
Wonderware I/O Server Toolkit

User’s Guide
Revision L
October 2001

Wonderware Corporation

All rights reserved. No part of this documentation shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the Wonderware Corporation. No copyright
or patent liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this documentation, the
publisher and author assume no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information contained herein.

The information in this documentation is subject to change without notice and does not represent
a commitment on the part of Wonderware Corporation. The software described in this
documentation is furnished under a license or nondisclosure agreement. This software may be
used or copied only in accordance with the terms of these agreements.

I/O Server Toolkit

 2001 Wonderware Corporation. All Rights Reserved.

100 Technology Drive
Irvine, CA 92618
U.S.A.
(949) 727-3200
http://www.wonderware.com

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Wonderware Corporation cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Wonderware, InTouch, and FactorySuite Web Server are registered trademarks of Wonderware
Corporation.

Wonderware FactorySuite, InTouch, WindowMaker, WindowViewer, SQL Access Manager,
Recipe Manager, SPC Pro, DBDump, DBLoad, HDMerge, HistData, Wonderware Logger,
InControl, InTrack, InBatch, IndustrialSQL, FactoryOffice, Scout, SuiteLink, and NetDDE are
trademarks of Wonderware Corporation.

i

Contents
Documentation Conventions .. ix

Terms Used in this Document ...ix
Limitation Summary ...x

CHAPTER 1 Introduction to the I/O Server Toolkit ..1-1
What’s New? ...1-2
Installation ...1-3
Communication Protocols ...1-3
What is DDE?..1-5

DDE Protocol ...1-6
Dynamic Data Exchange Management Library ...1-7
What is SuiteLink? ..1-8

SuiteLink Protocol..1-8
Server Application Requirements ..1-9
Toolkit Content Overview ...1-10
Requirements for Developing on Windows 98, Windows NT and Windows 2000.....1-11

CHAPTER 2 Getting Started with the I/O Server Toolkit ...2-1
Installation Process..2-2
If You Have a Prior Installation of the I/O Server Toolkit ..2-2
General Instructions...2-2
File Description ...2-3

Include Files ...2-3
Utility Files...2-3
Sample Servers ...2-4
Help Files ...2-4
Online Book ...2-4

Compiling a Server ..2-5
Linking a Server ..2-5
Running a Server ...2-6

CHAPTER 3 Overview of an I/O Server ...3-1
Data Flow ..3-2
Value/Time/Quality ...3-2
DDE and SuiteLink Conversations..3-3
Logical Devices and Points ...3-4
Logical Devices/Topics ...3-5
Items/Points ...3-6
Advises, Requests, and Pokes..3-7
Toolkit Database..3-8

ii Table of Contents

CHAPTER 4 Designing an I/O Server ... 4-1
Configuring a I/O Server... 4-2
Executing the Protocol .. 4-3
Communication with the Device ... 4-4

CHAPTER 5 SuiteLink.. 5-1
SuiteLink Overview .. 5-2
Components (Files) Associated with SuiteLink .. 5-3
Starting Up a Server.. 5-3
Automatic Throttling of the Data Rate.. 5-4
SuiteLink Debug Flags.. 5-5
Deactivating SuiteLink for a Particular Server ... 5-6
Preventing a Server from Running if SuiteLink Is Unavailable 5-7
Preventing a Server from Reflecting SuiteLink Pokes .. 5-8

CHAPTER 6 Time Marks .. 6-1
Reading Time Marks... 6-2
Understanding Time Marks... 6-4

CHAPTER 7 Data Quality Flags... 7-1
Quality Flags ... 7-2
Quality Flag Settings... 7-4
Updating Quality Flags ... 7-5

CHAPTER 8 Statistics Functions.. 8-1
Overview... 8-2
Statistics from a Client Perspective... 8-2
Toolkit Standard Statistics .. 8-6

CHAPTER 9 I/O Server Toolkit Function Summary... 9-1
Protocol Initialization & Setup Functions ... 9-2
Logical Device Management Functions .. 9-3
Point/Item Management Functions.. 9-5
Toolkit Database Interface for Protocol Functions ... 9-8
Timer Functions .. 9-8
String PTVALUE Manipulation Functions... 9-9
Memory Management Functions... 9-12
Memory Access Permission Functions - Windows Only .. 9-12
Common Dialog Functions ... 9-13
Selection Boxes - Optional ... 9-16
Miscellaneous Functions... 9-17
Windows NT Porting Functions.. 9-19
Macros for Portability ... 9-22
Additional Information.. 9-24

Table of Contents iii

CHAPTER 10 API Function References ..10-1
AdjustWindowSizeFromWinIni ...10-2
CheckConfigFileCmdLine..10-3
CloseComm..10-4
DbDevGetName ...10-5
DbGetGMTasFiletime..10-6
DbGetName..10-7
DbGetPointType...10-8
DbGetPtQuality ..10-9
DbGetPtTime ...10-10
DbGetValueForComm..10-11
DbNewQForAllPoints ..10-12
DbNewQFromDevice...10-13
DbNewTopicList ..10-14
DbNewTQFromDevice ..10-15
DbNewValueFromDevice ..10-16
DbNewVQFromDevice ..10-17
DbNewVTQFromDevice..10-18
DbRegisterDemandScan...10-19
DbRegisterScanState ..10-20
DbSetHProt ..10-21
DbSetPointType ...10-22
DbValueWriteConfirm...10-23
debug ..10-24
EnableCommNotification...10-25
FlushComm ..10-26
GetAppName..10-27
GetCommError ...10-28
GetCommEventMask ...10-29
GetIOServerLicense ...10-30
GetServerNameExtension ..10-31
GetString ..10-32
GetTextExtent ..10-33
NTSrvr_BuildCommDCB..10-34
NTSrvr_GetCommState ...10-35
NTSrvr_SetCommState ..10-36
NTSrvr_SetDCB_Dtr ...10-37
NTSrvr_SetDCB_Rts ...10-38
OpenComm ..10-39
PfnSendEmSelectAll ..10-40
PfnSendEmSelectRange ...10-41
ProtActivatePoint ...10-42
ProtAllocateLogicalDevice ..10-43
ProtClose ..10-44
ProtCreatePoint ..10-45
ProtDeactivatePoint..10-46
ProtDefWindowProc ..10-47
ProtDeletePoint ..10-48
ProtExecute ..10-49
ProtFreeLogicalDevice...10-50
ProtGetDriverName..10-51
ProtGetValidDataTimeout..10-52
ProtInit..10-53
ProtNewValueForDevice ...10-54
ProtTimerEvent ..10-55
ReadComm...10-56

iv Table of Contents

RelinquishPermission - Windows Only ... 10-57
RequestPermission - Windows Only.. 10-58
SelBoxAddEntry.. 10-59
SelBoxSetupStart ... 10-60
SelBoxUserSelect .. 10-61
SelBoxUserSelection ... 10-62
SelListFree... 10-63
SelListGetSelection.. 10-64
SelListNumSelections.. 10-65
SetCommEventMask ... 10-66
SetSplashScreenParams ... 10-67
StatAddValue... 10-68
StatDecrementValue .. 10-69
StatGetValue.. 10-70
StatIncrementValue.. 10-71
StatRegisterCounter ... 10-72
StatRegisterRate... 10-73
StatSetCountersInterval ... 10-75
StatSetRateInterval .. 10-76
StatSetValue .. 10-77
StatSubtractValue .. 10-78
StatUnregisterCounter.. 10-79
StatUnregisterRate ... 10-80
StatZeroValue .. 10-81
StrValSetNString ... 10-82
StrValSetString .. 10-83
StrValStringFree .. 10-84
StrValStringLock ... 10-85
StrValStringUnlock.. 10-86
SysTimerSetupProtTimer .. 10-87
SysTimerSetupRequestTimer .. 10-88
UdAddFileTimeOffset ... 10-89
UdAddTimeMSec.. 10-90
UDDbGetName ... 10-91
UdDeltaFileTime ... 10-92
UdDeltaTimeMSec .. 10-93
UdInit... 10-94
UdReadAnyMore... 10-95
UdReadVersion.. 10-96
UdTerminate .. 10-97
UdWriteAnyMore.. 10-98
UdWriteVersion... 10-99
WriteComm ... 10-100
WriteWindowSizeToWinIni .. 10-101
WWAnnounceStartup .. 10-102
WWCenterDialog .. 10-103
WWConfigureComPort ... 10-104
WWConfigureServer ... 10-106
WWConfirm .. 10-107
WWDisplayAboutBox... 10-108
WWDisplayAboutBoxEx .. 10-109
WWDisplayConfigNotAllow... 10-110
WWDisplayErrorCreating ... 10-111
WWDisplayErrorReading.. 10-112
WWDisplayErrorWriting... 10-113
WWDisplayKeyNotEnab... 10-114

Table of Contents v

WWDisplayKeyNotInst..10-115
WWDisplayOutofMemory ...10-116
WWFormCpModeString ..10-117
WWGetDialogHandle ..10-118
WWGetDriverNameExtension...10-119
WWGetExeFilePath ...10-120
WWGetOsPlatform ..10-121
wwHeap_AllocPtr ..10-122
wwHeap_FreePtr ..10-123
wwHeap_Init ..10-124
wwHeap_ReAllocPtr ..10-125
wwHeap_Release ...10-126
WWInitComPortComboBox ..10-127
WWReadAnyMore...10-128
WWReadVersion ...10-129
WWSelect ..10-130
WWSetAffinityToFirstCPU ...10-131
WWTranslateCDlgToWinBaud ...10-132
WWTranslateCDlgToWinData ..10-133
WWTranslateCDlgToWinParity ..10-134
WWTranslateCDlgToWinStop ..10-135
WWTranslateWinBaudToCDlg ...10-136
WWTranslateWinDataToCDlg ..10-137
WWTranslateWinParityToCDlg ..10-138
WWTranslateWinStopToCDlg ..10-139
WWVerifyComDlgRev ..10-140
WWWriteAnyMore..10-141
WWWriteVersion...10-142

CHAPTER 11 The Chain Manager ...11-1
Background ...11-2
Chain Data Structures ..11-4
Setting Up a Chain and Linking Items...11-5
Searching For Items in a Chain..11-6
Removing Items From a Chain ..11-8
User-Supplied Chain Item Functions...11-9
Extensible Array Data Structures...11-10
Allocating, Extending, and Deleting an Extensible Array ...11-11
Examples of Usage ..11-12
Handling Linked Lists ...11-14

vi Table of Contents

CHAPTER 12 I/O Server Toolkit Data Structures... 12-1
Data Structure Definitions

PTVALUE ... 12-2
WW_AB_INFO... 12-3
WW_CONFIRM.. 12-4
WW_CP_DLG_LABELS.. 12-5
WW_CP_PARAMS... 12-10
WW_SELECT ... 12-12
WW_SERV_PARAMS ... 12-14

CHAPTER 13 Common Dialogs .. 13-1
Main Menu.. 13-2
Com Port Settings ... 13-3
Topic Definition.. 13-8
Server Settings .. 13-10
Configuration Files ... 13-12
Convenience Functions ... 13-13

CHAPTER 14 Adding the Toolkit to an Existing Windows Application......................... 14-1

CHAPTER 15 Running as an NT Service.. 15-1
Overview of Services .. 15-2
Configuration Dialog .. 15-3
Driver Name.. 15-6
Service Dependencies ... 15-7

CHAPTER 16 Porting to Windows NT .. 16-1
Primary Goals ... 16-2
Server Porting Instructions.. 16-2
Miscellaneous Debugging Hints ... 16-10

CHAPTER 17 Porting an Existing Server to FS2000 ... 17-1
Overview... 17-2
Driver Name.. 17-3
CommonUI Splash Screen and Start-up Message ... 17-4
CommonUI About Box ... 17-6
Value, Time, Quality... 17-7

Table of Contents vii

CHAPTER 18 I/O Server Code Samples..18-1
Overview ...18-2
UDSAMPLE Architectural Overview ...18-3
Adapting the UDSAMPLE Server...18-4

Customizing the Start-Up Splash Screen and About Box.....................................18-5
Modifying the User Interface – UDSAMPLE.RC and UDCONFIG.C18-6
Storing and Retrieving Configuration Files ...18-7
Setting Up Data Points – UDCONFIG.C ..18-8
Executing the Configuration – UDLDCFG.C..18-10

LogicalAddrCmp() ..18-10
Building Messages..18-10
UdprotAddPoll() ...18-10
UdprotPrepareWriteMsg() ..18-10
Building Messages – UDBLDMSG.C..18-10

Executing the Protocol – UDPROTCL.C..18-11
UdprotDoProtocol() ..18-11
UdprotGetResponse() ..18-11
ProcessValidResponse() ..18-11
UdprotExtractReadData(), UdprotExtractDbItem() ...18-11
UdprotHandleRspError()...18-11

Data Structures ..18-12
PORT Data Structure..18-12
UDMSG Data Structure (Message) ..18-12
STAT Data Structure (i.e. Station, Node, or Topic)...18-12
SYMENT Data Structure (Symbol Table) ...18-12

