval mode determines the appropriate value to return.
See the following table for how AUTO applies to the value
selection. This is the default value.

Best Fit The first, last, min, and max points from analog summaries are
all considered as analog input points. Best fit analysis is done
with these points. If the analog summary percentage good is not
100%, the cycle is considered to have a NULL.

Average The averages of analog summaries are calculated using the
values from the Average column of the AnalogSummaryHistory
table. Interpolation type is ignored for analog summary values,
and STAIRSTEP interpolation is always used. PercentGood is
calculated by considering the TimeGood of each analog
summary.

If cycle boundaries do not exactly match the summary periods of
the stored analog summaries, the averages and time good are
calculated by prorating the average and time good values for the
portion of the time the summary period overlaps with the cycle.
Quality will be set to 64 (uncertain) if cycle boundaries do not
match summary periods.

If the QualityDetail of any analog summary considered for a
cycle is uncertain (64), the resulting quality is set to 64.

Minimum The first minimum value within the summary period is used.
The actual timestamp of the first minimum value occurrance
within the summary period is used.
Wonderware Historian Concepts Guide

Understanding Retrieval Options 263
For an analog summary tag, if any of the data within a
summary period has an OPCQuality other than Good, the
OPCQuality returned will be Uncertain. This is true even for
summary values that are not calculated, such as first, last,
minimum, maximum, and so on. For example, if the
OPCQuality for a last value is actually Good, but there was a
I/O Server disconnect during the summary calculation
period, the OPCQuality for the last value is returned as
Uncertain. A QualityDetail of 202 is used to distinguish
between the original point and the latest point.

Maximum The first maximum value within the summary period is used.
The actual timestamp of the first maximum value occurrance
within the summary period is used.

Integral The integrals of analog summaries are calculated using the
Integral column of the AnalogSummaryHistory table.
Interpolation type is ignored for analog summary values, and
STAIRSTEP interpolation is always used. PercentGood is
calculated by considering the TimeGood of each analog
summary.

If cycle boundaries do not exactly match the summary periods of
the stored analog summaries, the integrals and time good are
calculated by prorating the integral and time good values for the
portion of the time the summary period overlaps with the cycle.
Quality is set to 64 (uncertain) if cycle boundaries do not match
summary periods.

If the QualityDetail of any analog summary considered for a
cycle is uncertain (64), the resulting quality will be set to 64.

Slope The last value within the summary period is used. The actual
timestamp of the last value occurrance within the summary
period is used.

ValueState Cannot be used with analog summary data. No values are
returned.

Counter Cannot be used with analog summary data. No values are
returned.

RoundTrip Cannot be used with analog summary data. No values are
returned.

Retrieval Mode Analog Summary Behavior
Wonderware Historian Concepts Guide

264 Chapter 7 Data Retrieval Options
Edge Detection for Events (wwEdgeDetection)
An event is the moment at which a detection criterion is met
on historical tag values in the Wonderware Historian. At a
basic level, anything that can be determined by looking at
stored data can be used as an event.

When detecting events, it is useful to pinpoint rows in a
result set where the satisfaction of criteria in a WHERE
clause changed from true to false, or vice versa. For example,
you may want to know when the level of a tank went above 5
feet. The WHERE clause in a query for this example might be
TANKLEVEL > 5. As the tank level approaches 5 feet, the
criterion does not return true. Only when the level crosses
the line from not satisfying the criterion to satisfying it, does
the event actually occur. This imaginary "line" where the
change occurs is called the edge.

Over a period of time, there may be many instances where
the criteria cross the "edge" from being satisfied to not
satisfied, and vice-versa. The values on either side of this
"edge" can be detected if you configure your event tag to
include this information. There are four possible options for
edge detection: none, leading, trailing, or both. You will get
differing results based on which option you use:

Option Results

None Returns all rows that successfully meet the
criteria; no edge detection is implemented at the
specified resolution.

Leading Returns only rows that are the first to
successfully meet the criteria (return true) after
a row did not successfully meet the criteria
(returned false).

Trailing Returns only rows that are the first to fail the
criteria (return false) after a row successfully
met the criteria (returned true).

Both All rows satisfying both the leading and trailing
conditions are returned.

Edge detection only applies to analog and discrete value
detectors. Also, edge detection is handled slightly differently
based on whether you are using analog tags or discrete tags.

For more information on the event system, see Chapter 10,
Event Subsystem.
Wonderware Historian Concepts Guide

Understanding Retrieval Options 265
You can also use the ToDiscrete() query filter to determine
when data values cross a particular threshold. For more
information, see Converting Analog Values to Discrete
Values (ToDiscrete) on page 257.

Edge Detection for Analog Tags
For example, the behavior of the WHERE clause as it
processes a result set can be illustrated as:

A

B

C

D

E

F

G

V
A
L
U
E

TIME

Slopes A-B, C-D and E-F are rising edges, while slopes B-C,
D-E and F-G are falling edges. The slopes are affected by the
WHERE clause, which is a combination of the
wwEdgeDetection option and the comparison operator used
against the value.

The following table describes the rows that would be
returned for the various edge detection settings:

Operator = < > <= >=

Leading Falling and
rising
edges; first
value that
meets the
criteria.

Falling
edge only;
first value
to meet the
criteria.*

Rising edge
only; first
value to
meet the
criteria.

Falling
edge only;
first value
to meet the
criteria. *

Rising edge
only; first
value to
meet the
criteria.

Trailing Falling and
rising
edges; first
value to fail
the criteria
after a
value
meets the
criteria.

Rising edge
only; equal
to the first
value to fail
the criteria.

Falling
edge only;
first value
to fail the
criteria.*

Rising edge
only; first
value to fail
the criteria.

Falling
edge only;
first value
to fail the
criteria.*

* If the falling edge is a vertical edge with no slope, the query
will return the lowest value of that edge.
Wonderware Historian Concepts Guide

266 Chapter 7 Data Retrieval Options
The following query selects all values of "SysTimeSec" that
are greater than or equal to 50 from the History table
between 10:00 and 10:02 a.m. on December 2, 2001. No edge
detection is specified.
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-02 10:00:00'
AND DateTime <= '2001-12-02 10:02:00'
AND wwRetrievalMode = 'Cyclic'
AND wwResolution = 2000
AND Value >= 50
AND wwEdgeDetection = 'None'

The results are:

DateTime Value

2001-12-02 10:00:50.000 50

2001-12-02 10:00:52.000 52

2001-12-02 10:00:54.000 54

2001-12-02 10:00:56.000 56

2001-12-02 10:00:58.000 58

2001-12-02 10:01:50.000 50

2001-12-02 10:01:52.000 52

2001-12-02 10:01:54.000 54

2001-12-02 10:01:56.000 56

2001-12-02 10:01:58.000 58

Leading Edge Detection for Analog Tags
If Leading is specified as the parameter in the edge detection
time domain extension, the only rows in the result set are
those that are the first to successfully meet the WHERE
clause criteria (returned true) after a row did not successfully
meet the WHERE clause criteria (returned false).

The following query selects the first values of "SysTimeSec"
from the History table to meet the Value criterion between
10:00 and 10:02 a.m. on December 2, 2001.
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-02 10:00:00'
AND DateTime <= '2001-12-02 10:02:00'
AND wwRetrievalMode = 'Cyclic'
AND wwResolution = 2000
AND Value >= 50
AND wwEdgeDetection = 'Leading'
Wonderware Historian Concepts Guide

Understanding Retrieval Options 267
The query will return only the two values that were greater
than or equal to 50 for the time period specified:

DateTime Value

2001-12-02 10:00:50.000 50

2001-12-02 10:01:50.000 50

Compare these results with the same query using no edge
detection, as shown in Edge Detection for Analog Tags on
page 265. Notice that even though the original query
returned ten rows, the edge detection only returns the first
row recorded after the event criteria returned true.

Trailing Edge Detection for Analog Tags
If Trailing is specified as the parameter in the edge detection
extension, the only rows in the result set are those that are
the first to fail the criteria in the WHERE clause (returned
false) after a row successfully met the WHERE clause
criteria (returned true).

The following query selects the first values of "SysTimeSec"
from the History table to fail the Value criterion between
10:00 and 10:02 a.m. on December 2, 2001.
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-02 10:00:00'
AND DateTime <= '2001-12-02 10:02:00'
AND wwRetrievalMode = 'Cyclic'
AND wwResolution = 2000
AND Value >= 50
AND wwEdgeDetection = 'Trailing'

The query returns only the two values that were the first to
fail the criteria in the WHERE clause for the time period
specified:

DateTime Value

2001-12-02 10:01:00.000 0

2001-12-02 10:02:00.000 0

Compare these results with the same query using no edge
detection, as shown in Edge Detection for Analog Tags on
page 265. Notice that even though the original query
returned ten recorded rows for each value, the edge detection
only returns the first row recorded after the event criteria
returned false.
Wonderware Historian Concepts Guide

268 Chapter 7 Data Retrieval Options
Both Leading and Trailing Edge Detection for Analog
Tags
If Both is specified as the parameter in the edge detection
extension, all rows satisfying both the leading and trailing
conditions are returned.

The following query selects values of "SysTimeSec" from the
History table that meet both the Leading and Trailing
criteria between 10:00 and 10:02 a.m. on December 2, 2001.
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-02 10:00:00'
AND DateTime <= '2001-12-02 10:02:00'
AND wwRetrievalMode = 'Cyclic'
AND wwResolution = 2000
AND Value >= 50
AND wwEdgeDetection = 'Both'

The results are:

DateTime Value

2001-12-02 10:00:50.000 50

2001-12-02 10:01:00.000 0

2001-12-02 10:01:50.000 50

2001-12-02 10:02:00.000 0

Compare these results with the same query using no edge
detection, as shown in Edge Detection for Analog Tags on
page 265. Notice that value of the first row in the original
query is returned in the result set.

Edge Detection for Discrete Tags
Edge detection for discrete tags operates differently than for
analog tags. For example, assume the following discrete tags
are stored.

Tag Description

SysPulse Transitions between 1 and 0 every
minute.

MyPulse Transitions between 1 and 0 every 40
seconds.
Wonderware Historian Concepts Guide

Understanding Retrieval Options 269
A representation of the data stored in the system is as
follows:

0

1

0

1

MyPulse

SysPulse
00

:0
1:

00

00
:0

4:
00

00
:0

3:
40

00
:0

3:
20

00
:0

3:
00

00
:0

2:
40

00
:0

2:
20

00
:0

2:
00

00
:0

1:
40

00
:0

1:
20

The following queries select values of "SysPulse" and
"MyPulse" that have a value of 1 (On) from the History and
WideHistory tables between 12:59 and 1:04 a.m. on December
8, 2001. No edge detection is specified.

Query 1
Query for History.
SELECT DateTime, TagName, Value

FROM History
WHERE TagName IN ('SysPulse','MyPulse')

AND DateTime > '2001-12-08 00:59:00'
AND DateTime <= '2001-12-08 01:04:00'
AND wwRetrievalMode = 'Delta'
AND Value = 1
AND wwEdgeDetection = 'None'

The results are:

DateTime TagName Value

2001-12-08 00:01:00.000 SysPulse 1

2001-12-08 00:01:00.000 MyPulse 1

2001-12-08 00:02:20.000 MyPulse 1

2001-12-08 00:03:00.000 SysPulse 1

2001-12-08 00:03:40.000 MyPulse 1
Wonderware Historian Concepts Guide

270 Chapter 7 Data Retrieval Options
Query 2
Query for WideHistory.
SELECT * FROM OpenQuery(INSQL, 'SELECT DateTime,

SysPulse, MyPulse FROM WideHistory
WHERE DateTime > "2001-12-08 00:59:00"

AND DateTime < "2001-12-08 01:05:00"
AND SysPulse = 1
AND MyPulse = 1
AND wwRetrievalMode = "Delta"
AND wwEdgeDetection = "None"

')
The results are:

DateTime SysPulse MyPulse

2001-12-08 00:01:00.000 1 1

Leading Edge Detection for Discrete Tags
If Leading is specified as the parameter in the edge detection
time domain extension, the only rows in the result set are
those that are the first to successfully meet the WHERE
clause criteria (returned true) after a row did not successfully
meet the WHERE clause criteria (returned false).

The following queries select values of "SysPulse" and
"MyPulse" that have a value of 1 (On) from the History and
WideHistory tables between 12:59 and 1:04 a.m. on December
8, 2001.

Query 1
For a query on the History table, if the WHERE clause
criteria specify to return only discrete values equal to 1 (On),
then applying a leading edge detection does not change the
result set.
SELECT DateTime, TagName, Value

FROM History
WHERE TagName IN ('SysPulse','MyPulse')

AND DateTime > '2001-12-08 00:59:00'
AND DateTime <= '2001-12-08 01:04:00'
AND Value = 1
AND wwEdgeDetection = 'Leading'

The results are:

DateTime TagName Value

2001-12-08 00:01:00.000 SysPulse 1

2001-12-08 00:01:00.000 MyPulse 1

2001-12-08 00:02:20.000 MyPulse 1

2001-12-08 00:03:00.000 SysPulse 1

2001-12-08 00:03:40.000 MyPulse 1
Wonderware Historian Concepts Guide

Understanding Retrieval Options 271
Query 2
For a query on the WideHistory table, applying a leading
edge detection requires that the condition only evaluate to
true if both values are equal to 1 (On).
SELECT DateTime, SysPulse, MyPulse FROM

OpenQuery(INSQL, 'SELECT DateTime, SysPulse, MyPulse
FROM WideHistory

WHERE DateTime > "2001-12-08 00:59:00"
AND DateTime <= "2001-12-08 01:04:00"
AND SysPulse = 1
AND MyPulse = 1
AND wwEdgeDetection = "Leading"

')

The results are:

DateTime SysPulse MyPulse

2001-12-08 00:01:00.000 1 1

2001-12-08 00:03:40.000 1 1

Compare these results with the same query using no edge
detection, as shown in Edge Detection for Discrete Tags on
page 268. If you look at the diagram, you might think that a
row could be returned at 00:03:00, but because both tags
change at exactly this instant, their values are not returned.
In a normal process, it is unlikely that two tags would change
at exactly at the same instant.

Trailing Edge Detection for Discrete Tags
If Trailing is specified as the parameter in the edge detection
extension, the only rows in the result set are those that are
the first to fail the criteria in the WHERE clause (returned
false) after a row successfully met the WHERE clause
criteria (returned true).

Query 1
For a query on the History table, if the WHERE clause
criteria specifies to return only discrete values equal to 1
(On), then applying a trailing edge detection is the same as
reversing the WHERE clause (as if Value = 0 was applied).
SELECT DateTime, TagName, Value

FROM History
WHERE TagName IN ('SysPulse','MyPulse')

AND DateTime > '2001-12-08 00:59:00'
AND DateTime <= '2001-12-08 01:04:00'
AND Value = 1
AND wwEdgeDetection = 'Trailing'
Wonderware Historian Concepts Guide

272 Chapter 7 Data Retrieval Options
The results are:

DateTime TagName Value

2001-12-08 00:01:40.000 MyPulse 1

2001-12-08 00:02:00.000 SysPulse 1

2001-12-08 00:03:00.000 MyPulse 1

2001-12-08 00:04:00.000 SysPulse 1

Query 2
For a query on the WideHistory table, applying a trailing
edge detection returns the boundaries where the condition
ceases to be true (one of the values is equal to 0).
SELECT DateTime, SysPulse, MyPulse FROM

OpenQuery(INSQL, 'SELECT DateTime, SysPulse, MyPulse
FROM WideHistory

WHERE DateTime > "2001-12-08 00:59:00"
AND DateTime <= "2001-12-08 01:04:00"
AND SysPulse = 1
AND MyPulse = 1
AND wwEdgeDetection = "Trailing"

')

The results are:

DateTime SysPulse MyPulse

2001-12-08 00:01:40.000 1 1

2001-12-08 00:04:00.000 1 1

Compare these results with the same query using no edge
detection, as shown in Edge Detection for Discrete Tags on
page 268. If you look at the diagram, you might think that a
row could be returned at 00:03:00, but because both tags
change at exactly this instant, their values are not returned.
In a normal process, it is unlikely that two tags would change
at exactly at the same instant.

Both Leading and Trailing Edge Detection for Discrete
Tags
If Both is specified as the parameter in the edge detection
extension, all rows satisfying both the leading and trailing
conditions are returned.

The following queries select values of "SysPulse" and
"MyPulse" that meet an edge detection of Both for a value
criterion of 1 (On) from the History and WideHistory tables
between 12:59 and 1:04 a.m. on December 8, 2001.
Wonderware Historian Concepts Guide

Understanding Retrieval Options 273
Query 1

SELECT DateTime, TagName, Value
FROM History

WHERE TagName IN ('SysPulse','MyPulse')
AND DateTime > '2001-12-08 00:59:00'
AND DateTime <= '2001-12-08 01:04:00'
AND Value = 1
AND wwEdgeDetection = 'Both'

The results are:

DateTime TagName Value

2001-12-08 00:01:00.000 SysPulse 1

2001-12-08 00:01:00.000 MyPulse 1

2001-12-08 00:01:40.000 MyPulse 1

2001-12-08 00:02:00.000 SysPulse 1

2001-12-08 00:02:20.000 MyPulse 1

2001-12-08 00:03:00.000 SysPulse 1

2001-12-08 00:03:00.000 MyPulse 1

2001-12-08 00:03:40.000 MyPulse 1

2001-12-08 00:04:00.000 SysPulse 1

Query 2

SELECT DateTime, SysPulse, MyPulse FROM
OpenQuery(INSQL, 'SELECT DateTime, SysPulse, MyPulse
FROM WideHistory

WHERE DateTime > "2001-12-08 00:59:00"
AND DateTime <= "2001-12-08 01:04:00"
AND SysPulse = 1
AND MyPulse = 1
AND wwEdgeDetection = "Both"

')
The results are:

DateTime SysPulse MyPulse

2001-12-08 00:01:00.000 1 1

2001-12-08 00:01:40.000 1 1

2001-12-08 00:03:40.000 1 1

2001-12-08 00:04:00.000 1 1

Compare these results with the same query using no edge
detection, as shown in the Edge Detection for Discrete Tags
on page 268.
Wonderware Historian Concepts Guide

274 Chapter 7 Data Retrieval Options
Wonderware Historian Concepts Guide

275
Chapter 8

Query Examples

In addition to query examples that use the Wonderware
Historian time domain extensions, other query examples are
provided to demonstrate how to perform more complex
queries or to further explain how retrieval works.

The examples provided are not exhaustive of all possible
database queries, but they should give you an idea of the
kinds of queries that you could write.

For general information on creating SQL queries, see your
Microsoft SQL Server documentation.

Note If you have configured SQL Server to be case-sensitive, be
sure that you use the correct case when writing queries.

Querying the History Table
The History table presents acquired plant data in a historical
format. For more information, see "History Tables" in Chapter 1,
"Table Categories," in your Wonderware Historian Database
Reference.

The following query returns the date/time stamp and value
for the tag "ReactLevel." The query uses the remote table
view (History is used in place of
INSQL.Runtime.dbo.History).
Wonderware Historian Concepts Guide

276 Chapter 8 Query Examples
If you do not specify a wwCycleCount or wwResolution, the
query will return 100 rows (the default).
SELECT DateTime, Sec = DATEPART(ss, DateTime), TagName,

Value
FROM History

WHERE TagName = 'ReactLevel'
AND DateTime >= '2001-03-13 1:15:00pm'
AND DateTime <= '2001-03-13 2:15:00pm'
AND wwRetrievalMode = 'Cyclic'

The results are:

DateTime Sec TagName Value

2001-03-13 13:15:00.000 0 ReactLevel 1775.0

2001-03-13 13:15:00.000 36 ReactLevel 1260.0

2001-03-13 13:16:00.000 12 ReactLevel 1650.0

2001-03-13 13:16:00.000 49 ReactLevel 1280.0

2001-03-13 13:17:00.000 25 ReactLevel 1525.0

2001-03-13 13:18:00.000 1 ReactLevel 585.0

2001-03-13 13:18:00.000 38 ReactLevel 1400.0

2001-03-13 13:19:00.000 14 ReactLevel 650.0

2001-03-13 13:19:00.000 50 ReactLevel 2025.0

2001-03-13 13:20:00.000 27 ReactLevel 765.0

2001-03-13 13:21:00.000 3 ReactLevel 2000.0

2001-03-13 13:21:00.000 39 ReactLevel 830.0

2001-03-13 13:22:00.000 16 ReactLevel 1925.0

.

.

.

(100 row(s) affected)

Querying the Live Table
The Live table presents the latest available data for each tag
in the table. For more information, see "History Tables" in
Chapter 1, "Table Categories," in your Wonderware Historian
Database Reference.

