Wonderware® 1/0 Server Toolkit

User’s Guide
Revision L
October 2001

Wonderware Corporation

All rightsreserved. No part of this documentation shall be reproduced, stored in aretrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the Wonderware Corporation. No copyright
or patent liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this documentation, the
publisher and author assume no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information contained herein.

Theinformation in this documentation is subject to change without notice and does not represent
a commitment on the part of Wonderware Corporation. The software described in this
documentation is furnished under alicense or nondisclosure agreement. This software may be
used or copied only in accordance with the terms of these agreements.

I/0O Server Toolkit
O 2001 Wonderware Corporation. All Rights Reserved.

100 Technology Drive
Irvine, CA 92618

U.SA.

(949) 727-3200
http://www.wonderware.com

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Wonderware Corporation cannot attest to the accuracy of this
information. Use of aterm in this book should not be regarded as affecting the validity of any
trademark or service mark.

Wonderware, InTouch, and FactorySuite Web Server are registered trademarks of Wonderware
Corporation.

Wonderware FactorySuite, InTouch, WindowMaker, WindowViewer, SQL Access Manager,
Recipe Manager, SPC Pro, DBDump, DBL oad, HDMerge, HistData, Wonderware L ogger,
InControl, InTrack, InBatch, Industrial SQL , FactoryOffice, Scout, SuiteLink, and NetDDE are
trademarks of Wonderware Corporation.

Contents

Documentation CONVENLIONScccciriciiiiiinininniss e sn s naes iX
TermsUsed inthiSDOCUMENLccoieiiieiieiie ettt beereeaeesraereens iX
Limitation SUMIMEIYcc.cooeiriiiee et sbe bt e e et e b b saeene e e enean X
CHAPTER 1 O Introduction to the /O Server TOOIKIt ... 1-1
RTAY]] N = P TRRSN 1-2

TS = 1 = () TR SS 1-3
CommUNICatiON PrOtOCOISocveeeeeeciesies ettt et nn e s 1-3

WAL IS DDE?......ceictiee ettt ettt ettt e e e besbesbesbesbeeneeneessesenteseeas 1-5

D]l (] (oo [P 1-6

Dynamic Data Exchange Management Librarycccccooeveeeeeverenievesesie s eeeeeee s 1-7

WAL 1S SUITELINK? ...ttt sttt st b e b b e e e e e b e 1-8
SUIELINK PrOtOCOLccviieiiiee sttt st ae e sae e neenneenreens 1-8

Server Application REQUITEMENES.cieieeeeieeresesese e sres e e e seeste et eeensenes 1-9

TOOIKit CONENt OVEIVIEW ...ttt sttt s e et re e sreesre e reeneean 1-10
Requirements for Developing on Windows 98, Windows NT and Windows 2000.....1-11
CHAPTER 2 O Getting Started with the 1/0 Server TOOIKItccccovevnirreiiereis 2-1
INSLAllAtiON PrOCESS........coitieiecie ettt ettt et s s be e sre e re e e saeesneenteenreens 2-2

If You Have a Prior Installation of the 1/0O Server TOOIKit.........ccovveveeeeeveceviresecne 2-2

GENEral INSETUCLIONS......c.viiieiie ettt s re et sae e s ae e be et e eatesaaesreesreas 2-2

L LN =S] o4 o] S 2-3

INCIUAE FlES...ee ittt s r e er e e e e e e eeneens 2-3

LT 0 =SS 2-3

SAMPIE SEIVEI'S.....ceeeeeeiecies ettt e et e e s e e tesrestesnesneeseeneeneennenees 2-4

[1= T 1 =S 2-4

ONIINE BOOK ...eeveiestiste ettt s ettt ese e enae s e s tesresaeereeneeneeneeneen 2-4

COMPITING B SEIVEN ...ttt b e bbbt e e e e b e 2-5

LiNKING @ SEIVEL ...cuiiiiieie et et s et es e e e e e tesneste s nesneeneeneenaesnenes 2-5

RUNNING 8 SEIVET ...ttt et s a e sb et sbesaesaeene e e enean 2-6
CHAPTER 3 [0 OVErVIeW Of @n 1/O SEIVETcccceeiiiieiiiiisssee et 3-1
[= | o T 1 32
ValUE/ TIME/QUALTTY ..ttt bbb 32

DDE and SuiteLink CONVErSationS...........cuieeerreerieresesesesesesessesseessessessessessessessessens 3-3

Logical Devices and POINLS ..ot e 34

(oo Tor= I D =Y o=/ I o] Fox 35

1= 0015 0T £ 3-6

Advises, ReqQUESLS, aNO POKES..........ccovviieiiieeece e ete st e e neens 3-7

TOOIKIT DALADASE........eeeieieeiie ettt e e e st e e s s et e e e s s e e e s sbbeessasanesssarnnas 3-8

Table of Contents

CHAPTER 4 [0 Designing an /O SEIVETccoeiiiiriiienieieiieisissisesiessses s 4-1
ConfigUIING @170 SEIVET ..ottt e e e aesre e 4-2
EXECULiNG the ProtOCOccooiii et s s 4-3
Communication With the DEVICE..........cccureiririie e 4-4

CHAPTER 5 [0 SUILELINKcocviiecicieieisicsceeee st 5-1
SUILELITNK OVEIVIEIW ...ttt et s re et e e et e seeseesbesaeebesneeneeneens 5-2
Components (Files) Associated With SUItELINKccccoeveririeirsese e 5-3
SEAtING UP 8 SEIVEN ...ttt e sttt se et besa s 5-3
Automatic Throttling of the Data Rate...........cccvvvieeeerceeerere e 5-4
SUItELINK DEDUG FIagS.o e e 55
Deactivating SuiteLink for aParticular SErVEYcccccvivveievieneeeeeeeee e 5-6
Preventing a Server from Running if SuiteLink IsUnavailable...........ccccccorininennne 5-7
Preventing a Server from Reflecting SuiteLink POKES...........cccovvveeeveeieerevcse e 5-8

CHAPTER 6 0 TimME MAIKS ..ottt 6-1
REAAING TIME IMEIKS. ..ot et 6-2
Understanding TimE MarksS.........coveivieeerieeieresese s sese e seeseese e eeee e s e 6-4

CHAPTER 7 O Data QUAlty FIagS.......cevviriiriiiririiiriieisiesseesisesise s 7-1
L@ 0= T Y =SSR 7-2
(O 0o T VA =0 S 1] 7-4
Updating QUAlITY FIaOScoueiereieieiee et e s 7-5

CHAPTER 8 [0 StatiStiCS FUNCLIONS.........ccoveieieeririrnieee et 8-1
OVEIVIBIW ...ttt sttt b et b bbbt b et e bt e st e b e st e e eb e nben e e b e sb e e eneneenes 8-2
Statistics from a Client PergpeCtiVe........cccoii et 82
ToOlKit StaNdard SEALISHCSvcvrveeeerieee e 8-6

CHAPTER 9 O 1/0 Server Toolkit FUNCLION SUMMAIY........cccovriiiriiniriernieisie e 9-1
Protocol Initialization & Setup FUNCLIONS.coiiiie e 9-2
Logical Device Management FUNCLIONS........cccvvvrereeerieeeeneesenieseesie et eseeeeneenes 9-3
Point/Item Management FUNCLIONS...........coiiiiiiineeeieeeee e 9-5
Toolkit Database Interface for Protocol FUNCHIONS ..o 9-8
THMEN FUNCLIONS......otiiiit ettt ettt b et bbbt e e e e e e e 9-8
String PTVALUE Manipulation FUNCLIONS.........ccceveeerererine e seeeeeeseeseenee e 99
Memory Management FUNCLIONS.........ccoouiriierenenene et s 9-12
Memory Access Permission Functions - Windows Onlyccccceevvveveeveeneenenensennnn 9-12
CommOonN Dialog FUNCHIONSooueiiriieieieeie ettt e s 9-13
Selection BOXES - OPtioNalccviveieieeeecesese et 9-16
MiSCEIANEOUS FUNCLIONS.......ccueiiieiiieiee et 9-17
Windows NT POrting FUNCLIONS..........cccviereeieeere st 9-19
MaCrOS fOr POMabilitycoooeiiiieieeee e e 9-22

P2 (o 10T g = I T 0\ 0] 217 1o] FH 9-24

Table of Contents iii

CHAPTER 10 OO API FUNCION REFEIENCEScocevvcvevecectctee et 10-1
AdjustWindowSi ZEFrOMWININIc.eiiieieese e e 10-2
CheckConfigFIECMALINE.ccueieieiie et 10-3
ClOSECOMM.....tiiiiee ettt ettt et e e et e st e et e e beeebee s besebesebaesbesenseesnsenens 10-4
DD EVGEINGIMEc.eeiiiiie ettt e sbe e et sbeeebe e sbeesabessbeeeareesns 10-5
DOGEIGM T aSFI I EHIME......cccuie et st eaee e 10-6
DIBGEINGIME......eoteieceecte ettt ettt e e e sbeeeabe e sabeeeabeesabeeenreesns 10-7
(D0 CTc 1 o1 01 Y o< RS 10-8
DBGELPLQUEIITY ...ttt b bt 10-9
DOGEIPITIME ...ttt ettt et et e sae e e be e e sreeebee e saeeenreean 10-10
DDOGELV AlUEFOTCOMML....cccuiieiiie ettt ettt et et eabe e sre e sbbe e sareeenre s 10-11
DBNEWQFOFAIIPOINSccuieiiieiieie et re et sae e s reenre s 10-12
DBNEWQFTOMDEVICE.cccvieieecieeie ettt st st e ee e e neeere e 10-13
DBNEWTOPICLISE ..ttt e e 10-14
DBNEWTQFIOMDEVICEc.eeeiiecieee ettt re s 10-15
DONEeWV AlUEFTOMDEVICEve ettt 10-16
DBNEWV QFFOMDEVICE.........ce ettt sttt s re e re s 10-17
DBNEWV TQFIOMDEVICE.......cceecieeiecie ettt st ere s 10-18
DbReGiStErDEMANASCAN.c.ee ettt eas 10-19
DBREGISLEr SCANSIALE ettt s 10-20
DBSEIHPYOL ...t ettt et et e reeereas 10-21
D035 S (o] oL 1Y o= 10-22
DBV alUEWIHTECONFITM ..o et 10-23
(0[S 11 o RSSO 10-24
EnableCommMNOLIfICaHION........c.eecceeiiieecee ettt e 10-25
FIUSNCOMM ...ttt s e e e re e sareas 10-26
GELAPPINEITIE. ...ttt ettt b e ae e s ae e see e sbeeeeenesanesneenbeanreans 10-27
GEICOMMEITONeiie ittt e et e e e st e e e et e e e s eaae e e e enbeeeeenneeeesnreeaan 10-28
GEtCOMMEVENIMASKviiiiee ittt ettt et e eaee e e 10-29
GELIOSENVEILICENSEi ettt ettt ettt stte ettt et e srae e saae e sabeesaee e sabeesanee e 10-30
GetServerNamMEEXIENSIONccveiiie ettt e 10-31
(€T 151 oo USSP 10-32
GEITEXIEXIENE ..ot ettt et e b e et e sre e e nee e 10-33
NTSrvr_BuildCommDCB.........ccciiieiie ettt 10-34
NTSIVI_ GEICOMMSIALEvee e srae s 10-35
NTSIVI_SEtCOMMSLALE.eiiieecee e 10-36
NTSIVE_SEIDCB DIl ...ttt s re s 10-37
NTSIVI_SEIDCB_RES....ccicicicce ettt s sre e re s 10-38
OPENCOIMIM ...ttt ettt et b e st e s e e sae e saeesbeebeeaneennesneasreans 10-39
PENSENAEMSEIECLALL ...ttt e 10-40
PINSENdEMSEI€CtRANGEccueieeeiee e e 10-41
ProtACHVAIEPOINTooivieciee ettt et s re e sabe e e reesareas 10-42
ProtAllocatel 0giCaAIDEVICEccoiiieiieeieeeee e e s 10-43
PrOtCIOSE. ...ttt ettt ettt et ettt e st e ebe e e reeebee e e reeenreas 10-44
ProtCreatePOiNtcoiiiiiecee ettt b e e sare e rae s 10-45
ProtDeaCtiVatEPOINTeeeciee ettt re e eare s 10-46
ProtDEfWINAOWPTOCccveeeiii ettt ettt ettt et ereeenreas 10-47
ProtDE ELEPOINTveiitiecee et et ree s 10-48
PrOEEXECULE ...ttt ettt et e e e e be e e e e ar e e e eenneeaesareeaaan 10-49
ProtFreel 0giCalDEVICE........ccoiiiie et e 10-50
ProtGEIDIIVEINGME.veeciee ettt sttt ere e st eereesare s 10-51
ProtGetValidDataT imEOUL...........cocueeireeeieeeitee et esee et saeeesrreesrreeeaneesrreeennes 10-52
PrOtINIT...ce ettt st e b e et e e e reeebe e e nreeenreas 10-53
ProtNewWV alUEFOrDEVICEcveeeiee ettt ettt st 10-54
ProtTImErBVENL ...ttt ettt et e 10-55

(R ST= 0 (O00] 1010 4 FEUTTE TR 10-56

Table of Contents

RelinquishPermission - Windows ONlYccoceeiireneneneeeee e 10-57
RequestPermission - WindowsS OnlY...........ccooiiiienenieienese e 10-58
SEIBOXAGUENLIY ...ttt s 10-59
SEIBOXSELUPSEAIT ... ettt e et s 10-60
SEIBOXUSEISEIECE ...t e 10-61
SEIBOXUSEI SEIECHION ..ot e 10-62
SEILISIFIO. ..o 10-63
SElLiSIGEISEIECHION.ceevieeeeiee et 10-64
SElLISINUMSE ECLIONS......ceuecvereeeeie st 10-65
SEtCOMMEVENIMESKcveviieiiiieieiesi e 10-66
SetSPIashSCrEENParamS........couiiireeeeie et 10-67
SEAAAAVAIUE......ceceeetiece s 10-68
StADECIEMENTV BIUE ..ottt 10-69
SEAGEV AUttt 10-70
SEAINCIEMENIV AU,eeeceieeiecese s 10-71
StAREGISIETCOUNLEY ...ttt e e sbe s 10-72
SEAREGISIEIRELE. ... 10-73
StatSECOUNLErSINTEIVAovieeeiieieeteriee e 10-75
StASERAIEINTEIVELeeeieeeee e 10-76
SRSV BIUE ...t 10-77
SEASUDIIACIV AIUE ...t 10-78
StAUNIEQiSEErCOUNLET ... eeteieieterieeiee ettt sb e e e e b e b enas 10-79
StAUNIEQISLENRELE........ceeeeiie et 10-80
SEAZEMOV BIUB......c.eieeetieeetteeet et 10-81
S LAY IS S N I] oo SRR 10-82
SV B SEESIIING ..ottt et 10-83
SV A SHTTNGFTER.......eeeeee et st 10-84
SV A SHTTNGLOCK ...ttt e e 10-85
SV A SETNGUNIOCK. ...t s 10-86
SySTIMErSEUPPIOLTIMEYoiviitirieeieeee ettt 10-87
SySTimer SEtUPREJUESETIIMENoviiuiriereeie ettt 10-88
UdAdAFIIETIMEOITSELcviivieeierieet ettt 10-89
UAAAATIMEMSEC.......e ettt sttt sn e e sre e 10-90
UDDDGEINGIME ...ttt sttt r e et r e e sr e e s sre e 10-91
UdD BRI ETIME ...ttt e 10-92
UdDEATIMEMSECcviiiieetirieeeierte et 10-93
UINIT. e eb et b e nr e 10-94
UAREAAANYIMOTE.......coiiieiitieeeee ettt e bbb sae e anee e 10-95
UAREBAV ESION....cuiitiiciiiieieeie sttt b e s b e e resr e 10-96
UATEIMMINGLE......ceeeeteieeeet ettt sttt sr e e nre e 10-97
UAWITEANYMOFE. ...ttt ettt et s sbe e e e b e 10-98
UAWITEV EISION. ...ttt sttt besr e s enenre e 10-99
WWITECOIMIM L.ttt 10-100
WriteWindowSiZETOWININIc.oiviieiriiieireieese e 10-101
WWANNOUNCESEAIMTUD . ..ttt ettt n e 10-102
WWCENEIDIAIOF ...ttt e 10-103
WWCoNfiQUIECOMPOITciiiieiitiieeiee et et 10-104
WWCONFIQUIESEIVEY ...ttt ettt st s sb e 10-106
WWWWCOMTITIN ottt e et 10-107
WWDi SPIAYADOULBOX........coueieiriirieiie ettt s 10-108
WWDisplayADOULBOXEXceoiiiiiiiiiitirieie et 10-109
WWDisplayConfigNOLATTOW.......coeiieiiiiie et 10-110
WWDiSplayErrOrCreatingcoeieeeeeereee et e 10-111
WWDisplayErrorREadiNg.........coeieruiriirieiereee e 10-112
WWDiSplayErrOrWITING.ccueeeeeeie e e 10-113

WWDisplayKeyNOtENGD........c.ooiieiieieeee et 10-114

Table of Contents %

WWDisplayK@YNOLINSE........ccouiieiiiie et 10-115
WWDisplayOULOFMEMONY ..ot 10-116
WWFOrMCPM OAESEIING ...c.veeveeeeiesie et s 10-117
WWGetDial OgHANAIE.........ocuiieiiiiieeeee et 10-118
WWGEtDriverNameEXIENSION.......cviviriiiriirieeeie s 10-119
WWGELEXEFIEPALN ...ttt e 10-120
WWGELOSPIEETOMM ...ttt 10-121
WWHEAD ATTOCPET ... 10-122
WWHEBD FIEEPII ... 10-123
WWHEAD TNIT ... s ee e 10-124
WWHEAD REATTOCPN ... 10-125
WWHEAD REIBASE ..ot e 10-126
WWINitComPOrtCOMDOBOXciveeiririeeeiesieseee s 10-127
WWREBHANYIMOIE.....c..eiiiieiitiiie ettt be et e b e e e 10-128
WWREBAV EISION ...ttt sttt 10-129
WWWSEIECE ...ttt bbbt bbb 10-130
WWSEtAfiNity TOFITSICPU ..ot 10-131
WWTrand ateCDIgTOWINBAUcccoiiieiieeiee e 10-132
WWTrand ateCDIGTOWINDELA.coeruereeeeie e 10-133
WWTrand ateCDIGTOWINPAIILYcoeruieieiee e 10-134
WWTrand ateCDIGTOWINSEOP -..cuveviierieniereeie et 10-135
WWTrand ateWinBaudTOCDIQcooereiereeierienie e 10-136
WWTrand ateWinDataT OCDIQccveveruereeieie et 10-137
WWTrand ateWinParity TOCDIQcoeeeeeeiee e 10-138
WWTrand aleWinStOPTOCDIGcoviiieiieiierieierieie e 10-139
WWV ErifyCOMDIGREVoviiiieiiieiesie et s 10-140
WWWWIHEEANYIMOIE......eeiiiie ittt st st e bt sbe e sneas 10-141
WWWWIEV ESION....ceiitiiciistere ettt 10-142
CHAPTER 11 O The Chain MANAGETcovvieerriiieiriseiniiieisi s 111
BACKGIOUNG ...ttt 11-2
Chain Data SEIUCIUIES.......coveeeeirieeete ettt 11-4
Setting Up aChain and Linking [teMS.........coiviireiisineceee et e e e e 11-5
Searching For ItemSin @ ChaiN..........cociiiiie e e 11-6
Removing temMS From @ ChaiN........ccceveceieeerese st nne 11-8
User-Supplied Chain [tem FUNCLIONS..........cocooiiiiiieneeeeee e 11-9
Extensible Array Data SITUCIUNES..........ccvorereirnreienreeresrereresre e 11-10
Allocating, Extending, and Deleting an Extensible Arrayc.ccooveeeenieeiecienennenn 11-11
EXaMPIES Of USAGE.....ceiieriireeiies et 11-12

HaNAIiNG LINKEA LISES ...cueeueiiiiisieiteeteeee ettt e s 11-14

Table of Contents

CHAPTER 12 O 1/O Server Toolkit Data StrUCIUIES.........cccceeecieieieeinie s seseeenes 12-1
Data Structure Definitions

PTVALUE ...ttt e re e e s 12-2

WW_AB _INFO ...ttt st nae e e et eae e 12-3

WW_CONFIRMtiiiieieiir et sae e e eneesnaesnaesneeseeenseeneas 12-4

WW _CP_DLG_LABELS.......oe ottt 12-5

WW_CP_PARAMS.......ooooeeeeeeeeeseeeeeeeeeeeeee e s ee s seees e es e sne e 12-10

WW_SELECT ..ttt e nnn e eneeeneennaenneens 12-12

WW_SERV_PARAMS ...coooeeeeeeeeeseeeeeseeee e se e sees s es e sness s enesnen 12-14

CHAPTER 13 0 CommON DIalOgs ...cucevvviicicieieisisisseieee e 13-1

Y T T = 0L SRRSO 13-2

(00 gl o S 1] o P 13-3

TOPIC DEFINITION. ...ttt see 13-8

Y= BT 110 13-10

ConfIQUIELTION FITES ...t e 13-12

CONVENIENCE FUNCLIONS.......oieiiiciesiese et ne e s nnenns 13-13

CHAPTER 14 O Adding the Toolkit to an Existing Windows Application......................... 14-1

CHAPTER 15 O RunNing @s an NT SEIVICE ... 15-1

OVENVIEW OF SEIVICES....coiiiie ettt ettt et et et sae e st e e be e teereennas 15-2

Configuration DI@lOgcoeieiieieieeieeesese s se st e e e e e sresrenne e 15-3

DIIVEN NAIME... .ot re et et e e e s re e s baeste e beenteentesanesanas 15-6

SErVIiCE DEPENUENCIEScvee ettt sttt e re e e e neeseeneens 15-7

CHAPTER 16 O Porting to WINAOWS NT ..o 16-1

PrIMAary GOAIS ..ottt st sttt e e e e e 16-2

Server POrting INSETUCLIONS........ccviueiieeeece st enae e 16-2

Miscellaneous Debugging HiNEScc.cieiiiiiiienenere e 16-10

CHAPTER 17 O Porting an Existing Server to FS2000cooeovienenienesneeens 17-1

L@ o= 17-2

(VL= gl = o= TSR 17-3

CommonUI Splash Screen and Start-up MESSAgE.......ccovererereresereeeeeereeee e 17-4

ComMONUI ADOUL BOXveiuiiiiieiie ittt te e re et ee e s esta e beeteentesnnesneas 17-6

Vaue, TIME, QUEIIEY ...c.eeeeeeesire sttt s e e e enees 17-7

Table of Contents vii

CHAPTER 18 O 1/0 Server Code SAMPIES.........ccovciirniiiiencsseseeseese s 18-1
OVEIVIBIV ...ttt sttt sttt st st b e s bbb et bt s be et b et et be e et s be e s be b e e 18-2
UDSAMPLE ArchiteCtural OVEIVIEWcccooeiuieiereiieierieie st 18-3
Adapting the UDSAMPLE SEIVEXccveieierere et s ereeeeseee e e e sse e eneenes 18-4

Customizing the Start-Up Splash Screen and About BOX........ccccveeveeeereenenennnns 18-5
Modifying the User Interface — UDSAMPLE.RC and UDCONFIG.Ccccccoueneee 18-6
Storing and Retrieving Configuration FileS.........ccccevevevievevenese e 18-7
Setting Up Data POintS — UDCONFIG.Cc..oouiiiiieieeeie e 18-8
Executing the Configuration — UDLDCFG.C.......cccooveevinenere e 18-10

(oo Tor= AN (o [@ty oT o] () TS 18-10

BUITAING MESSAgES.....cveiveiereeereeeeesteseseseseeeete e te e sse e e eaesaesreseesneeneeeeneenes 18-10

L0 To o] 0] 72N (o | o] 1 () S 18-10

UdprotPrepar€WIHEMSG() «vvovveeeeeeeeresies e seesteseeee e see e seeaese e seesrennas 18-10

Building Messages — UDBLDMSG.C.......cocoveeeievenieneseeeeeese s 18-10
Executing the Protocol — UDPROTCL.C......oooiiiiiierieeeee e e 18-11

10T0 (o] 0B T0] = o) (e ele] () ISR 18-11

UdPrOtGEIRESPONSE() -..ueeuveeerrerienierieeieeiesees et saeseeeesee et sae b e e ee e e sbesaeseesaas 18-11

ProcessValidRESIONSE()ooerrerereririeeie ettt sbe s 18-11

UdprotExtractReadData(), UdprotExtractDbltem()ccooceeeveienenieniereenn 18-11

UdprotHandIERSPEITON() ...cveeerierieeiereeie et s 18-11
DA STUCLUIES ...t 18-12

PORT Data SITUCKUIE.......cveveeereieeeere e 18-12

UDMSG Data Structure (MESSAJE)cvrerrerrrerrereresrereesreseesrereseseeseesrereesnenes 18-12

STAT Data Structure (i.e. Station, Node, Or TOPIC) ..ccuvevererrererereseseereereereens 18-12

SYMENT Data Structure (Symbol Tabl€)cccoecvvererieeeesese s 18-12
Compiling the SAMPIE COUE.........ccoiiiereee e 18-13
Debug and SUPPOIt FUNCLIONScccveieiisesececreee s 18-14
SIMUIGEEA PLC ...t ettt 18-15

CHAPTER 19 00 Debugg@ing and TESHING.........ceuirerririieirireisiieierseeisisees s 19-1
Basic Programming Rules for Windows and WindowsS NT........cccccvvviivieeveeienesnnnens 19-2
General DeEDUGQING TOPICS. .. .couerierierie ettt ettt e b b e sbesaeene s 19-2

DEDUG MESSAGES.c.eeueeneinie ettt ettt sttt sttt a e be et b et s ae e e b e e e b e 19-2

DDE Message Traffic Monitoring Using WIN.INI ... 19-3

DDE Message Traffic Monitoring Using DDESPYccccoevenenenienieeieneneeiee 19-3

ASSEITION EITOFS....ciiiiie ettt e b e et 19-4
Windows and Windows NT Debugging TOOIS........ccceruereerieereeeseseeese e 19-5

Microsoft Visual C/C++ DEDUGUESceveererrereeeereeeeeeieeseeseeneeeesaeseesaesaeseeeenes 19-5

Microsoft WINDBG DEDUGUESeeuveeeeeeereeiereeseesieseesseseeseessessessessesseesesssesenes 19-5

NUMega Bounds ChECKENccviirireceeeee et 19-5

N LY = = TS0 o= S 19-5

Rational/Pure/Atria Quantify Performance Monitor..........ccccevveeecveeveerenesenien, 19-5
QL= (1 o USROS 19-6

WWVCTIENE USBGE.eeeeeeiieeiieie sttt sttt ne b 19-6

SCHPLS FOr WWWCHENL ...ttt e 19-8

MiCrOSOft EXCEl USBR......ee ittt 19-9

viii Table of Contents

Documentation Conventions

The following conventions are used throughout this manual to define syntax:

Convention

Description

Bold Text

Bold & Underlined

Italic text
CAPITALS

Courier 9
Shaded Box

Denotes a Wonderware /O Server Toolkit function name,
for example, Wizard_New

Denotes a Wonderware |/O Server Toolkit function name
that must be written and included in the |/O server to
manage logical devices, for example,

ProtAllocatel ogicalDevice

Denotes a parameter value, for example, wCommand

Indicates return type (or most return types) also filenames
and paths

Code Exanpl es and Syntax spaci ng sanpl es

Terms Used in this Document

Term

Definition

Developer

Windows NT™

Proficient Windows C Programmer; person developing the
code

32-hit platform

Conventions

Limitation Summary

Asthe owner of the I/O Server Toolkit you can:
* Develop multiple servers
« Receive four hours of telephone support within one year from date of purchase
» Purchase additional support beyond four hours
* Thel/O Server Toolkit license does not alow:
1. Licensetransfer without the express written consent of Wonderware
2. Releaselresale of 1/0 Server Toolkit source code or libraries
3. Support for other than the registered user

11

CHAPTER 1

DOE, FaztDDE,

-,

Introduction to the

/0 Server Toolkit Dasjos peeic

The /O Server Toolkit provides a high level application program interface (API) that
does not require detailed handling or understanding of low level details of the
client/server communication protocol (DDE or SuiteLink). The Toolkit has been
optimized for performance in real-time data acquisition applications.

The /O Server Toolkit isbased on alibrary that includes high level functions that take
care of the more difficult complications associated with the development of awell-
behaved, high performance 1/0 Server (herein referred to as the server).

The /O Server Toolkit was originally developed for internal use in developing other
Wonderware products. It has been used to devel op dozens of Wonderware 1/0 Servers
with aworldwide installed base of thousands of sites. These servers are generally in 24-
hour use in demanding factory automation and process control applications.

The Toolkit minimizes the learning curve associated with Dynamic Data Exchange
(DDE) and SuiteLink implementation by utilizing the man-years of development and
testing that have gone into Wonderware InTouch" and 1/0 Server products. The
Toolkit provides library functions that support multiple clients, thousands of dataitems,
DDE and SuiteLink protocol error detection, recovery and support for several
commonly used but unpublished high performance private data formats, such as
Wonderware InTouch FastDDE and Microsoft Excel table format.

Contents

What's New?

Installation

Communication Protocols

What is DDE?

DDE Protocol

Dynamic Data Exchange Management Library

What is SuiteLink?

Server Application Requirements

Toolkit Content Overview

Requirements for Devel oping on Windows 98 Second Edition or Windows NT

1-2 Chapter 1

What's New?

With FactorySuite 2000, several important new features have been added to the
Wonderware 1/0O Server Toolkit:

s SMP (symmetrical multiprocessing machine support)
The I/O Server will run on a SMP (symmetrical multiprocessing). With the newly
added API from the library (WW SetAffinityToFirstCPU), the I/O Server can be
locked to the first CPU on the SMP machine.

Introduction to the 1/O Server Toolkit 1-3

Installation

Refer to the accompanying instruction pamphlet for installation procedures.

Note We strongly recommend before you begin install ation procedures that your take
the time to familiarize yourself with Chapter 2, "Getting Started with the I/O Server
Toolkit." This chapter coversin detail how the Toolkit environment will be set up on
your system.

Communication Protocols

Dynamic Data Exchange (DDE) is a communication protocol developed by Microsoft
to allow applications in the Windows environment to send/receive data and instructions
to/from each other. It implements a client-server relationship between two concurrently
running applications. The server application provides the data and accepts requests
from any other application interested in its data. Requesting applications are called
clients. Some applications such as InTouch and Microsoft Excel can simultaneously be
both a client and a server.

FastDDE provides a means of packing many proprietary Wonderware DDE messages
into a single Microsoft DDE message. This packing improves efficiency and
performance by reducing the total number of DDE transactions required between a
client and a server. Although Wonderware's FastDDE has extended the usefulness of
DDE for our industry, this extension is being pushed to its performance constraintsin
distributed environments.

NetDDE" extends the standard Windows DDE functionality to include communication
over local area networks and through serial ports. Network extensions are available to
allow DDE links between applications running on different computers connected via
networks or modems. For example, NetDDE supports DDE between applications
running on IBM" compatible computers connected via LAN or modem and DDE-aware
applications running on non-PC based platforms under operating environments such as
VMS” and UNIX".

Suitelink uses a TCP/IP based protocol and is designed specifically to meet industrial
needs such as data integrity, high-throughput, and easier diagnostics. This protocol
standard is only supported on Microsoft WindowsNT 4.0 and Windows 2000 or higher.

1-4

Chapter 1

SuiteLink is not a replacement for DDE, FastDDE, or NetDDE. The protocol used
between a client and a server depends on your network connections and configurations.
Suitel ink was designed to be the industrial data network distribution standard and
provides the following features:

Value Time Quality (VTQ) places atime stamp and quality indicator on all data
values delivered to VTQ-aware clients.

Extensive diagnostics of the data throughput, server loading, computer resource
consumption, and network transport are made accessible through the Microsoft
Windows NT and Windows 2000 operating system Performance Monitor. This
featureis critical for the scheme and maintenance of distributed industrial networks.

Consistent high data volumes can be maintained between applications regardless if
the applications are on a single node or distributed over alarge node count.

The network transport protocol is TCP/IP using Microsoft’s standard WinSock
interface.

Introduction to the 1/O Server Toolkit 1-5

What is DDE?

Dynamic Data Exchange (DDE) is a method of communication that allows concurrently
running programs to exchange data with each other. It implements a client-server
relationship between the applications. A server application accepts requests from any
client application interested in the data. Clients can both read and write data maintained
by the server.

DDE is often used to gather and distribute "live" data such as production measurements
from afactory floor, scientific instrument readings or stock price quotations. Clients can
use DDE for one-time data transfers or for ongoing exchanges in which updates will be
sent as soon as hew information is available. DDE's data writing mechanism can be
used to issue data. For example, in afactory automation system, DDE can allow clients
applications to control temperature set points in ovens.

A DDE interface has become a standard feature of Windows applications that can
benefit from data links to other applications. Examples of DDE compliant applications
include Microsoft Excel, Lotus 123 for Windows and Wonderware InT ouch.

Network extensions are available to allow DDE links between applications running on
different computers connected via networks or modems. For example, Wonderware
NetDDE" supports DDE between applications running on IBM PCs connected via LAN
or modem as well as DDE capable applications running on non-PC based platforms such
as VAX or UNIX minicomputers.

The Windows environment has a message based architecture as its foundation.
Messages are used for passing keyboard and mouse movement information to Windows
application programs. Each message needs only two parameters for passing data. DDE
is based on the same message transport mechanism. Asaresult, these message
parameters must refer indirectly to other pieces of data (objects) if more than afew
words of information are passed between applications. These secondary objects are
located in globally shared memory.

1-6

Chapter 1

DDE Protocol

The DDE protocol specification isthe precise interface that applications must
implement to support DDE. The specification includes standardized formats for
messages to be interchanged between DDE compliant applications. It is possible to
ignore all or part of the DDE protocol if you are writing a set of applications that will
communicate in a closed environment. However, in order to reliably communicate with
other standard, off-the-shelf applicationsit is necessary to implement an interface that
supports the DDE protocol documented by Microsoft.

The DDE protocol is nominally documented in the Microsoft Windows Software
Development Kit (SDK). This documentation however is deceptively simple. Itis
particularly light in coverage related to performance optimization and error recovery.
Sources such as back issues of the Microsoft Systems Journal and the Microsoft Support
Knowledge Database CD ROM may provide the documentation required in order to
implement a "well-behaved" DDE application.

"I11-behaved" DDE applications can hang or crash the Windows environment. Early
editions of certain very popular Windows applications suffered anomaliesin their DDE
implementation that are recognized and tolerated by "well-behaved" DDE applications.

To implement areliable, high performance DDE protocol there are a multitude of
potential error conditions that must be properly addressed. Still further, complications
arise when optimal performance is desired and when partially compliant third party
DDE applications must be tolerated.

Introduction to the 1/O Server Toolkit 1-7

Dynamic Data Exchange Management Library

Based on the recognition of DDE compliance problems associated with certain
applications rel eased by major software publishers, Microsoft released the Dynamic
Data Exchange Management Library (DDEML) with the Microsoft Windows 3.1 SDK.

The DDEML isadynamic link library (DLL) that applications running with the
Microsoft Windows operating system can use to share data. The DDEML provides an
application programming interface (API) that simplifies the task of adding DDE
capability to a Windows application. The API hides interaction with Windows
messages and provides new mechanisms for managing global shared memory objects.

The 3.1 SDK Programmer's Reference Manual statesthat "DDEML ensures
compatibility among DDE applications by forcing them to implement the DDE protocol
in aconsistent manner." Concurrent with the release of DDEML, documentation of the
DDE protocol was dropped from the SDK Programmer's Reference Manual.

In keeping with the Windows 3.1 philosophy, the principal purpose for promoting use of
DDEML, as opposed to a direct implementation of the DDE protocol, would seem to be
that it more strongly enforces parameter checking on system calls made by applications.

DDEML makesit more difficult to implement an ill-behaved DDE application O it does
not make it easier to implement a well-behaved application. For example: calling

Globa AddAtom() (afunction commonly used in a direct implementation of the DDE
protocol) takes only one parameter; DdeCreateStringHandle(), its replacement under
the DDEML, requires three parameters. The revised interface appears to be engineered
to allow Windows to perform stronger type checking.

The implementation of awell-behaved, high performance DDE application using the
DDEML will still require reference to the DDE protocol specification. The DDEML
still uses the DDE protocol "under the covers." A thorough understanding of the
underlying protocol is necessary to implement reliable error handling and recovery and
to engineer an efficient internal program structure.

DDEML does not simplify the problem of multiple clients using potentially different
dataformats. For example, Excel uses Excel Table Format, and InTouch uses InTouch
proprietary format. The Toolkit allows you to keep datain its natural form: discrete,
integer, real or string. DDEML does not implicitly support these.

1-8 Chapter 1

What is SuiteLink?

SuiteLink is a proprietary communication protocol created by Wonderware that can be
used as an addition to DDE or as an alternative to DDE. Where DDE provides
communication between Windows programs via global memory buffers and Windows
messages, SuiteLink uses TCP/IP sessions and Windows Sockets. Aswith
Wonderware' s FastDDE format, SuiteLink supports high-performance data transfer
between applications by sending multiple commands and data itemsin each block of
information that gets sent.

Since it uses TCP/IP, SuiteLink can handle data transfer within a single computer node
or between nodes across a network.

So far asan 1/O Server is concerned, the type of communication channel between client
and server istransparent. That is, the server-specific code does not know — and does not
need to know — whether a client is connected via DDE or via SuiteLink.

SuiteLink Protocol

The SuitelLink protocol was created by Wonderware, specifically to support data
acquisition for such programs as I/O Servers. While the details of the implementation
are proprietary, an overview of the protocol is provided in the chapter titled “ SuiteLink.”

Introduction to the 1/O Server Toolkit 1-9

Server Application Requirements

The /O Server Development Toolkit is used to either write an I/O Server application
or add server capability to an existing Windows application. Here are afew
requirements:

1.

The application must run in atime slice manner. Periodically, the server will be
called to allow it to run its protocol and provide fresh data to the Toolkit database.
Thetime sliceis configurable by the server, but it still must give up control to allow
other Windows applications to run on the same PC.

The application program must be written in Microsoft C or C++, to interface with
the Toolkit program library.

The Toolkit database will handle the following data types:

Discrete (Oorl)

Integers (signed 32-hit integer)

Reals (single precision floating point, |EEE 32-hit)
Strings (series of 8-bit characters terminated with a null)

Within the above constraints, alarge variety of applications can easily be adapted to
transfer dataasal/O Server. Here are afew examples.

Gathering and sending data to a device that can be connected to the serial
communication port of the PC.

Interface to a plug in board that has a memory-mapped interface.

A stand-alone application that can accept data and/or supply data. For example, a
specialized calculation program that takes input data values and does involved
computations or time-based integrations.

1-10

Chapter 1

Toolkit Content Overview

The Toolkit allows the software devel oper to concentrate on the problem at hand,
transferring data to and from an external communication device or special data
generation application. It also alows the application program to deal with datain its
native form: discrete, integer, real or string types. Source code (in the C language) for
two example serversisincluded.

The examples include source code for the maintenance of extensible, heap allocated data
structures for tracking data items that are on advise or "hot linked." The implementation
of these data structures alone could take hundreds of hours.

The examples can also be expected to speed the learning process for programmers who
lack prior Windows programming experience.

The /O Server Development Toolkit consists of four essential parts:

1. Thisdocument describes the Toolkit's library routines and gives helpful hints for
generating al/O Server application from scratch or adapting an existing one.

2. Anobject-code library that supports the 1/0O Server functions and memory
management. These are described later in this document.

3. Two server code examples are included to demonstrate the Toolkit. They provide a
starting point for developers as well as showing useful data structures and routines
for most device drivers.

4. Technical support for the I/O Server Toolkit provided by Wonderware's technical
support staff.

Introduction to the 1/O Server Toolkit 1-11

Requirements for Developing on Windows 98, Windows
NT and Windows 2000

The FactorySuite 2000 I/O Server Toolkit supports development of 1/0 Servers only on
platforms that support Win32 — Windows NT, Windows 2000 or Windows 98 Second
Edition. It does not support operation using the Win32S subset that is available for
Windows 3.1.

Also, it should be noted that Windows NT /2000 and Windows 98 have different
implementations of Win32. Consequently, there may be some functional differences
when the same program is run on these operating systems. In particular, SuiteLink is
functional only for an 1/0 Server running on Windows NT and Windows 2000.

The following requirements are necessary to successfully develop a FactorySuite 2000
Windows I/O Server application:

1. I1BM PC or compatible that is set up to run Microsoft Windows 98 Second Edition,
Windows NT 4.0, Windows 2000 or |ater.

2. Microsoft Visual C/C++ Compiler, version 6.0 sp3 or later.
A mastery of the C language is essential for developing a Windows server
application that uses the Toolkit.
While afamiliarity with Microsoft Windows software development is not required
to use this Toolkit, it is highly recommended.

The following are recommended "extras' to your development system. Their relatively
low cost is greatly offset by the time you'll save in debugging alone.

Microsoft MASM 5.0 or later. MASM isthe Microsoft assembler necessary for
modifying assembly language that Wonderware has provided, as well as for
developing assembly language based routines.

Microsoft Word, an excellent documentation tool, can be used to generate the
documentation files required for the "Help" compiler. It can be referenced in the
subtitled section called "Adding Help to the I/O Server" in the I/O Server Toolkit
Functions chapter.

The book, Programming Windows by Charles Petzold. (Microsoft Press, ISBN 1-
55615-264-7)

1-12 Chapter 1

2-1

CHAPTER 2

DOE, FaztDDE,

R

Getting Started with the

/0 Server Toolkit e

The Toolkit installation procedures are described in the installation pamphlet included
with the I/O Server Toolkit. This chapter describes the basics for getting started

quickly.

Contents

= [nstallation Process
m File Description

s Compiling a Server
= Linking a Server

= Running a Server

2-2

Chapter 2

Installation Process

Theinstruction pamphlet describes the required procedure to install the Toolkit
software. It isimportant to know that if an earlier version of the Toolkit isinstalled on
your computer and the new version isinstalled the main directory should be renamed.

If You Have a Prior Installation of the I/O Server Toolkit

Rename the old directory to another name using Windows Explorer. Thiswill prevent
obsolete files from being accidentally referenced in your new installation.

General Instructions

Click Start/Run. Enter the following in the text field of the Run dialog box:
{x:\path}\setup

where:
{x:\path} isthe drive:\path
Thisiswhere the I/O Server Toolkit distribution mediaislocated.
Install Shield will direct the installation process and the installation process will create
the following main directories:

drive:\path\ioserver
drive:\path\ioservertool kit
drive:\path\uninst

where:
{drive:\path} is user defined

Example:

C:\Ww\l oserver
C:\Ww\l oservertool kit
C:\Ww\Uninst

Getting Started with the I/O Server Toolkit ~ 2-3

File Description

The following sections summarize some of the key files installed on your hard disk.

Include Files

\Ww\l oser ver toolkit\Inc\Tkitstrt.rci
Thisfileisaresource include file containing the startup dialog WWStartup for the
Toolkit. The project resource file (.RC) must include thisfile.

\Ww\l oser ver toolkit\Inc* .h

There are various include files contained in the includes directory that must be included
in the source code to define function prototypes and structures for the Toolkit. Seethe
sample servers for examples.

Utility Files

\Program Files\FactorySuite\Common\wwclient.exe

The WW(Client utility replaces the DDEAPP utility that was originally developed by
Microsoft. WWClient has been specifically written by Wonderware to exercise the
basic DDE and SuiteLink client functions to test the server. It isa 32-bit application,
which can run on Windows NT/2000 or Windows 98 Second Edition. For details, refer
to the "Debugging and Testing" chapter.

\Program Files\FactorySuite\Common\TESTPROT .exe

The TestProt server has been specifically written by Wonderware to exercise the basic
DDE and SuiteLink server functions. It isa 32-bit application which can run on
Windows NT/2000 or Windows 98 Second Edition, and can be used to verify that
WW(Client can actually access an /O Server on your system configuration. For details,
refer to the “Debugging and Testing” chapter.

\Program Files\Factor ySuite\Common\wwlogvwr .exe

The Wonderware logger, wwlogvwr.exe, will display and save to disk debugging
messages from the server and the Toolkit. A version has been supplied that is native to
each supported platform.

\Ww\Il oser vertoolkit\L ib\W 32\ 386\T ool kit 7.lib
The I/O Server Toolkit library.

Note: Recent versions (Build 060 or later) of the Toolkit library contain debug
information resulting in alarger file size. To build a debug version of a server, use the
added debug information. Building arelease version of a server will remove the debug
information.

2-4

Chapter 2

\Ww\l oser vertool kit\I nc\Protlib.str

Thisfile contains the string resources used by Toolkit7.lib. These strings should only
be modified for language conversion. Do not delete or change the order of any strings
within the Toolkit. The project resource file (.RC) must include thisfile.

Ww\l oser ver\Udsample
This subdirectory contains source files for the board and serial sample servers.

Sample Servers

The toolkit provides a sample server, UDSAMPLE. The sample server is created using
common source files and specific files for either the board or serial version.

\Ww\l oser ver\Udsample\Common

This main sample directory contains the common source files from which a complete
server can be developed, once the specific files for a serial or board server are copied
from one of the two corresponding subdirectories.

\Ww\l oser ver\Udsample\Udboar d

This directory contains three files UDSAMPLE.C, UDSAMPLE.H, and UDSAMPLE.ICO
which can be copied to the main sample directory to build a board server, which
demonstrates the typical use of a memory mapped interface device in Windows.

\Ww\I oser ver\Udsample\Udserial

This directory contains three files UDSAMPLE.C, UDSAMPLE.H, and UDSAMPLE.ICO
which can be copied to the main sample directory to build a serial server, which demonstrates
the typical use of aserial communications (COM port) interface device in Windows.

Help Files

Two Help files have been provided with the | /O Server Toolkit.

\Ww\l oser vertoolkit\l OSrv_Toolkit.hlp

Thisisthe Help file containing the API information for the Toolkit. Thisfilewill bea
useful resource when developing a new server. Execute this Help file from Explorer.
Creating a Help fileicon in Program Manager may be helpful.

\Ww\l oser ver\Udsample\Udsample.hlp
This Help file is atemplate for the UDSAMPLE sample server. Copy it to the directory
containing the UDSAMPLE.EXE fileto run the sample.

Online Book

Also provided is an online book for the 1/0 Server Toolkit.

\WWN\I oser vertoolkit\lOSrv_Toolkit.pdf
The document in this directory isin an Abode Acrobat .PDF file format.

Getting Started with the I/O Server Toolkit ~ 2-5

Compiling a Server

The sample server includes project definition files for Visual C/C++ for Windows

NT/2000 or Windows 98 Second Edition. environments. Refer to these examplesto
determine the proper options for compiling. The server sampleis ready for compiling

and linking. The Microsoft Visual C/C++ environment use for doing the builds. For
specific compiling instructions using Microsoft Visual C/C++, Version 6.0 sp3 or later, refer
to the instructions in the chapter on the 1/0 Server Code Examples.

The following (brief) compiler switches are recommended:
Windows 32: /GX /YX /MD /W4/ "WIN32"

Warning The definition of the preprocessor symbol "WIN32" is necessary. If you do
not define this symbol , any conditional code based on "#ifdef WIN32" will not be
compiled correctly.

Theincludefilesfor the /O Server Toolkit are in the \WW\IOSERVERTOOLKIT\INC
subdirectory. Make sure that your compiler is able to find these includes by properly
configuring your INCLUDE environment variable or dialog settingsin Microsoft Visua
C/C++.

The Microsoft compilers provide some necessary include filesin the \SY S sub-
directory. Make sure that your compiler is able to find these includes. For example,
\MSVCAINCLUDE\SY S or \INCLUDE\SY S needs to be defined in your INCLUDE
environment variable or settings.

Linking a Server

Y ou will need to link your server against the proper TOOLKIT7.LIB static library. The
FactorySuite 2000 Toolkit islocated in the directory.

\WW\IOSERV ERTOOLKIT\LIB\W32\I1386\TOOLKITS?.LIB
Windows NT/2000 or Windows 98Intel 1/O Server Toolkit Object Library

If doing command line builds, make sure your LIB environment variable references the
proper directory above for your environment. If using Visual C/C++, reference the
proper library in your project definition.

2-6 Chapter 2

Running a Server

If your 1/O Server usesthe Wonderware Common Dialog DLL, you must make sure
that the appropriate DLL can be found by the operating system. This can be achieved

by placing the DLL in adirectory that is referenced by your PATH environment variable
or by placing the DLL in the directory with your server executable.

The DLLs provided with the toolkit are;

COMMONUI.DLL
DDECLIKT.DLL
WWCOMMON.DLL
WWDLG32A.DLL
WWDEBUG.DLL
WWCLINTF.DLL
WWPERF.DLL
WWPERFM .DLL
HOOKAGNT.DLL
HOOKNDDE.DLL

SLS PERF.DLL
SUITELINK_PERF.DLL
WWSLSFIX.DLL
WWSL.DLL

Note: Supply the proper selection of these DLLsto your target system or customer
along with the server executable. These DLLs are part of Factory Suite 2000 Common
Components. To install the FactorySuite 2000 Common Component files:

Run SETUP.EXE in the \FS2kCOMM\I OServer\Common\Win32\ sub-directory on the
installation CD.

31

CHAPTER 3

DOE, FaztDDE,

R

Overview of an I/O Server

Device Specific
Protocal

DDE (Dynamic Data Exchange) is a protocol defined by Microsoft. SuiteLink isa
proprietary protocol defined by Wonderware. Both these protocols allow independently
developed Windows application programs to exchange data and commands.

Contents

Data Flow

Value/Time/Quality

DDE and SuiteLink Conversations
Logical Devices and Points
Logical Devices/Topics
Items/Points

Advises, Requests, and Pokes
Toolkit Database

3-2 Chapter 3

Data Flow

The flow of datathrough an I/O Server can be diagrammed as follows:
Device
OoE Function Specific
oro Call=s Mezzages
Suite Link
Toolkit
Databasze
OOE
ar
Suite Link

All connections are bi-directional, i.e. data can go in either direction.

Server
Specific
Code

The Toolkit maintains a database of all the topics and pointsthat are active in the 1/O
Server, and keeps track of the current data for each point within atopic. It also keeps
track of connectionsto multiple clients, and handles fan-in and fan-out via the Toolkit
database. The server-specific code (i.e. the code you write) does not need to know how
many clients are connected, or whether they are communicating by DDE or SuiteLink.
Instead, the server code can focus on communicating to the PL C by whatever device-
specific protocol has been established by the manufacturer, and handling updates to and
from the Toolkit database as if it were the only client.

Value/Time/Quality

The current information stored in the Toolkit database for each data point consists of
three things:

- Value: The value of adata point represents the contents of some item within the
PLC —amemory cell, aregister, abit flag, a string, etc.

Examples. 5, 3.27, 1, “Thisisastring”

- Time: The date/time stamp (also sometimes called the time mark) for a data point
represents the time at which the information about that data point was last updated.

Examples. 03/27/1997 10:23:58.010

- Quality: The quality for a data point represents the validity or trustworthiness of
the value for that point. If there are no problems, quality for the point is set to
good. If there are errors or the data is out of range, the quality is set to bad.
Specific quality flag settings are used to indicate particular problems with the data.

Examples. Good, Clamped High, Communications Failed

Overview of an I/O Server 3-3

DDE and SuiteLink Conversations

Two Windows applications wishing to exchange data must establish a conversation.
Thisisaccomplished by the client program opening a connection to the server
application.

A client opens a connection by specifying two things: the application name of the
server executable, and the topic name of interest. The application name depends upon
the server program. For example, if you are using the Modicon MODBUS I/O Server,
the application name would be “MODBUS’. If using Microsoft Excel, it would be
“Excel”. For the Wonderware InTouch runtime program, WindowViewer, it would be
“View”.

Topic names are application-dependent. For Excel, the topic is a spreadsheet name,
e.g., TOTAL.XLS, etc. For an |/O Server, the topics are names defined when the server
is configured, with each name representing alogical device to which the server is
connected, e.g., PLCFast, PLCSlow, etc. ThetopicinWindowViewer isawaysthe
word “TAGNAME” when accessing data el ements in the InT ouch runtime database.
(The datais exchanged viaitem or point names.)

Depending on the configuration and the communication mechanism, a client may need
to specify additional information to open a conversation:

- For a DDE conversation within a single computer (i.e. a single node configuration),
the application name and topic name are sufficient.

- For a DDE conversation between two computers over a network (i.e. amultiple
node configuration), the client must also specify the node name for the computer
on which the server isrunning. For example, if the server isrunning on aremote
computer named “FSTest”, the node name “FSTest” must be specified. Also, you
must have NetDDE running on both computers.

- For a SuiteLink conversation, the client must also specify the node name for the
computer on which the server is running — on a remote computer (multiple node
configuration). Also, you must have the SuiteLink service running (for the
multiple node configuration, it must be running on both computers).

Note FastDDE isa proprietary protocol defined by Wonderware that uses DDE to
transfer information between the client and server. This protocol uses DDE for the
transport mechanism, but speeds up the transfer of data by using larger blocks of
information in each transfer operation. Each block contains many operations for reading
and writing individual values, for acknowledging commands, and for flagging the
success or failure of those commands. Suitel ink also uses a block-oriented protocol,
but uses TCP/IP and Windows Sockets as the transport mechanism.

34

Chapter 3

Logical Devices and Points

Accessing information within an 1/O Server requires an understanding of the InT ouch
concept of logical devices (also called topics) and points. The datathat will be
interfaced with the 1/0 Server must be treated as one or more logical devices connected
to the server. Pointswithin the logical devices can be read and written.

Generally, an 1/0O Server is connected to one or more I/O channels (i.e. seria ports,
adapter cards, network connections, etc.), and each 1/O channel is connected to one or
more PLC devices. A logical device refersto aparticular PLC — or even to a portion of
aPLC —that is connected to the I/O Server. A user who is configuring an 1/0O Server
will usually take into account such considerations as the following:

- Which I/O channel do | useto talk to the PLC? (e.g. COM1 or COM2, etc.)

- How do | address a particular PLC?
In anetworked or multi-drop system, it may be necessary to provide an address or
recognition code that identifies a particular device.

- What variation of the protocol do | use to access a particular PLC?
A single I/O Server may be connected to several different models from the same
manufacturer, each with its own version of the manufacturer’s protocol. If the
server supports multiple protocoals, it will be necessary to select which one to use.

- How often do | accessthe logical device?

Some devices may be limited in how often they can be accessed (e.g. remote
devices connected by aradio modem that requires warm-up and cool-down).

The user may also wish to define several logical devices for asingle PLC in order
to poll groups of points at different intervals— e.g. read some points once per
second and other points once per minute.

For example, let's consider the Modicon MODBUS I/O Server. A logical device for
MODBUS would define the communications port and slave 1D, while points within a
logical device would be either coils or registers. The points will become data values
that are transferred via DDE or SuiteLink to other applications. These may be Boolean
(O or 1), integer (signed 32-bit number), rea (single precision floating point, 32-hit), or
character strings (series of 8-hit characters terminated with anull, 0).

Overview of an I/O Server 35

Logical Devices/Topics

For an 1/0O Server, there is only one application name, while the topic names have a one-
to-one correspondence with logical devices. The notation convention for representing
an application and topic is:

Application|Topic
Examples:

Excel|[Book1.XL S| Sheetl
View|Tagname
M odbus|ReactorPL CFast

A logical device (topic) becomes active whenever at |east one conversation has been
established between the server's logical device and the outside world's applications
(clients). The Toolkit library routines call the server code when a client hasinitiated a
conversation to atopic for the first time.

When the last conversation to a topic has terminated, the logical device will be
deactivated. Thisallowsthe server code to do start up and shut down of adevice or
communication port, asrequired. The Toolkit simplifies DDE and SuiteLink
conversation protocol by hiding conversations to multiple clients from the server. The
server will only see asimple logical device activate or deactivate sequence no matter
how many clients are requesting data.