Compiling the Sample Code ..18-13
Debug and Support Functions ...18-14
Simulated PLC...18-15

CHAPTER 19 Debugging and Testing...19-1
Basic Programming Rules for Windows and Windows NT...19-2
General Debugging Topics ..19-2

Debug Messages...19-2
DDE Message Traffic Monitoring Using WIN.INI..19-3
DDE Message Traffic Monitoring Using DDESpy ..19-3
Assertion Errors..19-4

Windows and Windows NT Debugging Tools ..19-5
Microsoft Visual C/C++ Debugger ..19-5
Microsoft WINDBG Debugger ..19-5
NuMega Bounds Checker...19-5
NuMega Soft Ice ..19-5
Rational/Pure/Atria Quantify Performance Monitor...19-5

Testing...19-6
WWClient Usage..19-6
Scripts for WWClient ...19-8
Microsoft Excel Usage ...19-9

Index..i

viii Table of Contents

ix

Documentation Conventions

The following conventions are used throughout this manual to define syntax:

Convention Description

Bold Text Denotes a Wonderware I/O Server Toolkit function name,
for example, Wizard_New

Bold & Underlined Denotes a Wonderware I/O Server Toolkit function name
that must be written and included in the I/O server to
manage logical devices, for example,
ProtAllocateLogicalDevice

Italic text Denotes a parameter value, for example, wCommand

CAPITALS Indicates return type (or most return types) also filenames
and paths

Courier 9
Shaded Box Code Examples and Syntax spacing samples

Terms Used in this Document
Term Definition

Developer Proficient Windows C Programmer; person developing the
code

Windows NT� 32-bit platform

x Conventions

Limitation Summary
As the owner of the I/O Server Toolkit you can:

• Develop multiple servers

• Receive four hours of telephone support within one year from date of purchase

• Purchase additional support beyond four hours

• The I/O Server Toolkit license does not allow:

1. License transfer without the express written consent of Wonderware

2. Release/resale of I/O Server Toolkit source code or libraries

3. Support for other than the registered user

1-1

C H A P T E R 1

Introduction to the
I/O Server Toolkit

The I/O Server Toolkit provides a high level application program interface (API) that
does not require detailed handling or understanding of low level details of the
client/server communication protocol (DDE or SuiteLink). The Toolkit has been
optimized for performance in real-time data acquisition applications.

The I/O Server Toolkit is based on a library that includes high level functions that take
care of the more difficult complications associated with the development of a well-
behaved, high performance I/O Server (herein referred to as the server).

The I/O Server Toolkit was originally developed for internal use in developing other
Wonderware products. It has been used to develop dozens of Wonderware I/O Servers
with a worldwide installed base of thousands of sites. These servers are generally in 24-
hour use in demanding factory automation and process control applications.

The Toolkit minimizes the learning curve associated with Dynamic Data Exchange
(DDE) and SuiteLink implementation by utilizing the man-years of development and
testing that have gone into Wonderware InTouch and I/O Server products. The
Toolkit provides library functions that support multiple clients, thousands of data items,
DDE and SuiteLink protocol error detection, recovery and support for several
commonly used but unpublished high performance private data formats, such as
Wonderware InTouch FastDDE and Microsoft Excel table format.

Contents
! What’s New?
! Installation
! Communication Protocols
! What is DDE?
! DDE Protocol
! Dynamic Data Exchange Management Library
! What is SuiteLink?
! Server Application Requirements
! Toolkit Content Overview
! Requirements for Developing on Windows 98 Second Edition or Windows NT

1-2 Chapter 1

What’s New?
With FactorySuite 2000, several important new features have been added to the
Wonderware I/O Server Toolkit:

!!!! SMP (symmetrical multiprocessing machine support)
The I/O Server will run on a SMP (symmetrical multiprocessing). With the newly
added API from the library (WWSetAffinityToFirstCPU), the I/O Server can be
locked to the first CPU on the SMP machine.

Introduction to the I/O Server Toolkit 1-3

Installation
Refer to the accompanying instruction pamphlet for installation procedures.

Note We strongly recommend before you begin installation procedures that your take
the time to familiarize yourself with Chapter 2, "Getting Started with the I/O Server
Toolkit." This chapter covers in detail how the Toolkit environment will be set up on
your system.

Communication Protocols
Dynamic Data Exchange (DDE) is a communication protocol developed by Microsoft
to allow applications in the Windows environment to send/receive data and instructions
to/from each other. It implements a client-server relationship between two concurrently
running applications. The server application provides the data and accepts requests
from any other application interested in its data. Requesting applications are called
clients. Some applications such as InTouch and Microsoft Excel can simultaneously be
both a client and a server.

FastDDE provides a means of packing many proprietary Wonderware DDE messages
into a single Microsoft DDE message. This packing improves efficiency and
performance by reducing the total number of DDE transactions required between a
client and a server. Although Wonderware's FastDDE has extended the usefulness of
DDE for our industry, this extension is being pushed to its performance constraints in
distributed environments.

NetDDE extends the standard Windows DDE functionality to include communication
over local area networks and through serial ports. Network extensions are available to
allow DDE links between applications running on different computers connected via
networks or modems. For example, NetDDE supports DDE between applications
running on IBM compatible computers connected via LAN or modem and DDE-aware
applications running on non-PC based platforms under operating environments such as
VMS and UNIX .

SuiteLink uses a TCP/IP based protocol and is designed specifically to meet industrial
needs such as data integrity, high-throughput, and easier diagnostics. This protocol
standard is only supported on Microsoft WindowsNT 4.0 and Windows 2000 or higher.

1-4 Chapter 1

SuiteLink is not a replacement for DDE, FastDDE, or NetDDE. The protocol used
between a client and a server depends on your network connections and configurations.
SuiteLink was designed to be the industrial data network distribution standard and
provides the following features:

 Value Time Quality (VTQ) places a time stamp and quality indicator on all data
values delivered to VTQ-aware clients.

 Extensive diagnostics of the data throughput, server loading, computer resource
consumption, and network transport are made accessible through the Microsoft
Windows NT and Windows 2000 operating system Performance Monitor. This
feature is critical for the scheme and maintenance of distributed industrial networks.

 Consistent high data volumes can be maintained between applications regardless if
the applications are on a single node or distributed over a large node count.

 The network transport protocol is TCP/IP using Microsoft’s standard WinSock
interface.

Introduction to the I/O Server Toolkit 1-5

What is DDE?
Dynamic Data Exchange (DDE) is a method of communication that allows concurrently
running programs to exchange data with each other. It implements a client-server
relationship between the applications. A server application accepts requests from any
client application interested in the data. Clients can both read and write data maintained
by the server.

DDE is often used to gather and distribute "live" data such as production measurements
from a factory floor, scientific instrument readings or stock price quotations. Clients can
use DDE for one-time data transfers or for ongoing exchanges in which updates will be
sent as soon as new information is available. DDE's data writing mechanism can be
used to issue data. For example, in a factory automation system, DDE can allow clients
applications to control temperature set points in ovens.

A DDE interface has become a standard feature of Windows applications that can
benefit from data links to other applications. Examples of DDE compliant applications
include Microsoft Excel, Lotus 123 for Windows and Wonderware InTouch.

Network extensions are available to allow DDE links between applications running on
different computers connected via networks or modems. For example, Wonderware
NetDDE supports DDE between applications running on IBM PCs connected via LAN
or modem as well as DDE capable applications running on non-PC based platforms such
as VAX or UNIX minicomputers.

The Windows environment has a message based architecture as its foundation.
Messages are used for passing keyboard and mouse movement information to Windows
application programs. Each message needs only two parameters for passing data. DDE
is based on the same message transport mechanism. As a result, these message
parameters must refer indirectly to other pieces of data (objects) if more than a few
words of information are passed between applications. These secondary objects are
located in globally shared memory.

1-6 Chapter 1

DDE Protocol
The DDE protocol specification is the precise interface that applications must
implement to support DDE. The specification includes standardized formats for
messages to be interchanged between DDE compliant applications. It is possible to
ignore all or part of the DDE protocol if you are writing a set of applications that will
communicate in a closed environment. However, in order to reliably communicate with
other standard, off-the-shelf applications it is necessary to implement an interface that
supports the DDE protocol documented by Microsoft.

The DDE protocol is nominally documented in the Microsoft Windows Software
Development Kit (SDK). This documentation however is deceptively simple. It is
particularly light in coverage related to performance optimization and error recovery.
Sources such as back issues of the Microsoft Systems Journal and the Microsoft Support
Knowledge Database CD ROM may provide the documentation required in order to
implement a "well-behaved" DDE application.

"Ill-behaved" DDE applications can hang or crash the Windows environment. Early
editions of certain very popular Windows applications suffered anomalies in their DDE
implementation that are recognized and tolerated by "well-behaved" DDE applications.

To implement a reliable, high performance DDE protocol there are a multitude of
potential error conditions that must be properly addressed. Still further, complications
arise when optimal performance is desired and when partially compliant third party
DDE applications must be tolerated.

Introduction to the I/O Server Toolkit 1-7

Dynamic Data Exchange Management Library
Based on the recognition of DDE compliance problems associated with certain
applications released by major software publishers, Microsoft released the Dynamic
Data Exchange Management Library (DDEML) with the Microsoft Windows 3.1 SDK.

The DDEML is a dynamic link library (DLL) that applications running with the
Microsoft Windows operating system can use to share data. The DDEML provides an
application programming interface (API) that simplifies the task of adding DDE
capability to a Windows application. The API hides interaction with Windows
messages and provides new mechanisms for managing global shared memory objects.

The 3.1 SDK Programmer's Reference Manual states that "DDEML ensures
compatibility among DDE applications by forcing them to implement the DDE protocol
in a consistent manner." Concurrent with the release of DDEML, documentation of the
DDE protocol was dropped from the SDK Programmer's Reference Manual.

In keeping with the Windows 3.1 philosophy, the principal purpose for promoting use of
DDEML, as opposed to a direct implementation of the DDE protocol, would seem to be
that it more strongly enforces parameter checking on system calls made by applications.

DDEML makes it more difficult to implement an ill-behaved DDE application it does
not make it easier to implement a well-behaved application. For example: calling
GlobalAddAtom() (a function commonly used in a direct implementation of the DDE
protocol) takes only one parameter; DdeCreateStringHandle(), its replacement under
the DDEML, requires three parameters. The revised interface appears to be engineered
to allow Windows to perform stronger type checking.

The implementation of a well-behaved, high performance DDE application using the
DDEML will still require reference to the DDE protocol specification. The DDEML
still uses the DDE protocol "under the covers." A thorough understanding of the
underlying protocol is necessary to implement reliable error handling and recovery and
to engineer an efficient internal program structure.

DDEML does not simplify the problem of multiple clients using potentially different
data formats. For example, Excel uses Excel Table Format, and InTouch uses InTouch
proprietary format. The Toolkit allows you to keep data in its natural form: discrete,
integer, real or string. DDEML does not implicitly support these.

1-8 Chapter 1

What is SuiteLink?
SuiteLink is a proprietary communication protocol created by Wonderware that can be
used as an addition to DDE or as an alternative to DDE. Where DDE provides
communication between Windows programs via global memory buffers and Windows
messages, SuiteLink uses TCP/IP sessions and Windows Sockets. As with
Wonderware’s FastDDE format, SuiteLink supports high-performance data transfer
between applications by sending multiple commands and data items in each block of
information that gets sent.

Since it uses TCP/IP, SuiteLink can handle data transfer within a single computer node
or between nodes across a network.

So far as an I/O Server is concerned, the type of communication channel between client
and server is transparent. That is, the server-specific code does not know – and does not
need to know – whether a client is connected via DDE or via SuiteLink.

SuiteLink Protocol
The SuiteLink protocol was created by Wonderware, specifically to support data
acquisition for such programs as I/O Servers. While the details of the implementation
are proprietary, an overview of the protocol is provided in the chapter titled “SuiteLink.”

Introduction to the I/O Server Toolkit 1-9

Server Application Requirements
The I/O Server Development Toolkit is used to either write an I/O Server application
or add server capability to an existing Windows application. Here are a few
requirements:

1. The application must run in a time slice manner. Periodically, the server will be
called to allow it to run its protocol and provide fresh data to the Toolkit database.
The time slice is configurable by the server, but it still must give up control to allow
other Windows applications to run on the same PC.

2. The application program must be written in Microsoft C or C++, to interface with
the Toolkit program library.

3. The Toolkit database will handle the following data types:

Discrete (0 or 1)
Integers (signed 32-bit integer)
Reals (single precision floating point, IEEE 32-bit)
Strings (series of 8-bit characters terminated with a null)

Within the above constraints, a large variety of applications can easily be adapted to
transfer data as a I/O Server. Here are a few examples:

 Gathering and sending data to a device that can be connected to the serial
communication port of the PC.

 Interface to a plug in board that has a memory-mapped interface.

 A stand-alone application that can accept data and/or supply data. For example, a
specialized calculation program that takes input data values and does involved
computations or time-based integrations.