The following query returns the current value of the specified
tag. The query uses the remote table view (Live is used in
place of INSQL.Runtime.dbo.Live).
SELECT TagName, Value

FROM Live
WHERE TagName = 'ReactLevel'
Wonderware Historian Concepts Guide

Querying the WideHistory Table 277
The result is:

TagName Value

ReactLevel 1145.0

(1 row(s) affected)

Querying the WideHistory Table
The wide extension table is a transposition of the History
table. Use the wide history tables any time you want to find
the value of one or more tags over time and need to specify
different filter criteria for each tag.

For more information, see "History Tables" in Chapter 1,
"Table Categories," in your Wonderware Historian Database
Reference.

The following query returns the value of two tags from the
WideHistory table. The WideHistory table can only be
accessed using the OPENQUERY function. The
"Runtime.dbo." qualifier is optional.
SELECT * FROM OpenQuery(INSQL,'

SELECT DateTime, ReactLevel, ReactTemp
FROM Runtime.dbo.WideHistory

WHERE Reactlevel > 1500
AND ReactTemp > 150

')
The results are:

DateTime ReactLevel ReactTemp

2001-03-02 06:20:00.000 1865.0 191.3

2001-03-02 06:21:00.000 2025.0 195.9

2001-03-02 06:22:00.000 2000.0 195.9

2001-03-02 06:23:00.000 2025.0 180.9

2001-03-02 06:27:00.000 1505.0 177.5

(5 row(s) affected).

In the WideHistory table, the column type is determined by
the tag type.
SELECT * FROM OpenQuery(INSQL, 'SELECT DateTime,

SysTimeMin, SysPulse, SysString FROM WideHistory
WHERE DateTime >= "2001-12-20 0:00"

AND DateTime <= "2001-12-20 0:05"
AND wwRetrievalMode = "delta"

')
Wonderware Historian Concepts Guide

278 Chapter 8 Query Examples
The results are:

DateTime SysTimeMin SysPulse SysString

2001-12-20 00:00:00.000 0 0 2001/12/20 08:00:00

2001-12-20 00:01:00.000 1 1 2001/12/20 08:00:00

2001-12-20 00:02:00.000 2 0 2001/12/20 08:00:00

2001-12-20 00:03:00.000 3 1 2001/12/20 08:00:00

2001-12-20 00:04:00.000 4 0 2001/12/20 08:00:00

2001-12-20 00:05:00.000 5 1 2001/12/20 08:00:00

Querying Wide Tables in Delta Retrieval Mode
Wide tables in delta retrieval mode will behave normally if
only one tag is returned. However, for a multiple tag display,
a complete row is returned to the client for each instance in
which one or more of the tags in the query returns a different
value. The row will reflect the actual values being returned
for the tags returning results, and will reflect the previous
values for the remaining tags in the result set (similar to
cyclic retrieval).

Note The value can be "invalid" or some other quality value.

The following query returns values for three tags from the
WideHistory table. "MyTagName" is a tag that periodically is
invalid.
SELECT * FROM OpenQuery(INSQL,'

SELECT DateTime, SysTimeSec, SysTimeMin, MyTagName
FROM WideHistory

WHERE DateTime >= "2001-05-12 13:00:00"
AND DateTime <= "2001-05-12 13:02:00"
AND wwRetrievalMode = "Delta"

')

The results are:

DateTime SysTimeSec SysTimeMin MyTagName

: : : :

: : : :

2001-05-12 13:00:55.000 55 00 1

2001-05-12 13:00:56.000 56 00 1

2001-05-12 13:00:57.000 57 00 1

2001-05-12 13:00:57.500 57 00 null

2001-05-12 13:00:58.000 58 00 null

2001-05-12 13:00:59.000 59 00 null

2001-05-12 13:01:00.000 00 01 null

2001-05-12 13:01:00.500 00 01 2
Wonderware Historian Concepts Guide

Querying the AnalogSummaryHistory View 279
Notice that 57 appears twice since the occurrence of 1
changing to NULL for tag "MyTagName" occurs sometime
between the 57th and 58th second. The same applies for
NULL changing to 2. The same behavior applies to discrete
values.

Querying the AnalogSummaryHistory View
The AnalogSummaryHistory view is a “wide” view that
allows you to return multiple statistics for a single tag
withing a single query.

The following query returns the minimum, maximum, and
average values for the SysTimeSec tag for the last minute.
declare @End datetime

set @End =
left(convert(varchar(30),getdate(),120),14)+'00:00'

SELECT Tagname, OPCQuality, Minimum as MIN, Maximum as
MAX, Average as AVG
FROM AnalogSummaryHistory

WHERE TagName = 'SysTimeSec'
AND StartDateTime >= dateadd(minute,-60,@End)
AND EndDateTime < @End
AND wwCycleCount = 2

The results are:

Tagname OPCQuality MIN MAX AVG

SysTimeSec 192 0 59 29.5

2001-05-12 13:01:01.000 01 01 2

2001-05-12 13:01:02.000 02 01 2

2001-05-12 13:01:03.000 03 01 2

: : : :

: : : :

: : : :
Wonderware Historian Concepts Guide

280 Chapter 8 Query Examples
Querying the StateSummaryHistory View
The StateSummaryHistory view is a “wide” view that allows
you to return multiple statistics for a single tag withing a
single query.

The following query returns the state count, total time in
state, and the percentage of time in state for the SysPulse
system tag for the last minute. One row is returned for each
state.
declare @End datetime

set @End =
left(convert(varchar(30),getdate(),120),14)+'00:00'

SELECT TagName, Value, OPCQuality, StateCount,
StateTimeTotal, StateTimePercent
FROM StateSummaryHistory

WHERE TagName = 'SysPulse'
AND StartDateTime >= dateadd(minute,-60,@End)
AND EndDateTime < @End
AND wwCycleCount = 2

The results are:

TagName Value OPCQuality StateCount StateTimeTotal StateTimePercent

SysPulse 0 192 15 900000 50

SysPulse 1 192 15 900000 50

The following query returns the minimum time in state, the
minimum contained time in state, and value for the
SysTimeSec system tag.
SELECT TagName, StartDateTime, EndDateTime,

StateTimeMin as STM, StateTimeMinContained as STMC,
Value
FROM StateSummaryHistory

WHERE TagName='SysTimeSec'
AND wwRetrievalMode='Cyclic'
AND wwResolution=5000
AND StartDateTime>='2009-10-21 17:40:00.123'
AND StartDateTime<='2009-10-21 17:40:05.000'

The results are:

TagName StartDateTime EndDateTime STM STMC Value

SysTimeSec 2009-10-21
17:40:00.123

2009-10-21
17:40:05.123

877 0 0

SysTimeSec 2009-10-21
17:40:00.123

2009-10-21
17:40:05.123

1000 1000 1

SysTimeSec 2009-10-21
17:40:00.123

2009-10-21
17:40:05.123

1000 1000 2

SysTimeSec 2009-10-21
17:40:00.123

2009-10-21
17:40:05.123

1000 1000 3
Wonderware Historian Concepts Guide

Using an Unconventional Tagname in a Wide Table Query 281
Using an Unconventional Tagname in a Wide
Table Query

In a SQL query against a wide table, unconventional tag
names must be delimited with brackets ([]), because the
tagname is used as a column name. For example, tagnames
containing a minus (-) or a forward slash (/) must be
delimited, otherwise the parser will attempt to perform the
corresponding arithmetic operation. No error will result from
using brackets where not strictly necessary. For more
information on unconventional tagnames, see "Naming
Conventions for Tags" on page 23.

The following is an example of how to delimit a tagname in a
query on a wide table. "ReactTemp-2" and "ReactTemp+2"
are tagnames. Without the delimiters, the parser would
attempt to include the "-2" and "+2" suffixes on the tagnames
as part of the arithmetic operation.

For clarity and maintainability of your queries, however, it is
recommended that you do not use special characters in
tagnames unless strictly necessary.
SELECT * FROM OpenQuery(INSQL,

'SELECT ReactTemp, [ReactTemp-2]-2, [ReactTemp+2]+2
FROM WideHistory WHERE ... ')

Using an INNER REMOTE JOIN
Instead of using " … WHERE TagName IN (SELECT TagName
…) ", it is more efficient to use INNER REMOTE JOIN
syntax.

In general, use the following pattern for INNER REMOTE
JOIN queries against the historian:

<SQLServerTable> INNER REMOTE JOIN
<HistorianExtensionTable>

SysTimeSec 2009-10-21
17:40:00.123

2009-10-21
17:40:05.123

1000 1000 4

SysTimeSec 2009-10-21
17:40:00.123

2009-10-21
17:40:05.123

123 0 5

TagName StartDateTime EndDateTime STM STMC Value
Wonderware Historian Concepts Guide

282 Chapter 8 Query Examples
Query 1
This query returns data from the history table, based on a
string tag that you filter for from the StringTag table:
SELECT DateTime, T.TagName, vValue, Quality,

QualityDetail
FROM StringTag T inner remote join History H
ON T.TagName = H.TagName

WHERE T.MaxLength = 64
AND DateTime >='2002-03-10 12:00:00.000'
AND DateTime <='2002-03-10 16:40:00.000'
AND wwRetrievalMode = 'Delta'

Query 2
This query returns data from the history table, based on a
discrete tag that you filter for from the Tag table:
SELECT DateTime, T.TagName, vValue, Quality,

QualityDetail
FROM Tag T inner remote join History H
ON T.TagName = H.TagName

WHERE T.TagType = 2
AND T.Description like 'Discrete%'
AND DateTime >='2002-03-10 12:00:00.000'
AND DateTime <='2002-03-10 16:40:00.000'
AND wwRetrievalMode = 'Delta'

Setting Both a Time and Value Deadband for
Retrieval

If both time and value deadbands are specified, then every
sample is checked for both deadbands, against the current
basis value (the last sample returned).

If it passes both tests, then it is returned and acts as the
basis for checking the next sample.

For example:
SELECT DateTime, TagName, Value

FROM History
WHERE TagName = 'ReactTemp'

AND DateTime >= '2002-03-13 10:08'
AND DateTime <= '2002-03-13 10:28'
AND wwRetrievalMode = 'Delta'
AND wwTimeDeadband = 5000
AND wwValueDeadband = 5
Wonderware Historian Concepts Guide

Setting Both a Time and Value Deadband for Retrieval 283
The tag selected, 'ReactTemp,' has a MinEU value of 0 and a
MaxEU value of 220. Thus, the value deadband will be 5
percent of (220 - 0), which equals 11. ReactTemp changes
rapidly between its extreme values, but the value remains
constant for short periods near the high and low temperature
limits. Therefore, when changes are rapid, the value
deadband condition is satisfied first, then the time deadband
is satisfied. In this region, the behavior is dominated by the
time deadband, and the returned rows are spaced at 5 second
intervals. Where the temperature is more constant
(particularly at the low temperature end), the time deadband
is satisfied first, followed by the value deadband. Both
deadbands are only satisfied when the value of a row is more
than 11 degrees different from the previous row. Thus, the
effect of value deadband can be seen to dominate near the
low and high temperature extremes of the tag.

The results are:

DateTime TagName Value

2002-03-13 10:08:00.000 ReactTemp 121.0

2002-03-13 10:08:10.000 ReactTemp 189.10000610351562

2002-03-13 10:08:20.000 ReactTemp 147.69999694824219

2002-03-13 10:08:30.000 ReactTemp 106.30000305175781

2002-03-13 10:08:40.000 ReactTemp 30.100000381469727

2002-03-13 10:08:50.000 ReactTemp 16.399999618530273

2002-03-13 10:09:00.000 ReactTemp 61.0

2002-03-13 10:09:10.000 ReactTemp 151.0

2002-03-13 10:09:20.000 ReactTemp 173.0

2002-03-13 10:09:30.000 ReactTemp 131.60000610351562

2002-03-13 10:09:40.000 ReactTemp 57.700000762939453

2002-03-13 10:09:50.000 ReactTemp 16.299999237060547

2002-03-13 10:10:10.000 ReactTemp 96.0

2002-03-13 10:10:20.000 ReactTemp 186.0

2002-03-13 10:10:30.000 ReactTemp 156.89999389648437

2002-03-13 10:10:40.000 ReactTemp 115.5

2002-03-13 10:10:50.000 ReactTemp 41.599998474121094

2002-03-13 10:11:00.000 ReactTemp 21.0

2002-03-13 10:11:10.000 ReactTemp 41.0

2002-03-13 10:11:20.000 ReactTemp 131.0

2002-03-13 10:11:30.000 ReactTemp 184.5

2002-03-13 10:11:40.000 ReactTemp 140.80000305175781

2002-03-13 10:11:50.000 ReactTemp 99.400001525878906

2002-03-13 10:12:00.000 ReactTemp 25.5
Wonderware Historian Concepts Guide

284 Chapter 8 Query Examples
2002-03-13 10:12:20.000 ReactTemp 76.0

2002-03-13 10:12:30.000 ReactTemp 166.0

2002-03-13 10:12:50.000 ReactTemp 124.69999694824219

2002-03-13 10:13:00.000 ReactTemp 50.799999237060547

2002-03-13 10:13:10.000 ReactTemp 16.399999618530273

2002-03-13 10:13:30.000 ReactTemp 111.0

2002-03-13 10:13:40.000 ReactTemp 193.69999694824219

2002-03-13 10:13:50.000 ReactTemp 152.30000305175781

2002-03-13 10:14:00.000 ReactTemp 108.59999847412109

2002-03-13 10:14:10.000 ReactTemp 34.700000762939453

2002-03-13 10:14:20.000 ReactTemp 21.0

2002-03-13 10:14:30.000 ReactTemp 51.0

2002-03-13 10:14:40.000 ReactTemp 146.0

2002-03-13 10:14:50.000 ReactTemp 177.60000610351562

2002-03-13 10:15:00.000 ReactTemp 136.19999694824219

2002-03-13 10:15:10.000 ReactTemp 92.5

2002-03-13 10:15:20.000 ReactTemp 18.600000381469727

2002-03-13 10:15:40.000 ReactTemp 86.0

2002-03-13 10:15:50.000 ReactTemp 181.0

2002-03-13 10:16:00.000 ReactTemp 161.5

2002-03-13 10:16:10.000 ReactTemp 120.09999847412109

2002-03-13 10:16:20.000 ReactTemp 76.400001525878906

2002-03-13 10:16:30.000 ReactTemp 20.899999618530273

2002-03-13 10:16:50.000 ReactTemp 81.0

2002-03-13 10:17:00.000 ReactTemp 176.0

2002-03-13 10:17:10.000 ReactTemp 163.80000305175781

2002-03-13 10:17:20.000 ReactTemp 122.40000152587891

2002-03-13 10:17:30.000 ReactTemp 46.200000762939453

2002-03-13 10:17:40.000 ReactTemp 18.700000762939453

2002-03-13 10:18:00.000 ReactTemp 116.0

2002-03-13 10:18:10.000 ReactTemp 189.10000610351562

2002-03-13 10:18:20.000 ReactTemp 147.69999694824219

.

.

.

DateTime TagName Value
Wonderware Historian Concepts Guide

Using wwResolution, wwCycleCount, and wwRetrievalMode in the Same Query 285
Using wwResolution, wwCycleCount, and
wwRetrievalMode in the Same Query

The results of a database query will vary depending on the
combination of resolution, cycle count, and retrieval mode
that you use in the query. These results are summarized in
the following table. N = A numeric value.

Retrieval
Mode Resolution Cycle Count Results

CYCLIC N 0 (or no
value)

All stored data for tags during the specified
time interval are queried, and then a
resolution of N ms applied.

CYCLIC 0 (or no
value)

0 The server will return 100,000 rows per tag
specified.

CYCLIC 0 (or no
value)

N All stored data for tags during the specified
time interval are queried, and then a cycle
count of N evenly spaced rows is applied.

CYCLIC N (any value
is ignored)

All stored data for tags during the specified
time interval are queried, and then a
resolution of N ms applied.

CYCLIC (no value) (no value
or a value
less than 0)

The server will return 100 rows per tag
specified.

DELTA (any value
is ignored)

0 All values that changed during the specified
time interval are returned (up to 100,000
rows total).

DELTA (any value
is ignored)

N Values that changed during the specified
time interval are queried, and then a cycle
count (first N rows) is applied. The cycle
count limits the maximum number of rows
returned, regardless of how many tags were
queried. For example, a query that applies a
cycle count of 20 to four tags will return a
maximum of 20 rows of data. An initial row
will be returned for each tag, and the
remaining 16 rows will be based on
subsequent value changes for any tag.

DELTA (any value
is ignored)

(no value) All values that changed during the specified
time interval are returned (no row limit).

In general, if there is an error in the virtual columns, or an
unresolvable conflict, then zero rows are returned.
Wonderware Historian Concepts Guide

286 Chapter 8 Query Examples
Determining Cycle Boundaries
Cycle boundaries are calculated based on the query start and
end times, wwCycleCount, and wwResolution.

If you only specify wwCycleCount, evenly spaced cycles are
returned based on the value of wwCycleCount.

If you only specify wwResolution, cycles are spaced
wwResolution milliseconds apart starting at the query start
time until query end time is reached. The last cycle will have
whatever duration is required to end exactly at the query end
time. If this last duration is shortened by this rule, it is
known as a partial cycle. Because of this, the final cycle
duration may not match wwResolution.

If both wwCycleCount and wwResolution are specified, no
result rows will be returned. If you specify neither
wwCycleCount nor wwResolution in the query, the query will
return 100 rows.

Unless otherwise specified, a value is considered in a given
full or partial cycle if its timestamp occurs at or after the
cycle start (timestamp >= cycle start) and before the cycle
end (timestamp < cycle end).

Mixing Tag Types in the Same Query
The History and Live tables use the sql_variant data type for
the vValue column, allowing the return of various data types
in a single column. In other words, these tables allow values
for tags of different types to be retrieved with a simple query,
without the need for a JOIN operation.

For example:
SELECT TagName, DateTime, vValue

FROM History
WHERE TagName IN ('SysTimeMin', 'SysPulse',
'SysString')

AND DateTime >= '2001-12-20 0:00'
AND DateTime <= '2001-12-20 0:05'
AND wwRetrievalMode = 'delta'

The results are:

TagName DateTime vValue

SysTimeMin 2001-12-20 00:00:00.000 0

SysPulse 2001-12-20 00:00:00.000 0

SysString 2001-12-20 00:00:00.000 2001/12/20 08:00:00

SysTimeMin 2001-12-20 00:01:00.000 1

SysPulse 2001-12-20 00:01:00.000 1

SysTimeMin 2001-12-20 00:02:00.000 2
Wonderware Historian Concepts Guide

Using a Criteria Condition on a Column of Variant Data 287
Using a Criteria Condition on a Column of
Variant Data

The Wonderware Historian OLE DB provider sends variant
data to the SQL Server as a string. If the query contains a
criteria condition on a column containing variant type data,
the filtering is handled by SQL Server. An example of a
criteria condition is:
WHERE ... vValue = 2

To perform the filtering, the SQL Server must determine the
data type of the constant (in this example, 2), and attempt to
convert the variant (string) to this destination type. The SQL
Server assumes that a constant without a decimal is an
integer, and attempts to convert the string to an integer type.
This conversion will fail in SQL Server if the string actually
represents a float (for example, 2.00123).

You should explicitly state the destination type by means of a
CONVERT function. This is the only reliable way of filtering
on the vValue column, which contains variant data.

For example:
SELECT DateTime, Quality, OPCQuality, QualityDetail,

Value, vValue, TagName
FROM History

WHERE TagName IN ('ADxxxF36', 'SysTimeMin',
'SysPulse')

AND DateTime >= '12-04-2001 04:00:00.000'
AND DateTime <= '12-04-2001 04:03:00.000'
AND wwRetrievalMode = 'Delta'
AND convert(float, vValue) = 2

SysPulse 2001-12-20 00:02:00.000 0

SysTimeMin 2001-12-20 00:03:00.000 3

SysPulse 2001-12-20 00:03:00.000 1

SysTimeMin 2001-12-20 00:04:00.000 4

SysPulse 2001-12-20 00:04:00.000 0

SysTimeMin 2001-12-20 00:05:00.000 5

SysPulse 2001-12-20 00:05:00.000 1
Wonderware Historian Concepts Guide

288 Chapter 8 Query Examples
The following is another example:
SELECT DateTime, Quality, OPCQuality, QualityDetail,

Value, vValue, TagName
FROM History

WHERE TagName IN ('VectorX', 'SysTimeMin',
'SysPulse')

AND DateTime >= '20020313 04:00:07.000'
AND DateTime <= '20020313 04:01:00.000'
AND wwRetrievalMode = 'Delta'
AND convert(float, vValue) > 1
AND convert(float, vValue) < 2

Using DateTime Functions
Date functions perform an operation on a date and time
input value and return either a string, numeric, or date and
time value. The following query returns the date/time stamp
and value for the tag 'SysTimeSec' for the last 10 minutes.
SELECT DateTime, TagName, Value, Quality

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= dateadd(Minute, -10,
GetDate())
AND DateTime <= GetDate()
AND wwRetrievalMode = 'Cyclic'

The results are:

DateTime TagName Value Quality

2001-12-15 13:00:00.000 SysTimeSec 0.0 0

2001-12-15 13:00:06.060 SysTimeSec 6.0 0

2001-12-15 13:00:12.120 SysTimeSec 12.0 0

2001-12-15 13:00:18.180 SysTimeSec 18.0 0

2001-12-15 13:00:24.240 SysTimeSec 24.0 0

2001-12-15 13:00:30.300 SysTimeSec 30.0 0

2001-12-15 13:00:36.360 SysTimeSec 36.0 0

2001-12-15 13:00:42.420 SysTimeSec 42.0 0

.