3-6 Chapter 3

ltems/Points

Within a DDE or SuiteLink conversation (application|topic) the individual pieces of data
that are passed between applications are known as items or points. For example, an item
in a conversation with Excel would be the identification of the cell in a spreadsheet that
contains the data value, e.g., R1C1 (row 1 column 1). For a conversation with
WindowViewer, an item would be a tagname defined in the database, e.g., ReactorLvl.
For a conversation with aModicon MODBUS I/O Server, an item would be aregister or
coil number, e.g., 40001. Therefore, when developing the 1/0 Server, be sure to select
the point naming convention that makes sense for your application. The DDE address
convention for representing an application, topic and itemis:

Application[Topic!ltem
Examples:

Excel|[Book1.XL S| Sheet1!R1C1
View|Tagnhame! ReactorLvl
M odbus|ReactorPL CFast! 40001

Points will be set active or inactive depending on usage by clients. Within the I/O
Server task, apoint is considered active if any DDE or Suitelink conversations are
referencing the item associated with the data point. 1f only an Excel spreadsheet is
referencing an item in the server, that point is considered active. If the spreadsheet is
closed, that point would become inactive. The same principle appliesto
WindowViewer.

Assume a point is not trended or alarmed, the point becomes active in the server when
the point is displayed on the screen. When the point is no longer displayed on the
screen, the point isinactive (assuming that this was the only conversation accessing the
point).

The Toolkit library routines will call the server code whenever the active status of a
point changes. Thisallows the server to adjust its polling (data gathering) sequence as
required.

Overview of an I/O Server 3-7

Advises, Requests and Pokes

A client can get continuous updates for a point by doing an Advise operation. |f apoint
isnot aready “on advise,” the Toolkit calls the functions Pr ot Cr eatePoint() and
ProtActivatePoint() to activate the point. These functions, which must be
implemented by the server programmer, perform whatever operations are necessary to
establish periodic polling of the PLC to obtain the current value for the data point.
When new data is obtained, the server-specific code must interpret the message from the
PLC, extract the new value for the point, and pass the new point information to the
Toolkit viaacall to ProtNewVTQFromDevice(). The Toolkit will then pass the data
on to the client(s). Note that such updatesto the client(s) are done by exception — that
is, new information for a point is sent to the client(s) only if it is different from the
previous information. (See the section below regarding the Toolkit database.)

A client can also do a Request operation to get the current value of a point, even if the
client does not have that point “on advise.” Thisinvokes a one-time data transfer of the
point information, instead of providing a continuous update. Note, however, that the
information transferred comes from the Toolkit's database. A Request does not
generate on-demand polling of the PLC. If the Toolkit’s database does not have a
current value for the point, it will wait until normal polling provides avalue — up to the
time limit specified by the parameter ValidDataTimeout. If the point is not currently
being polled, the Toolkit will put it on “temporary advise” for this client to initiate
polling of the PLC for avalue.

A client can change the value of a point by doing a Poke operation, which is handled by
a DDE Poke or SuiteLink Write. The Toolkit passes the new value onto the server-
specific code viathe function ProtNewValueFor Device(). This function, which must
be implemented by the server programmer, takes the new value and performs whatever
operations are necessary to send that value to the PLC. When aclient pokes a new
value, that value is“reflected” to the other clients, i.e. all other clients with that point
“on advise” or “on request” are notified of the new value directly from the Toolkit —i.e.
beforeit is even sent out to the PLC. Poke reflection is built into how the Toolkit
handles DDE Pokes; however, it is optional for SuiteLink Writes. See the chapter on
Suitelink and SuiteLink Debug Flags for more information.

3-8

Chapter 3

Toolkit Database

The I/O Server Toolkit maintains a database of the logical devices (topics) and points
that are being accessed in an 1/0 Server. It also keepstrack of client connections to
each Topic!Point on a per-client basis. This means that the Toolkit knows the current
information for each point and it knows which clients have been provided with that
information.

Note Multiple DDE and/or Suitelink conversations accessing the same points
(topiclitems) can be established to the I/O Server at the same time. For example,
WindowViewer and an Excel spreadsheet and a dozen other applications may be
referencing the same logical device and item/point at the sametime. The Toolkit library
software will automatically handle these situations for the server. The server code need
only be concerned with whether or not the point is active.

When apoint is active, the server code should be supplying fresh data from the PLC to
the Toolkit. The Toolkit will store the value/time/quality information in its database and
send updates to all concerned clients. The server code only needs to gather the active
data and passit on. The Toolkit will handle the rest.

Note, however, that new updates for points “on advise” are passed on to the clients by
exception, i.e. only when the point value or quality changes. No updateis passed on if
only the time changes. This reporting mechanism was chosen to reduce bandwidth in
the DDE and SuiteLink channels for points that are polled frequently but do not change
much. The exception mechanism has been in place for all previous versions of the
Wonderware 1/0O Server Toolkit.

The Toolkit makes calls to ProtAllocatel ogicalDevice() only when the first client
connectsto that logical device. If any clients remain connected to the logical device, the
Toolkit keeps the logical device open. Only when the last client disconnects from a
particular logical device does the Toolkit call ProtFreel ogicalDevice().

The sameistrue for the point functions. The Toolkit calls ProtCreatePoint() only
when the first client connects to a point. And only when the last client disconnects from
apoint it calls ProtDeletePoint(). The Toolkit will call ProtActivatePoint() and
ProtDeactivatePoint() multiple times as clients (like an InTouch app with switching
windows) activate and deactivate items. Some deactivation calls will be ‘folded’ dueto
efficient logic built into the Toolkit.

Note Recommended |OServer |mplementation:
Only react to the first activation of an item. Ignore all subsequent activation for the item.

When the server recieves a deactivation call, only react to the first deactivation for the
item. Since the item is now deactivated subsequent deactivation calls can be ignored.

The Toolkit database uses the case-insensitive string comparison function stricmp() to
determine whether the name of alogical device or point isthe same as one it already has
inits database. When implementing a server, take special care to ensure that if the
Toolkit treats two names as the same or different, your server-specific code treats them
the same way. For example, if the point names“V10R” and “V10.” both refer to areal
value at PLC address V10, keep in mind that the Toolkit will treat these as two different
points, even if they are functionally the same. Y our implementation of functions such as
LogicalAddr Cmp() [logical address compare for points] should take thisinto account.

Overview of an I/O Server 39

The Toolkit database is organized as a hierar chy of pointswithin alogical device. If a
point is referenced on two different topics, that meansit has two different entriesin the
database — one for each logical device. Thisisimportant, because if the topics are being
polled at different rates, the information for the two entries may differ.

For example, suppose an integer point is incrementing once per second. If onetopicis
polled at 500-millisecond intervals and the other is polled at 5-second intervals, their
values may not match except at the 5-second marks. A client doing a Request at 2.5
second intervals would see the difference. Of course, this depends upon how the server-
specific code isimplemented — it would be possible to update both points at the 500-
millisecond interval. However, if auser has set up two different scan rates for the same
point, it might be for a specific reason. When developing a server, take care not to put
so much “finesse” into the code that it yields results that are counter-intuitive.

3-10 Chapter 3

41

CHAPTER 4

DOE, FaztDDE,

R

Designing an I/O Server

Device Specific
Protocal

Designing an 1/O Server with the I/O Server Toolkit can logically be divided into three
aress.

For a"working" model of an I/O Server, see the sample server that is supplied on the
Toolkit CD. From the sample code, you can construct either a board server or a seria
server.

Contents

m Configuring an 1/0O Server
m Executing the Protocol
= Communication with the Device

4-2

Chapter 4

Configuring an 1/O Server

An 1/O Server can only respond to requests for data from a DDE or SuiteLink client.
Those requests for data are handled by the Server Toolkit portion of the I/O Server. The
topic (or logical device) specifies where the dataislocated. However, the server needs
more information than just the logical device name to supply the data. The server may
need to know the device identification, device model, or network configuration.
Additionally, other parameters may be needed in order to acquire the data, such as the
communication port being used, the baud rate, parity, etc. If the /O Server is getting
data from a board device, it may need to know the memory address of the board. When
configuring the I/O Server, specify how frequently the device is polled for data and how
long to wait for atimeout to occur.

The configuration is performed by the user through the use of menu itemsin the server's
program window. Typically, there are menu items for communications parameters or
board definition, topic parameters, and timing parameters for the server. The entire
definition of alogical device (topic) may include many hardware and timing parameters.
For example, the Modicon MODBUS I/O Server Topic Definition includes the
following information:

COM Port (COM1, COM2, etc.)

Slave ID (Modicon slave number)

Poll Frequency (Frequency each point is polled)

Coil Read Size (Number of coilsread in each message)
Register Read Size (Number of registers read in each message)

We recommend that you provide the user with the ability to name and fully define each
topic supported by the server. For example, with the Modicon MODBUS I/O Server,
the user could, arbitrarily, create afile such as the following:

CoOM1 9600,8,1,n
PLCFast COM1,1,1000,512,64
PLCSlow COM1,1,5000,512,64

The server could read thisfile at start up, allowing the user to use meaningful names to
access each logical device. This configuration file could just as easily be created by the
server using disk writes and selection boxesto interface to the user. The method used is
entirely up to the user. Thereis no requirement for the server to support multiple topics
(logical devices) or a configuration file. If the server is being developed to interface to a
simple device containing relatively few points, only one topic needs to be defined.

The two sample programs, UDSERIAL and UDBOARD are good examples of how to
implement a configure menu option.

In order to interface to the Toolkit, the topic naming and item naming conventions must
be defined. The topic nameis generally atext string that contains a meaningful name.
It is highly recommended that the item names match the convention used in the logical
device and provide enough information to determine the data type, address and possibly
precision of the point. The points that are to be supported should be decided during the
design stage.

Designing an 1/O Server 4-3

Executing the Protocol

The protocol is executed when the 1/0 Server receives atimer event from the Toolkit.
The exact dataitems that are needed have been set up by previous calls from the
Toolkit. Asthe designer of the server, you must design the item names such that each is
a unique address within the device from which you are requesting data.

Each topic may have a set of active item names. This set of items resultsin a message
being created and sent to the device. This message is sent and data received when the
server gets atimer event from the Toolkit. Since communications protocols are as
varied as the devices themselves, there is not "one way" to accomplish this. The
UDSERIAL example is a skeleton for a serial communication driver. The UDBOARD
exampleis a skeleton for aboard based 1/0 Server.

4-4 Chapter 4

Communication with the Device

The Toolkit supplies two samples of 1/O Servers, based on two different models of
communications:

1. The SERIAL sampleisbased on a device that is accessed through the
communications port of the PC.

2. The BOARD sampleis based on adevice that is accessed through a specia board in
the PC (Windows Only). A device driver would also be necessary for Windows NT
and Windows 2000.

These samples are actually template programs for working 1/O Servers. They are the
starting point for all Wonderware servers and have most of the required infrastructure
built in to develop aworking server. The portions of code that must be written by the
developer are noted by comments within the source.

After determining which type of server to be developed, refer to that specific server in
the sample servers section. Most developers choose to modify the few necessary
routines in the sample programs rather than starting from scratch.

5-1

CHAPTER 5

DOE, FaztDDE,

ar SuiteLin
.,
. = Handler
SuiteLink

Device Specific
Protocal

This section describes how the 1/O Server Toolkit uses the Wonderware SuiteLink
communication protocol to transfer data between the 1/0 Server and clients.

Contents

SuiteLink Overview

Components (Files) Associated with Suitelink

Starting Up a Server

Automatic Throttling of the Data Rate

Suitelink Debug Flags

Deactivating SuiteLink for a Particular Server

Preventing a Server from Running if SuiteLink |s Unavailable
Preventing a Server from Reflecting SuiteLink Pokes

5-2 Chapter 5

SuiteLink Overview

With the advent of FactorySuite 2000, the Wonderware 1/0O Server Toolkit now

provides Suitel ink, a proprietary communication protocol that can be used asin
addition to DDE or as an alternative to DDE. Generally speaking, the Suitelink
protocol works much like the Wonderware FastDDE protocol:

- The sender allocates a block of memory and fills it with a sequence of items
detailing events and data. Events/commands include the following:

- “Registering” a point (assigning a handle or ID number)

- “Advising” apoint for continuous update

- “Requesting” the current value of a point

- Writing avalue to a point

- Providing new polled data for a point

- “Unadvising” a point

- “Unregistering” a point

Acknowledging a command, indicating success or failure

- The SuiteLink transport moves the contents of this block from the sender to the
receiver.

- Thereceiver then interprets the block of events, performs the indicated operations,
and creates a response block of ACK's, Nacks, data, etc.

- The SuiteLink transport moves the contents of the response block to the original
sender.

The main difference is that SuiteLink uses TCP/IP sessions as a transport instead of
Dynamic Data Exchange (DDE). Where an 1/O Server is concerned, the type of
communication channel between client and server istransparent. That is, the server-
specific code does not know — and does not need to know to know —whether a client is
connected via DDE or via SuiteLink.

The following are some of the features Suitel ink offers over DDE:

- Performance optimizations for networked installations with large fan-in and fan-out
network node count requirements.

Reduced interaction between connections when an outage or delay occurs on one of
the connections.

Better diagnostic and monitoring capability.

Transport of value, time, quality (VTQ) information.

Use of standard TCP/IP session based transport at fixed port address (5413) to
enable deployment over WAN intranet, RAS dial-up, or Internet if desired.

The following factors may make the continued deployment of DDE/NetDDE preferable
in some installations:

- When client and server are on the same PC, DDE may offer reduced data reporting
latency under conditions of low data item counts combined with high (> once per
second) data change rates.

- When client and server are on different PCs, but on the same subnet, and NetBUI is
configured as the NetDDE transport, NetDDE may offer reduced data reporting
latency under conditions of low data item counts combined with high (> once per
second) data change rates.

A server built with the I/O Server Toolkit will automatically support both SuiteLink and
DDE/NetDDE connections. Both varieties of connections can be used simultaneously.

SuiteLink 5-3

Components (Files) Associated with SuiteLink

A server supporting the Suitelink protocol relies upon the following components:

- WWSL.DLL, the SuiteLink API library

- WWSLS.EXE, the underlying SuiteLink transport library

- WWPERF.DLL and WWPERFM.DLL, extensions to the Windows NT/ 2000
Performance Monitor that to allow it to track SuiteLink operation. (in addition, the
performance monitor will automatically create WWSL_PERF.DLL and
WWSLS PERF.DLL DLLsthefirst timethat a SuiteLink enabled server isrun.)

- SLSSVC.EXE, the SuiteLink service

In addition, the WinSock TCP/IP DLL that ships with Windows NT/ 2000 is required.

The SuiteLink NT service (SLSSVC.EXE) must be installed and started on the server
PC to allow SuiteLink client applications to connect to the server, even if the client and
server are on the same PC.

Starting Up a Server

When the 1/O Server starts, the Toolkit attempts to load the SuiteLink API library
(WWSL.DLL on Windows NT / 2000), unless SuiteLink is disabled via a Registry
entry, see the “ SuiteLink Debug Flags’ section below. If the DLL can be successfully
loaded, the Toolkit attemptsto initialize the SuiteLink API. If both these steps are
successful, the server will be ready to communicate with clients via SuiteLink.
Otherwise, the Toolkit sends messages to Wonderwar e L ogger indicating that the DLL
could not be loaded, or that it could not be initialized.

Even if SuiteLink cannot be started, an 1/0O Server can still run with communication to
clients only by way of DDE. If you wish to prevent a server from running if SuiteLink
is unavailable, this can be set up with a Registry entry. See the section “ SuiteLink
Debug Flags’ below.

5-4 Chapter 5

Automatic Throttling of the Data Rate

Suitelink is capable of transporting data at high throughput rates — rates high enough
that some programs (particularly those that perform alot of graphics) may not be ableto
keep up. For Suitelink, the Toolkit automatically adjusts the data rate by tracking the
size and number of communication blocks are waiting to be accepted by the receiver. If
the amount of waiting data exceeds an upper threshold (the “high water mark”), data
transport to the client is “held off,” and no more polling updates are sent until the
waiting data falls below alower threshold (the “low water mark™).

Thisworks alittle differently from the DDE protocol — where new datais not sent until
the previous data has been acknowledged — but it has the same overall effect of keeping
the throughput at alevel that the client can accommodate. DDE incurs round trip packet
delays even under condition where throttling is not required — SuiteLink does not.

Since each client application may have a different capacity at which it can digest data
updates, the adjustment of the data throughput is done on a client-by-client basis. One
client may throttle back its data rate without reducing the update rate provided to other
clients.

It should be noted that while the Toolkit iswaiting for a client to reach its “low water
mark,” the polling process can still continue (and should still continue) making updates
to the Toolkit database. While communication to aclient is being “held off,” if a change
occurs to apoint, the Toolkit sets an internal flag for that point/client connection
indicating that an update needs to be sent to the client. When the “low water mark” is
reached, the most current value in the database will be sent to the client, for each point
that has a change flagged. Thus, if the point changes several times while the client is
being “held off,” only the most recent value will be sent. This matches the functionality
of “datafolding” in DDE.

SuiteLink 5-5

SuiteLink Debug Flags

Suitel ink has several Registry flags that can be set for operational or debug purposes.
Each such flag applies only to the specific 1/0 Server for which it is entered, under the
Registry key

HKEY_LOCAL_MACHINE\SOFTWARE\Wonderware\<server_name>

Thelist of flagsis asfollows:

EnableSuiteLink (default =0x1)
A value of O disables SuiteLink for the server.

RunWithoutSuitelL inkDL L (default =0x1)
A value of 0 prevents the server from running if the SuiteLink DLL cannot be
loaded.

Suitel inkReflectPokes (default =0x1)

A value of 0 prevents the server from “reflecting” pokes received via SuiteLink to
other clients. See the section “Preventing a Server from Reflecting Suitelink
Pokes’ later in this chapter. [Pokes received from clients via DDE will still be
reflected, however.]

Suitel inkFlushReadOnDemand (default =0x1)
Normally, a buffer full of read datais “flushed” to the transport processwhenitis
full or when the Suitelink protocol demands an immediate flush. A value of O
causes the flush of a partial buffer to occur only on a Protocol Timer Tick event.

Suitel inkFlushWriteOnDemand (default =0x1)
Normally, a buffer full of write responsesis “flushed” to the transport process when
itisfull or when the SuiteLink protocol demands an immediate flush. A value of 0
causes the flush of a partial buffer to occur only on a Protocol Timer Tick event.

DebugSuitel inkEvents (default = 0x0)
A value of 1 causesthe Toolkit to issue messages to Wonderwar e L ogger for
tracing the processing of SuiteLink events.

DebugSuiteLinkCalls (default =0x0)
A value of 1 causesthe Toolkit to issue messages to Wonderwar e L ogger for
tracing SuiteLink API calls.

More details on some of these flags are provided on the following pages.

5-6 Chapter 5

Deactivating SuiteLink for a Particular Server

SuiteLink can be deactivated for a particular 1/0O Server viaan entry in the Registry. For
example, to deactivate SuiteLink for the server TESTPROT, use the Registry Editor to
access or create the following Registry key:

HKEY_LOCAL_MACHINE
SOFTWARE
Wonderware
TESTPROT _|OServer

and for the key TESTPROT _|OServer, edit or create the value
EnableSuiteLink: REG_DWORD: 0

A value of 0 disables SuiteLink, while avalue of 1 enables SuiteLink. If SuiteLink is
disabled, the server will not try to load the SuiteLink DLL.

SuiteLink 5-7

Preventing a Server from Running if SuiteLink is
Unavailable

Normally, an 1/0 Server will still be able to run if SuiteLink cannot be started up. In
that circumstance, it will only be able to communicate with clients via DDE (both
regular DDE and FastDDE). However, in some environments you may wish to prevent
the server from starting if the SuiteLink DLL cannot be loaded. This can be done viaan
entry in the Registry.

For example, to prevent the server TESTPROT from running without WWSL.DLL, use
the Registry Editor to access or create the following Registry key:

HKEY_LOCAL_MACHINE
SOFTWARE
Wonderware
TESTPROT _|OServer

and for the key TESTPROT _IOServer, edit or create the value
RunWithoutSuiteLinkDLL: REG_DWORD: 0

A value of 0 requiresthe SuiteLink DLL to be available, while avalue of 1 enables the
server to run without SuiteLink. If the SuiteLink DLL cannot be loaded and
RunWithoutSuitelL inkDLL is disabled, the Toolkit will display a Message Box
indicating the problem and will not start the server.

5-8

Chapter 5

Preventing

a Server from Reflecting SuiteLink Pokes

Normally, when a client “pokes’ data for a point to an 1/O Server (viaa DDE POKE or
a SuiteLink Write), the Toolkit updates its database, sends the new value out to all
clients connected to that point (viaa REQUEST or an ADVISE), and then sends the
value to the server-specific code via ProtNewDataForDevice() for transfer to the PLC.
This process of sending the new datato all connected clientsis called “reflecting” the
poked data, and is an inherent operation of how the Toolkit handles the DDE protocol.
However, with Suitel ink, you can suppress the “reflecting” of poked datafor a
particular server, viaan entry in the Registry.

For example, to prevent the server TESTPROT from reflecting Suitelink pokes, use the
Registry Editor to access or create the following Registry key:

HKEY_LOCAL_MACHINE
SOFTWARE
Wonderware
TESTPROT _|OServer

and for the key TESTPROT _|OServer, edit or create the value
SuiteLinkReflectPokes: REG_DWORD: 0

A value of 0 prevents the Toolkit from reflecting pokes received from clientsvia
SuiteLink. Even clients that are connected via DDE will not receive updates, if the point
is poked via SuiteLink. (However, pokes received via DDE will still be reflected, to all
clients whether they are connected with DDE or with SuiteLink.) This means that
clientswill only see the new data when it is obtained from the PLC via the normal
polling process. This helps confirm that the data has actually been written to the PLC —
but only if the point is being polled in the first place.

6-1

CHAPTER 6

DOE, FaztDDE,

or Suitelin
™
. Your Protocol
Time Marks

Device Spacific
Protocal

This section describes the handling of time marks used by the Wonderware 1/O Server
Toolkit.

Contents

m Reading Time Marks
m Understanding Time Marks

6-2

Chapter 6

Reading Time Marks

The I/O Server Toolkit keeps value, time, and quality for each point in the Toolkit's
internal database, organized by the Topic!Point hierarchy. Whenever adata point is
updated (whether for value, quality, or both), the time of the updateis stored in the
Toolkit database on a topic-by-topic, point-by-point basis.

To support the transfer of Value/Time/Quality (VTQ) information, the Toolkit API
provides several function calls, in particular the following:

DbNewV TQFromDevice() updates value, time, and quality
DbNewTQFromDevice() updates time and quality only (value unchanged)

In addition, there are calls in which the time mark is not passed explicitly, but a current
default time mark is used:

DbNewVaueFromDevice() updates value (quality assumed good)
DbNewQFromDevice() updates quality only (value unchanged)

Most PLCs do not have a date/time clock that is accessible to the 1/O Server. For those
which do, you have the option of using that date/time clock as your time mark. Inthis
case, you should convert the time from the PLC’s format to a FILETIME value (see
below). Otherwise, you should use a Toolkit API call to read the computer’stime.

Reading the time is accomplished by acall to DbGetGM TasFiletime(), which internally
makes calls to the Win32 API routines GetSystemTime() and

SystemTimeToFileTime(). The FILETIME structure is a 64-bit value that encodes the
number of 100 nanosecond intervals since January 1, 1601. (Which meansthe time
mark is good for about 30,000 years -- no Y ear 2000 problem, herel) However, these
are rather expensive calls to make, as regards performance, so getting the time mark
should be done only as much asis actually needed.

The Toolkit provides a default time mark only if oneis needed. The way it doesthisis
asfollows. Just before it calls the server-specific function ProtTimerEvent(), the
Toolkit clears an internal flag, indicating that no default time mark is available. Then
later, if some server-specific code calls a function [such as DbNewV aueFromDevice()
or DbNewQFromDevice()] that needs a default time mark, the flag is checked and, if it
is FALSE, the current time is read and saved as the default time mark for use on later
calls during the same timer event, and the flag is set TRUE. Thisway, if asingle loop
makes 1000 calls to DbNewV alueFromDevice(), we don't wind up making 1000 callsto
get the default current time (which won't differ by much, under such circumstances, but
the calls will cause a performance hit).

If you are explicitly obtaining the time viaa call to DbGetGM Taskiletime(), you should
take into account what these calls will do to server performance. If you're updating
10,000 points per second, their time marks aren't going to be very different from one
another; so you probably don't need 10,000 callsto DbGetGM TasFiletime(). You
should limit calls to this function in away that maximizes performance while

maintai ning a reasonable update rate for the time mark. Reasonable places to get the
time mark include the following:

- Once per entry to ProtTimerEvent(), and then only if you need it
- Once per response message (which would normally encode data for many points)

Of course, depending on the device being served and the application to which it is put, it
may make sense to get time marks more or |ess often than once per timer event or once
per message. Thisislargely ajudgment call, balancing performance against the
requirements of the server, or of the application.

Time Marks 6-3

The following excerpt from the routine UdprotExtractDbltem() in UDPROTCL.C of
the sample server code illustrates one way of getting the time mark only as often as
needed:

/* scan through range of synbols covered by this nessage */
done = FALSE;
while ((!'done) && (I pSynEnt !'= (SYMPTR) NULL)) {
/* check whether synbol is active
and polled by this nessage */
if (conpVal ue. SynHandle '= 0) {
/* match found,
get paraneters fromsynbol table entry */

my Addr = | pSynEnt - >nsAddr 1;
count = | pSynEnt - >nsCount ;
nunBytes = (WORD) | pSynEnt - >msNunByt es;

/* check whether already have date/time stanp */
if (!bHaveDat eTi neStanp) {
/* set up date/tinme stanmp */

#i f def W N32

DbGet GMTasFi l eti me(&ptTine);
#el se

pt Ti ne. dwLowbDat eTi ne = O;

pt Ti ne. dwHi ghDat eTi nre = O;
#endi f

/* indicate date/time stanp ready */
bHaveDat eTi neSt anp = TRUE;

6-4

Chapter 6

Understanding Time Marks

It isimportant to understand what time marks mean, i.e. what time they represent and
when the information is transferred from server to client or vice versa.

When aclient sends datato an I/O Server (viaa DDE Poke or a SuiteLink Write), the
Toolkit reads the current time mark and storesit with the new value in the Toolkit
database. (Note: the quality received from the client is assumed to be good.) The new
value, time, and quality are then “reflected” to all other clients that are connected to that
point (viaan ADVISE or aREQUEST for data). The Toolkit then calls the function
ProtNewV alueForDevice() and passes the value to the server-specific code for transfer
to the PLC.

When the 1/O Server obtains a new value from the PLC, it passes the value, time, and
quality to the Toolkit viaacall to afunction such as DbNewV TQFromDevice(). The
Toolkit stores the new value, time, and quality. It then compares the new value to the
old value that was in the database and the new quality to the old quality that wasin the
database. If the values and/or qualities are different, the new VTQ is reported to all
SuiteLink clients. If the values are different, the new value is reported to all DDE
clients (i.e. DDE clients don't care about quality). No comparison is made regarding the
time marks. However, since the new time mark does get stored in the Toolkit database,
any client connected to that point (viaan ADVISE or a REQUEST) will get the most
recent time mark with the VTQ if it is sent.

In short, agiven client will get updated only when the value or quality changes (i.e.
reporting by exception). Thus, if you have a point in the PLC that is unchanging, but
isbeing polled repeatedly, a client with that point on ADVISE will probably not have
the most current time stamp —i.e. it will have the time stamp corresponding to the last
update the client received. However, the time stamp in the Toolkit's database does get
updated every time the server passes a new value or quality to the Toolkit.

By way of illustration, suppose you have a PLC that is counting an integer, 1..2..3..4..,
with the count increasing once per second. And suppose you set the server so that it
pollsthe PLC at a sample rate of once per 400 milliseconds. Then the polled readings
will be

Time (msec) Value
0
400
800
1200
1600
2000
2400
2800
3200
3600

A client with this point on ADVISE will see the updates when the value actually changes

0 1
1200 2
2000 3
3200 4

AP OWWWNNRERLRERER

Time Marks 6-5

But if aclient were to REQUEST the data at, say, 1700 msec into the process, he would
get

1600 2
representing the timestamp of the most recent polled reading.

Thislast example brings up another important issue: how the Toolkit fulfills a data
REQUEST. Thisisactually a multi-stage process that may or may not generate a new
polling message or time stamp for the point:

1. When aclient issues a REQUEST for a data point, the Toolkit looks to see
whether the point is already being polled (i.e. becauseit ison ADVISE for
another client).

2. If the point is being polled, the Toolkit checks whether it already has data for
that point in its database.

a. If so, the Toolkit sends the value, time, and quality from the database.

b. If not, the Toolkit waits for normal polling to update the point, and then
sends the value, time, and quality to the client.

3. If the point is not being polled, the Toolkit calls ProtActivatePoint() to set up
polling for the point, waits for the point to be updated, and then sends the
value, time, and quality to the client. It then calls ProtDeactivatePoint() to
stop polling.

Note that steps 2b and 3 amount to putting the point on “temporary advise” for the
client. The Toolkit waits up to the time limit indicated by the WIN.INI setting
ValidDataTimeout. If no data has arrived by then, the Toolkit sends a NAK, indicating
that the REQUEST could not be fulfilled. But it should be noted that if the Toolkit
database already contains a value for the indicated point, the reported time stamp will
represent the last time the point was updated, not the time the client issued the
REQUEST.

Finally, it is aso important to understand that the Toolkit database is organized as a
Topic!Point hierarchy —that is, points within atopic. This meansthat if a point isbeing
accessed via two different topics, there will be a separate entry for each point. That
means two time marks! It is possible for a server to cross-reference points on different
topics, and make sure that if apoint is updated on one topic it is updated on all topics.
However, most servers do not do this— and it may not even be desirable. Even when
multiple topics actually refer to points in the same memory space of the same PLC, the
different topics may have been created expressly to provide different “scan” rates for
particular points.

6-6

Chapter 6

7-1

CHAPTER 7

DOE, FaztDDE,

R

Data Quality Flags

Davice Specific
Protacol

This section describes the data quality flags used by the Wonderware 1/O Server
Toolkit.

Contents

= Quality Flags
= Quality Flag Settings
= Updating Quality Flags

7-2 Chapter 7

Quality Flags

Wonderware 1/0 Servers can report six (6) mutually exclusive states of quality of data
being sent back to their clients. They are asfollows:

1. Good

2. Clamped High

3. Clamped Low

4. Cannot Convert

5. Cannot Access Point

6. Communications Failed

The conditions under which each of these quality states will be reported are as follows:

1.

2.

3.

Good
a The Communications link has been verified.
b. The PLC understood our Poll request and returned a valid response packet.
c. If awrite occurred, there were no errors during the write process.
d. Therewere no conversion problems with the data contained in the
response packet.
EXAMPLE: The value OXO000A isreturned due to a poll of a register containing
10 (decimal).

Clamped High
a The Communications link has been verified.
b. The PLC understood our Poll request and returned a valid response packet.
c. Theregister wasread or written without error.
d. It was necessary to clamp itsintended value to alimit because the value
was larger than the maximum allowed.
e. Inthe case of astring, it istruncated.
EXAMPLE: A floating-point value is clamped to FLT _MAX.

Clamped Low
a The Communications link has been verified.
b. The PLC understood our Poll request and returned a valid response packet.
c. Theregister was read or written without error.
d. It was necessary to clamp itsintended value to alimit because the value
was smaller than the minimum allowed.
EXAMPLE: A floating-point value is clamped to FLT_MIN.

Data Quality Flags 7-3

4. Cannot Convert

a

b.

ao

@™o

The Communications link has been verified.

The PLC understood our Poll request and returned a valid response
packet.

The data from the PLC could not be converted into the desired format.
The server may return a constant (e.g. zero) in place of the data, or return
quality information alone.

The datais not usable.

It is not known whether the value is too large or too small.

The data returned from the PLC is of the incorrect data type.

A Floating Point number isreturned, but is not avalue (i.e. Not A
Number).

EXAMPLE: The value of 0XO00A isreturned from a BCD register ina PLC.

5. Cannot Access Point

a

b.
C.
d

The Communications link has been verified.

The PLC understood our Poll request and returned a valid response packet.

The PLC reported that it could not access the requested point.

Possihilities for lack of accessibility include, but are not limited to:

1. Itemdoes not exist in PLC memory.

2. Iltemisnot currently available (locked in some way due to resource
contention).

3. Iltemisnot of the correct format / data type.

4. A write attempt was made, but item is read-only.

a. Inmost cases, agroup of itemswill be affected when one itemis
invalid. Thisisdue to the block-polling scheme used by the
servers. For example, if oneitemin ablock of 10 isinvalid, then
entire block is marked invalid by the PLC. The server will report
invalid quality for all itemsin the block.

b. Thedataisunusable.

EXAMPLE: Attempting to read R40001; but R40001 is not defined in the PLC’s

memory map.

6. Communications Failed

oo oTo

SQ

Data communications are down.

The Topicisin slow poll mode (or equivalent).

There have been no link validating messages.

Lack of resourcesin the server, e.g. a TSR (or driver) cannot allocate
memory.

Lack of resources in the communications link.

The communications link is off-line.

All communications channels are in use.

The network is unable to route the message to the PLC.

EXAMPLE Attempting to read data from a PLC which has been powered off.

7-4 Chapter 7

Quality Flag Settings

The data quality settings and their relation to the quality flags used by OLE for Process
Control (OPC) are defined in the file WWSQUAL.H, asfollows:

[/ Wénderware Server

~—~—~ —~
~ — — — —

/11

#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne

Hex
Val ue

VWV SQ_GOOD 0x0000
VWV SQ CLAMPH 0x0056
VWV SQ CLAMPLO 0x0055
VWV SQ_NOCONVERT 0x0040
VWV SQ NOACCESS 0x0004
VWV SQ NOCOW 0x0018

Data Quality Fl ags

oPC
Quality Bits

VEByt e
XXXHKXXXX
00000000
00000000
00000000
00000000
00000000
00000000

LSByt e
QQASSSSLL
11000000
01010110
01010101
01000000
00000100
00011000

orPC

Quality Bytes
Quality
SubSt at us

I

S=0
S=5
S=5
S=0
s=1
S=6

Limts
L=0

o rr-
o
QOO N

It should be noted that when a client sends updated information to a server (viaa DDE
POKE or a SuiteLink Write), the data quality is assumed WW_SQ_GOOD, and thisis
the quality setting that is stored in the Toolkit database. The other flag settings, for
“bad” quality, are set by the server-specific code and passed to the Toolkit viathe API
calls. These quality settings are then sent on to the client(s) as part of the VTQ data.

Data Quality Flags 7-5

Updating Quality Flags

There are typically four places where you should update the quality flags for a point:

1.

In UdprotPrepareWriteMsg() if thereis any problem with poked data. When a
client “pokes’ avalue to the server, ProtNewV alueForDevice() passes the value to
the server-specific code. This, inturn, callsaroutine such as
UdprotPrepareWriteMsg(), which creates the byte sequence that will be sent to the
device. If astringistoo long, or avalueis out of range, the server-specific code
should force the value to alegal setting, set aquality of WW_SQ CLAMPLO or
WW_SQ CLAMPHI, and report the information back to the Toolkit with
DbNewVQFromDevice(). Also, if the point isinaccessible or read-only, it may be
appropriate to set the quality to WW_SQ NOACCESS and call

DbNewV QFromDevice().

In UdprotExtractDbltem() when the response from a deviceis interpreted as point
data and reported to the Toolkit via DbNewV TQFromDevice(). When aresponse
carries valid data for the point, the quality should normally be set to

WW_SQ GOOD. However, if astring istoo long, or avalueis out of range, or a
data conversion yields an invalid result, the quality should be set to
WW_SQ_CLAMPLO, WW_SQ_CLAMPHI, or WW_SQ_NOCONVERT asis
appropriate. Also, some PLCs return status information along with the data. This
status information should be mapped to the corresponding WW_SQ_XX quality
setting.

In ProcessValidResponse() and other locations where an error response is received,
abad quality should be reported for each point on a message that has a response
pending. If apolling (read) message elicits an error response, a quality of

WW_SQ NOACCESS should be reported for each point that is being actively
polled by that message. The following excerpts from UDPROTCL.C of the sample
server illustrate this:

/**/

/** Process validated response back fromthe device **/

voi d
W NAPI
ProcessVal i dResponse(LPPORT | pPort)
{
LPUDMSG | pMsg;
LPSTAT | pTopi c;
BYTE FAR *rsp;

* get pointer to current nessage, if any */
pMsg = | pPort->nbCur Msg;
f (I'pMsg == (LPUDVSG) NULL) {
/* no current nessage, just return */
return;

/
|
i

7-6 Chapter 7

/* check whet her nessage has changed */
if (IpMsg->mChanged) {
/* If was changed after it was witten
-- ignore the response */
return;

}

/* get pointer to corresponding station */

| pTopi ¢ = | pMsg- >mmilopi c;

if (lIpTopic == (LPSTAT) NULL) {
/* unable to access station structure, just return */
return;

}

/* reset station retry limts */
| pTopi c->statRetries = TOPI C_CONSEC FAI LURE_LIM T;
| pTopi c->stat Port Retri es = TOPI C_NORVAL_RETRI ES;

/***\

How messages are handl ed nay depend on the protocol.
The foll owi ng exanpl e handl es reads and wites
and al so processes error responses fromthe device.

***/

/* check type of nessage received */
rsp = (BYTE FAR *) | pPort->nbRspBuffer;
switch (*rsp) {
case 0x00: /* error nessage */
/* indicate error */
Udpr ot Set MsgQual ity (I pTopic, |pMsg, WV SQ NOACCESS);
if (Show ngErrors) {
debug ("Error message received.");
showRecei vedDat a (| pPort);
}
br eak;
def aul t:
/* check type of nessage */
if (IpMsg->mRead) {
/* was a "read"
-- extract data fromresponse and report it */
Udpr ot Ext r act ReadDat a(l pPort, | pTopic, |pMg);
}
br eak;
} /* switch */

/* check type of nessage */

if (!l pMsg->mRead) ({
/* was a "wite" -- delete the wite nessage */
Udpr ot Del et eCur Wit eMsg(l pPort);

/* check station status,
ensure we're out of slow poll node */
Udpr ot Set Topi cStatus (I pPort, | pTopic, FALSE);
} /* ProcessVali dResponse */

Data Quality Flags 7-7

/***/

/* set indicated quality for all synmbols on a read nessage */

static
voi d
W NAPI
Udpr ot Set MsgQual ity (LPSTAT | pTopi c,
LPUDVSG | pMsg,
PTQUALI TY ptQuality)
{
LPEXTARRAY | pSynbol _t abl e;
SYMPTR | pSynEnt ;
unsi gned | ong firstSymdx, |astSyn dx;
BOOL done;

CHAI NSCANNER synbol _scanner;
ACTI VE_CHECK conpVal ue;

/* check whether pointers are valid */

if ((1pMsg == (LPUDMBG NULL) || (I pTopic == (LPSTAT) NULL))
/* no message or no station, just return */
return;

/* only set quality if this is a READ nessage
with active points */

if (('lpMsg->mRead) || (| pMsg->mActiveCt == 0))
return;

/* get pointer to synbol table */

| pSynbol _table = & pTopi c- >st at Synirab;

if (1pSynbol _table == (LPEXTARRAY) NULL) ({
/* cannot access synbol table structure, just return */
return;

}

/* set up conparison value */
conpVal ue. | pMsg | pMsg; /* pointer to this nmessage */
conpVal ue. fi nal Handl e | pMsg- >mmrLast Sym

/* last synbol in nessage */
0; /* no synbol found yet */

conpVal ue. SynHandl e

/* get handles for first and last synbols in this nessage */
firstSymdx = | pMsg- >m¥i r st Sym
last Syml dx = | pMsg- >mmLast Sym
/* get pointer to first synbol entry
referenced by the nessage */
| pSynEnt = (SYMPTR) NULL;
if (firstSymdx >= SYM OFFSET) ({
/* valid synbol handle, get pointer to synbol entry */
| pSynEnt = (SYMPTR) Get Ext ArrayMenber Ptr (I pSynbol _tabl e,
firstSymdx - SYM OFFSET);

7-8

Chapter 7

/* get first active synbol referenced by this nessage */
/* Note: if found, conpVal ue. SynHandl e
will be non-zero */
if (IpSynEnt != (SYMPTR) NULL)
| pSynEnt = (SYMPTR) FindltenfStarti ngAt (

(LPCHAI NLI NK) | pSynEnt,
&l pTopi c->st at Synlsed,
SCAN_FROM_HEAD,
I sActi veOnMessage,
&conpVal ue,
&synbol _scanner);

}

/* scan through range of synbols covered by this nessage */
done = FALSE;
while ((!'done) && (I pSynEnt !'= (SYMPTR) NULL)) {

/* check whether synbol is active

and polled by this nessage */
if (conpVal ue. SynHandle '= 0) {
/* match found,
report new quality on indicated point */
DbNewQFr omDevi ce(| pMsg- >ml dLogDev,
| pSynEnt - >nsDbHnd, ptQuality);

/* check whether to continue scanning */
if (lIpSynEnt->nsl ndex + SYM OFFSET == | ast Sym dx) {
/* last synmbol handle for message, exit */
done = TRUE;
} else {
/* get pointer to next active synbol on nessage,
if any */
| pSynEnt = (SYMPTR) Fi ndNextltem (&synbol _scanner);

}
} /* Udprot Set MsgQuality */

Data Quality Flags 7-9

4. In UdprotSetTopicStatus() when the communication with the PLC fails, bad quality
of WW_SQ NOCOMM should be flagged on all points on all messages for that
topic. Thiswould be at the point where the server goes into slow poll mode,
attempting to re-establish communications with the PLC. The following excerpts
from UDPROTCL.C of the sample server illustrate this:

/***/

/[** set STATUS itemin station structure
return TRUE i f status is changed **/

static

BOOL

W NAPI

Udpr ot Set Topi cSt at us (LPPORT | pPort, LPSTAT | pTopic, unsigned
bFai | ed)

{
BOCOL changed;

/* initialize return value */
changed = FALSE;

/* no change if pointer is NULL */
if (IpTopic != (LPSTAT) NULL) {
/* check current station status */
if (lIpTopic->statFailed != bFailed) {
/* different fromold status, update it */
changed = TRUE;
| pTopi c- >stat Fai | ed = bFail ed;
/* check whether station is active */
if (IpTopic->statStatusActive) ({
/* active, indicate that station STATUS is due */
| pTopi c- >st at St at usDue = TRUE;

/* check whether new status is OK or failed */
if (bFailed) {
/* have | ogger indicate entering
sl ow pol | node */
debug ("Entering slow poll node"
on topic \"%s\" on port %s.",
| pTopi c- >st at Topi cNane,
| pPort - >mbPor t Nane) ;
/* report new STATUS value if necessary */
Udpr ot CheckAndUpdat eSt at us (| pTopi c) ;
/* set "no comunication" quality flags
for all points polled on topic */
Udpr ot Set Topi cQual ity (I pTopic, WV SQ NOCOW ;
} else {
/* have | ogger indicate |eaving slow poll node */
debug ("Leaving slow poll node"
on topic \"%s\" on port %s.",
| pTopi c- >st at Topi cNane,
| pPort - >mbPor t Nane) ;

}

/* check whether station is failed */
if (bFailed) {
/* set up slow poll node */
Udpr ot Set S| owPol | Mbde (I pPort, | pTopic);

}

/* indicate whether station status changed */
return (changed);
} /* Udprot Set Topi cStatus */

/**/

/* set indicated quality for all itens on a topic */

static
voi d

7-10

Chapter 7

W NAPI

Udpr ot Set Topi cQual i ty(LPSTAT | pTopi c,
PTQUALITY ptQuality)

{

LPUDMSG | pMsg;
CHAI NSCANNER nmessage_scanner;

/* check whether pointer is valid */
if (IpTopic == (LPSTAT) NULL)
/* no station, just return */
return;

/* set indicated quality
on every read nessage for this station */
| pMsg = (LPUDMBSG FindFirstltem (& pTopi c->st at ReadMsgLi st
SCAN_FROM HEAD,
NULL, NULL, &nessage_scanner);
while (1 pMsg !'= (LPUDMSG) NULL) {
/* set indicated quality on nessage */
Udpr ot Set MsgQual ity (I pTopic, |pMsg, ptQuality);
/* advance to next message on this station */
| pMsg = (LPUDMBG Fi ndNextltem (&ressage_scanner);

}
} /* Udprot Set Topi cQuality */

8-1

CHAPTER 8

DOE, FaztDDE,

R

Statistics Functions

Device Specific
Protocal

This section describes the Statistics API functions provided by the Wonderware 1/0
Server Toolkit.

Contents

= Overview
m Statistics from a Client Perspective
m Toolkit Standard Statistics

8-2

Chapter 8

Overview

With the advent of FactorySuite 2000, the Wonderware 1/0 Server Toolkit provides
extensions to the Toolkit APl which allow 1/0 Serversto easily provide statistical
measurements including counters and ratesto I/O Clients. This API alows the server
developer to register a statistic with a particular item name with the Toolkit. The
Toolkit manages point validation and sends values to any interested clients. For
statistics which indicate counters, the server protocol code simply manipulates the
counter’s value with the supplied function calls. For statistics which indicate rates, the
server-specific code modifies the input counter and allows the Toolkit to calculate the
rate of change. In addition to this capability for registering server-specific statistics, the
Toolkit automatically providesits own internal statistics related to 1/O Server activity
and function call activity for performance and diagnostic purposes.

Statistics from a Client Perspective

Since the primary purpose of statistics isto provide users a convenient and easy way to
gather performance and diagnostic information about their 1/O Servers, it is appropriate
to first discuss statistics from a user or client program perspective.

There are two basic types of statistics available to an interested I/O Client: counters
and rates.

Statistical Counters

A statistical counter is used to represent an accumulated quantity (i.e. “acount”) or
state information. Most often, a counter will be used to indicate the number of
operations or events that have occurred. For example, a counter would be useful for
representing the number of transactions or the number of errors that have happened
since the server was started. Alternatively, a counter can be used to represent a
discrete state or atext string. So, for example, a counter could be used to indicate a
1/0 (good/bad) condition, a string listing all topics currently available on the server,
or a string containing the description of the last error that occurred (e.g. “The
connection has timed out”).

The statistical API in the Toolkit makesit very easy to register and accumulate
counters and have them automatically broadcast to any interested clients. A
statistical counter can be any one of the four Toolkit datatypes. PTT_INTEGER,
PTT_REAL, PTT_STRING, or PTT_DISCRETE. Functionsfor setting the value,
adding/subtracting, or incrementing/decrementing counters are provided.

Statistics Functions 8-3

Statistical Rates

A statistical rate is used to represent the current rate at which a particular operation
or event isoccurring. For example, arate would be useful for representing the
number of read operations per second on a particular communications port.

The statistical API in the Toolkit makes it very easy to register and calculate rates
and have them automatically broadcast to any interested clients. The server code
registers the rate item with the Toolkit, assigning it a name, topic, update interval,
and time units. Then, the server code simply needs to update the counter which
feedsinto the rate calculation when appropriate. The Toolkit takes care of
calculating the rate of change of the counter in the specified time units and updates
clientsthat are interested in the rate item. The counter value which is the input
value to the rate calculation can optionally be associated with a previously
registered statistical counter. This allows a server to provide both an accumulator
and arate of change for a particular measurement to clients without having to
update two different counters.

Statistics Categories

Statistics should be segregated into different categories or groups depending on the
type of object they are measuring. A group of statistics for acommunications port,
for example, should be separated from statistics related to DDE or Suitelink traffic.
To facilitate this categorization, several new standard logical devices, or 1/O Server
topics, have been defined as part of the FS2000 Toolkit. The purpose of each of
these standard topicsisto hold alogically related group of statistical information.
These standard topics will be created by the Toolkit at server startup and deleted at
server shutdown. They require no user configuration. Statistical items can be
assigned to these new standard topics or to any user-defined topic in an I/O Server.
This assignment of a statistic to a particular device or topic is the responsibility of
the server developer and is controlled at statistic registration time viathe API.

The new system standard topics are summarized in the following table.

Topic Name Description Symbol
SYSTEM I/O Server System Topic STDDEV_SYSTEM
$SERVER contains general server wide statistics STDDEV_SERVER
$PORT contains statistics related to STDDEV_PORT

communication ports/boards

contains statistics related to physical

$DEVICE devices such as PLCS. STDDEV_DEVICE
contains statistics related to DDE and
$DDE SuiteLink communications. STDDEV_DDE
STKITIE contains statistics related to Toolkit API STDDEV_TKITIF

function calls.

In general, an I/O Server you create will only register statistics for the “$SERVER”,
“$PORT”, and “$DEVICE”" standard topics and for the user-defined topics known to the
server. The generation of statistics for the “SYSTEM”, “$DDE”, and “$TKITIF’
should be left to the I/O Server Toolkit.

Chapter 8

Reset of Counters

1/O Clients have the ability to reset entire groups of statistical counter items. The
dtatistical counters can be reset on a per-topic or per-server basis, depending on the
item name and topic used in the DDE Poke or SuiteLink Write operation. The reset
operation is controlled exclusively by the Toolkit and does not require any
programming by the server developer or any special notification. Only counters
which are integer or floating point accumulators are affected by a reset.

Topic Item Name Action when poked
Resets all counter statistics on all topicsin
SYSTEM ResetAll Stats the 1/O Server.
N ResatStats Resets all counter sttg\gi?cs on the indicated

Manipulation of Counter Update Interval

Theinterval at which a counter is updated to any interested clientsis set by the
topic’s counter interval. Thisinterval defaultsto 10 seconds but can be
manipulated in several ways. First, the default value for al topics can be changed
by adding an entry under the server section in the WIN.INI file in the Windows
directory. The entry nameis StatCounter slnterval, and the unitsarein
milliseconds.

The counter interval can also be controlled on an individual topic basisin two ways.
First, the programmer can control it with the StatSetCounter sinterval() function
call. Thisfunction can be called anytime after atopic iscreated. Second, an1/O
Client can control the counter update interval on atopic by manipulating the
“Counterinterval” item name for the topic with a DDE Poke or SuiteLink Write.
This mechanism requires no programming by the server devel oper.

Manipulation of Rate Intervals

Theinterval at which a particular statistical rate item is calculated is set to an initial
default value by the server developer at the time the statistic is registered via the
API. A general guidelineisthat the statistical rate item should be calculated at an
interval greater than or equal to the topic update interval. It isimportant to
remember that a server which has many rate statistics being calculated frequently
may have some performance impact on the rest of the system. The server developer
may want to provide some way to disable rate calculations if performance may be a
concern. This might be accomplished by a configuration dialog which setsaflag in
the server configuration file, the WINL.INI file, or the system Registry.

It may be desirable at times to allow a user, or 1/0O Client, to manipulate the interval
at which a particular rate operation is performed. This capability is provided
automatically by the 1/0O Server Toolkit. Once arate item has been registered with
the Toolkit, the rate interval for that item can be changed at any time by an 1/O
Client. Theitem name to be used for reading and writing the rate interval will
always be the name of the rate item itself followed by the following string:
“$INTERVAL". So, for example, arate item of “SENDSRATE” could have its
calculation interval manipulated by a DDE Poke or SuiteLink Write operation to the
item “SENDSRATESINTERVAL”". Thisl/O Server Item is always an integer with
millisecond units. Again, this dynamic rate interval manipulation is controlled
exclusively by the Toolkit and does not require any programming by the server
developer.

Statistics Functions 8-5

Statistics Names

The names assigned to statistical items may be controlled either by the I/O Server
Toolkit or by the server developer. Certain pre-defined statistics, such as those
related to DDE, SuiteLink, and Toolkit interface calls, will always exist in every
server since the Toolkit defines and maintains them. (See the Toolkit Standard
Statistics section below.) The naming of protocol-specific statistics will be the
responsiblity of the server devel oper.

Statistical items are read-only, with the exception of special items for reset of
counters and manipulation of counter and rate update intervals.

8-6 Chapter 8

Toolkit Standard Statistics

The following table defines the standard statistical items which are provided

automatically by the Toolkit:

Topic Item Description
SYSTEM Counterinterval Interval in mill |s_econds at vyhlch counters on topic
will update (integer).
SYSTEM Formats Tab separated list of DDE l_:ormats supported by
server (string).
SYSTEM LastResetTime Last time statistics in topic were reset (string).
SYSTEM TopicltemList Tab separated list of azlstlr/ii) g|)tems available on topic
SYSTEM Sysitems Tab separated list of alI_I/On_emsavallabIeon
system topic (string).
. Tab separated list of al 1/0 Topics, or logical
SYSTEM Topics devices, available in the server (string).
SYSTEM ResetAll Resets all counters on all topics.
SYSTEM ResetStats Resets all counters on topic (discrete).
Watchdog timer which increments every interval
SYSTEM WatchDog indicated by CounterInterval (integer).
$SERVER | Counterinterval Interval in m|II|s_econds at vyhlch counters on topic
will update (integer).
$SERVER LastResetTime Last time statistics in topic were reset (string).
$SERVER ResetStats Used to reset al counters on topic (discrete).
Indicates fraction of CPU time during which server
$SERVER | ServerBusyRate is busy (real).
$SERVER | ServerStartTime Time server was started (string).
$SERVER TopicltemList Tab separated list of aélstlr/ii) g|)tems available on topic
Watchdog timer which increments every interval
$SERVER WatchDog indicated by CounterInterval (integer).

Statistics Functions 8-7

Topic Item Description
$TKITIF ActivatePoint
$TKITIF ActivatePointFailures
STKITIF AllocatelogicalDevice
STKITIF Allocatel ogical DeviceFailures
$TKITIF Counterlnterval
$TKITIF CreatePoint
$TKITIF CreatePointFailures
$TKITIF DeactivatePoint
$TKITIF DeactivatePointFailures
STKITIF Deallocatel_ogicalDevice
STKITIF Deallocatel ogical DeviceFailures
$TKITIF DeletePoint
$TKITIF DeletePointFailures
$TKITIF LastResetTime
$TKITIF NewV aueForDevice
$TKITIF NewV alueForDeviceFailures
$TKITIF NewV alueForDeviceRate
$TKITIF NewV alueForDeviceRate$I nterval
$TKITIF NewV alueFromDevice
$TKITIF NewV alueFromDeviceFailures
$TKITIF NewV alueFromDeviceRate
$TKITIF NewV alueFromDeviceRate$l nterval
$TKITIF ResetStats
STKITIF TopicltemList
$TKITIF WatchDog

$DDE Counterlnterval

$DDE DDEA cksReceived

$DDE DDEA cksSent

$DDE DDEAdviseFailures

$DDE DDEAdvises

$DDE DDEAdvises

$DDE DDEBusyReceived

$DDE DDEDataBytesReceived

$DDE DDEDataBytesReceivedRate

$DDE DDEDataBytesRecei vedRate$l nterval

$DDE DDEDataBytesSent

$DDE DDEDataBytesSentRate

$DDE DDEDataBytesSentRate$I nterval

$DDE DDEExecuteFailures

$DDE DDEExecutes

$DDE

DDElnitiateFailures

8-8

Chapter 8

Topic Item Description
$DDE DDElnitiates
$DDE DDENaksReceived
$DDE DDENaksSent
$DDE DDEPokeFailures
$DDE DDEPokes
$DDE DDEPokesRate
$DDE DDEPokesRate$I nterval
$DDE DDEReqguestFailures
$DDE DDERequests
$DDE DDETerminateFailures
$DDE DDETerminates
$DDE DDEUnNadviseFailures
$DDE DDEUnNadvises
$DDE LastResetTime
$DDE ResetStats
$DDE TopicltemList
$DDE WatchDog
* CounterlInterval
* LastResetTime
* ResetStats
. . Tab-separated list
i Topicltemlist of statistical items,
* WatchDog

* Indicates all other topics.