1-10 Chapter 1

Toolkit Content Overview
The Toolkit allows the software developer to concentrate on the problem at hand,
transferring data to and from an external communication device or special data
generation application. It also allows the application program to deal with data in its
native form: discrete, integer, real or string types. Source code (in the C language) for
two example servers is included.

The examples include source code for the maintenance of extensible, heap allocated data
structures for tracking data items that are on advise or "hot linked." The implementation
of these data structures alone could take hundreds of hours.

The examples can also be expected to speed the learning process for programmers who
lack prior Windows programming experience.

The I/O Server Development Toolkit consists of four essential parts:

1. This document describes the Toolkit's library routines and gives helpful hints for
generating a I/O Server application from scratch or adapting an existing one.

2. An object-code library that supports the I/O Server functions and memory
management. These are described later in this document.

3. Two server code examples are included to demonstrate the Toolkit. They provide a
starting point for developers as well as showing useful data structures and routines
for most device drivers.

4. Technical support for the I/O Server Toolkit provided by Wonderware's technical
support staff.

Introduction to the I/O Server Toolkit 1-11

Requirements for Developing on Windows 98, Windows
NT and Windows 2000

The FactorySuite 2000 I/O Server Toolkit supports development of I/O Servers only on
platforms that support Win32 – Windows NT, Windows 2000 or Windows 98 Second
Edition. It does not support operation using the Win32S subset that is available for
Windows 3.1.

Also, it should be noted that Windows NT /2000 and Windows 98 have different
implementations of Win32. Consequently, there may be some functional differences
when the same program is run on these operating systems. In particular, SuiteLink is
functional only for an I/O Server running on Windows NT and Windows 2000.

The following requirements are necessary to successfully develop a FactorySuite 2000
Windows I/O Server application:

1. IBM PC or compatible that is set up to run Microsoft Windows 98 Second Edition,
Windows NT 4.0, Windows 2000 or later.

2. Microsoft Visual C/C++ Compiler, version 6.0 sp3 or later.
A mastery of the C language is essential for developing a Windows server
application that uses the Toolkit.
While a familiarity with Microsoft Windows software development is not required
to use this Toolkit, it is highly recommended.

The following are recommended "extras" to your development system. Their relatively
low cost is greatly offset by the time you'll save in debugging alone.

 Microsoft MASM 5.0 or later. MASM is the Microsoft assembler necessary for
modifying assembly language that Wonderware has provided, as well as for
developing assembly language based routines.

 Microsoft Word, an excellent documentation tool, can be used to generate the
documentation files required for the "Help" compiler. It can be referenced in the
subtitled section called "Adding Help to the I/O Server" in the I/O Server Toolkit
Functions chapter.

 The book, Programming Windows by Charles Petzold. (Microsoft Press, ISBN 1-
55615-264-7)

1-12 Chapter 1

2-1

C H A P T E R 2

Getting Started with the
I/O Server Toolkit

The Toolkit installation procedures are described in the installation pamphlet included
with the I/O Server Toolkit. This chapter describes the basics for getting started
quickly.

Contents
! Installation Process
! File Description
! Compiling a Server
! Linking a Server
! Running a Server

2-2 Chapter 2

Installation Process
The instruction pamphlet describes the required procedure to install the Toolkit
software. It is important to know that if an earlier version of the Toolkit is installed on
your computer and the new version is installed the main directory should be renamed.

If You Have a Prior Installation of the I/O Server Toolkit
Rename the old directory to another name using Windows Explorer. This will prevent
obsolete files from being accidentally referenced in your new installation.

General Instructions
Click Start/Run. Enter the following in the text field of the Run dialog box:

{x:\path}\setup

where:
{x:\path} is the drive:\path

This is where the I/O Server Toolkit distribution media is located.

InstallShield will direct the installation process and the installation process will create
the following main directories:

drive:\path\ioserver
drive:\path\ioservertoolkit
drive:\path\uninst

where:
{drive:\path} is user defined

Example:
C:\Ww\Ioserver
C:\Ww\Ioservertoolkit
C:\Ww\Uninst

Getting Started with the I/O Server Toolkit 2-3

File Description
The following sections summarize some of the key files installed on your hard disk.

Include Files
\Ww\Ioservertoolkit\Inc\Tkitstrt.rci
This file is a resource include file containing the startup dialog WWStartup for the
Toolkit. The project resource file (.RC) must include this file.

\Ww\Ioservertoolkit\Inc*.h
There are various include files contained in the includes directory that must be included
in the source code to define function prototypes and structures for the Toolkit. See the
sample servers for examples.

Utility Files
\Program Files\FactorySuite\Common\wwclient.exe
The WWClient utility replaces the DDEAPP utility that was originally developed by
Microsoft. WWClient has been specifically written by Wonderware to exercise the
basic DDE and SuiteLink client functions to test the server. It is a 32-bit application,
which can run on Windows NT/2000 or Windows 98 Second Edition. For details, refer
to the "Debugging and Testing" chapter.

\Program Files\FactorySuite\Common\TESTPROT.exe
The TestProt server has been specifically written by Wonderware to exercise the basic
DDE and SuiteLink server functions. It is a 32-bit application which can run on
Windows NT/2000 or Windows 98 Second Edition, and can be used to verify that
WWClient can actually access an I/O Server on your system configuration. For details,
refer to the “Debugging and Testing” chapter.

\Program Files\FactorySuite\Common\wwlogvwr.exe
The Wonderware logger, wwlogvwr.exe, will display and save to disk debugging
messages from the server and the Toolkit. A version has been supplied that is native to
each supported platform.

\Ww\Ioservertoolkit\Lib\W32\I386\Toolkit7.lib
The I/O Server Toolkit library.

Note: Recent versions (Build 060 or later) of the Toolkit library contain debug
information resulting in a larger file size. To build a debug version of a server, use the
added debug information. Building a release version of a server will remove the debug
information.

2-4 Chapter 2

\Ww\Ioservertoolkit\Inc\Protlib.str
This file contains the string resources used by Toolkit7.lib. These strings should only
be modified for language conversion. Do not delete or change the order of any strings
within the Toolkit. The project resource file (.RC) must include this file.

Ww\Ioserver\Udsample
This subdirectory contains source files for the board and serial sample servers.

Sample Servers
The toolkit provides a sample server, UDSAMPLE. The sample server is created using
common source files and specific files for either the board or serial version.

\Ww\Ioserver\Udsample\Common
This main sample directory contains the common source files from which a complete
server can be developed, once the specific files for a serial or board server are copied
from one of the two corresponding subdirectories.

\Ww\Ioserver\Udsample\Udboard
This directory contains three files UDSAMPLE.C, UDSAMPLE.H, and UDSAMPLE.ICO
which can be copied to the main sample directory to build a board server, which
demonstrates the typical use of a memory mapped interface device in Windows.

\Ww\Ioserver\Udsample\Udserial
This directory contains three files UDSAMPLE.C, UDSAMPLE.H, and UDSAMPLE.ICO
which can be copied to the main sample directory to build a serial server, which demonstrates
 the typical use of a serial communications (COM port) interface device in Windows.

Help Files
Two Help files have been provided with the I/O Server Toolkit.

\Ww\Ioservertoolkit\IOSrv_Toolkit.hlp
This is the Help file containing the API information for the Toolkit. This file will be a
useful resource when developing a new server. Execute this Help file from Explorer.
Creating a Help file icon in Program Manager may be helpful.

\Ww\Ioserver\Udsample\Udsample.hlp
This Help file is a template for the UDSAMPLE sample server. Copy it to the directory
containing the UDSAMPLE.EXE file to run the sample.

Online Book
Also provided is an online book for the I/O Server Toolkit.

\WW\Ioservertoolkit\IOSrv_Toolkit.pdf
The document in this directory is in an Abode Acrobat .PDF file format.

Getting Started with the I/O Server Toolkit 2-5

Compiling a Server
The sample server includes project definition files for Visual C/C++ for Windows
NT/2000 or Windows 98 Second Edition. environments. Refer to these examples to
determine the proper options for compiling. The server sample is ready for compiling
and linking. The Microsoft Visual C/C++ environment use for doing the builds. For
specific compiling instructions using Microsoft Visual C/C++, Version 6.0 sp3 or later, refer
to the instructions in the chapter on the I/O Server Code Examples.

The following (brief) compiler switches are recommended:
Windows 32: /GX /YX /MD /W4/ "WIN32"

Warning The definition of the preprocessor symbol "WIN32" is necessary. If you do
not define this symbol , any conditional code based on "#ifdef WIN32" will not be
compiled correctly.

The include files for the I/O Server Toolkit are in the \WW\IOSERVERTOOLKIT\INC
subdirectory. Make sure that your compiler is able to find these includes by properly
configuring your INCLUDE environment variable or dialog settings in Microsoft Visual
C/C++.

The Microsoft compilers provide some necessary include files in the \SYS sub-
directory. Make sure that your compiler is able to find these includes. For example,
\MSVC\INCLUDE\SYS or \INCLUDE\SYS needs to be defined in your INCLUDE
environment variable or settings.

Linking a Server
You will need to link your server against the proper TOOLKIT7.LIB static library. The
FactorySuite 2000 Toolkit is located in the directory.

\WW\IOSERVERTOOLKIT\LIB\W32\I386\TOOLKITS7.LIB
Windows NT/2000 or Windows 98Intel I/O Server Toolkit Object Library

If doing command line builds, make sure your LIB environment variable references the
proper directory above for your environment. If using Visual C/C++, reference the
proper library in your project definition.

2-6 Chapter 2

Running a Server
If your I/O Server uses the Wonderware Common Dialog DLL, you must make sure
that the appropriate DLL can be found by the operating system. This can be achieved
by placing the DLL in a directory that is referenced by your PATH environment variable
or by placing the DLL in the directory with your server executable.

The DLLs provided with the toolkit are:
COMMONUI.DLL
DDECLIKT.DLL
WWCOMMON.DLL
WWDLG32A.DLL
WWDEBUG.DLL
WWCLINTF.DLL
WWPERF.DLL
WWPERFM.DLL
HOOKAGNT.DLL
HOOKNDDE.DLL
SLS_PERF.DLL
SUITELINK_PERF.DLL
WWSLSFIX.DLL
WWSL.DLL

Note: Supply the proper selection of these DLLs to your target system or customer
along with the server executable. These DLLs are part of Factory Suite 2000 Common
Components. To install the FactorySuite 2000 Common Component files:
Run SETUP.EXE in the \FS2kCOMM\IOServer\Common\Win32\ sub-directory on the
installation CD.

3-1

C H A P T E R 3

Overview of an I/O Server

DDE (Dynamic Data Exchange) is a protocol defined by Microsoft. SuiteLink is a
proprietary protocol defined by Wonderware. Both these protocols allow independently
developed Windows application programs to exchange data and commands.

Contents
! Data Flow
! Value/Time/Quality
! DDE and SuiteLink Conversations
! Logical Devices and Points
! Logical Devices/Topics
! Items/Points
! Advises, Requests, and Pokes
! Toolkit Database

3-2 Chapter 3

Data Flow
The flow of data through an I/O Server can be diagrammed as follows:

All connections are bi-directional, i.e. data can go in either direction.

The Toolkit maintains a database of all the topics and points that are active in the I/O
Server, and keeps track of the current data for each point within a topic. It also keeps
track of connections to multiple clients, and handles fan-in and fan-out via the Toolkit
database. The server-specific code (i.e. the code you write) does not need to know how
many clients are connected, or whether they are communicating by DDE or SuiteLink.
Instead, the server code can focus on communicating to the PLC by whatever device-
specific protocol has been established by the manufacturer, and handling updates to and
from the Toolkit database as if it were the only client.

Value/Time/Quality
The current information stored in the Toolkit database for each data point consists of
three things:

- Value: The value of a data point represents the contents of some item within the
PLC – a memory cell, a register, a bit flag, a string, etc.

Examples: 5, 3.27, 1, “This is a string”

- Time: The date/time stamp (also sometimes called the time mark) for a data point
represents the time at which the information about that data point was last updated.

Examples: 03/27/1997 10:23:58.010

- Quality: The quality for a data point represents the validity or trustworthiness of
the value for that point. If there are no problems, quality for the point is set to
good. If there are errors or the data is out of range, the quality is set to bad.
Specific quality flag settings are used to indicate particular problems with the data.

Examples: Good, Clamped High, Communications Failed

Overview of an I/O Server 3-3

DDE and SuiteLink Conversations
Two Windows applications wishing to exchange data must establish a conversation.
This is accomplished by the client program opening a connection to the server
application.

A client opens a connection by specifying two things: the application name of the
server executable, and the topic name of interest. The application name depends upon
the server program. For example, if you are using the Modicon MODBUS I/O Server,
the application name would be “MODBUS”. If using Microsoft Excel, it would be
“Excel”. For the Wonderware InTouch runtime program, WindowViewer, it would be
“View”.