.

.

If you want to use date/time functions and the wwTimeZone
parameter in the same query, you will need to use the
faaTZgetdate() function. This is because of differences in
how the SQL Server and the Wonderware Historian OLE DB
provider determine the end date for a query.
Wonderware Historian Concepts Guide

Using DateTime Functions 289
For any query, the SQL Server performs all date/time
computations in local server time, reformulates the query
with specific dates, and sends it on to the Wonderware
Historian OLE DB provider. The Wonderware Historian
OLE DB provider then applies the wwTimeZone parameter
in determining the result set.

For example, the following query requests the last 30
minutes of data, expressed in Eastern Daylight Time (EDT).
The server is located in the Pacific Daylight Time (PDT)
zone.
SELECT DateTime, TagName, Value FROM History

 WHERE TagName IN ('SysTimeHour', 'SysTimeMin',
'SysTimeSec')

 AND DateTime > DateAdd(mi, -30, GetDate())
 AND wwTimeZone = 'eastern daylight time'

If it is currently 14:00:00 in the Pacific Daylight Time zone,
then it is 17:00:00 in the Eastern Daylight Time zone. You
would expect the query to return data from 16:30:00 to
17:00:00 EDT, representing the last 30 minutes in the
Eastern Daylight Time zone.

However, the data that is returned is from 13:30:00 to
17:00:00 EDT. This is because the SQL Server computes the
"DateAdd(mi, -30, GetDate())" part of the query
assuming the local server time zone (in this example, PDT).
It then passes the Wonderware Historian OLE DB provider a
query similar to the following:
SELECT DateTime, TagName, Value FROM History

WHERE TagName IN ('SysTimeHour', 'SysTimeMin',
'SysTimeSec')

AND DateTime > 'YYYY-MM-DD 13:30:00.000'
AND wwTimeZone = 'eastern daylight time'

Because the OLE DB provider is not provided an end date, it
assumes the end date to be the current time in the specified
time zone, which is 17:00:00 EDT.

To work around this problem, use the faaTZgetdate()
function with intermediate variables. For example:
DECLARE @starttime datetime

SET @starttime = dbo.faaTZgetdate('eastern daylight
time')

SELECT DateTime, TagName, Value FROM History
WHERE TagName IN ('SysTimeHour', 'SysTimeMin',
'SysTimeSec')

AND DateTime > DateAdd(mi, -30, @starttime)
AND DateTime < DateAdd(mi, -5, @starttime)
AND wwTimeZone = 'eastern daylight time'
Wonderware Historian Concepts Guide

290 Chapter 8 Query Examples
The following example uses a wide table:
SELECT * FROM OpenQuery(INSQL, '

SELECT DateTime, SysTimeHour, SysTimeMin,
SysTimeSec FROM WideHistory
WHERE DateTime > DateAdd(mi, -30,
faaTZgetdate("eastern daylight time"))

AND DateTime < DateAdd(mi, -5,
faaTZgetdate("eastern daylight time"))
AND wwTimeZone = "eastern daylight time"

')

Using the GROUP BY Clause
The GROUP BY clause works if the query uses the four-part
naming convention or one of the associated views.

The following example will find the highest value of a
specified set of tags over a time period.
SELECT TagName, Max(Value)

 FROM INSQL.Runtime.dbo.History
 WHERE TagName IN
('ReactTemp','ReactLevel','SysTimeSec')

 AND DateTime > '2001-12-20 0:00'
 AND DateTime < '2001-12-20 0:05'
 GROUP BY TagName

The results are:

SysTimeSec 59.0

Using the COUNT() Function
The COUNT(*) function works directly in a four-part query,
but is not supported inside of the OPENQUERY function.

For example:
SELECT count(*)

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-20 0:00'
AND DateTime <= '2001-12-20 0:05'
AND wwRetrievalMode = 'delta'
AND Value >= 30

The result is:

150
Wonderware Historian Concepts Guide

Using an Arithmetic Function 291
If you use the OPENQUERY function, you cannot perform
arithmetic functions on the COUNT(*) column. However, you
can perform the count outside of the OPENQUERY, as
follows:
SELECT count(*), count(*)/2 FROM OPENQUERY(INSQL,

'SELECT DateTime, vValue, Quality, QualityDetail
FROM History

WHERE TagName IN ("SysTimeSec")
AND DateTime >= "2002-04-16 03:00:00.000"
AND DateTime <= "2002-04-16 06:00:00.000"
AND wwRetrievalMode = "Delta"

')

The result is:

10801 5400

(1 row(s) affected)

Using an Arithmetic Function
The following query adds the values of two tags from the
WideHistory table.
SELECT * FROM OpenQuery(INSQL,'

SELECT DateTime, ReactLevel, ProdLevel, "Sum" =
ReactLevel+Prodlevel

FROM WideHistory
WHERE DateTime > "2001-02-28 18:56"
AND DateTime < "2001-02-28 19:00"
AND wwRetrievalMode = "Cyclic"

')
The results are:

DateTime ReactLevel Prodlevel Sum

2001-02-28 18:56:00.000 1525.0 2343.0 3868.0

2001-02-28 18:56:00.000 1525.0 2343.0 3868.0

2001-02-28 18:56:00.000 1525.0 2343.0 3868.0

2001-02-28 18:56:00.000 1525.0 2343.0 3868.0

2001-02-28 18:56:00.000 2025.0 2343.0 4368.0

2001-02-28 18:56:00.000 2025.0 2343.0 4368.0

.

.

.

(100 row(s) affected)

If you use a math operator, such as plus (+), minus (-),
multiply (*), or divide (/), you will need to add a blank space
in front of and after the operator. For example, "Value - 2"
instead of "Value-2".
Wonderware Historian Concepts Guide

292 Chapter 8 Query Examples
Using an Aggregate Function
The following query returns the minimum, maximum,
average, and sum of the tag 'ReactLevel' from the
WideHistory table.
SELECT * FROM OpenQuery(INSQL,'

SELECT "Minimum" = min(ReactLevel),
"Maximum" = max(ReactLevel),
"Average" = avg(ReactLevel),
"Sum" = sum(ReactLevel)

FROM WideHistory
WHERE DateTime > "2001-02-28 18:55:00 "
AND DateTime < "2001-02-28 19:00:00"
AND wwRetrievalMode = "Cyclic"

')
The results are:

Minimum Maximum Average Sum

-25.0 2025.0 1181.2 118120.0

(1 row(s) affected)

If you perform a SUM or AVG in delta retrieval mode against
the Wide table, the aggregation will only be performed when
the value has changed. The aggregation will not apply to all
of the rows returned for each column.

For example, the following query has no aggregation applied:
SELECT * FROM OpenQuery(INSQL, 'SELECT DateTime,

SysTimeHour, SysTimeMin, SysTimeSec, SysDateDay
FROM AnalogWideHistory

WHERE DateTime >= "2001-08-15 13:20:57.345"
AND DateTime < "2001-08-15 13:21:03.345"
AND wwRetrievalMode = "Delta"

')
GO

The results are:

DateTime SysTimeHour SysTimeMin SysTimeSec SysDateDay

2001-08-15 13:20:57.343 13 20 57 15

2001-08-15 13:20:58.000 13 20 58 15

2001-08-15 13:20:59.000 13 20 59 15

2001-08-15 13:21:00.000 13 21 0 15

2001-08-15 13:21:01.000 13 21 1 15

2001-08-15 13:21:02.000 13 21 2 15

2001-08-15 13:21:03.000 13 21 3 15

(7 row(s) affected)
Wonderware Historian Concepts Guide

Using an Aggregate Function 293
Then, a SUM is applied to all of the returned column values:
SELECT * FROM OpenQuery(INSQL,'SELECT Sum(SysTimeHour),

Sum(SysTimeMin), Sum(SysTimeSec), Sum(SysDateDay)
FROM WideHistory

WHERE DateTime >= "2001-08-15 13:20:57.345"
AND DateTime < "2001-08-15 13:21:03.345"
AND wwRetrievalMode = "Delta"

')
GO

The results are:

SysTimeHour SysTimeMin SysTimeSec SysDateDay

13 41 180 15

Thus, for delta retrieval mode, a SUM or AVG is applied only
if the value has changed from the previous row.

If you perform an AVG in delta retrieval mode, AVG will be
computed as:

SUM of delta values/number of delta values
For example, an AVG is applied to all of the returned column
values:
SELECT * FROM OpenQuery(INSQL,'SELECT Avg(SysTimeHour),

Avg(SysTimeMin), Avg(SysTimeSec), Avg(SysDateDay)
FROM WideHistory

WHERE DateTime >= "2001-08-15 13:20:57.345"
AND DateTime < "2001-08-15 13:21:03.345"
AND wwRetrievalMode = "Delta"

')
GO

The results are:

SysTimeMin SysTimeSec

20.5 25.714285714285715
Wonderware Historian Concepts Guide

294 Chapter 8 Query Examples
Making and Querying Annotations
The following query creates an annotation for the specified
tag. The annotation is made in response to a pump turning
off. Then, the annotations for a particular tag are returned.
DECLARE @@UserKey INT

SELECT @@UserKey = UserKey
FROM UserDetail

WHERE UserName = 'wwAdmin'

INSERT INTO Annotation (TagName, UserKey, DateTime,
Content)

VALUES ('ReactLevel', @@UserKey, GetDate(), 'The
Pump is off')

SELECT DateTime, TagName, Content
FROM Annotation

WHERE Annotation.TagName = 'ReactLevel'
AND DateTime > '27 Feb 01'
AND DateTime <= GetDate()

The results are:

DateTime TagName Content

2001-02-28 19:18:00.000 ReactLevel The Pump is off

(1 row(s) affected)

Using Comparison Operators with Delta
Retrieval

The system behaves differently when doing typical
delta-based queries where a start date and end date are
specified using the comparison operators >=, >, <= and <. The
comparison operators can be used on the History and
WideHistory tables. The comparison operators also apply
regardless of how the query is executed (for example,
four-part naming, OLE DB provider views, and so on).

Delta queries that use the comparison operators return all
the valid changes to a set of tags over the specified time span.
Using deadbands and other filters may modify the set of
valid changes.

Specifying the Start Date with ">="
If the start date is specified using >= (greater than or equal
to), then a row is always returned for the specified start date.
If the start date/time coincides exactly with a valid value
change, then the Quality is normal (0). Otherwise, the value
at the start date is returned, and the Quality value is 133
(because the length of time that the tag's value was at X is
unknown).
Wonderware Historian Concepts Guide

Using Comparison Operators with Delta Retrieval 295
Query 1
For this query, the start date will not correspond to a data
change:
SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime >= '2001-01-13 12:00:30'
AND DateTime < '2001-01-13 12:10:00'

The start time (12:00:30) does not correspond with an actual
change in value, and is therefore marked with the initial
quality of 133:

DateTime Value Quality

2001-01-13 12:00:30.000 0 133

2001-01-13 12:01:00.000 1 0

2001-01-13 12:02:00.000 2 0

2001-01-13 12:03:00.000 3 0

2001-01-13 12:04:00.000 4 0

2001-01-13 12:05:00.000 5 0

2001-01-13 12:06:00.000 6 0

2001-01-13 12:07:00.000 7 0

2001-01-13 12:08:00.000 8 0

2001-01-13 12:09:00.000 9 0

(10 row(s) affected)

Query 2
For this query, the start date will correspond to a data
change:
SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime >= '2001-01-13 12:01:00'
AND DateTime < '2001-01-13 12:10:00'

The start time (12:01:00) does correspond exactly with an
actual change in value, and is therefore marked with the
normal quality of 0.

DateTime Value Quality

2001-01-13 12:01:00.000 1 0

2001-01-13 12:02:00.000 2 0

2001-01-13 12:03:00.000 3 0

2001-01-13 12:04:00.000 4 0

2001-01-13 12:05:00.000 5 0

2001-01-13 12:06:00.000 6 0
Wonderware Historian Concepts Guide

296 Chapter 8 Query Examples
(9 row(s) affected)

Query 3
For this query, the start date will return at least one row,
even though the query captures no data changes:
SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime >= '2001-01-13 12:00:30'
AND DateTime < '2001-01-13 12:01:00'

The query does not capture an actual change in value, and is
therefore marked with the initial value quality of 133 for the
start time of the query:

DateTime Value Quality

2001-01-13 12:00:30.000 0 133

(1 row(s) affected)

Specifying the Start Date with ">"
If the start date is specified using > (greater than), then the
first row returned is the first valid change after (but not
including) the start date. No initial value row is returned. A
query that uses > to specify its start date may return zero
rows.

Query 1
For this query, the first row that will be returned will be the
first valid change after (but not including) the start time
(12:00:30):
SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime > '2001-01-13 12:00:30'
AND DateTime < '2001-01-13 12:10:00'

The first row returned is the first valid change after (but not
including) the start time (12:00:30):

2001-01-13 12:07:00.000 7 0

2001-01-13 12:08:00.000 8 0

2001-01-13 12:09:00.000 9 0

DateTime Value Quality

2001-01-13 12:01:00.000 1 0

2001-01-13 12:02:00.000 2 0

2001-01-13 12:03:00.000 3 0

2001-01-13 12:04:00.000 4 0

2001-01-13 12:05:00.000 5 0
Wonderware Historian Concepts Guide

Using Comparison Operators with Delta Retrieval 297
(9 row(s) affected)

Query 2
For this query, the start date will correspond to a data
change, but it will be excluded from the result set because
the operator used is greater than, not greater than or equal to.
SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime > '2001-01-13 12:01:00'
AND DateTime < '2001-01-13 12:10:00'

The start time (12:01:00) corresponds exactly with an actual
change in value, but it is excluded from the result set because
the operator used is greater than, not greater than or equal to.

DateTime Value Quality

2001-01-13 12:02:00.000 2 0

2001-01-13 12:03:00.000 3 0

2001-01-13 12:04:00.000 4 0

2001-01-13 12:05:00.000 5 0

2001-01-13 12:06:00.000 6 0

2001-01-13 12:07:00.000 7 0

2001-01-13 12:08:00.000 8 0

2001-01-13 12:09:00.000 9 0

(8 row(s) affected)

Query 3
This query will return no rows, because no data changes are
captured:
SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime > '2001-01-13 12:00:30'
AND DateTime < '2001-01-13 12:01:00'

The query does not capture an actual change in value;
therefore, no rows are returned.

DateTime Value Quality

(0 row(s) affected)

2001-01-13 12:06:00.000 6 0

2001-01-13 12:07:00.000 7 0

2001-01-13 12:08:00.000 8 0

2001-01-13 12:09:00.000 9 0
Wonderware Historian Concepts Guide

298 Chapter 8 Query Examples
Specifying the End Date with "<="
If the end date is specified using <= (less than or equal to)
then the last row returned is the last valid change up to, and
including, the end date. If the end date uses "<=" then the
last change returned may have a date/time exactly at the end
date. If there is a value exactly at the end date, it will be
returned.

This query uses the remote table view.
SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime > '2001-01-13 12:00:30'
AND DateTime <= '2001-01-13 12:10:00'

Note that there is a valid change at exactly the end time of
the query (12:10:00):

DateTime Value Quality

2001-01-13 12:01:00.000 1 0

2001-01-13 12:02:00.000 2 0

2001-01-13 12:03:00.000 3 0

2001-01-13 12:04:00.000 4 0

2001-01-13 12:05:00.000 5 0

2001-01-13 12:06:00.000 6 0

2001-01-13 12:07:00.000 7 0

2001-01-13 12:08:00.000 8 0

2001-01-13 12:09:00.000 9 0

2001-01-13 12:10:00.000 10 0

(10 row(s) affected)

Specifying the End Date with "<"
If the end date is specified using < (less than), then the last
row returned is the last valid change up to (but not including)
the end date. If the end date uses "<" then the last event
returned will have a date/time less than the end date. If
there is an event exactly at the end date, it will not be
returned.

This query uses the remote table view.
SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime > '2001-01-13 12:00:30'
AND DateTime < '2001-01-13 12:10:00'
Wonderware Historian Concepts Guide

Using Comparison Operators with Cyclic Retrieval and Cycle Count 299
Note that there is a valid change at exactly the end time of
the query (12:10:00), but it is excluded from the result set.

DateTime Value Quality

2001-01-13 12:01:00.000 1 0

2001-01-13 12:02:00.000 2 0

2001-01-13 12:03:00.000 3 0

2001-01-13 12:04:00.000 4 0

2001-01-13 12:05:00.000 5 0

2001-01-13 12:06:00.000 6 0

2001-01-13 12:07:00.000 7 0

2001-01-13 12:08:00.000 8 0

2001-01-13 12:09:00.000 9 0

(9 row(s) affected)

Using Comparison Operators with Cyclic
Retrieval and Cycle Count

Cyclic queries with the wwCycleCount time domain
extension return a set of evenly spaced rows over the
specified time span. The result set will always return the
number of rows specified by the cycle count extension for
each tag in the query. The resolution for these rows is
calculated by dividing the time span by the cycle count.

Using Two Equality Operators
If the time range is specified using >= and <=, then the first
row falls exactly on the start time, and the last row falls
exactly on the end time. In this case, the resolution used is
(end date – start date) / (cyclecount – 1).

This query uses a cycle count of 60, resulting in a 1 second
resolution for the data. The query uses the remote table view.
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-01-13 12:00:00'
AND DateTime <= '2001-01-13 12:00:59'
AND wwCycleCount = 60
AND wwRetrievalMode = 'Cyclic'

The results are:

DateTime Value

2001-01-13 12:00:00.000 0

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2
Wonderware Historian Concepts Guide

300 Chapter 8 Query Examples
(60 row(s) affected)

Using One Equality Operator
If one end of the time range is excluded (by using > instead of
>= or < instead of <=). then a gap of "resolution" is left at the
beginning (or end) of the result set.

The resolution is calculated as (end date – start date) /
(cyclecount).

The row that equates to the time which is designated using
the < (or >) operator is not returned.

These queries use the remote table view.

Query 1
This query uses a cycle count of 60, resulting in a 1 second
resolution for the data. The starting time is set to >=.
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND wwCycleCount = 60
AND DateTime >= '2001-01-13 12:00:00'
AND DateTime < '2001-01-13 12:01:00'

The results are:

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

.

.

.

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

DateTime Value

2001-01-13 12:00:00.000 0

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

.

.

.

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57
Wonderware Historian Concepts Guide

Using Comparison Operators with Cyclic Retrieval and Cycle Count 301
(60 row(s) affected)

Query 2
This query also uses a cycle count of 60, resulting in a 1
second resolution for the data. The ending time is set to <=.
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND wwCycleCount = 60
AND DateTime > '2001-01-13 12:00:00'
AND DateTime <= '2001-01-13 12:01:00'

The results are:

DateTime Value

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

.

.

.

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

2001-01-13 12:01:00.000 0

(60 row(s) affected)

Using No Equality Operators
If both ends of the time range are excluded (by using > and <)
then a gap of "resolution" is left at the beginning and end of
the result set.

The resolution is calculated as (end date – start date) /
(cyclecount + 1).

The row(s) that equate to the start and end times are not
returned.

This query uses the remote table view.
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND wwCycleCount = 60
AND DateTime > '2001-01-13 12:00:00'
AND DateTime < '2001-01-13 12:01:01'

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59
Wonderware Historian Concepts Guide

302 Chapter 8 Query Examples
The results are:

DateTime Value

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

.

.

.

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

2001-01-13 12:01:00.000 0

(60 row(s) affected)

Using Comparison Operators with Cyclic
Retrieval and Resolution

Cyclic queries that use comparison operators and the
resolution time domain extension return a set of evenly
spaced rows over the specified time span. The resolution for
these rows is specified in the query.

Using Two Equality Operators
If the time range is specified using >= and <=, then the first
row falls exactly on the start time. The last row will fall
exactly on the end time, if the resolution divides exactly into
the specified time duration. If the resolution does not divide
exactly into the specified time duration, then the last row
returned will be the last row satisfying (start date +
N*resolution) which has a timestamp less than the end date.