9-1

CHAPTER 9

DOE, FaztDDE,

-,

/O Server Toolkit

Device Spacific
Protocal

Function Summary

This chapter summarizes Server Toolkit Application Programming Interface (API)
functions. The following briefly describes the categories of the 1/0 Server Toolkit
functions and their primary purpose.

The discussions and illustrations on the following pages describe how the Toolkit
handles client/server activities, such as initiating connections, advising points, poking
values, etc. While the discussion is based on DDE, please note that the corresponding
activities also take place when SuiteLink is used.

Note Wonderware 1/0O Server Toolkit functions that are underlined and bold, e.g.,
ProtInit(), must be developed. Wonderware 1/0O Server Toolkit functions that are
provided by the Toolkit will be bolded but not underlined, e.g.,
DbNewValueFromDevice(). For more information, see the "API Function Reference
chapter for complete function descriptions.

Contents

Protocol Initialization & Setup Functions

Logical Device Management Functions
Point/Item Management Functions

Toolkit Database Interface for Protocol Functions
Timer Functions

String PTVALUE Manipulation Functions
Memory Management Functions

Memory Access Permission Functions - Windows Only
Common Dialog Functions

Selection Boxes - Optional

Miscellaneous Functions

Windows NT Porting Functions

Macros for Portability

Additional Information

9-2 Chapter 9

Protocol Initialization & Setup Functions

This section describes the functions (indicated by the underlined names) that must be
written and included in the I/O Server 'sinitialization. These functions are called by the

Toolkit.
Function Description
ProtClos() Called immediately prior to the server closing. Performs

ProtDefWindowPr oc()
ProtGetDriver Name()
ProtGetValidDataT imeout()

ProtTimer Event()

Protlnit()

any necessary clean-up such as freeing memory, closing
communications ports, etc.

Allows the server application window to be customized.
Provides the Toolkit with the name of the 1/0O Server.

Returns the length of time the Toolkit is to wait for data
before issuing a timeout to the DDE client requesting
information.

Called at the frequency specified in the call to
SysTimer SetupProtTimer ().

Allows the server to execute and perform tasks necessary
to obtain the requested data.

Allows the server to perform required initialization such
as:

e Obtaining defaults from WINL.INI (if applicable)

* Reading the configuration file (if any)

e Calls SysTimer SetupProtTimer ()

e Calls SysTimer SetupRequestTimer ()

I/O Server Toolkit Function Summary 9-3

Logical Device Management Functions

The following functions are used by the Toolkit to allocate and deallocate logical

devices.

Function

Description

ProtAllocatel ogicalDevice()

ProtExecute()

ProtFreel ogicalDevice()

Called when aclient initiates a DDE conversation to the
server.

Returns a handle that the Toolkit will usein al future
calls to routines dealing with that logical device
hLogDev. The handle isan unsigned long which is
meaningful to the server. Itisusedin all subsequent
callsto identify the logical device instead of using the
name. Thisway, the name (which isastring) need only
be decoded once, when ProtAllocatel ogicalDevice() is
called.

Must validate the topic name (i.e., logical device name).

Must save the idLogDev for use in other Toolkit
routines.

Note If NULL isreturned, the Initiate will not be Acked,
i.e., the conversation will not be established.

Called when the client sends an Execute DDE message
to a conversation on the server.

This function should execute the string supplied by the
client and return success or failure based on the
command supplied.

Cadled when the last client has sent aterminate to the
server for thistopic.

All memory associated with this logical device must be
freed.

9-4

Chapter 9

Examples of Logical Device Management

The following examples summarize what happens regarding logical device management
on atypical conversation initiation and termination.

What is called on Initiate

DDE User Tool ki t The Server
- WM DDE_I NI TI ATE - -->|
| --- ProtAllocatelogical Device ()--->
| [if first use of device]
| <-- return handle to |ogical device ---

<--- WM DDE ACK --------- | [if return is non-NULL or device
| al ready exi sts]

What is called on a Terminate

DDE User Tool ki t The Server
- W DDE_TERM NATE - -- >
| --- ProtFreeLogi cal Device ()
|--->[if last use of device]
|
|

<--- WM _DDE_TERM NATE --- -

I/O Server Toolkit Function Summary 9-5

Point/ltem Management Functions

Point management includes defining points (setting up data structures), starting and
stopping polling, sending and receiving data values and shutting down. Each item will
have two handles (unique identifiers). Oneis given to the server by the Toolkit hDb,
and used when the server callsthe Toolkit concerning an item. The other is provided by
the server hProt and given to the Toolkit. It will be used when the Toolkit calls the
server concerning apoint. When avalid point is being created, you must save the hDb
database handle parameter. It will be the handle (unique identifier) used by the Toolkit
database to find thisitem. The return hProt for avalid item isanon-zero handle that is
unique to this point in this topic. The choice of these hProt handles is completely up to
you and should make your later point processing more simple, e.g., use the index or
memory handle pointing to an element in a chain of created points. Regarding point
management, the following set of functions must be supplied to the Toolkit.

Function Description

ProtActivatePoint() Called when the Toolkit wants the server to start
reporting changing point values by calling
DbNewValueFromDevice().

At this point the server should start "polling" the point
from the appropriate logical device. Callsto send data
to the Toolkit via DbNewV alueFromDevice() should
only be done between the ProtActivatePoint() and the
ProtDeactivatePoint() calls.

ProtCr eatePoint() Validates the point name and returns the type of point
the name represents (discrete, integer, etc.)

Must remember the hDb passed in since thisis required
for al callsto the Toolkit database
DbNewValueFromDevice().

Must return hProt which represents ahandle that is
important to you. All subsequent calls that the Toolkit
makes to you regarding this point will pass hLogDev,
returned from ProtAllocatel ogicalDevice() and hProt,
returned from ProtCr eatePoint ().

This function should return NULL if the point isinvalid
or not accessible for this device. If thisroutine returns
NULL, the DDE message that caused the call to
ProtCreatePoint() will return a NAACO. (Do not call
DbNewValueFromDevice() until the
ProtActivatePoint() has been called.)

9-6

Chapter 9

Function

Description

ProtDeactivatePoint()

ProtNewValueFor Device()

ProtDeletePoint()

Called when the Toolkit wants to stop reporting point
value changes. At this point, the server should stop
polling for this point.

Called when the Toolkit wants to write a new value to
the device. The ptValue parameter isaunion that is
used to pass point values to and from the Toolkit and
supports a discrete, integer, real or string.

Called when the Toolkit determines that no more clients
are interested in this point. The server should delete or
release any memory structures associated with the point.
If awriteisdtill outstanding, the server should still
perform the write.

What is called on a Request
A Reguest is a one-time data transfer.

DDE User

Tool ki t The Server
WVl DDE_REQUEST - - - >

--- ProtCreatePoint () --->
[1f not created]
<-- return hProt and point type ----

----| [if ProtCreatePoint() returns NULL]

--- ProtActivatePoint () --->
[if not activated]

--- ProtDeactivatePoint () --->
[if last activation]

I/O Server Toolkit Function Summary 9-7

What is called on an Advise/Unadvise

An Advise asks for a notification of changes. An Unadvise asks for a discontinuation of
the notifications.

DDE User Tool ki t The Server
--- \\WM DDE_ADVI SE --->
--- ProtCreatePoint () --->
[if not created]
<--- return hProt and point type ----

<--- NACK --------------- [if ProtCreatePoint() returns NULL]

--- ProtActivatePoint () --->
[if not activated]

____________________________________ >
<--- \WM DDE DATA --------
<--- DbNewval ueFronmDevice () ---------
____________________________________ >
<--- WM DDE_DATA -------- [if data changes]
<--- DbNewval ueFronDevice() ---------
____________________________________ >

<--- WM DDE_DATA -------- [if data changes]

---- M _DDE_UNADVI SE --->
--- ProtDeactivatePoint () --->
[if last activation]

What is called on a Poke

A Poke is aone-time write of a point value.

DDE User Tool ki t The Server

---- WM DDE POKE ------- >
--- ProtCreatePoint () --->
[if point doesn't exist]

<-- return hProt and point type ----

<--- NACK --------------- [if ProtCreatePoint() returns NULL]

send wite to device ...

A ptValueisaunion that is used to pass point values to and from the Toolkit. The
ptValue supports discrete, integer, real and string. Strings are handled in a special way -
viathe functions that are provided for you in TOOLKIT7.LIB. Refer tothe API
Function Reference chapter for more details on the above routines.

9-8 Chapter 9

Toolkit Database Interface for Protocol Functions

This section describes the functions that are provided in TOOLKIT7.LIB to allow the
server to update the Toolkit database.

Function

Description

DbNewVTQFromDevice()

DbNewT QFromDevice()

DbSetHProt()

Timer Functions

Iscalled every time a point value is retrieved from the
device. The Toolkit will determine whether or not the
value has changed since the last time it wasread. Thisis
critical for compatibility with later versions of the
Toolkit.

I's called when communication problems with the PLC
occur. Errorsor alost connection means every point on
the effected message or topic should be marked as
having bad quality.

Allows the server to change the hProt value for a point
(item identifies from your code to the Toolkit database).

This section describes the timer functions that must be called to set up the Toolkit timers at
rates appropriate for the protocol being used.

Function

Description

SysTimer SetupProtTimer ()

Sets up atimer that goes off every dwMsec milliseconds
and calls ProtTimer Event().

This timer should be set to avalue that is reasonable for
the protocol data supply rate. Intervalsthat are
arbitrarily too short will result in needless system
overhead.

SysTimer SetupRequestTimer () Sets up atimer that goes off every dwMsec milliseconds

and checks for valid data timeout errors within the
Toolkit database.

Thistimer should be set to avalue that is reasonable for
the protocol datatimeout. The interval should be a
reasonable factor of the ValidDataTimeout parameter
returned in the ProtGetValidDataTimeout() calls.
Intervals that are arbitrarily too short will result in
needless system overhead.

I/O Server Toolkit Function Summary 9-9

String PTVALUE Manipulation Functions

The PTVALUE unionis used to pass point values between the various functions
described in other sections of this document (for example, ProtNewValueFor Deviceg()).

The following describes the functions that must be used to manipulate the hSring field
of this structure.

Function Description

StrvalSetNString() Initializes a ptValue string and does not require a NULL-
terminated string.

StrValSetString() Initializes a ptValue string.

StrvalStringFree() Frees the associated string memory.

StrvalStringl ock() Locks astring in memory to allow accessto it.

StrValStringUnlock() Unlocks the memory associated with a string.

Example Code #1 - Sending Data to the Toolkit Database

/* Send a string itemto the database. Replace our |ocal
string first. */
pt Val ue. hString = NULL;
pt Val ue = StrVal Set Stri ng(pt Val ue, | pszVal New) ;
DbNewVal ueFr onDevi ce(i dDev, hDbltem ptVal ue);
/* The Toolkit will free the ptValue nenory for ne.
This ptValue is now untouchable, forget it. */

Example Code #2 - Accepting Data from the Toolkit for
the Device
Pr ot Newval ueFor Devi ce(hLogDev, hProt, ptVal ue)
switch (info[i].ptype)
case PTT_STRI NG
| pszVal New = StrVal StringLock(ptValue);
/* use string */

StrVal StringUnl ock(ptValue);
br eak;

9-10

Chapter 9

Caveats with StrVal Strings

Caveat #1 - Modifying PTVALUE without
StrValSetString()

Caution must be taken when using stringsin ptValue.

Thefollowing codeisa BAD example:

BOOL
FAR PASCAL
ChangeVal ue(ptVal ue, | pszNewval)
PTVALUE pt Val ue;
LPSTR | pszNewval ;
{
LPSTR | pszVal;
BOCL rtn;
rtn = FALSE;

if(ptValue.hString '= NULL) {
I pszVal = StrVal StringlLock(ptValue);
if(Ipszval) {
/* UNSAFE - the menory allocated for
pt Val ue may not be enough for | pszNewal! */
I strcpy(| pszval, |pszNewval);
StrVal StringUnl ock(ptValue);
rtn = TRUE;
}

return(rtn);

}

The moral of the above exampleisto always use StrVal SetString() to change the value
of astring. Thiswill correctly size the memory needed to store the string (by freeing the
memory associated with the old string and allocating new memory for the new string).

I/O Server Toolkit Function Summary 9-11

Caveat #2 - Modifying PTVALUESs from Database

When the database calls ProtNewValueFor Device(), consider the ptValue to be read-
only. The hSring in the ptValue passed to ProtNewValueFor Device() is stored in the
Toolkit database. If you cause this memory to be freed, the database may malfunction.
Thus, only call StrvalStringL ock() and StrValStringUnlock() on the ptValue received
from ProtNewValueFor Device()! Never call StrValSetString() or

StrValStringFree() with this ptValue!

An example of correct usage of astring in ProtNewValueFor Device() is as follows:

BOOL

FAR PASCAL

Pr ot Newval ueFor Devi ce(hLogDev, hProt, ptValue)

HLOGDEV
HPROT
PTVALUE

hLogDev;
hPr ot ;
pt Val ue;

{
char buf f er[200] ;

BOCL rtn;

rtn = FALSE;
/* This device handles only string point values. */
if(hLogDev =1 && hProt =1 &&

ptValue. hString != NULL) {

/* Lock the read-only input string. */

I pszVal = StrVal StringLock(ptValue);

if(Ipszval)

}

I strcpy((LPSTR)buffer, |pszVval);

StrVal StringUnl ock(ptValue);

/* Now we can process the input string in the |ocal
buf fer*/

rtn = TRUE;

return(rtn);

9-12

Chapter 9

Memory Management Functions

Wonderware has developed a heap manager that is similar to Global Alloc(),
GlobalLock(), GlabalUnlock(), Global Free(), and GlobalReAlloc(). This heap manager
allows the devel oper to allocate many different sized memory blocks while minimizing
the number of actual global memory handles (selectors) consumed. The corresponding
calsarewwHeap_Init(), wwHeap_ AllocPtr(), wwHeap ReAllocPtr (),
wwHeap_FreePtr() and wwHeap_Release(). All of these functions are described in
detail in the "API Function Reference” chapter.

For compatibility reasons, Wonderware has extended the heap manager to run on
Windows NT/ 2000. A new common API has been devel oped which supports heap
management on both Windows 98 and Windows NT / 2000. This new heap API will
work on either platform. If you have an existing I/0O Server developed using the old
heap API functions, you will need to convert these function callsto the new API prior to
building your server. Refer to the "Getting Started with the 1/0O Server Toolkit" chapter
for details.

Function Description

wwHeap_AllocPtr() Allocate the specified amount of memory using the heap
specified by hHeap.

wwHeap_FreePtr() Free the allocated memory specified by |pPtr.

wwHeap_Init() Create and initialize a heap.

wwHeap_ReAllocPtr () Re-allocate the specified amount of memory used in the
heap specified by IpPtr.

wwHeap Release() Free a heap created with wwHeap_|nit().

Memory Access Permission Functions - windows Only

For specialized applications that require access to fixed real mode addresses in memory,
there are two routines to support this addressing in Windows protected-mode:
RequestPer mission() and RelinquishPer mission().

Function Description

RelinquishPermission() Will release the selector that was allocated to this
memory address range, identified by hPermission.

RequestPer mission() Access memory at afixed Real Mode location.

I/O Server Toolkit Function Summary 9-13

Common Dialog Functions

Version 5.0 of the 1/0O Server Toolkit provides a new Dynamic Link Library (DLL) called
WWCOMDLG.DLL. ThisDLL providesaset of functions that are available to the 1/O
Server developer for the purpose of providing a standard look and feel for dialogs,
message boxes, and graphical controls that are common to all servers. All serial servers,
for example, need to provide some way of configuring communications ports. The
Wonderware Common Dialog DLL provides the WW ConfigureComPort() function for
this purpose.

Although not required, the Wonderware Common Dialog functions are recommended for
al 1/0 Servers. They provide a standard graphical user interface for server configuration
and message boxes. The UDBOARD and UDSERIAL sample serversincluded with the
Toolkit have been upgraded to include usage of the Wonderware Common Dialog
functions.

Function Description

WW CenterDialog() Places the specified dialog at the center of the screen.

WW _ConfigureComPort() Displays and manages the communications port settings
configuration dialog. It should only be used by serial
servers. Thisdiaog alows configuration of
communications parameters for one or more serial
communications ports. These settings are written to the
WW_CP_DLG_LABELS structure for use by the
server.

WW ConfigureServer () Displays and manages the server parameter
configuration dialog. Thisdialog allows configuration
of several parameters related to overall operation of the
I/O Server. These settings are written out as profile
information to the WIN.INI file by this dialog function
and only take effect upon restarting of the server.

WWConfirm() Displays and manages the confirmation dialog which
indicates the directory or file where server settings are to
be saved. It should only be called when the
configuration file does not currently exist.

WWDisplayAboutBox() Displays and manages the dial og displaying copyright
and version information. It isgenerally intended for use
by Wonderware servers since it displays the
Wonderware copyright information. However, it does
provide facilities for easily displaying version and date
information and is available for use by other servers.

WWDisplayConfigNotAllow() Displays amessage box indicating that configuration of
the server is not allowed while the server isin use.

WWDisplayErrorCreating() Displays a message box indicating that an error was
encountered while creating the specified file.

WWhDisplayErrorReading() Displays a message box indicating that an error was
encountered while reading the specified file.

WWDisplayErrorWriting() Displays a message box indicating that an error was
encountered while writing the specified file.

9-14

Chapter 9

Function Description

WWNDisplayKeyNotEnab() Displays a message box indicating that the installed
security key does not enable operation of this 1/O Server.

WWNDisplayK eyNotInst() Displays a message box indicating that the required
security key is not installed on the system.

WWNDisplayOutofMemory() Displays a message box indicating that an error was
encountered while allocating memory for the specified
object.

WWFormCpModeString() Creates a null-terminated string containing device
control information.

WWGetDialogHandleg() Returns awindow handle to the top-most dialog in the
current application.

WW!1nitComPortComboBox()
Creates a communications port selection box for display
on adialog. Most commonly, it will be used in atopic
configuration dialog for selection of the communications
port for serial communications.

WW Select() Displays adialog containing alist box which will
contain alist of strings specified by the server. The user
will be provided options for adding, modifying, or
deleting entries from thislist. This function is most
commonly used to display alist of topics or boards for
configuration.

WWTrandateCDIgToWinBaud()
Trandates the WWCOMDLG constant for baud rate to
the Windows equivalent.

WWTrandateCDIgToWinData()
Trandates the WWCOMDLG constant for number of
data bits to the Windows equivalent.

WWTrandateCDIgToWinParity()
Trandates the WWCOMDLG constant for parity to the
Windows equivalent.

WWTrandateCDIgTowinStop()
Trandates the WWCOMDLG constant for number of
stop bitsto the Windows equivalent.

WWTrandatewWinBaudToCDIg()
Trand ates the Windows constant for baud rate to the
WWCOMDLG equivalent.

WWTrandateWinDataToCDIg()
Trand ates the Windows constant for number of data bits
(7 or 8) to the WWCOMDLG equivalent.

I/O Server Toolkit Function Summary 9-15

Function Description

WWTrandateWinParityToCDIg()
Trandlates the Windows constant for parity to the
WWCOMDLG equivalent.

WWTrandateWinStopToCDlIg()
Trandates the Windows constant for number of stop bits
to the WWCOMDLG equivalent.

WWVerifyComDIgRev() Verifies that the version of WWCOMDLG.DLL
installed on the system is at least as new as the specified
version. It also returns the major and minor version
numbers of the installed WWCOMDLG.DLL to the
server. Thisfunctionisintended for compatibility
checking.

9-16 Chapter 9

Selection Boxes - Optional

The following list of functions provide selection box capability, asused in InTouch. In
general, these functions are no longer necessary or recommended since the WW Select()
function provides similar functionality.

Function Description

SelBoxAddEntry() Add a string entry to a selection box set of choicesto be
displayed when the SelBoxUser Select() call is done.

SelBoxSetupStart() Does the basic setup for a selection box.

SelBoxUser Select() Actually displays the selection box and processes al the

SelBoxUser Selection()

SelListFree()
SelListGetSelection()

SelListNumSelections()

buttons.

Call thisroutine after SelBoxUser Select() if you wish to
get alist of what the user selected.

Frees the memory associated with the selection list.

Getstheindicator value for a selection at the specified
number.

Returns how many entries are in the specified hSelList.

I/O Server Toolkit Function Summary 9-17

Miscellaneous Functions

This section describes the miscellaneous functions that can be used.

Function

Description

AdjustWindowSizeFromWinl ni()

CheckConfigFileCmdLine()

debug()

GetAppName()

GetString()
udlnit()

UdReadAnyM or &)

UdReadVersion()

Adjusts the size of the server window to the last saved
size.

Checks the command line for optional configuration file
path. By default, most of the I/O Servers save their
configuration file path in the Windows WIN.INI file. If
the user defines the file path on the command line
(default), or an aternate file is used, the server, with
proper coding, can read the configuration file other than
the one specified in the WINL.INI file.

Sends a debug message to WWLOGGER.EXE which
can log it to disk, monochrome adapter, AUX port, etc.

The#include" debug.h" isarequired includefile.

Returns the application name for the server. This
application name is stored in the Toolkit and initially set
by acall to ProtGetDriver Name() during server startup.

Retrieves a string from the resource file.

Isintended for use by a Windows application that
already exists and needs to be extended to include the
DDE capability provided by the Toolkit. Itisusedto
initialize the 1/0 Server Toolkit and should only be used
by a Windows application which supplies its own
WinMain() function. UdlI nit() should be called early in
the activation of such applications. Most 1/0 Servers do
not have to call this function since they allow the Toolkit
to supply the WinMain() function. The parameter list is
identical to the parameter list for the Windows
WinMain() function.

Reads a bAnyMore flag from the configuration file. This
flag is used within the configuration file to indicate
whether more records of a certain type exist. Such aflag
is usually necessary when the number of recordsis
unknown.

Reads the version number from the server configuration
file. It aso verifiesthat the magic number stored in the
file matches the specified magic number.

9-18 Chapter 9

Function

Description

UdTerminate()

UdWriteAnyMorg()

UdWriteVersion()

Isintended for use by Windows applications that already
exist and need to be extended to include the DDE
capability provided by the toolkit. It isused to close the
1/0 Server Toolkit, but it should only be used by a
Windows application which supplies its own WinMain()
function and calls the UdlI nit() function to initialize the
toolkit. UdTerminate() should be called at application
shutdown time. Most 1/0O Servers do not have to cal this
function since they allow the toolkit to supply the
WinMain() function.

Writes a bAnyMore flag to the configuration file. This
flag is used within the configuration file to indicate
whether more records of a certain type exist.

Writes the version number, magic number, date, and
time to the server configuration file.

WriteWindowSizeT oWinlni()

Saves the size of the server window to the last adjusted
size.

I/O Server Toolkit Function Summary 9-19

Windows NT Porting Functions

Version 5.0 of the 1/O Server Toolkit includes an Windows NT version that provides
support for the Windows NT/2000 operating system. Since there are alarge number of
I/O Serverswhich currently only operate on the Windows operating system, a significant
amount of porting work will be required to provide native Windows NT support for
these servers. To minimize this porting effort and, at the same time, to simplify software
maintenance, Wonderware has developed a set of porting functions and macros that can
be utilized for Windows NT. Thesetools will significantly reduce the amount of time
required to port a Windows server to the Windows NT environment.

Although not required, the Wonderware NT porting functions and macros are
recommended for all 1/O Servers. They provide a common interface that allow the same
function call to be used on both Windows and Windows NT. The UDBOARD and
UDSERIAL sample serversincluded with the Toolkit have been upgraded to include
usage of Wonderware NT porting functions and macros.

There are three specific areas for Windows NT porting, they are:
* Windows Function Emulators

* Windows and Windows NT Compatibility Functions

e Macrosfor Portability

9-20

Chapter 9

Windows Function Emulators

The following set of functions provide Windows NT emulation of Windows functions.
They are only available in the Windows NT 1/O Server Toolkit since the Windows API
already incorporates them.

Function Description

CloseComm() Closes a serial communications port.

FlushComm() Flushes all characters from the transmission or receiving
gueue of the specified communications device.

GetCommeError() Retrieves the most recent error value and current status
for the specified device. It also clearsthe error.

GetCommEventM ask() Retrieves and then clears the event word for the
specified communications device.

GetTextExtent() Provides emulation of the Windows Get TextExtent()
function for the Windows NT platform.

OpenComm() Opens a serial communications port for communications.

ReadComm() Reads up to a specified number of bytes from the given
communications device.

SetCommEventM ask() Does nothing on Windows NT. It isprovided for
common code convenience only.

WriteComm() Writes the specified bytes to the specified

communications device.

I/O Server Toolkit Function Summary 9-21

Windows/Windows NT Compatibility Functions

These functions are available in both the Windows and Windows NT 1/O Server Toolkit
and provide a compatible function to allow common code on both platforms.

Function

Description

EnableCommNotification()

NTSrvr_BuildCommDCB()

NTSrvr_GetCommsState()

NTSrvr_SetCommState()

NTSrvr_SetDCB_Dtr()

NTSrvr_SetDCB_Rts()

PfnSendEmSelectAll()

PfnSendEmSelectRange()

Simulates the Windows EnableCommNotification()
function for Windows versions older than Windows 3.1
and for Windows NT. It performs no operation on these
platforms and is provided for common code convenience
only. On Windows versions prior to 3.0, it enables or
disablesWM_COMMNOTIFY message posting to the
given window.

Trandlates a device-definition string into appropriate
serial device control block codes.

The return value from this function is compatible with
the Windows version of the BuildCommDCB()
function.

Retrieves the device control block for the specified
device. The return value from this function is compatible
with the Windows version of the GetCommState()
function.

Sets a communi cations device to the state specified by a
device control block. The return value from this function
is compatible with the Windows version of the
BuildCommDCB() function.

Modifiesthe DTR (data-terminal-ready) flow-control
setting in the device control block.

Modifiesthe RTS (request-to-send) flow-control setting
in the device control block.

Selects all the text in the identified edit control. It will
also scroll the caret into view if the bScrollCaret flag is
TRUE.

Selects arange of text in theidentified edit control. It
will also scroll the caret into view if the bScroll Caret
flagis TRUE.

9-22 Chapter 9

Macros for Portability

The following macros have been provided in the NTCONV.H header fileto assist in
developing common code servers for Windows and Windows NT. These macros should
be self-explanatory by looking at their definitions.

Windows NT-only MACROS

#defi ne huge

#define Locallnit(a, b, ¢) (1)

#define LockDat a(a)

#define | strchr strchr

#define | strncpy strncpy

#define | strcpyn strncpy

#defi ne MoveTo(A, B, O MoveToEx(A, B, C, NULL)

Windows and Windows NT MACRQOS

#i f def W N32
#def i ne FARWNDPROC VWADPROC
#el se
#def i ne FARWNDPROC FARPROC
#endi f
#i f def W N32
#define SM M NUS_ONE (HWND) OxFFFFFFFF
#el se
#define SM M NUS_ONE OxFFFF
#endi f
#i f def W N32
#defi ne OPENRead(A) _open(A, _O RDONLY | _O BI NARY)
#defi ne OPENCreat e(A) _open(A, _OBINARY | _O RDVR |
_O TRUNC | _O CREAT,
S IREAD | _S IWRITE);
#define LWRI TE _wWite
#defi ne LREAD _read
#defi ne LSEEK _| seek
#define LCLOSE _cl ose
#el se
#defi ne OPENRead(A) open(A, O _RDONLY | O_BI NARY)
#defi ne OPENCreat e(A) open(A, O RDWR | O _BI NARY |
O TRUNC | O CREAT, S_ | READ |
S IWRI TE) ;
#define LWRI TE lwite
#defi ne LREAD _lread
#defi ne LSEEK _I'l seek
#define LCLOSE cl ose

#endi f

I/O Server Toolkit Function Summary 9-23

Windows-only MACROS

#define I nSendMessage() (FALSE)

#defi ne FreeDDEl Param(a, b)

#defi ne PackDDEl Param(a, b, c) (MAKELONGE (b), (c)))

#defi ne UnpackDDEl Paranm(a, b, c, d) ((*(c) = LOMORD(b)) | (*(d) =

H WORD(b)) | 1)
#i f (WNVER < 0x030a)

typedef unsigned int U NT ;
typedef U NT WPARAM ;
typedef |ong LPARAM ;

#endi f

9-24 Chapter 9

Additional Information

Required External Data

The following data items are required by the I/O Server Toolkit:

extern HWND hWndParent
extern HANDLE hinst

These data variables must be declared in the server for the Toolkit to function

properly.AbOUt the .DEF File

A .DEF file for the main executable is not needed for Win32 servers.

About the .RC File
The .RC (resource) file must contain the following items for the Toolkit to work
properly:

e Stringtable with PROTLIB.STR
e #include "tkitstrt.rci"

Note If the#include "tkitstrt.rci” isnot in the resource file, the 1/0O Server will not
start.

Adding Help to the I/0 Server

Windows will use the program WINHELP.EXE to display the on-line help *.hlp files
provided with any application. The TOOLKIT7.LIB provides a standard mechanism for
providing Help for the I/O Servers. We recommend that you use Microsoft Word to
generate the basic documentation file that will be used by the help compiler for
Windows (provided with the SDK) to generate the server .HLP file.

Note Refer to the Microsoft Professional Tools User's Guides for detailed information.

I/O Server Toolkit Function Summary 9-25

The serial and board sample server programs both show the basic use of a Help menu
item. If you start with an existing server and need to add the Help capahility, follow
these general steps:

1. Add thefollowing include statement to the .RC file and .C file that does
initialization and message processing.

#include" srvrhelp.h"

2. Add the following help menu itemsto the .RC file:
POPUP " &Hel p"

BEG N

MENU TEM " &Cont ent s", VENU_HELP_| NDEX

MENUI TEM " &How to Use Hel p", VENU_HELP_ON_HELP
MENUI TEM SEPARATOR

MENUI TEM " &About ", VENU_HELP_ABOUT

END

3. Inoneof the.C files add the following variable declaration statement, which will be
picked up by the Toolkit functions:

BOOL bDoHelp = TRUE;

4. Add"About" message processing for the WM_COMMAND /
MENU_HELP _ABOUT. Refer to the"Seria" sample server UDMAIN.C to see
sample About processing.

5. N ow you must generate the server .HLP file, where server is the same name used
for the 1/O Server's .EXE file and application name. For example,
UDSAMPLE.HLP for the server UDSAMPLE.EXE.

6. Besureto copy the .HLP fileto the installation floppy and/or into a directory in the
PATH.

Note There are several third-party help devel opment software packages on the market
that can be used to simplify the creation of the help file once the documentation file has
been created. For example, "RoboHelp" by Blue Sky Software in La Jolla, California.

9-26 Chapter 9

10-1

CHAPTER 10

API Function References

DOE, FaztDDE,

or Suitelink
\m
“our Protacol
Handler

Device Spacific
Protocal

This chapter is a complete reference section for the 1/0 Server Toolkit Application
Programming Interface (API) functions. They are presented in alphabetic order. The
purpose, syntax, parameters and possible return values for al functions are included.
Functions that appear both bolded and underlined must be written and included in the

I/0O Server. These functions are called by the Toolkit.

10-2

Chapter 10

AdjustWindowSizeFromWinini

VOID WINAPI

AdjustWindowSizeFromWinlni (HWND hwhd)

This function adjusts the size and position of the server window to the last saved size.

Parameter Description

hwWnd Window to size.

API Function References

10-3

CheckConfigFileCmdLine

VOID WINAPI

CheckConfigFileCmdLine(LPSTR IpszCmdLine,
LPSTR lpszCfgPath,
int NMax&tring)

This function will check the command line for a string prefaced by "/D:". Be sureto
add CMDLNPTH.H to thelist of included files and add this reference:

extern char szCmdLing[];

Parameter Description

IpszCmdLine Far string pointer to the szCmdLine.

IpszCfgPath Far string pointer to the string containing the final
configuration path that may be used for reading the file.

nMaxString Maximum length of the szCfgPath.

Return Value None.

Comments The syntax supporting this command line file path

definitionis; SERVER EXENAME /D:{ FILEPATH]}

For example: MODBUS/D:C\MBTEST

Note Before Protinit() is called, the Toolkit initializes the string variable, szCmdLine,
to contain the command line that invoked the driver. The variable szCmdLine should be

the first argument to CheckConfigFileCmdLing().

Example

char szCf gPat h[PATH_STRI NG _SI ZE];
VO D FAR PASCAL Get Confi gFil ePath(VO D){
char driverName[20];
extern char szCndLine[];
Prot Get Dri ver Name(dri ver Nane, sizeof (driverNane));
/* Get the ConfigurationFilePath fromthe WN.IN file
or set it to default to the current directory. */
GetProfileString(driverNanme, "ConfigurationFile", "",
szCf gPat h, PATH STRI NG SI ZE);

/* 1f the command |ine specified a config file path,
let it override the path stored in WN.INI. */
CheckConfi gFi | eCndLi ne(szCndLi ne, szCfgPat h,
PATH_STRI NG_SI ZE) ;
if(strlen(szCfgPath) == 0) {
getcwd(szCfgPath, PATH STRI NG SI ZE);
if (Verbose){
debug("Config path is CAD %", szCfgPath);

}

if (szCfgPath[strlen(szCfgPath)-1] !'= "\\") {
strcat (szCfgPath, "\\");

}

10-4

Chapter 10

CloseComm

int

CloseComm(int idComDev)

This function closes a serial communications port.

Parameter Description

idComDev Theid of the device to close. The OpenComm()

function returns this value.

Return Value Thereturn value is zero if the function is successful.
Otherwise, it isless than zero.

Comments Windows NT/2000 only. Emulates Windows function.

API Function References 10-5

DbDevGetName

void WINAPI

DbDevGetName (IDLDEV idLogDev,
LPSTR lpsZTopicName)

Get name corresponding to indicated logical device (i.e. topic).

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocatel ogicalDevice() call.

IpszTopicName Far pointer to the string buffer where the name will be
returned.

10-6

Chapter 10

DbGetGMTasFiletime

BOOL WINAPI
DbGetGM TasFiletime(FILETIME *pFileTime)
Get Greenwich Mean Time as aWin32 FILETIME structure.

FILETIME is a 64-bit value defined in Win32 as the number of 100 nanosecond
intervals since January 1, 1601. It isorganized astwo DWORDS, dwLowDateTime and
dwHighDateTime.

Parameter Description

pFileTime Far pointer to a FILETIME structure in which to store
the date/time stamp.

Return Value TRUE if the date/time stamp was obtained successfully.

API Function References 10-7

DbGetName

void WINAPI

DbGetName(IDLDEV idLogDev,
HDB hDb,
LPSTR lpszName)

Get name of database item for indicated logical device.
Note: Thisisthe same as the following function:
VOID WINAPI UDDbGetName (IDLDEYV idLogDev, HDB hDb, LPSTR IpszName)

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocatel ogicalDevice() call.

hDb Handle from the Toolkit that is unique to thisitem and
was supplied as a parameter in the ProtCr eatePoint()
call.

IpszName Far pointer to the string buffer where the name will be

returned.

10-8

Chapter 10

DbGetPointType

PTTYPE WINAPI

DbGetPointType (IDLDEV idLogDev,
HDB hDDb)

Get point type of indicated point from database.
Returns 0 (PTT_UNKNOWN) if database pointer invalid.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocatel ogicalDevice() call.

hDb Handle from the Toolkit that is unique to thisitem and
was supplied as a parameter in the ProtCr eatePoint()
cal.

Return Value The type index should be one of the following,

according to the data type for the point:
PTT_DISCRETE, PTT_INTEGER, PTT_REAL,
PTT_STRING. If the database pointer hDb isinvalid, a
value of 0 (PTT_UNKNOWN) is returned.

API Function References 10-9

DbGetPtQuality

PTQUALITY WINAPI

DbGetPtQuality (IDLDEV idLogDev,
HDB hDb)
Get quality flags for indicated point.
Parameter Description
idLogDev Topic (logical device) identifier that was supplied by the

Toolkit as a parameter in the
ProtAllocatel ogicalDevice() call.

hDb Handle from the Toolkit that is unique to thisitem and
was supplied as a parameter in the ProtCr eatePoint()
call.

Return Value The quality flags indicate whether the Toolkit database

entry for the point contains good data or some problem
exists. See the chapter on Quality Flags for information
on the specific flag settings.

10-10

Chapter 10

DbGetPtTime

PTTIME WINAPI

DbGetPtTime(IDLDEV idLogDev,
HDB hDb)

Get date/time stamp for indicated point

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocatel ogicalDevice() call.

hDb Handle from the Toolkit that is unique to thisitem and
was supplied as a parameter in the ProtCr eatePoint()
call.

Return Value The date/time stamp is stored asaWin32 FILETIME

structure, which is a 64-bit value indicating the number
of 100 nanosecond intervals elapsed since January 1,
1601. The date/time stamp indicates when the point
information was last updated in the Toolkit database.

API Function References 10-11

DbGetValueForComm

PTVALUE WINAPI
DbGetValueFor Comm(

IDLDEV idLogDev,
HDB hDb)

Retrieve value for indicated point/logical device from the database.
Generally, thisis used internally by the Toolkit to get the data value that is to be sent to

aparticular client.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocatel ogicalDevice() call.

hDb Handle from the Toolkit that is unique to thisitem and
was supplied as a parameter in the ProtCr eatePoint()
call.

Return Value A union of type PTVALUE, the value corresponding to

the indicated data point. Note that for points of type
PTT_STRING, the value contains a pointer to a memory
buffer where the string is actually stored.

10-12

Chapter 10

DbNewQForAllPoints

BOOL WINAPI

DbNewQFor AllPoints(IDLDEV idLogDev,
PTQUALITY ptQuality)

Thisfunction is generally used when a problem occurs communicating to the PLC.
Then the quality flags and time stamps for all affected points should be set to indicate
the problem, without changing the value of the points. This function sets the quality on
all pointsinthe Topic. The Toolkit supplies a default date/time stamp. See the chapter
on Time Marks for more information on the default time.

Note: You may instead prefer to scan through the list(s) of points yourself and call
DbNewT QFromDevice() for specific points, depending on the specific needs of your
server and whether different quality settings are needed for different points.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocatel ogicalDevice() call.

ptQuality The quality flags, indicating whether the point was
accessed properly and whether the data had any
problems.

Return Value TRUE means the parameters were acceptable and the

time and quality have been moved into the database.

Comments If the quality of a point changesin the Toolkit database,
the value, time, and quality will be passed on to any
clients who have advised theitem. (DDE clients are
updated only when the value changes.) When aclient
requests an item, the current database VTQ will be sent
(once the item's value has been set).

API Function References 10-13

DbNewQFromDevice

BOOL WINAPI

DbNewQFromDevice(IDLDEV idLogDev,
HDB hDb,

PTQUALITY ptQuality)

Thisfunction is generally used when a problem occurs communicating to the PLC.
Then the quality flags and time stamps for all affected points should be set to indicate
the problem, without changing the value of the points.

Functionally, thisis similar to DbNewT QFromDevice(), except that the Toolkit
supplies a default date/time stamp. See the chapter on Time Marks for more information
on the default time.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocatel ogicalDevice() call.

hDb Handle from the Toolkit that is unique to thisitem and
was supplied as a parameter in the ProtCr eatePoint()
call.

ptQuality The quality flags, indicating whether the point was
accessed properly and whether the data had any
problems.

Return Value TRUE means the parameters were acceptable and the
time and quality have been moved into the database.

Comments If the quality of the point changes in the Toolkit
database, the value, time, and quality will be passed on
to any clients who have advised theitem. (DDE clients
are updated only when the value changes.) When a
client requests an item, the current database VTQ will be
sent (once the item's value has been set).

10-14 Chapter 10

DbNewTopicList

BOOL WINAPI
DbNewT opicList(LPSTR IpszTopicList)

Sets the value for the statistic “Topics’ item on the SY STEM topic. The“Topics’ item
is atab-separated list of topics available in the 1/O Server. The server will normally call
this function once at startup, and subsequently only when the configured list of topics
available in the server changes.

Parameter Description

IpszTopicList Points to a null-terminated character string containing a
tab-separated list of topics available in the server’s
protocol engine. If IpszTopicListisaNULL pointer or
points to an empty string, the list of protocol-specific
topicsis considered to be empty.

Return Value TRUE if the topic list has been set successfully.

Comments Thisfunction call is optional. Note that at a minimum,
the “Topics’ item will always contain the standard 1/O
Server developer topics: SYSTEM, $DDE, $PORT,
$DEVICE, $SERVER, and $TKITIF. The Toolkit
appends thislist of topicsto the server-specified list of
topics.

API Function References 10-15

DbNewTQFromDevice
BOOL WINAPI
DbNewT QFromDevice(IDLDEV idLogDev,

HDB hDb,
LPPTTIME IpPtTime,
PTQUALITY ptQuality)

Thisfunction is generally used when a problem occurs communicating to the PLC.
Then the quality flags and time stamps for all affected points should be set to indicate
the problem, without changing the value of the points.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocatel ogicalDevice() call.

hDb Handle from the Toolkit that is unique to thisitem and
was supplied as a parameter in the ProtCr eatePoint()
cal.

[pPtTime Far pointer to a FILETIME structure that indicates when
the point information was updated. This can be obtained
viaacall to DbGetGM TasFiletime().

ptQuality The quality flags, indicating whether the point was
accessed properly and whether the data had any
problems.

Return Value TRUE means the parameters were acceptable and the
time and quality have been moved into the database.

Comments If the quality of the point changes in the Toolkit

database, the value, time, and quality will be passed on
to any clients who have advised theitem. (DDE clients
are updated only when the value changes.) When a
client requests an item, the current database VTQ will be
sent (once the item's value has been set).

10-16

Chapter 10

DbNewValueFromDevice

BOOL WINAPI

DbNewValueFromDevice(IDLDEYV idLogDev,
HDB hDb,
PTVALUE value)

Note: With the advent of FactorySuite 2000, this function is outmoded. However, it
remains available for backwards compatibility. Internally, the Toolkit provides a default
date/time stamp and a default quality of good, then calls DbNewV TQFromDevice().
See the chapters on Time Marks and Quality Flags for more information on the default
time and quality settings.

When you receive a new point value from the device, you can tell the Toolkit's database
through a call to DbNewValueFromDevice().

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocatel ogicalDevice() call.

hDb Handle from the Toolkit that is unique to thisitem and
was supplied as a parameter in the ProtCr eatePoint()
call.

value A union of type PTVALUE. The user must know the

type of data associated with this point (set by the server
in *IpPtType during the ProtCr eatePoint() call). Based
on the point type, use the appropriate field in this
structure (it contains fields for discrete, integer, and real,
aswell as ahandle to memory containing a string).

Return Value TRUE means the parameters were acceptable and the
value has been moved into the database.

Comments Thisfunction is supplied for backward compatibility
with previous versions of the Toolkit. Y ou should call
DbNewV TQFromDevice() instead.See the comments
on DbNewVTQFromDevice() for further information
about how the Toolkit updates clients that have points on
advise or that make requests.

API Function References 10-17

DbNewVQFromDevice

BOOL WINAPI

DbNewV QFromDevice(IDLDEV idLogDev,
HDB hDb,
PTVALUE ptValue,

PTQUALITY ptQuality)

Functionally, thisis similar to DbNewV T QFromDevice(), except that the Toolkit
supplies a default date/time stamp. See the chapter on Time Marks for more information

on the default time.

When you receive a new point value from the device, you can tell the Toolkit's database
through a call to DbNewV QFromDevice().

Parameter

Description

idLogDev

hDb

ptValue

ptQuality

Return Value

Comments

Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocatel ogicalDevice() call.

Handle from the Toolkit that is unique to thisitem and
was supplied as a parameter in the ProtCr eatePoint()
call.

A union of type PTVALUE. The user must know the
type of data associated with this point (set by the server
in *IpPtType during the ProtCr eatePoint() call). Based
on the point type, use the appropriate field in this
structure (it contains fields for discrete, integer, and real,
aswell as ahandle to memory containing a string).

The quality flags, indicating whether the point was
accessed properly and whether the data had any
problems.

TRUE means the parameters were acceptable and the
value, time, and quality have been moved into the
database.

To ensure compatibility with future Toolkit releases, this
function must be called for every poll. The Toolkit
keeps track in its database of the value of the data, the
timestamp, and the quality, and identifies when any of
these changes. If the value or quality changes, the value,
time, and quality will be passed on to any clients who
have advised the item. (DDE clients are updated only
when the value changes.) When aclient requests an
item, the current database VTQ will be sent (once the
item's value has been set by a cal to this function).

10-18 Chapter 10
DbNewVTQFromDevice
DbNewVTQFromDevice(IDLDEYV idLogDev,

HDB hDb,
PTVALUE value,

LPPTTIME IpPtTime,
PTQUALITY ptQuality)

When you receive a new value for a point, tell the Toolkit's database through
DbNewVTQFromDevice(). You should provide a date/time stamp and appropriate
quality flags according to when the update occurred and how valid the data is.

Parameter

Description

idLogDev

hDb

value

[pPtTime

ptQuality

Return Value

Comments

Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocatel ogicalDevice() call.

Handle from the Toolkit that is unique to thisitem and
was supplied as a parameter in the ProtCr eatePoint()
cal.

A union of type PTVALUE. The user must know the
type of data associated with this point (set by the server
in *IpPtType during the ProtCr eatePoint() call). Based
on the point type, use the appropriate field in this
structure (it contains fields for discrete, integer, and real,
aswell asahandle to memory containing a string).

Far pointer to a FILETIME structure that indicates when
the point information was updated.

The quality flags, indicating whether the point was
accessed properly and whether the data had any
problems.

TRUE means the parameters were acceptable and the
value, time, and quality have been moved into the
database.

To ensure compatibility with future Toolkit rel eases, this
function must be called for every poll. The Toolkit
keepstrack in its database of the value of the data, the
timestamp, and the quality, and identifies when any of
these changes. If the value or quality changes, the value,
time, and quality will be passed on to any clients who
have advised the item. (DDE clients are updated only
when the value changes.) When aclient requests an
item, the current database VTQ will be sent (once the
item's value has been set by a call to this function).

API Function References 10-19

DbRegisterDemandScan

void WINAPI
DbRegister DemandScan(DemandScanFncCallback Ipfn)
Register a callback function for demand scan control.

The server-specific code calls this routine during initialization to provide the address of
afunction that isimplemented in the server-specific code, which will be called if aclient
writes to the specia statistical flag DemandScan to force an immediate scan of all
points on the corresponding topic. The default value for the function pointer is NULL,
meaning that no support is provided for the demand scan functionality.

The parameter type is defined as follows:
typedef BOOL (CALLBACK *DemandScanFncCallback) (HLOGDEV);

Parameter Description

Ipfn Pointer to a function with a prototype of form
BOOL CALLBACK DemandScan(HLOGDEV);
which isimplemented in the server-specific code.
Return Value None.

Comments When aclient writes (pokes) avalue of 1 to the special
dtatistical flag DemandScan on atopic, the Toolkit
checks whether a demand scan callback function has
been registered.If not, no action is performed, and the
Toolkit sendsa NACK to the client indicating that
demand scan was not set up. If ademand scan callback
function has been registered, theToolkit callsthe
indicated function, passing the server-specific handle
hLogDev for the topic.lt is the responsibility of the
programmer to implement the demand scan callback
function so that it forces an immediate scan of all points
on the indicated topic — even if those points are already
scheduled to be polled on a periodic basis. The function
should return TRUE if the setup for demand scan is
successful (in which the Toolkit will send an ACK to the
client), FALSE otherwise (in which case the Toolkit will
send aNACK). If aclient pokes avalue other than 1,
the Toolkit will perform no action and will return an
ACK to theclient.

10-20

Chapter 10

DbRegisterScanState
void WINAPI
DbRegister ScanState(OnOffScanFncCallback Ipfn)

Register a callback function for on/off scan control.

The server-specific code calls this routine during initialization to provide the address of
afunction that isimplemented in the server-specific code, which will be called if aclient
writes to the special statistical flag OnScan to put a topic on-scan or take it off-scan.
The default value for the function pointer is NULL, meaning that no support is provided
for the on/off scan functionality.

The parameter type is defined as follows:
typedef BOOL (CALLBACK *OnOffScanFncCallback) (HLOGDEV, INTG);

Parameter Description
Ipfn Pointer to a function with a prototype of form
BOOL CALLBACK OnOffScan(HLOGDEV, INTG);
which isimplemented in the server-specific code.
Return Value None.
Comments When aclient writes (pokes) to the special statistical flag

OnScan on atopic, the Toolkit checks whether an on/off
scan callback function has been registered. If not, no
action is performed, and the Toolkit sendsa NACK to
the client indicating that on/off scan was not set up. If
an on/off scan callback function has been registered, the
Toolkit calls the indicated function, passing the server-
specific handle hLogDev for the topic and a mode
selection nMode. It isthe responsibility of the
programmer to implement the on/off scan callback
function so that puts the topic on-scan or off-scan
according to the value of nMode. Generaly, if nMode is
non-zero, the topic should be on-scan, i.e. al active
points on the topic are being polled. 1f nMode is zero,
the topic should be off-scan, i.e. none of the points on
the topic should be polled. The function should return
TRUE if the setup for on/off scan is successful (in which
the Toolkit will send an ACK to the client), FALSE
otherwise (in which case the Toolkit will send a NACK).

API Function References 10-21

DbSetHProt

BOOL WINAPI
DbSetHProt(

IDLDEV idLogDev,
HDB hDb,

HPROT hProtOld,
HPROT hProtNew)

This function allows the server to change the hProt value for apoint (item identifier
from your code to the Toolkit database). Generally, thisis most useful if you are
changing how your server is keeping track of the memory structures for one or more
points (e.g. reducing the size of a symbol table or re-ordering its members).

Parameter Description

idLogDev Topic (logical device) identifier that was supplied as a
parameter in the ProtAllocatel ogicalDevice() call.

hDb Handle from the Toolkit that is unique to thisitem and
was supplied as a parameter in the ProtCr eatePoint

() cal.

hProtOld Handle identifying the point which was the return from
the ProtCreatePoint() or the previous DbSetHProt()
cal.

hProtNew The new handle (a non-zero number chosen by you and
unigue to thisitem) that identifies this point/item in any
future ProtNewValueFor Device() ,
ProtActivatePoint(), and ProtDeactivatePoint() calls.

Return Value TRUE means the hProt value for thisitem has been
changed.

Comments The hProt valueis used during calls to the server to

identify the point quickly (e.g.,
ProtNewValueForDevice() or ProtActivatePoint()).
This may be useful when managing the data structures
used to keep track of pointsin the server (e.g., hProtNew
can be the index entries into a new symbol table).

10-22

Chapter 10

DbSetPointType

BOOL WINAPI

DbSetPointType(IDLDEV idLogDev,
HDB hDb,
PTTY PE ptType)

Deferred setting of point type for indicated point on indicated logical device.
Returns TRUE if successful.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocatel ogicalDevice() call.

hDb Handle from the Toolkit that is unique to thisitem and
was supplied as a parameter in the ProtCr eatePoint()
call.

ptType One of the standard data types. PTT_DISCRETE,
PTT_INTEGER, PTT_REAL, PTT_STRING.

Return Value TRUE if the data type for the point was successfully

updated.

API Function References 10-23

DbValueWriteConfirm

BOOL WINAPI

DbValueWriteConfirm(IDLDEV idLogDev,
HDB hDb,
BOOL bSuccess,
BYTE bReason)

When aclient writes a value to the device (viaa DDE POKE or a SuiteLink Write), the
value is passed to the server-specific code via ProtNewValueFor Device(). The server-
specific code then performs whatever actions are necessary to write that data to the PLC.
However, depending upon the communication protocol, this update may be immediate,
or there may be a considerable delay before the new data actually reachesthe PLC. (For
some devices, e.g. those involving radio modems, this delay may be as long as several
minutes!) Sometimes, the only way to verify that the data actually arrived isto
subsequently poll the PLC for the point — or to poll other points that are affected by a
write-only point. More commonly, the operation used to write the value causes the PLC
to respond with some indicator of whether the new data was accepted or rejected; and if
rejected, the response usually includes a reason code indicating why it was rejected.
When such an accept/reject response is received, you can use DbValueWriteConfirm()
to tell the Toolkit whether the point was written successfully.

Note: ThisAPI call is at present non-functional. It isreserved for future expansion.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied as a
parameter in the ProtAllocatel ogicalDevice() call.

hDb Handle from the Toolkit that is unique to thisitem and
was supplied as a parameter in the ProtCr eatePoint()
call.

bSuccess TRUE if the point was successfully written, FALSE
otherwise.

bReason The reason code, in case the write failed. Thiscanbea

generic code, or can be specific to the PLC protocol.

Return Value TRUE means the notification to the Toolkit was
successful, i.e. that the parameters were valid.

Comments This API call is presently non-functional. It isreserved
for future expansion.

10-24

Chapter 10

debug
VOID far cdecl

debug(LPSTR lpszFmt,
.. args)

This function sends a debug message to WWLOGGER.EXE which can log it to disk,
monochrome adapter, AUX port, etc.

Par ameter Description

[pszFmt Format text string, see printf in C-Library.

args Any set of arguments applicable to printf.

Return Value None.

Comments Theinterface in the code is very straightforward. Simply

include debug.h and use debug() with parameters
identical to the C-Library printf(). Notice the
WWLOGGER.EXE options; the debug messages to be
saved on disk, displayed in the Wonderware Logger
window, and/or sent to the AUX port.

Since it is recommended that the Wonderware Logger
always be running, you should not |eave extraneous
debug messages in the server. Y ou should also make
sure that frequently occurring debug messages can be
turned off viaa switch in the WIN.INI file.

Warning Note The ProtGetDriver Name() function may not contain any callsto
debug() because debug() calls ProtGetDriver Name() and an infinite loop will result.

The debug() function is often useful to have some debugging messages while
developing the server. In the sample application, an interface to the Wonderware
Logger WWLOGGER.EXE isprovided. Thisinterface allows you to optionally log
each debug message to disk and also send each message to either:

1. A window on the screen.

2. The AUX port (COM1 by default, or the monochrome display if OX.SYSis
installed).

3. A printer connected directly to the PC.

Wonderware Logger can be used during development to help debug the server.
Hardware or software problems should be logged for operator examination. Be advised
that extraneous logger messages frustrate users and should be eliminated when the
product isfinished. Itisuseful to enable debug messages via a switch in the server
section of the WINL.INI in order to support customers at a later time.

API Function References 10-25

EnableCommNotification

BOOL WINAPI

EnableCommNoatification(int idComDeyv,
HWND hwnd,
int coWriteNotify,
int cbOutQueue)

This function simulates the Windows EnableCommNotification() function for Windows
versions older than Windows 3.1 and for Windows NT/2000. It performs no operation
on these platforms and is provided for common code convenience only. On Windows
versions prior to 3.0, it enables or disablesWM_COMMNOTIFY message posting to
the given window.

Parameter Description

idComDev Theid of the communications device. The
OpenComm() function returns this value.

hwnd I dentifies the window whose WM_COMMNOTIFY
message posting will be enabled or disabled.

cbWriteNotify Indicates the number of bytesthe COM driver must write

to the application’ s input queue before sending a
notification message.

cbOutQueue I ndicates the minimum number of bytesin the output
gueue. When the number of bytesfalls below this
number, the COM driver sends that application a
notification message.

Return Value The return value is non-zero if the function is successful.
Otherwise, it is zero.

Comments None.

10-26

Chapter 10

FlushComm

int WINAPI
FlushComm(

int idComDev,
int fnQueue)

Thisfunction flushes al characters from the transmission or receiving queue of the
specified communications device.

Parameter Description

idComDev Theid of the communications device to be flushed. The
OpenComm() function returns this value.

fnQueue Specifies the queue to be flushed. If this parameter is
zero, the transmission queue is flushed. If the parameter
is 1, thereceiving queue is flushed.

Return Value Thereturn valueis zero if the function is successful.
Any other value indicates an error.