Topic names are application-dependent. For Excel, the topic is a spreadsheet name,
e.g., TOTAL.XLS, etc. For an I/O Server, the topics are names defined when the server
is configured, with each name representing a logical device to which the server is
connected, e.g., PLCFast, PLCSlow, etc. The topic in WindowViewer is always the
word “TAGNAME” when accessing data elements in the InTouch runtime database.
(The data is exchanged via item or point names.)

Depending on the configuration and the communication mechanism, a client may need
to specify additional information to open a conversation:

- For a DDE conversation within a single computer (i.e. a single node configuration),
the application name and topic name are sufficient.

- For a DDE conversation between two computers over a network (i.e. a multiple
node configuration), the client must also specify the node name for the computer
on which the server is running. For example, if the server is running on a remote
computer named “FSTest”, the node name “FSTest” must be specified. Also, you
must have NetDDE running on both computers.

- For a SuiteLink conversation, the client must also specify the node name for the
computer on which the server is running – on a remote computer (multiple node
configuration). Also, you must have the SuiteLink service running (for the
multiple node configuration, it must be running on both computers).

Note FastDDE is a proprietary protocol defined by Wonderware that uses DDE to
transfer information between the client and server. This protocol uses DDE for the
transport mechanism, but speeds up the transfer of data by using larger blocks of
information in each transfer operation. Each block contains many operations for reading
and writing individual values, for acknowledging commands, and for flagging the
success or failure of those commands. SuiteLink also uses a block-oriented protocol,
but uses TCP/IP and Windows Sockets as the transport mechanism.

3-4 Chapter 3

Logical Devices and Points
Accessing information within an I/O Server requires an understanding of the InTouch
concept of logical devices (also called topics) and points. The data that will be
interfaced with the I/O Server must be treated as one or more logical devices connected
to the server. Points within the logical devices can be read and written.

Generally, an I/O Server is connected to one or more I/O channels (i.e. serial ports,
adapter cards, network connections, etc.), and each I/O channel is connected to one or
more PLC devices. A logical device refers to a particular PLC – or even to a portion of
a PLC – that is connected to the I/O Server. A user who is configuring an I/O Server
will usually take into account such considerations as the following:

- Which I/O channel do I use to talk to the PLC? (e.g. COM1 or COM2, etc.)

- How do I address a particular PLC?
In a networked or multi-drop system, it may be necessary to provide an address or
recognition code that identifies a particular device.

- What variation of the protocol do I use to access a particular PLC?
A single I/O Server may be connected to several different models from the same
manufacturer, each with its own version of the manufacturer’s protocol. If the
server supports multiple protocols, it will be necessary to select which one to use.

- How often do I access the logical device?

Some devices may be limited in how often they can be accessed (e.g. remote
devices connected by a radio modem that requires warm-up and cool-down).

The user may also wish to define several logical devices for a single PLC in order
to poll groups of points at different intervals – e.g. read some points once per
second and other points once per minute.

For example, let's consider the Modicon MODBUS I/O Server. A logical device for
MODBUS would define the communications port and slave ID, while points within a
logical device would be either coils or registers. The points will become data values
that are transferred via DDE or SuiteLink to other applications. These may be Boolean
(0 or 1), integer (signed 32-bit number), real (single precision floating point, 32-bit), or
character strings (series of 8-bit characters terminated with a null, 0).

Overview of an I/O Server 3-5

Logical Devices/Topics
For an I/O Server, there is only one application name, while the topic names have a one-
to-one correspondence with logical devices. The notation convention for representing
an application and topic is:

Application|Topic

Examples:

Excel|[Book1.XLS]Sheet1
View|Tagname
Modbus|ReactorPLCFast

A logical device (topic) becomes active whenever at least one conversation has been
established between the server's logical device and the outside world's applications
(clients). The Toolkit library routines call the server code when a client has initiated a
conversation to a topic for the first time.

When the last conversation to a topic has terminated, the logical device will be
deactivated. This allows the server code to do start up and shut down of a device or
communication port, as required. The Toolkit simplifies DDE and SuiteLink
conversation protocol by hiding conversations to multiple clients from the server. The
server will only see a simple logical device activate or deactivate sequence no matter
how many clients are requesting data.

3-6 Chapter 3

Items/Points
Within a DDE or SuiteLink conversation (application|topic) the individual pieces of data
that are passed between applications are known as items or points. For example, an item
in a conversation with Excel would be the identification of the cell in a spreadsheet that
contains the data value, e.g., R1C1 (row 1 column 1). For a conversation with
WindowViewer, an item would be a tagname defined in the database, e.g., ReactorLvl.
For a conversation with a Modicon MODBUS I/O Server, an item would be a register or
coil number, e.g., 40001. Therefore, when developing the I/O Server, be sure to select
the point naming convention that makes sense for your application. The DDE address
convention for representing an application, topic and item is:

Application|Topic!Item

Examples:

Excel|[Book1.XLS]Sheet1!R1C1
View|Tagname!ReactorLvl
Modbus|ReactorPLCFast!40001

Points will be set active or inactive depending on usage by clients. Within the I/O
Server task, a point is considered active if any DDE or SuiteLink conversations are
referencing the item associated with the data point. If only an Excel spreadsheet is
referencing an item in the server, that point is considered active. If the spreadsheet is
closed, that point would become inactive. The same principle applies to
WindowViewer.

Assume a point is not trended or alarmed, the point becomes active in the server when
the point is displayed on the screen. When the point is no longer displayed on the
screen, the point is inactive (assuming that this was the only conversation accessing the
point).

The Toolkit library routines will call the server code whenever the active status of a
point changes. This allows the server to adjust its polling (data gathering) sequence as
required.

Overview of an I/O Server 3-7

Advises, Requests and Pokes
A client can get continuous updates for a point by doing an Advise operation. If a point
is not already “on advise,” the Toolkit calls the functions ProtCreatePoint() and
ProtActivatePoint() to activate the point. These functions, which must be
implemented by the server programmer, perform whatever operations are necessary to
establish periodic polling of the PLC to obtain the current value for the data point.
When new data is obtained, the server-specific code must interpret the message from the
PLC, extract the new value for the point, and pass the new point information to the
Toolkit via a call to ProtNewVTQFromDevice(). The Toolkit will then pass the data
on to the client(s). Note that such updates to the client(s) are done by exception – that
is, new information for a point is sent to the client(s) only if it is different from the
previous information. (See the section below regarding the Toolkit database.)

A client can also do a Request operation to get the current value of a point, even if the
client does not have that point “on advise.” This invokes a one-time data transfer of the
point information, instead of providing a continuous update. Note, however, that the
information transferred comes from the Toolkit’s database. A Request does not
generate on-demand polling of the PLC. If the Toolkit’s database does not have a
current value for the point, it will wait until normal polling provides a value – up to the
time limit specified by the parameter ValidDataTimeout. If the point is not currently
being polled, the Toolkit will put it on “temporary advise” for this client to initiate
polling of the PLC for a value.

A client can change the value of a point by doing a Poke operation, which is handled by
a DDE Poke or SuiteLink Write. The Toolkit passes the new value onto the server-
specific code via the function ProtNewValueForDevice(). This function, which must
be implemented by the server programmer, takes the new value and performs whatever
operations are necessary to send that value to the PLC. When a client pokes a new
value, that value is “reflected” to the other clients, i.e. all other clients with that point
“on advise” or “on request” are notified of the new value directly from the Toolkit – i.e.
before it is even sent out to the PLC. Poke reflection is built into how the Toolkit
handles DDE Pokes; however, it is optional for SuiteLink Writes. See the chapter on
SuiteLink and SuiteLink Debug Flags for more information.

3-8 Chapter 3

Toolkit Database
The I/O Server Toolkit maintains a database of the logical devices (topics) and points
that are being accessed in an I/O Server. It also keeps track of client connections to
each Topic!Point on a per-client basis. This means that the Toolkit knows the current
information for each point and it knows which clients have been provided with that
information.

Note Multiple DDE and/or SuiteLink conversations accessing the same points
(topic!items) can be established to the I/O Server at the same time. For example,
WindowViewer and an Excel spreadsheet and a dozen other applications may be
referencing the same logical device and item/point at the same time. The Toolkit library
software will automatically handle these situations for the server. The server code need
only be concerned with whether or not the point is active.

When a point is active, the server code should be supplying fresh data from the PLC to
the Toolkit. The Toolkit will store the value/time/quality information in its database and
send updates to all concerned clients. The server code only needs to gather the active
data and pass it on. The Toolkit will handle the rest.

Note, however, that new updates for points “on advise” are passed on to the clients by
exception, i.e. only when the point value or quality changes. No update is passed on if
only the time changes. This reporting mechanism was chosen to reduce bandwidth in
the DDE and SuiteLink channels for points that are polled frequently but do not change
much. The exception mechanism has been in place for all previous versions of the
Wonderware I/O Server Toolkit.

The Toolkit makes calls to ProtAllocateLogicalDevice() only when the first client
connects to that logical device. If any clients remain connected to the logical device, the
Toolkit keeps the logical device open. Only when the last client disconnects from a
particular logical device does the Toolkit call ProtFreeLogicalDevice().

The same is true for the point functions. The Toolkit calls ProtCreatePoint() only
when the first client connects to a point. And only when the last client disconnects from
a point it calls ProtDeletePoint(). The Toolkit will call ProtActivatePoint() and
ProtDeactivatePoint() multiple times as clients (like an InTouch app with switching
windows) activate and deactivate items. Some deactivation calls will be ‘folded’ due to
efficient logic built into the Toolkit.

Note Recommended IOServer Implementation:

Only react to the first activation of an item. Ignore all subsequent activation for the item.

When the server recieves a deactivation call, only react to the first deactivation for the
item. Since the item is now deactivated subsequent deactivation calls can be ignored.

The Toolkit database uses the case-insensitive string comparison function stricmp() to
determine whether the name of a logical device or point is the same as one it already has
in its database. When implementing a server, take special care to ensure that if the
Toolkit treats two names as the same or different, your server-specific code treats them
the same way. For example, if the point names “V10R” and “V10.” both refer to a real
value at PLC address V10, keep in mind that the Toolkit will treat these as two different
points, even if they are functionally the same. Your implementation of functions such as
LogicalAddrCmp() [logical address compare for points] should take this into account.

Overview of an I/O Server 3-9

The Toolkit database is organized as a hierarchy of points within a logical device. If a
point is referenced on two different topics, that means it has two different entries in the
database – one for each logical device. This is important, because if the topics are being
polled at different rates, the information for the two entries may differ.

For example, suppose an integer point is incrementing once per second. If one topic is
polled at 500-millisecond intervals and the other is polled at 5-second intervals, their
values may not match except at the 5-second marks. A client doing a Request at 2.5
second intervals would see the difference. Of course, this depends upon how the server-
specific code is implemented – it would be possible to update both points at the 500-
millisecond interval. However, if a user has set up two different scan rates for the same
point, it might be for a specific reason. When developing a server, take care not to put
so much “finesse” into the code that it yields results that are counter-intuitive.

3-10 Chapter 3

4-1

C H A P T E R 4

Designing an I/O Server

Designing an I/O Server with the I/O Server Toolkit can logically be divided into three
areas.

For a "working" model of an I/O Server, see the sample server that is supplied on the
Toolkit CD. From the sample code, you can construct either a board server or a serial
server.

Contents
! Configuring an I/O Server
! Executing the Protocol
! Communication with the Device

4-2 Chapter 4

Configuring an I/O Server
An I/O Server can only respond to requests for data from a DDE or SuiteLink client.
Those requests for data are handled by the Server Toolkit portion of the I/O Server. The
topic (or logical device) specifies where the data is located. However, the server needs
more information than just the logical device name to supply the data. The server may
need to know the device identification, device model, or network configuration.
Additionally, other parameters may be needed in order to acquire the data, such as the
communication port being used, the baud rate, parity, etc. If the I/O Server is getting
data from a board device, it may need to know the memory address of the board. When
configuring the I/O Server, specify how frequently the device is polled for data and how
long to wait for a timeout to occur.

The configuration is performed by the user through the use of menu items in the server's
program window. Typically, there are menu items for communications parameters or
board definition, topic parameters, and timing parameters for the server. The entire
definition of a logical device (topic) may include many hardware and timing parameters.
For example, the Modicon MODBUS I/O Server Topic Definition includes the
following information:

COM Port (COM1, COM2, etc.)
Slave ID (Modicon slave number)
Poll Frequency (Frequency each point is polled)
Coil Read Size (Number of coils read in each message)
Register Read Size (Number of registers read in each message)

We recommend that you provide the user with the ability to name and fully define each
topic supported by the server. For example, with the Modicon MODBUS I/O Server,
the user could, arbitrarily, create a file such as the following:

COM1 9600,8,1,n
PLCFast COM1,1,1000,512,64
PLCSlow COM1,1,5000,512,64

The server could read this file at start up, allowing the user to use meaningful names to
access each logical device. This configuration file could just as easily be created by the
server using disk writes and selection boxes to interface to the user. The method used is
entirely up to the user. There is no requirement for the server to support multiple topics
(logical devices) or a configuration file. If the server is being developed to interface to a
simple device containing relatively few points, only one topic needs to be defined.