In short:

• <= endtime MAY return a last row containing the exact
endtime (but it is not guaranteed to do so)

• < endtime is guaranteed NOT to return a last row
containing the exact endtime
Wonderware Historian Concepts Guide

Using Comparison Operators with Cyclic Retrieval and Resolution 303
This query sets the resolution to 1 second.
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND wwResolution = 1000
AND DateTime >= '2001-01-13 12:00:00'
AND DateTime <= '2001-01-13 12:01:00'

The results are:

DateTime Value

2001-01-13 12:00:00.000 0

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

.

.

.

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

2001-01-13 12:01:00.000 0

(61 row(s) affected)

Using One Equality Operator
If the start time is excluded (by using > instead of >=), then a
gap of "resolution" is left at the beginning of the result set. In
this case, the first row returned will have the timestamp of
the (start date + resolution). If the end date uses "<" then the
last row returned will be the last row defined by (start date +
N*resolution) which has a timestamp less than the end date.

The row that equates to the time that is designated using the
< (or >) operator is not returned.

Query 1
This query uses a resolution of 1000, resulting in a 1 second
resolution for the data. The starting time is set to >=.
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND wwResolution = 1000
AND DateTime >= '2001-01-13 12:00:00'
AND DateTime < '2001-01-13 12:01:00'
Wonderware Historian Concepts Guide

304 Chapter 8 Query Examples
The results are:

DateTime Value

2001-01-13 12:00:00.000 0

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

.

.

.

2001-01-13 12:00:55.000 55

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

(60 row(s) affected)

Query 2
This query also uses a row resolution of 1000, resulting in a 1
second resolution for the data. The starting time is set to <=.
SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND wwResolution = 1000
AND DateTime > '2001-01-13 12:00:00'
AND DateTime <= '2001-01-13 12:01:00'

The results are:

DateTime Value

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

.

.

.

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

2001-01-13 12:01:00.000 0

(60 row(s) affected)
Wonderware Historian Concepts Guide

Using Comparison Operators with Cyclic Retrieval and Resolution 305
Using No Equality Operators
If both ends of the time range are excluded (by using > and
<), then a gap of resolution is left at the beginning and end of
the result set.

The row(s) that equate to the start and end times are not
returned.

This query uses a resolution of 1000, resulting in a 1 second
resolution for the data.
SELECT DateTime, Value

FROM v_AnalogHistory
WHERE TagName = 'SysTimeSec'

AND wwResolution = 1000
AND DateTime > '2001-01-13 12:00:00'
AND DateTime < '2001-01-13 12:01:01'

The results are:

DateTime Value

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

.

.

.

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

2001-01-13 12:01:00.000 0

(60 row(s) affected)
Wonderware Historian Concepts Guide

306 Chapter 8 Query Examples
SELECT INTO from a History Table
The following query inserts the specified data from the
WideHistory table into another table called MyTable. Then,
the data in the MyTable table is queried. This query uses the
OPENQUERY function.
DROP TABLE MyTable

SELECT DateTime,
"Sec" = datepart(ss, DateTime),
"mS" = datepart(ms, DateTime),
ReactTemp, ReactLevel

INTO MyTable
FROM OpenQuery(INSQL, 'SELECT DateTime,
ReactTemp, ReactLevel FROM WideHistory

WHERE wwResolution = 5000
AND DateTime >= "2001-03-13 1:58pm"
AND DateTime <= "2001-03-13 2:00pm" ')

SELECT * FROM MyTable

The results are:

DateTime Sec mS ReactTemp ReactLevel

2001-03-13 13:58:00.000 0 0 190.9 2025.0

2001-03-13 13:58:00.000 5 0 190.9 2025.0

2001-03-13 13:58:00.000 10 0 168.3 1215.0

2001-03-13 13:58:00.000 15 0 168.3 1215.0

2001-03-13 13:58:00.000 20 0 133.8 315.0

2001-03-13 13:58:00.000 25 0 133.8 315.0

2001-03-13 13:58:00.000 30 0 101.6 0.0

2001-03-13 13:58:00.000 35 0 101.6 0.0

2001-03-13 13:58:00.000 40 0 32.4 750.0

2001-03-13 13:58:00.000 45 0 32.4 750.0

2001-03-13 13:58:00.000 50 0 20.9 1700.0

2001-03-13 13:58:00.000 55 0 20.9 1700.0

2001-03-13 13:59:00.000 0 0 85.9 2000.0

2001-03-13 13:59:00.000 5 0 85.9 2000.0

2001-03-13 13:59:00.000 10 0 185.9 2000.0

2001-03-13 13:59:00.000 15 0 185.9 2000.0

2001-03-13 13:59:00.000 20 0 168.3 1235.0

2001-03-13 13:59:00.000 25 0 168.3 1235.0

2001-03-13 13:59:00.000 30 0 136.1 335.0

2001-03-13 13:59:00.000 35 0 136.1 335.0

2001-03-13 13:59:00.000 40 0 103.9 -25.0

2001-03-13 13:59:00.000 45 0 103.9 -25.0

2001-03-13 13:59:00.000 50 0 34.7 625.0
Wonderware Historian Concepts Guide

Moving Data from a SQL Server Table to an Extension Table 307
(25 row(s) affected)

Moving Data from a SQL Server Table to an
Extension Table

The following queries show how to insert manual data into a
normal SQL Server table and then move it into the History
extension table.

First, insert the data into the SQL Server table. The
following query inserts two minutes of existing data for the
SysTimeSec tag into the ManualAnalogHistory table:
INSERT INTO ManualAnalogHistory (DateTime, TagName,

Value, Quality, QualityDetail, wwTagKey)
SELECT DateTime, TagName, Value, Quality,
QualityDetail, wwTagKey

FROM History WHERE TagName = 'SysTimeSec'
AND DateTime >= '20050329 12:00:00'
AND DateTime <= '20050329 12:02:00'

Then, create a manual tag using the System Management
Console. For a manual tag, "MDAS/Manual Acquisition" is
specified as the acquisition type. Be sure to commit the
changes to the system. In this example, a manual analog tag
named MDAS1 was created.

Finally, insert the data from the ManualAnalogHistory table
into History:
INSERT INTO History (TagName, DateTime, Value,

QualityDetail)
SELECT 'MDAS1', DateTime, Value, QualityDetail FROM
ManualAnalogHistory

WHERE TagName = 'SysTimeSec'
AND DateTime >= '20050329 12:00:00'
AND DateTime <= '20050329 12:02:00'

2001-03-13 13:59:00.000 55 0 34.7 625.0

2001-03-13 14:00:00.000 0 0 20.9 1575.0
Wonderware Historian Concepts Guide

308 Chapter 8 Query Examples
Using Server-Side Cursors
Cursors are a very powerful feature of SQL Server. They
permit controlled movement through a record set that results
from a query.

For in-depth information on cursors, see your Microsoft SQL
Server documentation.

The Wonderware Historian OLE DB Provider provides
server-side cursors. Cursors can be used to do joins that are
not possible in any other way. They can be used to join
date/times from any source with date/times in the history
tables.

The following query provides an example of using a
server-side cursor. This query:

• Fetches all of the events in the EventHistory table.

• Shows a "snapshot" of three tags at the time of each
event.

• Shows the event tag and its associated key value.

This query could easily be encapsulated into a stored
procedure. The query uses the four-part naming convention.
SET QUOTED_IDENTIFIER OFF

DECLARE @DateValue DateTime
DECLARE @EventTag nvarchar(256)

DECLARE @EventKey int

DECLARE @Qry1 nvarchar(500)

DECLARE @Qry2 nvarchar(500)

DECLARE @Qry3 nvarchar(500)

SELECT @Qry1 = N'SELECT EventTag = @EventTag, EventKey
= @EventKey, DateTime, TagName, Value, Quality
FROM History

WHERE TagName IN (N''SysTimeSec'',
N''SysTimeMin'', N''SysTimeHour'')

AND DateTime = '''

SELECT @Qry2 = N''''
SELECT @Qry3 = N''

DECLARE Hist_Cursor CURSOR FOR
SELECT DateTime, TagName, EventLogKey

FROM Runtime.dbo.EventHistory

OPEN Hist_Cursor
FETCH NEXT FROM Hist_Cursor INTO @DateValue, @EventTag,

@EventKey

WHILE @@FETCH_STATUS = 0
Wonderware Historian Concepts Guide

Using Server-Side Cursors 309
BEGIN

SELECT @Qry3 = @Qry1 + convert(nvarchar, @DateValue,
121) + @Qry2
--PRINT @Qry3
EXEC sp_executesql @Qry3, N'@EventTag
nvarchar(256),
@EventKey int', @EventTag, @EventKey
FETCH NEXT FROM Hist_Cursor INTO @DateValue,
@EventTag, @EventKey

END

CLOSE Hist_Cursor
DEALLOCATE Hist_Cursor

The results are:

EventTag EventKey DateTime TagName Value Quality

SysStatusEvent 3 2001-01-12
13:00:27.000

SysTimeSec 27.0 0

SysStatusEvent 3 2001-01-12
13:00:27.000

SysTimeMin 0.0 0

SysStatusEvent 3 2001-01-12
13:00:27.000

SysTimeHour 13.0 0

(3 row(s) affected)

EventTag EventKey DateTime TagName Value Quality

SysStatusEvent 4 2001-01-12
14:00:28.000

SysTimeSec 28.0 0

SysStatusEvent 4 2001-01-12
14:00:28.000

SysTimeMin 0.0 0

SysStatusEvent 4 2001-01-12
14:00:28.000

SysTimeHour 14.0 0

(3 row(s) affected)
Wonderware Historian Concepts Guide

310 Chapter 8 Query Examples
Using Stored Procedures in OLE DB Queries
Any normal SQL Server stored procedure can make use of
the tables exposed by the Wonderware Historian OLE DB
Provider. Stored procedures can use any valid Transact-SQL
syntax to access Wonderware Historian historical data.

In other words, stored procedures can make use of
four-part-queries, OPENQUERY and OPENROWSET
functions, cursors, parameterized queries and views. Stored
procedures can be used to encapsulate complex joins and
other operations for easy re-use by applications and end
users.

Querying Data to a Millisecond Resolution
using SQL Server 2005

Internally, the Wonderware Historian uses a Win32
FILETIME data type for representing date/time. This 64-bit
integer yields a time resolution of 100 nano-seconds. From a
retrieval point of view, however, the limiting factor is the
resolution of the SQL Server 2005 datetime type. For SQL
Server 2005, datetime represents time with a resolution of
1/300 second, or 3.33 milliseconds. SQL Server 2005 rounds
the time values in increments of .000, .003, or .007 seconds.

Note When you are using Wonderware Historian with SQL Server
2008, millisecond resolution is supported for retrieval by using the
DateTime2 data type.

For consistency with SQL Server 2005, it is important that
any OLE DB time functions present time data according to
the same convention. A rounding algorithm is incorporated to
achieve the desired results. This is necessary when a user
calls a datetime function that manipulates milliseconds
within an OPENQUERY statement. For example:
SELECT * FROM OpenQuery(INSQL,

'SELECT DATEPART(millisecond, getdate()),
Value FROM Live WHERE TagName =
"ReactTemp"')

returns results in the same format as:
SELECT DATEPART(millisecond, getdate())
Wonderware Historian Concepts Guide

Querying Data to a Millisecond Resolution using SQL Server 2005 311
If you require millisecond time resolution, the Wonderware
Historian provides a means of bypassing the SQL Server
2005 datetime restriction by retrieving the datetime as a
string. This is implemented by the use of specific style
specifiers for the CONVERT function. These specifiers
(numbered 909, 913, 914, 921, and 926) return a string in the
same format as the corresponding 100-series style specifiers,
but with millisecond time resolution. Style specifier 909
formats the string in the same way as standard specifier 109;
913 formats as for 113; and so on.

For details of the string format corresponding to each
100-series specifier, see the description of the
CONVERT(data_type, expression, style) function in your
Microsoft SQL Server 2005 documentation.

An OPENQUERY statement must be used to ensure that the
CONVERT statement is passed to the Wonderware Historian
parser, because this is a specific extension to CONVERT
functionality provided by the Wonderware Historian.

For example:
SELECT CONVERT(varchar(30), DateTime, 113), Value

FROM Live
WHERE TagName = 'ReactTemp'

might return '2001-08-10 14:30:45:337' (3.33 millisecond
resolution), while
SELECT * FROM OpenQuery(INSQL,

'SELECT CONVERT(varchar(30), DateTime, 913), Value
FROM Live

WHERE TagName = "ReactTemp" ')
would return '2001-08-10 14:30:45:335' (1 millisecond
resolution).

In all, a total of ten CONVERT styles are available within
the Wonderware Historian. These are 20, 120, 21, 121, 126,
909, 913, 914, 921, and 926.
Wonderware Historian Concepts Guide

312 Chapter 8 Query Examples
Getting Data from the OPCQualityMap Table
In general, an OPC quality has 16 significant bits. The lower
8 bits contain the quality as described in the table, while the
upper 8 bits hold server-specific information. To ensure
correct results, it is important to consider only the lower 8
bits in a query or join involving the OPCQualityMap table.

For example:
SELECT h.DateTime, h.TagName, h.Value, o.Description

FROM History h
 INNER JOIN OPCQualityMap o
 ON (h.OPCQuality & 255) = o.OPCQuality

 WHERE TagName in (…)
 AND …

Using Variables with the Wide Table
You cannot use variables in an OPENQUERY statement.
Therefore, if you want to use variables in a query on the wide
table, you must first build up the OPENQUERY statement
"on the fly" as a string, and then execute it.
DECLARE @sql nvarchar(1000)
DECLARE @DateStart datetime

DECLARE @DateEnd datetime

SET @DateStart = '2001-8-29 11:00:00'
SET @DateEnd = '2001-8-29 11:11:00'

SET @sql = N'select *

FROM OPENQUERY(INSQL, ''SELECT DateTime, ReactLevel,
ReactTemp, ProdLevel, BatchNumber, ConcPump, Mixer,
TransferValve, TransferPump, WaterValve, ConcValve,
OutputValve, SteamValve
FROM WideHistory

WHERE DateTime >= "' + CONVERT(varchar(26),
@DateStart, 113) + '"

 and DateTime <= "' + CONVERT(varchar(26),
@DateEnd, 113) + '"
 AND wwResolution = 1000
 AND wwRetrievalMode = "cyclic"'') '

EXEC sp_executesql @sql
Wonderware Historian Concepts Guide

Retrieving Data Across a Data "Hole" 313
Retrieving Data Across a Data "Hole"
If the data to be retrieved spans more than one history block,
and the start time of the later block is equal (within one tick)
to the end time of the first block, you will not notice any
difference than when querying within a single block.

However, if the system has been stopped between history
blocks, there will be a "hole" in the data, as shown in the
following diagram:

Upon retrieval, additional data points (labeled A and B) will
be added to mark the end of the first block's data and the
beginning of the second block's data. Point C is a stored point
generated by the storage subsystem. (Upon a restart, the
first value from each IDAS will be offset from the start time
by 2 seconds and have a quality detail of 252.)

The following paragraphs explain this in more detail.

For delta retrieval, the data values in the first block are
returned as stored. After the end of the block is reached and
all of the points have been retrieved, an additional data point
(A) will be inserted by retrieval to mark the end of the data.
The value for point A will be

Point A attribute Value(Hex) Value(Dec)

Value 0 0

Quality 100 256

Quality Detail 0 0
Wonderware Historian Concepts Guide

314 Chapter 8 Query Examples
If there is no value stored at the beginning of the next block,
an initial data point (B) will be inserted by retrieval and will
have the snapshot initial value as stored. The quality and
quality detail values are as follows:

Point B attribute Value(Hex) Value(Dec)

Value Snapshot Snapshot

Quality 0 0

Quality Detail 96 150

In the case of cyclic retrieval, a point is required for each
specified time. If the time coincides with the data hole, a
NULL point for that time will be generated. The inserted
points will have the values defined in the following table.

Cyclic NULL point Value(Hex) Value(Dec)

Value 0 0

Quality 100 256

Quality Detail 0 0

If you are using time or value deadbands for delta retrieval
across a data gap, the behavior is as follows:

• For a value deadband, all NULLs will be returned and all
values immediately after a NULL will be returned. That
is, the deadband is not applied to values separated by a
NULL.

• For a time deadband, null values are treated like any
other value. Time deadbands are not affected by NULLs.
Wonderware Historian Concepts Guide

Returned Values for Non-Valid Start Times 315
Returned Values for Non-Valid Start Times
One example of a non-valid query start time is a start time
that is earlier than the start time of the first history block.
For delta retrieval, the first row returned will be NULL. The
timestamp will be that of the query start time. The next row
returned will be timestamped at the start of the history block
and have the following attributes:

Point attribute Value(Hex) Value(Dec)

Value Snapshot Snapshot

Quality 0 0

Quality Detail 96 150

For cyclic retrieval, NULL will be returned for data values
that occur before the start of the history block.

Another non-valid start time is a start time that is later than
the current time of the Wonderware Historian computer. For
delta retrieval, a single NULL value will be returned. For
cyclic retrieval, a NULL will be returned for each data value
requested.

Retrieving Data from History Blocks and the
Active Image

During initialization, the retrieval subsystem will note the
oldest timestamp for each tag in the active image. If the
query start time is more recent than the oldest timestamp,
all of the requested tag values will be obtained directly from
the active image. If the query start time is older than the
oldest timestamp, data will be retrieved from the history
blocks.

If the query spans up to the oldest timestamp, the retrieval
subsystem will check the active image to re-determine oldest
timestamp (because older values in the active image are
overwritten to make room for new values). If the requested
data is still in the active image, it will be used. Otherwise,
data is retrieved from the history blocks. This process will
continue until the active image can be used or the query end
time is surpassed. It is important to note that this process is
applied on a per-tag basis.

For more information, see "How the Active Image Storage
Option Affects Data Retrieval" on page 121.
Wonderware Historian Concepts Guide

316 Chapter 8 Query Examples
Querying Aggregate Data in Different Ways
There are four different ways you can retrieve summary
data, such as an average, using the Historian.

• Using the SQL Server average function. This is
appropriate for discrete samples. For example, a check
weigher, where you are measuring individual units
against a target weight.

• Using the average retrieval mode. This is appropriate for
most situations where you want to find an average, as it
is weighted according to time. For example, if you want to
find the average for a flow rate or a temperature.

• Setting up summary replication and then querying the
AnalogSummaryHistory table. Replication uses the
average retrieval mode to do the calculations.

• Setting up a summary event and then querying the
SummaryData table. The event subsystem uses the SQL
Server average function.

The following examples show how you can get the same data
using these different methods. All examples use the
SysTimeSec system tag, which has a range of 0 to 59.
Query 1
The following query uses the SQL Server average function to
return the average value of the SysTimeSec tag over the span
of one minute.
SELECT AVG(Value) as 'SysTimeSec AVG'

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime > '2009-11-15 6:30:00'
AND DateTime < '2009-11-15 6:31:00'
AND wwRetrievalMode = 'Full'

The results are:

SysTimeSec AVG

29.5
Wonderware Historian Concepts Guide

Querying Aggregate Data in Different Ways 317
Query 2
The following query uses the historian time-weighted
average retrieval mode to return the average for the same
time period. Because the cycle count is set to 2, a first row is
returned for the “phantom”cycle leading up to the query start
time. The StartDateTime column shows the time stamp at
the start of the data sampling, which is the start time of the
phantom cycle. The second row returned reflects is the actual
data that you expect. The time stamp for the data value is
2009-11-15 06:31:00 because the default time stamping rule
is set so that the ending time stamp for the cycle is returned.
For more information about the phantom cycle, see About
“Phantom” Cycles on page 224.
SELECT StartDateTime, DateTime, TagName, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2009-11-15 6:30:00'
AND DateTime <= '2009-11-15 6:31:00'
AND wwRetrievalMode = 'Average'
AND wwCycleCount = 2
AND wwTimeStampRule = 'end'

The results are:

StartDateTime DateTime TagName Value

2009-11-15 06:29:00 2009-11-15 06:30:00 SysTimeSec 29.5

2009-11-15 06:30:00 2009-11-15 06:31:00 SysTimeSec 29.5

Query 3
For the following query, local replication has been set up so
that the average of the SysTimeSec tag is calculated every
minute and stored to the SysTimeSec.1M analog summary
tag. The query returns the value of the SysTimeSec.1M tag
for the time period specified.
SELECT TagName, StartDateTime, EndDateTime, Average as

AVG
FROM AnalogSummaryHistory

WHERE TagName = 'SysTimeSec.1M'
AND StartDateTime >= '2009-11-15 6:30:00'
AND EndDateTime <= '2009-11-15 6:31:00'

The results are:

TagName StartDateTime EndDateTime AVG

SysTimeSec.1M 2009-11-15 06:30:00 2009-11-15 06:31:00 29.5
Wonderware Historian Concepts Guide

318 Chapter 8 Query Examples
Query 4
The following query, the History table is used instead of the
AnalogSummaryHistory table. Because the cycle count is set
to 2, this query returns a row for the phantom cycle. The time
stamp for the data value is 2009-11-15 06:31:00 because the
default time stamping rule is set so that the ending time
stamp for the cycle is returned.
SELECT TagName, DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec.1M'

AND DateTime >= '2009-11-15 6:30:00'
AND DateTime <= '2009-11-15 6:31:00'
AND wwRetrievalMode = 'avg'
AND wwCycleCount = 2

The results:

TagName DateTime Value

SysTimeSec.1M 2009-11-15 06:30:00 29.5

SysTimeSec.1M 2009-11-15 06:31:00 29.5

Query 5
The following query returns five minutes of summary data
for an event tag that has been configured to store the average
value of the SysTimeSec tag every minute.
SELECT TagName, CalcType, SummaryDate, Value

FROM v_SummaryData
WHERE TagName = 'SysTimeSec'

AND SummaryDate >= '2009-11-15 18:30:00'
AND SummaryDate <= '2009-11-15 18:31:00'

The results are:

TagName CalcType SummaryDate Value
SysTimeSec AVG 2009-11-15 18:30:00.000 29.5
SysTimeSec AVG 2009-11-15 18:31:00.000 29.5
Wonderware Historian Concepts Guide

319
Chapter 9

Replication Subsystem

Data from one Wonderware Historian can be replicated to
one or more other Wonderware Historians, creating a “tiered”
relationship between the historians.