Comments When flushing the transmission queue, beware that this

function will clear al charactersinit. Thus, this
function can conceivably terminate a previous write
operation before al submitted characters have been sent
fromthe UART. Thismay lead to unpredictable
behaviorsin your server since the receiving device will
not receive the entire message intended. Windows NT
/2000 only. Emulates Windows function.

API Function References 10-27

GetAppName
PSTR WINAPI
GetAppName(VOID)

This function returns the application name for the server. This application nameis
stored in the Toolkit and initially set by acall to ProtGetDriver Name() during server
startup.

Parameter Description

Return Value Pointer to a character string containing the application
name for the server.

Comments None.

10-28

Chapter 10

GetCommeError

int WINAPI

GetCommeError (int idComDev,
COMSTAT * |pStat)

This function retrieves the most recent error value and current status for the specified
device. It also clearstheerror.

Parameter Description

idComDev Theid of the communications device to be examined.
The OpenComm() function returns this value.

IpSat Points to the COMSTAT structure that is to receive the

device status. If this parameter is NULL, this function
returns only the error values. See the appropriate
Microsoft documentation for a description of this
structure.

Return Value Thereturn value is a 32-bit value containing a mask
indicating the type of error. See discussion of the
ClearCommerror() function in the appropriate Microsoft
Windows NT/2000 documentation for more information.

Comments This function clears the error condition. Windows
NT/20000nly. Emulates Windows function.

API Function References 10-29

GetCommEventMask

UINT WINAPI

GetCommEventM ask(int idComDev,
int fnEvtClear)

This function retrieves and then clears the event word for the specified communications
device.

Parameter Description

idComDev Theid of the communications device to be examined.
The OpenComm() function returns this value.

fnEvtClear This parameter isignored on Windows NT/2000.

Return Value The return value specifies the current 32-bit event mask

value for the specified communications device if the
function is successful. Each bit in the event mask
specifies whether a given event has occurred; a bit is set
(to 1) if the event has occurred.

Comments Windows NT/2000 only. Emulates Windows function.

10-30

Chapter 10

GetlOServerLicense
BOOL WINAPI

GetlOServerLicense(void FAR *IpKeylnfo,
BOOL bExitOnFail)

This function should be called in ProtlInit() to check whether the user has a license that
will allow the server to run. If alicenseis unavailable, this function presents a
MessageBox that gives the user the options of trying again, running the server in timed
demo mode, or exiting the program. If the function returns FAL SE, the server should
return FALSE from Protlnit(), indicating the server could not run.

Note If you are developing products for Wonderware, this function will be of interest.
Note that a special version of the Toolkit is necessary to access the Wonderware License
Manager. Contact Wonderware for more information.

Parameter Description

IpKeylnfo A pointer to a buffer into which feature enablement flags
will be placed. If this parameter is NULL, no specific
feature flags will be returned.

bExitOnFail If TRUE, the function will exit the programif itis
unable to obtain alicense. If FALSE, it will return, and
the return value will indicate whether the server should
run.

Return Value TRUE if the server has permission to run. Thisincludes
the case where no license is available, but user has
selected running in the timed demo mode. If FALSE,
The server should return from Protlnit() with areturn
value of FALSE, indicating the server cannot run.

Comments For the timed demo mode, the Toolkit keeps track of
how long it has been since the server started up. When
the time limit is reached, the Toolkit automatically issues
amessage to the Wonderwar e Logger and shuts down
the server.

The following code would be placed in Protlnit(). If avalid license could not be
obtained, and the timed DEMO mode was not selected, the server should exit.

Example

/* check whether this product has a license to run */
if (!GCetlCServerlLicense (NULL, FALSE))
return FALSE;}

API Function References 10-31

GetServerNameExtension
void WINAPI
GetServer NameExtension(void)

Set-up name extension for use in storing and retrieving Registry settings

Parameter Description
Return Value None.
Comments A call to GetServer NameExtension() should appear in

ProtGetDriver Name(). This ensures that the function
is called early in the program, at the same time as the
Toolkit first gets the server’s “short” name, so that the
correct full name is generated for the I/O Server.

Example

BOOL W NAPI Prot Get Dri ver Name(LPSTR | pszNane, int nMaxLengt h)
{

/** WARNING No calls to debug()...

debug() calls ProtGetDriverNane(),

therefore Prot GetDriverNane() cannot call debug(). **/

I strcpy(l pszName, GetString(STRUSER + 76) /* "UDSAMPLE" */);
#i f def W N32

Get Ser ver NaneExt ensi on() ;
#endi f

return (TRUE);
} /* ProtGetDriverNane */

10-32

Chapter 10

GetString

PSTR WINAPI

GetString(int NSring)

This function will return a string from the resource file.

Parameter Description

nSring The offset into the STRINGTABLE.

Return Value Pointer to the string.

Comments This function is used to reduce the amount of memory

that the server consumes and to allow the creation of a
foreign language version of the server. The resourcefile
can be edited later to change text or languages, this
capability is also know aslocalization. GetString()
accomplishes this by using Windows' string resources to
move string constants from the resource file to the data
segment. A sample follows:

MessageBox(GetFocus(),

GetString(STRUSER+1) /* "Hello There" */,
GetString(STRUSER+2) /* "Application” */,
MB_OK);

STRUSER is defined in udgetstr.h and all strings that
you use can go in udprot.str. The following isan
example of the string file that would correspond to the
above: STRUSER+1, "Hello There"
STRUSER+2, "Application"

GetString() loads the string named asits argument in a
temporary buffer and returns a pointer to the temporary
buffer. Thisismuch easier than the standard method
used in Windows applications, which isto load the string
into a buffer and then use it.

Each string that is not put in the resource file consumes
memory byte-for-byte in the application's data segment
(DS). By using resource strings, code size can be
dightly increased. Code segments can be swapped - data
segments cannot!

GetString() also uses 20 string buffers circularly, so
only the most recent 20 strings are valid at any instant.

Note hinst must be initialized before making the first call to GetString(). Each stringin
the STRINGTABLE islimited to 200 bytes, including the NULL.

API Function References 10-33

GetTextExtent

DWORD

GetTextExtent(HDC hdc,
LPCSTR IpString,
int cbString)

This function provides emulation of the Windows Get T extExtent() function for the
Windows NT/2000 platform.

Parameter Description

hdc Identifies the device context.

IpSring Points to a string of text. The string does not need to be
zero-terminated.

cbSring Specifies number of charactersin the string.

Return Value The low-order word of the return value contains the

string width, in logical units, if the function is successful;
the high-order word contains the string height.

Comments Windows NT/2000 only. Emulates Windows function.

10-34

Chapter 10

NTSrvr_BuildCommDCB

int WINAPI
NTSrvr_BuildCommDCB(LPSTR IpszDef,
DCB FAR *Ipdch)

This function translates a device-definition string into appropriate serial device control
block codes.

The return value from this function is compatible with the Windows version of the
BuildCommDCB() function.

Parameter Description

IpszDef Points to a null-terminated string that specifies device-
control information. The string must have the same form
as the parameters used in the MS-DOS or Windows NT
mode command.

[pdcb Points to a DCB structure that will receive the trandlated
string. The structure defines the control settings for the
serial-communications device.

Return Value Thereturn value is zero if the function is successful.
Otherwise, itis-1.

Comments This function only fills the Ipdcb buffer. To apply the
settings to a port, the server should use the
NTSrvr_SetCommState() function.

API Function References 10-35

NTSrvr_GetCommState

int WINAPI

NTSrvr_GetCommState(

int idComDev,
DCB FAR *Ipdchb)

This function retrieves the device control block for the specified device. The return
value from this function is compatible with the Windows version of the GetCommState()

function.

Parameter Description

idComDev The id of the communications device to be examined.
The OpenComm() function returns this value.

Ipdcb Pointsto a DCB structure that isto receive the current
device control block. The DCB structure defines the
control settings for the device.

Return Value Thereturn valueis zero if the function is successful.

Comments

Otherwise, it isless than zero.

None.

10-36 Chapter 10

NTSrvr_SetCommState

int WINAPI

NTSrvr_SetCommState(int idComDev,
DCB FAR *Ipdch)

This function sets a communications device to the state specified by a device control
block. The return value from this function is compatible with the Windows version of
the BuildCommDCB() function.

Parameter Description

idComDev Theid of the communications deviceto be set. The
OpenComm() function returns this value.

Ipdcb Points to a DCB structure that contains the desired

communications settings for the device.

Return Value Thereturn value is zero if the function is successful.
Otherwise, it isless than zero.

Comments Thisfunction reinitializes all hardware and controls as
defined by the DCB structure. 1t does not empty
transmission or receiving queues.

API Function References 10-37

NTSrvr_SetDCB_Dtr

int WINAPI

NTSrvr_SetDCB_Dtr(

DCB FAR *Ipdcb,
int iMask)

This function modifies the DTR (data-terminal-ready) flow-control setting in the device

control block.

Parameter Description

[pdcb Points to a DCB structure which is to be modified using
the specified iMask setting.

iMask Specifiesthe DTR flow control setting. Must be one of
the following:
NTSrvr_DTR_DISABLE, NTSrvr_DTR_ENABLE,
NTSrvr_DTR_HANDSHAKE.

Return Value Thereturn valueis zero if the function is successful.
Otherwise, it is less than zero.

Comments NTSrvr DTR_DISABLE disablesthe DTR line when

the device is opened and leaves it disabled.

NTSrvr_ DTR_ENABLE enables the DTR line when the
deviceis opened and leaves it enabled.

NTSrvr_DTR_HANDSHAKE enablesDTR
handshaking.

Include header file: NTSRVR.H for bit mask definitions.

10-38

Chapter 10

NTSrvr_SetDCB_Rts

int WINAPI

NTSrvr_SetDCB_Rts(

DCB FAR *Ipdcb,
int iMask)

This function modifies the RTS (request-to-send) flow-control setting in the device

control block.

Parameter Description

[pdcb Points to a DCB structure which is to be modified using
the specified iMask setting.

iMask Specifies the RTS flow control setting. Must be one of
the following:
NTSrvr_RTS DISABLE,
NTSrvr_RTS ENABLE, NTSrvr_RTS HANDSHAKE.

Return Value Thereturn valueis zero if the function is successful.
Otherwise, it is less than zero.

Comments NTSrvr_RTS DISABLE disablesthe RTS line when the

deviceis opened and leavesit disabled.

NTSrvr_RTS ENABLE enablesthe RTS line when the
deviceis opened and leaves it enabled.

NTSrvr_RTS HANDSHAKE enables RTS
handshaking.

Include header file: NTSRVR.H for bit mask definitions.

API Function References 10-39

OpenComm

int WINAPI

OpenComm(LPCSTR IpszDevContral,
UINT cbinQueue,
UINT cbOutQueue)

This function opens a serial communications port for communications.

Parameter Description

[pszDevControl Points to a null-terminated string that specifiesthe
device name in the form COMn, where nis the device
number.

cblnQueue Specifies the size, in bytes, of the receiving queue.

cbOutQueue Specifies the size, in bytes, of the transmission queue.

Return Value The return value identifies the open deviceif the

function is successful. Otherwise, it islessthan zero.

Comments Thereturn value is actually afile handle when positive.
Windows NT/2000 only. Emulates Windows function.

10-40

Chapter 10

PfnSendEmSelectAll

void WINAPI

PfnSendEmSelectAll(HWND hDlg,
int idControl,

BOOL bScrollCaret)

This function selects all the text in the identified edit control. It will also scroll the caret
into view if the bScrollCaret flag is TRUE.

Par ameter Description

hDIg Handle of dialog box window.

idControl Identifier of control to be selected.

bScrollCaret Scroll caret flag. TRUE indicates scroll caret into view.
Return Value None.

Comments This function calls SendM essage() internally.

API Function References 10-41

PfnSendEmSelectRange

void WINAPI

PfnSendEmSelectRange(HWND hDlg,
int idControl,
int nSart,
int nEnd,

BOOL bScrollCaret)

This function selects arange of text in the identified edit control. It will also scroll the
caret into view if the bcrollCaret flag is TRUE.

Parameter Description

hDIg Handle of dialog box window.

idControl Identifier of control to be selected.

nSart Starting text position.

nEnd Ending text position.

bScrollCaret Scroll caret flag. TRUE indicates scroll caret into view.
Return Value None.

Comments This function calls SendM essage() internally.

10-42

Chapter 10

ProtActivatePoint

BOOL WINAPI

ProtActivatePoint(HLOGDEV hLogDev,
HPROT hProt)

This function activates the specified point for reading (i.e., start supplying the Toolkit
database with fresh data for this point). The hProt is the handle you returned during the
ProtCreatePoint() call. Assoon asyou have valid data from the device, call

DbNewV TQFromDevice().

Parameter Description

hLogDev Handle identifying the logical device which was returned
from the ProtAllocatel ogicalDevice() call.

hProt Handle identifying the point which was the return from
the ProtCreatePoint() call.

Return Value TRUE means avalid point has been activated.

Comments A point will be activated when a client has requested

data or has asked to be advised of data changes. The
server isthen responsible for providing fresh data for
this point to the Toolkit.

API Function References 10-43

ProtAllocateLogicalDevice

HLOGDEV WINAPI

ProtAllocatel ogicalDevice(LPSTR IpszTopicName,

IDLDEV idLogDev)

Thisfunction is called when a DDE conversation has been initiated to the topic name
(i.e., logical device name) |pszTopicName. Y ou must first validate the topic name. If the
nameisvalid, return anon-NULL value. If the nameisinvalid, return NULL.

Parameter

Description

[pszTopicName

idLogDev

Return Value

Comments

Far pointer to string that came from the client initiating a
new topic conversation.

Thisisthe Toolkit's handle to thislogical device. This
parameter must be saved for subsequent callsto
DbNewV TQFrombDevice() to identify the source device

(topic).

Handle (a non-zero number chosen which is uniqueto
this topic) that identifies thislogical device (topic) in
future calls to ProtCreatePoint(), etc. NULL meansno
device was allocated and the topic conversation is
rejected (i.e., the conversation is not established).

Usually atopic name is associated with asingle I/O
device. Be sureto save idLogDev (the Toolkit's handle
for this topic) for subsequent callsto
DbNewVTQFromDevice(). Return NULL only if the
topic nameisillegal or you are out of memory - not if
communication with the logical device fails.

After one DDE client establishes a conversation to the
server with a specific topic name, subsequent
conversations to the same topic will NOT cause acall to
ProtAllocatel ogicalDevice(), i.e., this function will
only be called when the first conversation to atopicis
established.

Note The name is a character string that may contain spaces and have mixed case (e.g.,
topic-Name). It is suggested that the Istrcmpi() function be used to compare the full
string and ignore the case. Do not call Windows MessageBox() during this function.

10-44 Chapter 10

ProtClose

VOID WINAPI

ProtClosg(void)

This function is called when the server is shut down.

Parameter Description

Return Value None.

Comments At this point, it isintended for the server to free all

logical devices, free any allocated memory, close serial
ports, etc. ProtClose () isonly called immediately prior
to the server closing.

API Function References 10-45

ProtCreatePoint
HPROT WINAPI
ProtCreatePoint(

HLOGDEV hLogDev,
HDB hDb,

LPSTR IpszName,
LPPTTYP IpPtType)

Thisfunction is called when a conversation references an item (named *|pszZName).

Y ou must validate the name and determine point type (discrete, integer, rea or string).
Return NULL if the point nameisillegal or out of memory, etc. Otherwise, storethe
point type in *IpPtType. Remember the hDb for this point, and return a handle (a non-
zero number chosen by you which is unique to thisitem) that subsequently will be used

to identify the point.

Parameter

Description

hLogDev

hDb

IpszName

IpPtType

Return Value

Comments

Handle identifying the logical device (generated by the
server code and returned from the call to

ProtAllocatel ogicalDevice()). Thistiesthe point/item
to aparticular logical device (topic).

Handle from the Toolkit which is unique to this item and
must be used in future callsto
DbNewVTQFromDevice().

Far pointer to a string which contains the item name as it
came from the client.

Return the point type by storing one of the following in
*|pPtType:

Value Meaning

PTT_DISCRETE (Oor1)

PTT_INTEGER (Signed 32-hit integer)

PTT_REAL (IEEE 32-hit floating point,
single precision)

PTT_STRING (Text string terminated by a
NULL character)

Handle (a non-zero number chosen by you and unique to
thisitem) that identifies this point/item in any future
ProtNewValueForDevice() , ProtActivatePoint() and
ProtDeactivatePoint() calls.

The name is a character string that may contain spaces
and have mixed cases (e.g., "ThisIs An Item Name").
The Istrempi() function should be used to compare the
full string and ignore the case. The HPROT value
returned can be any non-zero number. Therefore,
choose one that is useful to your protocol (e.g., an index
into a symbol table). Based upon the item name, the
data type must be set in *IpPtType. Save the hDb for
thisitem. It must be used later when calling
DbNewVTQFromDevice().

10-46

Chapter 10

ProtDeactivatePoint

BOOL WINAPI
ProtDeactivatePoint(

HLOGDEV hLogDev,
HPROT hProt)

This function deactivates (i.e., stops supplying data for) the specified point. No DDE
conversations are interested in the value of this point. Do not delete the symbol for the
point though - ProtDeletePoint() will be called if the symbol should actually be deleted
from your internal symbol tables.

Parameter Description

hLogDev Handle identifying the logical device which was the
return value from the ProtAllocatel ogicalDevice() call.

hProt Handle identifying the point which was the return from
the ProtCreatePoint() call.

Return Value TRUE means the point is deactivated but still valid.
FALSE means error, invalid logical unit, symbol table,
point, etc. Return valueis not used at thistime, but
should be observed for future compatibility.

Comments When this function is called, stop polling the device for

this point and stop sending data for this point to the
Toolkit database. The point still has valid identifiers do
not delete it completely. This function should undo
anything that was done as a result of a previous
ProtActivatePoint() call. For example, it may need to
delete a poll message that was created in
ProtActivatePoint().

If apoint isonly poked (a one-time write to the point),
the point will be created with ProtCreatePoint(),
changed with ProtNewValueFor Device(). If apointis
advised (arequest for notification whenever the point
changes), the point will be created with
ProtCreatePoint(), activated with ProtActivatePoint()
(in response to the advise) and changed with
ProtNewValueFor Device() (in response to pokes).
Eventually the point will be deactivated with
ProtDeactivatePoint() (in response to an unadvise).
ProtActivatePoint() and ProtDeactivatePoint() can be
called many times between the ProtCr eatePoint() and
ProtDeletePoint() calls.

API Function References 10-47

ProtDefWindowProc

LRESULT CALLBACK

ProtDefWindowPr oc(HWND hWhd,
VINT message,
WPARAM wParam,
LPARAM |Param)

Thisfunction is called by the Toolkit to handle window messages directed to this
application.

Parameter Description
Return Value If no processing was done, use the following code return

(hWhd, message, wParam, IParam);. If processing was
done, the return is message-specific. Consult the
Windows SDK manuals.

Comments Thisfunction is only of interest if you wish to do some
specialized Windows programming. If not, leave the
code in ProtDefWindowPr oc () the same as delivered
in the sample application. Otherwise, the I/O Server will
not work.

Note When doing Windows programming, any message can be processed in
ProtDefWindowProc(). If adding your own user interface for the server, menu items
can be added to ProtMenu in the .RC file and WM_COMMAND messages can be
intercepted in ProtDefWindowPr oc(), etc. Examples of this are shown in the sample
Servers.

10-48

Chapter 10

ProtDeletePoint

BOOL WINAPI
ProtDeletePoint(

HLOGDEV hLogDev,
HPROT hProt)

This function will delete the specified point. No DDE conversations are interested in
this point'svalue. However, if awrite is outstanding - still perform the write.

Parameter Description

hLogDev Handle identifying the logical device which was the
return from the ProtAllocatel ogicalDevice() call.

hProt Handle identifying the point which was the return from
the ProtCreatePoint() call.

Return Value TRUE means point has been del eted.
FALSE means error, invalid logical unit, symbol table,
point, etc. Return valueis not used at thistime, but
should be observed for future compatibility.

Comments After this call, the hProt value will no longer be used (it

can then be reused by the server if so desired).

API Function References 10-49

ProtExecute

BOOL WINAPI

ProtExecute(HLOGDEV hLogDev,
LPSTR IpszName)

Thisfunction is called when the client sends an Execute DDE message to a conversation
on this server. The purpose isto communicate control commands to the I/O Server.
Thisfunction is optional since the Toolkit supplies a default Pr ot Execute()

Parameter Description

hLogDev Handle which identifies this logical device (topic) as
returned by ProtAllocatel ogicalDevice() call.

IpszName Far pointer to the command string.

Return Value TRUE means the command was executed. FALSE

means the server had a problem with the command.

Comments This function should execute the string supplied by the
client and return success or failure based on the
command supplied.

Note Please use the execute format defined in the Microsoft Windows SDK
documentation.

Example
[opcodestring] {[opcodestring]} ...

where opcodestring is
opcode { (paraneter {, paraneter } ...) }
For exanpl e:

[connect] [downl oad(queryl, resul ts.txt)][di sconnect]

10-50

Chapter 10

ProtFreeLogicalDevice

BOOL WINAPI
ProtFreel ogicalDevice(

HLOGDEV hLogDev)

This function is called when there are no remaining DDE conversations on this logical
deviceidentified by hLogDev. Delete all information associated with it.

Parameter Description

hLogDev Handle which identified this logical device (topic) as
returned by the ProtAllocatel ogicalDevice() call
earlier.

Return Value TRUE means valid hLogDev device was freed.

Comments Each individual point may not be deactivated or deleted

when you receive this message. Be prepared to delete
the logical device and ALL associated information (e.g.,
point data structures, messages, symbol table, etc.). This
function will only be called when the last conversation
to atopic isterminated.

API Function References 10-51

ProtGetDriverName
BOOL WINAPI
ProtGetDriver Name(LPSTR IpszName,

int nMaxLength)

This function will supply the driver name to the Toolkit to be used during the initiation
of DDE conversations.

Parameter Description

IpszName Far pointer to the server name stored as a null terminated
character string no longer than nMaxLength.

nMaxLength Maximum size for the server name string including the
NULL terminator character.

Return Value TRUE means the name stored.

Comments Place the name of the server in IpszName. nMaxLength

will be 9 (8 chars & NULL), since the server name must
be convertible to a.EXE filename. Unless you have
some reason hot to, this name should be the same as the
.EXE name.

Note The ProtGetDriver Name() function cannot contain any callsto debug() because
debug() calls ProtGetDriver Name() and an infinite loop will result.

10-52

Chapter 10

ProtGetValidDataTimeout

DWORD WINAPI

ProtGetValidDataTimeout(void)

This function supplies the timeout value (in milliseconds) for the Toolkit whenit is
waiting for first time data supplied by the protocol.

Parameter Description

Return Value Return (in milliseconds) how long the Toolkit should
wait for the protocol to supply datafor the first time.

Comments WhenaWM_DDE_REQUEST from aclient comesin

for apoint, and the server has not received any values
for that point; the Toolkit will wait some amount of time
for the server to set anew value via
DbNewVTQFromDevice(). If it takeslonger than that
amount of time to get a value from the device, the
Toolkit will Nack theitemWM_DDE_REQUEST from
the client.

Note NetDDE Considerations The value returned for the valid data timeout must be 1
msec if the server is supplying data through NetDDE. Thisisaspecial case where the
Toolkit Nacks requests if there isn't valid dataimmediately available. Generaly, this
timeout value is supplied in the configuration process of the server. The user must be
informed to set this for NetDDE.

API Function References 10-53

Protlnit

BOOL WINAPI

Protlnit(

void)

Thisfunction is called to perform any necessary initialization. It isthe first function

called within the server.

Parameter Description

Return Value TRUE means that the server isinitialized and ready to
start DDE conversations (i.e., al basic requirements for
this server have been met). FALSE means the server
cannot continue and will cause it to exit.

Comments This function can perform any overall initialization

needed by the server, read configuration files, obtain
information from the WIN.INI file (through calls to
GetProfilelnt() and GetProfileString()), etc.
Specifically, this function should call

SysTimer SetupProtTimer (),

SysTimer SetupRequestTimer (), and
AdjustWindowSizeFromWinl ni().

10-54

Chapter 10

ProtNewValueForDevice

BOOL WINAPI

ProtNewValueForDevice(HLOGDEV hLogDev,
HPROT hProt,
PTVALUE value)

ProtNewValueFor Device() will be called whenever anew value for the point is
received from DDE.

Parameter Description

hLogDev Handle identifying the logical device which was the
return from the ProtAllocatel ogicalDevice() call.

hProt Handle identifying the point which was the return from
the ProtCr eatePoint() call.

value The user must know the type of data associated with this
point (set by the server in *|pPtType during the
ProtCreatePoint() call). Based on the point type, use
the appropriate field in this structure (it contains fields
for discrete, integer, and real, aswell as ahandleto
memory containing a string).

Return Value TRUE means the point is still valid and it is allowed to
send datato this point. FALSE indicates the point
cannot be written.

Comments The server should respond as soon as possible - i.e,,
schedule a message to write the new value to the device
and return immediately (if applicable).

API Function References 10-55

ProtTimerEvent

VOID WINAPI
ProtTimer Event(DWORD dwTime)

This function will be called at the interval set by the last call to
SysTimer SetupProtTimer ().

Parameter Description

dwTime Time in milliseconds that have passed since the last call
to this function.

Return Value None.

Comments Through this function's periodic execution, you can drive

the device protocol and supply data to the Toolkit
database. Thisisaccomplished by making a call to
DbNewVTQFromDevice() with each of the dataitems
availablein thistime cycle. ThedwTimeis provided to
the protocol in caseit is needed for timing related
activities.

Note Due to the nature of Windows and loading of the PC with other applications, this
function may not be called on at a precisely regular interval.

10-56

Chapter 10

ReadComm

int WINAPI

ReadComm(int idComDev,
void *IpvBuf,
int cbRead)

This function reads up to a specified number of bytes from the given communications
device.

Parameter Description

idComDev Theid of the communications deviceto beread. The
OpenComm() function returns this value.

|pvBuf Points to the buffer for the read bytes.

cbRead Specifies the maximum number of bytes to be read.

Return Value The return value is the number of bytesread if

successful. Otherwise, it islessthan zero and its
absolute value is the number of bytes read.

Comments Windows only. Emulates Windows function. When an
error occurs, the cause of the error can be determined by
using the GetCommeError () function to retrieve the
error value and status. Since errors can occur when no
bytes are present, if the return valueis zero the
GetCommeError () function should be called to ensure
that no error occurred. The return value isless than the
number of bytes specified by cbRead if the number of
bytesin the receiving queue is less than cbRead.

API Function References 10-57

RelinquishPermission - Windows Only

VOID WINAPI
RelinquishPer mission(HANDLE hPermission)

RelinquishPermission() will release the selector that was allocated to this memory
address range, identified by hPermission.

Parameter Description

hPermission The permission handle that was set when permission is
granted by RequestPer mission().

Return Value None.

Comments None.

10-58

Chapter 10

RequestPermission - Windows Only

BOOL WINAPI
RequestPer mission(

WORD wSegment,

WORD wOffset,

DWORD dwLength,

LPSTR FAR *IplpProt,
LPHANDLE IphPermission)

RequestPer mission() is used to access memory at afixed real mode location.

Parameter

Description

wSegment
wOffset
dwLength
IplpProt

IphPermission

Return Value

Comments

Example
LPSTR | pProt;

HANDLE hPer m ssi on;

Real-mode address segment.
Real-mode address offset.
Length of the area for permission.

Far pointer to the protected-mode far pointer. The
Protected-mode pointer is stored after the permission
process is completed. It may then be used to access the
specia fixed memory block.

Far pointer to a permission handle that is set when
permission is granted. This handle must be saved and
used when calling RelinquishPer mission().

TRUE means permission was granted. FALSE means
there was a problem and no permission granted.

Many plug-in /O boards use memory mapped /O to
transfer data and commands which will then be relayed
to an external device (e.g., the MODBUS Plus or AB
1784-KT boards). In order to access non-standard
memory from Windows while in protected-mode,
permission must be granted and a far pointer set up. The
permission handle must be saved and used later to call
RelinquishPermission(). A FALSE returnindicates an
error condition in the request. After permissionis
granted, that portion of memory may be freely accessed
using the IpProt pointer. When the protocol is shut
down, all requested blocks of memory must be
relinquished by the user.

i f(Request Perm ssion(0x0000, 0x40, (DWORD)0x0008,
& pProt, &hPerm ssion)) {
/* | pProt can be used to access 0:40 through 0:47. */

Rel i nqui shPer mi ssi on(hPerm ssion);

API Function References 10-59

SelBoxAddEntry

BOOL WINAPI

SelBoxAddEntry(LPSTR string,
LONG value,
WORD wFlags)

This function adds a string entry to a selection box set of choices to be displayed when
the SelBoxUser Select() call is done.

Parameter Description

string Far pointer to the string to be added to the selection box
entries.

value If thisentry is picked by the user, this value will be

returned as an indicator.
wFlags Control flags allowed:

SBENTRY_DISABLED

SBENTRY_SELECTED

Return Value FAL SE means there was an out of memory error adding
the entry.

Comments None.

10-60

Chapter 10

SelBoxSetupStart

VOID WINAPI
SelBoxSetupStart(

HWND hwhd,
PSTR title,

PSTR noEntryMsg,
int numCols,
LONG IFlags)

SelBoxSetupStart() does the basic setup for a selection box.

Parameter

Description

hwhd
title
noEntryMsg

numcCols

IFlags

Return Value

Comments

In most cases use the extern hWhdParent.
Pointer to the text to be displayed in the caption.

Pointer to the text to be displayed in the window when
there are no entries.

Number of columnsto be used. 0 will allow the Toolkit
to pick the optimum based on the text lengths.

Control flags can be one of the following:

SBSTYLE _RADIO_BUTTONS
(default is check-box style)

SBSTYLE_RETURN_ON_SELECTION
(default iswait for OK)

SBSTYLE _SORT_ENTRIES
(default is put in order of SelBoxAddEntry() calls)

SBSTYLE_ENTRIES PRESORTED
(put in order but knows that they are sorted)

None.

None.

API Function References 10-61

SelBoxUserSelect

LONG WINAPI
SelBoxUser Select(

HANDLE hinst,
LONG |Buttons,
int vPosition,

int nFixed)

This function actually displays the selection box and processes all the buttons.

Parameter

Description

hinst

|Buttons

vPosition
nFixed

Return Value

Comments

Always use the extern hinst for this application.

Specifies which of the following buttons should be
enabled (i.e., visible):

SB_BUTTON_NEW
SB_BUTTON_MODIFY
SB_BUTTON_DELETE
SB_BUTTON_CANCEL
SB_BUTTON_OK

Sets the vertical screen position of the box.

Set to 0 to allow free-format lengths. By setting nFixed
to non-zero, the sizes for the entries are fixed at the
length specified by nFixed.

One of the buttons was picked by the user:
SB_BUTTON_OK
SB_BUTTON_CANCEL
SB_BUTTON_NEW
SB_BUTTON_MODIFY

SB_ BUTTON_DELETE

When this function returns, the selection box is no
longer on the screen. The user selections can now be
processed based on which button was selected, see the
SelBoxUser Selection() function below.

10-62

Chapter 10

SelBoxUserSelection

HANDLE WINAPI
SelBoxUser Selection(void)

Thisfunction is called after SelBoxUser Select() if you wish to get alist of what the user
selected.

Parameter Description

Return Value Thereturnisthe handle of a selection list hSelList that
represents what the user selected during the last call to
SelBoxUser Select().

Comments SelBoxUser Selection() is called after

SelBoxUser Select() to see what the user selected. Use
the following functions to access thislist:
SelListNumSelections(), SelListGetSelection(), and
SelListFreg(). (Refer to the sample server code for
examples of the selection box usage).

API Function References 10-63

SelListFree

VOID WINAPI

SelListFree(HANDLE hSelList)

This function will free the memory associated with the selection list.

Parameter Description

hSelList The selection list handle obtained by calling
SelBoxUser Selection().

Return Value None.

Comments None.

10-64

Chapter 10

SelListGetSelection

LONG WINAPI

SelListGetSelection(HANDLE hSelList,
int nSelection)

This function gets the indicator value for a selection at the specified number.

Parameter Description

hSelList The selection list handle obtained by calling
SelBoxUser Selection().

nSelection The selection to be examined, the entries start at entry O
and increase to SelListNumSelections(hSelList) -1.

Return Value The value set for this entry as an indicator by the

SelBoxAddEntry() call.

Comments None.

API Function References 10-65

SelListNumSelections

int WINAPI

SelListNumSelections(HANDLE h&List)

This function returns how many entries are in the specified hSelList.

Parameter Description

hSelList The selection list handle obtained by calling
SelBoxUser Selection().

Return Value Count of selected entries during the SelBoxUser Select()
call.

Comments None.

10-66 Chapter 10

SetCommEventMask

UINT FAR *WINAPI

SetCommEventM ask(int nCid,
UINT fnEwt)

The SetCommEventM ask() function does no operation on Windows NT/2000. It is
provided for common code convenience only.

Parameter Description

nCid This parameter is ignored on Windows NT/2000.
fnEvt This parameter is ignored on Windows NT/2000.
Return Value NULL pointer.

Comments Windows NT/2000 only but provides no operation.

Emulates Windows function.

API Function References 10-67

SetSplashScreenParams

void WINAPI

Set SplashScreenPar ams(BOOL bSuppresslashScreen,
int nSplashSelect,
UINT iProductI D,
LPSTR lpszPrivatetring)

A call to this function should be placed in Protl nit() to enable or disable the splash
screen at start-up, and determine how it will be displayed.

Parameter Description

bSuppressSplashScreen If TRUE, suppresses the splash screen entirely. This
may be appropriate if your program displays a splash
screen itself elsewhere. If FALSE, the selected splash
screen will be displayed for afew seconds and will then
be erased.

nSplashSelect If zero, displays the original Wonderware splash screen
using the dialog resource WWStartup. Thisis provided
for backward compatibility. If non-zero, displaysthe
Common User Interface splash screen.

iProductlD Identifies the type of product. For a Win32 server, this
value should be COMMON_IOSERVER32ID. For the
Common Ul splash screen, thisis used to select the
bitmap file that will be displayed in the splash screen.
For the WW Startup splash screen, it has no function.

IpszPrivateString Pointer to a string that can be displayed in the Common
Ul splash screen as additional information about the
program. For the WW Startup splash screen, it has no

function.
Return Value None.
Comments The default is for the Toolkit to display the Common

User Interface splash screen at start-up. Since the
server-specific code in Protlnit() is called before the
Toolkit displays the splash screen, thisisthe
programmer’ s opportunity to control or alter this
behavior. If you are using the CommonUI splash screen,
you might prefer instead to call the function

WW AnnounceStar tup(), which displays the
CommonUI splash screen and also issues a start-up
message that appears in the Wonderwar e L ogger .

10-68

Chapter 10

StatAddValue
void WINAPI
StatAddValue(HSTAT hStat,
PTVALUE value)
Add indicated value to indicated statistics item; for strings and discretes, no change.
Parameter Description
hSat Handle from the Toolkit that identifies a particular

statistics item, assigned by acall to either
StatRegister Counter () or StatRegister Rate().

value A union of type PTVALUE. The user must know the
type of data associated with this statistical point. Based
on the point type, use the appropriate field in this
structure (it contains fields for discrete, integer, and real,
aswell as ahandle to memory containing a string).

Return Value None.

Comments This routine assumes that the statistics item and the value
in value are of the same data type —i.e. both are integers
or both arereals. No conversion ismade. Mixing data
types will yield unpredictable results. This function
should not be called if the statistic has been unregistered.

API Function References 10-69

StatDecrementValue

void WINAPI

StatDecrementValue(HSTAT hSat)

Decrement value for indicated statistics item by 1; for strings and discretes, no change.
Parameter Description

hSat Handle from the Toolkit that identifies a particular

statistics item, assigned by acall to either
StatRegister Counter () or StatRegister Rate().

Return Value None.

Comments This routine checks the type of data encoded in the
statisticsitem. If it isanumerical datatype, thevalueis
decremented by 1 (by 1.0 in the case of reals). This
function should not be called if the statistic has been
unregistered.

10-70

Chapter 10

StatGetValue

PTVALUE WINAPI

StatGetValue(HSTAT hSat)

Retrieve the current value for indicated statistics item.

Parameter Description

hSat Handle from the Toolkit that identifies a particular
statistics item, assigned by acall to either
StatRegister Counter () or StatRegister Rate().

Return Value A union of type PTVALUE, the value corresponding to
the indicated statistics point. Note that for points of type
PTT_STRING, the value contains a pointer to a memory
buffer where the string is actually stored.

Comments For arate statistic, the value returned is always the

current calculated rate value, and will always be
accessed from ptValue.real. For acounter statistic, the
union member containing the value is determined by the
ptType passed to StatRegister Counter (). If the
dtatistics handle hSat isinvalid, a value of
PTVALUE.intg==0 is returned.

API Function References 10-71

StatincrementValue

void WINAPI

StatIncrementValug(HSTAT hSat)

Increment value for indicated statisticsitem by 1; for strings and discretes, no change.

Parameter Description

hSat Handle from the Toolkit that identifies a particular
statistics item, assigned by acall to either
StatRegister Counter () or StatRegister Rate().

Return Value None.

Comments This routine checks the type of data encoded in the
statisticsitem. If it isanumerical datatype, thevalueis
incremented by 1 (by 1.0 inthe case of reals). This
function should not be called if the statistic has been
unregistered.

10-72

Chapter 10

StatRegisterCounter
HSTAT WINAPI
StatRegister Counter (IDLDEV idLogDev,

IDSTDDEV idSidDev,
LPSTR IpszName,
PTTY PE ptType)

Register astatistical counter with the indicated name and point type. The statistic can be
associated either with alogical device (topic) defined in the protocol or with a standard
statistics device (standard topic) — such as $PORT, $DEVICE, or $SERVER. Oncethe
item isregistered, the Toolkit will automatically handle validating the point name when
aclient attempts to accessiit, and passing updated values to interested clients. The
server-specific code is responsible for updating the value indicated by HSTAT viacalls
to StatlncrementValue(), StatAddValue(), etc.

Parameter

Description

idLogDev

idStdDev

[pszName

ptType

Return Value

Comments

Identifier of the logical device (topic) to which this
statistic isto be assigned. Thisisthe handle supplied by
the Toolkit as a parameter in the

ProtAllocatel ogicalDevice() cal. If idLogDev is zero,
the statistic will be assigned to one of the standard
devices (topics) maintained internally by the Toolkit,
identified by the second parameter idStdDev.

Identifier of the standard device (topic) to which this
statistic isto be assigned. This parameter isused only if
idLogDev is zero, and must be one of the following:
STDDEV_PORT, STDDEV_DEVICE, or
STDDEV_SERVER.

Far pointer to a string which contains the name of the
statistics item.

|dentifies the point type for theitem. Typically thisis
PTT_INTEGER, but can be any of the other point types
aso: PTT_DISCRETE, PTT_REAL, PTT_STRING.

Handle of statistical item, a non-zero number assigned
by the Toolkit and unique to this item that identifies this
statistical point/item in any future calls to the statistical
functions. Returns NULL handleif unsuccessful. If the
indicated statistic is already registered, the handle of that
statistic will be returned.

The statistic will automatically be initialized with avalue
of zero (or for strings, to aNULL pointer, indicating “no
string assigned”). Also, the statistic will be reset to zero
if an I/O client pokes any value to “ResetAll” on the
SYSTEM topic or to “ResetStats’ on the topic to which
this counter belongs. If the statistic becomesinvalid,
you should call the function StatUnregister Counter ()
to unregister the statistic point.

API Function References 10-73

StatRegisterRate
HSTAT WINAPI
StatRegister Rate(

IDLDEYV idLogDev,
IDSTDDEV idSdDev,
LPSTR IpszName,
DWORD interval,
BYTE units,

PTTY PE ctrType,
HSTAT hSatCtr)

Register astatistical rate with the indicated name. The statistic can be associated either
with alogical device (topic) defined in the protocol or with a standard statistics device
(standard topic) — such as $PORT, $DEVICE, or $SERVER. Oncetheitemis
registered, the Toolkit will automatically handle validating the point name when a client
attempts to access it, and passing updated values to interested clients.

Theinput value to the rate calculation is a counter value, which can either be another
statistical item counter or a counter value maintained internally within the rate item
itself. The output of the rate calculation will always be of point type PTT_REAL.

Parameter

Description

idLogDev

idStdDev

IpszName

interval

units

Identifier of the logical device (topic) to which this
dtatistic isto be assigned. Thisisthe handle supplied by
the Toolkit as a parameter in the

ProtAllocatel ogicalDevice() cal. If idLogDev is zero,
the statistic will be assigned to one of the standard
devices (topics) maintained internally by the Toolkit,
identified by the second parameter idSXdDev.

Identifier of the standard device (topic) to which this
statistic isto be assigned. This parameter isused only if
idLogDev is zero, and must be one of the following:
STDDEV_PORT, STDDEV_DEVICE,
STDDEV_SERVER.

Far pointer to a string which contains the name of the
statistics item.

Unsigned 32-bit integer indicating the interval between
rate calculations, in milliseconds —i.e. how often the rate
value will be updated. Clients can modify this value by
accessing the point with the name specified by |pszName
concatenated with “SINTERVAL”.

Identify the units for the divisor in the rate calculation:

Value M eaning

STATS TIME_MSEC milliseconds
STATS TIME_SEC seconds
STATS TIME_MIN minutes
STATS TIME HR hours
STATS TIME_DAY days

Example: If the rate indicates changes per second, this
should be STATS TIME_SEC.

10-74 Chapter 10

ctrType

hSatCtr

Return Value

Comments

| dentify the point type for the input counter item for the
rate calculation. Must be PTT_INTEGER or
PTT_REAL. Note that this parameter isignored if the
parameter hSatCtr is non-zero.

Handle of the associated statistics counter item for this
rate calculation. If hSatCtr is zero, this indicates that no
input counter is used and the counter will instead be
maintained internally within the rate itemitself. In this
case, the internal counter must be manipulated via the
functions which manipul ate statistics values
[StatAddValug(), StatlncrementValue(), etc]. If
hSatCtr is non-zero, then the rate calculation will be
performed using the counter value maintained separately
by the handle returned from StatRegister Counter ().

Handle of statistical rate item, a non-zero number
assigned by the Toolkit and unique to this item that
identifies this statistical point/item in any future callsto
the statistical functions. Returns NULL handle if
unsuccessful. If theindicated statistic is already
registered, the handle of that statistic will be returned.

Providing both an interval and units allows compl ete
flexibility in the rate cal culation frequency and units.
For example, you can get a per-hour rate (units =
TIME_HR) calculated once per minute (interval =
60000). Thisfunction call will automatically create two
I/O items— one for the rate itself and one for the rate
item interval, which can be accessed by clients viathe
rate item name concatenated with the string
“$INTERVAL” (eg. HOURLY_RATES$INTERVAL).
If the statistic becomesinvalid, you should call the
function StatUnregister Rate() to unregister the statistic
point.

API Function References 10-75

StatSetCountersinterval

BOOL WINAPI

StatSetCounter sl nterval(IDLDEV idLogDev,
IDSTDDEV idSxdDev,
DWORD interval)

Set anew update (i.e. reporting) interval for the counters on the indicated logical device
(topic) or standard statistics device (standard topic — such as $SPORT, $DEVICE, or
$SERVER). Thisdefinesthetimeinterval at which all registered statistical counters on
the device will be updated to any interested clients. If thisfunction is not caled, the
value specified by the WIN.INI setting “ StatCountersinterval” (with adefault interval of
10000 msec) isused. Note that the counter interval for a given logical device can also
be manipulated by aclient viathe “ Counterlnterval” item name on the topic.

Parameter Description

idLogDev Identifier of the logical device (topic) to which this
dtatistic isto be assigned. Thisisthe handle supplied by
the Toolkit as a parameter in the
ProtAllocatel ogicalDevice() cal. If idLogDev is zero,
the statistic will be assigned to one of the standard
devices (topics) maintained internally by the Toolkit,
identified by the second parameter idSXdDev.

iddDev Identifier of the standard device (topic) to which this
statistic isto be assigned. This parameter isused only if
idLogDev is zero, and must be one of the following:
STDDEV_PORT, STDDEV_DEVICE,
STDDEV_SERVER.

interval Unsigned 32-bit integer indicating the interval between
updates, in milliseconds.

Return Value TRUE if successful.

Comments Thisfunction only affects statistical counters registered

with StatRegister Counter (). This setting is not used to
control theinterval at which the actual counter value
changesin the statistical sub-system — it isused only to
control the rate at which updates to external clients are
performed.

10-76

Chapter 10

StatSetRatelnterval

BOOL WINAPI
StatSetRatel nterval(

HSTAT h3at,
DWORD interval)

Set new update interval for indicated rate item.

Parameter Description

hSat Handle from the Toolkit that identifies a particular
statisticsitem, assigned by acall to StatRegister Rate().

interval Unsigned 32-bit integer indicating the interval between
rate calculations, in milliseconds.

Return Value TRUE if successful.

Comment Thisis equivalent to accessing the rate interval created

when StatRegister Rate() was called. Notethat clients
can access thisinterval viathe rate item name
concatenated with the string “$INTERVAL” (e.g.
HOURLY_RATES$INTERVAL).

API Function References 10-77

StatSetValue

void WINAPI

StatSetValueg(HSTAT hStat,
PTVALUE ptValue)

Set new value for indicated statistics item; thisis used for counters and to calculate
rates.

Parameter Description

hSat Handle from the Toolkit that identifies a particular
statistics item, assigned by acall to either
StatRegister Counter () or StatRegister Rate().

ptValue A union of type PTVALUE. The user must know the
type of data associated with this statistical point. Based
on the point type, use the appropriate field in this
structure (it contains fields for discrete, integer, and real,
aswell as ahandle to memory containing a string).

Return Value None.

Comment This function should not be called if the statistic has
been unregistered.

10-78

Chapter 10

StatSubtractValue

void WINAPI

StatSubtractValug(HSTAT hStat,
PTVALUE ptvalue)

Subtract indicated value from indicated statistics item; for strings and discretes, no

change.

Parameter Description

hSat Handle from the Toolkit that identifies a particular
statistics item, assigned by acall to either
StatRegister Counter () or StatRegister Rate().

ptValue A union of type PTVALUE. The user must know the
type of data associated with this statistical point. Based
on the point type, use the appropriate field in this
structure (it contains fields for discrete, integer, and real,
aswell as ahandle to memory containing a string).

Return Value None.

Comments This routine assumes that the statistics item and the value

in value are of the same data type —i.e. both are integers
or both arereals. No conversion ismade. Mixing data
types will yield unpredictable results. This function
should not be called if the statistic has been unregistered.

API Function References 10-79

StatUnregisterCounter

BOOL WINAPI

StatUnregister Counter (IDLDEV idLogDev,
IDSTDDEV idSdDev,
HSTAT hSat)

Unregister the indicated counter on the indicated logical device. If the counter handle
hSat isNULL, unregister ALL counter statistics on thistopic. The server-specific code
should call thisfunction if the statistic counter is no longer valid. After unregistration,
thisitem will no longer be automatically validated or updated to any interested clients.
However, any clients which currently have the point on advise will retain the last
updated item for the value.

Parameter Description

idLogDev Identifier of the logical device (topic) to which this
dtatistic isto be assigned. Thisisthe handle supplied by
the Toolkit as a parameter in the
ProtAllocatel ogicalDevice() cal. If idLogDev is zero,
the statistic will be assigned to one of the standard
devices (topics) maintained internally by the Toolkit,
identified by the second parameter idSXdDev.

iddDev Identifier of the standard device (topic) to which this
statistic isto be assigned. This parameter isused only if
idLogDev is zero, and must be one of the following:
STDDEV_PORT, STDDEV_DEVICE,
STDDEV_SERVER.

hSat Handle from the Toolkit that identifies a particular
statistics counter item, assigned by acall to
StatRegister Counter (). If NULL, unregister all counter
dtatisticsin this topic.

Return Value TRUE if successful. FALSE indicates that either
idLogDev, idXdDev, or hSat was unknown to the
Toolkit.

Comment This function should be called when the statistic counter

becomesinvalid. However, it need not be called as part
of a ProtFreel ogicalDevice() function call for the
indicated idLogDev. In this case, the Toolkit calls this
function implicitly.

10-80 Chapter 10

StatUnregisterRate

BOOL WINAPI

StatUnregister Rate(IDLDEV idLogDev,
IDSTDDEV idStdDev,
HSTAT h3at)

Unregister the indicated rate on the indicated logical device. If the rate handle hSat is
NULL, unregister ALL rate statistics on thistopic. The server-specific code should call
this function if the statistic rate is no longer valid. After unregistration, thisitemwill no
longer be automatically validated or updated to any interested clients. However, any
clients which currently have the point on advise will retain the last updated item for the

value.
Parameter Description
idLogDev Identifier of the logical device (topic) to which this

dtatistic isto be assigned. Thisisthe handle supplied by
the Toolkit as a parameter in the

ProtAllocatel ogicalDevice() cal. If idLogDev is zero,
the statistic will be assigned to one of the standard
devices (topics) maintained internally by the Toolkit,
identified by the second parameter idSXdDev.

iddDev Identifier of the standard device (topic) to which this
statistic isto be assigned. This parameter isused only if
idLogDev is zero, and must be one of the following:
STDDEV_PORT, STDDEV_DEVICE,
STDDEV_SERVER.

hSat Handle from the Toolkit that identifies a particular
statistics rate item, assigned by acall to
StatRegister Rate(). If NULL, unregister all rate

statistics for this topic.

Return Value TRUE if successful. FALSE indicates that either
idLogDev, iddDev, or hSat was unknown to the
Toolkit.

Comment This function should be called when the statistic rate

becomesinvalid. However, it need not be called as part
of aProtFreel ogicalDevice() function call for the
indicated idLogDev. In this case, the Toolkit calls this
function implicitly.

API Function References 10-81

StatZeroValue

void WINAPI

StatZeroValue(HSTAT hSat)

Set zero value for indicated statistics item; for strings, clear string buffer pointer.
Parameter Description

hSat Handle from the Toolkit that identifies a particular

statistics item, assigned by acall to either
StatRegister Counter () or StatRegister Rate().

Return Value None.

Comments This routine checks the data type of the indicated
statistics point. Numerical and Boolean items are set to
zero. For strings, the buffer pointer is cleared, indicating
no string is assigned. This function should not be called
if the statistic has been unregistered.

10-82

Chapter 10

StrValSetNString

PTVALUE WINAPI
StrValSetNString(

PTVALUE ptValueOld,
LPSTR IpszValue,
int nMax)

StrValSetNString() is used to initialize or change the value of a ptValue string while

limiting the length of the input.

Parameter

Description

ptValueOld

IpszValue

nMax

Return Value

Comments

Example

If thisistheinitial cal, set hSring to NULL before this
cal. If you are changing an existing string, thisisthe
ptValue used previously that may be removed or
overwritten.

Far pointer to the new string (null terminated or to a
maximum of nMax) which will be moved into the system
memory for use by the Toolkit database.

The maximum number of characters read from the
IpszValue string.

New ptValue to be saved.

Thisfunction isfunctionally identical to
StrValSetString() except that alimit can be put on the
string size. This function will move characters until a
NULL isreached or the maximum limit (then aNULL is
stored).

/* only sets the value to "This " */
ptValue = StrVal SetNString(ptValue, "This is a new value", 5);

API Function References 10-83

StrValSetString

PTVALUE WINAPI

StrValSetString(PTVALUE ptValueOld,
LPSTR IpszValue)

StrValSetString() is used to initialize or change the value of a ptValue string.

Parameter Description

ptValueOld If thisistheinitial cal, set hSring to NULL before this
cal. If you are changing an existing string, thisisthe
ptValue used previously that may be removed or

overwritten.

IpszValue Far pointer to the new string (null terminated) which will
be moved into the system memory for use by the Toolkit
database.

Return Value New ptValue to be saved.

Comments Be aware that callsto StrValSetString() (aswell as

StrValSetNString()) cause heap memory to be
allocated. Only set the hSring to NULL prior to the
first call, or memory will belost. When you are done
with the ptValue, call StrValStringFree().

Example

/* W have never used the ptValue before so null it. */

pt Val ue. hString = NULL;

/* Now store strings ready to be sent to the Tool kit Dat abase */

ptValue = StrVal SetString(ptValue, "This is the new val ue");

ptValue = StrVal Set String(ptValue, "This is a newer value &
size");

Note Version 5.0 and later of the 1/O Server Toolkit allocate string memory from the
heap rather than using system global memory resources.

10-84

Chapter 10

StrValStringFree

PTVALUE WINAPI

StrValStringFree(PTVALUE ptValue)

StrValStringFree() will free the memory used for a ptValue string.

Parameter Description

ptValue Thisisthe ptValue supplied by the Strval SetString()
call.

Return Value Thisisthe new ptValue to be saved for future string
function calls.

Comments Free strings only when the server has been using them

internally. If the ptValue came from or is going to the
Toolkit database, do not freeit. To save or manipulate
the string, copy the string to an internal string element.

API Function References 10-85

StrValStringLock

LPSTR WINAPI
StrValStringL ock(PTVALUE ptValue)

This function will lock astring in memory and return afar pointer to the beginning of
the string memory.

Parameter Description

ptValue Thisisthe ptValue supplied by the StrVal SetString()
call.

Return Value Far pointer to the string (null terminated) whichis

pointed to by the ptValue memory handle. A NULL
return means the string memory could not be locked.

Comments Be sure to unlock any locked memory at the earliest
possible opportunity. When memory islocked, it cannot
be moved by Windows memory management. The less
locked memory, the better.

Note Be sureto execute the same number of locks and unlocks on any piece of memory.
If, for any reason, the memory islocked more than once, it must be unlocked more than
once.

Example (function using lock/unlock)

BOOL

FAR PASCAL

ConpareString(ptVal ue)

PTVALUE pt Value; /* String from database or device */

{
LPSTR | pszVal ;
BOCL rtn;

rtn = FALSE;

if(ptValue.hString !'= NULL) {
| pszVal = StrVal StringLock(ptValue);
if(Ipszval) {
if(Istrcnpi(| pszval, "Value") == 0) {
rtn = TRUE; }
StrVal StringUnl ock(ptVal ue);
}

return(rtn);

10-86

Chapter 10

StrValStringUnlock

VOID WINAPI

StrValStringUnlock(PTVALUE ptValue)

This function will unlock a string in memory previously locked by StrValStringL ock().

Parameter Description

ptValue Thisisthe ptValue supplied by the StrVal SetString()
call.

Return Value None.

Comments StrValStringL ock() and StrValStringUnlock() are

used to lock/unlock the value of a ptValue string. Refer
to the StrValStringL ock() code example.

Note Be sure to execute the same number of locks and unlocks on any piece of
memory. If, for any reason, the memory is locked more than once, it must be unlocked
more than once.

API Function References 10-87

SysTimerSetupProtTimer
BOOL WINAPI
SysTimer SetupProtTimer(DWORD dwMsec)

This function sets up atimer that goes off every dwMsec milliseconds and calls
ProtTimer Event ().

Parameter Description

dwMsec Interval timer range from 1 to 32767 milliseconds.

Return Value TRUE means that the interval requested was acceptable.
FALSE means that it was out of range and should be
changed.

Comments Thistimer should be set to avalue that is reasonable for

the protocol data supply rate. Intervalsthat are
arbitrarily too short will result in needless system
overhead.

10-88

Chapter 10

SysTimerSetupRequestTimer
BOOL WINAPI
SysTimer SetupRequest Timer (DWORD dwMsec)

This function sets up atimer that goes off every dwMsec milliseconds and checks for
valid datatimeout errors within the Toolkit database.

Parameter Description

dwMsec Interval timer range from 1 to 32000 milliseconds.

Return Value TRUE means that the interval requested was acceptable.
FALSE means that it was out of range and should be
changed.