The two sample programs, UDSERIAL and UDBOARD are good examples of how to
implement a configure menu option.

In order to interface to the Toolkit, the topic naming and item naming conventions must
be defined. The topic name is generally a text string that contains a meaningful name.
It is highly recommended that the item names match the convention used in the logical
device and provide enough information to determine the data type, address and possibly
precision of the point. The points that are to be supported should be decided during the
design stage.

Designing an I/O Server 4-3

Executing the Protocol
The protocol is executed when the I/O Server receives a timer event from the Toolkit.
The exact data items that are needed have been set up by previous calls from the
Toolkit. As the designer of the server, you must design the item names such that each is
a unique address within the device from which you are requesting data.

Each topic may have a set of active item names. This set of items results in a message
being created and sent to the device. This message is sent and data received when the
server gets a timer event from the Toolkit. Since communications protocols are as
varied as the devices themselves, there is not "one way" to accomplish this. The
UDSERIAL example is a skeleton for a serial communication driver. The UDBOARD
example is a skeleton for a board based I/O Server.

4-4 Chapter 4

Communication with the Device
The Toolkit supplies two samples of I/O Servers, based on two different models of
communications:

1. The SERIAL sample is based on a device that is accessed through the
communications port of the PC.

2. The BOARD sample is based on a device that is accessed through a special board in
the PC (Windows Only). A device driver would also be necessary for Windows NT
and Windows 2000.

These samples are actually template programs for working I/O Servers. They are the
starting point for all Wonderware servers and have most of the required infrastructure
built in to develop a working server. The portions of code that must be written by the
developer are noted by comments within the source.

After determining which type of server to be developed, refer to that specific server in
the sample servers section. Most developers choose to modify the few necessary
routines in the sample programs rather than starting from scratch.

5-1

C H A P T E R 5

SuiteLink

This section describes how the I/O Server Toolkit uses the Wonderware SuiteLink
communication protocol to transfer data between the I/O Server and clients.

Contents
! SuiteLink Overview
! Components (Files) Associated with SuiteLink
! Starting Up a Server
! Automatic Throttling of the Data Rate
! SuiteLink Debug Flags
! Deactivating SuiteLink for a Particular Server
! Preventing a Server from Running if SuiteLink Is Unavailable
! Preventing a Server from Reflecting SuiteLink Pokes

5-2 Chapter 5

SuiteLink Overview
With the advent of FactorySuite 2000, the Wonderware I/O Server Toolkit now
provides SuiteLink, a proprietary communication protocol that can be used as in
addition to DDE or as an alternative to DDE. Generally speaking, the SuiteLink
protocol works much like the Wonderware FastDDE protocol:

 - The sender allocates a block of memory and fills it with a sequence of items
detailing events and data. Events/commands include the following:

 - “Registering” a point (assigning a handle or ID number)
 - “Advising” a point for continuous update
 - “Requesting” the current value of a point
 - Writing a value to a point
 - Providing new polled data for a point
 - “Unadvising” a point
 - “Unregistering” a point
 - Acknowledging a command, indicating success or failure

 - The SuiteLink transport moves the contents of this block from the sender to the
receiver.

 - The receiver then interprets the block of events, performs the indicated operations,
and creates a response block of ACKs, Nacks, data, etc.

 - The SuiteLink transport moves the contents of the response block to the original
sender.

The main difference is that SuiteLink uses TCP/IP sessions as a transport instead of
Dynamic Data Exchange (DDE). Where an I/O Server is concerned, the type of
communication channel between client and server is transparent. That is, the server-
specific code does not know – and does not need to know to know – whether a client is
connected via DDE or via SuiteLink.

The following are some of the features SuiteLink offers over DDE:

 - Performance optimizations for networked installations with large fan-in and fan-out
network node count requirements.

 - Reduced interaction between connections when an outage or delay occurs on one of
the connections.

 - Better diagnostic and monitoring capability.
 - Transport of value, time, quality (VTQ) information.
 - Use of standard TCP/IP session based transport at fixed port address (5413) to

enable deployment over WAN intranet, RAS dial-up, or Internet if desired.

The following factors may make the continued deployment of DDE/NetDDE preferable
in some installations:

 - When client and server are on the same PC, DDE may offer reduced data reporting
latency under conditions of low data item counts combined with high (> once per
second) data change rates.

 - When client and server are on different PCs, but on the same subnet, and NetBUI is
configured as the NetDDE transport, NetDDE may offer reduced data reporting
latency under conditions of low data item counts combined with high (> once per
second) data change rates.

A server built with the I/O Server Toolkit will automatically support both SuiteLink and
DDE/NetDDE connections. Both varieties of connections can be used simultaneously.

SuiteLink 5-3

Components (Files) Associated with SuiteLink
A server supporting the SuiteLink protocol relies upon the following components:

 - WWSL.DLL, the SuiteLink API library
 - WWSLS.EXE, the underlying SuiteLink transport library
 - WWPERF.DLL and WWPERFM.DLL, extensions to the Windows NT/ 2000

Performance Monitor that to allow it to track SuiteLink operation. (in addition, the
performance monitor will automatically create WWSL_PERF.DLL and
WWSLS_PERF.DLL DLLs the first time that a SuiteLink enabled server is run.)

 - SLSSVC.EXE, the SuiteLink service

In addition, the WinSock TCP/IP DLL that ships with Windows NT/ 2000 is required.

The SuiteLink NT service (SLSSVC.EXE) must be installed and started on the server
PC to allow SuiteLink client applications to connect to the server, even if the client and
server are on the same PC.

Starting Up a Server
When the I/O Server starts, the Toolkit attempts to load the SuiteLink API library
(WWSL.DLL on Windows NT / 2000), unless SuiteLink is disabled via a Registry
entry, see the “SuiteLink Debug Flags” section below. If the DLL can be successfully
loaded, the Toolkit attempts to initialize the SuiteLink API. If both these steps are
successful, the server will be ready to communicate with clients via SuiteLink.
Otherwise, the Toolkit sends messages to Wonderware Logger indicating that the DLL
could not be loaded, or that it could not be initialized.

Even if SuiteLink cannot be started, an I/O Server can still run with communication to
clients only by way of DDE. If you wish to prevent a server from running if SuiteLink
is unavailable, this can be set up with a Registry entry. See the section “SuiteLink
Debug Flags” below.

5-4 Chapter 5

Automatic Throttling of the Data Rate
SuiteLink is capable of transporting data at high throughput rates – rates high enough
that some programs (particularly those that perform a lot of graphics) may not be able to
keep up. For SuiteLink, the Toolkit automatically adjusts the data rate by tracking the
size and number of communication blocks are waiting to be accepted by the receiver. If
the amount of waiting data exceeds an upper threshold (the “high water mark”), data
transport to the client is “held off,” and no more polling updates are sent until the
waiting data falls below a lower threshold (the “low water mark”).

This works a little differently from the DDE protocol – where new data is not sent until
the previous data has been acknowledged – but it has the same overall effect of keeping
the throughput at a level that the client can accommodate. DDE incurs round trip packet
delays even under condition where throttling is not required – SuiteLink does not.

Since each client application may have a different capacity at which it can digest data
updates, the adjustment of the data throughput is done on a client-by-client basis. One
client may throttle back its data rate without reducing the update rate provided to other
clients.

It should be noted that while the Toolkit is waiting for a client to reach its “low water
mark,” the polling process can still continue (and should still continue) making updates
to the Toolkit database. While communication to a client is being “held off,” if a change
occurs to a point, the Toolkit sets an internal flag for that point/client connection
indicating that an update needs to be sent to the client. When the “low water mark” is
reached, the most current value in the database will be sent to the client, for each point
that has a change flagged. Thus, if the point changes several times while the client is
being “held off,” only the most recent value will be sent. This matches the functionality
of “data folding” in DDE.

SuiteLink 5-5

SuiteLink Debug Flags
SuiteLink has several Registry flags that can be set for operational or debug purposes.
Each such flag applies only to the specific I/O Server for which it is entered, under the
Registry key
 HKEY_LOCAL_MACHINE\SOFTWARE\Wonderware\<server_name>

The list of flags is as follows:

EnableSuiteLink (default = 0x1)
A value of 0 disables SuiteLink for the server.

RunWithoutSuiteLinkDLL (default = 0x1)
A value of 0 prevents the server from running if the SuiteLink DLL cannot be
loaded.

SuiteLinkReflectPokes (default = 0x1)
A value of 0 prevents the server from “reflecting” pokes received via SuiteLink to
other clients. See the section “Preventing a Server from Reflecting SuiteLink
Pokes” later in this chapter. [Pokes received from clients via DDE will still be
reflected, however.]

SuiteLinkFlushReadOnDemand (default = 0x1)
Normally, a buffer full of read data is “flushed” to the transport process when it is
full or when the SuiteLink protocol demands an immediate flush. A value of 0
causes the flush of a partial buffer to occur only on a Protocol Timer Tick event.

SuiteLinkFlushWriteOnDemand (default = 0x1)
Normally, a buffer full of write responses is “flushed” to the transport process when
it is full or when the SuiteLink protocol demands an immediate flush. A value of 0
causes the flush of a partial buffer to occur only on a Protocol Timer Tick event.

DebugSuiteLinkEvents (default = 0x0)
A value of 1 causes the Toolkit to issue messages to Wonderware Logger for
tracing the processing of SuiteLink events.

DebugSuiteLinkCalls (default = 0x0)
A value of 1 causes the Toolkit to issue messages to Wonderware Logger for
tracing SuiteLink API calls.

More details on some of these flags are provided on the following pages.

5-6 Chapter 5

Deactivating SuiteLink for a Particular Server
SuiteLink can be deactivated for a particular I/O Server via an entry in the Registry. For
example, to deactivate SuiteLink for the server TESTPROT, use the Registry Editor to
access or create the following Registry key:

HKEY_LOCAL_MACHINE
SOFTWARE

Wonderware
TESTPROT_IOServer

and for the key TESTPROT_IOServer, edit or create the value
EnableSuiteLink: REG_DWORD: 0

A value of 0 disables SuiteLink, while a value of 1 enables SuiteLink. If SuiteLink is
disabled, the server will not try to load the SuiteLink DLL.

SuiteLink 5-7

Preventing a Server from Running if SuiteLink is
Unavailable

Normally, an I/O Server will still be able to run if SuiteLink cannot be started up. In
that circumstance, it will only be able to communicate with clients via DDE (both
regular DDE and FastDDE). However, in some environments you may wish to prevent
the server from starting if the SuiteLink DLL cannot be loaded. This can be done via an
entry in the Registry.

For example, to prevent the server TESTPROT from running without WWSL.DLL, use
the Registry Editor to access or create the following Registry key:

HKEY_LOCAL_MACHINE
SOFTWARE

Wonderware
TESTPROT_IOServer

and for the key TESTPROT_IOServer, edit or create the value
RunWithoutSuiteLinkDLL: REG_DWORD: 0

A value of 0 requires the SuiteLink DLL to be available, while a value of 1 enables the
server to run without SuiteLink. If the SuiteLink DLL cannot be loaded and
RunWithoutSuiteLinkDLL is disabled, the Toolkit will display a Message Box
indicating the problem and will not start the server.

5-8 Chapter 5

Preventing a Server from Reflecting SuiteLink Pokes
Normally, when a client “pokes” data for a point to an I/O Server (via a DDE POKE or
a SuiteLink Write), the Toolkit updates its database, sends the new value out to all
clients connected to that point (via a REQUEST or an ADVISE), and then sends the
value to the server-specific code via ProtNewDataForDevice() for transfer to the PLC.
This process of sending the new data to all connected clients is called “reflecting” the
poked data, and is an inherent operation of how the Toolkit handles the DDE protocol.
However, with SuiteLink, you can suppress the “reflecting” of poked data for a
particular server, via an entry in the Registry.

For example, to prevent the server TESTPROT from reflecting SuiteLink pokes, use the
Registry Editor to access or create the following Registry key:

HKEY_LOCAL_MACHINE
SOFTWARE

Wonderware
TESTPROT_IOServer

and for the key TESTPROT_IOServer, edit or create the value
SuiteLinkReflectPokes: REG_DWORD: 0

A value of 0 prevents the Toolkit from reflecting pokes received from clients via
SuiteLink. Even clients that are connected via DDE will not receive updates, if the point
is poked via SuiteLink. (However, pokes received via DDE will still be reflected, to all
clients whether they are connected with DDE or with SuiteLink.) This means that
clients will only see the new data when it is obtained from the PLC via the normal
polling process. This helps confirm that the data has actually been written to the PLC –
but only if the point is being polled in the first place.

6-1

C H A P T E R 6

Time Marks

This section describes the handling of time marks used by the Wonderware I/O Server
Toolkit.