About Tiered Historians
You can set up Wonderware Historians in a variety of tiered
configurations. In a common configuration, data from
multiple individual historians (called tier-1 historians) is fed
into a single centralized historian (called a tier-2 historian).
Wonderware Historian Concepts Guide

320 Chapter 9 Replication Subsystem
The tier-2 historian stores data replicated from the tier-1
historians.

Tier-1 Local
troubleshooting and

buffering

Tier-2: Centralized
reporting and system

of record

I/O

InTouch Application Server

Another configuration is to have multiple tier-1 historians
that feed information to multiple tier-2 historians in a
many-to-many relationship.

HoustonNew Orleans

Tier-2

Tier-1
Wonderware Historian Concepts Guide

How Tags are Used During Replication 321
How Tags are Used During Replication
Data from a tier-1 historian is replicated to a tier-2 historian
using tags in the same way that information is collected by
an individual Wonderware historian.

The tier for a tag is determined by where it comes from:

• Values for tier-1 tags are gathered directly from an IDAS
or MDAS.

• Values for tier-2 tags come from another Wonderware
Historian server.

A historian can act as a tier-1 and a tier-2 historian
simultaneously.

A typical scenario for a tiered historian appears in the
following example. Tag1 is collected on historian A and all its
values are replicated to historian B, where they are stored as
values of tag2. At the same time historian B collects data for
its tag3 and all its values are replicated to historian C, where
they are stored as values of tag4.

Historian A

tag1

replicated to
tag2 on

Historian B

tag1 is a
tier-1 tag of
Historian A

Historian B

tag2

tag2 is a
tier-2 tag of
Historian B

tag3 is a
tier-1 tag of
Historian B

tag3

replicated to
tag4 on

Historian C

Historian C

tag4 is a
tier-2 tag of
Historian C

tag4

(tier-1 historian) (tier-2 historian)(tier-1 and tier-2
historian)
Wonderware Historian Concepts Guide

322 Chapter 9 Replication Subsystem
In this example, the tags are identified as follows:

• tag1 is a tier-1 tag of historian A

• tag2 is a tier-2 tag of historian B

• tag3 is a tier-1 tag of historian B

• tag4 is a tier-2 tag of historian C

• historian A is a tier-1 historian

• historian B is both tier-1 and tier-2 historian

• historian C is a tier-2 historian

Important Be careful not to create or modify a replicated tag on
a tier-1 historian to have the same tagname that already exists on
a tier-2 historian. The system does not prevent you from having a
replicated tag on a tier-2 historian receiving data from two or
more different tier-1 historians. However, when you retrieve data
for that replicated tag on the tier-2 historian using the tagname,
an incorrect blend of data from the two (or more) data sources is
returned.

There are two types of replication: simple replication and
summary replication. Summary replication provides periodic
summaries of high resolution data, while simple replication
retains the original data resolution.
Wonderware Historian Concepts Guide

Simple Replication 323
Simple Replication
When a tag is configured for simple replication, all values
stored in the tier 1 historian are replicated to the tier 2
server. Analog, discrete, and string tags can be configured for
simple replication. Replicated tags of a tier-2 historian
cannot be configured for further replication.

Replicate all
data for tags

Tier-1 example: 1-second data

Tier-2 example: 1-
second data

The results of replication are stored on the tier-2 historian
using the same tag type as was used for the tag on the tier-1
historian.

Simple replication of tag values occurs:

• Every time a new stored data value arrives into the
active image of the tier-1 historian.

• Every time there is a change made in the history of the
tier-1 tag to keep tier-1 and tier-2 tag values
synchronized in history. For more information, see "How
Replication is Handled for Different Types of Data" on
page 331.
Wonderware Historian Concepts Guide

324 Chapter 9 Replication Subsystem
Summary Replication
Summary replication involves analyzing and storing
statistical information about the tag value at the tier-1
historian. This occurs at an interval you specify, called the
calculation cycle.

The result of the calculation is sent to the tier-2 historian to
be stored with the timestamp of the cycle. Tier-2 tags are not
dependent on the "real-time window" that usually applies to
tier-1 tags.

Many aggregate
values for each
“summary” tag

Tier-1 example: 1-second data

Tier-2 example:
5-minute, hourly, daily rate

There are two types of summary replication:

• Analog summary replication

• State summary replication

The results of summaries are stored on the tier-2 historian
using analog summary or state summary tags.

If a tier-1 historian is unable to perform a scheduled
summary calculation for any reason, it adds a record about
the event into a replication queue. When there are enough
system resources available, or there is a specific event from
another subsystem, the tier-1 historian can perform the
summary calculations and clear the queue.
Wonderware Historian Concepts Guide

Summary Replication 325
Analog Summary Replication
Analog summary replication produces summary statistics for
analog tags. The statistics relate only to the recorded
interval. Statistics available are:

• Time-weighted average

• Standard deviation

• Integral

• First value in a period with timestamp

• Last value in a period with timestamp

• Minimum value in a period with timestamp

• Maximum value in a period with timestamp

• Start time of summary period

• End time of summary period

• OPC Quality

• Percentage of values with Good quality

• Value

When you retrieve the data, you specify which calculation
you want to return. For more information, see "Querying the
AnalogSummaryHistory View" on page 279.

The functionality provided by analog summary replication is
similar to using the minimum, maximum, average, and
integral retrieval modes. For a comparison example, see
Querying Aggregate Data in Different Ways on page 316.

When you use the Wonderware Historian SDK to retrieve
analog summary tag data, the values returned through the
SDK for analog summary tags from history correspond to the
"Last" values in the AnalogSummaryHistory table when
using defaults. Use the corresponding retrieval mode to get
the minimum, maximum, average, slope, and integral values.
Wonderware Historian Concepts Guide

326 Chapter 9 Replication Subsystem
State Summary Replication
State summary replication summarizes the states of a tag
value. State summary replication can be applied to analog
(integer only), discrete, and string tags.

You use this for analyzing process variables with a limited
number of states, such as a machine’s state of
running/starting/stopping/off. State summary replication
provides the following, for each distinct state:

• Total time

• Percent of the cycle

• Shortest time

• Longest time

• Average time

• OPC Quality

• Value

A state summary results in a series of values, each
representing a different state, for the same tag and time
period.

When you retrieve the data, you specify which calculation
you want to return. For more information, see "Querying the
StateSummaryHistory View" on page 280.

The functionality provided by analog summary replication is
similar to using the ValueState and RoundTrip retrieval
modes.

You can define state summary replication for a large number
of states, but state data is dropped if the number of states
occurring in the same reporting period exceeds the maximum
number of states allowed. You configure the maximum states
when you create the state summary tag. The default number
of maximum states is 10. The replication subsystem will
calculate summaries for the first 10 distinct states, in the
order in which they occur in the data (not in numeric or
alphabetic order). Be aware that the higher the number of
maximum states, the more system resources are used to keep
track of the time-in-state for each distinct state.
Wonderware Historian Concepts Guide

Replication Schedules 327
Replication Schedules
Each real-time summary has a specified schedule, by which
the summary is calculated and sent to the tier-2 historian to
be stored with the timestamp of the cycle.

There are two types of replication schedules:

• Periodic replication schedules

You can configure a summary to replicate based on an
cycle such as 1 minute, 5 minutes, 1 hour, 1 day, and so
on. The cycle boundaries are calculated starting at
midnight, tier-1 server local time, and continue in fixed
time increments. The time between cycles is constant
within a day even through a daylight savings change.
Note that the last cycle in a day may be shorter to force
replication at midnight. The calculation cycle starts at
midnight. For example, a 13-minute cycle is stored at
12:00 a.m., 12:13, 12:26, ... 11:27 p.m., 11:40, 11:53 and
then again at 12:00 a.m.

• Custom replication schedules

Custom schedules force replication cycles to occur at fixed
times of the day in tier-1 server local time. You choose the
fixed times of day.
Wonderware Historian Concepts Guide

328 Chapter 9 Replication Subsystem
Replication Schedules and Daylight Savings Time
Daylight Savings Time affects replication schedules that are
triggered according to a time period, such as every hour,
every thirty minutes, and so on. Replication schedules that
are triggered at a fixed time that you specify are not affected.

In the following examples, the time change occurs at 2:00
a.m.

In this example, the summary period is configured to be
every 30 minutes. On the “fall back” day, will be two extra
summaries performed during the repeated hour for that day.
For the “spring forward” day, there will be two summaries
missing because of the skipped hour. The next replication
occurs at the next scheduled time. In this case, it would be
3:00 a.m.

Summary Period = 30 Minutes

Regular Day

1:00 a.m. Standard
1:30 a.m. Standard
2:00 a.m. Standard
2:30 a.m. Standard
3:00 a.m. Standard
3:30 a.m. Standard

“Fall Back” Day

1:00 a.m. Daylight
1:30 a.m. Daylight
1:00 a.m. Standard
1:30 a.m. Standard
2:00 a.m. Standard
2:30 a.m. Standard
3:00 a.m. Standard
3:30 a.m. Standard

“Spring Forward” Day

1:00 a.m. Standard
1:30 a.m. Standard

3:00 a.m. Daylight
3:30 a.m. Daylight

time gapextra summaries

In the next example, the summary period is configured for
every four hours. The scheduled summaries do not fall
exactly on or within the boundaries of the time change hour.
In this case, on the “fall back” day, the summary subsequent
to the time change hour includes four hours of data for the
“fall back” day. An extra summary for an hour’s worth of data
is performed at the end of the “fall back” day. On the “spring
forward” day, the summary period that contains the skipped
hour includes one less hour of data.
Wonderware Historian Concepts Guide

Replication Schedules 329
Summary Period = 4 Hours

Regular Day

0:00 Standard
4:00 Standard
8:00 Standard
12:00 Standard
16:00 Standard
20:00 Standard
24:00 Standard

“Fall Back” Day

0:00 Daylight
3:00 Standard
7:00 Standard
11:00 Standard
15:00 Standard
19:00 Standard
23:00 Standard
0:00 Standard

“Spring Forward” Day

0:00 Standard
5:00 Daylight
9:00 Daylight
14:00 Daylight
17:00 Daylight
21:00 Daylight
0:00 Daylight

4 hours of data
summarized

4 hours of data
summarized

“extra” hour

missing an hour
here

For a custom summary period, the summaries always occur
at the fixed times of day that you specify in local time.
However, the summary includes and extra hour of data for
the “fall back” day (because of the overlap hour) and for the
“spring forward” day (because of the skipped hour).

Summary Period = Custom: 0, 4, 8, 12, 16, 20

Regular Day

0:00 Standard
4:00 Standard
8:00 Standard
12:00 Standard
16:00 Standard
20:00 Standard
24:00 Standard

“Spring Forward” Day

0:00 Standard
4:00 Daylight
8:00 Daylight
12:00 Daylight
16:00 Daylight
20:00 Daylight
0:00 Daylight

only 3 hours of
data summarized

“Fall Back” Day

0:00 Daylight
4:00 Standard
8:00 Standard
12:00 Standard
16:00 Standard
20:00 Standard
0:00 Standard

extra hour -
5 hours of data
summarized

If a Daylight Savings Time change causes a scheduled time
to be ambiguous, such as 1:30 a.m. on a "fall back" day when
the clock jumps from 1:59 a.m. Daylight Savings Time to 1:00
a.m. standard time and the time could be interpreted as 1:30
a.m. Daylight Savings Time or 1:30 a.m. standard time, the
replication will occur at the latter of the two occurrences. In
this case it would be 1:30 a.m. standard time.
Wonderware Historian Concepts Guide

330 Chapter 9 Replication Subsystem
Replication Groups
A replication group abstracts a tag from a schedule. You can
assign multiple summary tags to a single replication group.

Summary Tags

Summary Tag A
Summary Tag B
Summary Tag C
.
Summary Tag NReplication Group

Replication
Server A

1 Day

Replication Schedule

1 Day

Multiple groups can be assigned to a single schedule. This
simplifies maintenance. If you need to edit the schedule (for
example, change the time of day for a shift end), you only
need to edit the replication schedule, not the individual
groups or summary tag configurations.

Summary Tag A
Summary Tag B
Summary Tag C

Summary Tag D
Summary Tag E
Summary Tag F

Replication
Server A

Replication Groups

My Group A

Replication Schedule

8-hour shift

Summary Tags

My Group B

A replication group must be unique for a type of summary
tag, either analog or state. You can, however, have the same
group name for analog summary tags as you do for state
summary tags. You can also have the same replication group
defined in multiple servers.

Replication
Server A

Replication
Server B

Summary Tag A
Summary Tag B
Summary Tag C

Summary Tag D
Summary Tag E
Summary Tag F

Replication Schedule

8-hour shift

Summary Tags

My Group A

My Group A

Replication Groups
Wonderware Historian Concepts Guide

How Replication is Handled for Different Types of Data 331
How Replication is Handled for Different
Types of Data

An accurate mapping between the data on the tier-1 and
tier-2 historians is maintained over time. This mapping
includes both tag configuration and data synchronization.

Replication is unidirectional, from tier-1 to tier-2 historians.
If the data on the tier-2 historian is changed in any way, the
system does not try to map the change back to the tier-1
historian.

Assume that some tag1 of historian A is configured to be
replicated in real-time to tag2 of historian B. The tag2 of
historian B will have exactly the same data and OPC quality
values as tag1 of historian A. The replication system
performs the following actions:

• When a new original value fitting the real-time window
gets stored on historian A, it gets transmitted and stored
on historian B, as well as the original value.

• If you perform an insert or update operation for some old
values of the historian A, the same change is reflected on
historian B.

• If some store-and-forward data gets merged into history
on historian A, the same data gets transmitted to
historian B and gets merged into history of historian B.

Replication is implemented in two ways: streaming
replication and queued replication. The replication system
uses a combination of streamed replication and queued
replication as required.
Wonderware Historian Concepts Guide

332 Chapter 9 Replication Subsystem
Streaming Replication
When values of tier-1 tags are received from an IDAS or
MDAS (Wonderware Application Server) and arrive at the
tier-1 historian as a time-ordered data stream directly to the
real-time data storage service, the historian not only stores
the data, but also forwards it to the replication subsystem if
replication is configured for those tags.

Then the replication subsystem immediately streams that
data to the tier-2 historian for simple replication, or performs
summary calculations and streams the resulting summaries.

This happens equally efficiently for tag values of timestamps
close to the current system time and for late data tags,
including the case when the late data delay exceeds the
real-time window.

If the tier-2 historian becomes unavailable, the replication
subsystem continues to stream replicated data into the local
store-and-forward path. When the connection is restored, all
replicated data is sent as compressed snapshots to the tier-2
historian and incorporated into history.

Streaming replication is the fastest and most efficient way of
data replication, but there are some scenarios where it
cannot be used and another method called queued replication
is applied.

Queued Replication
Queued replication is used for scenarios in which streaming
replication is not appropriate, such as the following:

• An interruption occurs in the tier-1 data stream, such as
when a remote IDAS configured for store-and-forward
cannot communicate with the tier-1 historian for a long
period of time. When the connection is restored and the
store-and-forward data finally arrives at the tier-1
historian, it may be already streaming newer data.

• An insert, update, or CSV file import operation could be
performed for tier-1 tag values, so the summaries should
be recalculated for that time period and re-replicated to
the tier-2 historian.

• If the tier-1 historian is started or stopped, and there are
some summaries spanning across the startup/shutdown
time that must be recalculated and re-replicated to the
tier-2 historian.
Wonderware Historian Concepts Guide

Tag Configuration Synchronization between Tiered Historians 333
In such cases, the replication subsystem receives
notifications from the manual data storage service that
contain information about what kind of tier-1 tag data
(original or latest) has changed for a particular time interval.
Then the replication subsystem places that notification
record into the replication queue stored in the Runtime
database of the tier-1 historian. Later, when the connection
to the tier-2 historian is restored, the replication subsystem
processes that queue by querying the tier-1 data and
replicating it to the tier-2 historian. As soon as a queue item
is successfully processed, it is removed from the replication
queue.

Although the replication subsystem optimizes the queue by
combining adjacent records, queued replication is slower and
requires more system resources as compared to streamed
replication, because it involves querying tier-1 data already
stored on disk.

Tag Configuration Synchronization between
Tiered Historians

If a summary tag gets deleted on the tier-1 historian, its
corresponding tag on the tier-2 historian remains intact to
allow for retrieval of data already collected. A tier-1 tag
cannot be deleted from the tier-1 historian if it is being
replicated--first delete the tag replication and then delete the
tier-1 tag. A tier-2 tag can be deleted from the tier-2
historian, but it should only be deleted after the
corresponding replication has been deleted from the tier-1
source historian. Otherwise, it will be recreated.
Wonderware Historian Concepts Guide

334 Chapter 9 Replication Subsystem
Replication Components
The components of the replication subsystem are:

Component Description

Realtime Data Storage
Service (aahStoreSvc.exe)

Internal process that stores real-time data to disk. This
process runs as a Windows service. This process detects
changes to the subscribed tags and passes those values
to the Replication Service for further processing.

Manual Data Storage
Service
(aahManStSvc.exe)

Internal process that processes non-real-time data and
stores it to disk. This process runs as a Windows service.
This process is also called "alternate" storage. This
process is responsible for notifying the Replication
Service of inserts, updates and store-and-forward
operations for the subscribed tags.

Active Image Memory segment that temporarily hold all real-time
data while the storage subsystem stores the actual
values to disk.

History Blocks Set of folders and files on disk that contain historical
data.

Replication Service
aahReplicationSvc.exe

Performs the data summaries on the tier-1 historian
and sends the results to the tier-2 historians by means
of the MDAS Server.This process runs as a Windows
service.

Configuration Service
(aahCfgSvc.exe)

Internal process that handles all status and
configuration information throughout the system. This
process runs as a Windows service. Used to configure
the replication subsystem. Detects changes in the
replication and summary configuration in the Runtime
database and automatically reconfigures the Replication
Service.

Runtime database SQL Server database that stores all configuration
information.

System Management
Console client application

Tool you use to configure tier-1 and tier-2 servers, tags
for replication, replication schedules, and so on.

MDAS Server
(aahMDASServerSvc.exe)

At the tier-2 historian, the MDAS Server accepts
incoming data from the tier-1 historian and sends it to
storage.
Wonderware Historian Concepts Guide

Replication Run-time Operations 335
For a complete diagram of the Wonderware Historian
architecture, see "Wonderware Historian Subsystems" on
page 19.

Replication Run-time Operations
When a tier-1 historian cannot communicate with a tier-2
historian because of a network outage or other reason, the
replicated tags can still be configured and the data collected.
When the tier-2 historian becomes available, the replication
configuration and data are sent to the tier-2 historian.

System and data integrity is not guaranteed if a disorderly
shutdown occurs, such as a power outage.

Replication for tags will stop if:

• You delete the source tag configuration on the tier-1
Historian.

• You configure the tier-1 tag so that its data values are not
stored.

• An integer analog tag is being replicated as a state
summary, and you change the source tag to be a real
analog tag.