Note Thistimer should be set to a value that is reasonable for the protocol data timeout.
Theinterval should be a reasonable factor of the ValidDataTimeout parameter return in
the ProtGetValidDataTimeout() calls. Intervalsthat are arbitrarily too short will result
in needless system overhead.

API Function References 10-89

UdAddFileTimeOffset

void WINAPI

UdAddFileTimeOffset(FILETIME *ft1,
long IDelta,
FILETIME *ft2)

Add indicated time difference (in 100 nsec / 8192) to source time mark.
Return result in destination time mark.

Note: FILETIME is a64-bit value defined in Win32 as the number of 100 nanosecond
intervals since January 1, 1601. It isorganized astwo DWORDS, dwLowDateTime and
dwHighDateTime.

Parameter Description

ftl Pointer to a FILETIME structure for a date/time stamp
which serves as the source time mark, i.e. the date/time
to which the indicated interval will be added.

IDelta Interval to be added to source date/time, in units of 100
nanoseconds/ 8192, i.e. 1.220703125 milliseconds.
ft2 Pointer to a FILETIME structure for a date/time stamp

which serves as the destination time mark, i.e. the
resulting date/time stamp after the interval IDelta has
been added to the source date/time stamp.

Return Value None.

Comments The use of the 100 nsec / 8192 is provided for
convenience and rapid calculations, asitisclosetoal
msec interval, but requires only a simple shift operation
to calculate, instead of division or multiplication of a 64-
bit number. You may prefer to use the function
UdAddTimeM sec() instead

10-90

Chapter 10

UdAddTimeMSec

void WINAPI

UdAddTimeM Sec(FILETIME *ft1,
long IDelta,
FILETIME *ft2)

Add indicated time difference (in msec) to source time mark.
Return result in destination time mark.

Note: FILETIME is a64-bit value defined in Win32 as the number of 100 nanosecond
intervals since January 1, 1601. It isorganized astwo DWORDS, dwLowDateTime and
dwHighDateTime.

Parameter Description

ftl Pointer to a FILETIME structure for a date/time stamp
which serves as the source time mark, i.e. the date/time
to which the indicated interval will be added.

IDelta Interval to be added to source date/time, in units of 1
millisecond.
ft2 Pointer to a FILETIME structure for a date/time stamp

which serves as the destination time mark, i.e. the
resulting date/time stamp after the interval IDelta has
been added to the source date/time stamp.

Return Value None.

Comments The use of 1 millisecond intervalsis convenient, but
conversions to and from units of 100 nanoseconds
require division or multiplication of 64-bit numbers. If
large numbers of high-speed calculations are required,
you may prefer to use calls to the function
UdAddFileTimeOffset() instead.

API Function References 10-91

UDDbGetName

VOID WINAPI

UDDbGetName(IDLDEV idLogDev,
HDB hDb,

LPSTR IpszName)
Get name of database item for indicated logical device.
Note: thisisthe same as the following function:
VOID WINAPI DbGetName (IDLDEYV idLogDev, HDB hDb, LPSTR IpszName);

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocatel ogicalDevice() call.

hDb Handle from the Toolkit that is unique to thisitem and
was supplied as a parameter in the ProtCr eatePoint()
call.

IpszName Far pointer to the string buffer where the name will be

returned.

10-92

Chapter 10

UdDeltaFileTime

long WINAPI

UdDeltaFileTime(FILETIME *ft1,
FILETIME *ft2)

Calculate signed difference between 2 FILETIMEsin 100 nsec / 8192
delta = (ft1 - ft2) / 8192

Note: FILETIME is a 64-bit value defined in Win32 as the number of 100 nanosecond
intervals since January 1, 1601. It isorganized astwo DWORDS, dwLowDateTime and
dwHighDateTime.

Parameter Description

ftl Pointer to a FILETIME structure for a date/time stamp
which serves as the ending time mark, i.e. the date/time
stamp at which some event or interval finished.

ft2 Pointer to a FILETIME structure for a date/time stamp
which serves as the starting time mark, i.e. the date/time
stamp at which some event or interval started.

Return Value Interval between the two date/time stamps, in units of
100 nanoseconds/ 8192, i.e. 1.220703125 milliseconds.
Vaueisreturned asasigned LONG integer.

Comments The use of the 100 nsec / 8192 is provided for
convenience and rapid calculations, asitisclosetoal
msec interval, but requires only a simple shift operation
to calculate, instead of division or multiplication of a 64-
bit number. Y ou may prefer to use the function
UdDeltaTimeM sec() instead

API Function References 10-93

UdDeltaTimeMSec
long WINAPI
UdDeltaTimeM Sec(FILETIME *ft1,

FILETIME *ft2)
Calculate signed difference between 2 FILETIMESin msec
(delta= (ft1 - ft2)/10000)
Return difference as asigned LONG integer.

Note: FILETIME is a64-bit value defined in Win32 as the number of 100 nanosecond
intervals since January 1, 1601. It isorganized astwo DWORDS, dwLowDateTime and
dwHighDateTime.

Parameter Description

ftl Pointer to a FILETIME structure for a date/time stamp
which serves as the ending time mark, i.e. the date/time
stamp at which some event or interval finished.

ft2 Pointer to a FILETIME structure for a date/time stamp
which serves as the starting time mark, i.e. the date/time
stamp at which some event or interval started.

Return Value Interval between the two date/time stamps, in units of 1
millisecond. Vaueisreturned asasigned LONG
integer.

Comments The use of 1 millisecond intervals is convenient, but

conversions to and from units of 100 nanoseconds
require division or multiplication of 64-bit numbers. If
large numbers of high-speed cal culations are required,
you may prefer to use calls to the function
UdDeltaFileTime() instead.

10-94

Chapter 10

Udinit

BOOL WINAPI

UdlInit(HANDLE hinstance,
HANDLE hPrevinstance,
LPSTR IpszCmdLine,
int N"CmdShow)

Thisfunction isintended for use by a Windows application that already exists and needs
to be extended to include the DDE capability provided by the Toolkit. It isused to
initialize the 1/0 Server Toolkit and should only be used by a Windows application
which suppliesits own WinMain() function. UdI nit() should be called early in the
activation of such applications. Most 1/0 Servers do not have to call this function since
they allow the Toolkit to supply the WinMain() function. The parameter list is identical
to the parameter list for the Windows WinMain() function.

Parameter Description

hlnstance Handle of the current instance of the application.

hPrevinstance Handle of the previous instance of the application.

IpszCmdLine Pointer to a string containing the command line for the
application.

nCmdShow Specifies how the window isto be shown.

Return Value TRUE indicates the Toolkit initialized successfully.

FALSE indicates an initialization failure and that the
application should terminate.

Comments This function should only be called by an application
which must supply its own WinMain() function rather
than using the one supplied in the Toolkit.

API Function References 10-95

UdReadAnyMore

BOOL WINAPI

UdReadAnyM or g(HFILE hCfgFile,
short FAR *pbAnyMore)

This function reads a bAnyMore flag from the configuration file. Thisflagisused
within the configuration file to indicate whether more records of a certain type exist.
Such aflag is usually necessary when the number of records is unknown.

Parameter Description

hCfgFile File handle of the configuration file.

pbAnyMore Pointer to the boolean value to be set with the value read
out of the configuration file.

Return Value TRUE if the read operation succeeded. FALSE
otherwise.

Comments None.

10-96

Chapter 10

UdReadVersion

BOOL WINAPI

UdReadVersion(long IMagic,
long FAR *|Version,
HFILE hCfgFile)

This function reads the version number from the server configuration file. It also
verifies that the magic number stored in the file matches the specified magic number.

Parameter Description

IMagic Magic number to be checked against the magic number
in the configuration file.

[Version Points to alongword variable to receive the
configuration file's version number.

hCfgFile File handle of the configuration file.

Return Value TRUE if the magic number matches. FAL SE otherwise.

Comments Configuration file must be previoudly opened.

API Function References 10-97

UdTerminate
void WINAPI
UdTerminate(HINSTANCE hinstance)

Thisfunction isintended for use by Windows applications that already exist and need to
be extended to include the DDE capability provided by the Toolkit. It isused to close
the 1/0O Server Toolkit, but it should only be used by a Windows application which
suppliesits own WinMain() function and calls the UdI nit() function to initialize the
Toolkit. UdTer minate() should be called at application shutdown time. Most 1/0
Servers do not have to call this function since they allow the Toolkit to supply the
WinMain() function.

Parameter Description

hlnstance Handle of the current instance of the application.
Return Value None.

Comments This function should only be called by an application

which must supply its own WinMain() function rather
than using the one supplied in the Toolkit.

10-98

Chapter 10

UdWriteAnyMore

BOOL WINAPI

UdWriteAnyM or g HFILE hCfgFile,
short bAnyMore)

This function writes a bAnyMore flag to the configuration file. Thisflagisused within
the configuration file to indicate whether more records of a certain type exist.

Parameter Description

hCfgFile File handle of the configuration file.

bAnyMore Boolean value to be written to the configuration file.

Return Value TRUE if the write operation succeeded. FALSE
otherwise.

Comments Configure file must be previously opened.

API Function References 10-99

UdWriteVersion

BOOL WINAPI

UdWriteVersion(long IMagic,
long IVersion,
HFILE hCfgFile,
char FAR *szDate,
char FAR *szTime)

This function writes the version number, magic number, date, and time to the server
configuration file.

Parameter Description

IMagic Magic number to be written to the configuration file.

[Version Version number to be written to the configuration file.

hCfgFile File handle of the configuration file.

szDate Points to a date string to be written.

sZTime Points to atime string to be written.

Return Value TRUE if the write operation succeeds. FALSE
otherwise.

Comments Configuration file must be previously opened.

10-100

Chapter 10

WriteComm

int WINAPI

WriteComm(int idComDev,
void *IpvBuf,
int cbWkite)

This function writes the specified bytes to the specified communications device.

Parameter Description

idComDev Theid of the communications device to be written to.
The OpenComm() function returns this value.

|pvBuf Points to the buffer that contains the bytes to be written.

cbWrite Specifies the number of bytes to be written.

Return Value The return value specifies the number of bytes written, if
successful. Thereturn valueislessthan zero if an error
occurs, making the absolute value of the return value the
number of bytes written.

Comments When an error occurs, the cause of the error can be

determined by using the GetCommError () function to
retrieve the error value and status.Windows NT/2000
only. Emulates Windows function.

API Function References 10-101

WriteWindowSizeToWinlni
VOID WINAPI
WriteWindowSizeT oWinlni(HWND hWhd)

This function saves the size of the server window to the last adjusted size.

Parameter Description
hwnd Handl e of window whose size isto be saved.
Return Value None.

Comments None.

10-102

Chapter 10

WWAnNnounceStartup
void WINAPI

WWAnNnounceStartup(UINT iProductID,
LPSTR IpszSplashSring

Set up to display Common User I nterface splash screen and log start-up message, using
indicated product ID and private strings.

Parameter Description

iProductlD Identifies the type of product. For a Win32 server, this
value should be COMMON_IOSERVER32ID. For the
Common Ul splash screen, thisis used to select the
bitmap file that will be displayed in the splash screen.

[pszSplashString Pointer to a string that can be displayed in the splash
screen as additional information about the program.

Return Value None.

Comments The default is for the Toolkit to display the Common
User Interface splash screen at start-up. Since the
server-specific code in Protinit() is called before the
Toolkit displays the splash screen, thisisthe
programmer’ s opportunity to control or alter this
behavior. If do not wish to use the CommonUI splash
screen, you should call SetSplashScreenParams() to
select the WW Startup dialog resource or to suppress the
splash screen altogether. In this case, you should also
call debug() to display your own startup message in the
Wonderware Logger.

Note If you are developing products for Wonderware, this function and its
corresponding definitions will be of interest..

The following code would appear in Protinit().

Example

/* set up string with server nane and versi on nunber */
strcpy (szServerlDstring,
Get String (STRUSER+142)); /* "Sanple I/O Server" */
L = strlen (szServerlDstring);
sprintf (&szServerl|Dstring[L],
CGet String (STRUSER+145), /* "- Version %" */
SERVER_VERSI ON) ;
/* set up to display conmon start-up nmessage and spl ash screen */
WMnnouncesSt art up (COVMON_| OSERVER32I D,
(LPSTR) szServerlDstring);

API Function References 10-103
WW<CenterDialog
VOID WINAPI
WW Center Dialog(HWND hDIg)
This function places the specified dialog at the center of the screen.
Parameter Description
hDIg Window handle for the dialog to be centered.
Return Value None.

Comments None.

10-104 Chapter 10

WWConfigureComPort

BOOL WINAPI
WW ConfigureComPort(LPWW_CP_DLG _LABELSIpDIgLabels)

This function displays and manages the communications port settings configuration
dialog. It should only be used by serial servers. This dialog allows configuration of
communications parameters for one or more serial communications ports. These
settings are written tothe WW_CP_DLG_L ABEL S structure for use by the server.

Parameter Description

IpDIgLabels PointstoaWW_CP_DLG_LABEL S structure that
containsinitial and final dialog values and dialog control
information.

Return Value Thereturn valueis TRUE if the dialog box display is
successful. Otherwise, itis FALSE.

Comments The WW_CP_DLG_LABELS structure must be

properly initialized prior to calling this function. For a
complete description of how to implement, refer to "1/O
Server Toolkit Data Structures' section.

Structure typedef struct tag?WW_CP_DLG _LABELS{

HWND hwndOwner;

char far *szDriverName,

LPWW_CP_PARAMS IpDefaultCpParams;

LPWW_CP_PARAMS IpCpParams,

int iNumPorts,

BOOL bAllowBaud110;

BOOL bAllowBaud300;

BOOL bAllowBaud600;

BOOL bAllowBaud1200;

BOOL bAllowBaud2400;

BOOL bAllowBaud4800;

BOOL bAllowBaud9600;

BOOL bAllowBaud14400;

BOOL bAllowBaud19200;

BOOL bAllowBaud38400;

BOOL bAllowBaud56000; /* not used */

BOOL bAllowBaud57600; /* not used */

BOOL bAllowBaud115200; /* not used */

BOOL bAllowBaud128000; /* not used */

BOOL bAllowDatabits?;

BOOL bAllowDatabits8;

BOOL bAllowStophitsl;

BOOL bAllowStophits2;

BOOL bAllowParityEven;

BOOL bAllowParityOdd;

BOOL bAllowParityNone;

BOOL bAllowParityMark;

BOOL bAllowParitySpace;

char far *szCustoml1BoxLabel;

char far *szCustomlRadiollLabel;

char far *szCustom1Radio2Label;

struct tag0WW_CP_DLG_LABELSFAR
*|pRadio2DIgLabels;

char far *szCustom2BoxLabel;

char far *szCustom2RadiolLabel;

API Function References 10-105

char far *szCustom2Radio2Label;
char far *szCustom3BoxLabel;
char far *szCustom3Radiollabel;
char far *szCustom3Radio2Label;
char far *szChecklLabel;

char far *szCheck2Label;

char far *szCustomEditLabel;
UINT uCustomEditBase;

UINT uCustomEditLowLimit;
UINT uCustomEditHighLimit;
FARPROC IpfnConfigureSave;
int ilnternalUseOnly;

char reserved[16] ;

} WW_CP_DLG_LABELS, FAR
*LPWW_CP DLG_LABELS;

A variable with the type of WW_CP_PARAM S structure is a member of
WW_CP_DLG_LABELS and can be written and read directly from the server
configuration file. 1t is properly aligned for all platforms and has the following form:

typedef struct tag?WW_CP_PARAMS {

unsigned long uBaud,;
unsigned long uDataBits;
unsigned long uStopBits;
unsigned long Parity;
unsigned long uReplyTimeout;
unsigned long uCustomEdit;
short bCustom1Radio;

short bCustom2Radio;

short bCustom3Radio;

short bCheckd,;

short bCheck;

char reserved[30]; /* pad to 64 bytes*/

} WW_CP_PARAMS, FAR *LPWW_CP_PARAMS;

For afull description of this structure, refer to the "1/O Server Toolkit Data Structures'
chapter.

10-106

Chapter 10

WWConfigureServer
BOOL WINAPI
WW ConfigureServer (LPWW_SERV_PARAMS IpServerParams)

This function displays and manages the server parameter configuration dialog. This
dialog alows configuration of several parameters related to overall operation of the I/O
Server. These settings are written out as profile information to the WIN.INI file by this
dialog function and only take effect upon restarting of the server.

Parameter Description

|pServerParams Pointsto aWW_SERV_PARAM S structure that
containsinitial and final dialog values and dialog control
information.

Return Value Thereturn value is TRUE if the dialog box display is
successful. Otherwise, itis FALSE.

Comments The WW_SERV_PARAM S structure must be properly

initialized prior to calling this function. For acomplete
description of how to implement, refer to "1/O Server
Toolkit Data Structures' for details.

Structure typedef struct tag?WW_SERV_PARAMS {

HWND hwndOwner;

char far *szCfgPath;

int i SzeOfszCfgPath;

char far *szDriverName;
BOOL bIndefWriteRetrySupported;
BOOL bIndef\WriteRetry;
BY TE bPreventChanges;
BY TE bNotService;
BYTE bCFGfileUnused;
BY TE nNTServiceSetting;
char far *szCaption;

char reserved[8] ;

} WW_SERV_PARAMS, FAR
*LPWW_SERV_PARAMS,

The value returned in NNTServiceSetting is an OR of the following bits:

#define WWNTSERVICE | S SERVICE (0x01) /* set to run as NT service */
#defi ne WV NTSERVI CE_CHANGED (0x02) /* setting was changed */
#defi ne WV NTSERVI CE_ERROR (0x04) /* unable to establish new

service settings */

API Function References 10-107

WWConfirm

BOOL WINAPI
WW Confirm(

LPWW_CONFIRM [pConfirm)

This function displays and manages the confirmation dialog which indicates the
directory or file where server settings are to be saved. It should only be called when the
configuration file does not currently exist.

Parameter Description

IpConfirm Pointsto aWW_CONFIRM structure that contains
initial and final dialog values and dialog control
information.

Return Value Thereturn value is TRUE if the dialog box display is
successful. Otherwise, itis FALSE.

Comments The WW_CONFIRM structure must be properly
initialized prior to calling this function. For a complete
description of this structure refer to the "1/0 Server
Toolkit Data Structures' chapter.

Structure typedef struct tag?WW_CONFIRM {

HWND hwndOwner;

* |dentifies Window that owns the dialog box */
char far *szCfgPath;

[* pointsto a buffer that holds pathname */

int i SzeOfszCfgPath;

char far *szDriverName;

char reserved[16] ;

} WW_CONFIRM, FAR *LPWW_CONFIRM;

10-108

Chapter 10

WWDisplayAboutBox

BOOL WINAPI
WWDisplayAboutBox(LPWW_AB_INFO IpAbout)

This function displays and manages the dialog displaying copyright and version
information. It isgenerally intended for use by Wonderware servers since it displays the
Wonderware copyright information. However, it does provide facilities for easily
displaying version and date information and is available for use by other servers.

Parameter Description

IpAbout Pointsto aWW_AB_INFO structure that contains
dialog control information.

Return Value Thereturn value is TRUE if the dialog box display is
successful. Otherwise, itis FALSE.

Comments The WW_AB_INFO structure must be properly
initialized prior to calling this function. For acomplete
description on this structure, refer to the 1/0 Server
Toolkit Data Structures chapter.

Structure typedef struct tag?WW_AB_INFO {

HWND hwndOwner;
char far *szDriverName;
char far *szld;

char far *szVersion;
char far *szCopyright;
HICON hicon;

char far *szComment;
char reserved[12] ;

} WW_AB_INFO, FAR *LPWW_AB_INFO;

API Function References 10-109

WWDisplayAboutBoxEx

BOOL WINAPI
WWDisplayAboutBoxEx(

LPWW_AB_INFO IpAbout,
UINT iProductID,
LPSTR szPrivateStr)

Display Common User Interface about box, using indicated product ID and private
string, or Wonderware Common Dialog about box, as is appropriate.

Note If you are developing products for Wonderware, this function will be of interest.
This function serves primarily to provide source code compatibility between FS2000

and pre-FS2000 servers.

Parameter Description

IpAbout Pointsto aWW_AB_INFO structure that contains
dialog control information.

iProductlD Identifies the type of product. For a Win32 server, this
value should be COMMON_IOSERVER32ID. For the
Common Ul splash screen, thisis used to select the
bitmap file that will be displayed in the splash screen.

szPrivateStr Pointer to a string that can be displayed in the About
Box as additional information about the program.

Return Value Thereturn value is TRUE if the dialog box display is
successful. Otherwise, itis FALSE.

Comments The WW_AB_INFO structure must be properly
initialized prior to calling this function. For acomplete
description on this structure, refer to the 1/0 Server
Toolkit Data Structures chapter.

Structure typedef struct tag?WW_AB_INFO {

HWND hwndOwner;
char far *szDriverName;
char far *szld;

char far *szVersion;
char far *szCopyright;
HICON hlcon;

char far *szComment;
char reserved[12] ;

} WW_AB_INFO, FAR *LPWW_AB_INFO;

10-110

Chapter 10

WWDisplayConfigNotAllow

VOID WINAPI
WWDisplayConfigNotAllow(LPSTR szAppName)

This function displays a message box indicating that configuration of the server is not
allowed while the server isin use.

Parameter Description

szAppName Pointer to a character string containing the server’s
application name.

Return Value None.

Comments None.

API Function References 10-111

WWDisplayErrorCreating
VOID WINAPI
WWDisplayErrorCreating(LPSTR szAppName,

LPSTR szFileName)
This function displays a message box indicating that an error was encountered while
creating the specified file.

Parameter Description

szAppName Pointer to a character string containing the server’'s
application name.

szFileName Pointer to a character string containing the file name for
which the create operation failed.

Return Value None.

Comments None.

10-112

Chapter 10

WWDisplayErrorReading
VOID WINAPI

WWDisplayErrorReading(LPSTR szAppName,
LPSTR szFileName)

This function displays a message box indicating that an error was encountered while
reading the specified file.

Parameter Description

szAppName Pointer to a character string containing the server’'s
application name.

szFileName Pointer to a character string containing the file name for
which the read operation failed.

Return Value None.

Comments None.

API Function References 10-113

WWDisplayErrorWriting
VOID WINAPI

WWDisplayErrorWriting(LPSTR szAppName,
LPSTR szFileName)

This function displays a message box indicating that an error was encountered while
writing the specified file.

Parameter Description

szAppName Pointer to a character string containing the server’'s
application name.

szFileName Pointer to a character string containing the file name for
which the write operation failed.

Return Value None.

Comments None.

10-114

Chapter 10

WWDisplayKeyNotEnab

int WINAPI
WWNDisplayKeyNotEnab(LPSTR szAppName)

This function displays a message box indicating that the installed security key does not
enable operation of this1/0O Server.

Parameter Description

szAppName Pointer to a character string containing the server’s
application name.

Return Value Returns the MessageBox() return code.

Comments This function is not used by servers which do not utilize

a hardware security key.

API Function References 10-115

WWDisplayKeyNotInst

int WINAPI
WWDisplayK eyNotI nst(LPSTR szAppName)

This function displays a message box indicating that the required security key is not
installed on the system.

Parameter Description

szAppName Pointer to a character string containing the server’s
application name.

Return Value Returns the MessageBox() return code.

Comments This function is not used by servers which do not utilize

a hardware security key.

10-116

Chapter 10

WWDisplayOutofMemory
VOID WINAPI

WWDisplayOutofMemory(LPSTR szAppName,
LPSTR szObjectName)

This function displays a message box indicating that an error was encountered while
allocating memory for the specified object.

Parameter Description

szAppName Pointer to a character string containing the server’'s
application name.

szObjectName Pointer to a character string containing the description of
the object for which the memory allocating failed.

Return Value None.

Comments None.

API Function References 10-117

WWFormCpModeString

VOID WINAPI

WWFormCpM odeString(

LPWW_CP_PARAMS IpComPortParams,
int index,

char FAR *szMode)

This function creates a null-terminated string containing device control information.

Parameter Description

IpComPortParams Pointsto aWW_CP_PARAM S structure defining
communications port parameters. This structureisread
directly from the configuration file and returned by the
WW ConfigureComPort() function.

index Communications port index (e.g. 1 for COM1).

*szMode Points to the string to receive the resulting device control
information string.

Return Value None.

Comments This string will have the same format as the MS-DOS

mode command.

10-118 Chapter 10

WWGetDialogHandle

HWND WINAPI
WWGetDialogHandlg(void)

This function returns a window handle to the top-most dialog in the current application.

Parameter Description
Return Value Window handle of the top-most dialog in the current
application.

Comments None.

API Function References 10-119

WWGetDriverNameExtension

BOOL WINAPI
WW GetDriver NameExtension(LPSTR |pszNameExt,
int nLen)
Get name extension for use in storing and retrieving Registry settings.

This function isimplemented in the Wonderware Common Dialog DLL and is called by
GetServer NameExtension(). Locating the source of the extension string in asingle
place helps ensure consistency between the server-specific code and the Common
Dialogs. Thestringis*_|0Server” and is appended to the “short” server nameto
produce the full name of the server, which is used for accessing the Registry and the
Service Control Manager.

Parameter Description

|pszZNameExt Points to a string buffer to which the extension string can
be copied.

nLen Length of the buffer at |pszNameEXt.

Return Value Trueif successful.

Comments The string returned is“_10Server” and is obtained from

the Wonderware Common Dialogsto ensure that it is
consistent.

10-120

Chapter 10

WWGetExeFilePath

char *

WW GetExeFilePath(char *szCfgPathStr,
int maxien)

Get path to directory where executable is located.
Replacement for _getcwd (temp_szCfgPath, PATH_STRING_SIZE);

Use this function to get the path to the server EXE file, instead of using getcwd() or
_getcwd(). The reason for thisisthat on a Windows NT/2000 platform, the CWD
(current working directory) may in fact be the directory of another program that is
starting up your server. [You can even encounter this problem when developing with
Microsoft Visual C++, if your project directory and your executable directory are
different.] WWGetExeFilePath() will get the correct path to the server executable,
regardless of how the server isinvoked.

Parameter Description

szCfgPathStr Points to a string buffer into which the path string can be
stored.

maxlen Length of the buffer at szCfgPathStr.

Return Value Pointer to the path string. Returns NULL if
unsuccessful.

Comments The maximum length of a path string is defined in

Microsoft Visual C++ by the constant MAX_PATH.

API Function References 10-121

WWGetOsPlatform

DWORD
WW GetOsPlatform(void);
Get platform, operating system info, summarize in global variable dwWWQOsPlatform.

If dwWWOsPlatform is zero, perform operating system calls to determine the platform;
otherwise, just return the present value.

Thisroutineis called by the I/O Server Toolkit early in its start-up sequence. Y ou can
get the value from the global variable

extern DWORD dwWWOsPlatform;

or you can force are-read of the operating system by forcing the value to zero and
calling the function:

dwWWOsPlatform = 0;
WWGetOsPlatform();

The platform information is returned as a combination of bits, defined as follows:

#def i ne WV OSPLATFORM W16 (0x00000001) /* Wn 16 */
#def i ne WN OSPLATFORM VB2 (0x00000002) /* Wn 32 */
#def i ne WV OSPLATFORM W N31 (0x00000100) /* Wndows 3. 1x */
#def i ne WV OSPLATFORM W N95 (0x00000200) /* Wndows 95 */
#def i ne WV OSPLATFORM_NT (0x00000400) /* Wndows NT */
#def i ne WV OSPLATFORM WOW (0x00010000) /* WOW (W nl1l6 on NT) */
#def i ne WV OSPLATFORM | NTEL (0x01000000) /* Intel processor */
#defi ne WV OSPLATFORM_ALPHA (0x02000000) /* DEC Al pha processor */
#defi ne WV OSPLATFORM M PS (0x04000000) /* M PS processor */
#defi ne WV OSPLATFORM_PPC (0x08000000) /* Power PC processor */
/ *

#def i ne WV OSPLATFORM_UNKNOWN (0x80000000) unable to read info */

Example

/* determine platform*/
WAGet CsPl at f orn() ;
if ((dwWAOsPI atform & (VWV OSPLATFORM WB2 | WV OSPLATFORM NT)) ==

(WV OSPLATFORM W82 | VWV OSPLATFORM NT))

/* Wn32 on Wndows NT */
debug (" Running on Wndows NT");

el se

{

/* not Wndows NT -- assune runni ng on Wndows 95 */
debug (" Running on Wndows 95 or earlier");

10-122

Chapter 10

wwHeap_AllocPtr

LPVOID WINAPI

wwHeap_AllocPtr (HHEAP hHeap,
WORD wGmemFlags,
DWORD dwSize)

wwHeap_AllocPtr() is used to alocate the specified amount of memory using the heap
specified by hHeap.

Parameter Description
hHeap The heap handle supplied by wwHeap_Init().
wGmemFlags Control flags for the allocated memory:

GMEM_ZEROINIT
GMEM_MOVEABLE

dwSize Number of bytes needed in this piece of memory.

Return Value A far pointer to the memory allocated. A NULL is
returned if the memory could not be allocated.

Comments When Windows memory islow or large blocks cannot
be allocated, areturn of NULL may result. The
application must handle this situation gracefully. For
example, displaying a Message Box warning the
operator about low memory; then rejecting the current
operation.

Note Message Boxes indicating low memory must be SY STEM modal or they won't
appear in low memory conditions. See WW DisplayOutofM emory() function.

API Function References 10-123

wwHeap_FreePtr

VOID WINAPI
wwHeap_FreePtr(HHEAP hHeap,

LPVOID IpPtr)
wwHeap_FreePtr () is used to free the allocated memory specified by IpPtr.
Parameter Description
hHeap The heap handle supplied by wwHeap_Init().
[pPtr Long pointer to the allocated memory.
Return Value None.

Comments None.

10-124

Chapter 10

wwHeap_Init

HHEAP WINAPI

wwHeap_| nit(void)

wwHeap_Init() isused to create and initialize a heap.

Parameter Description

Return Value The handle for this heap. NULL means there was an
error and no memory heap was allocated.

Comments This call must be done prior to any
wwHeap_AllocPtr (), wwHeap_FreePtr(), and
wwHeap_ReAllocPtr ().

API Function References 10-125

wwHeap_ReAllocPtr

LPVOID WINAPI
wwHeap_ReAllocPtr (

HHEAP hHeap,
LPVOID IpPtr,
WORD wGmemFlags,
DWORD dwSize)

wwHeap_ReAllocPtr() is used to re-allocate the specified amount of memory used in

the heap specified by IpPtr.

Parameter Description

hHeap The heap handle supplied by wwHeap_Init().

[pPtr Long pointer to the allocated memory.

wGmemFlags Control flags for the allocated memory:
GMEM_ZEROINIT
GMEM_MOVEABLE

dwSize Number of bytes needed in this piece of memory.

Return Value A long pointer to the memory allocated. A NULL is
returned if the memory could not be allocated.

Comments When Windows memory islow or large blocks cannot

be allocated, areturn of NULL may result. The
application must handle this situation gracefully. For
example, displaying a message box to warn the operator
about low memory; then rejecting the current operation.

Note Message boxes indicating low memory must be SY STEM modal or they won't
appear in low memory conditions. See WW DisplayOutofM emory() function.

10-126

Chapter 10

wwHeap_Release

BOOL WINAPI

wwHeap_ Releasg(HHEAP hHeap)

Thisfunction is used to release a heap which was created with wwHeap_Init().
Parameter Description

hHeap The heap handle supplied by wwHeap_Init().
Return Value TRUE indicates success. FALSE indicates failure.

Comments None.

API Function References 10-127

WWInitComPortComboBox

VOID WINAPI

WW!1nitComPortComboBox(HWND hDIg,
int iNumPorts,
int idControl)

This function creates a communications port selection box for display on adialog. Most
commonly, it will be used in atopic configuration dialog for selection of the
communications port for serial communications.

Parameter Description

hDIg Window handle of the dialog to contain the combo box.
iNumPorts Number of communications portsto be listed.
idControl Control identifier of the selection box.

Return Value None.

Comments None.

10-128

Chapter 10

WWReadAnyMore

Note: the following functions have been retired, and no longer work:
WWReadVersion(), WWWriteVersion(),
WWReadAnyM ore), WWWriteAnyM or &)

Either replace themwith their corresponding UdXXX functions

UdReadVersion(), UdWriteVersion(),
UdReadAnyMore(), UdWriteAnyM or &)

or create user-defined functions to accomplish the same result.

API Function References 10-129

WWReadVersion

Note: the following functions have been retired, and no longer work:
WWReadVersion(), WWWriteVersion(),
WWReadAnyM ore), WWWriteAnyM or &)

Either replace themwith their corresponding UdXXX functions

UdReadVersion(), UdWriteVersion(),
UdReadAnyMore(), UdWriteAnyM or &)

or create user-defined functions to accomplish the same result.

10-130

Chapter 10

WWSelect

BOOL WINAPI
WW Select(LPWW_SELECT IpSelectParams)

This function displays a dialog containing a list box which will contain alist of strings
specified by the server. The user will be provided options for adding, modifying, or
deleting entries from thislist. Thisfunction is most commonly used to display alist of
topics or boards for configuration.

Parameter Description

IpSelectParams Pointsto aWW _SEL ECT structure that contains
information necessary for displaying the selection list.

Return Value Thereturn value is TRUE if the dialog box display is

successful. Otherwise, it is FALSE.

Comments The WW_SELECT structure contains several pointers
to callback functions which must be supplied by the
server developer. For a complete description of how to
implement, refer to "1/O Server Toolkit Data Structure”
chapter.

Structure typedef struct tagWWW_SELECT {

HWND hwndOwner;

char far *<zTitle;

char far *szGroupBoxLabel;
GETLISTHEADPROC IpfnGetListHead;
GETNEXTNODEPROC |pfnGetNextNode;
GETNODENAMEPROC IpfnGetNodeName;
ADDNODEPROC IpfnAddNode;
CONFIGNODEPROC IpfnConfigNode;
DELETENODEPROC IpfnDeleteNode;
BOOL bAddDel eteModifyEnabled;
unsigned char bDoNotConfirmDel etes;

char reserved[15] ;

} WW_SELECT, FAR *LPWW_SELECT;

API Function References 10-131

WWSetAffinityToFirstCPU

void WINAPI
WW SetAffinity T oFirssCPU(void)

This function locks the I/O Server execution to the first CPU on a SMP (symmetrical
multiprocessor) machine only.

Parameter Description
Return Value None.

Comments None.

10-132

Chapter 10

WWTranslateCDIgToWinBaud

UINT WINAPI

WWTrandateCDIgTowWinBaud(UINT uCDIgBaud)

This function trans ates the WWCOMDL G constant for baud rate to the Windows
equivalent.

Parameter Description

uCDIgBaud Specifies WWCOMDLG constant representing the baud
rate for the characters sent and received.

Return Value The return value is the Windows constant corresponding
to the baud rate specified.

Comments None.

API Function References 10-133

WWTranslateCDIgToWinData

UINT WINAPI
WWTrandateCDIgToWinData(UINT uCDIgData)

This function trand ates the WWCOMDLG constant for number of data bits to the
Windows equivalent.

Parameter Description

uCDlIgData WWCOMDLG constant representing number of bitsin
the characters sent and received.

Return Value Thereturn value is the Windows constant corresponding
to the number of data bits specified.

Comments None.

10-134

Chapter 10

WWTranslateCDIgToWinParity

UINT WINAPI
WWTrandateCDIgToWinParity(UINT uCDIgParity)

This function translates the WWCOMDLG constant for parity to the equivalent
Windows.

Parameter Description

uCDIgParity Specifies WWCOMDLG constant representing the
parity for the characters sent and received.

Return Value The return value is the Windows constant corresponding
to the parity specified.

Comments None.

API Function References 10-135

WWTranslateCDIgToWinStop

UINT WINAPI
WWTrandateCDIgToWinStop(UINT uCDIgStop)

This function translates the WWCOMDLG constant for number of stop bitsto the
Windows equivalent.

Parameter Description

uCDIgStop WWCOMDLG constant representing number of stop
bits.

Return Value Thereturn value is the Windows constant corresponding

to the number of stop bits specified.

Comments None.

10-136

Chapter 10

WWTranslateWinBaudToCDlg

UINT WINAPI
WWTrandateWinBaudToCDIg(UINT uBaud)

This function trand ates the Windows constant for baud rate to the WWCOMDLG
equivalent.

Parameter Description

uBaud Specifies baud rate for the characters sent and received.
Must be oneof CS BAUD_110, CS_BAUD_300,
CS BAUD_600, CS BAUD_1200, CS_BAUD_2400,
CS BAUD_4800, CS_BAUD_9600,
CS BAUD_14400, CS_BAUD_19200,
CS_BAUD_38400.

Return Value Thereturn value is the WWCOMDLG constant
corresponding to the baud rate specified.

Comments None.

API Function References 10-137

WWTranslateWinDataToCDlg

UINT WINAPI
WWTrandateWinDataToCDIg(UINT uWinData)

This function translates the Windows constant for number of data bits (7 or 8) to the
WWCOMDLG equivalent.

Parameter Description

uWinData Specifies number of bits in the characters sent and
received. Canbe7 or 8.

Return Value Thereturn value is the WWCOMDLG constant
corresponding to the number of data bits specified.

Comments None.

10-138

Chapter 10

WWTranslateWinParityToCDlIg

UINT WINAPI
WWTrandateWinParityToCDIg(UINT uParity)

This function translates the Windows constant for parity to the WWCOMDLG
equivalent.

Parameter Description

uParity Specifies parity for the characters sent and received.
Must beoneof CS PARITY_EVEN,
CS_PARITY_ODD, CS PARITY_NONE,
CS PARITY_MARK, CS_PARITY_SPACE.

Return Value Thereturn value is the WWCOMDLG constant
corresponding to the parity specified.

Comments None.

API Function References 10-139

WWTranslateWinStopToCDlg

UINT WINAPI
WWTrandateWinStopToCDIg(UINT uStopBits)

This function translates the Windows constant for number of stop bits to the
WWCOMDLG equivalent.

Parameter Description

uStopBits Specifies number of stop bitsin the characters sent and
received. Must be ONESTOPBIT or TWOSTOPBITS.

Return Value The return value is the WWCOMDLG constant

corresponding to the number of stop bits specified.

Comments None.

10-140

Chapter 10

WWVerifyComDIgRev

BOOL WINAPI

WWVerifyComDIgRev(LPSTR szAppName,
int iRequiredRev,
int FAR *piMajorRev,

int FAR *piMinorRev)

This function verifies that the version of WWCOMDLG.DLL installed on the system is
at least as new as the specified version. It aso returns the major and minor version
numbers of the installed WWCOMDLG.DLL to the server. Thisfunction isintended
for compatibility checking.

Parameter Description

szAppName Pointer to a character string containing the server’s
application name.

iRequiredRev Minimum required major version number for
WWCOMDLG.DLL.

piMajorRev Pointer to an integer to receive the major version number
of WWCOMDLG.DLL.

piMinorRev Pointer to an integer to receive the minor version number
of WWCOMDLG.DLL.

Return Value TRUE if theinstalled WWCOMDLG.DLL iscompatible

with the server. FALSE otherwise.

Comments The server typically will call this function during
initialization in Protlnit() to verify that the installed
WWCOMDLG.DLL is compatible with the server. This
function will display a message box if the DLL is
incompatible. It isthe server’sresponsibility to exit if
the return value is FALSE.

API Function References 10-141

WWWriteAnyMore

Note: the following functions have been retired, and no longer work:
WWReadVersion(), WWWriteVersion(),
WWReadAnyM ore), WWWriteAnyM or &)

Either replace themwith their corresponding UdXXX functions

UdReadVersion(), UdWriteVersion(),
UdReadAnyMore(), UdWriteAnyM or &)

or create user-defined functions to accomplish the same result.

10-142

Chapter 10

WWWriteVersion

Note: the following functions have been retired, and no longer work:
WWReadVersion(), WWWriteVersion(),
WWReadAnyM ore), WWWriteAnyM or &)

Either replace themwith their corresponding UdXXX functions

UdReadVersion(), UdWriteVersion(),
UdReadAnyMore(), UdWriteAnyM or &)

or create user-defined functions to accomplish the same result.

11-1

CHAPTER 11
OOE

DOE, FaztDDE,

R

The Chain Manager

Device Specific

Protocal

This section describes the specifications and usage of the Chain Manager library, a
software tool for handling linked lists of any type of data— including mixed types.

Contents

Background

Chain Data Structures

Setting Up a Chain and Linking Items

Searching For Itemsin a Chain

Removing Items From a Chain

User-Supplied Chain Item Funchtions

Extensible Array Data Structures

Allocating, Extending, and Deleting an Extensible Array
Examples of Usage

Handling Linked Lists

11-2

Chapter 11

Background

The Chain Manager Library contains a set of software tools for handling linked lists and
extensible arrays. In many ways, it is like the container class library of C++ or Java.
However, it has been implemented in C and can be used with ordinary C or with C++
and does not require templates. Among the key capabilities provided by the Chain
Manager are the following:

- Implementation of doubly-linked lists, with routines for adding items at the head of
thelist, thetail of thelist, or in the middle with or without sorting. No C++
templates are needed, and lists may contain mixed data types.

- Pointers from one item to the next may be either C-type far pointers or unsigned
long offsets from a base pointer.

- FindFirst () and FindNext () routines that accept pointers to user routines. These
permit easy searches of alist for items satisfying any criteria that the user wishesto
implement.

- DeleteList () and DeleteFromList () routines that accept pointers to user routines.
These permit easy implementation of clean-up processes (much like destruct
methods in C++).

- Implementation of extensible arrays. Allocation and extension routines accept
pointersto user routines that perform the actual memory management, permitting
allocation on the stack, heap, or anywhere else the user requires.

In many parts of an 1/O Server, there are collections of structures that can be
implemented as linked lists. Among the most common are the following:

- Lists of Boards, COM Ports, or other configured 1/0 channels
- Lists of Topics

- Lists of Messages

- Symbol Tables

The process of writing servers can be greatly simplified if one can offload the
management of linked lists (which are here called CHAINS) to a set of standard, pre-
tested routines.

Typically, there are two basic kinds of data that might be linked into chains:

- Data whose location in memory remains fixed
Examples: Topic configurations, Board or COM Port definitions, pending
messages

- Data whose location might change
Example: Symbol Tables

The example 1/0 Server UDSAMPLE includes sample code which allocates a symbol
table as an array and links the elements together in two separate lists (with forward and
backward pointers): symbol entriesin use and unused symbol entries. The symbol
table is extended by reallocating the array to alarger size. This means that the actual
location of the array elementsin RAM may be different after the extension of the array.
The Chain Manager APIstake care of that by giving you a choice asto whether the
CHAIN uses pointers or offsets from a base pointer. The distinction is made by leaving
abase pointer NULL or setting it to the current base location. All the API callsfor
handling the CHAIN areidentical in both cases. The nice thing about thisisthat it
enables one to manage symbol tables VERY simply using the same set of linked list
routines for inserting, finding, unchaining, deleting, etc.

The Chain Manager also includes a set of APIsfor handling extensible arrays.
Essentially, all you haveto do is declare an extensible array structure, and provide the
routines for allocating, reallocating, and freeing the memory associated with the array.
This allows the programmer to specify whether to allocate from the stack, the heap, etc.

The Chain Manager 11-3

Chain Data Structures

Generally, alinked list can handle structures that have a CHAINLINK asthe first part of
their structure:

typedef struct tagCHAINLINK FAR *LPCHAINLINK; /* pointer to chainlink */

typedef union tagCHAINLINKPTR /* chainlink member, pointer or offset */
{LPCHAINLINK ptr;
unsigned long offs;
} CHAINLINKPTR;

typedef struct tagCHAINLINK [* chainlink structure */
{CHAINLINKPTR next_item;
CHAINLINKPTR prev_item;
} CHAINLINK;

Then the general item can have any size or structure the programmer requires, so long as
thefirst structure element isa CHAINLINK:

typedef struct tagl TEM
{chain_link
CHAINLINK;

}ITEM;
Note that alist may contain items of different types and sizes. Insuch amixed lit, it is

up to the programmer to determine how to identify the type and/or size of any given
item. Items may be created on the stack, the heap, etc.

A list of items should be identified by a CHAIN manager structure

typedef struct tagCHAIN [* chain manager structure */
{CHAINLINKPTR first_item;
CHAINLINKPTR last_item;
unsigned long item_count;
char FAR *base;
} CHAIN;

typedef CHAIN FAR *LPCHAIN; [* pointer to chain */

If the element baseis NULL, the chain uses pointers for addressing. That is, the
forward and backward pointersin a CHAINLINK are pointers, and so are the pointers to
first_item and last_item. If the element baseis set to anon-NULL location, the chain
uses offsets for addressing.

11-4 Chapter 11

Setting Up a Chain and Linking Items

/***/

[** Initialize achain
Clear al pointers, countsto create an empty chain
Returns TRUE if successful **/

BOOL InitializeChain (LPCHAIN chain);

/***/

/** Set the base pointer for abased chain
Returns TRUE if successful **/
BOOL SetChainBase (LPCHAIN chain, VOID FAR *new_base);

/***/

/** Insert an item at the head of achain
Returns TRUE if successful **/
BOOL InsertltemAtHead (LPCHAIN chain, LPCHAINLINK new_item);

/***/

/** Append an item at the tail of achain
Returns TRUE if successful **/
BOOL AppenditemAtTail (LPCHAIN chain, LPCHAINLINK new_item);

/***/

/** Insert an item before a specific point in achain
Returns TRUE if successful **/
BOOL InsertitemBefore (LPCHAIN chain,
LPCHAINLINK new_item, LPCHAINLINK item);

/***/

[** Insert an item after a specific point in achain
Returns TRUE if successful **/
BOOL InsertltemAfter (LPCHAIN chain,
LPCHAINLINK new_item, LPCHAINLINK item);

/***/

[** Insert an item in the middle of achain
using a comparison routine to keep the chain sorted
Returns TRUE if successful **/
BOOL InsertiteminMiddle (LPCHAIN chain, LPCHAINLINK new_item,
LPCOMPARISONROUTINE compare_routine, BOOL fwd);

Note The definition of LPCOMPARISONROUTINE is provided below, in the section
on User-Supplied Functions.

The Chain Manager 11-5

Searching For Items in a Chain

Generally, the programmer will search through a CHAIN in order to find a particul ar
item or an item with certain desired properties, do something with that item, and then
possibly search for and process other such itemsin the chain. To facilitate this process,
the Chain Manager provides several APIsfor setting up a CHAINSCANNER which
handles the search. In a sense, thisis much like setting up an iterator in C++ or Java;
but in practice it is more like using the C function FindFirstFile() withaFIND_DATA
structure, and continuing with the function FindNextFile().

The CHAINSCANNER structure is defined as follows:
typedef struct tagCHAINSCANNER /* chain scanner structure */

{LPCHAIN chain; /* chain being searched */
CHAINLINKPTR item; /* last item found, if any */
BOOL forward,; /* TRUE if scanning forward */
void FAR *found_routine; [* returns TRUE if item found */

void FAR *comparison_value; /* structure to use for evaluating criteria*/
} CHAINSCANNER;

typedef CHAINSCANNER FAR *LPCHAINSCANNER,;

/* pointer to chain scanner */

Note The definition of the found_routineis described below, in the section on User-
Supplied Functions.

/***/

/** Check whether itemisin indicated chain
Returns TRUE if itemisin chain **/
BOOL IsInChain (LPCHAIN chain, LPCHAINLINK item);

/***/

/** Find first item in chain that satisfies criteria of found routine
If found_routineis NULL, this routine uses AlwaysFound as a default.
Search can proceed from head of chain (forward) or from tail (backward)
Returns pointer if successful **/
LPCHAINLINK FindFirstitem (LPCHAIN chain, BOOL forward,
LPFOUNDROUTINE found_routine,
void FAR *comparisonValue,
LPCHAINSCANNER scanner);

/***/

/** Find first itemin chain that satisfies criteria of found routine, beginning with
indicated item. Thisallows a search to begin in the middle of a chain, as needed,
starting with a particular item.

If found_routineis NULL, this routine uses AlwaysFound as a defaullt.
Search can proceed from head of chain (forward) or from tail (backward)
If start_item is NULL, starts with the head or tail of the chain.

Returns pointer if successful **/

LPCHAINLINK FindltemStartingAt (LPCHAINLINK start_item,

LPCHAIN chain, BOOL forward,
LPFOUNDROUTINE found_routine,
void FAR *comparisonValue,
LPCHAINSCANNER scanner);

11-6

Chapter 11

/***/

/** Find first itemin chain that satisfies criteria of found routine, beginning with item
that follows indicated item. This allows a search to begin in the middle of achain,

as needed, starting just after a particular item.
If found_routineis NULL, this routine uses AlwaysFound as a default.
Search can proceed from head of chain (forward) or from tail (backward)
If start_itemis NULL, starts with the head or tail of the chain.
Returns pointer if successful **/
LPCHAINLINK FindltemFollowing (LPCHAINLINK start_item,
LPCHAIN chain, BOOL forward,
LPFOUNDROUTINE found_routine,
void FAR *comparisonValue,
LPCHAINSCANNER scanner);

/***/

/** Find next item in chain that satisfies criteria
Returns pointer if successful **/
LPCHAINLINK FindNextltem (LPCHAINSCANNER scanner);

/***/

/** Get next item that scanner would examine.
Note that this does not check whether the item satisfies the criteria.
Also, it does not advance the scan pointer. **/

LPCHAINLINK GetScannerNextltem (LPCHAINSCANNER scanner);

The Chain Manager 11-7

Removing Items From a Chain

/***/

/** Remove item from chain
Returns pointer if successful **/
BOOL Unchainltem (LPCHAIN chain, LPCHAINLINK item);

/***/

/** Perform indicated delete operation on item and remove it from chain
If delete operation is unsuccessful, itemis NOT removed from chain
Returns TRUE if successful **/
BOOL Deleteltem (LPCHAIN chain,
LPCHAINLINK item, DELETEROUTINE delete _routine);

/***/

/** Perform indicated delete operation on all itemsin chain and remove them from
the chain
If delete operation is unsuccessful on any item, operation stops and the pointer
to the item is returned.
If al items are deleted successfully, NULL isreturned **/
LPCHAINLINK DeleteChain (LPCHAIN chain, DELETEROUTINE delete routine);

Note The definition of the delete routine is described below, in the section on User-
Supplied Functions.

11-8 Chapter 11

User-Supplied Chain Item Functions

For the search, comparison, and del ete operations, the user must provide a routine to
perform the appropriate action. The following definitions are used:

typedef BOOL FAR FOUNDROUTINE (LPCHAINLINK item,
void FAR *comparisonVaue);
/** result = TRUE if item satisfies criterion **/

typedef FOUNDROUTINE FAR *LPFOUNDROUTINE;

The pointersto item and to comparisonValue are of types LPCHAINLINK and void
FAR *, respectively, so that they can match any structures the programmer defines.
Inside the function, the programmer is responsible for casting item to a pointer to the
appropriate structure type and for defining the structure of the comparisonValue —
which can be anything from a simple basic type to something more complicated. The
programmer is also responsible for defining what portions of the structures need to be
compared and how to determine whether a match has been found.

typedef int FAR COMPARISONROUTINE (LPCHAINLINK item,
LPCHAINLINK new_item);
[** result = -1 if item < new_item
= Oif item = new_item
=+1if item > new_item **/

typedef COMPARISONROUTINE FAR *LPCOMPARISONROUTINE;

The pointersto item and new_item are of type LPCHAINLINK so they can match any
structures the programmer defines. Aswith the FOUNDROUTINE, the programmer is
responsible for casting item and new_item to the appropriate type(s) and for defining
how the comparison will be performed.

typedef BOOL FAR DELETEROUTINE (LPCHAINLINK item);
/** result = TRUE if routine successful **/

typedef DELETEROUTINE FAR *LPDELETEROUTINE;

The pointer to item is of type LPCHAINLINK so that it can match any structure the
programmer defines. Inside the comparison function, the programmer is responsible for
casting item to the appropriate structure type, for performing the clean-up, and for
determining whether the clean-up was successful.

Also provided are two defaults, in case the user just wants to pass NULL for the pointer
to the found routine or to the delete routine:

[** default found routine -- always returns TRUE **/
BOOL FAR AlwaysFound (LPCHAINLINK item, void FAR *comparisonValue);

[** default delete routine -- does nothing, always returns TRUE **/
BOOL FAR AlwaysDeleted (LPCHAINLINK item);

The Chain Manager 11-9

Extensible Array Data Structures

An extensible array structure identifies where the start of the array is located, how it isto
be allocated, and how it is to be extended.

typedef struct tagEXTARRAY
{void FAR *first_member; /* location of first member */
unsigned long member_count; /* number of membersin array */
unsigned long member_size; /* number of bytes per member */
unsigned long init_count; /* number of membersto alocate first time */
unsigned long extension_count; /* number of members to add when

extending */

void FAR *aloc_routine; [* pointer to allocation routine */
void FAR *extend_routine; [* pointer to extension routine */
void FAR *delete_routine; [* pointer to delete routine */
} EXTARRAY;

typedef EXTARRAY FAR *LPEXTARRAY;

typedef LPVOID FAR ALLOCARRAYROUTINE (LPEXTARRAY array);
typedef ALLOCARRAYROUTINE FAR *LPALLOCARRAYROUTINE;

typedef LPVOID FAR EXTENDARRAYROUTINE (LPEXTARRAY array);
typedef EXTENDARRAYROUTINE FAR *LPEXTENDARRAY ROUTINE;

typedef BOOL FAR DELETEARRAYROUTINE (LPEXTARRAY array);
/** result = TRUE if routine successful **/
typedef DELETEARRAYROUTINE FAR *LPDELETEARRAYROUTINE;

11-10

Chapter 11

Allocating,

Extending, and Deleting an Extensible Array

/***/

[** Initialize an extensible array:
Set pointers to functions to allocate, extend, and delete array,
Clear al pointers, countsto create an empty array
Returns TRUE if successful **/
BOOL InitializeExtArray (LPEXTARRAY array,
unsigned long initCount,
unsigned long memberSize,
unsigned long extCount,
LPALLOCARRAY ROUTINE alocRoutine,
LPEXTENDARRAY ROUTINE extendRoutine,
LPDELETEARRAY ROUTINE deleteRoutine);

/***/

/** Allocate an extensible array:
Set al pointers, counts, and attempt to allocate memory
Returns pointer to first array member if successful **/
LPVOID AllocExtArray (LPEXTARRAY array);

/***/

[** Extend an extensible array
Update all pointers, counts, and attempt to allocate memory
Returns TRUE if successful **/

LPVOID ExtendExtArray (LPEXTARRAY array);

Note: If ExtendExtArray () is called before AllocExtArray () has been called, the
software performs AllocExtArray () instead, ensuring that the array is allocated, if
possible.

/***/
[** Delete an extensible array

Returns TRUE if successful **/
BOOL DeleteExtArray (LPEXTARRAY array);

/***/

[** Get pointer to indicated member of extensible array
Returns pointer if valid, NULL if invalid or out of range **/
void FAR *GetExtArrayMemberPtr (LPEXTARRAY array, unsigned long index);

Note: The programmer is responsible for supplying routines to allocate, extend, and
delete the array. Examples are provided below for doing this on the heap.