Contents
! Reading Time Marks
! Understanding Time Marks

6-2 Chapter 6

Reading Time Marks
The I/O Server Toolkit keeps value, time, and quality for each point in the Toolkit’s
internal database, organized by the Topic!Point hierarchy. Whenever a data point is
updated (whether for value, quality, or both), the time of the update is stored in the
Toolkit database on a topic-by-topic, point-by-point basis.

To support the transfer of Value/Time/Quality (VTQ) information, the Toolkit API
provides several function calls, in particular the following:

DbNewVTQFromDevice() updates value, time, and quality
DbNewTQFromDevice() updates time and quality only (value unchanged)

In addition, there are calls in which the time mark is not passed explicitly, but a current
default time mark is used:

DbNewValueFromDevice() updates value (quality assumed good)
DbNewQFromDevice() updates quality only (value unchanged)

Most PLCs do not have a date/time clock that is accessible to the I/O Server. For those
which do, you have the option of using that date/time clock as your time mark. In this
case, you should convert the time from the PLC’s format to a FILETIME value (see
below). Otherwise, you should use a Toolkit API call to read the computer’s time.

Reading the time is accomplished by a call to DbGetGMTasFiletime(), which internally
makes calls to the Win32 API routines GetSystemTime() and
SystemTimeToFileTime(). The FILETIME structure is a 64-bit value that encodes the
number of 100 nanosecond intervals since January 1, 1601. (Which means the time
mark is good for about 30,000 years -- no Year 2000 problem, here!) However, these
are rather expensive calls to make, as regards performance, so getting the time mark
should be done only as much as is actually needed.

The Toolkit provides a default time mark only if one is needed. The way it does this is
as follows. Just before it calls the server-specific function ProtTimerEvent(), the
Toolkit clears an internal flag, indicating that no default time mark is available. Then
later, if some server-specific code calls a function [such as DbNewValueFromDevice()
or DbNewQFromDevice()] that needs a default time mark, the flag is checked and, if it
is FALSE, the current time is read and saved as the default time mark for use on later
calls during the same timer event, and the flag is set TRUE. This way, if a single loop
makes 1000 calls to DbNewValueFromDevice(), we don't wind up making 1000 calls to
get the default current time (which won't differ by much, under such circumstances, but
the calls will cause a performance hit).

If you are explicitly obtaining the time via a call to DbGetGMTasFiletime(), you should
take into account what these calls will do to server performance. If you're updating
10,000 points per second, their time marks aren't going to be very different from one
another; so you probably don't need 10,000 calls to DbGetGMTasFiletime(). You
should limit calls to this function in a way that maximizes performance while
maintaining a reasonable update rate for the time mark. Reasonable places to get the
time mark include the following:

 - Once per entry to ProtTimerEvent(), and then only if you need it
 - Once per response message (which would normally encode data for many points)

Of course, depending on the device being served and the application to which it is put, it
may make sense to get time marks more or less often than once per timer event or once
per message. This is largely a judgment call, balancing performance against the
requirements of the server, or of the application.

Time Marks 6-3

The following excerpt from the routine UdprotExtractDbItem() in UDPROTCL.C of
the sample server code illustrates one way of getting the time mark only as often as
needed:
 /* scan through range of symbols covered by this message */
 done = FALSE;
 while ((!done) && (lpSymEnt != (SYMPTR) NULL)) {
 /* check whether symbol is active
 and polled by this message */
 if (compValue.SymHandle != 0) {
 /* match found,
 get parameters from symbol table entry */
 myAddr = lpSymEnt->msAddr1;
 count = lpSymEnt->msCount;
 numBytes = (WORD) lpSymEnt->msNumBytes;

 /* check whether already have date/time stamp */
 if (!bHaveDateTimeStamp) {
 /* set up date/time stamp */
#ifdef WIN32
 DbGetGMTasFiletime(&ptTime);
#else
 ptTime.dwLowDateTime = 0;
 ptTime.dwHighDateTime = 0;
#endif
 /* indicate date/time stamp ready */
 bHaveDateTimeStamp = TRUE;
 }

6-4 Chapter 6

Understanding Time Marks
It is important to understand what time marks mean, i.e. what time they represent and
when the information is transferred from server to client or vice versa.

When a client sends data to an I/O Server (via a DDE Poke or a SuiteLink Write), the
Toolkit reads the current time mark and stores it with the new value in the Toolkit
database. (Note: the quality received from the client is assumed to be good.) The new
value, time, and quality are then “reflected” to all other clients that are connected to that
point (via an ADVISE or a REQUEST for data). The Toolkit then calls the function
ProtNewValueForDevice() and passes the value to the server-specific code for transfer
to the PLC.

When the I/O Server obtains a new value from the PLC, it passes the value, time, and
quality to the Toolkit via a call to a function such as DbNewVTQFromDevice(). The
Toolkit stores the new value, time, and quality. It then compares the new value to the
old value that was in the database and the new quality to the old quality that was in the
database. If the values and/or qualities are different, the new VTQ is reported to all
SuiteLink clients. If the values are different, the new value is reported to all DDE
clients (i.e. DDE clients don't care about quality). No comparison is made regarding the
time marks. However, since the new time mark does get stored in the Toolkit database,
any client connected to that point (via an ADVISE or a REQUEST) will get the most
recent time mark with the VTQ if it is sent.

In short, a given client will get updated only when the value or quality changes (i.e.
reporting by exception). Thus, if you have a point in the PLC that is unchanging, but
is being polled repeatedly, a client with that point on ADVISE will probably not have
the most current time stamp – i.e. it will have the time stamp corresponding to the last
update the client received. However, the time stamp in the Toolkit's database does get
updated every time the server passes a new value or quality to the Toolkit.

By way of illustration, suppose you have a PLC that is counting an integer, 1..2..3..4..,
with the count increasing once per second. And suppose you set the server so that it
polls the PLC at a sample rate of once per 400 milliseconds. Then the polled readings
will be

Time (msec) Value
0 1

400 1
800 1

1200 2
1600 2
2000 3
2400 3
2800 3
3200 4
3600 4

A client with this point on ADVISE will see the updates when the value actually changes

0 1
1200 2
2000 3
3200 4

Time Marks 6-5

But if a client were to REQUEST the data at, say, 1700 msec into the process, he would
get

1600 2
representing the timestamp of the most recent polled reading.

This last example brings up another important issue: how the Toolkit fulfills a data
REQUEST. This is actually a multi-stage process that may or may not generate a new
polling message or time stamp for the point:

1. When a client issues a REQUEST for a data point, the Toolkit looks to see
whether the point is already being polled (i.e. because it is on ADVISE for
another client).

2. If the point is being polled, the Toolkit checks whether it already has data for
that point in its database.

a. If so, the Toolkit sends the value, time, and quality from the database.

b. If not, the Toolkit waits for normal polling to update the point, and then
sends the value, time, and quality to the client.

3. If the point is not being polled, the Toolkit calls ProtActivatePoint() to set up
polling for the point, waits for the point to be updated, and then sends the
value, time, and quality to the client. It then calls ProtDeactivatePoint() to
stop polling.

Note that steps 2b and 3 amount to putting the point on “temporary advise” for the
client. The Toolkit waits up to the time limit indicated by the WIN.INI setting
ValidDataTimeout. If no data has arrived by then, the Toolkit sends a NAK, indicating
that the REQUEST could not be fulfilled. But it should be noted that if the Toolkit
database already contains a value for the indicated point, the reported time stamp will
represent the last time the point was updated, not the time the client issued the
REQUEST.

Finally, it is also important to understand that the Toolkit database is organized as a
Topic!Point hierarchy – that is, points within a topic. This means that if a point is being
accessed via two different topics, there will be a separate entry for each point. That
means two time marks! It is possible for a server to cross-reference points on different
topics, and make sure that if a point is updated on one topic it is updated on all topics.
However, most servers do not do this – and it may not even be desirable. Even when
multiple topics actually refer to points in the same memory space of the same PLC, the
different topics may have been created expressly to provide different “scan” rates for
particular points.

6-6 Chapter 6

7-1

C H A P T E R 7

Data Quality Flags

This section describes the data quality flags used by the Wonderware I/O Server
Toolkit.

Contents
! Quality Flags
! Quality Flag Settings
! Updating Quality Flags

7-2 Chapter 7

Quality Flags
Wonderware I/O Servers can report six (6) mutually exclusive states of quality of data
being sent back to their clients. They are as follows:

1. Good
2. Clamped High
3. Clamped Low
4. Cannot Convert
5. Cannot Access Point
6. Communications Failed

The conditions under which each of these quality states will be reported are as follows:

1. Good
a. The Communications link has been verified.
b. The PLC understood our Poll request and returned a valid response packet.
c. If a write occurred, there were no errors during the write process.
d. There were no conversion problems with the data contained in the

response packet.
EXAMPLE: The value 0x0000A is returned due to a poll of a register containing

10 (decimal).

2. Clamped High
a. The Communications link has been verified.
b. The PLC understood our Poll request and returned a valid response packet.
c. The register was read or written without error.
d. It was necessary to clamp its intended value to a limit because the value

was larger than the maximum allowed.
e. In the case of a string, it is truncated.

EXAMPLE: A floating-point value is clamped to FLT_MAX.

3. Clamped Low
a. The Communications link has been verified.
b. The PLC understood our Poll request and returned a valid response packet.
c. The register was read or written without error.
d. It was necessary to clamp its intended value to a limit because the value

was smaller than the minimum allowed.
EXAMPLE: A floating-point value is clamped to FLT_MIN.

Data Quality Flags 7-3

4. Cannot Convert
a. The Communications link has been verified.
b. The PLC understood our Poll request and returned a valid response

packet.
c. The data from the PLC could not be converted into the desired format.
d. The server may return a constant (e.g. zero) in place of the data, or return

quality information alone.
e. The data is not usable.
f. It is not known whether the value is too large or too small.
g. The data returned from the PLC is of the incorrect data type.
h. A Floating Point number is returned, but is not a value (i.e. Not A

Number).
EXAMPLE: The value of 0x000A is returned from a BCD register in a PLC.

5. Cannot Access Point
a. The Communications link has been verified.
b. The PLC understood our Poll request and returned a valid response packet.
c. The PLC reported that it could not access the requested point.
d. Possibilities for lack of accessibility include, but are not limited to:

1. Item does not exist in PLC memory.
2. Item is not currently available (locked in some way due to resource

contention).
3. Item is not of the correct format / data type.
4. A write attempt was made, but item is read-only.

a. In most cases, a group of items will be affected when one item is
invalid. This is due to the block-polling scheme used by the
servers. For example, if one item in a block of 10 is invalid, then
entire block is marked invalid by the PLC. The server will report
invalid quality for all items in the block.

b. The data is unusable.
EXAMPLE: Attempting to read R40001; but R40001 is not defined in the PLC’s

memory map.

6. Communications Failed
a. Data communications are down.
b. The Topic is in slow poll mode (or equivalent).
c. There have been no link validating messages.
d. Lack of resources in the server, e.g. a TSR (or driver) cannot allocate

memory.
e. Lack of resources in the communications link.
f. The communications link is off-line.
g. All communications channels are in use.
h. The network is unable to route the message to the PLC.

EXAMPLE: Attempting to read data from a PLC which has been powered off.

7-4 Chapter 7

Quality Flag Settings
The data quality settings and their relation to the quality flags used by OLE for Process
Control (OPC) are defined in the file WWSQUAL.H, as follows:
// Wonderware Server Data Quality Flags
//
// Hex OPC OPC
// Value Quality Bits Quality Bytes
// Quality
// MSByte LSByte | SubStatus
// XXXXXXXX QQSSSSLL | | Limits
#define WW_SQ_GOOD 0x00C0 00000000 11000000 Q=3 S=0 L=0
#define WW_SQ_CLAMPHI 0x0056 00000000 01010110 Q=1 S=5 L=2
#define WW_SQ_CLAMPLO 0x0055 00000000 01010101 Q=1 S=5 L=1
#define WW_SQ_NOCONVERT 0x0040 00000000 01000000 Q=1 S=0 L=0
#define WW_SQ_NOACCESS 0x0004 00000000 00000100 Q=0 S=1 L=0
#define WW_SQ_NOCOMM 0x0018 00000000 00011000 Q=0 S=6 L=0

It should be noted that when a client sends updated information to a server (via a DDE
POKE or a SuiteLink Write), the data quality is assumed WW_SQ_GOOD, and this is
the quality setting that is stored in the Toolkit database. The other flag settings, for
“bad” quality, are set by the server-specific code and passed to the Toolkit via the API
calls. These quality settings are then sent on to the client(s) as part of the VTQ data.

Data Quality Flags 7-5

Updating Quality Flags
There are typically four places where you should update the quality flags for a point:

1. In UdprotPrepareWriteMsg() if there is any problem with poked data. When a
client “pokes” a value to the server, ProtNewValueForDevice() passes the value to
the server-specific code. This, in turn, calls a routine such as
UdprotPrepareWriteMsg(), which creates the byte sequence that will be sent to the
device. If a string is too long, or a value is out of range, the server-specific code
should force the value to a legal setting, set a quality of WW_SQ_CLAMPLO or
WW_SQ_CLAMPHI, and report the information back to the Toolkit with
DbNewVQFromDevice(). Also, if the point is inaccessible or read-only, it may be
appropriate to set the quality to WW_SQ_NOACCESS and call
DbNewVQFromDevice().