Tier2Storage Engine
(aahStorageEngine.exe)

Internal process performing tier-2 data storage and
low-level retrieval. On the tier-2 historian, this engine
receives tier-2 data from the tier-1 historian through the
MDAS Server and stores it to disk in the history blocks.
On the tier-1 historian, this engine accepts tier-2 data
from the replication service and stores it in the
store-and-forward folders if the tier-2 historians are
temporarily unavailable. Several processes of this name
can be running at the same time: one for the main tier-2
data storage and low-level retrieval, and the others for
the store-and-forward operation (one instance per tier-2
historian).

Component Description
Wonderware Historian Concepts Guide

336 Chapter 9 Replication Subsystem
Replication Latency
Replication latency is the time it takes for the system to
make a value available for retrieval on tier-2 from the
moment it was stored or calculated on tier-1.

Replication latency depends primarily on whether the
streaming or queued replication method is being applied in
each particular case and the available system resources to
execute that method in each particular case.

Streaming replication tends to have a shorter latency period
than queued replication as it deals with smaller amounts of
data and is processed at a higher priority.

Replication Delay for “Old” Data
The replication delay identifies how frequently “old” data,
which includes inserts, updates, and store-and-forward data,
is sent from the tier1 historian to the tier-2 historian. The
replication delay applies only to queued replication.

You specify the delay using the
OldDataSynchronizationDelay system parameter. For more
information, see "System Parameters" on page 33.

This delay represents your intent, while the replication
latency identifies the real time difference. If the latency
period becomes longer than the replication delay, the system
will not be able to maintain the expected replication.

If you set the OldDataSynchronizationDelay system
parameter to zero, all changes detected in the tier-1 are
immediately sent to the tier-2 , which may be very inefficient
for certain applications.

Continuous Operation
If a tier-2 historian becomes unavailable and is configured for
store-and-forward operations, you can still add, modify and
delete replication and summary objects in the local
configuration of tier-1, and store data locally for tier-2 tags
created before tier-2 became unavailable or while it is still
unavailable.

After the tier-2 historian is available, the Replication Service
compares the latest replication and summary objects with
the tier-2 tags currently existing on the tier-2 historian and
performs a dynamic reconfiguration to ensure all data is
synchronized. The reconfiguration history that was stored
locally is also sent to the tier-2 historian and merged into its
history. It will appear as though the disconnection between
the tiers never took place.
Wonderware Historian Concepts Guide

Security for Data Replication 337
Overflow Protection
If the tier-2 historian is unable to handle the incoming data
from the tier-1 historian, the Replication Service detects the
situation and switches into store-and-forward mode, where
the data gets accumulated locally until the storage limit is
reached. If the limit is reached, all data to be sent to the
tier-2 historian gets discarded and an error message is
logged.

Security for Data Replication
Connections from a tier-1 historian to tier-2 historian have to
be authenticated before any replication task can be
performed on the tier-2 historian.

A local Windows user group called aaReplicationUsers is
created on the tier-2 historian during the tier-2 historian
installation. The ArchestrA user account is automatically
added to this group. Only members of the aaReplicationUsers
group are allowed to perform replication tasks including
adding, modifying, and sending values for replication tags.
This group is not allowed to perform other non-replication
tasks, such as adding or modifying a tier-1 tag.

When you configure a replication server on the tier-1
historian, you must specify a valid Windows user account on
the tier-2 historian for the replication service to use. This
security account does not have to be a valid account on the
tier-1 historian or even be in the same security domain as the
tier-1 historian. If no replication user credentials are
configured in at the tier-1 historian, the ArchestrA user
account credential is passed to the tier-2 historian for
authentication.
Wonderware Historian Concepts Guide

338 Chapter 9 Replication Subsystem
Using Summary Replication instead of
Event-Based Summaries

You can use summary replication instead of event-based
summaries. Compared to event-based summaries, replicated
summaries:

• Support more types of calculations.

• Are stored to history blocks, instead of in SQL Server
tables, thus taking advantage of all that the Wonderware
Historian storage subsystem has to offer in terms of data
compression and throughput as compared to regular SQL
Server database storage.

• Can be retrieved using the full array of real-time query
extensions provided by the Wonderware Historian.

For more information on event-based summaries, see
Chapter 10, "Event Subsystem."
Wonderware Historian Concepts Guide

339
Chapter 10

Event Subsystem

Plant events range from startups and shutdowns, through
trips and shift changes, to batch events and operator actions.

You can use the Wonderware Historian event subsystem to
detect events and associate actions when they are detected.
At a basic level, anything that can be determined by
examining stored data can be used as an event. The event
subsystem can be configured to periodically check to see if an
event occurred. This is called event detection. A subsequent
action can then be triggered after an event is detected.
However, there is no guarantee of immediacy for actions; in
fact, other mechanisms can preempt actions under certain
circumstances.

For the historian, event storage encapsulates more than just
the fact that something happened. An event is the set of
attributes describing the moment a detection criterion is met
on historical tag values in the historian. Attributes of an
event include the date and time that the event occurred in
history and the date and time that it was detected. Records of
detected events can be logged to the database regardless of
whether or not any configured actions are subsequently
initiated. In other words, sometimes it may be desirable to
simply log the fact that an event occurred without initiating
an action. The opposite may be true, as well.
Wonderware Historian Concepts Guide

340 Chapter 10 Event Subsystem
In short, the event subsystem performs the following basic
functions:

• Detects when events occur by comparing sets of criteria
against historical data in the database.

• Optionally logs event records to a dedicated SQL server
table (EventHistory).

• Optionally triggers a configured action each time an
event is occurs.

For information about configuring events, see Chapter 11,
"Configuring Events," in your Wonderware Historian
Administration Guide.

The event subsystem does not support Daylight Savings
Time changes. The replication subsystem, however, does
handle Daylight Savings Time changes, and you can use
replication to generate data summaries according to a
schedule. For more information, see Chapter 9, "Replication
Subsystem."

Event Subsystem Components
The following table describes the components of the event
subsystem.

Component Description

Configuration Editor Part of the System Management Console. Used to specify
event definitions and possible actions.

Runtime database Stores event definition information and all data generated
by the event subsystem, such as records of event detections,
data summaries, and data snapshots.

Event System Service
(aahEventSvc.exe)

Internal process that coordinates event detection and action
functions. This process runs as a Windows service. Using
the System Management Console, you can configure the
event service to automatically start and stop at the same
time as the Wonderware Historian. The event service is
responsible for:
• Reading event definition information from the Runtime

database.

• Creating event detectors and actions, including
allocating the necessary processing threads and
establishing database connections.

• Initiating the event detection cycle.
Wonderware Historian Concepts Guide

Uses for the Event Subsystem 341
You use the System Management Console to configure the
event subsystem.

For a complete diagram of the historian architecture, see
"Wonderware Historian Subsystems" on page 19.

Uses for the Event Subsystem
Generally, you should use the Wonderware Historian event
subsystem to monitor non-critical system conditions that
occur only occasionally. For example, possible event
detections that you can set up include:

• Detect all occurrences in history when the value of a
discrete tag is set to 0

• Detect if the system clock is set to a specified date and/or
time

• Determine the state of information in the database by a
SQL statement

You can use event actions to perform tasks such as the
following:

• Send e-mail messages to remind managers about weekly
maintenance checks

• Summarize plant data to create a statistical analysis over
defined periods of time

• Take "snapshots" of system data

• Modify storage conditions (such as time and value
deadbands)

• Generally perform any database-related task

The event subystem is not designed to transfer data to and
from the database continually and should not be used in this
manner. The only exception is for summary actions; the
event subsystem can continually process data aggregates so
that they are available for reporting purposes.

SQL variables Available for use in event queries.

Component Description
Wonderware Historian Concepts Guide

342 Chapter 10 Event Subsystem
The event subsystem should not be used as an alarm system.
An alarm system such as provided with InTouch HMI
software can be used to alert operators to specific satisfied
conditions. The InTouch alarm system is intended as a
notification system to inform operators of process and system
conditions promptly upon their occurrence. The InTouch
alarm system supports displaying, logging, and printing
capabilities for process alarms and system events. (Alarms
represent warnings of process conditions, while events
represent normal system status messages.) For more
information on the InTouch alarm system, see your InTouch
documentation.

In contrast, the event subsystem is intended to initiate
actions based upon historical event detection. An alarm
system presupposes an immediate message response is
propagated for all configured alarms at the time the
respective conditions are met. In this sense, the historian
event subsystem is not an alarm system. The event
subsystem queues up detected events and processes them
accordingly based upon pre-configured priorities.

Event Subsystem Features and Benefits
You can obtain a number of distinct operational benefits from
properly using the features of the event subsystem. A list of
key benefits is as follows:

• Unlike real-time alarming, the event subsystem
determines events from stored historical data and is not
dependent on real-time detection. No events are missed
unless the machine is severely overloaded for a long
period of time.

• The event subsystem is SQL-based, thus providing a
means of managing database-related tasks within the
system. You can use custom SQL queries as detectors, as
well as create custom SQL-based actions.

• A number of pre-configured detectors and actions are
available.

• Detections may be made by external sources. (A COM
mechanism is available for invoking the detector in the
event subsystem.)

• Time-based detection (based on the system clock time)
allows you to schedule certain tasks, such as data
aggregations (summaries).
Wonderware Historian Concepts Guide

Event Subsystem Performance Factors 343
• The event subsystem is designed to manage overload
situations. If the system is currently busy due to some
other processing for a period of time, the event subsystem
will "catch up" at a later time during off-peak periods. If
the overall Wonderware Historian is continuously
overloaded, the event subsystem degrades in
functionality gracefully.

• You can select which actions have priority and can assign
certain actions (preferably only a few) never to be
compromised, even under overload conditions.

• System tags are available to monitor event subsystem
conditions.

Event Subsystem Performance Factors
The overall performance of the Wonderware Historian event
subsystem is subject to factors related to data storage and
query processing time. Too often, systems are commissioned
with specifications that estimate average or "typical"
expected loading. Instead, you should size the system so that
it can accommodate the peak load that you expect during the
projected system life cycle. Some performance factors you
should consider are:

• Sufficient hardware. Your selection of hardware is
important to guarantee peak performance for the range
of behaviors required for a given operating environment.
For example, you should make sure that you have enough
disk space to store the records of detected events and the
results of any actions (summaries, value snapshots, and
so on).

• Processor availability. The event subsystem is subject to
processor availability as much as any other software
sharing a common platform. At any given moment,
multiple processes contend for processor time.

• Nature of the database queries executed by the event
subsystem. For example, because event subsystem
actions typically operate on normal SQL Server tables,
they are subject to performance limitations of the
Microsoft SQL Server. Also, query activity tends to be
very CPU-intensive and is extremely sensitive to other
concurrent activities being performed on the same server.

• Time intervals for SQL-based detectors. For more
information, see "Time Intervals for SQL-Based
Detectors" on page 346.
Wonderware Historian Concepts Guide

344 Chapter 10 Event Subsystem
Performance can vary greatly for the same event task,
depending upon the computer configuration, user
interaction, and other unpredictable activity common in a
plant situation with shared database and server resources. It
is often very difficult to determine precisely what
combinations of hardware and software parameters will
work optimally for your required operating environment.
Therefore, you should test your event subsystem
configuration before running it in a production environment
to make sure that the system will not become overloaded
during peak use.

Event Tags
An event tag is a name for an event definition in the system.
For example, if you want to detect an event when a tank
temperature reaches 100 degrees, you can define an event
tag and name it "TankAt100." Event tags differ from the
other tag types in the Wonderware Historian (analog,
discrete, and string). Analog, discrete, and string tag types
are the definitions of variables to be stored. In contrast, an
event tag is a named reference for the definition of the
specific event you want to detect, including an optional action
to perform when the event is detected. An event tag provides
a way to reference all event definition information in the
system.

Event tags are created and maintained using the System
Management Console. When you define an event tag, you
must specify:

• A name, description, and other general configuration
information.

• The event criteria, which describes the conditions that
must exist for the event and how often the event
subsystem checks to see if an event occurred.

• Whether or not to log the event detection.

• Whether or not to enable or disable event detection.

• An optional action that is triggered when an event is
detected.
Wonderware Historian Concepts Guide

Event Detectors 345
Event Detectors
Each event tag must have an associated event detector. An
event detector is a mechanism for determining when the set
of event criteria for an event tag has been satisfied. When
you configure an event detector, you must first configure its
type and then configure the parameters associated with that
detector type. You can choose from the following types of
event detectors:

• SQL-Based Detectors

• Schedule Detectors

• External Detectors

The generic SQL, analog specific value, and discrete specific
value detectors are SQL-based detectors. The schedule
detector is a time-based detector. The external detector is
used when triggering an event by the ActiveEvent ActiveX
control.

For all detectors, the event subsystem will initially base the
query for data in history at the time the event subsystem
starts. Subsequently, the event subsystem will base the
query on the last successful detection; that is, the time of the
most recent detection becomes the starting time for the next
detection.

SQL-Based Detectors
Analog specific value, discrete specific value, and generic
SQL detectors operate on data stored in the database. The
detection criteria for each of these detectors is a SQL
statement that is executed against the Wonderware
Historian. Generic SQL detectors can query against both the
historian and Microsoft SQL Server.

Generic SQL Detectors
A generic SQL detector detects an event based on criteria
that are specified in a SQL statement. You can use
pre-configured SQL templates that are stored in the
database as the basis for your script, or you can create your
own script from scratch.

To use a pre-configured SQL template, simply select it from a
list of available templates when defining the event tag.

If you create a new script, you will need to add it to the
SQLTemplates table in the Runtime database in order for it
to appear in the list of pre-configured templates. You should
test your SQL queries in SQL Server Query Analyzer before
using them in a generic SQL event detector.
Wonderware Historian Concepts Guide

346 Chapter 10 Event Subsystem
Specific Value Detectors
Two specific value detectors are available:

• Analog specific value detector

• Discrete specific value detector

These detectors can be used to detect if a historical tag value
matches the state defined by the detector criteria. For the
criteria, historical values are compared to a target value that
you specify. If a value matches the criteria, then an event is
logged into the EventHistory table, and any associated
actions will be triggered. For example, an analog specific
value detector could be configured to detect if the value of
'MyAnalogTag' was ever greater than 1500. Likewise, a
discrete value detector could be configured to detect if the
value of 'MyDiscreteTag' was ever equal to 0.

For a specific value detectors, you can apply either edge
detection or a resolution to the returned data. The resolution
is used only when the edge detection is set to NONE (in
which case the retrieval mode is cyclic). For more
information, see "Resolution (Values Spaced Every X ms)
(wwResolution)" on page 222 and "Edge Detection for Events
(wwEdgeDetection)" on page 264.

Time Intervals for SQL-Based Detectors
For SQL-based detectors, you must specify a time interval
that indicates how often the detector will execute. The time
interval is very important in that it affects both the response
rate of any event actions and the overall performance of the
system.

The detection of an event may occur significantly later than
the actual time that the event occurred, depending on the
value you specify for the time interval. The time between
when an event actually occurred in history and when it was
detected is called latency.

For example, you configure a detector to detect a particular
event based on a time interval of 10,000 ms (10 seconds).
This means that every 10 seconds, the event detector will
check to see if the event occurred. If the event occurs 2,000
ms (2 sec) after the last check, the event detector will not
detect that the event occurred until the full 10 seconds has
elapsed. Thus, if you want a greater possibility of detecting
an event sooner, you should set the time interval to a lower
value.

Also, the time interval affects when an associated action will
occur, because there could be some actions that are queued to
a time equal to or greater than the interval.
Wonderware Historian Concepts Guide

Event Detectors 347
The following are recommendations for assigning time
intervals:

• When configuring multiple event detectors, distribute
them evenly across multiple time intervals; don't assign
them all to the same interval.

All configured detectors are first divided into groups,
based on their assigned time interval. The detectors are
then sequentially ordered for processing in the time
interval group. The more detectors assigned to a
particular time interval, the longer it will take the
system to finally process the last one in the group. While
this should not have a negative impact on actual
detection of events, it may add to increased latency.

• Avoid assigning a faster time interval than is really
necessary.

The time interval for detectors should not be confused
with a rate required by a real-time system that needs to
sample and catch the changes. For the event subsystem,
a slower time interval simply means that more rows are
returned for each scan of the history data; no events are
lost unless then detection window is exceeded (for more
information, see "Detector overloads" on page 357). For
example, you create an event tag with a detector time
interval of 1 minute, and you expect an event to occur
every 5 seconds. This means that the system would
detect 12 events at each time interval. In most cases, this
is an acceptable rate of detection. Also, assigning short
time intervals will result in higher CPU loading and may
lead to degraded performance.

For detailed information on how detectors are executed, see
"Event Subsystem Resource Management" on page 353.

The EventHistory table can be used to determine if too many
event tags have the same time interval. If the latency
between when the event actually occurs (stored in the
DateTime column) and when it was detected (stored in the
DetectDateTime column) is constantly growing and/or
multiple event occurrences are being detected during the
same detector time interval, you need to move some of the
event detectors to a different time interval.
Wonderware Historian Concepts Guide

348 Chapter 10 Event Subsystem
Schedule Detectors
The schedule detector is a time-based detector. A schedule
detector detects whether the system clock is equal to or
greater than a specific date and/or time. For example, you
could log an event every week on Monday at 2:00 p.m.

Schedule detectors are different from other detectors in that
they are real-time detectors. The value of the system clock is
checked every second. Schedule detectors are very fast and
can be used without great concern about efficiency. Thus, a
schedule detector provides the only real-time event
processing. However, there is no guarantee of when the
action will occur.

All of the schedule detectors that you set up are handled by a
dedicated scheduling thread. This allows for a separation
between the processing load needed to execute schedule
detectors and the processing load needed to perform all of the
other event work. The scheduling thread will maintain a list
of detection times in a time queue. If you add a schedule
detector, the thread will register the detection time in the
queue and then re-sort the list of all detection times from the
earliest to the latest.

The time of the system clock is then compared with the time
of the first item in the schedule queue. If the system clock
time is equal to or greater than the time of the first item, the
detection algorithm for the first item will be invoked and the
detection will be performed.

The event subsystem does not account for Daylight Savings
Time changes. If you set up a schedule detector that runs
periodically with a specified start time, you will need to
change the start time to reflect the time change. Another
solution would be to use the time-weighted average retrieval
mode instead of the event subsystem to generate averages,
because the retrieval mode handles the Daylight Savings
Time changes. However, if the period for the average is
hourly, then it is recommended that you use the event
subsystem, as the amount of data will not generally not be a
factor in the speed of calculating the average.
Wonderware Historian Concepts Guide

Event Actions 349
External Detectors
For an external detector, event detection is triggered from an
external source by the ActiveEvent ActiveX control that is
provided as part of the Wonderware Historian. For example,
an InTouch or Visual Basic script can invoke the necessary
ActiveEvent methods to trigger an event. This ActiveX
control must be installed on the computer from which you
want to trigger the external event.

For more information, see "Configuring an External
Detector" in Chapter 11, "Configuring Events," in your
Wonderware Historian Database Reference.

Event Actions
An event may or may not be associated with an event action.
An event action is triggered after the event detector
determines that the event has occurred. The event subsystem
is not intended to run external processes. There is only a very
limited ability to run external program files or to call
methods from COM interfaces within the given system or
network.

Actions are not required; there are times when you may want
to simply store when events happened. In this case, you
would select "None" for the action type when defining the
event tag.

Generic SQL Actions
A generic SQL action executes an action that is outlined in a
SQL statement. For example, a SQL action can update the
database (for example, turning off storage for tags) or copy
data to a separate table or database.

You can use pre-configured SQL templates that are stored in
the database as the basis for your script, or you can create
your own script entirely from scratch. You cannot submit
multiple queries against the Wonderware Historian in a
single event action and you cannot use GO statements. Also,
if you are querying against history data, the SQL statement
is subject to the syntax supported by the Wonderware
Historian OLE DB provider. You should test your SQL
queries in SQL Server Query Analyzer before using them in a
generic SQL event action.
Wonderware Historian Concepts Guide

350 Chapter 10 Event Subsystem
Snapshot Actions
A snapshot action logs into dedicated SQL Server tables the
data values for selected analog, discrete, or string tags that
have the same timestamp as the detected event. Quality is
also logged. Value snapshots are stored in tables according to
the tag type, either AnalogSnapshot, DiscreteSnapshot, or
StringSnapshot.

A snapshot action requires an expensive SQL join between
the extension tables and the snapshot tag table. The process
of performing the join and logging the retrieved results to the
snapshot tables can be very slow. This is because most of the
tables used for event snapshots are normal SQL Server
tables, subject to the data processing limitations of Microsoft
SQL Server. Thus, the higher the number of snapshots that
are being taken by the event system, the higher the
transaction load on the Microsoft SQL Server.

Important The event subsystem is not a data acquisition system.
DO NOT attempt to use snapshot actions to move data stored in
the extension tables to normal SQL Server tables. This type of
misapplication is guaranteed to result in exceedingly poor
throughput and storage rates.