The Chain Manager 11-11

Examples of Usage

Memory Management for Extensible Arrays

/***/

/** Allocate an extensible array on the heap,
Returns pointer to first nenber if successful **/

LPHVAO D FAR Al | ocat eHeapArray (LPEXTARRAY array)
{

unsi gned | ong newsi ze;

LPHVO D firstPtr;

/* initialize return value */
firstPtr = NULL;

if (array != NULL)

/* attenpt to allocate initial array */

if ((array->nmenber_size > 0) &&
(array->init_count > 0))

{

newSi ze = array->init_count * array->nenber_size;
firstPtr = waeap_Al |l ocPtr (hHeap,
GVEM _MOVEABLE | GVEM ZERO NI T,
newsi ze) ;

}

#i f def TRACE_HEAP_ARRAY
if (firstPtr)
debug (" Al |l ocat eHeapArray successful" endln);
el se
debug ("Al |l ocat eHeapArray fail ed" endln);
#endi f
/* return pointer, if successful */
return (firstbPtr);
} /* AllocateHeapArray */

/***/

/** Extend an extensible array on the heap,
Returns new pointer to first menber if successful **/

LPHVO D FAR Ext endHeapArray (LPEXTARRAY array)
{

unsi gned | ong newCount ;

unsi gned | ong newsi ze;

LPHVO D newFi r st ;

/* initialize return value */
newFi rst = NULL;

if (array != NULL)

/* if array is extensible, attenpt to reallocate */
if ((array->first_nenber != NULL) &&
(array->nmenber_size > 0) &&
(array->extensi on_count > 0))

11-12 Chapter 11

{

newCount = array->nenber_count +
ar r ay- >ext ensi on_count ;

newSi ze = newCount * array->nmenber_si ze;

newFirst = wHeap_ReAl | ocPtr (hHeap,
array->first_nenber,
GVEM _MOVEABLE | GVEM ZERO NI T,
newsi ze) ;

}

/* return pointer, if successful */
return (newrirst);
} /* ExtendHeapArray */

/***/

/** Delete an extensible array on the heap,
Returns TRUE if successful **/

BOOL FAR Del et eHeapArray (LPEXTARRAY array)

{
BOCL st at us;

/* initialize return value */
status = FALSE;

if (array != NULL)
if (array->first_menber != NULL)

/* free the menory used for the array */
wwHeap_FreePtr (hHeap, array->first_nenber);
status = TRUE;

}

/* indicate success or failure */
return (status);
} /* Del eteHeapArray */

The Chain Manager 11-13

Handling Linked Lists

The examples below use a generic item of the following form:

typedef struct tagl TEM
{CHAINLINK chain_link;
int address;
char name[20+1];
int contents;
int flags;
}ITEM;

/***/

/** Allocate a new | TEMwith indicated properties,
Return pointer to itemif successful, NULL otherw se **/
| TEM FAR *Al l ocltem (i nt new_addr, char *new_nane,
int new contents, int new flags)
{

| TEM FAR *I pltem

/* attenpt to allocate new item on heap */

I pltem = waHeap_Al |l ocPtr (hHeap,
GVEM_MOVEABLE | GVEM ZERO NI T,
si zeof (I TEM) ;

if (Ipltem

{

/* item successfully created, initialize it */
| pl tem >address = new_addr;

Istrcpy (lpltem >name, new_nane);

I pltem >contents = new contents;

I pltem >fl ags = new_fl ags;

/* return pointer to itemor NULL */
) oo B P
ocltem

/***/

/** Destroy indicated | TEM
Return TRUE if successful **/
BOOL FAR Del eteltem (LPCHAI NLI NK | pltem)

/* free itemfrom heap */
wwHeap_FreePtr (hHeap, Ipltem;
/* indicate successful */
return (TRUE);

} /* Deleteltem */

11-14 Chapter 11

/***/

[** Check whether item has indicated nane,
Return TRUE if match found **/
BOOL FAR StringFound (LPCHAI NLI NK | pChai n_Ii nk,
voi d FAR *| pConpari sonVal ue)
{

BOOL st at us;
char FAR *| pSt;
| TEM FAR *I pl tem

/* initialize return status */
status = FALSE;
/* cast paranmeters as appropriate structures */
Ipltem= (I TEM FAR *) | pChai n_li nk;
I pSt = (char FAR *) | pConpari sonVal ue;
/* check whether match was found, return indicator */
if (Istrcnpi (I pltem>nane, |pSt) >= 0)
status = TRUE;
/* indicate whether match was found */
return (status);
} /* StringFound */

/***/

[** Conpare indicated itenl to iteng,
Return -1 if <, 0if = +1if > */ if iteml < itenR **/
int FAR StringConpare (LPCHAINLINK | pChai n_Iink1,
LPCHAI NLI NK | pChai n_l i nk2)
{

int retval;
I TEM FAR *| plteml, FAR *|plten®;

/* cast paranmeters as appropriate structures */
Ipltenl = (I TEM FAR *) | pChai n_Il i nk1;
Iplten2 = (I TEM FAR *) | pChai n_I i nk2;
/* conpare itens, set return value */

retval = Istrcnpi (I pltenil->nane, |plten2->nane);
if (retval > 0)

retval = 1;
if (retval < 0)

retval = -1;

return (retval);
} /* StringCompare */

The Chain Manager

11-15

/* Exanpl es of chain operations */

CHAI N peopl e;

| TEM FAR *| pl tem

CHAI NSCANNER i t em scanner ;
char search_nane[21];

/* initialize the list of people */
InitializeChain (&people);

/* allocate several entries and add to Ilist;

note that the list ends up sorted,

but we’'re not explictly sorting, here */
Ipltem= Allocltem (3579, "Fred", 7, OxF3);
Appendl temAt Tai | (&people, Ipltem;
Ipltem= Allocltem (2468, "Jane", 2, 0xO0B);
Appendl temAt Tai | (&people, Ipltem;
Ipltem= Allocltem (2473, "Jane", 4, 0x37);
Appendl temAt Tai | (&people, Ipltem;
Ipltem= Allocltem (1234, "Joe", 5, 0x00);
Appendl temAt Tai | (&people, Ipltem;

/* find all itens with indicated name */
strcpy (search_nane, "Jane");
Ipltem = FindFirstltem (&peopl e, SCAN_FROM HEAD,
StringFound, (LPSTR) search_nane,
& tem scanner);
while (Ipltem {
/* display item and address */
debug ("lItem found with name %s has address %",
(LPSTR) I pltem >name, (int) |pltem >address);
/[* find next item if any */
I pltem = FindNextltem (& tem scanner);

}

/* create new itemand insert in sorted list */
Ipltem= Allocltem (9742, "George", 3, Ox77);
Insertltem nM ddl e (&people, |pltem

Stri ngConpare, SCAN_FROM HEAD) ;

/* delete certain itens fromlist, one by one */
Ipltem = FindFirstltem (&peopl e, SCAN _FROM HEAD,
NULL, NULL, & tem scanner);
while (Ipltem {
if (Ipltem>flags >= 0x50) {
Unchai nltem (&peopl e, (LPCHAINLINK) |pltem;
wwHeap_FreePtr (hHeap, Ipltem;

}
/[* find next item if any */
I pltem = FindNextltem (& tem scanner);

}

/* delete all itenms in list */
I pltem = Del eteChain (&people, Deleteltem;

11-16 Chapter 11

12-1

CHAPTER 12

DOE, FaztDDE,

R

/0O Server Toolkit Data

Device Specific

Structures

The /O Server Toolkit contains several structures associated with the API functions.
These structures are defined in alphabetic order in this chapter.

Contents
m Data Structure Definitions

12-2 Chapter 12

Data Structure Definitions

PTVALUE

#include " protypes.h"

typedef union {

DISC disc;
INTG intg;
REAL real;
WHMEM hString;

} PTVALUE;

The PTVALUE union contains a value to be passed between the I/O Server Toolkit and
the server. The element of the union which contains the value is determined by the

point’stype.

Element Description

disc Byte containing value for a discrete point.

intg Long-word containing value for an integer point.

real Float containing value for areal point.

hString Memory handle for string value.

Comments Do not manipulate the hString value directly. Use the

string manipulation functions StrVal SetString(),
StrValSetNString(), StrValStringL ock(),
StrValStringUnlock(), and StrValStringFree().

I/O Server Toolkit Data Structures 12-3

WW_AB_INFO

#include "wwcomdlg.h"

typedef struct tag?WW_AB_INFO {

HWND hwndOwner;
char far *szDriverName;
char far *szld;

char far *szVersion;
char far *szCopyright;
HICON hlcon;

char *szComment;

char reserved[12] ;

} WW_AB_INFO, FAR *LPWW_AB_INFO;

The WW_AB_INFO structure is used to configure the Wonderware About box dialog
invoked by acall to WWDisplayAboutBox() or WW DisplayAboutBoxEXx().

Element

Description

hwndOwner
szDriverName

szld

szVersion

szCopyright

hicon

szComment

reserved[12]

Comments

Handle of window which owns the dialog box.
Pointer to a string containing the server name.

Pointer to a string describing the purpose of the server.
For example, "GE Fanuc Series 90 Protocol”.

Pointer to a string containing the version number for the
server. For example, "5.1".

Pointer to a string containing the year for the copyright
information. For example, "1995".

Handle of server icon to be displayed within the dialog
box.

Pointer to a string containing a comment to be displayed
in the dialog box.

Reserved buffer space. Currently unused, but should be
initialized to O by caller.

None.

12-4

Chapter 12

WW_CONFIRM

#include "wwcomdlg.h"

typedef struct tag?WW_CONFIRM {

HWND hwndOwner;
char far *szCfgPath;

int i SzeOfszCfgPath;
char far *szDriverName;
char reserved[16] ;

} WW_CONFIRM, FAR *LPWW_CONFIRM;

The WW_CONFIRM structure is used to configure the Save Configuration dialog
invoked by acall to WWConfirm(). Thisdialog is used to confirm the location for
saving server configuration information.

Element Description

hwndOwner Handle of window which owns the dialog box.

szCfgPath Points to a string which contains the path where the
configuration fileisto be saved. Changes typed by the
user will be placed in this buffer when WW Confirm()
returns.

iSizeofszCfgPath Maximum allowed length for configuration file path

szDriverName
reserved| 16]

Comments

name.
Pointer to string containing server name.

Reserved buffer space. Currently unused, but should be
initialized to O by caller.

None.

I/O Server Toolkit Data Structures 12-5

WW _CP_DLG_LABELS

#include "wwcomdlg.h"

typedef struct tagtWW_CP _DLG_LABELS{
HWND hwndOwner;
char far *szDriverName;
LPWW_CP_PARAMS IpDefaultCpParams,
WW_CP_PARAMS IpCpParams;
int iNumPorts;
BOOL bAllowBaud110;
BOOL bAllowBaud300;
BOOL bAllowBaud600;
BOOL bAllowBaud1200;
BOOL bAllowBaud2400;
BOOL bAllowBaud4800;
BOOL bAllowBaud9600;
BOOL bAllowBaud14400;
BOOL bAllowBaud19200;
BOOL bAllowBaud38400;
BOOL bAllowBaud56000; /* not used at thistime */
BOOL bAllowBaud57600; /* not used at thistime */
BOOL bAllowBaud115200; /* not used at thistime */
BOOL bAllowBaud128000; /* not used at thistime */
BOOL bAllowDatabits7;
BOOL bAllowDatabitsS;
BOOL bAllowStophitsl;
BOOL bAllowStophits2;
BOOL bAllowParityEven;
BOOL bAllowParityOdd;
BOOL bAllowParityNone;
BOOL bAllowParityMark;
BOOL bAllowParitySpace;
char far *szCustom1BoxLabel;
char far *szCustoml1RadiollLabel;
char far *szCustoml1Radio2Label;
struct tagWWW_CP_DLG_LABELS FAR *IpRadio2DIgLabels;
char far *szCustom2BoxLabel;
char far *szCustom2RadiollLabel;
char far *szCustom2Radio2Label;
char far *szCustom3BoxLabel;
char far *szCustom3RadiollLabel;
char far *szCustom3Radio2Label;
char far *szChecklLabel;
char far *szCheck2Label;
char far *szCustomEditLabel;
UINT uCustomEditBase;
UINT uCustomEditLowLimit;
UINT uCustomEditHighLimit;
FARPROC IpfnConfigureSave;
int ilnternalUseOnly;
char reserved[16] ;
} WW_CP_DLG_LABELS, FAR*LPWW_CP DLG_LABELS;

12-6

Chapter 12

The WW_CP _DLG_LABELS structure is used with the WW ConfigureComPort()
function to control the serial port configuration dialog. This structure contains
numerous boolean flags used to enable or disable various radio buttons or entire group
boxes. The convention for group boxes and labeled controlsisthat if the label field is
NULL, the group box and its contents are hidden from view.

Element

Description

hwndOwner
szDriverName

IpDefaultCpParams

IpCpParams

iNumPorts

bAllowBaud110

bAllowBaud300

bAllowBaud600

bAllowBaud1200

bAllowBaud2400

bAllowBaud4800

bAllowBaud9600

bAllowBaud14400

Handle of window which owns the dialog box.
Pointer to string containing server name.

Pointer to aWW_CP_PARAM S structure which
contains the default port parameter settings. These
settings will be applied to the current selection when the
"Defaults’ buttonisselected. This structure should be
initialized by the caller.

Pointer to array of WW_CP_PARAM S structures. This
array containstheinitial and final settings for all
communications ports. There isone entry for each
communications port in the system.

Integer value indicating total number of entriesin the
IpCpParams array.

Boolean value indicating whether the radio button for
110 baud should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for
300 baud should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for
600 baud should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for
1200 baud should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for
2400 baud should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for
4800 baud should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for
9600 baud should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for
14400 baud should be enabled. A value of TRUE will
enable the button.

I/O Server Toolkit Data Structures 12-7

Element

Description

bAllowBaud19200

bAllowBaud38400

bAllowBaud56000
bAllowBaud57600
bAllowBaud115200
bAllowBaud128000
bAllowDatabits7?

bAllowDatabits8

bAllowStopbitsl

bAllowStopbits2

bAllowParityEven

bAllowParityOdd

bAllowParityNone

bAllowParityMark

bAllowParitySpace

szCustoml1BoxLabel

szCustoml1RadiollLabel

Boolean value indicating whether the radio button for
19200 baud should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for
38400 baud should be enabled. A value of TRUE will
enable the button.

Not supported at thistime.
Not supported at thistime.
Not supported at thistime.
Not supported at thistime.

Boolean value indicating whether the radio button for 7
data bits should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for 8
data bits should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for 1
stop bit should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for 2
stop bits should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for
even parity should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for
odd parity should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for no
parity should be enabled. A value of TRUE will enable
the button.

Boolean value indicating whether the radio button for
mark parity should be enabled. A value of TRUE will
enable the button.

Boolean value indicating whether the radio button for
space parity should be enabled. A value of TRUE will
enable the button.

Pointer to character string for the first custom group box
label. If NULL, no first custom group box will be

displayed.
Pointer to character string for first radio buttonin first

custom group box. Only used if szCustom1BoxLabel is
not NULL.

12-8

Chapter 12

Element

Description

szCustoml1Radio2Label

IpRadio2DIgLabels
szCustom2BoxLabel

szCustom2RadiolLabel

szCustom2Radio2Label

szCustom3BoxLabel

szCustom3RadiolLabel

szCustom3Radio2Label

szChecklLabel

szCheck2Label

szCustomEditLabel

uCustomEditBase

uCustomEditLowLimit

uCustomEditHighLimit

IpfnConfigureSave

Pointer to character string for second radio button in first
custom group box. Only used if szCustom1BoxLabel is
not NULL.

Currently unused.

Pointer to character string for the second custom group
box label. If NULL, no second custom group box will
be displayed.

Pointer to character string for first radio button in second
custom group box. Only used if szCustom2BoxLabel is
not NULL.

Pointer to character string for second radio button in
second custom group box. Only used if
szCustom2BoxLabel isnot NULL.

Pointer to character string for the third custom group box
label. If NULL, no third custom group box will be

displayed.

Pointer to character string for first radio button in third
custom group box. Only used if szCustom3BoxLabel is
not NULL.

Pointer to character string for second radio button in
third custom group box. Only used if
szCustom3BoxLabel isnot NULL.

Pointer to character string for the first custom check box
label. 1f NULL, no first custom check box will be

displayed.

Pointer to character string for the second custom check
box label. If NULL, no second custom check box will
be displayed.

Pointer to character string containing the label for the
custom edit control. I1f NULL, custom edit control will
be displayed.

Indicates radix of the number system for custom edit
control. For example, 10 for decimal, 16 for hex, etc.

Indicates lowest allowed number to be entered for
custom edit control.

Indicates highest allowed number to be entered for
custom edit control.

Points to a function which will be called when the port
settings are to be saved. This function will be called
when the "Save" button is selected or when the port
settings have been modified and the user selects a new
port. No arguments are passed to this function. This
function is expected to write al configuration
information contained in the [pCpParams array.

I/O Server Toolkit Data Structures 12-9

Element Description
ilnternalUseOnly Reserved for internal use. Do not use.
reserved| 16] Reserved buffer space. Currently unused, but should be

initialized to O by caller.

Comments None.

12-10 Chapter 12

WW_CP_PARAMS

#include "wwcomdlg.h"
typedef struct tag?WW_CP_PARAMS {

unsigned long uBaud,;
unsigned long uDataBits;
unsigned long uStopBits;
unsigned long uParity;
unsigned long uReplyTimeout;
unsigned long uCustomEdit;
short bCustom1Radio;

short bCustom2Radio;

short bCustom3Radio;

short bCheckd,;

short bCheck;

char reserved[30]; /* pad to 64 bytes*/

} WW_CP_PARAMS, FAR *LPWW_CP_PARAMS;

The WW_CP_PARAMS structure contains the configuration settings for a serial
communications port.

Element Description

uBaud Contains the WWCOMDLG constant indicating the
baud rate setting.

uDataBits Contains the WWCOMDLG constant indicating the
number of data bits setting.

uStopBits Contains the WWCOMDLG constant indicating the
number of stop bits setting.

uParity Contains the WWCOMDLG constant indicating the
parity setting.

uReplyTimeout Contains the reply timeout in seconds.

uCustomEdit Contains the setting for the custom edit control.

bCustomlRadio Boolean flag indicating which radio button in the first

custom group box is selected. A value of TRUE
indicates that the first radio button is selected. A value
of FALSE indicates that the second radio buttonis
selected.

bCustom2Radio Boolean flag indicating which radio button in the second
custom group box is selected. A value of TRUE
indicates that the first radio button is selected. A value
of FALSE indicates that the second radio button is
selected.

I/O Server Toolkit Data Structures 12-11

Element

Description

bCustom3Radio

bCheckl

bCheck2

reserved[30]

Comments

Boolean flag indicating which radio button in the third
custom group box is selected. A value of TRUE
indicates that the first radio button is selected. A value
of FALSE indicates that the second radio button is
selected.

Boolean flag indicating whether the first custom
checkbox is selected. A value of TRUE indicatesthat it
is selected.

Boolean flag indicating whether the second custom
checkbox is selected. A value of TRUE indicatesthat it
is selected.

Reserved buffer space. Currently unused, but should be
initialized to O by caller.

None.

12-12 Chapter 12

WW_SELECT

#include "wwcomdlg.h"

typedef struct tagWWW_SELECT {
HWND hwndOwner;
char far *<zTitle;
char far *szGroupBoxLabel;
GETLISTHEADPROC IpfnGetListHead;
GETNEXTNODEPROC |pfnGetNextNode;
GETNODENAMEPROC IpfnGetNodeName;
ADDNODEPROC IpfnAddNode;
CONFIGNODEPROC IpfnConfigNode;
DELETENODEPROC IpfnDeleteNode;
BOOL bAddDel eteModifyEnabled;
unsigned char bDoNotConfirmDel etes;
char reserved[15] ;

} WW_SELECT, FAR *LPWW_SELECT;

The WW_SELECT structure is used with the WW Select() function to populate and
manipulate alist box of items. Thislist box istypically used for presenting alist of 1/0
topics. Some servers also use this listbox for presenting alist of interface boards for
perusal. The dialog box associated with the list contains buttons for adding, modifying,
and deleting entries, as well as the standard listbox traversal operations (arrow keys,

etc.)

Element Description

hwndOwner Handle of window which owns the dialog box.

sZTitle Pointer to a string to be placed in the title bar of the
dialog.

szGroupBoxLabel Pointer to a string to be used to label the list box.

IpfnGetListHead Pointer to a function which will be called to obtain a
pointer to the head entry of the list.

IpfnGetNextNode Pointer to a function which will be called to obtain the
successor to agiven list entry.

IpfnGetNodeName Pointer to a function which will be called to obtain the
name of agiven list entry.

[pfnAddNode Pointer to a function which will be called to add a new

entry to thelist. Thisfunction iscalled in responseto
the "New..." button and will most likely put up an
application dialog box for collecting information
regarding the new item.

I/O Server Toolkit Data Structures 12-13

Element

Description

IpfnConfigNode

IpfnDeleteNode

bAddDel eteModifyEnabled

bDoNotConfirmDeletes

reserved 15]

Comments

Pointer to a function which will be called to modify an
existing entry inthelist. Thisfunctioniscaledin
response to the "Modify..." button and will most likely
put up an application dialog box for collecting
information regarding the item.

Pointer to a function which will be called to delete an
existing entry inthelist. Thisfunctioniscalledin
response to the "Delete” button. It isup to the
application to determine if the delete operation is
allowed. For example, you would not want to delete an
adapter card which isin use by any topic.

Boolean value indicating whether the Add and Delete
dialog buttons will be enabled. If TRUE, these buttons
will be enabled. This parameter will be passed as a
parameter to the IpfnConfigNode callback function.

Boolean value indicating whether a del ete confirmation
dialog should be automatically displayed. If thisvalueis
FALSE, the delete confirmation dialog will be displayed.

Reserved buffer space. Currently unused, but should be
initialized to O by caller.

None.

12-14

Chapter 12

WW_SERV_PARAMS

#include "wwcomdlg.h"

typedef struct tag?WW_SERV_PARAMS {

HWND hwndOwner;

char far *szCfgPath;

int i SzeOfszCfgPath;

char far *szDriverName;

BOOL bIndefWriteRetrySupported;
BOOL bIndef\WriteRetry;

BY TE bPreventChanges;

BY TE bNotService;

BYTE bCFGfileUnused;

BY TE nNTServiceSetting;

char far *szCaption;
char reserved[8] ;
} WW_SERV_PARAMS, FAR *LPWW_SERV_PARAMS;

The WW_SERV_PARAMS structure is used with the WW Configur eSer ver () function
to initialize and manipulate the " Server Settings' dialog. Thisdialog is used to view and
set server settings such as configuration file path and protocol timer tick.

Element Description

hwndOwner Handle of window which owns the dialog box.

szCfgPath Pointer to string containing the configuration file path
name.

iSzeOfszCfgPath Maximum allowed length for configuration file path

szDriverName
bl ndefWriteRetrySupported

bl ndefWriteRetry

bPreventChanges

bNotService

bCFGfileUnused

NNTServiceSetting

szCaption

name.
Pointer to string containing server name.

Boolean value indicating whether the server supports
indefinite retries of failed writes. If TRUE, this option
will be provided to the user.

Boolean value indicating whether the server should retry
failed writesindefinitely. Only appliesif the
bl ndefWriteRetrySupported flag is TRUE.

Boolean value indicating whether modifications should
be disallowed. If TRUE, the OK button will be disabled,
making the dialog read-only.

Boolean value indicating whether server can be
configured asan NT service. If TRUE, checking the
“Run automatically as NT service” checkbox will
generate an error message.

Boolean value indicating whether a configuration fileis
used. If TRUE, the“Configuration File Directory” edit
box will be disabled.

Integer value, combining several flags. Thisvalueis
returned as a result from WW ConfigureServer () to
indicate whether changes have been made for running
the server asan NT service and with what success.

Pointer to a string that is used as the title caption for the
dialog. If NULL, the default caption is used.

I/O Server Toolkit Data Structures 12-15

reserved| 8] Reserved buffer space. Currently unused, but should be
initialized to O by caller.

Comments None.
The value returned in NNTServiceSetting is an OR of the following bits:

#define WWNTSERVICE | S SERVICE (0x01) /* set to run as NT service */
#defi ne WV NTSERVI CE_CHANGED (0x02) /* setting was changed */
#defi ne WW NTSERVI CE_ERROR (0x04) /* unable to establish new

service settings */

12-16 Chapter 12

13-1

DOE, FaztDDE,

R

Common Dialogs

Device Specific
Protocal

CHAPTER 13

This chapter describes usage of WWDLG32A, a Windows 98/NT/2000 Dynamic Link
Library (DLL), which provides a common look and feel throughout the I/0O Server family.

Contents

Main Menu

Com Port Settings
Topic Definition
Server Settings
Configuration Files
Convenience Functions

13-2 Chapter 13

Main Menu

Serial Servers

Serial servers should use the following standardized main menus.

L MODBUS
Configure Wal=l]

Corn Part Settings...
Topic Definition...
Server Settings...

[ji MDDBLIS

Configure

LContents
How to Use Help

About MODEUS..

Board-based Servers

Board-based servers are nearly identical, with the exception of the wording on the
interface settings menu item:

* MBPLUS = =] 3
Configure Wt

Adapter Card Settings. ..

Topic: Definition...

Server Settings...

Common Dialog 13-3

Com Port Settings
=ZCustomBoxLabel @

srCustom] Radiol Lakel

sz Custom] RadioZLakel IpfnConfigureSave

Commumication Port Settings

-:m Part: ICDM1 j

bt lovyBiact 10 g
i : ave
palowBausson || Repl Timeout: [3 sece| (F RTU v

=k
=]
]
o

Dane

b lloeey BaudEo0 Defaults

ik

—Baud Rate
S0 Craon o 1200 (2400

bl Baud 35400
4800 67 9R00 € 4400 19200 € 25400
ballowDsatabitsT — Data Bits Stop Bits
ballowDatabitss
L@ R O ’V w1 2

ballowParityEven |- Parity
hallowParityhiark © Even 0Odd & More ¢ Mak ¢ Space

ballovweParityhone
ballowParityCcdd

hallovwParity Space
ballowe Stopkits
ballow Stophits2

Serial port configuration is stored inaWW_CP_PARAM S structure. The Wonderware
servers read and write this structure directly to a configuration file. In addition, the
configuration dialog used by WW ConfigureComPort() uses this structure to
communicate settings with the caller.

typedef struct tagWN CP_PARAMS {
unsi gned | ong uBaud;
unsi gned | ong ubDat aBi ts;
unsi gned | ong uSt opBits;
unsi gned | ong uParity;
unsi gned | ong uRepl yTi meout ;
unsi gned | ong uCust onEdi t ;

short bCust onlRadi o;

short bCust on2Radi 0;

short bCust on8Radi 0;

short bCheck1;

short bCheck2;

char reserved[30] ; /* pad to 64 bytes */

} WV CP_PARAMS, FAR *LPWV CP_PARAVS;

13-4

Chapter 13

The values stored in the fields are generally dialog control IDs. Trandation functions are
provided to map Windows constants like CBR_9600, etc., to the proper values. The
following translators are for mapping the Windows constants for word size, stop bits,
parity, and baud rate to the WW_CP_PARAM S equivalents:

U NT W NAPI WAMTr ansl at eW nDat aToCDl g(Ul NT) ;

U NT W NAPI WAMTr ansl at eW nSt opToCDl g(Ul NT) ;

U NT W NAPI WAMTr ansl at eW nParityToCD g(U NT) ;
U NT W NAPI WAMTr ansl at eW nBaudToCDl g(Ul NT) ;

The following trandators are for mapping the WW_CP_PARAM S constants for word
size, stop hits, parity, and baud rate:
U NT W NAPI WAMT ansl at eCDl gToW nDat a(Ul NT) ;

U NT W NAPI WAMT ansl at eCDl gToW nSt op(Ul NT) ;
U NT W NAPI WAMTr ansl at eCDl gToW nParity(U NT) ;

U NT W NAPI WAMTr ansl at eCDl gToW nBaud(Ul NT) ;

The custom fields are for parameters which are peculiar to the particular type of serial
server. MODBUS, for instance, uses these fields to indicate whether the communication
port is connected to an ASCII- or an RTU- speaking host.

The appearance of the seria port configuration dialog is controlled by the
WW_CP_DLG_LABELSstructure. This structure contains numerous boolean flags used
to enable or disable certain radio buttons, e.g. bAllowParityMark, or entire group boxes,
e.g. szCustoml1BoxLabel. The convention for group boxes and labeled controlsisthat if
the label field is NULL, the group box and its contents are hidden from view.

Common Dialog 13-5

The following illustration shows the locations of the custom group boxes. Some fields
within the group boxes are mutually exclusive, and are therefore obscured in the picture.

(‘szCustom1Radio Label

=ziustom BoxLabel

Commumication Port Settings

Custom]
g?gom Part: ICDM1 v|

= Radiol

Reply Timeaut: |3 secs| CustomEdit :l Save

Defaults

szCustomEditLakel)

Daone

i

—Baud Rate
€00 300 O B00 €0 1200 2400 | Custom2— szCustom2BoxLakel
4300 @ 9E00 € (4400 49200 © spapn | © Radiol—{szCustom2Radiol Label)

" Radio2-——H szCustom2Radio2Label

— Data Bits Stop Bits
7 v8 ’V =1 2 ~ Custama= szCustom3BoxLabel
. - szCustom3Radiol Label
— Parity ' Radiol—H S2CheckiL ahel
 Even ¢ Odd & Mone ¢ Mak ¢ Space " Radio2- szCustom3Radin2Label
szCheck2lakel

Theinitia settingsfor all ports are passed in the [pCpParamg[] array in the
WW_CP_DLG_LABELS tructure. Thisarray of WW_CP_PARM S structures has one
entry for each communication port in the system. There should be one entry in the
IpCpParams array for each entry in the "Com Port" list box. The size of the IpCpParams
array isindicated in the iNumPorts field. Changes to port configuration are placed in the
appropriate |pCpParams entry for the port selected by the list box.

The "Defaults" button copies the settings from the default port parameters structure
IpDefaultCpParams. This structure should be initialized appropriately.

Pressing the "Save" button invokes the IpfnConfigureSave callback function. Likewise, if
the port settings have been modified and the user selects a new port in the "Com Port" list
box, the IpfnConfigureSave callback is invoked after confirmation from the user. There are
no arguments to IpfnConfigureSave. The save function is expected to write all
configuration information in the |pCpParams array.

13-6 Chapter 13

The CustomEdit control isintended for entering a numeric value. The uCustomEditBase
field determines the radix for the value (e.g. uCustomEditBase of 16 will allow hex
numbers to be entered). The uCustomEditLowLimit and uCustomEditHighLimit are used
by WW ConfigureComPort to validate the entry. Values below the LowLimit or above
the HighLimit will be rejected (with a message box.)

The WW_CP_DLG_L ABEL S structure is shown below in its entirety.
typedef struct tagWV CP_DLG LABELS {

char far *szC
HVWND hwndOmner ;
char far *szDri ver Nane;

LPWV CP_PARAMS | pDef aul t CpPar ans;
LPWV CP_PARANMS | pCpPar ans;

i nt i NunPorts;

BOOL bAl | owBaud110;

BOOL bAl | owBaud300;

BOOL bAl | owBaud600;

BOOL bAl | owBaud1200;

BOOL bAl | owBaud2400;

BOOL bAl | owBaud4800;

BOOL bAl | owBaud9600;

BOOL bAl | owBaud14400;

BOOL bAl | owBaud19200;

BOOL bAl | owBaud38400;

BOOL bAl | owBaud56000; /* not used at this tinme */
BOOL bAl | owBaud57600; /* not used at this tinme */
BOOL bAl | owBaud115200; /* not used at this tinme */
BOOL bAl | owBaud128000; /* not used at this tinme */
BOOL bAl | owDat abi ts7;

BOOL bAl | owDat abi t s8;

BOCL bAl | owSt opbi t s1;

BOCOL bAl | owSt opbi t s2;

BOCOL bAl | owPari t yEven;

BOCL bAl | owPari t yQdd;

BOCL bAl | owPar i t yNone;

BOCL bAl | owPari t yMar k;

BOCL bAl | owPari t ySpace;

char far szCust omlBoxLabel ;

char far *szCust onlRadi olLabel ;

char far *szCust onlRadi o2Label ;

struct tagWV CP_DLG LABELS FAR
| pRadi 02Dl gLabel s;/ Not used at this tine */

char far *szCust on2BoxLabel ;
char far *szCust on2Radi olLabel ;
char far *szCust on2Radi o2Label ;
char far *szCust onBBoxLabel ;
char far *szCust onBRadi olLabel ;
char far *szCust onBRadi o2Label ;
char far *szChecklLabel ;

char far *szCheck2Label ;

char far *szCust onEdi t Label ;

Ul NT uCust onEdi t Base;

Ul NT uCust onEdi t LowLi mi t;
Ul NT uCust onEdi t H ghLinmi t;
FARPROC | pf nConfi gur eSave;

i nt i I nternal UseOnly;
char reserved[16] ;

} WV CP_DLG LABELS, FAR *LPWV CP_DLG LABELS;

Common Dialog 13-7

The"ilnternalUseOnly" and "reserved" fields are for Wonderware use only. Before using,
always initialize these fields to zero (a memset(...,0,sizeof WW_CP_DLG_LABELYS)
works nicely) to ensure compatibility with future versions of the WWDLG32A.

voi d W NAPI WAFor mCpMbdeSt ri ng(LPWV CP_PARAMS, int, char FAR *);

Given aport parameter array, and a port number (1-based, i.e., 1is COM1), return a
string suitable for use in a Windows OpenCom call (e.g. "COM1:9600,8,N,1").

voi d W NAPI WA ni t ConPor t ConboBox(HWND, int i NunPorts, int
i dControl);

Given the control 1D of acombo box (typically CI_TEXT_COMM _PORT for the
standard Communication Port Settings dialog) and the number of ports addressable for the
platform (typically 9 for Windows 3.1 and 32 for Windows NT), load the combo box
with the names of the ports (e.g. COM1, COM2...COM 32).

BOOL W NAPI WWAConf i gur eConPor t (LPWA CP_DLG LABELS) ;

Given the dialog labels structure, display and run the "Communication Port Settings'
dialog.

13-8 Chapter 13

Topic Definition

Topic Definition
{ szGroupBoxLabel ——T opics:
IpinGetListHead Mew... I— Ipfnddoiode
Iptniethlexthode i lifi.. I— Ipfrconfighlode
IpfnGethodename
[elete I——(IpfnDeletetode)

The WW_SELECT data structure and WW Select are used for populating and
manipulating a listbox of items. Thislistbox istypically used for presenting alist of
configured topics. Some servers also use thislistbox for presenting alist of interface
boards for perusal. The dialog box associated with the list contains buttons for adding,
modifying, and deleting entries, as well as the standard listbox traversal operations (arrow
keys, etc.)

The structure WW_SEL ECT contains the parameters for the WW Select listbox. The
fields of WW_SELECT are defined as follows:

HWD hwndOwner ;
Thisisthe window handle of the caller.
char far *szTitle;

Thisisthetitle string to placein the title bar of the selection dialog (" Topic Definition” in
the above dialog.)

char far *szG oupBoxLabel ;

Thisisthe label to place above the list box ("Topics' in the above dialog.)
typedef void far *(CALLBACK *CGETLI STHEADPROC) (voi d);
CETLI STHEADPROC | pf nGet Li st Head,;

This entry point is called to obtain a pointer to the list head. WW Select does not interpret
the pointers representing listbox entries, other than passing them back to the manipulator
functions represented here.

typedef void far *(CALLBACK *GETNEXTNODEPROC) (void far *);
GETNEXTNODEPRCC | pf nGet Next Node;

Get the successor to agiven list node.

typedef char far *(CALLBACK * GETNODENAMEPRCC) (void far *);
GETNCODENAMEPRCC | pf nGet NodeNarre;

Get the name of agiven node, (i.e. the Key field) for use in the listbox.

typedef void (CALLBACK * ADDNODEPROC) (HWAD) ;
ADDNODEPRCC | pf nAddNode;

Common Dialog 13-9

Add anew node to thelist. Thisroutineiscalled in response to the "New..." button, and
will most likely need to put up an application specific dialog box for collecting
information regarding the new item. Note that there are no list element parameters to the
AddNode function -- it is up to the application to find the proper position in thelist for the
new element.

BOOL bAddDel et eModi f yEnabl ed;

If thisvalue is TRUE, then the Delete and Modify dialog buttons will be enabled.
Otherwise, the Delete and Modify dialog buttons will be disabled and the IpfnConfigNode
and IpfnDeleteNode callbacks will never beinvoked. Note that the Delete and Modify
buttons are also disabled when the listbox is empty.

unsi gned char bDoNot Confi r mDel et es;

If thisvalue is FALSE, then prior to calling the IpfnDeleteNode, the following
confirmation dialog will be posted when the Delete button is pressed:

MODBUS |]
@ Really delete "ModSlaves"?

If the value is TRUE, the confirmation dialog will not appear. If the confirmation dialog is
enabled, and the user selects the "No" button, the IpfnDeleteNode function will not be
called. Itissometimes desirable to perform specialized feasibility checking before
presenting the confirmation dialog. In this case, enable the bDoNotConfirmDeletes flag,
then perform any feasibility checking in the IpfnDeleteNode function before presenting
your own confirmation dialog. (See the IpfnDeleteNode example, below.)

typedef void (CALLBACK * CONFI GNODEPRQOC) (HWAD, void far *, BOOL);
CONFI GNODEPRCC | pf nConf i gNode;

Configure the given list entry. In general, thiswill put up the same dialog as for the
"New..." button, and will initialize the dialog with the values from the given entry. Itis
reasonable for the user to be allowed to change the name of the entry, thereby creating a
new entry. Thisisequivalent to a"New..." operation.

typedef void (CALLBACK * DELETENODEPROC) (HWAD, void far *);
DELETENODEPRCC | pf nDel et eNode;

Delete the given entry. Called in response to the "Delete” button. It isup to the
application to determine if the operation is possible or desirable. For example, the
MBPLUS server uses the WW Select listbox for listing SA85 adapter cards. The
IpfnDeleteNode callback in this case checks to seeif the given adapter card isin use by
any topics. If so, the user is notified and the card is not deleted.

char reserved[15];

Expansion spaceis reserved in the WW_SEL ECT structure. Alwaysinitialize this
reserved space to 0 to ensure compatibility with future versions of WWDLG32A.

BOOL W NAPI WABel ect (LPWW SELECT) ;

Invoke the WW Select() function with the completed WW_SEL ECT structure to display
and process the selection listbox.

13-10

Chapter 13

Server Settings

PBrotocol Timer Tick: IED mzec
™ HetDDE being used Cancel |

LConfiguration File Directory:
=zCfgPath -
iSize0fszCigPath CHI0Server

nTServiceSetting Start autarnatically &z Windows MT Service

The"1/O Server Settings' dialog is one of the simplest dialogsin the WWDLG32A. In
response to the " Server Settings..." menu item, the server should initialize a
WW_SERV_PARAM S structure with the HWND of the main window, a buffer
containing the initial configuration path name (a backslash terminated directory name), the
size of the buffer, the name of the driver, and a flag indicating whether the server can
support the "Server asa service" capability.

The server keeps the configuration path name as a Windows "ProfileString" entry. Inthe
absence of a profile string (e.g. the first time the server is run) the current working
directory is provided as theinitia value for this string. The values for "Protocol Timer
Tick" and "NetDDE being used" and " Start automatically..." are automatically maintained
asthe"Profilelnt" entries "Protocol Timer", "ValidDataTimeout". The "Protocol Timer"
valueis suitable for use in the call to the Toolkit routine SysTimer SetupProtTimer. The
"NetDDE being used" flag setsthe "ValidDataTimeout" profile entry (an integral value) to
avalue which is suitable for use in the ProtGetValidDataTimeout Toolkit callback. The
setting for whether the server isan NT serviceis stored in the registry in
HKEY_LOCAL_MACHINE\SOFTWARE\WONDERWARE\<server registry
name>\NTSERVICE and in

HKEY_LOCAL_MACHINE\SY STEM\CurrentControl Set\Services\<server registry
name>.

Common Dialog 13-11

To ensure compatibility with future versions of WWDLG32A, always initialize the
reserved areato zero.

typedef struct tagWV SERV_PARAMS {
HWND hwndOmer; /* ldentifies Wndow that owns the
di al og box */

char far *szCfgPath; /* points to a buffer that holds
pat hnane */

i nt i Si zeOf szCf gPat h;

char far *szDri ver Nane;

BOCL bl ndef Wit eRet r ySupport ed;
BOCL bl ndef WiteRetry;

BYTE bPr event Changes;

BYTE bNot Ser vi ce;

BYTE bCFG i | eUnused;

BYTE nNTSer vi ceSet ti ng;

char far *szCaption;

char reserved[8] ;

} VWV SERV_PARAMS, FAR *LPWN SERV_PARAMS;
BOOL W NAPI WAConf i gur eSer ver (LPWV SERV_PARANS) ;

WW ConfigureServer puts up the "Server Settings' dialog box, initialized with the values
from the given LPWW_SERV_PARAM S structure and the above mentioned WIN.INI

profile settings. This function returns TRUE if the OK button was pressed, otherwise it
returns FALSE.

The returned value in NNTServiceSetting can be examined to determine whether the server
has been configured as a Windows NT service, whether that configuration has changed,
and whether there was any problem updating the system.

13-12

Chapter 13

Configuration Files

LConfiguration File Directany: Ok I
C:A0Servert, |
Drefaults

[V | ek this the default canfiguration file

szCigPath
iSizeCfzzCigPath

The " Save Configuration" dialog is a convenience dialog. The server should put up this
dialog when a" Save" operation is underway, and the configuration file does not exist in
the named directory. Thisisthe last chance for the user to avoid putting a configuration
file in the wrong directory.

The WW_CONFIRM structure is used to configure the Save Configuration dialog. The
szCfgPath field should be initialized with the path where the configuration file is to be
saved. Changes typed by the user will be placed in this buffer when WW Confirm returns.
If the "Make this the default configuration file" box is checked, the path in the edit box is
written to the " ConfigurationFile" WIN.INI profile string. The "Make this the default
configuration file" box will be disabled if the contents of the edit field matches the current
default configuration file directory.

The path name is validated before being written to the configuration file. Only valid,
existing directory names are accepted.

typedef struct tagWV CONFI RM {

HAND hwndOwner; /* ldentifies Wndow that owns the
di al og box */

char far *szCfgPath; /* points to a buffer that holds
pat hnane */

i nt i Si zeOf szCf gPat h;
char far *szDri ver Nane;
char reserved[16] ;

} VWV CONFIRM FAR * LPWNV CONFI RM

HWD W NAPI WAGet Di al ogHandl e(voi d) ;

Since WW Confirm is generally called from within adialog procedure, it is not
appropriate for the HWND in WW_CONFIRM to be the main window. Instead, use
WWGetDialogHandle to return the window handle for the currently active dialog for use
in the hwndOwner field.

BOOL W NAPI \WAConf i r m(LPVWV CONFI RM) ;
WW Confirm puts up the " Save Configuration" dialog box.

Common Dialog 13-13

Convenience Functions

Many Wonderware servers use configuration files with sentinel codes embedded which
indicate if more configuration information follows. These functions encapsulate this logic.
UdWriteAnyM or e writes the sentinel indicating if more information will be written to the
file. UdReadAnyM ore reads this sentinel value. Both functions return TRUE unless
there was an 1/O error, in which case they return FALSE.

voi d W NAPI WACent er Di al og(HWND hDl g) ;

Centers the given dialog within the screen dimensions.

voi d W NAPI WADi spl ayEr r or Readi ng(LPSTR szAppNane, LPSTR
szFi | eNang) ;

voi d W NAPI WADi spl ayErrorWiting(LPSTR szAppNane, LPSTR
szFi | eNang) ;

voi d W NAPI WADi spl ayError Creati ng(LPSTR szAppNane, LPSTR
szFi | eNang) ;

Display a message box containing a message indicating one of three types of file 1/O error.

voi d W NAPI WADi spl ayQut of Menor y(LPSTR szAppNane, LPSTR
szObj ect Nane) ;

Display a"Hard System Modal Message Box" indicating an inability to allocate memory
for the given object.

sziAppiame

MBEMET E
The Licenzing Syztem failed to obtain a
walid License to run this *Wondenware Product.

Abort; Exit Server, Retny: Ty Again, |gnore: Demo Mode

Betry | lgnore |

int WNAPI WD spl ayKeyNot Enab(LPSTR szAppNane) ;
int WNAPI WADi spl ayKeyNot | nst (LPSTR szAppNaneg) ;

Display a message box indicating problems validating security information with the copy
protection device. WWDisplayKeyNotEnab complains that the key does not contain
access hits for the current server. WWDisplayK eyNotlnst complains that the key is not

responding.

13-14 Chapter 13

MODBUS

@ Changes have beeh applied. They will take effect the nest time the server iz started.

voi d W NAPI WADi spl ayConfi gNot Al | om(LPSTR szAppNane) ;

Display a message indicating that online configuration is not allowed. Serversdisplay this

message box if the "Com Port Settings..." or "Topic Definition..." menu items are selected
when any topics are open.

CHAPTER 14

Adding the Toolkit to an
Existing Windows Application

14-1
DOE, FastDDOE, OOE

or Suitelink
\m
Your Protacol
Handler

Dewice Specific
Protocal

The Toolkit can be used to add DDE (Dynamic Data Exchange) or SuiteLink capability
to an existing Windows application. In order to accomplish this, there are several things
that need to be done:

Must link with the Toolkit library, it is named TOOLKIT7.LIB.
Must call Udlnit() early in your application to initialize the Toolkit.
Must call UdTer minate() at application shutdown time to close the Toolkit.

Application must not register classes containing the application name returned by
ProtGetDriver Name() or the string "Wddewnd".

Application must define external data hWhdParent and hinst. These variables are
initialized by UdI nit().

extern HWND hWndParent
extern HANDLE hinst

Application must not use global variable hWwhdParent.

File UDMAIN.C or file containing equivalent functionality must be added to the
application and linked in.

Unknown messages must be passed to ProtDefWindowPr oc(), not
DefWindowProc ().

User must define the boolean variable bLinkedToExistingEXE and initialize it to
TRUE before calling UdI nit().

extern BOOL bLinkedToExistingEXE = TRUE;
Application’s resource (.RC) file must contain STRINGTABLE for protlib.str.

Application’s resource (.RC) file must include tkitstrt.rci.

To add HEL P to your application you must do your own callsto WINHELP. The
Toolkit cannot do this for you.

14-2 Chapter 14

15-1

CHAPTER 15

Running as an NT Service

DOE, FaztDDE,

.,
“our Protacol
Handler

Device Spacific
Protocal

This section describes how to set up an 1/0O Server to run as a Windows NT service.

Contents

Overview of Services
Configuration Dialog

Driver Name

Service Dependencies

15-2

Chapter 15

Overview of Services

On Windows 98, an /O Server runs as an application. Typicaly, thisisalso how a
server runs on a Windows NT/2000 platform. However, it isaso possible to configure
aserver to run on Windows NT/2000 as a service.

From afunctional standpoint, the main difference between a service and an application
isthis: on Windows NT/2000, someone has to be logged on to the computer for an
application to run. That is, the computer boots up, Windows is started up, and any
applications can then be started. Applications can even be started automatically, e.g. by
placing icons for them in the STARTUP folder. This can be set up to happen
completely automatically from a cold start on Windows 98. However, on Windows NT/
2000, the programs in the STARTUP folder are not activated until auser logson. This
can be a problem if someone istrying to set up a completely automatic start-up, as might
be desirable for handling recovery from a power-loss.

Windows NT/ 2000 services run under a*“system account” that starts up during the boot-
up process for Windows NT/ 2000. Many functions are provided by programs running
as services “in the background,” such as TCP/IP. Also, since some services are
dependent upon having other services up and running before they can start, Windows
NT/2000 provides severa ways of controlling the order in which services are started up.

Once services are in place and running, a computer running Windows NT/2000 can

continue running these services, even if no user ever logs onto the machine. Also, if
someone does log on, performs some operations, and logs off, programs running as

services continue to function after the user logs off from the system.

Before a service can be started, it must be installed via the Service Control Manager.
Onceitisinstaled, the start-up for the service can be configured in one of three ways:
automatic, manual, or disabled. An 1/O Server should be configured to start
automatically, since the intention of making an 1/O Server run as a serviceisto have it
start as part of the boot-up process for Windows NT/ 2000.

More details about Windows NT/2000 and services can be found in Microsoft’'s
manuals and help files.

Running as an NT Service 15-3

Configuration Dialog

The simplest way to set up an I/O Server asa Windows NT serviceisto use the
Wonderware Common Dialog for Server Configuration. Thisdialog contains a
checkbox that enables or disables running the server asan NT service:

PBrotocol Timer Tick: IED maec
™ HetDDE being used Cancel |

LConfiguration File Directony:

IC:\IDSewer

I Start automatically as Windows NT Service

When the user clicks this checkbox and then clicks OK, the Common Dialog DLL does
two things:

1.

It attempts to set aflag in the Registry indicating to the server that it should run as
an NT service. Thisflagisinthekey HKEY_LOCAL_MACHINE\SOFTWARE\
Wonderware\<server extended name> and is named NTService: REG_DWORD.
For example, for the server TESTPROT, the entry would be
HKEY_LOCAL_MACHINE
SOFTWARE
Wonderware
TESTPROT_|OServer

With value NTService: REG_ DWORD: 1.

It attempts to get the Service Control Manager (SCM) to install the server asa
service, mark it for automatic start-up, and to set up a standard set of dependencies
on other services. These settings can be found in HKEY _LOCAL_MACHINE\
SY STEM\CurrentControl Set\Services\<server extended name>. For example, for
the server TESTPROT, the entry would be
HKEY_LOCAL_MACHINE
SYSTEM
CurrentControl Set
Services
TESTPROT_|OServer

Various Registry values get set, including ImagePath (the path to the executable),
Start (set to 0x2, i.e. automatic), and DependOnService (set to alist of services
upon which the server depends — see below).

If the attempt to establish these settings is successful, the server isready to run asa
service. To ensure proper operation, you should shut the server down and reboot the
computer.

154 Chapter 15

Typically, aserver callsthe Server Configuration dialog in a very generic way:
/***/

/* set general 1/0O server settings */

VO D
W NAP|
Server Settings (HWD hwhd)
{
WN _SERV_PARAMS Ser vPar ans;
char driverNane [20];
char tenp_szCfgPath [PATH STRI NG_SI ZE] ;

/* get nane of driver application */
Prot Get Dri ver Name (driverNanme, sizeof (driverNane));

/* try reading the configuration path fromWN.IN */
tenp_szCfgPath [0] = O;
Get ProfileString(driverNane,
NANVE_PATH,
DEFAULT_PATH,
tenp_szCf gPat h,
PATH_STRI NG_SI ZE) ;
if (strlen (tenmp_szCfgPath) == 0)
/* no config path defined, use default path to EXE */
WAGet ExeFi | ePat h(t enp_szCf gPat h, PATH_STRI NG_SI ZE) ;

}

/* ensure pathnane ends with a backslash */

if (tenp_szCfgPath[strlen (tenp_szCfgPath) - 1] != "\\") {
strcat (tenp_szCfgPath, "\\");

}

/* set up I/0O server settings via conmon dial og */
nenset (&ServParans, 0, sizeof ServParans);
Ser vPar ans. hwndOmner hWhd;
Ser vPar ans. szCf gPat h (LPSTR) tenp_szCf gPat h;
ServPar ans. i Si zeOf szCf gPat h = PATH_STRI NG_SI ZE;
ServPar ans. szDri ver Name = Get AppNane() ;
Ser vPar ans. bl ndef Wit eRet rySupported = FALSE;
if (iAll ocatedDevices) {
/* protocol running, don't reconfigure now */
WADi spl ayConfi gNot Al | ow (Get AppNanme ());
Ser vPar ans. bPr event Changes = 1;
} else {
/* nothing allocated, go ahead and configure */
Ser vPar ans. bPr event Changes = 0;

/* configure, or allow user to |ook at configuration */
WAConf i gur eSer ver ((LPWV_SERV_PARAMS) &Ser vPar ans) ;
g V. _
} /* ServerSettings */

To disallow the user from checking the “run asa service” checkbox, before you call
WWConfigureServer(), insert the following statements:

/* disallow setting as an NTservice */
Ser vPar ans. bNot Servi ce = TRUE;

This does not disable the checkbox; but the server will display an error message if the
user attempts to check it and clicks OK.

Running as an NT Service 15-5

After WWConfigureServer() returns, you can check whether the server was configured

as an NTservice, whether that setting was changed, and whether there was any problem

updating the Registry:

if ((ServParans. nNTServiceSetting & WW NTSERVI CE_| S_SERVI CE)
1=0) {

/* server is configured as an NT service */

}
if ((ServParans. nNTServiceSetting & WV NTSERVI CE CHANGED) != 0) {
/* setting was changed by the user */

}

if ((ServParans. nNTServiceSetting & WWNTSERVI CE ERROR) != 0) {
/* something went w ong updating the Registry */

}

Y ou can use these in various combinations to determine whether to change Registry
entries for additional drivers, etc. according to whether the server isbeing set up as a
service or as an application. See the section below on Dependencies.

If the user un-checks the checkbox, the Common Dialog DLL does not uninstall the
server. Instead, it tells the Service Control Manager to disable start-up of the service.
Thisis necessary because the 1/0 Server may be running as a service when the Server
Configuration Dialog is accessed, and additional activities may be necessary before
shutting down the server. To ensure proper operation, after reconfiguration you should
shut down the system and reboot the computer.

15-6

Chapter 15

Driver Name

It isimportant to note that the Wonderware Common Dial ogs use the extended server
name when accessing the Registry and the Service Control Manager. That is, the
extension“_|OServer” is appended to the “short” server name to produce the extended
server name. For example, TESTPROT becomes TESTPROT _1OServer.

The function GetServerNameExtension() sets up the extended server name so the
server-specific code can accessit. To ensure that the name of your server is handled
consistently, you should be sure to insert a call to this function inside the routine
ProtGetDriverName(), which is the routine used by the 1/O Server Toolkit to obtain the
“short” name of your server:
/***/

/** Copy nane of driver to string at indicated |ocation **/

BOOL
W NAPI
Pr ot Get Dri ver Name(LPSTR | pszNane,
i nt nMaxLengt h)
{

/** WARNING No calls to debug()...
debug() calls ProtGetDriverNane(),
therefore Prot GetDriverNane() cannot call debug(). **/
I strcpy(l pszName, GetString(STRUSER + 76) /* "UDSAMPLE" */);
#i f def W N32
Get Ser ver NaneExt ensi on() ;
#endi f
return (TRUE);
} /* ProtGetDriverNane */

This extension was found to be necessary where some 1/0 Servers had the same name as
third-party drivers (such as MODBUS.exe vs. MODBUS.sys), and attempting to
configure both as NT services caused name clashes in the Registry and Service Control
Manager.

Actually, GetServerNameExtension() is afunction in the Toolkit that obtains the
extension string from WWDL G32A.DLL (the Wonderware Common Dialog DLL). Not
all products that use the I/O Server Toolkit need an extended name, which iswhy this
call is performed explicitly. If GetServerNameExtension() is never called, the
application name and Registry key would merely be the short name (e.g.
“TESTPROT"). Thisisfine for most applications; but it isimportant to remember that
the “Run as NT Service” checkbox in WWDLG32A.DLL assumes the name with the
extension.If you don't call the function GetServerNameExtension(), you must then
provide your own set-up dialog and routines for making the application an NTservice.

Running as an NT Service 15-7

Service Dependencies

Some programs depend upon the presence of other programsto run properly. For
example, if you are using aword processor and want to print a document, you must have
aprinter driver loaded. 1t may or may not be possible to start the driver after the
program is already running, depending on the nature of the dependency.

If an 1/0O Server isto run as a Windows NTservice and it depends upon other servicesto
run, it may be necessary to start the other services first before the server will function
properly. When the “Run asaservice” checkbox is checked in the Server Settings
dialog, WWDLG32A.DLL sets up the following default set of dependencies, in this
order:

DependOnService: REG_MULTI_SZ: WWLOGSVC WWNETDDE SLSSVC

These services are as follows:

WWLOGSVC
The Wonderware Logger Service. This passes messages from debug() callsto
the Wonderware L ogger .

WWNETDDE
The Wonderware NetDDE Helper Service. Thisserviceis necessary for DDE
conversations to continue even with no one logged on a the computer.

SLSsvC
The Wonderware SuiteLink Service. This service passes messages between
applications using the Suitelink protocol.