2. In UdprotExtractDbItem() when the response from a device is interpreted as point
data and reported to the Toolkit via DbNewVTQFromDevice(). When a response
carries valid data for the point, the quality should normally be set to
WW_SQ_GOOD. However, if a string is too long, or a value is out of range, or a
data conversion yields an invalid result, the quality should be set to
WW_SQ_CLAMPLO, WW_SQ_CLAMPHI, or WW_SQ_NOCONVERT as is
appropriate. Also, some PLCs return status information along with the data. This
status information should be mapped to the corresponding WW_SQ_XX quality
setting.

3. In ProcessValidResponse() and other locations where an error response is received,
a bad quality should be reported for each point on a message that has a response
pending. If a polling (read) message elicits an error response, a quality of
WW_SQ_NOACCESS should be reported for each point that is being actively
polled by that message. The following excerpts from UDPROTCL.C of the sample
server illustrate this:

/**/
/** Process validated response back from the device **/

void
WINAPI
ProcessValidResponse(LPPORT lpPort)
{
 LPUDMSG lpMsg;
 LPSTAT lpTopic;
 BYTE FAR *rsp;

 /* get pointer to current message, if any */
 lpMsg = lpPort->mbCurMsg;
 if (lpMsg == (LPUDMSG) NULL) {
 /* no current message, just return */
 return;
 }

7-6 Chapter 7

 /* check whether message has changed */
 if (lpMsg->mmChanged) {
 /* If was changed after it was written
 -- ignore the response */
 return;
 }

 /* get pointer to corresponding station */
 lpTopic = lpMsg->mmTopic;
 if (lpTopic == (LPSTAT) NULL) {
 /* unable to access station structure, just return */
 return;
 }

 /* reset station retry limits */
 lpTopic->statRetries = TOPIC_CONSEC_FAILURE_LIMIT;
 lpTopic->statPortRetries = TOPIC_NORMAL_RETRIES;

 /***\
 How messages are handled may depend on the protocol.
 The following example handles reads and writes
 and also processes error responses from the device.
 ***/

 /* check type of message received */
 rsp = (BYTE FAR *) lpPort->mbRspBuffer;
 switch (*rsp) {
 case 0x00: /* error message */
 /* indicate error */
 UdprotSetMsgQuality (lpTopic, lpMsg, WW_SQ_NOACCESS);
 if (ShowingErrors) {
 debug ("Error message received.");
 showReceivedData (lpPort);
 }
 break;
 default:
 /* check type of message */
 if (lpMsg->mmRead) {
 /* was a "read"
 -- extract data from response and report it */
 UdprotExtractReadData(lpPort, lpTopic, lpMsg);
 }
 break;
 } /* switch */

 /* check type of message */
 if (!lpMsg->mmRead) {
 /* was a "write" -- delete the write message */
 UdprotDeleteCurWriteMsg(lpPort);
 }
 /* check station status,
 ensure we're out of slow poll mode */
 UdprotSetTopicStatus (lpPort, lpTopic, FALSE);
} /* ProcessValidResponse */

Data Quality Flags 7-7

/***/
/* set indicated quality for all symbols on a read message */

static
void
WINAPI
UdprotSetMsgQuality (LPSTAT lpTopic,
 LPUDMSG lpMsg,
 PTQUALITY ptQuality)
{
 LPEXTARRAY lpSymbol_table;
 SYMPTR lpSymEnt;
 unsigned long firstSymIdx, lastSymIdx;
 BOOL done;
 CHAINSCANNER symbol_scanner;
 ACTIVE_CHECK compValue;

 /* check whether pointers are valid */
 if ((lpMsg == (LPUDMSG) NULL) || (lpTopic == (LPSTAT) NULL))
 /* no message or no station, just return */
 return;

 /* only set quality if this is a READ message
 with active points */
 if ((!lpMsg->mmRead) || (lpMsg->mmActiveCt == 0))
 return;

 /* get pointer to symbol table */
 lpSymbol_table = &lpTopic->statSymTab;
 if (lpSymbol_table == (LPEXTARRAY) NULL) {
 /* cannot access symbol table structure, just return */
 return;
 }

 /* set up comparison value */
 compValue.lpMsg = lpMsg; /* pointer to this message */
 compValue.finalHandle = lpMsg->mmLastSym;
 /* last symbol in message */
 compValue.SymHandle = 0; /* no symbol found yet */

 /* get handles for first and last symbols in this message */
 firstSymIdx = lpMsg->mmFirstSym;
 lastSymIdx = lpMsg->mmLastSym;
 /* get pointer to first symbol entry
 referenced by the message */
 lpSymEnt = (SYMPTR) NULL;
 if (firstSymIdx >= SYM_OFFSET) {
 /* valid symbol handle, get pointer to symbol entry */
 lpSymEnt = (SYMPTR) GetExtArrayMemberPtr (lpSymbol_table,
 firstSymIdx - SYM_OFFSET);

7-8 Chapter 7

 /* get first active symbol referenced by this message */
 /* Note: if found, compValue.SymHandle
 will be non-zero */
 if (lpSymEnt != (SYMPTR) NULL)
 lpSymEnt = (SYMPTR) FindItemStartingAt (
 (LPCHAINLINK) lpSymEnt,
 &lpTopic->statSymUsed,
 SCAN_FROM_HEAD,
 IsActiveOnMessage,
 &compValue,
 &symbol_scanner);
 }

 /* scan through range of symbols covered by this message */
 done = FALSE;
 while ((!done) && (lpSymEnt != (SYMPTR) NULL)) {
 /* check whether symbol is active
 and polled by this message */
 if (compValue.SymHandle != 0) {
 /* match found,
 report new quality on indicated point */
 DbNewQFromDevice(lpMsg->mmIdLogDev,
 lpSymEnt->msDbHnd, ptQuality);
 }
 /* check whether to continue scanning */
 if (lpSymEnt->msIndex + SYM_OFFSET == lastSymIdx) {
 /* last symbol handle for message, exit */
 done = TRUE;
 } else {
 /* get pointer to next active symbol on message,
 if any */
 lpSymEnt = (SYMPTR) FindNextItem (&symbol_scanner);
 }
 }
} /* UdprotSetMsgQuality */

Data Quality Flags 7-9

4. In UdprotSetTopicStatus() when the communication with the PLC fails, bad quality
of WW_SQ_NOCOMM should be flagged on all points on all messages for that
topic. This would be at the point where the server goes into slow poll mode,
attempting to re-establish communications with the PLC. The following excerpts
from UDPROTCL.C of the sample server illustrate this:

/***/
/** set STATUS item in station structure
 return TRUE if status is changed **/

static
BOOL
WINAPI
UdprotSetTopicStatus (LPPORT lpPort, LPSTAT lpTopic, unsigned
bFailed)
{
 BOOL changed;

 /* initialize return value */
 changed = FALSE;

 /* no change if pointer is NULL */
 if (lpTopic != (LPSTAT) NULL) {
 /* check current station status */
 if (lpTopic->statFailed != bFailed) {
 /* different from old status, update it */
 changed = TRUE;
 lpTopic->statFailed = bFailed;
 /* check whether station is active */
 if (lpTopic->statStatusActive) {
 /* active, indicate that station STATUS is due */
 lpTopic->statStatusDue = TRUE;
 }
 /* check whether new status is OK or failed */
 if (bFailed) {
 /* have logger indicate entering
 slow poll mode */
 debug ("Entering slow poll mode"
 " on topic \"%Fs\" on port %Fs.",
 lpTopic->statTopicName,
 lpPort->mbPortName);
 /* report new STATUS value if necessary */
 UdprotCheckAndUpdateStatus (lpTopic);
 /* set "no communication" quality flags
 for all points polled on topic */
 UdprotSetTopicQuality (lpTopic, WW_SQ_NOCOMM);
 } else {
 /* have logger indicate leaving slow poll mode */
 debug ("Leaving slow poll mode"
 " on topic \"%Fs\" on port %Fs.",
 lpTopic->statTopicName,
 lpPort->mbPortName);
 }
 }

 /* check whether station is failed */
 if (bFailed) {
 /* set up slow poll mode */
 UdprotSetSlowPollMode (lpPort, lpTopic);
 }
 }
 /* indicate whether station status changed */
 return (changed);
} /* UdprotSetTopicStatus */

/**/
/* set indicated quality for all items on a topic */

static
void

7-10 Chapter 7

WINAPI
UdprotSetTopicQuality(LPSTAT lpTopic,
 PTQUALITY ptQuality)
{
 LPUDMSG lpMsg;
 CHAINSCANNER message_scanner;

 /* check whether pointer is valid */
 if (lpTopic == (LPSTAT) NULL)
 /* no station, just return */
 return;

 /* set indicated quality
 on every read message for this station */
 lpMsg = (LPUDMSG) FindFirstItem (&lpTopic->statReadMsgList,
 SCAN_FROM_HEAD,
 NULL, NULL, &message_scanner);
 while (lpMsg != (LPUDMSG) NULL) {
 /* set indicated quality on message */
 UdprotSetMsgQuality (lpTopic, lpMsg, ptQuality);
 /* advance to next message on this station */
 lpMsg = (LPUDMSG) FindNextItem (&message_scanner);
 }
} /* UdprotSetTopicQuality */

8-1

C H A P T E R 8

Statistics Functions

This section describes the Statistics API functions provided by the Wonderware I/O
Server Toolkit.

Contents
! Overview
! Statistics from a Client Perspective
! Toolkit Standard Statistics

8-2 Chapter 8

Overview
With the advent of FactorySuite 2000, the Wonderware I/O Server Toolkit provides
extensions to the Toolkit API which allow I/O Servers to easily provide statistical
measurements including counters and rates to I/O Clients. This API allows the server
developer to register a statistic with a particular item name with the Toolkit. The
Toolkit manages point validation and sends values to any interested clients. For
statistics which indicate counters, the server protocol code simply manipulates the
counter’s value with the supplied function calls. For statistics which indicate rates, the
server-specific code modifies the input counter and allows the Toolkit to calculate the
rate of change. In addition to this capability for registering server-specific statistics, the
Toolkit automatically provides its own internal statistics related to I/O Server activity
and function call activity for performance and diagnostic purposes.

Statistics from a Client Perspective
Since the primary purpose of statistics is to provide users a convenient and easy way to
gather performance and diagnostic information about their I/O Servers, it is appropriate
to first discuss statistics from a user or client program perspective.

There are two basic types of statistics available to an interested I/O Client: counters
and rates.

Statistical Counters

A statistical counter is used to represent an accumulated quantity (i.e. “a count”) or
state information. Most often, a counter will be used to indicate the number of
operations or events that have occurred. For example, a counter would be useful for
representing the number of transactions or the number of errors that have happened
since the server was started. Alternatively, a counter can be used to represent a
discrete state or a text string. So, for example, a counter could be used to indicate a
1/0 (good/bad) condition, a string listing all topics currently available on the server,
or a string containing the description of the last error that occurred (e.g. “The
connection has timed out”).

The statistical API in the Toolkit makes it very easy to register and accumulate
counters and have them automatically broadcast to any interested clients. A
statistical counter can be any one of the four Toolkit datatypes: PTT_INTEGER,
PTT_REAL, PTT_STRING, or PTT_DISCRETE. Functions for setting the value,
adding/subtracting, or incrementing/decrementing counters are provided.

Statistics Functions 8-3

Statistical Rates
A statistical rate is used to represent the current rate at which a particular operation
or event is occurring. For example, a rate would be useful for representing the
number of read operations per second on a particular communications port.

The statistical API in the Toolkit makes it very easy to register and calculate rates
and have them automatically broadcast to any interested clients. The server code
registers the rate item with the Toolkit, assigning it a name, topic, update interval,
and time units. Then, the server code simply needs to update the counter which
feeds into the rate calculation when appropriate. The Toolkit takes care of
calculating the rate of change of the counter in the specified time units and updates
clients that are interested in the rate item. The counter value which is the input
value to the rate calculation can optionally be associated with a previously
registered statistical counter. This allows a server to provide both an accumulator
and a rate of change for a particular measurement to clients without having to
update two different counters.

Statistics Categories
Statistics should be segregated into different categories or groups depending on the
type of object they are measuring. A group of statistics for a communications port,
for example, should be separated from statistics related to DDE or SuiteLink traffic.
To facilitate this categorization, several new standard logical devices, or I/O Server
topics, have been defined as part of the FS2000 Toolkit. The purpose of each of
these standard topics is to hold a logically related group of statistical information.
These standard topics will be created by the Toolkit at server startup and deleted at
server shutdown. They require no user configuration. Statistical items can be
assigned to these new standard topics or to any user-defined topic in an I/O Server.
This assignment of a statistic to a particular device or topic is the responsibility of
the server developer and is controlled at statistic registration time via the API.