When trying to determine how many snapshots can be made
by the system, you should execute the intended snapshot
queries to the server using a batch file, leaving the event
subsystem out of the exercise. By executing repeated
snapshot queries at the server as fast as the computer will
allow, you can better determine how many snapshots can be
performed on a system over a given time period. Using this
result and applying a safety factor may provide a good
guideline for assessing how much your system can safely
handle. Keep in mind that discrete snapshots are many times
slower than analog snapshots.

E-mail Actions
An e-mail action sends a pre-configured Microsoft Exchange
e-mail message. Although e-mail actions are useful for
sending non-critical messages triggered by an event
detection, these types of actions are not to be used for
alarm-type functionality. For e-mail notifications of alarm
situations, use an alarm system such as the SCADAlarm
alarm notification software.
Wonderware Historian Concepts Guide

Event Actions 351
Deadband Actions
A deadband action changes the time and/or value storage
deadband for one or more tags that are using delta storage.
(Value deadbands only apply to analog tags.) Deadband
change actions are useful for increasing data storage based
on an event occurring. For example, an event detector has
detected that a boiler has tripped, you might want to start
saving the values of certain tags at a higher rate to help you
determine the cause of the trip.

Summary Actions
A summary action is a set of aggregation calculations to be
performed on a set of tags between a start time and an end
time with a defined resolution. When you configure a
summary action, you must define the type of aggregation you
want to perform (called a summary operation) and the analog
tags that you want to be summarized. The event subsystem
performs average, minimum, maximum and sum
calculations on the basis of a specific event being detected.

Note Summary actions using the event subsystem are retained for
backward compatibility. We recommend that you use the more
robust and flexible replication subsystem to perform data
summaries. For more information, see Chapter 9, "Replication
Subsystem."

Data summaries are useful for:

• Extremely long-term data storage. Because summarized
data takes up less space than full resolution data, even a
moderately sized system can store daily summary
information for many years.

• Production reporting. For many reporting purposes,
aggregate data is more important than raw data. For
example, the total mass produced in a day is often more
relevant than the actual rate of production during the
day.

• Integration with business systems. The full resolution,
high-performance Wonderware Historian history and
real-time data tables are best accessed with tools that can
take advantage of the Wonderware Historian time
domain extensions. However, not all client tools support
these SQL extensions. The summary tables reduce the
volumes of data to manageable quantities that can be
used by any normal SQL client application.
Wonderware Historian Concepts Guide

352 Chapter 10 Event Subsystem
A summary action is usually triggered by a schedule
detector. However, you can perform a summary as a result of
any event detection.

Tag values with bad quality are not filtered out before the
aggregation is performed. To perform an aggregation with
only good quality, for example, use a generic SQL action that
executes an aggregation calculation query on the History
table where the value of the Quality column equals 0.

The results of all summaries are stored in the SummaryData
table in the Runtime database.

Important Use caution when setting up summary actions. Using a
high resolution for your summary queries can have a negative
impact on the overall performance of the system.

Average, minumum, and maximum values can also be
determined by using the time-weighted average, minimum,
and maximum retrieval modes, respectively. For more
information on these retrieval modes, see "Understanding
Retrieval Modes" on page 151. Keep the following in mind
when deciding to use either the event summaries or the
retrieval modes:

• For the time-weighted average retrieval mode, the
amount of time between the data values is a factor in the
average, whereas the event summary action is a straight
statistical average. For more information, see "Average
Retrieval" on page 176.

• Performing an average at retrieval eliminates problems
that occur during Daylight Savings Time adjustments for
schedule-based summaries. For more information, see
"Schedule Detectors" on page 348.

For a comparison of all the different types of summaries that
the Wonderware Historian supports, see Querying Aggregate
Data in Different Ways on page 316.
Wonderware Historian Concepts Guide

Event Subsystem Resource Management 353
Event Action Priorities
The event subsystem contains three different queues for
event actions:

• A "critical" queue, which contains any actions for event
tags that have been assigned a critical priority. Actions
for events that are given a critical priority will be
processed first. It is extremely important that the critical
queue is used with caution. Only singularly important
actions with short processing times should be assigned as
critical. You should never assign snapshot or summary
actions as critical. There is no overload protection for
processing critical actions; if the system becomes
overloaded, actions may not execute in a timely fashion or
may not execute at all.

• A "normal" queue, which contains any actions for event
tags that have been assigned a normal priority. All
non-critical events are labeled with a "normal" priority
and will be processed after the critical events.

• A “delayed action” queue, which contains any actions for
event tags that have been assigned a post-detector delay.
The post detector delay is the minimum amount of time
that must elapse after an event was detected before the
associated action can be executed.

Event Subsystem Resource Management
The Event System Service (aahEventSvc.exe) manages all of
the system resources required to detect events and process
actions. System resources are allocated for detectors and
actions by means of threads. A thread is an operating system
component that independently performs a particular function
within a larger process. Within the overall process of the
event subsystem, event detectors and actions are assigned
different threads, so that they can execute independently of
each other and thus perform more efficiently.

The event subsystem uses two thread groups, or "pools." One
thread pool is for detectors and the other one is for actions.
The Event Service automatically creates both of these thread
pools if there is at least one event tag defined.

Other aspects of resource management include the number of
database connections required by event system components,
and how the system handles event overloads and query
failures.
Wonderware Historian Concepts Guide

354 Chapter 10 Event Subsystem
Detector Thread Pooling
The detector thread pool is made up of one or more threads
allocated for SQL-based detectors and a single thread for
schedule detectors. Each thread maintains a connection to
the database. The detector thread pool is illustrated in the
following diagram:

$�����
��
�����-����.����

!��������)����%

$�����
��
�����-����.����

!��������)����%

$�����
��
�����-����.����

!��������)����%

(�)�����

$�����
��!��������)����%

$�����
���)�����/

�

A SQL-based detector is assigned to a thread based on the
time interval that you specify when you define the event tag.
Each time interval requires its own thread. For example, you
define three event detectors and assign them time intervals
of 10, 15, and 20 seconds, respectively. Each event detector
will be running in its own thread, for a total of three threads.

As another example, you define three event detectors,
assigning the first two a 10 second interval, and the third a
15 second interval. The first two will be running under the
same thread, while the third will be running under its own
thread, for a total of two threads.

For multiple detectors that are assigned to the same time
interval, the SQL detection statement for each event tag will
be executed in sequential order. That is, the first SQL
statement must return results before the next statement can
be executed. After each detection has taken place (results are
returned), the detection is logged into the EventHistory table
and any associated action is queued into the action thread
pool.

All schedule detectors are assigned to a single thread.
Wonderware Historian Concepts Guide

Event Subsystem Resource Management 355
The efficiency of the detector thread pool depends on how you
have spread the load when assigning time intervals to
different event tags. Detections generally do not cause
overloading on the system: the actions (especially snapshots
and summaries) are where most processing and resource
loading occurs.

Action Thread Pooling
The action thread pool is essentially a pool of four threads
that execute actions from three different action queues. Each
thread in the pool maintains a database connection.

���������0����

����
���)�����/

�

1
�����0����

/
��2$�����
��$�����0����

����
��/�
����
���

(�������)����

����
��/�
����
���

(�������)����

����
��/�
����
��3

(�������)����

����
��/�
����
��4

(�������)����

The three action queues are:

• Critical queue

• Normal queue

• Post-detector delay queue

For detailed information about each of these queues, see
"Event Action Priorities" on page 353.

As a processor thread completes its previous task, a new
action will be fetched from one of the queues. If there are any
actions in the critical queue, these will be processed first.
Actions in the critical queue are executed in the order in
which they were added to the queue; that is, the oldest action
sitting in the queue will be processed first.
Wonderware Historian Concepts Guide

356 Chapter 10 Event Subsystem
If the critical queue is empty, actions will be fetched from the
post-detector delay queue. Actions in the post-detector delay
queue are ordered by time. Actions assigned the shortest
post-detector delay will be executed first.

If both the critical and post-detector delay queues are empty,
actions will be fetched from the normal queue. Like critical
actions, normal actions are processed in the order in which
they were added to the queue.

Event Subsystem Database Connections
The following table contains the number of SQL Server
database connections required by the different components of
the event subsystem.

Component Number of Connections Used

Event Service 1

SQL-based detectors 1 per each time interval used

Schedule detectors 1

Action threads 4

Handling of Event Overloads and Failed Queries
The event subsystem handles SQL-based detector and action
queries that fail, as well as to degrade gracefully if detector
and action overload conditions occur.

• Event query failures

If the query for a SQL-based detector fails, the query will
automatically be executed again. The detection window
start time will remain the same until the next detection
is made.
For a failed SQL-based action query, the query will be
submitted three times. The system will establish a new
connection to the database each time the query executes.
If the action query is a snapshot query, the snapshot
tables will first be "cleaned up" as part of the re-query
process.
Wonderware Historian Concepts Guide

Event Subsystem Resource Management 357
• Detector overloads

A detector overload occurs when the system cannot
process all of the detectors in a timely manner. Detector
overload is handled by means of the detection window.
This window is defined by the difference between the
current system time and the time of the last detection. If
the window grows larger than one hour, some detections
will be missed. This condition will be reported in the
error log.

• Action overloads

An action overload occurs when the system cannot
process all of the actions in a timely manner. Only actions
assigned a normal priority have overload protection. An
action will not be loaded into the normal queue by a
detector if the earliest action currently sitting in the
queue has been there for an hour. (Basically, it is
assumed that the system has become so overloaded that
it has not had the resources to process a single action in
the past hour.) This prevents an accumulation of actions
in the normal queue when the system is unable to process
them. The system will be allowed time to recover, and
actions will not start to be queued again until the time
difference between earliest and latest action in the queue
is less than 45 minutes (75 percent of the time limit). In
short, when the system becomes too overloaded, actions
are not queued. This condition is reported in the error
log, but not for every single action missed. The first one
missed is reported, and thereafter, every hundredth
missed action will be logged.
There is no overload protection for critical actions,
because these types of actions should only be configured
for a very small number of critical events. There is also no
overload protection for actions that have been assigned a
post-detector delay.

For more information on action priorities, see "Event Action
Priorities" on page 353. For more information on how actions
are queued, see "Action Thread Pooling" on page 355.
Wonderware Historian Concepts Guide

358 Chapter 10 Event Subsystem
Event Subsystem Variables
The event subsystem uses a set of variables to facilitate event
detections and actions. The purpose of these variables is to
provide ease of query creation by a user (or a configuration
editor). These variables are replaced with the associated
values by the event components immediately before actual
query execution. The query actually being received by the
Wonderware Historian never contains the variables.

The variables and their associated values are as follows:

Variable Description/Associated Value

@EventTime Date/time of the detected event of the
current detector.

@EventTagName Tagname associated with the detected
event.

@StartTime Start date/time for the detector query.

@EndTime End date/time for the detector query.

The @StartTime and @EndTime variables can be used only in
detector strings. The @EventTime and @EventTagName
variables can be used only in action strings.

All of the variables are case-sensitive.

Typically, a detection query executed by a detector
component is similar to the following example:
SELECT DateTime

FROM History
WHERE Tagname = 'BoilerPressure' AND Value > 75
AND DateTime > '@StartTime'
AND DateTime < '@EndTime'

@StartTime and @EndTime are simply placeholders for the
detector component to coordinate event detection over a
moving time range.
Wonderware Historian Concepts Guide

Event Subsystem Variables 359
The following action query show how event variables can be
used:
SELECT * INTO TEMPTABLE

FROM History
WHERE DateTime = '@EventTime'
AND TagName IN
(SELECT TagName FROM SnapshotTag
WHERE EventTagName = '@EventTagName'
AND TagType = 1)

Note These variables only function in the internal context of the
event subsystem and do not apply to queries from client tools
such as SQL Server Query Analyzer.
Wonderware Historian Concepts Guide

360 Chapter 10 Event Subsystem
Wonderware Historian Concepts Guide

361
Index

Symbols
< (less than) 294, 298, 300, 301, 305
<= (less than or equal to) 294, 298, 299,
300, 302

> (greater than) 294, 296, 300, 301, 303,
305

>= (greater than or equal to) 294, 299,
300, 302, 303

Numerics
16-bit 125
32-bit 112, 125
64-bit 112, 125

A
aaAdmin 27
aadbo 27
aaPower 27
aaUser 27
acquisition

about 17
components 72
CSV data 91
I/O Servers 73
IDASs 75
MDAS clients 90
quality 59
service 40

sources of data 71
Transact-SQL 90

actions
See also event actions

active image 120
about 119
automatic resizing 120
resizing 33
retrieval 315
storage 94, 121, 334

ActiveEvent 349
ActiveX control 349
aggregate functions 292
aggregations 351
AIAutoResize system parameter 33
AIResizeInterval system parameter 33
alarm system 342
AllowOriginals system parameter 33
alternate storage location 115, 116
analog specific value detector 345, 346
analog summary replication

about 325
analog tags

about 21
edge detection 265, 266, 267, 268

AnalogSummaryHistory table 132
AnalogSummaryTypeAbbreviation
system parameter 33
Wonderware Historian Concepts Guide

362 Index
annotations
making 294

application name 74
ArchestrA

user account 24
architecture 19

Wonderware Historian 19
arithmetic functions 291
authentication

databases 25
SQL Server 25, 26

AutoStart system parameter 34
average (time-weighted), retrieval
modes 176

averages 176

B
best fit retrieval mode 171
best fit, retrieval modes 171
blocks

See history blocks
buffer storage location 115, 117

C
cache

IDAS 79
catalog 134
circular storage location 115

about 116
client

quality 61
client applications 15

support 19
client context 138
client/server 19
comparison operators 294, 299, 302
ConfigEditorVersion parameter 34
configuration

modification tracking 52
service 40
See also dynamic configuration

configuration data 16, 63
Configuration Service 64, 334

about 67
configuration subsystem

components 64
configuration tables 63
CONVERT function 142, 287

COUNT(*) function 290
counter retrieval mode 200
counter, retrieval modes 200
criteria condition 287
CSV data

acquisition 91
import path 34
manual data 22
quality 60

cursors 308
cycle count 219, 299
cyclic retrieval

using comparison operators 299, 302
cyclic retrieval, about 152
cyclic storage 99

about 111
cyclic, retrieval modes 152

D
data acquisition

See acquisition
data blocks

See history blocks
data files

See history blocks, Runtime database
data quality

See also quality
data retrieval

See retrieval
data sources 129
data storage

See storage
data stores 129
database

authorization 25
database authorization 28
database connections

for events 356
DatabaseVersion system parameter 34
DataImportPath system parameter 34
date functions 288
Daylight Savings Time 328
DCOM 90
DDE 50, 73

about 50
deadband 100, 227, 231, 282

swinging door 101
time 100
Wonderware Historian Concepts Guide

Index 363
value 100
deadband actions 351
deadband override period 104
delayed action queue 353
delta retrieval

comparison operators 294
querying wide tables 278

delta retrieval, about 156
delta storage 99

about 100
delta, retrieval modes 156
detectors

See event detectors
discrete specific value detector 345, 346
discrete tags

about 21
edge detection 268, 270, 271, 272

disk space
plant data 18

document conventions 12
documentation set 11
dynamic configuration

about 67
committing changes 70
effects 68
storage 122

E
edge detection 264

analog tags 265, 266, 267, 268
discrete tags 268, 270, 271, 272

e-mail actions 350
EndTime variable 358
engineering units 231
error count

system tags 42
error messages 38

categories 39
See also system messages

errors
IDAS 78

event actions
about 349
deadband actions

about 351
e-mail actions

about 350

generic SQL actions
about 349

overloads 357
priorities 353
queues 355
snapshot actions

about 350
summary actions

about 351
thread pooling 355

event data 16
event detectors

about 345
external detectors

about 349
generic SQL detectors

about 345
overloads 357
schedule detectors

about 348
specific value detectors

about 346
SQL-based detectors

about 345
thread pooling 354

event history
storage duration 34

event subsystem
about 339

Event System Service 40, 340
about 353

event tags
about 344

events
about 339
components 340
database connections 356
edge detection 264
features and benefits 342
overloading 356
performance factors 343
uses 341
variables 358
See also event actions, event detectors

EventStorageDuration system
parameter 34

EventTagName variable 358
EventTime variable 358
Wonderware Historian Concepts Guide

364 Index
extension tables 147, 218
about 132

external detectors 349

F
failover

I/O Servers 86
IDAS 80

FastDDE 73
FILETIME 129, 310
firewall

IDAS 78
forced storage 99

about 99
four-part naming convention 133
full, retrieval modes 163

G
generic SQL actions

about 349
generic SQL detectors 345

about 345
Greenwich Mean Time 32
GROUP BY clause 137, 290
groups

security 26

H
handle 49
Headroom system parameter 34
heterogeneous query 131
Historian Configuration service 40
Historian Console

See also Management Console
Historian DataAcquistion service 40
Historian EventSystem service 40
Historian I/O Server

about 149
service 40

Historian IOServer service 40
Historian ManualStorage service 40
Historian MDASServer service 41
Historian OLE DB Provider

See OLE DB provider
Historian Replication service 41
Historian Retrieval service 41
Historian SCM service 41
Historian Storage service 41

Historian SystemDriver service 41
HistorianVersion parameter 34
historical data 15, 16
history blocks

about 113
component of storage 94, 334
creating 114
deleting 117
duration 35
notation 113
querying data 313
remote data source 129
retrieval 315
storage locations 115

history data
acquisition 72
data categories 94
modification tracking 53

History table 132
inserting manual data 307
querying 275

history version 235
HistoryCacheSize parameter 35
HistoryDaysAlwaysCached
parameter 35

Holding database
about 66

HoursPerBlock system parameter 35

I
I/O Driver 75
I/O Servers

acquisition 17, 72, 73
addressing 74
data quality 59
failover 86
inserting original data 33
modification effects 70
redirecting to InTouch 87
time synchronization 37, 87

IDASs
about 75
acquisition 72, 75
configuration information 76
data processing 77
data transmission 77
error logging 78
failover 80
Wonderware Historian Concepts Guide

Index 365
late data handling 82
licensing 35
modification effects 70
performance 48
security 78
slow and intermittent networks 85
store-and-forward 79
system tags 44
time synchronization 37, 38, 87

importing
Holding database 66

IN clause 138
indexing 40
indexing service 122
INNER REMOTE JOIN 140, 281
INSERT statements 90
InSQLIOS

See Historian I/O Server
integral retrieval mode 194
integral, retrieval modes 194
intermittent network. 85
interpolated, retrieval modes 165
interpolation 35, 165
interpolation type 237
InterpolationTypeInteger parameter 35
InterpolationTypeReal parameter 35
InTouch

redirecting I/O Server data 87
InTouch History Importer 72
item name 74

J
JOIN clause 139, 140, 281

L
late data 82

characteristics 94
LateDataPathThreshold system
parameter 35

latency 336
event detections 346

leading edge detection 266, 268, 270, 272
LicenseRemoteIDASCount parameter 35
LicenseTagCount parameter 35
licensing

remote IDASs 35
tag count 35

LIKE clause 138
linear interpolation 238
linear scaling 130
linked server 133, 146
Live table 132

querying 276
log file

See system message logs
logins

Windows 24
Wonderware Historian 27
Wonderware Historian services 31

M
Management Console

security 31
ManualDataPathThreshold system
parameter 35

maximum retrieval mode 188
maximum, retrieval modes 188
MDAS

acquisition 72, 73
clients

acquisition 90
retrieval 130
time synchronization 89

data quality 60
retrieval 128
storage 94, 334

MDAS Server Service 334
memory

history information 94
management 122
tag information 35

Microsoft Query 145
Microsoft SQL Server

integration 18
security 25

minimum, retrieval modes 182
mixed mode 26
modification tracking

about 51
configuration changes 52
historical data changes 53
turning on or off 36

ModLogTrackingStatus system
parameter 36
Wonderware Historian Concepts Guide

366 Index
monitoring
performance tags 38
system tags 43, 44

N
net time command 89
network

IDAS 85

O
Object Linking and Embedding for
Databases (OLE) 130

object permissions 28
ODBC 19
old data

characteristics 94
replication delay 336

OldDataSynchronizationDelay system
parameter 36

OLE DB 130
OLE DB provider

about 130
four-part query 133
limitations 137
linking 146
retrieval 128
stored procedures 310
syntax supported 137

OPC quality 244, 312
about 54

OPENQUERY function 135
OPENQUERY statement 139, 145, 312
OPENROWSET function 136
operations

See summary operations
operators 294, 299, 302
OR clause 139
ORDER BY clause 137
original data 98, 235
overloading 356, 357