When the computer is booted up, Windows NT/2000 inspects the Registry for
information regarding the order in which various drivers and services are to be started
up. Services and drivers can actually be put into specific groups to be loaded in specific
orders. Serviceswith no specific group are loaded last. Within agroup, if aservice
depends upon other services, NT/2000 checksfirst to see whether other services are
running and, if not, attempts to start them. Any problems are identified by messagesin
the Windows NT/2000 Event Log, which can be accessed via the Windows NT/2000
EventViewer.

Y our server may have additional services upon which it depends, particularly if it
requires a device-specific driver or service to run properly. In this case, you should
make your own calls to access the Registry or the Service Control Manager to establish
these additional dependencies. If you use the Wonderware Common Server
Configuration Dialog, you can check the returned information in
ServParams.nNT Ser viceSetting to check whether operation as a service has
successfully been changed, enabled, or disabled and determine whether to make your
additional Registry changes accordingly.

15-8 Chapter 15

16-1

CHAPTER 16

DOE, FaztDDE,

-,

Porting to Windows NT

Device Spacific
Protocal

This chapter will be useful for two different audiences. The first and primary audience
is the developer who wants to port an existing 16-bit Windows server to the Windows
NT environment. If you fall in this category, you will find that this chapter provides a
useful recipe for accomplishing this port. The goal isto make this port as
straightforward as possible by giving you a concise set of step-by-step instructions.

The secondary audience for this chapter is the developer who wants to develop a new
server that will operate in both 16-bit Windows and 32-bit Windows. If you fall in this
category, the step-by-step instructions for porting an existing server to Windows NT will
provide you with some useful ideas for accomplishing this task.

Contents

m Primary Goals
m Server Porting Instructions
m Miscellaneous Debugging Hints

16-2 Chapter 16

Primary Goals

Keep the following goals in mind when porting a server from 16-bit Windows to the 32-
bit Windows NT environment:

1. The source code for the server should maintain as much common code as possible
between the two operating systems. In cases where common code is not possible,
condition compiles using "#ifdef WIN32" macros will be used.

2. |If thereisaserver configuration file which is used to store topic, device and
communications configurations, it should have the same file structure on both
platforms. This allows the same configuration file to be used seamlessly regardless
of platform.

3. The server should maintain a common graphical user interface between the two
platforms. A user should not have to learn how to use your server again upon
moving to a new operating system. A side benefit of this goal isthat any user-level
documentation you provide for your server will not have to be customized for
Windows NT.

Server Porting Instructions

The server porting process is sequential and categorized into several phases.Generaly,
the earlier phases are more mechanical and simple in nature.As you progress through the
phases, you will find they regquire more time and thought.If you have any questions
about the meaning of any of these phases, please refer to the UDSERIAL or UDBOARD
sample serversincluded with this Toolkit. These servers provide useful illustrations of
the instructions described below.

Warning Backup your source code to another location prior to beginning this work.
Keep in mind the following abbreviations: Winl16 refers to 16-bit Windows; Win32
refersto 32-bit Windows.

Porting to Windows NT 16-3

Phase | - General, Quick Edits of "C", "H" Files

Goal: Do simple, mass edits typical of all servers. Use the sample server as areference

guide.

1. For each Cfile, move "#include <windows.h>" to the top of the list of includes.
Insure that the windows.h is enclosed by the brackets and not double quotes.

2. Replace each "FAR PASCAL" in function definitions and prototypes with the
portable "WINAPI".

3. For each Cfile, delete the large collection of "#define NOxxxxx" macros at or near
the top if they exist. They are no longer needed for versions of the Windows SDK
greater than 3.0.

4. For each Cfile, add "#include "ntconv.h"" to the list of includes. This header file
contains porting macros which simplify the porting process. Refer to the Windows
NT Porting Functions and Macros for alist of the porting macros.

5. Replace the obsolete "assert.h" include with "wwassert.h".

6. Deletethe obsolete "tools.h" include, which is no longer needed.

7. Check if you need "Imem.h" and "listrcmp.h"; They are OK but very old. listrcmp
issimply Istrcmpi.

8. Replace the obsolete "Imemclr.h" include with "Imem.h" if you are using the

"Imemclear()" function call.

16-4

Chapter 16

Phase Il - More Edits

Goal: Do editstypical of all serverswhich require more time and thought. Use the
sample server as areference guide. Refer to the "1/O Server Toolkit Functions' section
for details on Windows NT Porting Functions and Macros.

1. Changeall definitions and prototypes for Windows procedures, dialog procedures,
and callbacks to use the new parameter declarations.

From: HWND, unsigned, WORD, LONG
To: HWND, UINT, WPARAM, LPARAM

2. Search for al occurrences of WM_COMMAND. For each occurrence, make sure
that "LOWORD(wParam)" is used to get the control identifier rather than just
"wParam".

3. Searchfor al occurrencesof EM_SETSEL. The message packing for thisfunction
varies between Windows and Windows NT. Use the new portable functions listed
below instead of sending an EM _SETSEL message directly.

#i ncl ude "portfncs. h"
Pf nSendEnsSel ect All (HWND hDi g, int idControl, BOOL bScroll Caret

)
Pf nSendEnSel ect Range(HWAD hDi g, int idControl, int nStart, int
nEnd, BOCOL bScroll Caret);

For more information on these functions, see the "API Function Reference” chapter.

4. If you use the Windows ChangeM enu() function, with the 4th parameter set to "-
1", changeit to "Oxffff". If you have time, consider converting to the newer menu
functions AppendM enu(), DeleteM enu(), I nsertM enu(), M odifyM enu(), and
RemoveM enu().

5. Searchfor al SendM essage function calls. If the first parameter is Oxffff, thisis
not portable, since it would need to be Oxffffffff on Windows NT. Replace the
Oxffff with SM_MINUS _ONE (macro in NTCONV.H).

6. Search for referencesto ConfigurePort(). Thisfunction name conflicts with a
native Windows NT function. Change the function name to ConfigPort() or
something similar.

7. Indl".C",".RC", and ".H" files, search for "BAUD_" references and change to
"WW_BAUD " references. Thiswill prevent conflicts with native Windows NT
definitionsin WINBASE.H.

8. Inadl".C",".RC", and ".H" files, search for "PARITY " references and change to
"WW_PARITY_" references. Thiswill prevent conflicts with native Windows NT
definitionsin WINBASE.H.

9. If you have not already, convert to the new version of the Wonderware Heap API as
described in the " Getting Started with the I/O Server Toolkit" section. Briefly, you
will need to change all Wonderware HeapXxXxxx style function calls to
wwHeap_ XxXxxx. Add the HHEAP (heap handle) as the new first parameter to
thewwHeap_ ReAlloc and wwHeap_FreePtr function calls.

10. Change each "Assert(FALSE);" to "ASSERT_ERROR;".

11. If the Windows function GetTextExtent() is used, change it to the portable
GetTextExtentPoint() function.

12. If the Windows function MoveTo() is used, change it to the portable MoveT oEXx().

Porting to Windows NT 16-5

Phase Ill - Porting Tool (optional step)

Goal: Locate any pending porting problems at this time.

At thistime, you are well on the way to taking care of most of the basic porting issues
associated with moving a server to Windows NT. Some more difficult areas related to
file 1/0 and communications remain.

The Microsoft Win32 SDK includes a utility called "PortTool" which you can use to
locate any potential porting problems which still remain. Thisisagood timeto use this
tool on each of your ".C" files. For the most part, it will point out potential difficulties
which you have already solved. However, it also may catch some items which would
otherwise dip through the cracks and cause more mysterious problems later.

Phase IV - Compiling
Goal: Compile each file in the server on Win32 with no warnings/errors.

You are not yet finished making modifications, but thisis a good time to compile your
source code and let the compiler catch any obvious problems which exist. Any
problems related to communications functions and file I/O can beignored at this time.

1. Compile under Windows NT. Y ou should expect some warnings and errors at this
time.

Some tips on resolving compiler problems:
NULLs need to be cast to the appropriate type.

There may be errors with communications items such as fRtsDisable, fRtsflow,
fDtrDisable, fDtrflow. For now, simply comment out the code. It will be fixed in the
next phase.

There may be errors with communications items such as CE_CTSTO, CE_DSRTO,
CE_RLSDTO. For now, simply put the code under a"#ifndef WIN32" conditional.

Numerical constants such as-1,-2, -3, etc. when used in logical expressions can have
problems. Make sure you cast them appropriately.

16-6 Chapter 16

Phase V - Communications

(Windows COMM Driver Serial Servers Only)

Goal: Add common source communications function calls. Use the sample server
source for UDSERIAL asareference guide. Refer to the "1/O Server Toolkit
Functions" section for details on Windows NT Porting Functions and Macros.

Note If you are developing a board-based server on Windows NT, akernel device
driver must also be developed or purchased which interfaces directly with the board of
interest. Your server then must be modified to communicate with the device driver in
order to send and receive messages. It can no longer access the board directly as was
possible under Windows. Documentation of device drivers and device driver interfacing
is beyond the scope of these instructions. Please refer to the Microsoft Device Drivers
Kit (DDK) for instructions and information.

1. Toal ".C" fileswhich call communications functions, add include of
"NTSRVR.H". Thisfile provides prototypes for functions which emulate the
communications functions found in Windows. Typical fileswhich contain
communications functions will be xxL DCFG.C, xxFREE.C, and xxPROTCL.C.

2. Change BuildCommDCB() to the compatible function
NTSrvr_BuildCommDCB().

3. Change SetCommState() to NTSrvr_SetCommsState() and add the new first
par ameter.

4. Change GetCommState() to NTSrvr_GetCommState(). The
NTSrvr_GetCommsState() call should be located after the OpenComm() and
beforethe NTSrvr_buildCommDCB(). The DCB needsto beinitiaized, and the
Windows NT version does not initialize all members of the DCB structure. Thisis
the easiest way to accomplish thisinitialization and it works on both platforms.

5. Group the setting of the DCB's fRtsflow and fRtsDisable members together and
replace with acall to function NTSrvr_SetDCB_Rts with the parameter of:

NTSrvr _RTS DI SABLE if the "fRtsDi sable" was set.

NTSrvr _RTS_ENABLE if the "fRtsDi sable" was NOT set
and "fRtsfl ow was NOT set.

NTSr vr _RTS HANDSHAKE if the "fRtsflow' was set.

6. Group the setting of the DCB's fDtrflow and fDtr Disabl e together and replace with
acall tofunction NTSrvr_SetDCB_Dtr () with the parameter of:

NTSrvr_DTR_DI SABLE if the "fDtrDisable" was set.

NTSrvr _DTR_ENABLE if the "fDtrDisable" was NOT set
and "fDtrfl ow' was NOT set.

NTSr vr _DTR_HANDSHAKE if the "fDtrfl ow' was set.

Porting to Windows NT 16-7

Phase VI - Compile Again

Goal: Compile each filein the server on Win32.

At thistime, al your communications functions should be in place and ready for
compilation. Compile again on both platforms and resolve any warnings or errors.

Phase VII - File I/0

Goal: Replace Win16 file I/O with common source file 1/0O macros. Use the sample
server as areference guide. Refer to the "I/O Server Toolkit Functions® section for
details on Windows NT Porting Functions and Macros.

Y our server probably has some file 1/0 calls such as open(), close(), _Iread(), _lwrite(),
etc. These function calls should be modified to use the portable macros provided in
NTCONV.H and listed in the "1/O Server Toolkit Functions' section. Follow these
instructions:

Change each read-only open() to "OPENRead(filename)".

Change each file-create open() to "OPENCreate(filename)".

Change each "read()", "_read()", or "_lread()" to simply "LREAD()".
Change the variations of "write" to "LWRITE".

Change the variations of "lseek” to "LSEEK".

Change the variations of "close" to "LCLOSE".

o a0 k~ W DN P

Phase VIII - Compile Again (see above)

Goal: Compile on both platforms with no warnings or errors.

At thistime, al your file 1/0O functions should be in place and ready for compilation.
Compile again on both platforms and resolve any warnings or errors.

Phase IX - Symbol Table Entry Size

In your xxMAIN.C file, thereis a check of the symbol table entry size. This check isno
longer required under Windows NT, so conditionalize this check of

"sizeof(SYMENT)" under a"#ifndef WIN32". Seethe UDMAIN.C inthe UDSERIAL
sample server for an example.

16-8

Chapter 16

Phase X - Compile Again (see above)

Phase XI - Config File Compatibility

Goal: Server configuration file (xxxxxx.CFG) isidentical on both platforms. This
allows users to move it between platforms with no compatibility issues. Use the sample
server as areference guide.

A major goal isthat the configuration (.CFG) file created and used by the server can be
moved between the Windows NT and Win16 platforms seamlesdy. This requires that
extrawork be done in the server to retain this compatibility. Thisis because the
structures (specifically the "topic" structure variant) that are used to directly read and
write the configuration file may be packed differently between Win16 and Windows
NT. Thisisbecause Windows NT forces structure members to be aligned on their
natural boundaries (e.g. WORD on word boundary, DWORD on double word boundary,
etc.). The approach that should be used isto define an extra intermediate (or scratch)
structure for each (port and topic) which is used exclusively for the read/write
operations. All members of these structures are arrays of type "char" to force byte
alignment as on Win16. For example, in the UDSERIAL sample server’s
UDCONFIG.C you will find the following structure definition:

/*

* This structure is the one used to read in the config file into
* a structure that has nenbers whose alignment/packing will be
* jdentical to the file's. (This is an NT issue). This neans

* words are on even boundaries, and | ongwords are on | ongword

* (multiple of 4) boundaries. To nake this easiest and nost

* straightforward, each structure nenber is of type char, and

* will be an array if necessary to match the actual menber size
* in nunber of bytes. Then, nenctpy’'s will be done out of this
* structure and into the real one.

*

/

typedef struct tagTOPIC _file {
char tp_next[4];
char tp_comPort[2] ;
char tp_name[33];
char tp_topicAddress;
char tp_coilReadSze[2] ;
char tp_regReadSze[2] ;
char tp_updatelnterval[4] ;
} TOPIC_CFG_FILE;

Porting to Windows NT 16-9

Then, immediately after the read or immediately before the write, the datais moved
from or to thistemporary structure into the actual usable structure already in place in the
code.

Note You'll need to do thisin xxCONFIG.C and xxCONVERT.C (if any). The
xXCONVERT.C will only exist if the configuration file format has changed during the
release lifetime of the server.

Note The maximum number of serial ports allowed on Windows 16 was previously 4.

Y ou have the option of increasing this number to 9 on Windows and to 32 on Windows
NT. Thiswill require a change to the configuration file also. See the sample servers for
an example of how to add the additional communications ports to the configuration file.

Note The WW_CP_PARAMS communications port structure can be read and written
directly to the configuration file. It is properly aligned for al platforms.

Phase XII - Compile Again (see above)

Phase XlII - Common Dialogs (optional)

Goal: Give server standard ook and feel. Use sample server for examples.

Y ou may choose to use the new Common Dialog API. Thiswill require substantial
changes. Refer to the "Common Dialogs' section. Y ou may want to postpone this
phase until you are done testing below.

Phase XIV - Final Compile and Link

Goal: Compile and Link server on Windows NT / 2000 or Windows 98 Second Edition.

At thistime, al source code modifications which are necessary to build and execute
your server on Windows NT / 2000 should be complete. 'Y ou should now compile and
link your server and prepare for testing and debugging.

Phase XV - Test the Server

Goal: No bugs.

Test on Intel processor first on Windows NT if possible, then Windows 98 Second
Edition.

Note that on Windows 98 Second Edition , the SuiteLink protocol may not be available
and the server cannot run as a Windows NT service.

16-10

Chapter 16

Miscellaneous Debugging Hints

Check "union" type structures for any "int" types. Make sure that you did not want a
"short". "short" and "int" are the same size (2 bytes) on Windows 16, but not Windows
NT. If aWORD and an "int" are overlaid, you may need to initialize the "int"; you also
may need to sign extend, etc. If you have an array overlaid with another array, be
careful.

When building messages or extracting data from messages, be careful with data pointers.
If you use aBY TE pointer to process the data, all is OK! But if you use WORD,
DWORD, or structure pointers to process the data, it MUST be aligned. To get it to be
s0, you'll have to use memcpys to workaround the problems. Test thoroughly! (i.e. all

message types).

When converting data, casting a WORD to an "int" will work on Win16; but on Win32
you need to be careful. If you have 2 bytes of data from the device and the data has
been saved in aWORD variable, casting it to an "int" will NOT sign extend (first cast as
a"short"). Test thoroughly!

17-1

CHAPTER 17

DOE, FaztDDE,

-,

Porting an Existing -

Server to FS2000

This section describes the software changes necessary to upgrade an existing 1/0 Server,
developed with a previous Wonderware Toolkit, to FS2000.

Contents

Overview

Driver Name

CommonUI Splash Screen and Start-up Message
CommonUI About Box

Vaue, Time, Quality

17-2

Chapter 17

Overview

If you have an existing 1/0 Server written with a previous version of the Wonderware
DDE Server Toolkit, porting your code to Factory Suite 2000 should be fairly easy —
particularly if your server has been written as a Win32 program for Windows NT.
Most of the changes in the Toolkit involve enhancements that are transparent to the
programmer. However, you will want to make changes to four basic areas of your code:

handling the driver name

handling the start-up Splash Screen and Start-up Message
handling the About Box

handling updates to Vaue/Time/Quality (VTQ)

Porting an Existing Server to FS2000 17-3

Driver Name

The routine ProtGetDriverName() is the routine used by the I/O Server Toolkit to
obtain the “short” name of your program. Y ou should insert a call to the function
GetServerNameExtension() inside this function:

/***/

/** Copy nane of driver to string at indicated |ocation **/

BOOL
W NAPI
Prot Get Dri ver Nane
(LPSTR | pszNan®e,
i nt nMaxLengt h)

/** WARNING No calls to debug()...
debug() calls ProtGetDriverNane(),
therefore Prot GetDriverNane() cannot call debug(). **/
I strcpy(l pszName, GetString(STRUSER + 76) /* "UDSAMPLE" */);
#i f def W N32
Get Ser ver NaneExt ensi on() ;
#endi f
return (TRUE);
} /* ProtGetDriverNane */

For 1/O Servers, the extensionis“_10Server” and this string gets internally stored in the
Toolkit. The extension gets appended to the basic name of the server to produce the full
name used in Registry keys, the NT service name (if the server is configured as a
service), etc. For example, the TESTPROT server uses the full name

“TESTPROT _|OServer”. This extension was found to be necessary where some I/0O
Servers had the same name as third-party drivers (such as Modbus.exe vs. Modbus.sys),
and attempting to configure both as NT services caused name clashes in the Registry and
Service Control Manager.

Actually, GetServerNameExtension() is afunction in the Toolkit that obtains a string
from WWDLG32A.DLL (the Wonderware Common Dialogs).Not all products that use
the 1/0O Server Toolkit need an extended name, which iswhy this call is performed
explicitly. If GetServerNameExtension() is never called, the application name and
Registry key would merely be the short name (e.g. “TESTPROT”). Thisisfinefor most
applications; but it isimportant to remember that the “Run as NT Service” checkbox in
WWDLG32A.DLL assumes the name WITH the extension. If you don't call the
function GetServerNameExtension(), you must then provide your own set-up dialog and
routines for making the application an NT service.

17-4

Chapter 17

CommonUI Splash Screen and Start-up Message

When an 1/0O Server starts up, it displays a splash screen — a small window that identifies
the program that is starting up. Mostly, the purpose of the splash screen for any
program is to give the user something to look at while the program starts up — which
might take several seconds.

Previous versions of the Wonderware 1/0 Server Toolkit displayed a dialog with the
resource name WW Startup, which could be generic or which could be tailored by the
programmer as needed.This option is still available, but with the advent of FactorySuite
2000, the default behavior isto display the Common User Interface splash screen. The
CommonUI routines use one of a set of Wonderware bitmaps for the corresponding
product type, examine a particular set of resources for the product name and version
number, and interrogate the Wonderware License Manager for license features and
expiration dates. The information so obtained is then displayed in the splash screen and
in astart-up message. The problem s, thisis very Wonderware-centric. If you're
developing a Wonderware product, this start-up display has been made quite easy, using
acall to WWAnNnounceStartup(). Otherwise, you might want to display your own
splash screen, or no splash screen at all.

To tailor the handling of the start-up splash screen, in Protinit() call
void WINAPI SetSplashScreenParams (BOOL bSuppressSplashScreen,
int nSplashSelect, UINT iProductID,
LPSTR IpszPrivateString);
with the appropriate parameters:
bSuppressSplashScreen
If TRUE, suppresses the Splash Screen entirely. This may be appropriate if your
program displays a splash screen itself elsewhere.
If FALSE, the selected splash screen will be displayed for a few seconds and will
then be erased.
nSplashSel ect
If O, displays the original Wonderware splash screen using the dialog resource
WWStartup. Thisis provided for backward compatibility.
If non-zero, displays the Common User Interface splash screen.
iProductID and IpszPrivateString
These are used as a product selection and special string for the Common User
Interface splash screen.

Porting an Existing Server to FS2000 17-5

The routine SetSplashScreenParams() can be used to select between the CommonUI
splash screen, the “old-style” splash screen, or suppressing the splash screen. The
following code, taken from UDMAIN.C of the sample server, should appear near the
start of the routine Protlnit():

[Note: szServerIDstring is defined as a global variable as follows:
#i f def W N32

char szServerl Dstring[100];
#endi f

]

#i f def W N32
/* set up string with server name and version nunber */
strcpy (szServerlDstring,
Get String(STRUSER+142)); /* "Sanple 1/0O Server" */
L = strlen (szServerlDstring);
sprintf (&szServerl|Dstring[L],
Get String(STRUSER+145), /* "- Version %" */
SERVER_VERS| ON) ;
#endi f

#if (defined(USI NG WV COMWONUI) && defi ned(W N32))
/* set up to display common start-up nmessage
and spl ash screen */
WAnnouncesSt ar t up(COMMON_| OSERVER32I D,
(LPSTR) szServer|Dstring);
#el se
/* Log our own startup message and version number */
strcpy (tnpBuf, GetString(STRUSER+144)): /[* "Startup" */
L = strlen (tnmpBuf);
sprintf (& nmpBuf[L],
Get String(STRUSER+145), /* "- Version %" */
SERVER_VERS| ON) ;
debug ('t nmpBuf);
/* set up to display start-up splash screen
with resource name WABtartup */
#i f def W N32
/* select WABtartup splash screen
i nstead of Common U spl ash screen */
Set Spl ashScr eenPar ans (FALSE, 0, COVMON_| OSERVER32I D,
(LPSTR) szServerlDstring);
/* ensure comon user interface
has i nstance handle for application */
Conmon_Set Appl nst ance (hlnst);
#endi f
#endi f

17-6

Chapter 17

CommonUl About Box

As with the splash screen, the CommonUI routines support the display of a standard
Wonderware FS2000 About Box, which includes information from a standard set of
resources and from the Wonderware License Manager. Again, thisisvery Wonderware-
centric. You have a choice of several ways you can display an About Box. All three of
these areillustrated by code in the sample server UDSAMPLE.

Display the CommonUI About Box
Y ou will have to provide resource version information and a resource icon named
ABOUTICON. Normally, thiswould be the same as the main icon for your 1/O Server.

Conmon_Set Appl nst ance(hl nst) ;
Conmon_ShowAbout Box (COVMON_| OSERVER32I D, szServer| Dstring);

Display the Wonderware Common Dialog About Box
This can be somewhat tailored by putting information into the comment string.

WN _AB_| NFO About BoxI nf o;
HI CON hl con;

nmenset (&About Boxl nfo, 0, sizeof (AboutBoxlnfo));
hl con = Loadl con(hlnst, "Udprot");

About Box| nf 0. hwndOwner
About Box| nf o. szDri ver Name
About Boxl nfo. szl d

hWhd;

Get AppNane() ;

Get String(STRUSER + 142);

/* "Sanple I/O Server" */

Get String(STRUSER + 0);

Get String(STRUSER + 143);

[* "1997" */

hl con;

Get String(STRUSER + 149);

/[* "This is a sanple server" */

About BoxI nf 0. szVer si on
About BoxI nf 0. szCopyri ght

About BoxI nf 0. hl con
About BoxI nf 0. szConment

WADI spl ayAbout Box((LPWV AB | NFO &About BoxI nf o) ;
Destroyl con (hlcon);

Display an About Box of your own design.
Y ou will have to provide aroutine UdPrivateAbout() to handle the dialog.

FARPROC | ppr ocAbout ;

| pprocAbout = MakeProcl nst ance((FARPROC) UdPri vat eAbout, hlnst);
Di al ogBox(hlnst, GetString(STRUSER + 75) /* "ABOUT_BOX" */ ,
hwhd, | pprocAbout);
#i f ndef W N32
Fr eeProcl nst ance(| pprocAbout) ;
#endi f

Porting an Existing Server to FS2000 17-7

Value, Time, Quality

One of the main functional differences between the FactorySuite 2000 /O Server
Toolkit and previous versions of the Toolkit is the addition of Time and Quality stamps
tothedata. Thel/O Server can now pass to the client information about when a point
was last updated and whether the data is completely trustworthy or has some problems
associated with it.

To support the transfer of Value/Time/Quality (VTQ) information, the call to
DbNewV aueFromDevice() has been replaced with several other calls:

DbNewV TQFromDevice() updates value, time, and quality
DbNewTQFromDevice() updates time and quality only (value unchanged)
DbNewQFromDevice() updates quality only (a current default time mark is used)

The function DbNewV alueFromDevice() is till available, but what happens internally
isthat it makes a call to DbNewV TQFromDevice() using default values for time and
quality. Quality isassumed good (WWQ_GOOD). The Toolkit provides a default time
mark only if oneis needed. Y ou can either choose to leave intact al your callsto
DbNewVaueFromDevice(), or you can add code to explicitly get atime mark and pass
it to the Toolkit via one of the other functions.

Most PLCs do not have a date/time clock that is accessible to the 1/O Server. For those
which do, you have the option of using that date/time clock as your time mark. Inthis
case, you should convert the time from the PLC’ s format to a FILETIME value (see the
chapter on Time Marks). Otherwise, you should use the Toolkit API function
DbGetGM TasFiletime() to read the computer’ s time.

If you are explicitly obtaining the time via a call to DbGetGM TasFiletime(), you should
take into account what these calls will do to server performance. If you're updating
10,000 points per second, their time marks aren't going to be very different from one
another; so you probably don't need 10,000 callsto DbGetGM TasFiletime(). You
should limit calls to this function in away that maximizes performance while

maintai ning a reasonable update rate for the time mark. Reasonable places to get the
time mark include the following:

- Once per entry to ProtTimerEvent(), and then only if you need it
- Once per response message (which would normally encode data for many points)

See the chapter on Time Marks for more information on optimizing how often you call
DbGetGM TasFiletime().

17-8 Chapter 17

There are four places where you should update the quality flags for a point:

1.

In UdprotPrepareWriteMsg() if thereis any problem with poked data. When a
client “pokes’ avalue to the server, ProtNewV alueForDevice() passes the value to
the server-specific code. This, in turn, calls aroutine such as
UdprotPrepareWriteMsg(), which creates the byte sequence that will be sent to the
device. If astringistoo long, or avalueisout of range, the server-specific code
should force the value to alegal setting, set a quality of WW_SQ CLAMPLO or
WW_SQ CLAMPHI, and report the information back to the Toolkit with
DbNewVQFromDevice(). Also, if the point isinaccessible or read-only, it may be
appropriate to set the quality to WW_SQ NOACCESS and call

DbNewV QFromDevice().

In UdprotExtractDbltem() when the response from a deviceis interpreted as point
data and reported to the Toolkit via DbNewV TQFromDevice(). When aresponse
carries valid data for the point, the quality should normally be set to

WW_SQ GOOD. However, if astring istoo long, or avalueis out of range, or a
data conversion yields an invalid result, the quality should be set to
WW_SQ_CLAMPLO, WW_SQ_CLAMPHI, or WW_SQ_NOCONVERT asis
appropriate. Also, some PLCs return status information along with the data. This
status information should be mapped to the corresponding WW_SQ_XX quality
setting.

In ProcessValidResponse() and other locations where an error response is received,
abad quality should be reported for each point on a message that has a response
pending. If apolling (read) message elicits an error response, a quality of

WW_SQ NOACCESS should be reported for each point that is being actively
polled by that message.

In UdprotSetTopicStatus() when the communication with the PLC fails, bad quality
of WW_SQ _NOCOMM should be flagged on all points on all messages for that
topic. Thiswould be at the point where the server goes into slow poll mode,
attempting to re-establish communications with the PLC.

See the chapter on Quality Flags for more information and specific examples of setting
the quality flags.

18-1

CHAPTER 18
DOE

DOE, FaztDDE,

R

/0 Server Code Samples

Device Specific
Protocal

Example source code for an 1/0 Server isincluded on the installation media. It will
automatically be copied to your hard disk when you install the Toolkit. The sample code
illustrates the concepts of the Toolkit, demonstrates basic problems that must be addressed
for al 1/0 Servers (e.g., dialog boxes, file I/O for configuration), and gives you a starting
point for developing code from scratch. The code includes a ssmple simulated PLC, so you
can run the executable and see these conceptsin action. Also, the sample server can be built
in two ways — as a serial server and as a board server —to illustrate the similarities and
differences between these two types of interfaces.

Contents

Overview

UDSAMPLE Architectural Overview
Adapting the UDSAMPLE Server
Modifying the User Interface — UDSAMPLE.RC and UDCONFIG.C
Storing and Retrieving Configuration Files
Setting Up Data Points— UDCONFIG.C
Executing the Configuration — UDLDCFG.C
Executing the Protocol — UDPROTCL.C
Data Structures

Compiling the Sample Code

Debug and Support Functions

Simulated PLC

18-2

Chapter 18

Overview

Wonderware Corporation has developed al of its1/0 Servers using this Toolkit. The sample
code included in the Toolkit is the basis for many of the production I/O Servers. We highly
recommend experimenting with the sample server to learn more about the Toolkit's library
functions. These sample programs will be in the following sub-directories:

\WW\AIOSERVER\UDSAMPLE The sample code contained in this directory is a skeleton
for acomplete I/O Server. To build it asafunctional EXE, you must copy three files from
one of the subdirectories: either UDSERIAL or UDBOARD.

\WW\ |OSERVER\UDSAM PLE\UDBOARD This subdirectory contains three files:
UDSAMPLE..C, UDSAMPLE.H, and UDSAMPLE.ICO. To build the sample server asa
board server, type the following:

CD \ W\ | CSERVER\ UDSAMPLE\ UDBOARD
COPY UDSAMPLE. * ..\ COMMON

to copy the three filesto the UDSAMPLE\COMMON directory with the appropriate names.
This example illustrates communicating to a PLC via a memory-mapped interface device
plug-in board (adapter card). The server program can directly access areas of memory that
are mapped to a device 1/0O board's specific protocol.

\WW\ |OSERVER\UDSAM PLE\UDSERIAL This subdirectory contains three files:
UDSAMPLE..C, UDSAMPLE.H, and UDSAMPLE.ICO. To build the sample server asa
serial server, type the following:

CD \ WA | OSERVER\ UDSAMPLE\ UDSERI AL
COPY UDSAMPLE. * ..\ COMMON

to copy the three filesto the UDSAMPLE \COMMON directory with the appropriate names.
The exampleillustrates communicating to a PLC viaa serial interface (COM port).

The UDSAMPLE example server has symbol processing functions to handle many thousands
of active data points. It shows you how to set up lists of polling messages, how to optimize
polling messages, and much more. This example code is the basis for many of the
Wonderware 1/0 Servers. UDSAMPLE contains everything that you need to write an actual
I/0 Server. It includesthe user interface code, dialog boxes and the code necessary to
interact with them, configuration file management, and the necessary data structures. It can
be compiled for Win32 programming models. It contains functionsto assist in debugging. It
also contains device and protocol-specific code for asimple, smulated PLC, to illustrate how
to construct polling messages and how to interpret the reply messages. This code and the
comments should provide an excellent starting point for the development of a server for your
specific needs.

I/O Server Code Samples 18-3

UDSAMPLE Architectural Overview

There are essentially three parts of UDSAMPLE: one part establishes the configuration of
the 1/0O Server, a second part collects and validates information requests, and the third part
actually does the communication.

UDSAMPLE establishes its configuration settings via dialogs with the user. Thisis used to
set up the 1/O channels (COM ports or boards) and the available topics. The configuration
settings are stored in a file which gets loaded from the disk when the server is started up.

The I/O Server receives itsinformation via DDE or SuiteLink requests. The Toolkit calls
functionsin UDSAMPLE to set up and validate the topics and item names requested. Once
the topic and item names have been validated, messages are created to read information from
the PLC. UDSAMPLE is based on a master/slave communication model, where the server
sends a message to the device and receives a response back.

The I/O Server builds two kinds of messages. Read Messages for all the active points and
Write Messages for writing data back to the PLC.

Read Messages are built from the information in the symbol table and stay around. One read
message may read data for several points. Read messages repeatedly get sent to the PLC for
aslong asthe points are active. If points go inactive, the corresponding read messages may
be modified or deleted, depending on what points remain active.

Write Messages are built on demand (when a DDE POKE or SuiteLink WRITE is received)
and placed on the top of the message queue so they are sent on the next execution of the
protocol. Generally one write message is generated for every point that iswritten, although it
may be possible to optimize writes and send values for several pointsin a single message.
Write messages are deleted after they have been successfully received and processed by the
PLC.

The heart of the driver isin the UdprotDoProtocol() function. This function executes the
protocol. It examines the state of the server and executes the appropriate action. (For
example, if the 1/O Server isin the idle state, it sends the next message to the device. If itis
in the awaiting response state, it looks for information from the device and processes that
information.) The server contains necessary logic to handle error conditions.

18-4 Chapter 18

Adapting the UDSAMPLE Server

There are several things that should be determined before you start coding a server:

I/O Channdl: Doesthe server communicate over a serial port, a plug-in board (adapter
card), an Ethernet connection? What configuration information is necessary to identify
which particular 1/0 channel is being used? What settings need to be specified, e.g.
transmission rates, parity, data encoding, etc.?

Protocol Structure: If the protocol supports multiple message types, decide which
messages you will need to run the protocol. This should determine if there is any additional
information required at configuration time.

Topic Description: The topic configuration generally contains all of the information needed
to address a particular device. It contains atopic name, PLC address, update interval, and
any other information generally required to build and send a message (except for the
particular point to address).

Item Naming Convention: Item names should match the convention used in the PLC and
provide you with enough information to determine the data type, address and possibly
precision of the point. Y ou should decide which points you are going to support. The
sample contains one built-in item name: STATUS. Thisitem nameis adiscrete variable that
is TRUE when communication to the device is active and FAL SE when communication is
inactive.

I/O Server Code Samples 18-5

Customizing the Start-Up Splash Screen and About

Box

When an 1/O Server starts up, it normally displays a Splash Screen for afew seconds. Thisis
awindow that identifies the 1/O Server and the Toolkit, and any other information that seems
appropriate. When the I/O Server is running and its window is visible, the user can select
Help|About to display the About Box, an informational window that identifies the product,
version number, company, etc.

UDSAMPLE has two macros that function as compile-time flags that can be used to select
what kind of Splash Screen and About Box to use:

#def i ne US| NG_VWV COMVONUI

This selects the Wonderware FactorySuite 2000 Splash Screen and About Box, which
are normally displayed by a Wonderware FS2000 production /O Server. Information
for the program ID and version are provided in the version marker code section of the

* RC file. If thismacro is not defined, UDSAMPLE will display a Splash Screen
defined by the dialog resource named WWStartup. Y ou can then use the dialog defined
in TKITSTRT.RCI or define your own Splash Screen. Y ou can also suppress the
display of the splash screen entirely [see the section on the function

Set SplashScreenParams()].

#def i ne USI NG_ WV ABOUT

This selects the Wonderware Common Dialog About Box (but only if the macro
USING_WW_COMMONUI is not defined). See the section on the Wonderware
Common Dialogs for more information on customizing the information displayed. If this
macro is not defined, the About Box defined by the dialog resource ABOUT_BOX is
displayed. Y ou can customize this resource as needed.

UDSAMPLE also has amacro named USING_WW _LICENSE. If thismacro is defined, the
server calls the function Getl OServer License() to check whether the server has alicense to
run. Thiscall requires a specia version of the Wonderware Toolkit that provides accessto
the Wonderware License Manager. Contact Wonderware for further information.

Modifying the User Interface - UDSAMPLE.RC and
UDCONFIG.C

The dialog boxes for generic Topic and Board configurations are contained in
UDSAMPLE.RC. The corresponding dialog handlers are functions contained in
UDCONFIG.C. These can be modified as needed for your protocol. (For example, you may
need to differentiate PLC devices.) Itisalso agood ideato change the name UDSAMPLE to
reflect the name of your PLC.

For configuring the serial ports (COM ports), the sample server uses the Wonderware
Common Dialogs. See the chapter on the common dialogs for more information on using the
optional edit fields, check boxes, and radio buttons.

18-6 Chapter 18

Storing and Retrieving Configuration Files

Once configuration information has been entered via the user interface, it needs to be stored
for retrieval next time the server is started up. The sample server handles this by storing the
I/O channel configurations and Topic configurations in a disk file named UDSAMPLE.CFG.
Two basic techniques areillustrated:

Configuration using binary structures— UDCFGBIN.C:

The data structures for COM ports, boards, and topics are simply written to adisk file as
sequences of bytes, and are read back the same way. While this provides the simplest
technique for configuration storage and retrieval, there are some shortcomings:

- If the structures are changed in any way, the format of the datafile also changes. For
backward compatibility, it is necessary to provide extra code to read old formats and
convert to the new data structures.

- On different platforms, alignment issues may actually insert extra bytes between
structure members. Care must be taken to ensure compatibility when moving between
Win16 and Win32 systems.

- Thereisusualy no verification that the configuration is valid, although verification can
be added.

- Configuration must be done using the user interface with arunning 1/0 Server. The
configuration file can only be written or read by the 1/0O Server, and does not easily lend
itself to independent verification or to being printed out.

Configuration using ASCI | text - UDCFGTXT.C:

The data structures for COM ports, boards, and topics are written to adisk file as
configuration “commands’ with named parameters. When thefileisread in by the I/O
Server, the server interprets the commands and parameters. Commands can be in any order
(e.g. COM ports then topics, topics then COM ports, or mixed). Within a command,
parameters can be in any order. Any missing parameters are given default values; any
obsolete parameters are merely ignored. A command can span several lines of text, and ends
with asemicolon (‘;’). Thistechnique requires alittle more code, but confers several
important advantages:

- If the structures are changed, no version tracking is necessary, and backward
compatibility is automatic. (This can be even better than C++ serialization!)

- The configuration file is platform-independent. There are no alignment issues.

- Aseach command and each parameter is processed, the validity of the configuration can
be verified.

Configuration can be done without a server running, and on a completely separate
machine. Configuration files can be verified and printed.

UDSAMPLE can read its own configuration filesin either binary or ASCII text. By default,
it stores configuration filesin binary. To store configurations as text, in the [UDSAMPLE]
section of WIN.INI, simply include the following line:

WriteConfiglnASCI1=1
This setting is read in when the server starts up, in the routine Protlnit().

I/O Server Code Samples 18-7

Setting Up Data Points - UDCONFIG.C

First, determine the item/point naming convention. The item/point name should contain
enough information for the user to know its data type and address. For example, the item
name V23 indicates that thisis an integer register in V-memory at address 23.

Function ValidatePoint()

The function ValidatePoint() needs to be written to parse and validate the item names for
your specific device. It ispassed atext string of the item name, and the function must decode
thisinto information that is eventually placed in the symbol table. Thisinformation will be
used later to build the messages. The amount of information that needs to be stored into the
symbol table depends on what information you need to build the message and extract the data
back out. This structure may be modified to meet your needs. UDSAMPLE uses a
temporary data structure LPPPS to store information about the item until it has been fully
validated. The symbol table entry is built following areturn from ValidatePoint().

Example of ValidatePoint: Valid [tem Names are Vxxx

/*
Val i dat ePoi nt () checks to see that a point nane conforns to
t he conventi on:
VXXX
The mai n purpose of the function is to fill in the LPPPS
structure.
*/
BOOL
W NAPI
Val i dat ePoi nt (LPSTR | pszPoi nt Nane,
LPPPS ppp)
/* use the LPPPS structure to tenporarily store the decoded
information. Udprot AddSynbol will stuff this information
into the synbol table entry when we are done. */

{
PSTR pszRef er ence;
WORD Ref er ence = 0;
PTTYPE Expli cit Type = NULL;
BOOL Poi nt K = TRUE;
char tc;
BOCL i nput ;
BOOL Regs;

if (bVerbose)
debug("Val i datePoint: %s" ,
| pszPoi nt Nane) ;
}
ppp- >ppsType
ppp- >ppsNunReg
ppp- >ppsSegy

0;

0; /* elenent size */

0; /* seg is a field added to the synbol
table */

/* to identify the segnment */

ppp- >ppsAl i as = 0;

18-8 Chapter 18

| strcpy(tnpBuf, |pszPointNane);
strupr(tmpBuf);
pszReference = tnpBuf;
switch(*pszReference) {
case 'V :

ppp- >ppsType = PTT_I NTECER;
/* check register specification */
pszRef er ence++;
if(!"NumericsOnly(pszReference)) {
Poi nt OK = FALSE;
br eak;

Ref er ence = atoi (pszReference);
/* range check the register address if appropriate */
i f(!ValidRegisterAddress((DWORD)Reference, Regs)){
Poi nt OK = FALSE;
br eak;
}
ppp- >ppsAl i as = Reference - 1;
/* zero based addressing */
pPpp- >ppsSeg = REGQ STER;
br eak;
defaul t:
Poi nt OK = FALSE;
br eak;

if (E)Verbose) {
if(PointOK) {

debug("Valid Point: %s" , |pszPointNane);
debug(" ppsAl i as=%05u ppsSeg=%u" |,
ppp- >ppsAl i as, ppp->ppsSeg);
debug(" ppsType=9%94u”, ppp->ppsType);
debug(" ppsNunReg=% ", ppp->ppsNunRegq);
} else {
debug("ltemrejected: %s" , |pszPointNanme);

}

return Point CK;
} /* ValidatePoint */

static
BOOL
W NAPI
Nureri csOnl y(PSTR pstr) {
if(!'*pstr) return FALSE;
while(*pstr) {
if(ltisdigit(*pstr++)) {
return FALSE;
}

}
return TRUE;
} /* NunmericsOnly */

Note The above code does not match the code on the installation media, however, this code
ismore useful for this example.

I/O Server Code Samples 18-9

Executing the Configuration — UDLDCFG.C

This section describes the functions that build the message queues. They are found in
UDLDCFG.C.

LogicalAddrCmp()

The function Logical AddrCmp() is the function used to sort symbol table entries. Fields
from the symbol table entry, such as data type and address, are compared in this function to
determine the sort order of the symbol table. It may be necessary to add additional fieldsto
the comparison criteria to ensure that symbols are sorted properly. For example, the server
might support bitsin registers and the bit identifier would need to be added to the sort
criteria. If the symbols are not in the correct order, the data will not be extracted properly.

Building Messages

The message data structure contains information about which symbols are referenced in the
message and the actual message itself. UdprotAddPoll() contains the logic to build the read
message, and UdprotPrepareWriteM sg() builds the write message. The actual message that
is sent to the device is built by either BldRead() or BldWrite().

UdprotAddPoll()

UdprotAddPoll() builds a read message to be placed in the message queue. Existing read
messages are examined to seeif the point can be read from an existing message. If it can fit
into an existing message, the information in the LPM SG structure is updated. Otherwise, a
new message is built and added to the message queue. BldRead() builds the actual sequence
of bytesthat is sent to the PLC.

UdprotPrepareWriteMsg()

This function builds the write message. Existing write messages are examined to seeif the
point can be combined into a message that is already waiting to be sent. If it can fit into an
existing message, the information in the LPM SG structure is updated. Otherwise, a new
message is built and added to the message queue. BldWrite() builds the actual sequence of
bytesthat is sent to the PLC.

Building Messages — UDBLDMSG.C

BldRead(), BldWrite(), BIACks(): These functions need to be supplied as they are totally
device-dependent. Write the code to build the correct message according to your protocol.
This message is typically a character buffer that is passed to the 1/O driver viathe function
WritePortMsg(). The messageis part of the UDM SG data structure. Usually, a serial server
uses WriteComm() to pass the buffer to the Windows COM driver; while aboard server
uses a function tailored to the particular board interface.

18-10 Chapter 18

Executing the Protocol - UDPROTCL.C

This section describes the functions that actually do the communication. The functions are
found in UDPROTCL.C.

UdprotDoProtocol()

Thisisthe function called for every ProtTimer Event. It contains the case statement that
determines what happens at agiven state. In UDSAMPLE, it is assumed that there are a
limited number of states, namely IDLE, WAITRESP, and error conditions. If your device
has more states than these, add these states and whatever action needs to be taken.

UdprotGetResponse()

This function may need to be modified to determine if you have enough of the message to
continue processing.

ProcessValidResponse()

This function validates the response back from the device. (The responseisin the |pPort
data structure, field mbRspBuffer.) It may validate the checksum, look for a particular field
in the message, or do anything required to ensure that the entire response has been received
correctly.

UdprotExtractReadData(), UdprotExtractDbltem()

These functions extract information from the response based on information in the message
structure and the symbol table. Modify these to suit your protocol.

UdprotHandleRspError()

This function handles problems with the communication protocol: incomplete responses,
error responses, timeouts, etc.

I/O Server Code Samples 18-11

Data Structures

There are severa built-in data structures that the server needs to build messages, send them,
and extract the responses. These data structures may be modified to suit your needs.

PORT Data Structure

This data structure contains the information necessary to control the port in processing the
protocol. It contains a handleto alinked list of nodes, as well as handles to the currently
active node and message. It also contains the mbRspBuffer field which is the data coming
back from the PLC.

UDMSG Data Structure (Message)

Thisisthe message data structure. It contains the actual message to be sent to the device, a
pointer to the topic, and indices into the symbol table for the first symbol contained in the
message and the last symbol contained in the message. Thisinformation allows the
information to be plucked out of the response.

STAT Data Structure (i.e. Station, Node, or Topic)

This structure contains all of the topic information. It has a handle to the associated symbol
table and alist of messages sent to a particular node.

SYMENT Data Structure (Symbol Table)

This data structure contains a one-to-one correspondence with the items that are being
requested (i.e. there should be one symbol table entry for every item requested). The symbol
table should be sorted according to data type and address (at the very least). If theitemisa
bit address, the bit offset is often stored and sorted as well.

Note For Winl6, the symbol tableis an array of memory type HUGE, and consequently
needs to be allocated with data structure sizes that are a power of 2. In Win32, HUGE does
not exist, so the symbol table isanormal alocation.

18-12 Chapter 18

Compiling the Sample Code

Note The I/O Server Toolkit for FactorySuite 2000 has been built with Microsoft Visual
C++ version 6.0. Consequently, you must use version 6.0 sp3 or later to create Win32 1/0
Servers using this Toolkit. After following the instructions below, you will be able to build,
execute, and debug the sample server from the IDE.

Setting up a project for the sample code with Microsoft Visual C++ 6.0;

Create the new project:

- Click on File]New and select the “ Projects’ tab.

- Select Win32 Application

- For the project name, enter UDSAMPLE

- For the location, enter the path to thefiles, e.g.,
C\WW\IOSERVER\COMMON\UDSAMPLE

- Click on Create New Workspace

- Click on OK

Copy the specific files for the desired server type to the UDSAMPLE directory

» For aboard server, copy the files UDSAMPLE.C, UDSAMPLE.H and UDSAMPLE.ICO
from the UDBOARD directory to the C:\WW\IOSERVER\UDSAMPLE\COMMON
directory.

e For aseria server, copy the filesUDSAMPLE.C, UDSAMPLE.H and UDSAMPLE.ICO
from the UDSERIAL directory to the C;AWW\IOSERV ER\WUDSAMPLE\COMMON
directory.

Set up the files for the project

- Click on Project|Add-to-Project|Files

- Inthe dialog, select the directory where the files are located

- Hold down the control key while clicking to select multiple files

- Add all the*.C files and the *.RC file

- Click on OK

- Click on Project|Add-to-Project|Files again

- Inthe dialog, select the directory where TOOLKIT7.LIB islocated
- Click on TOOLKIT7.LIB

- Click on OK

Set up the appropriate compiler and linker options

- Click on Project|Settings

- Select the “C/C++" tab

- For “Category,” select “Code Generation”

- For “Userun-time library,” select “Multithreaded DLL"
- Select the “Link” tab

- For “Category,” select “Input”

- Under “Ignore Libraries,” enter LIBC

- Click on OK

Note The MSVC library OLEAUT32.LIB must also be linked to your project, either
explicitly or as one of the “Object/Library modules’ on the “Link” tab.

Set up the appropriate directories
- Click on Tools|Options
- Select the “Directories’ tab
- For “Show directories for” select “Include files’
- Add the path to the Toolkit include files, e.g., C;AWW\AIOSERVERTOOLKIT\INC.
Move this path to the top of thelist of directories using "Move Item Up."
- Also add the path to C;\Program Files\DevStudio\V C\include\sys. Click on OK

I/O Server Code Samples 18-13

Debug and Support Functions

If you include DebugM enu=1 in the [UDSAMPLE] section of the Windows WIN.INI file
there will be several menu items that appear in the server system menu.

= Dump prints the current port, topic, message, and symbol table structuresto the
Wonderware Logger.

m ShowSend prints the messages sent to the PLC to the Wonderwar e L ogger .

= ShowReceive prints the messages received from the PLC to the Wonderwar e L ogger .

m ShowErrors prints enhanced error message information in the Wonderwar e L ogger .

m Verbose prints program execution trace information in the Wonderwar e L ogger .

= ShowEventsis primarily for tracing COM port activity for a serial server when an error
occurs. Events such as transmit buffer empty are printed in the Wonderwar e L ogger .

Two other menu items are specific to the simulated PLC in UDSAMPLE:

m Simulator Read Paused stops the simulated PL C from responding to read messages.
This can be used to explore what happens when communication with the PLC fails.

m Simulator Write Paused stops the simulated PL C from responding to write messages.
This can be used to explore what happens when the server has a chance to accumulate
several write operations before the PLC is ready to process them.

If you are working with the Integrated Development Environment for a compiler, such as
Microsoft Visual C++ 6.0 sp3 or later, you can use breakpoints, watch windows, and other tools.
Note that if you do use a breakpoint to interrupt the normal operation of the program,

remember that some activities — such as PLC “keep alive” handshaking — may time out.

For debugging, feel free to make liberal use of debug() statements sent to the Wonderware
Logger. Hardware error and serious communications problems should always be sent to the
Wonderware Logger for operator use. Debug() statements to the Wonderwar e L ogger
should be under menu control as Wonderware recommends that Wonderwar e Logger be
running at all times.

For more detailed information on debugging refer to the “ Debugging and Testing” chapter.

18-14

Chapter 18

Simulated PLC

The sample I/O Server UDSAMPLE contains a simulator for asimple PLC. This simulator
is not intended to reflect the operation of any actual PLC; but it does provide away to
illustrate the complete operation of the sample server. Points can be advised, requested, and
poked just asif the server were connected to areal device. The simulator can be paused to
explore what happens when communication gets lost, and resumed to explore how the server
recovers when communication is restored.

The serial server UDSERIAL and board server UDBOARD talk to the same ssimulated PLC.
The only difference is the communication protocol. The serial server uses hex ASCII strings
to send and receive messages, e.g.

:81000301002B4F;

with the start of the message marked with acolon (*:") and the end marked with a semicolon
;). By contrast, the board server uses straight binary to send and receive messages, e.g.

81000301 00 2B 4F
Otherwise, the points available and the protocols are the same.

For the serial server, one smulated PLC isimplemented for each of the COM ports 1..4. For
the board server, one simulated PL C isimplemented for each of the board segments 0xD00O,
0xD400, 0xD800, 0xDCO00.

The simulation has two PLC memory segments:

NAME ADDRESSRANGE DESCRIPTION FUNCTION

Y 1..512 variable memory holds value steady
C 1..512 counter memory increments each time read

Addressing wraps around, so V814 = V((814-1) mod 512)+1 = V302
C-memory counters are always accessed as 16-hit integers.

However, pointsin V-memory can be accessed in additional ways:

V <number> 16-bit integer Example: V3

V<number>B 16-bit BCD integer Example: V3B
V<number>S 16-bit signed integer Example: V3S
V<number>D 32-bit DWORD Example: V3D (V3 and V4)
V<number>R 32-bit float (real number) Example: V3R (V3 and V4)

V<number>:<number> Bit of word (read only) Example: V3:12 (V3 bit 12)
V<number>-<number> String, blank-terminated Example: V1-5
V<number>-<number>B String, blank-terminated Example: V1-5B
V<number>-<number>C String, C-style Example: V1-5C
V<number>-<number>P String, Pascal-style Example: V1-5P

(length byte first)

The PLC simulator in UDSAMPLE provides away to illustrate various aspects of 1/0 Server
design with actual, running code. Topics can be configured, modified, and deleted. 1/0
channels (COM ports or boards) can be configured and modified. Messages for reading and
writing PLC point values are created, “sent,” “received,” and interpreted just asif there were
areal device at the end of some kind of communication cable. In some cases, those messages
are “optimized” to improve performance.

I/O Server Code Samples 18-15

The use of the simulated PLC can be enabled or disabled at compile time, according to
whether the macro

#def i ne SI MULATI NG

is defined or not in the module UDSAMPLE.C.

This approach makes it possible to include a complete or partial simulator in the source code
for a server and mask it out when the server is built for use with real 1/0. Asafailsafe, the first
time the simulator is accessed, it puts the message

Simulated I/O —for test purposes only!

into the Wonderware Logger. This helps ensure that, if you forget to mask out the
simulator, the log indicates that simulated 1/0 is being used.

While it may not be practical to include a complete or even partial simulator for an actual
PLC in your server, this technique can often be a significant aid in debugging — especialy if
an actual PLC is unavailable for certain tests. See the chapter on debugging for additional
ideas on testing and debugging your server.

18-16 Chapter 18

19-1

CHAPTER 19
OOE

DOE, FaztOOE,

R

Debugging and Testing

Dewice Specific
Protaocal

This section presents a basic development and testing methodology that will assist you
in completing the I/0O Server quickly and efficiently.

Contents

Basic Programming Rules for Windows and Windows NT
General Debugging Topics

Windows and Windows NT Debugging Tools

Testing

19-2 Chapter 19

Basic Programming Rules for Windows
and Windows NT

The Toolkit uses C-language include files that use the WINAPI parameter passing
option. We recommend following Microsoft guidelines for writing compatible code.
The samples included have been written to compile Win32 models.

General Debugging Topics

Debug Messages

Liberal use of debug() message calls can greatly enhance your debugging arsenal.
These message calls are most useful at decision points to record data and flow through
the logic. The UDSAMPLE code described in the previous section illustrates how
debug() calls can be used to describe the device status returns. Until you become
familiar with the use of the Toolkit, we recommend that you put adebug() call at the
entry and exit of every new routine.The following are a few suggestions for debug()

usage:
1. Remember, always use far pointers to strings and be careful to keep the byte size of
the parameters equal to the format statement elements.

Example:

debug("Udprot FreeMsg(%9©4X)", (unsigned) hnsg);

debug("Udprot FreeSynEnt (%p, %p, %)", |pnode, |pSyniTab,
(int) indx);

debug("Udprot Unchai nSynEnt (%p, %p, %d)", |pnode, |pSyniTab,
(long) I num);

2. Thedebug() calls can take alot of machine time to execute, especialy if they are
being logged to disk (check the display optionsin Wonderwar e Logger). Allow
for this at first by selecting long timeouts, slow polling rates, and short messages.

When the server is completed, it is handy to leave afew protocol debug() callsin the
code. By using either a menu selection, a WIN.INI variable, or a Registry setting, you
can enable or disable these remaining debug() calls by putting the appropriate (if)
statements around them. Thisfiner level of information gathering is useful when an
installation isfirst started up. When there is enough detail in the debug messages, they
will assist in isolating hardware problems, configuration errors, user problems, and the
lingering "one last bug" in the software.

Debugging and Testing 19-3

DDE Message Traffic Monitoring Using WIN.INI

The Toolkit will handle the entire DDE protocol for the server, but in rare cases you
may need to examine the DDE message traffic in detail. The Toolkit can be switched
into debug mode by using WINL.INI variables. The Toolkit routines will access the
WIN.INI file for a server by the name selected for the application name in the
ProtGetDriver Name() function.The following two WIN.INI variablescan be set to 1
to force the Toolkit to send DDE debugging messages to the Wonderwar e L ogger :

[SERVERNAME]
DebugDDEM essages=1
PreventBlockedDDE=1

Below isasample from the Wonderwar e L ogger with the DebugDDEM essages debug
variable set. A simple sequence of INITIATE, REQUEST, POKE, ADVISE,
UNADVISE, then TERMINATE was done from DDEAPP.EXE:

90/ 07/ 24 21: 48: 08. 301/ UDSI MPLE/ rcvd WM DDE_REQUEST 4848 24E8 0001 C37D [T1
90/ 07/ 24 21: 48: 09. 851/ UDSI MPLE/ sent WM DDE_DATA 24E8 4848 154E C37D [T1
90/ 07/ 24 21: 48: 21. 099/ UDSI MPLE/ r cvd WM DDE_PCKE 4848 24E8 154E C37D [T1
90/ 07/ 24 21: 48: 21. 264/ UDSI MPLE/ sent WM DDE_ACK 24E8 4848 8000 C37D [T1
90/ 07/ 24 21: 48: 27. 646/ UDSI MPLE/ r cvd WM DDE_ADVI SE 4848 24E8 15FE C37D [T1
90/ 07/ 24 21: 48: 27. 756/ UDSI MPLE/ sent WM DDE_ACK 24E8 4848 8000 C37D [T1
90/ 07/ 24 21: 48: 27. 921/ UDSI MPLE/ sent WM DDE_DATA 24E8 4848 1026 C37D [T1
90/ 07/ 24 21: 48: 31. 821/ UDSI MPLE/ sent WM DDE_DATA 24E8 4848 15FE C37D [T1
90/ 07/ 24 21: 48: 36. 874/ UDSI MPLE/ sent WM DDE_DATA 24E8 4848 1636 C37D [T1
90/ 07/ 24 21: 48: 38. 466/ UDSI MPLE/ r cvd WM DDE_UNADVI SE 4848 24E8 0000 C37D [T1
90/ 07/ 24 21: 48: 38. 631/ UDSI MPLE/ sent WM DDE_ACK 24E8 4848 8000 C37D [T1
90/ 07/ 24 21: 48: 43. 289/ UDSI MPLE/ sent WM DDE_TERM NATE 24E8 4848 0000 0000 []

When using WindowViewer asthe client to debug the DDE traffic, set the flag
PreventBlockedDDE to 1 to keep the server in the standard (slower) DDE mode.
WindowViewer will normally use its own extra message blocking protocol to speed up
the DDE transfers of large numbers of data points greatly.

Note: Remember to either set these both back to O or delete them from the WIN.INI file
when the server application is complete. With either one of these variables set,
performance will be severely degraded.

DDE Message Traffic Monitoring Using DDESpy

A Microsoft utility called DDESpy displays all the DDE messages on your computer
and tags each message with awindow handle that will distinguish the messages from
multiple clients. An example of the level of detail that’s displayed with each message is
the DDE data message, where the output includes the source window handle, the data,
the data format and the item name.

Y ou can get DDESpy from the Professional version of Microsoft's Visual C++ or from
CompuServe (enter GO WINSDK, fileis DDESPY.ZIP). If you run DDESpy and get a
GPF or the output suddenly stops updating, you may not have the latest version of
DDESpy. Make sure you get the most recent version of DDESpy from CompuServe.

194

Chapter 19

Assertion Errors

Under certainillogical or fatal conditions, an Assertion Error message box will be
displayed showing a program line number, as shown in the example below:

Azzertion Error - Make Mote of Errar

File: CAWAMMIOSERYERVUDS AMPLEVIDMAIN 1 LINE 200

Continue?

Yes No |

An application can create these errors by calling ASSERT(boolean expression). If the
boolean expression evaluates to FAL SE, the message box will come up. You can use
these calls at pointsin your code that should never happen or to indicate an illogical
situation.

Note: Use ASSERT_ERROR rather than using ASSERT (FALSE).

When an assertion error comes from the Toolkit library function, write down the
conditions that lead up to the error and the information in the message box. You can
respond Y es to the message box and, depending on the severity of the error condition,
the application may continue with no ill effects, get another assertion error, abort the
application and produce a DrWatson listing, or hang the system. Therefore, continue at
your own risk. If you respond No to the message box, the Toolkit will produce a
DrWatson listing which can be valuable in tracking the problem. Refer to the Microsoft
Professional Tools User's Guides for detailed information.

Another useful technique in tracking assertion errors that may come from the Toolkit is
to set a breakpoint at AssertLog. Then re-create the error and look at the CALL traceto
determine which routine in the server was called. Sometimes there are errorsin the
calling routines parameters that are invalid and these errors do not get trapped asinvalid
until they are several layers deep within the Toolkit.

Caution Note Assertion errors should be used sparingly since they will disable the
operation of your server. They should not be used to indicate communication errors,
nuisance errors, etc. Use the debug() function call to log these types of errors. Asa
general rule, if the server can recover gracefully from an error, do not use an assert call.

Prior to contacting Technical Support, try to recreate the error and make note of the file
specification listed in the assertion message box. In many cases, the assert information
will be copied to the Wonderwar e L ogger, resulting in an entry similar to the one
below:

90/ 10/ 22 16:13: 25. 542/ UDSAMPLE/ Assertion Error: "File
C: \ WA | OSERVER\ UDSAMPLE\ udmai n. ¢ Li ne 620"

Debugging and Testing 19-5

Windows and Windows NT Debugging Tools

Microsoft Visual C/C++ Debugger

Microsoft Visual C++ provides an integrated debugger to debug programs. If using
Visual C++ asthe development environment, choose this full-featured debugger as the
debugging tool. It is strongly recommended that when you install Microsoft Visual C++,
you also perform the optional step of installing the Win32 symbol table. This will
facilitate tracing your program even when it makes calls to the operating system.

The Toolkit Library is now supplied with debugging information (symbols,
programmers database, and browsing). This requires Microsoft Visual C/C++ Version
6.0 sp3 or later.

Microsoft WINDBG Debugger

The Microsoft Windows NT SDK includes a powerful symbolic debugger called
WINDBG. If using the Windows NT SDK to develop a server, this debugger is an
essential tool for diagnosing and solving problems with code.

NuMega Bounds Checker

Thistool is often of great help in tracking down memory leaks, bad memory pointers,
and out-of-range indexes. It does require a special effort to build your program for this
debugging tool, but it does provide a way of trapping mismatched memory
allocations/deall ocations, resources accessed but not released, and invalid indexes.

NuMega Soft Ice

Thistool can be useful if you find yourself debugging a server that uses drivers, such as
VXD programs for Windows 98 or kernel device drivers (KDDs) for Windows NT.

Rational/Pure/Atria Quantify Performance Monitor

Thistool is of most value when your server is already running, but you want to look for
ways to improve performance. It does require a special effort to build your program for
this evaluation tool, but it does provide a way to examine areas where program
efficiency could be improved.

19-6

Chapter 19

Testing

WW(Client Usage

The next most useful tool for debugging the new server code is the Wonderware
program WW(Client that is included on the Wonderware Toolkit installation disks. This
program allows you to manually exercise DDE and SuiteLink functionsin order to test
the server. (The program is discussed in the chapter entitled “1/O Server Code
Samples’.) Thisprogram will act as a client application. To useit, run

C:\Program Files\FactorySuite\ COMMON\wwclient and select the various menu
options. The operations we will discuss are:

Connect
Register
Advise
Unadvise
Request
Poke
Unregister
Disconnect

By using WW(Client you can simulate all of the typical client DDE and SuitelLink
actions. Follow the sequence listed below to observe the basic operations of the new
server:

1. Select Connect to bring up the Connect dialog. Enter the name of the node to which
you want to connect, the application name of the server, and a valid topic name for
the server. Then select whether the type of connection you want: DDE or 10T for
SuiteLink. [Note: If WW(Client and your server are on the same machine, the node
name can be left blank for a DDE connection, but not for a SuiteLink connection.]
Finally, click on the “Connect” button. Thiswill result in acall to
ProtAllocatel ogicalDevice() and you can watch the server do its protocol setup.

If the connection is successful, a status line will appear in the WWClient main
window. Animportant test of the server logic isto use aninvalid topic name. Also,
you can open up connections to several topics and severa different serversfrom
thisdialog. Click onthe“Done” button when you are finished.

2. Select Itemto bring up the Item dialog. Select which connection you want to use,
then enter avalid item name. Then click on the “Register” button. Thiswill not
result in any callsto the server itself. However, an entry for each point registered
will appear under the corresponding topic in the WW(Client main window. You can
also register arange of pointsin asingle command. For example, typing “V1..5”
and clicking on “Register” will register points V1, V2, V3, V4, and V5. When you
register points under different connections, the points will be listed in the
WW(Client main window under their corresponding connections.

Debugging and Testing 19-7

With a connection selected and a valid item name or range in the “Item” edit box,
click the“Advise” button. Thiswill result in two callsto the server:
ProtCreatePoint() and ProtActivatePoint(). At this point, the server should
begin gathering data and return it by calling the Toolkit
DbNewVTQFromDevice() routine. The new datawill be displayed in the
WW(Client, and any of your debugging messages should be examined. Another
important test isto use an invalid item name.

With a connection selected and a valid item name or range in the “Item” edit box,
click the “Unadvise” button. Now ProtDeactivatePoint() will be called. This
should have exercised al of the basic data gathering paths.

With a connection selected and avalid item name or range in the “I1tem” edit box,
click the “Request” button. If the point is not already on advise, you will seecalls
to ProtCreatePoint() and ProtActivatePoint(), followed by updatesto the
Toolkit viathe DbNewVTQFromDevice(), and acall to ProtDeactivatePoint().
Y ou will also see current value for the point appears in the WW(Client main
window. To examine what happens with a point that is already on advise, you can
use two instances of WWClient, one of which has the point on advise, and use the
other instance to request the point data. The instance of WW(Client that makes the
request will show the current data value at the time of the request, but no updates to
that value will occur — even though updates are taking place in the other instance of
WW(Client. See note below regarding multiple clients.

With a connection selected and a valid item name or range in the “I1tem” edit box,
select the type of data you want to send (Integer, Real, Discrete, or String) and enter
anew valuein the“Value’ edit box. Then click on the “Poke” button. Now you
will seeacall to ProtNewValueFor Device() with the new data to be written by the
server to the device.

With a connection selected and a valid item name or range in the “Item” edit box,
click onthe “Unregister” button. The listing for the point will be removed from the
main WW(Client window. If the point is on advise, you will also seeacall to
ProtDeactivatePoint().

Close the Item dialog box by clicking the “Done” button. Select Disconnect to
close the connection. If there is only one connection active, it will be closed.
Otherwise, the Disconnect dialog box will be displayed. Y ou can close a particular
connection or all connections. Closing a connection will invoke a call to
ProtFreel ogicalDevice() and effectively shut down that topic in the server. See
note below regarding multiple clients.

19-8

Chapter 19

If you have multiple clients connected to the same topic, the call to

ProtAllocatel ogicalDevice() only getsissued when the first client connects to the
topic. Likewise, ProtFreel ogicalDevice() gets called only when the last client
disconnects from the topic. Similarly, ProtCreatePoint() and ProtActivatePoint()
get called only when the first client connects to the point, and Pr otDeactivatePoint()
gets called only when the last client disconnects from the point.

After the basic single topic, single item paths through the server have been tested. Now
you can move on to a more complicated test. Keep in mind that nearly all of the server
functions can be exercised using this simple tool. Plan your testing around the boundary
conditions of your protocol. The following are afew other basic test suggestions:

1. If you have implemented the STATUS item for the server's topics, use WWClient to
test its operation while causing protocol error conditions. Most of the protocol
error handling can be tested during this phase.

2. You can use multiple copies of WW(Client to exercise overlapping operations. For
example, advise several points to check the protocol for optimizing its polling, and
do pokesto others points.

3. Clean up after topic termination (call ProtFreel ogicalDevice()) can be tested.
Have WW(Client Advise several points and then do a Disconnect (without doing an
Unadvise first).

4. Clean up after shut down (callsto ProtClose()) can be tested by closing the server
while several points are Advised.

Scripts for WWClient

WW(Client can be controlled from a script, so that complex or repetitive tests can be
recorded and replayed again later.

;Script test. scr
; Perform repeated connect, advise, and di sconnect

Loop: -1

Connect _i ot : \\ FSt est 05\ udsanpl e| t opi c1
Regi ster:vl..10

Advi se: vl..10

Pause: 1000

Di sconnect: \\ FSt est 05\ udsanpl e| t opi c1
Pause: 1000

LoopEnd:

Debugging and Testing 19-9

Microsoft Excel Usage

Any cell in Excel can be set to input DDE data from the server. This can be useful for
testing and obviously for the completed application usage. To cause Excel to read DDE
data, select acell and then enter the full address formula:

= Application|Topic!ltem
For example:

=UDSAMPLE|Transl!T1
=View|Tagname! ReactorL vl
=M ODBUS|ReactorPL CFast!'40001'

If the item name contains special characters, Excel may try to evaluate the expression. It
is useful to put apostrophe marks (single quotes) around the item name.

In addition, Excel can be forced to do Pokes. The following two example pokes can be
used:

1. Using DDEView.

DDEView can be used to poke asingle cell to anitem or columns of cellsto
multiple items. DDEView is shipped with Wonderware's NetDDE for Windows or
isavailablein the utilities section of Wonderware's Comprehensive Support CD.
Documentation on the installation and usage of DDEView is available in Appendix
C of the NetDDE for Windows User's Guide that comes with Wonderware's
NetDDE for Windows and the DDEView on-line help.

2. Using Excel 5.0 VBA macros.

An example of how to poke asingle cell to an item using an Excel 5.0 VBA style
macro:

Sub GetUDSERIAL()
Dim rangeT oPoke
Dim channel Number

channelNumber = Application.DDEInitiate("UDSERIAL", "topic")
Set rangeT oPoke = Worksheets(" Sheet1").Cells(1, 1)
Application.DDEPoke channelNumber, "R1", rangeToPoke
Application.DDETerminate channel Number

End Sub

19-10 Chapter 19

Index 1

Index
A

About the .DEF File, 9-30

About the .RC File, 9-30

Active Points, 3-10

Adding Help to the 1/O Server, 9-30

Adding SuiteLink/DDE to an Existing Windows
Application, 14-1

Addressing in Windows Protected-Mode, 9-14

AdjustWindowSizeFromWinlni, 9-22, 10-2, 10-53

Advise, 9-7, 19-3, 19-6, 19-8

ALLOCARRAYROUTINE, 11-10

AllocExtArray, 11-11

AlwaysDeleted, 11-9

AlwaysFound, 11-6, 11-7, 11-9

API Function Reference, 10-1

AppenditemAtTail, 11-5, 11-16

Application Name, 3-3, 3-5, 3-6

Assertion Errors, 19-4

AUX port, 10-24

B

base, 11-2, 11-3, 11-4, 11-5

Basic Programming Rules, 19-2

Basic Setup for a Selection Box, 9-21, 10-60
bCFGfileUnused, 10-106, 12-14
bNotService, 10-106, 12-14

Boolean Expression, 19-4

Building Messages, 18-10

Built in Data Structures, 18-12

C

Cfile, 9-31

Called Timer (Setup and Event) Functions, 9-9
Caveats with StrVal strings, 9-12

CHAIN, 7-7, 7-10, 11-3, 11-4, 11-6, 11-16
Chain Manager, 11-1, 11-2, 11-3, 11-6
CHAINLINK, 11-4, 11-14

CHAINLINKPTR, 11-4, 11-6
CHAINSCANNER, 7-7, 7-10, 11-6, 11-16
CheckConfigFileCmdLine, 9-22, 10-3

Client Application, 4-2

CloseComm, 9-26, 10-4

Coil Read Size, 4-2

COM Port, 4-2

Command Line Builds, 2-6

Common Dialog DLL (WWDLG32A.DLL), 2-7
Common Dialog Functions, 9-16
Communication with the Device, 4-4
Compatibility Functions, 9-27

Compatibility with Later Versions of the Toolkit, 9-9
Compiling a Server, 2-5

Configuration File Path, 9-22

Configuring an I/O Server, 4-2

Control of DDEAPP from WIN.INI, 19-8
Conversation, 3-6

Correct Usage of a String, 9-13

D

Data Structures
CHAIN, 7-7, 7-10, 11-3, 11-4, 11-6, 11-16
CHAINLINK, 11-4, 11-14
CHAINLINKPTR, 11-4, 11-6
CHAINSCANNER, 7-7, 7-10, 11-6, 11-16
EXTARRAY, 11-10
FILETIME, 6-2, 10-6, 10-10, 10-15, 10-18, 10-89,
10-90, 10-92, 10-93, 17-7
HSTAT, 10-68, 10-69, 10-70, 10-71, 10-72, 10-73,
10-76, 10-77, 10-78, 10-79, 10-80, 10-81
LPCHAIN, 11-4, 11-5, 11-6, 11-7, 11-8
LPCHAINLINK, 7-8, 11-4, 11-5, 11-6, 11-7, 11-8,
11-9, 11-14, 11-15, 11-16
LPCHAINSCANNER, 11-6, 11-7
LPEXTARRAY, 7-7, 11-10, 11-11, 11-12, 11-13
PORT, 8-3, 10-14, 10-72, 10-73, 10-75, 10-79, 10-
80, 18-12
PTQUALITY, 7-7, 7-10, 10-9, 10-12, 10-13, 10-15,
10-17, 10-18
PTTIME, 10-10
PTVALUE, 9-12, 9-13, 10-11, 10-16, 10-17, 10-18,
10-54, 10-68, 10-70, 10-77, 10-78, 10-82, 10-
83, 10-84, 10-85, 10-86, 12-2
STAT, 18-12
SYMENT, 16-8, 18-12
WW_AB_INFO, 10-108, 10-109, 12-3, 17-6
WW_CONFIRM, 10-106, 10-107, 12-4, 12-14, 15-
4
WW_CP_DLG_LABELS, 9-16, 10-104, 10-105,
12-5, 12-6
WW_CP_PARAMS, 10-105, 10-117, 12-5, 12-6,
12-10, 16-10
WW_SELECT, 10-130, 12-12
WW_SERV_PARAMS, 12-14
Data Variables, 9-30
Database Handle Parameter, 9-5
DbDevGetName, 10-5
DbGetGM TasFiletime, 6-2, 6-3, 10-6, 10-15, 17-7
DbGetName, 10-7, 10-91
DbGetPointType, 10-8
DbGetPtQuality, 10-9
DbGetPtTime, 10-10
DbGetVaueForComm, 10-11
DbNewQForAllPoints, 10-12
DbNewQFromDevice, 6-2, 7-8, 10-13, 17-7
DbNewTQFromDevice, 6-2, 9-9, 10-12, 10-13, 10-15,
17-7
DbNewV aueFromDevice, 9-1, 10-16, 19-7
DbNewV QFromDevice, 7-5, 10-17, 17-8
DbNewVTQFromDevice, 6-2, 6-4, 7-5, 9-9, 10-16, 10-
17, 10-18, 10-42, 10-45, 10-52, 10-55, 17-7, 17-8,
19-7
DbRegisterDemandScan, 10-19
DbRegisterScanState, 10-20
DbSetHProt, 9-9, 10-21
DbSetPointType, 10-22
DbVauewWriteConfirm, 10-23
DDE Conversation, 10-43
DDE Server Toolkit Data Structures, 12-1
DDEAPP.EXE, 19-3, 19-6

2 Index

debug, 9-22, 10-24, 19-2

Debug and Support Functions, 18-14

Debug Messages, 19-2

DebugDDEM essages, 19-3

Debugging and Testing, 5-1, 6-1, 7-1, 8-1, 11-1, 15-1,
17-1,19-1

Debugging the DDE Message Traffic, 19-3

DEF file, 9-30

DELETEARRAYROUTINE, 11-10

DeleteChain, 11-8, 11-16

DeleteExtArray, 11-11

Deleteltem, 11-8, 11-14, 11-16

DELETEROUTINE, 11-8, 11-9

Deleting an Extensible Array, 11-11

DemandScanFncCallback, 10-19

Designing the UDSERIAL Server, 18-4

Discrete (Boolean) Data Type, 3-4

Discrete Data Type, 9-5, 9-6, 9-7

dwWWOsPlatform, 10-121

Dynamic Data Exchange, 3-1

E

EnableCommNoatification, 9-27, 10-25
Examples of Logical Device Management, 9-4
Excel Usage, 19-9

Executing the Configuration, 18-10

Executing the Protocol, 4-3, 18-11
EXTARRAY, 11-10

EXTENDARRAY ROUTINE, 11-10
ExtractReadData/ExtractDbltem, 18-11

F

FastDDE, 3-3, 5-2, 5-7

File Description, 2-3
Include Files, 2-3
Sample Servers, 2-4
Utility Files, 2-3

FILETIME, 6-2, 10-6, 10-10, 10-15, 10-18, 10-89, 10-
90, 10-92, 10-93, 17-7

FindFirstltem, 7-10, 11-6, 11-16

FindltemFollowing, 11-7

FindltemStartingAt, 7-8, 11-6

FindNextltem, 7-8, 7-10, 11-7, 11-16

FlushComm, 9-26, 10-26

FOUNDROUTINE, 11-9

Freeing Memory, 9-2, 9-14

Freeing the Memory Associated with the Selection Ligt,
9-21, 10-63

Freeing the Memory used for a ptValue String, 10-84

Functions
AdjustWindowSizeFromWinlni, 9-22, 10-2
AllocExtArray, 11-11
AlwaysDeleted, 11-9
AlwaysFound, 11-6, 11-7, 11-9
AppenditemAtTail, 11-5, 11-16
CheckConfigFileCmdLine, 9-22, 10-3
CloseComm, 9-26, 10-4
DbDevGetName, 10-5
DbGetGM TasFiletime, 6-2, 6-3, 10-6, 10-15, 17-7
DbGetName, 10-7, 10-91

DbGetPointType, 10-8

DbGetPtQuality, 10-9

DbGetPtTime, 10-10

DbGetV alueForComm, 10-11

DbNewQForAllPoints, 10-12

DbNewQFromDevice, 6-2, 7-8, 10-13, 17-7

DbNewTQFromDevice, 6-2, 9-9, 10-12, 10-13, 10-
15, 17-7

DbNewV aueFromDevice, 9-5, 10-16, 19-7

DbNewV QFromDevice, 7-5, 10-17, 17-8

DbNewVTQFromDevice, 6-2, 6-4, 7-5, 9-9, 10-16,
10-17, 10-18, 17-7, 17-8, 19-7

DbRegisterDemandScan, 10-19

DbRegisterScanState, 10-20

DbSetHProt, 9-9, 10-21

DbSetPointType, 10-22

DbV aueWriteConfirm, 10-23

debug, 10-24, 19-2

DeleteChain, 11-8, 11-16

DeleteExtArray, 11-11

Deleteltem, 11-8, 11-14, 11-16

EnableCommNoatification, 9-27, 10-25

ExtendExtArray, 11-11

FindFirstltem, 7-10, 11-6, 11-16

FindltemFollowing, 11-7

FindltemStartingAt, 7-8, 11-6

FindNextltem, 7-8, 7-10, 11-7, 11-16

FlushComm, 9-26, 10-26

GetAppName, 10-27

GetCommeError, 9-26, 10-28

GetCommEventM ask, 9-26, 10-29

GetExtArrayMemberPtr, 7-7, 11-11

GetlOServerLicense, 10-30, 18-5

GetScannerNextltem, 11-7

GetServerNameExtension, 10-31, 10-119, 15-6, 17-
3

GetString, 10-32

GetTextExtent, 10-33

InitializeChain, 11-5, 11-16

InitializeExtArray, 11-11

InsertltemAfter, 11-5

InsertltemAtHead, 11-5

InsertltemBefore, 11-5

InsertitemlinMiddle, 11-5, 11-16

IsinChain, 11-6

NTSrvr_BuildCommDCB, 9-27, 10-34

NTSrvr_GetCommState, 9-27, 10-35

NTSrvr_SetCommState, 9-27, 10-36

NTSrvr_SetDCB_Dtr, 9-27, 10-37

NTSrvr_SetDCB_Rts, 9-27, 10-38

OpenComm, 9-26, 10-39

PfnSendEmSelectAll, 9-27, 10-40

PfnSendEmSel ectRange, 9-27, 10-41

ProtActivatePoint, 9-5, 10-21, 10-42, 19-7

ProtAllocatel ogicalDevice, 9-3, 10-43, 19-6

ProtClose, 9-2, 10-44, 19-8

ProtCreatePoint, 9-5, 10-45, 19-7

ProtDeactivatePoint, 9-6, 10-46, 19-7

ProtDefWindowProc, 9-2, 10-47

ProtDel etePoint, 10-48

ProtDefWindowProc, 14-1

ProtExecute, 9-3, 10-49

ProtFreel ogical Device, 9-3, 10-50, 19-7, 19-8

Index

3

ProtGetDriverName, 9-2, 9-22, 10-3, 10-24, 10-27,
10-31, 10-51, 14-1, 15-4, 15-6, 17-3, 19-3

ProtGetVaidDataTimeout, 9-2, 9-10, 10-52

ProtlInit, 9-2, 10-53

ProtNewV alueForDevice, 9-6, 9-11, 9-13, 10-21,
10-54, 19-7

ProtTimerEvent, 9-2, 9-9, 10-55

ReadComm, 9-26, 10-56

RelinquishPermission, 9-14, 10-57

RequestPermission, 9-14, 10-58

SelBoxAddEntry, 9-21, 10-59

SelBoxSetupStart, 9-21, 10-60

SelBoxUserSelect, 9-21t, 10-61

SelBoxUserSelection, 9-21, 10-62

SelListFree, 9-21, 10-63

SelListGetSelection, 9-21, 10-64

SelListNumSelections, 9-21, 10-65

SetChainBase, 11-5

SetCommEventMask, 9-26, 10-66

SetSplashScreenParams, 10-67, 10-102, 17-4, 17-5,
18-5

StatAddValue, 10-68, 10-72, 10-74

StatDecrementV alue, 10-69

StatGetValue, 10-70

StatlncrementVaue, 10-71, 10-72, 10-74

StatRegisterCounter, 10-68, 10-69, 10-70, 10-71,
10-72, 10-74, 10-75, 10-77, 10-78, 10-79, 10-
81

StatRegisterRate, 10-68, 10-69, 10-70, 10-71, 10-
73, 10-76, 10-77, 10-78, 10-80, 10-81

StatSetCountersinterval, 8-4, 10-75

StatSetRatelnterval, 10-76

StatSetValue, 10-77

StatSubtractValue, 10-78

StatUnregisterCounter, 10-72, 10-79

StatUnregisterRate, 10-74, 10-80

StatZeroVaue, 10-81

StrValSetNString, 9-11, 10-82

StrValSetString, 9-11, 9-12, 9-13, 10-83

StrValStringFree, 9-11, 10-84

StrValStringLock, 9-11, 9-13, 10-85

StrValStringUnlock, 9-11, 9-13, 10-86

SysTimerSetupProtTimer, 9-2, 10-87

SysTimerSetupRequestTimer, 10-88

UdAddFileTimeOffset, 10-89, 10-90

UdAddTimeM Sec, 10-90

UDDbGetName, 10-7, 10-91

UdDeltaFileTime, 10-92, 10-93

UdDeltaTimeM Sec, 10-93

Udinit, 10-94

UdReadAnyMore, 9-22, 10-95, 10-128, 10-129, 10-
140, 10-141

UdReadVersion, 9-22, 10-96, 10-128, 10-129, 10-
140, 10-141

UdTerminate, 10-97

UdWriteAnyMore, 9-24, 10-98, 10-128, 10-129,
10-140, 10-141

UdWriteVersion, 9-24, 10-99, 10-128, 10-129, 10-
140, 10-141

Unchainltem, 11-8, 11-16

WriteComm, 9-26, 10-100

WriteWindowSizetoWinini, 9-24

WriteWindowSizetoWinlini, 10-101

G

WWAnnounceStartup, 10-67, 10-102, 17-4, 17-5
WW_CenterDialog, 9-16, 10-103
WWConfigureComPort, 9-16, 10-104
WW_ConfigureServer, 9-16, 10-106
WW(Confirm, 9-16, 10-107
WWDisplayAboutBox, 9-16, 10-108
WWDisplayAboutBoxEx, 10-109, 12-3
WWDisplayConfigNotAllow, 9-16, 10-110
WWDisplayErrorCreating, 9-17, 10-111
WWDisplayErrorReading, 9-17, 10-112
WWDisplayErrorWriting, 9-17, 10-113
WWDisplayKeyNotEnab, 9-18, 10-114
WWDisplayKeyNotInst, 9-18, 10-115
WWDisplayOutofMemory, 9-18, 10-116
WWFormCpM odeString, 9-18, 10-117
WWGetDialogHandle, 9-18, 10-118
WWGetDriverNameExtension, 10-119
WWGetExeFilePath, 10-120, 15-4
WWGetOsPlatform, 10-121
wwHeap_AllocPtr, 10-122
wwHeap_AllocPtr, 9-14

wwHeap_FreePtr, 10-123

wwHeap_FreePtr, 9-14

wwHeap_Init, 10-124

wwHeap_Init, 9-14

wwHeap_ReAllocPtr, 10-125
wwHeap_ReAllocPtr, 9-14

wwHeap_ Release, 9-14, 10-126
WWInitComPortComboBox, 9-18, 10-127
WWSsdlect, 9-18, 10-130

WWTrand ateCDIgToWinBaud, 9-18, 10-131
WWTrand ateCDIgToWinData, 9-18, 10-132
WWTrand ateCDIgToWinParity, 9-18, 10-133
WWTrand ateCDIgToWinStop, 9-19, 10-134
WWTrand ateWinBaudToCDlg, 9-19, 10-135
WWTrand ateWinDataToCDIg, 9-19, 10-136
WWTrand ateWinParityToCDlg, 9-20, 10-137
WWTrand ateWinStopToCDlg, 9-20, 10-138
WWV erifyComDIgRev, 9-20, 10-139

GetAppName, 9-22, 10-27

GetCommeError, 9-26, 10-28

GetCommEventM ask, 9-26, 10-29
GetExtArrayMemberPtr, 7-7, 11-11
GetlOServerLicense, 10-30, 18-5
GetProfilelnt, 10-53

GetProfileString, 10-53

GetScannerNextltem, 11-7
GetServerNameExtension, 10-31, 10-119, 15-6, 17-3
GetString, 9-22, 10-32

GetTextExtent, 10-33

Getting Started with the 1/O Server Toolkit, 2-1
GlobalAlloc, 9-14

GlobalFree, 9-14

GlobalLock, 9-14

GlobalReAlloc, 9-14

GlobalUnlock, 9-14

4 Index

H

Heap Manager, 9-14

Help Development Software Packages, 9-31

Help Files, 9-31

Help Menu Items
MENU_HELP_ABOUT, 9-31
MENU_HELP_INDEX, 9-31
MENU_HELP_ON_HELP, 9-31
SEPARATOR, 9-31

HSTAT, 10-68, 10-69, 10-70, 10-71, 10-72, 10-73, 10-
76, 10-77, 10-78, 10-79, 10-80, 10-81

hString Field, 9-11

1/0 Conversation, 3-2, 3-3, 3-5, 9-3

1/0 Server Code Samples, 18-1

1/0 Server Toolkit Application Programming Interface,
10-1

1/0 Server's Initialization, 9-2

Implementing a Configure Menu Option, 4-2

InitializeChain, 11-5, 11-16

InitializeExtArray, 11-11

Initializing aHeap, 9-14, 10-124

Initializing aptVaue String, 9-11

Initializing or Changing the Value of a ptValue string,
10-83

INITIATE, 19-3, 19-6

InsertitemAfter, 11-5

InsertitemAtHead, 11-5

InsertitemBefore, 11-5

InsertiteminMiddle, 11-5, 11-16

Installation Procedures
With aprior installation of the I/O Server Toolkit,

2-2

Integer Data Type, 3-4, 9-5, 9-6, 9-8

IsinChain, 11-6

Item Name, 3-6, 4-3

Item/Point, 3-3, 3-6, 4-2

L

Limiting the String Size, 10-82

Linked List, 11-14

Linking a Server, 2-6

Locking a String in Memory, 9-11, 10-85

Logging Hardware/Software Problems, 10-24

Logical Device, 3-3, 3-5, 4-2, 9-3

LogicalAddrCmp, 18-10

LPALLOCARRAYROUTINE, 11-10, 11-11

LPCHAIN, 11-4, 11-5, 11-6, 11-7, 11-8

LPCHAINLINK, 7-8, 11-4, 11-5, 11-6, 11-7, 11-8, 11-9,
11-14, 11-15, 11-16

LPCHAINSCANNER, 11-6, 11-7

LPDELETEARRAYROUTINE, 11-10, 11-11

LPDELETEROUTINE, 11-9

LPEXTARRAY, 7-7, 11-10, 11-11, 11-12, 11-13

LPEXTENDARRAYROUTINE, 11-10, 11-11

LPFOUNDROUTINE, 11-6, 11-7, 11-9

Istrcmpi, 10-43, 10-45

M

Macros for Portablility, 9-28

Managing Points, 9-5

Memory, 9-11

Memory Access Permission Functions, 9-14
Memory Address Range, 9-15

Memory Management Functions, 9-14

Memory Mapped I/0, 10-58

Miscellaneous Functions, 9-22

Modifying the User Interface - UDSERIAL.RC, 18-6
Multiple I/0O Conversations, 3-8

N

nNTServiceSetting, 10-106, 12-14, 12-15, 15-5, 15-7
Non-Standard Memory, 10-58

Notation Convention for Application and Topic, 3-5, 3-6
Notes on the UDSAMPLE, 18-2
NTSrvr_BuildCommDCB, 9-27, 10-34
NTSrvr_GetCommState, 9-27, 10-35
NTSrvr_SetCommState, 9-27, 10-36
NTSrvr_SetDCB_Dtr, 9-27, 10-37
NTSrvr_SetDCB_Rts, 9-27, 10-38

O

Obtaining a File Path from the Command Line, 9-22
OnOffScanFncCallback, 10-20

OpenComm, 9-26, 10-39

OX.SYS, 10-24

P

PfnSendEmSelectAll, 9-27, 10-40

PfnSendEmSel ectRange, 9-27, 10-41

Point/Item Management, 9-5

Poke, 9-7, 19-3, 19-7

Poll Frequency, 4-2

PORT Data Structure, 18-12

Porting to Windows NT, 16-1

PreventBlockedDDE, 19-3

ProcessValidResponse, 18-11

ProtActivatePoint, 9-5, 10-42, 10-46, 19-7

ProtAllocatelogicalDevice, 9-3, 9-5, 10-43, 10-48, 19-6

ProtClosg, 9-2, 10-44

ProtCreatePoint, 9-5, 10-21, 10-23, 10-42, 10-45, 10-46,
10-48, 19-7

ProtDeactivatePoint, 9-6, 10-46, 19-7

ProtDefWindowProc, 9-2, 10-47, 14-1

ProtDel etePoint, 10-48

ProtExecute, 9-3, 10-49

ProtFreel ogica Device, 9-3, 10-50, 19-7, 19-8

ProtGetDriverName, 9-2, 9-22, 10-3, 10-24, 10-27, 10-
31, 10-51, 14-1, 15-4, 15-6, 17-3, 19-3

ProtGetValidDataTimeout, 9-2, 9-10, 10-52, 10-88

Protlnit, 9-1, 9-2, 10-3, 10-53

ProtNewV alueForDevice, 9-6, 9-11, 9-13, 10-46, 10-54,
19-7

Protocol Initidization & Setup, 9-2

ProtTimerEvent, 9-2, 9-9, 10-55, 18-11

Index 5

PTQUALITY, 7-7, 7-10, 10-9, 10-12, 10-13, 10-15, 10-
17, 10-18

PTTIME, 10-10

ptvValue, 9-11, 12-2

Q

Quality, 3-2, 6-2, 7-1, 7-2, 7-4, 7-5, 10-9, 10-16, 17-2,
17-7,17-8

R

RC file, 9-30, 9-31

ReadComm, 9-26, 10-56

Real Data Type, 3-4, 9-5, 9-6, 9-8

Rea Mode, 9-14

Register Read size, 4-2
RelinquishPermission, 9-14, 10-57, 10-58
Reporting Changing Point Values, 9-5
REQUEST, 19-3

RequestPermission, 9-14, 10-58

Resource File, 10-32

Retrieving a Point Value from the Device, 9-9
Returning a String from the Resource File, 10-32
Running a Server, 2-7

S

Sample 1/O Servers
Board, 9-31
Board Sample, 4-4
Serial, 9-31
Samplel/O Servers
Serial Sample, 4-4
SAMPLES, 18-2
SelBoxAddEntry, 9-21, 10-59, 10-64
SelBoxSetupStart, 9-21, 10-60
SelBoxUserSelect, 9-21, 10-59, 10-61
SelBoxUserSelect, 10-62
SelBoxUserSelection, 9-21, 10-61, 10-62
Selection Box, 9-21
SelListFree, 9-21, 10-32, 10-62, 10-63
SelListGetSelection, 9-21, 10-62, 10-64
SelListNumSelections, 9-21, 10-62, 10-64, 10-65
Server Application, 3-3, 4-2, 9-3
Server Porting Instructions, 16-2
Server.HLP file, 9-31
SetChainBase, 11-5
SetCommEventMask, 9-26, 10-66
SetSplashScreenParams, 10-67, 10-102, 17-4, 17-5, 18-5
Setting the Vertical Screen Position of the Box, 10-61
Slave D, 4-2
STAT Data Structure (or Node or Topic), 18-12
StatAddValue, 10-68, 10-72, 10-74
StatDecrementV alue, 10-69
StatGetValue, 10-70
StatlncrementVaue, 10-71, 10-72, 10-74
StatRegisterCounter, 10-68, 10-69, 10-70, 10-71, 10-72,
10-74, 10-75, 10-77, 10-78, 10-79, 10-81
StatRegisterRate, 10-68, 10-69, 10-70, 10-71, 10-73, 10-
76, 10-77, 10-78, 10-80, 10-81
StatSetCountersinterval, 8-4, 10-75

StatSetRatel nterval, 10-76

StatSetValue, 10-77

StatSubtractValue, 10-78

StatUnregisterCounter, 10-72, 10-79

StatUnregisterRate, 10-74, 10-80

StatZeroVaue, 10-81

Stop Reporting Point Value Changes, 9-6

stricmp, 3-8

String Buffers, 10-32

String Data Type, 3-4, 9-5, 9-6, 9-8

String PtVaue Manipulation Functions, 9-9, 9-11

STRINGTABLE, 9-30

STRUSER, 10-32

StrValSetNString, 9-11, 10-82

StrValSetString, 9-11, 9-12, 9-13, 10-83

StrValStringFree, 9-11, 10-83, 10-84

StrValStringLock, 9-11, 9-13, 10-85, 10-86

StrValStringUnlock, 9-11, 9-13, 10-86

SuiteLink, 2-3, 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 4-2,
5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 5-7, 5-8, 6-4, 7-4, 8-3,
8-4, 8-5, 9-1, 10-23, 14-1, 15-7, 18-3, 19-6

Symbol Table, 11-2, 16-8, 18-12

SYMENT Data Structure (Symbol Table), 18-12

System Topic, 8-3

SysTimerSetupProtTimer, 9-2, 9-9, 10-53, 10-55, 10-87

SysTimerSetupRequestTimer, 9-2, 9-9, 10-53, 10-88

szCaption, 10-106, 12-14

szComment, 10-108, 12-3, 17-6

T

TERMINATE, 3-5, 19-3, 19-6, 19-7, 19-8

Time Mark, 6-2, 6-4, 10-12, 10-13, 10-16, 10-17, 17-7

Timeout, 4-2

Timer Event from the Toolkit, 4-3

Toolkit database, 3-2, 3-7, 3-8, 3-9, 5-4, 6-2, 6-4, 6-5, 7-
4, 9-5,9-9, 9-10, 9-13, 10-9, 10-10, 10-12, 10-13,
10-15, 10-21, 10-42, 10-46, 10-55, 10-82, 10-83,
10-84, 10-88

Toolkit Database Interface for Protocol Functions, 9-9

Toolkit Functions, 9-1

Toolkit Library Routines, 3-6

TOOLKIT7.LIB, 9-7, 9-9, 9-30, 14-1

Topic Name, 3-3, 3-5, 3-6, 4-2, 4-3

U

UdAddFileTimeOffset, 10-89, 10-90
UdAddTimeM Sec, 10-90
UDBLDMSG.C, 18-10

UDBOARD, 4-3

UDCONFIG.C - Function ValidatePoint, 18-8
UDDbGetName, 10-7, 10-91
UdDdltaFileTime, 10-92, 10-93
UdDeltaTimeM Sec, 10-93

Udinit, 9-22, 10-94, 14-1

UDMAIN.C, 9-31

UDMSG Data Structure (Message), 18-12
UdprotAddPoll, 18-10
UdProtDoProtocol, 18-11
UdprotGetResponse, 18-11
UdprotPrepareWriteM sg, 18-10

6 Index

UdReadAnyMore, 9-22, 10-95, 10-128, 10-129, 10-140,
10-141
UdReadVersion, 9-22, 10-96, 10-128, 10-129, 10-140,

10-141
UDSAMPLE, 18-2
UDSERIAL, 4-2

UDSERIAL Architectural Overview, 18-3

UdTerminate, 9-24, 10-97, 14-1

UdWriteAnyMore, 9-24, 10-98, 10-128, 10-129, 10-140,
10-141

UdWriteVersion, 9-24, 10-99, 10-128, 10-129, 10-140,
10-141

Unadvise, 9-7, 19-3, 19-8

Unchainltem, 11-8, 11-16

Unlocking a String in Memory, 10-86

Vv

ValidatePoint
Example, 18-8

ValidDataTimeout, 9-10, 10-88

VTQ, 5-2, 6-2, 6-4, 10-12, 10-13, 10-15, 10-17, 10-18,
17-2, 17-7

W

What is called on a Poke?, 9-7

What is called on a Request?, 9-6

What is called on aTERMINATE?, 9-4
What is called on an Advise/Unadvise?, 9-7
What iscalled on INITIATE?, 9-4

What is DDE?,1-4

What is SuiteLink?, 5-1

WIN.INI, 9-22, 10-24, 19-8

Windows Function Emulators, 9-26
Windows NT Only Macros, 9-28
Windows NT Porting Functions, 9-25
Windows' String Resources, 10-32
WindowViewer, 3-3, 3-6

WINHELP, 9-30

WinMain, 9-22, 9-24, 10-94, 10-97
WM_COMMAND / MENU_HELP_ABOUT, 9-31
WM_COMMAND Messages, 10-47
WM_DDE_REQUEST, 10-52
Wonderware InTouch, 3-3, 9-21
Wonderware Logger Sample, 19-3
WriteComm, 9-26, 10-100
WriteWindowSizetoWinini, 9-24, 10-101
Writing a New Value to the Device, 9-6
WW_AB_INFO, 12-3

WW_CONFIRM, 12-4
WW_CP DLG LABELS, 12-5
WW_CP_PARAMS, 12-10
WW_SELECT, 12-12
WW_SERV_PARAMS, 12-14
WWAnnounceStartup, 10-67, 10-102, 17-4, 17-5
WW_CenterDialog, 9-16, 10-103
WWConfigureComPort, 9-16, 10-104
WW_ConfigureServer, 9-16, 10-106
WW(Confirm, 9-16, 10-107
WWDisplayAboutBox, 9-16, 10-108
WWDisplayAboutBoxEx, 10-109, 12-3

WWDisplayConfigNotAllow, 9-16, 10-110
WWDisplayErrorCreating, 9-17, 10-111
WWDisplayErrorReading, 9-17, 10-112
WWDisplayErrorWriting, 9-17, 10-113
WWDisplayKeyNotEnab, 9-18, 10-114
WWDisplayKeyNotInst, 9-18, 10-115

WWDisplayOutofMemory, 9-18, 10-116, 10-122, 10-

125
WWFormCpM odeString, 9-18, 10-117
WWGetDialogHandle, 9-18, 10-118
WWGetDriverNameExtension, 10-119
WWGetExeFilePath, 10-120, 15-4
WWGetOsPlatform, 10-121
wwHeap_AllocPtr, 9-14, 10-122
wwHeap_FreePtr, 9-14, 10-123
wwHeap_Init, 9-14, 10-124
wwHeap_ReAllocPtr, 9-14, 10-125
wwHeap Release, 9-14, 10-126
wwHeapAllocPtr, 10-124
wwHeapFreePtr, 10-124
wwHeapReAllocPtr, 10-124
WWInitComPortComboBox, 9-18, 10-127
WWLOGGER.EXE, 10-24
WWSslect, 9-18, 10-130
WWTrand ateCDIgToWinBaud, 9-18, 10-131
WWTrand ateCDIgToWinData, 9-18, 10-132
WWTrand ateCDIgToWinParity, 9-18, 10-133
WWTrand ateCDIgToWinStop, 9-19, 10-134
WWTrand ateWinBaudToCDlg, 9-19, 10-135
WWTrand ateWinDataToCDIg, 9-19, 10-136
WWTrand ateWinParityToCDlg, 9-20, 10-137
WWTrand ateWinStopToCDlg, 9-20, 10-138
WWV erifyComDIgRev, 9-20, 10-139

	Wonderware I/O Server Toolkit
	Contents

	Documentation Conventions
	Terms Used in this Document
	Limitation Summary

	Chapter 1 - Introduction to the I/O Server Toolkit
	What’s New?
	Installation
	Communication Protocols
	What is DDE?
	DDE Protocol

	Dynamic Data Exchange Management Library
	What is SuiteLink?
	SuiteLink Protocol

	Server Application Requirements
	Toolkit Content Overview
	Requirements for Developing on Windows 98, Windows NT and Windows 2000

	Chapter 2 - Getting Started with the I/O Server Toolkit
	Installation Process
	File Description
	Include Files
	Utility Files
	Sample Servers
	Help Files
	Online Book

	Compiling a Server
	Linking a Server
	Running a Server

	Chapter 3 - Overview of an I/O Server
	Data Flow
	Value/Time/Quality
	DDE and SuiteLink Conversations
	Logical Devices and Points
	Logical Devices/Topics
	Items/Points
	Advises, Requests and Pokes
	Toolkit Database

	Chapter 4 - Designing an I/O Server
	Configuring an I/O Server
	Executing the Protocol
	Communication with the Device

	Chapter 5 - SuiteLink
	SuiteLink Overview
	Components (Files) Associated with SuiteLink
	Starting Up a Server
	Automatic Throttling of the Data Rate
	SuiteLink Debug Flags
	Deactivating SuiteLink for a Particular Server
	Preventing a Server from Running if SuiteLink is Unavailable
	Preventing a Server from Reflecting SuiteLink Pokes

	Chapter 6 - Time Marks
	Reading Time Marks
	Understanding Time Marks

	Chapter 7 - Data Quality Flags
	Quality Flags
	Quality Flag Settings
	Updating Quality Flags

	Chapter 8 - Statistics Functions
	Overview
	Statistics from a Client Perspective
	Toolkit Standard Statistics

	Chapter 9 - I/O Server Toolkit Function Summary
	Protocol Initialization & Setup Functions
	Logical Device Management Functions
	Examples of Logical Device Management

	Point/Item Management Functions
	Toolkit Database Interface for Protocol Functions
	Timer Functions
	String PTVALUE Manipulation Functions
	Caveats with StrVal Strings

	Memory Management Functions
	Memory Access Permission Functions - Windows Only
	Common Dialog Functions
	Selection Boxes - Optional
	Miscellaneous Functions
	Windows NT Porting Functions
	Windows Function Emulators
	Windows/Windows NT Compatibility Functions

	Macros for Portability
	Windows NT-only MACROS
	Windows and Windows NT MACROS
	Windows-only MACROS

	Additional Information
	Required External Data
	Adding Help to the I/O Server

	Chapter 10 - API Function References
	Functions
	AdjustWindowSizeFromWinIni
	CheckConfigFileCmdLine
	CloseComm
	DbDevGetName
	DbGetGMTasFiletime
	DbGetName
	DbGetPointType
	DbGetPtQuality
	DbGetPtTime
	DbGetValueForComm
	DbNewQForAllPoints
	DbNewQFromDevice
	DbNewTopicList
	DbNewTQFromDevice
	DbNewValueFromDevice
	DbNewVQFromDevice
	DbNewVTQFromDevice
	DbRegisterDemandScan
	DbRegisterScanState
	DbSetHProt
	DbSetPointType
	DbValueWriteConfirm
	debug
	EnableCommNotification
	FlushComm
	GetAppName
	GetCommError
	GetCommEventMask
	GetIOServerLicense
	GetServerNameExtension
	GetString
	GetTextExtent
	NTSrvr_BuildCommDCB
	NTSrvr_GetCommState
	NTSrvr_SetCommState
	NTSrvr_SetDCB_Dtr
	NTSrvr_SetDCB_Rts
	OpenComm
	PfnSendEmSelectAll
	PfnSendEmSelectRange
	ProtActivatePoint
	ProtAllocateLogicalDevice
	ProtClose
	ProtCreatePoint
	ProtDeactivatePoint
	ProtDefWindowProc
	ProtDeletePoint
	ProtExecute
	ProtFreeLogicalDevice
	ProtGetDriverName
	ProtGetValidDataTimeout
	ProtInit
	ProtNewValueForDevice
	ProtTimerEvent
	ReadComm
	RelinquishPermission - Windows Only
	RequestPermission - Windows Only
	SelBoxAddEntry
	SelBoxSetupStart
	SelBoxUserSelect
	SelBoxUserSelection
	SelListFree
	SelListGetSelection
	SelListNumSelections
	SetCommEventMask
	SetSplashScreenParams
	StatAddValue
	StatDecrementValue
	StatGetValue
	StatIncrementValue
	StatRegisterCounter
	StatRegisterRate
	StatSetCountersInterval
	StatSetRateInterval
	StatSetValue
	StatSubtractValue
	StatUnregisterCounter
	StatUnregisterRate
	StatZeroValue
	StrValSetNString
	StrValSetString
	StrValStringFree
	StrValStringLock
	StrValStringUnlock
	SysTimerSetupProtTimer
	SysTimerSetupRequestTimer
	UdAddFileTimeOffset
	UdAddTimeMSec
	UDDbGetName
	UdDeltaFileTime
	UdDeltaTimeMSec
	UdInit
	UdReadAnyMore
	UdReadVersion
	UdTerminate
	UdWriteAnyMore
	UdWriteVersion
	WriteComm
	WriteWindowSizeToWinIni
	WWAnnounceStartup
	WWCenterDialog
	WWConfigureComPort
	WWConfigureServer
	WWConfirm
	WWDisplayAboutBox
	WWDisplayAboutBoxEx
	WWDisplayConfigNotAllow
	WWDisplayErrorCreating
	WWDisplayErrorReading
	WWDisplayErrorWriting
	WWDisplayKeyNotEnab
	WWDisplayKeyNotInst
	WWDisplayOutofMemory
	WWFormCpModeString
	WWGetDialogHandle
	WWGetDriverNameExtension
	WWGetExeFilePath
	WWGetOsPlatform
	wwHeap_AllocPtr
	wwHeap_FreePtr
	wwHeap_Init
	wwHeap_ReAllocPtr
	wwHeap_Release
	WWInitComPortComboBox
	WWReadAnyMore
	WWReadVersion
	WWSelect
	WWSetAffinityToFirstCPU
	WWTranslateCDlgToWinBaud
	WWTranslateCDlgToWinData
	WWTranslateCDlgToWinParity
	WWTranslateCDlgToWinStop
	WWTranslateWinBaudToCDlg
	WWTranslateWinDataToCDlg
	WWTranslateWinParityToCDlg
	WWTranslateWinStopToCDlg
	WWVerifyComDlgRev
	WWWriteAnyMore
	WWWriteVersion

	Chapter 11 - The Chain Manager
	Background
	Chain Data Structures
	Setting Up a Chain and Linking Items
	Searching For Items in a Chain
	Removing Items From a Chain
	User-Supplied Chain Item Functions
	Extensible Array Data Structures
	Allocating, Extending, and Deleting an Extensible Array
	Examples of Usage
	Memory Management for Extensible Arrays

	Handling Linked Lists

	Chapter 12 - I/O Server Toolkit Data Structures
	Data Structure Definitions
	PTVALUE
	WW_AB_INFO
	WW_CONFIRM
	WW_CP_DLG_LABELS
	WW_CP_PARAMS
	WW_SELECT
	WW_SERV_PARAMS

	Chapter 13 - Common Dialogs
	Main Menu
	Serial Servers
	Board-based Servers

	Com Port Settings
	Topic Definition
	Server Settings
	Configuration Files
	Convenience Functions

	Chapter 14 - Adding the Toolkit to an Existing Windows Application
	Chapter 15 - Running as an NT Service
	Overview of Services
	Configuration Dialog
	Driver Name
	Service Dependencies

	Chapter 16 - Porting to Windows NT
	Primary Goals
	Server Porting Instructions
	Phase I - General, Quick Edits of "C", "H" Files
	Phase II - More Edits
	Phase III - Porting Tool (optional step)
	Phase IV - Compiling
	Phase V - Communications
	Phase VI - Compile Again
	Phase VII - File I/O
	Phase VIII - Compile Again (see above)
	Phase IX - Symbol Table Entry Size
	Phase X - Compile Again (see above)
	Phase XI - Config File Compatibility
	Phase XII - Compile Again (see above)
	Phase XIII - Common Dialogs (optional)
	Phase XIV - Final Compile and Link
	Phase XV - Test the Server

	Miscellaneous Debugging Hints

	Chapter 17 - Porting an Existing Server to FS2000
	Overview
	Driver Name
	CommonUI Splash Screen and Start-up Message
	CommonUI About Box
	Value, Time, Quality

	Chapter 18 - I/O Server Code Samples
	Overview
	UDSAMPLE Architectural Overview
	Adapting the UDSAMPLE Server
	Customizing the Start-Up Splash Screen and About Box

	Modifying the User Interface – UDSAMPLE.RC and UDCONFIG.C
	Storing and Retrieving Configuration Files
	Setting Up Data Points – UDCONFIG.C
	Function ValidatePoint(€)

	Executing the Configuration – UDLDCFG.C
	LogicalAddrCmp(€)
	Building Messages
	UdprotAddPoll(€)
	UdprotPrepareWriteMsg(€)
	Building Messages – UDBLDMSG.C

	Executing the Protocol – UDPROTCL.C
	UdprotDoProtocol(€)
	UdprotGetResponse(€)
	ProcessValidResponse(€)
	UdprotExtractReadData(€), UdprotExtractDbItem(€)
	UdprotHandleRspError(€)

	Data Structures
	PORT Data Structure

	Compiling the Sample Code
	Debug and Support Functions
	Simulated PLC

	Chapter 19 - Debugging and Testing
	Basic Programming Rules for Windows�and Windows NT
	General Debugging Topics
	Debug Messages
	DDE Message Traffic Monitoring Using WIN.INI
	DDE Message Traffic Monitoring Using DDESpy
	Assertion Errors

	Windows and Windows NT Debugging Tools
	Microsoft Visual C/C++ Debugger
	Microsoft WINDBG Debugger
	NuMega Bounds Checker
	NuMega Soft Ice
	Rational/Pure/Atria Quantify Performance Monitor

	Testing
	WWClient Usage
	Microsoft Excel Usage

	Index