P
page faults 49
performance

system tags 38, 48
Performance Logs and Alerts 48
permanent storage location 115, 117

permissions
security 28

post detector delay 353
priority

event actions 353
process data 16
production data 15
protocols 50, 73

Q
quality

about 54, 61
client-side 61
data acquisition 59
retrieval rule 244
viewing values for 55

quality detail codes 56
quality flags 58
quality rule 244

parameter 36
QualityDetail

about 54
QualityDetail bit layout 59
QualityRule parameter 36
query

examples 275
OLE DB provider syntax 133, 137

queued replication 332
queues

event actions 353

R
rate of change 101
real-time

data storage 94, 334
real-time data 16

characteristics 94
real-time data window 95

about 97
late data 83
parameter 36
swinging door 104, 110

RealTimeWindow parameter 36
reconfiguration

See dynamic configuration
redirect I/O Servers 87
redundancy

See failover
Wonderware Historian Concepts Guide

Index 367
relational databases 15, 65
about 16
limitations 17
Wonderware Historian 17

remote data source 129
remote table

See also extension tables
replication

about 319
analog summary 325
comparison to event system 338
continuous operation 336
data 331
Daylight Savings Time 328
delay for old data 336
latency 336
overflow protection 337
queued 332
run-time operations 335
security 337
state summary 326
streaming 332
tags 321

replication groups
about 330

replication schedules
about 327

Replication Service 334
replication subsystem 334
ReplicationConcurrentOperations system
parameter 36

ReplicationDefaultPrefix system
parameter 36

ReplicationTCPPort system
parameter 37

resolution 15, 222, 310
using comparison operators 302

retrieval
about 127
active image 121
components 128
deadbands 282
edge detection 264
features 129
quality rule 244
service 41, 130
time deadband 227
time zone 242

value deadband 231
version of data 235
See also cyclic retrieval, delta retrieval

retrieval modes
average (time-weighted) 176
best fit 171
counter 200
cyclic 152
delta 156
full 163
integral 194
interpolated 165
maximum 188
minimum 182
slope 197
time-in-state 205
ValueState 205

retrieval service 128
RevisionLogPath system parameter 37
roles

permissions 29
Wonderware Historian 29

rollover value 200
RTU 83
Runtime database

about 65
configuration data 63

S
samples 119
sampling interval 222
schedule detectors

about 348
schema 134
security 19

about 24
database authorization 28
IDAS 78
Management Console 31
permissions 28
replication 337
roles

Wonderware Historian defaults 29
SQL Server authentication 26
SQL Server security 25
users

Wonderware Historian default 29
Wonderware Historian Concepts Guide

368 Index
Windows groups 26
Windows operating system 24
Wonderware Historian logins 27
Wonderware Historian services 24

SELECT INTO statement 306
SELECT statements 140

syntax 133
services

security for 24
SQL Server login 31
Wonderware Historian 40

simple replication
about 323

SimpleReplicationNamingScheme system
parameter 37

slope retrieval mode 197
slope, retrieval modes 197
slow network 85
snapshot actions 350
snapshot files

about 124
updates 126

specific value detectors 346
SQL 16
SQL Server

authentication 26
See Microsoft SQL Server

SQL Server logins
See logins

SQL statements
for actions 349

SQL templates 345
SQL-based detectors 345

time intervals 346
stairstep interpolation 237
StartTime variable 358
state summary replication

about 326
statement permissions 29
StateSummaryHistory table 132
StateSummaryTypeAbbreviation system
parameter 37

statistical average 176
storage

about 93
active image 121
components 94
data categories 94

data conversions 112
data versioning 98
dynamic configuration 122
forced storage 99
methods 99
real-time data window 97
reserved values 112
service 40
system tags 43
Wonderware Historian 18
See also delta storage, cyclic storage
See also history blocks, storage
locations, delta storage, cyclic storage

storage by exception
See also delta storage

storage deadband 351
storage locations

about 115
alternate 116
buffer 117
circular 116
modification effects 69
path 115
permanent 117

storage rate
cyclic storage 111

store-and-forward
as manual data 22
IDASs 79

stored procedures
OLE DB queries 310

string tags
about 21

SuiteLink 17, 73
about 50

SuiteLinkTimeSyncInterval system
parameter 37

summary actions
about 351

summary data 16
summary history

storage duration 38
summary operations 351
summary replication

about 324
summary tags

about 22
Wonderware Historian Concepts Guide

Index 369
SummaryCalculationTimeout system
parameter 37

SummaryReplicationNamingScheme
system parameter 38

SummaryStorageDuration system
parameter 38

swinging door deadband 101
benefits 101
examples 105
options 104
real-time data window 110
requirements 110

SysPerfTags system parameter 38
system driver

about 42
acquisition 73
service 41

System Management Console 64, 334
system messages

about 38
categories 39

system parameters
about 33
modification effects 69

system tags
about 42

T
tags

about 21
allocating memory 34
conventions 281
information in memory 122
mixing in a query 286
modification effects 69
replication configuration 333
sources of values 22
types 21

threads 49
event actions 355
event detector 354
event system 353

tiered historian
about 319

time deadband 100, 227, 282
event action 351

time deadband, retrieval 227
time domain extensions 18, 147, 218

time handling 32
query resolution 310
synchronization 37

time interval
SQL-based detectors 346

time series data 18
time synchronization

I/O Servers 87
IDASs 87
MDAS clients 89
Wonderware Historian 38, 87

time zone 32, 242
time-in-state 252
time-in-state retrieval mode 205
time-in-state, retrieval modes 205
timestamp rule 240

parameter 38
timestamping 315
TimeStampRule parameter 38
TimeSyncIODrivers system
parameter 38

TimeSyncMaster system parameter 38
time-weighted average retrieval
mode 176, 194

topics
I/O Servers 74
modification effects 70

tracking
See modification tracking

trailing edge detection 267, 268, 271, 272
Transact-SQL 18, 90, 147, 218

U
UPDATE statements 90
user account

See logins
users

Wonderware Historian 29
UTC 32, 242

V
value deadband 100, 231, 282

event action 351
option for swinging door 104

value deadband, retrieval 231
ValueState retrieval mode 205
ValueState, retrieval modes 205
Wonderware Historian Concepts Guide

370 Index
variables 312
events 358

variant type data 287
version

stored data 98
version of data, retrieval 235
versioned data 235
views

using 135

W
WHERE clause 141
wide tables

delta retrieval 278
limitations 138
querying 281
using variables 312

WideHistory table 132
querying 277

Windows authentication 26
Windows login

See logins
Windows operating system

security 24
Windows security groups 26
Windows Server 2003 50, 73
Windows Server 2008 50
Windows Vista 50
Wonderware Historian

architecture 19
documentation set 11
integration with Microsoft SQL
Server 18

logins 27, 31

roles 29
security 24, 25
services 40
starting 34
storage 18
subsystems 19
time synchronization 38, 87
users 29
version 34

Wonderware Indexing service 40
wwAdmin login 28, 30
wwAdministrators role 30
wwCycleCount column 147, 285
wwdbo user 28, 30
wwEdgeDetection column 147

about 264
wwFilter column 147
wwInterpolationType column 147
wwParameters column 147, 218
wwPower login 28, 30
wwPowerUsers role 30
wwQualityRule column 147
wwResolution column 147, 285
wwRetrievalMode column 147, 285
wwStateCalc column 147
wwTimeDeadband column 147
wwTimeStampRule column 147
wwTimeZone column 147

about 242
wwUser login 28, 30
wwUsers role 30
wwValueDeadband column 147
wwValueSelector column 147
wwVersion column 147
Wonderware Historian Concepts Guide

	Contents
	Welcome
	Wonderware Historian Documentation Set
	Documentation Conventions
	Technical Support

	Introduction
	The Wonderware Historian Solution
	Process Data
	About Relational Databases
	Limitations of Relational Databases
	Wonderware Historian as a Real-Time Relational Database

	Integration with Microsoft SQL Server
	Support for SQL Clients

	Wonderware Historian Subsystems

	System-Level Functionality
	About Tags
	Types of Tags
	Sources of Tag Values
	Naming Conventions for Tags

	Security
	Windows Operating System Security
	Default Windows Login for Wonderware Historian Services

	SQL Server Security
	Authentication
	Default Windows Security Groups
	Wonderware Historian Default Logins
	Database Authorization
	Wonderware Historian Default Users and Roles
	Default SQL Server Login for Wonderware Historian Services

	Management Console Security
	Default Access Rights for Different Operating Systems

	Time Handling
	System Parameters
	System Messages
	Wonderware Historian Services
	The System Driver and System Tags
	Error Count Tags
	Date Tags
	Time Tags
	Storage Space Tags
	I/O Statistics Tags
	System Monitoring Tags
	Miscellaneous (Other) Tags
	Event Subsystem Tags
	Replication Subsystem Tags
	Performance Monitoring Tags

	Supported Protocols
	Modification Tracking
	Modification Tracking for Configuration Changes
	Modification Tracking for Historical Data Changes

	Data Quality
	Viewing Quality Values and Details
	Basic QualityDetail Codes
	QualityDetail Flags
	QualityDetail Bit Layout

	Acquisition and Storage of Quality Information
	Quality for Data Acquired from I/O Servers
	Quality for Data Not Acquired from I/O Servers

	Client-Side Quality

	Configuration Subsystem
	Configuration Subsystem Components
	About the Runtime and Holding Databases
	The Runtime Database
	The Holding Database

	About the Configuration Service
	Dynamic Configuration
	Effects of Configuration Changes on the System
	Cases in Which Configuration Changes are not Committed

	Data Acquisition Subsystem
	Data Acquisition Components
	Data Acquisition from I/O Servers
	I/O Server Addressing
	About IDASs
	IDAS Configuration
	IDAS Data Processing
	Data Transmission to the Storage Subsystem
	IDAS Security and Firewalls
	IDAS Error Logging
	IDAS Store-and-Forward Capability
	IDAS Redundancy
	IDAS Autonomous Startup
	IDAS Late Data Handling
	Support for Slow and Intermittent Networks

	I/O Server Redundancy
	Redirecting I/O Servers to InTouch HMI Software
	Time Synchronization for Data Acquisition

	Data Acquisition by Means of INSERT and UPDATE Statements
	Data Acquisition from MDAS
	Importing Data from a CSV File

	Data Storage Subsystem
	Storage Subsystem Components
	Storage Data Categories
	About the Real-Time Data Window

	Data Modification and Versioning
	Storage Modes
	"Forced" Storage
	Delta Storage
	Time and Value Deadbands for Delta Storage
	"Swinging Door" Deadband for Delta Storage
	Benefits of the Swinging Door Deadband
	Additional Options that Affect the Swinging Door Deadband
	Swinging Door Deadband Example
	Determining If the Real-Time Window Is Configured Appropriately for All Tags
	Disk Requirements and Performance Considerations for a Swinging Door Deadband

	Cyclic Storage
	Data Conversions and Reserved Values for Storage
	History Blocks
	History Block Notation
	History Block Creation
	History Block Storage Locations
	Circular Storage Location
	Alternate Storage Location
	Permanent Storage Locations
	Buffer Storage Locations

	Automatic Deletion of History Blocks

	About the Active Image
	Automatic Resizing of the Active Image
	How the Active Image Storage Option Affects Data Retrieval

	Dynamic Configuration Effects on Storage
	Memory Management for Data Storage
	About Snapshot Files
	How Snapshot Files are Updated

	Data Retrieval Subsystem
	Data Retrieval Components
	Data Retrieval Features
	History Blocks: A SQL Server Remote Data Source
	Retrieval Service
	About the Wonderware Historian OLE DB Provider
	Extension (Remote) Tables for History Data
	Query Syntax for the Wonderware Historian OLE DB Provider
	Using the Four-Part Naming Convention
	Using a Wonderware Historian OLE DB Provider View
	Using the OPENQUERY Function
	Using the OPENROWSET Function
	Syntax Options Supported

	Wonderware Historian OLE DB Provider Unsupported Syntax and Limitations
	No Notion of Client Context
	Limitations on Wide Tables
	LIKE Clause Limitations
	IN Clause Limitations
	OR Clause Limitations
	Using Joins within an OPENQUERY Function
	Using Complicated Joins
	Using a Sub-SELECT with a SQL Server Table and an Extension Table
	WHERE Clause Anomalies
	CONVERT Function Limitations
	SQL Server Optimization of Complex Queries
	Using Columns of a Variant Type with Functions
	Using StartDateTime in the Query Criteria
	Comparison Statements and NULL Values
	OPENQUERY and Microsoft Query

	Linking the Wonderware Historian OLE DB Provider to the Microsoft SQL Server

	Wonderware Historian Time Domain Extensions
	Wonderware Historian I/O Server

	Data Retrieval Options
	Understanding Retrieval Modes
	Cyclic Retrieval
	Cyclic Retrieval - How It Works
	Cyclic Retrieval - Supported Value Parameters
	Cyclic Retrieval - Query Examples
	Cyclic Retrieval - Initial Values
	Cyclic Retrieval - Handling NULL Values

	Delta Retrieval
	Delta Retrieval - How It Works
	Delta Retrieval - Supported Value Parameters
	Delta Retrieval - Query Examples
	Delta Retrieval - Initial Values
	Delta Retrieval - Handling NULL Values

	Full Retrieval
	Full Retrieval - How It Works
	Full Retrieval - Supported Value Parameters
	Full Retrieval - Query Examples
	Full Retrieval - Initial Values

	Interpolated Retrieval
	Interpolated Retrieval - How It Works
	Interpolated Retrieval - Supported Value Parameters
	Interpolated Retrieval - Query Examples
	Interpolated Retrieval - Initial and Final Values
	Interpolated Retrieval - Handling NULL Values

	“Best Fit” Retrieval
	Best Fit Retrieval - How It Works
	Best Fit Retrieval - Supported Value Parameters
	Best Fit Retrieval - Query Examples
	Best Fit Retrieval - Initial and Final Values
	Best Fit Retrieval - Handling NULL Values

	Average Retrieval
	Average Retrieval - How It Works
	Average Retrieval - Supported Value Parameters
	Average Retrieval - Query Examples
	Average Retrieval - Initial and Final Values
	Average Retrieval - Handling NULL Values

	Minimum Retrieval
	Minimum Retrieval - How It Works
	Minimum Retrieval - Supported Value Parameters
	Minimum Retrieval - Query Examples
	Minimum Retrieval - Initial and Final Values
	Minimum Retrieval - Handling NULL Values and Incomplete Cycles

	Maximum Retrieval
	Maximum Retrieval - How It Works
	Maximum Retrieval - Supported Value Parameters
	Maximum Retrieval - Query Examples
	Maximum Retrieval - Initial and Final Values
	Maximum Retrieval - Handling NULL Values and Incomplete Cycles

	Integral Retrieval
	Integral Retrieval - How It Works
	Integral Retrieval - Supported Value Parameters
	Integral Retrieval - Query Examples
	Integral Retrieval - Initial and Final Values
	Integral Retrieval - Handling NULL Values

	Slope Retrieval
	Slope Retrieval - How It Works
	Slope Retrieval - Supported Value Parameters
	Slope Retrieval - Query Example
	Slope Retrieval - Initial and Final Values
	Slope Retrieval - Handling NULL Values

	Counter Retrieval
	Counter Retrieval - How It Works
	Calculations for a Manually Reset Counter
	Counter Retrieval - Supported Value Parameters
	Counter Retrieval - Initial and Final Values
	Counter Retrieval - Handling NULL Values
	Counter Retrieval - Handling Illegal Values
	Counter Retrieval - Query Example

	ValueState Retrieval
	ValueState Retrieval - How It Works
	ValueState Retrieval - Supported Value Parameters
	ValueState Retrieval - Query Examples
	ValueState Retrieval - Initial and Final Values
	ValueState Retrieval - Handling NULL Values

	RoundTrip Retrieval
	RoundTrip Retrieval - How It Works
	RoundTrip Retrieval - Supported Value Parameters
	RoundTrip Retrieval - Query Examples
	RoundTrip Retrieval - Initial and Final Values
	RoundTrip Retrieval - Handling NULL Values

	Understanding Retrieval Options
	Which Options Apply to Which Retrieval Modes?
	Using Retrieval Options in a Transact-SQL Statement
	Cycle Count (X Values over Equal Time Intervals) (wwCycleCount)
	Cycle Count - Query Examples

	Resolution (Values Spaced Every X ms) (wwResolution)
	Resolution - Query Examples

	About “Phantom” Cycles
	Time Deadband (wwTimeDeadband)
	Time Deadband - Query Examples

	Value Deadband (wwValueDeadband)
	Value Deadband - Query Examples

	History Version (wwVersion)
	History Version - Query Example

	Interpolation Type (wwInterpolationType)
	Timestamp Rule (wwTimestampRule)
	Time Zone (wwTimeZone)
	Quality Rule (wwQualityRule)
	Quality Rule - Query Examples

	State Calculation (wwStateCalc)
	Analog Value Filtering (wwFilter)
	Statistically Removing Outliers (SigmaLimit)
	Converting Analog Values to Discrete Values (ToDiscrete)
	“Zeroing” around a Base Value (SnapTo)

	Selecting Values for Analog Summary Tags (wwValueSelector)
	Edge Detection for Events (wwEdgeDetection)
	Edge Detection for Analog Tags
	Leading Edge Detection for Analog Tags
	Trailing Edge Detection for Analog Tags
	Both Leading and Trailing Edge Detection for Analog Tags
	Edge Detection for Discrete Tags
	Leading Edge Detection for Discrete Tags
	Trailing Edge Detection for Discrete Tags
	Both Leading and Trailing Edge Detection for Discrete Tags

	Query Examples
	Querying the History Table
	Querying the Live Table
	Querying the WideHistory Table
	Querying Wide Tables in Delta Retrieval Mode
	Querying the AnalogSummaryHistory View
	Querying the StateSummaryHistory View
	Using an Unconventional Tagname in a Wide Table Query
	Using an INNER REMOTE JOIN
	Setting Both a Time and Value Deadband for Retrieval
	Using wwResolution, wwCycleCount, and wwRetrievalMode in the Same Query
	Determining Cycle Boundaries
	Mixing Tag Types in the Same Query
	Using a Criteria Condition on a Column of Variant Data
	Using DateTime Functions
	Using the GROUP BY Clause
	Using the COUNT() Function
	Using an Arithmetic Function
	Using an Aggregate Function
	Making and Querying Annotations
	Using Comparison Operators with Delta Retrieval
	Specifying the Start Date with ">="
	Specifying the Start Date with ">"
	Specifying the End Date with "<="
	Specifying the End Date with "<"

	Using Comparison Operators with Cyclic Retrieval and Cycle Count
	Using Two Equality Operators
	Using One Equality Operator
	Using No Equality Operators

	Using Comparison Operators with Cyclic Retrieval and Resolution
	Using Two Equality Operators
	Using One Equality Operator
	Using No Equality Operators

	SELECT INTO from a History Table
	Moving Data from a SQL Server Table to an Extension Table
	Using Server-Side Cursors
	Using Stored Procedures in OLE DB Queries
	Querying Data to a Millisecond Resolution using SQL Server 2005
	Getting Data from the OPCQualityMap Table
	Using Variables with the Wide Table
	Retrieving Data Across a Data "Hole"
	Returned Values for Non-Valid Start Times
	Retrieving Data from History Blocks and the Active Image
	Querying Aggregate Data in Different Ways

	Replication Subsystem
	About Tiered Historians
	How Tags are Used During Replication
	Simple Replication
	Summary Replication
	Analog Summary Replication
	State Summary Replication

	Replication Schedules
	Replication Schedules and Daylight Savings Time

	Replication Groups
	How Replication is Handled for Different Types of Data
	Streaming Replication
	Queued Replication

	Tag Configuration Synchronization between Tiered Historians
	Replication Components
	Replication Run-time Operations
	Replication Latency
	Replication Delay for “Old” Data
	Continuous Operation
	Overflow Protection

	Security for Data Replication
	Using Summary Replication instead of Event-Based Summaries

	Event Subsystem
	Event Subsystem Components
	Uses for the Event Subsystem
	Event Subsystem Features and Benefits
	Event Subsystem Performance Factors
	Event Tags
	Event Detectors
	SQL-Based Detectors
	Generic SQL Detectors
	Specific Value Detectors
	Time Intervals for SQL-Based Detectors

	Schedule Detectors
	External Detectors

	Event Actions
	Generic SQL Actions
	Snapshot Actions
	E-mail Actions
	Deadband Actions
	Summary Actions
	Event Action Priorities

	Event Subsystem Resource Management
	Detector Thread Pooling
	Action Thread Pooling
	Event Subsystem Database Connections
	Handling of Event Overloads and Failed Queries

	Event Subsystem Variables

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /Impact
 /ImprintMT-Shadow
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /MaiandraGD-Regular
 /Mangal-Regular
 /MapInfoCartographic
 /Map-Symbols
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /OCRAExtended
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