The new system standard topics are summarized in the following table.

Topic Name Description Symbol

SYSTEM I/O Server System Topic STDDEV_SYSTEM
$SERVER contains general server wide statistics STDDEV_SERVER

$PORT contains statistics related to
communication ports/boards STDDEV_PORT

$DEVICE contains statistics related to physical
devices such as PLCs. STDDEV_DEVICE

$DDE contains statistics related to DDE and
SuiteLink communications. STDDEV_DDE

$TKITIF contains statistics related to Toolkit API
function calls. STDDEV_TKITIF

In general, an I/O Server you create will only register statistics for the “$SERVER”,
“$PORT”, and “$DEVICE” standard topics and for the user-defined topics known to the
server. The generation of statistics for the “SYSTEM”, “$DDE”, and “$TKITIF”
should be left to the I/O Server Toolkit.

8-4 Chapter 8

Reset of Counters
I/O Clients have the ability to reset entire groups of statistical counter items. The
statistical counters can be reset on a per-topic or per-server basis, depending on the
item name and topic used in the DDE Poke or SuiteLink Write operation. The reset
operation is controlled exclusively by the Toolkit and does not require any
programming by the server developer or any special notification. Only counters
which are integer or floating point accumulators are affected by a reset.

Topic Item Name Action when poked

SYSTEM ResetAllStats Resets all counter statistics on all topics in
the I/O Server.

* ResetStats Resets all counter statistics on the indicated
topic.

Manipulation of Counter Update Interval
The interval at which a counter is updated to any interested clients is set by the
topic’s counter interval. This interval defaults to 10 seconds but can be
manipulated in several ways. First, the default value for all topics can be changed
by adding an entry under the server section in the WIN.INI file in the Windows
directory. The entry name is StatCountersInterval, and the units are in
milliseconds.

The counter interval can also be controlled on an individual topic basis in two ways.
First, the programmer can control it with the StatSetCountersInterval() function
call. This function can be called anytime after a topic is created. Second, an I/O
Client can control the counter update interval on a topic by manipulating the
“CounterInterval” item name for the topic with a DDE Poke or SuiteLink Write.
This mechanism requires no programming by the server developer.

Manipulation of Rate Intervals
The interval at which a particular statistical rate item is calculated is set to an initial
default value by the server developer at the time the statistic is registered via the
API. A general guideline is that the statistical rate item should be calculated at an
interval greater than or equal to the topic update interval. It is important to
remember that a server which has many rate statistics being calculated frequently
may have some performance impact on the rest of the system. The server developer
may want to provide some way to disable rate calculations if performance may be a
concern. This might be accomplished by a configuration dialog which sets a flag in
the server configuration file, the WIN.INI file, or the system Registry.

It may be desirable at times to allow a user, or I/O Client, to manipulate the interval
at which a particular rate operation is performed. This capability is provided
automatically by the I/O Server Toolkit. Once a rate item has been registered with
the Toolkit, the rate interval for that item can be changed at any time by an I/O
Client. The item name to be used for reading and writing the rate interval will
always be the name of the rate item itself followed by the following string:
“$INTERVAL”. So, for example, a rate item of “SENDSRATE” could have its
calculation interval manipulated by a DDE Poke or SuiteLink Write operation to the
item “SENDSRATE$INTERVAL”. This I/O Server Item is always an integer with
millisecond units. Again, this dynamic rate interval manipulation is controlled
exclusively by the Toolkit and does not require any programming by the server
developer.

Statistics Functions 8-5

Statistics Names
The names assigned to statistical items may be controlled either by the I/O Server
Toolkit or by the server developer. Certain pre-defined statistics, such as those
related to DDE, SuiteLink, and Toolkit interface calls, will always exist in every
server since the Toolkit defines and maintains them. (See the Toolkit Standard
Statistics section below.) The naming of protocol-specific statistics will be the
responsiblity of the server developer.

Statistical items are read-only, with the exception of special items for reset of
counters and manipulation of counter and rate update intervals.

8-6 Chapter 8

Toolkit Standard Statistics
The following table defines the standard statistical items which are provided
automatically by the Toolkit:

Topic Item Description

SYSTEM CounterInterval Interval in milliseconds at which counters on topic
will update (integer).

SYSTEM Formats Tab separated list of DDE Formats supported by
server (string).

SYSTEM LastResetTime Last time statistics in topic were reset (string).

SYSTEM TopicItemList Tab separated list of all I/O items available on topic
(string).

SYSTEM SysItems Tab separated list of all I/O items available on
system topic (string).

SYSTEM Topics Tab separated list of all I/O Topics, or logical
devices, available in the server (string).

SYSTEM ResetAll Resets all counters on all topics.
SYSTEM ResetStats Resets all counters on topic (discrete).

SYSTEM WatchDog Watchdog timer which increments every interval
indicated by CounterInterval (integer).

$SERVER CounterInterval Interval in milliseconds at which counters on topic
will update (integer).

$SERVER LastResetTime Last time statistics in topic were reset (string).
$SERVER ResetStats Used to reset all counters on topic (discrete).

$SERVER ServerBusyRate Indicates fraction of CPU time during which server
is busy (real).

$SERVER ServerStartTime Time server was started (string).

$SERVER TopicItemList Tab separated list of all I/O items available on topic
(string).

$SERVER WatchDog Watchdog timer which increments every interval
indicated by CounterInterval (integer).

Statistics Functions 8-7

Topic Item Description

$TKITIF ActivatePoint
$TKITIF ActivatePointFailures
$TKITIF AllocateLogicalDevice
$TKITIF AllocateLogicalDeviceFailures
$TKITIF CounterInterval
$TKITIF CreatePoint
$TKITIF CreatePointFailures
$TKITIF DeactivatePoint
$TKITIF DeactivatePointFailures
$TKITIF DeallocateLogicalDevice
$TKITIF DeallocateLogicalDeviceFailures
$TKITIF DeletePoint
$TKITIF DeletePointFailures
$TKITIF LastResetTime
$TKITIF NewValueForDevice
$TKITIF NewValueForDeviceFailures
$TKITIF NewValueForDeviceRate
$TKITIF NewValueForDeviceRate$Interval
$TKITIF NewValueFromDevice
$TKITIF NewValueFromDeviceFailures
$TKITIF NewValueFromDeviceRate
$TKITIF NewValueFromDeviceRate$Interval
$TKITIF ResetStats
$TKITIF TopicItemList
$TKITIF WatchDog

$DDE CounterInterval
$DDE DDEAcksReceived
$DDE DDEAcksSent
$DDE DDEAdviseFailures
$DDE DDEAdvises
$DDE DDEAdvises
$DDE DDEBusyReceived
$DDE DDEDataBytesReceived
$DDE DDEDataBytesReceivedRate
$DDE DDEDataBytesReceivedRate$Interval
$DDE DDEDataBytesSent
$DDE DDEDataBytesSentRate
$DDE DDEDataBytesSentRate$Interval
$DDE DDEExecuteFailures
$DDE DDEExecutes
$DDE DDEInitiateFailures

8-8 Chapter 8

Topic Item Description

$DDE DDEInitiates
$DDE DDENaksReceived
$DDE DDENaksSent
$DDE DDEPokeFailures
$DDE DDEPokes
$DDE DDEPokesRate
$DDE DDEPokesRate$Interval
$DDE DDERequestFailures
$DDE DDERequests
$DDE DDETerminateFailures
$DDE DDETerminates
$DDE DDEUnadviseFailures
$DDE DDEUnadvises
$DDE LastResetTime
$DDE ResetStats
$DDE TopicItemList
$DDE WatchDog

* CounterInterval
* LastResetTime
* ResetStats

* TopicItemList Tab-separated list
of statistical items.

* WatchDog

* Indicates all other topics.

9-1

C H A P T E R 9

I/O Server Toolkit
Function Summary

This chapter summarizes Server Toolkit Application Programming Interface (API)
functions. The following briefly describes the categories of the I/O Server Toolkit
functions and their primary purpose.

The discussions and illustrations on the following pages describe how the Toolkit
handles client/server activities, such as initiating connections, advising points, poking
values, etc. While the discussion is based on DDE, please note that the corresponding
activities also take place when SuiteLink is used.

Note Wonderware I/O Server Toolkit functions that are underlined and bold, e.g.,
ProtInit(), must be developed. Wonderware I/O Server Toolkit functions that are
provided by the Toolkit will be bolded but not underlined, e.g.,
DbNewValueFromDevice(). For more information, see the "API Function Reference"
chapter for complete function descriptions.

Contents
! Protocol Initialization & Setup Functions
! Logical Device Management Functions
! Point/Item Management Functions
! Toolkit Database Interface for Protocol Functions
! Timer Functions
! String PTVALUE Manipulation Functions
! Memory Management Functions
! Memory Access Permission Functions - Windows Only
! Common Dialog Functions
! Selection Boxes - Optional
! Miscellaneous Functions
! Windows NT Porting Functions
! Macros for Portability
! Additional Information

9-2 Chapter 9

Protocol Initialization & Setup Functions
This section describes the functions (indicated by the underlined names) that must be
written and included in the I/O Server 's initialization. These functions are called by the
Toolkit.

Function Description

ProtClose() Called immediately prior to the server closing. Performs
any necessary clean-up such as freeing memory, closing
communications ports, etc.

ProtDefWindowProc() Allows the server application window to be customized.

ProtGetDriverName() Provides the Toolkit with the name of the I/O Server.

ProtGetValidDataTimeout() Returns the length of time the Toolkit is to wait for data
before issuing a timeout to the DDE client requesting
information.

ProtTimerEvent() Called at the frequency specified in the call to
SysTimerSetupProtTimer().

Allows the server to execute and perform tasks necessary
to obtain the requested data.

ProtInit() Allows the server to perform required initialization such
as:
• Obtaining defaults from WIN.INI (if applicable)
• Reading the configuration file (if any)
• Calls SysTimerSetupProtTimer()
• Calls SysTimerSetupRequestTimer()

I/O Server Toolkit Function Summary 9-3

Logical Device Management Functions
The following functions are used by the Toolkit to allocate and deallocate logical
devices.

Function Description

ProtAllocateLogicalDevice() Called when a client initiates a DDE conversation to the
server.

Returns a handle that the Toolkit will use in all future
calls to routines dealing with that logical device
hLogDev. The handle is an unsigned long which is
meaningful to the server. It is used in all subsequent
calls to identify the logical device instead of using the
name. This way, the name (which is a string) need only
be decoded once, when ProtAllocateLogicalDevice() is
called.

Must validate the topic name (i.e., logical device name).

Must save the idLogDev for use in other Toolkit
routines.

Note If NULL is returned, the Initiate will not be Acked,
i.e., the conversation will not be established.

ProtExecute() Called when the client sends an Execute DDE message
to a conversation on the server.

This function should execute the string supplied by the
client and return success or failure based on the
command supplied.

ProtFreeLogicalDevice() Called when the last client has sent a terminate to the
server for this topic.

All memory associated with this logical device must be
freed.

9-4 Chapter 9

Examples of Logical Device Management
The following examples summarize what happens regarding logical device management
on a typical conversation initiation and termination.

What is called on Initiate
DDE User Toolkit The Server

---- WM_DDE_INITIATE --->|
 |--- ProtAllocateLogicalDevice ()--->
 | [if first use of device]
 |<-- return handle to logical device ---
 |
<--- WM_DDE_ACK ---------| [if return is non-NULL or device
 | already exists]

What is called on a Terminate
DDE User Toolkit The Server

---- WM_DDE_TERMINATE --->|
 |--- ProtFreeLogicalDevice ()
 |---> [if last use of device]
 |<-----------------------------
<--- WM_DDE_TERMINATE ----|

I/O Server Toolkit Function Summary 9-5

Point/Item Management Functions
Point management includes defining points (setting up data structures), starting and
stopping polling, sending and receiving data values and shutting down. Each item will
have two handles (unique identifiers). One is given to the server by the Toolkit hDb,
and used when the server calls the Toolkit concerning an item. The other is provided by
the server hProt and given to the Toolkit. It will be used when the Toolkit calls the
server concerning a point. When a valid point is being created, you must save the hDb
database handle parameter. It will be the handle (unique identifier) used by the Toolkit
database to find this item. The return hProt for a valid item is a non-zero handle that is
unique to this point in this topic. The choice of these hProt handles is completely up to
you and should make your later point processing more simple, e.g., use the index or
memory handle pointing to an element in a chain of created points. Regarding point
management, the following set of functions must be supplied to the Toolkit.

Function Description

ProtActivatePoint() Called when the Toolkit wants the server to start
reporting changing point values by calling
DbNewValueFromDevice().

At this point the server should start "polling" the point
from the appropriate logical device. Calls to send data
to the Toolkit via DbNewValueFromDevice() should
only be done between the ProtActivatePoint() and the
ProtDeactivatePoint() calls.

ProtCreatePoint() Validates the point name and returns the type of point
the name represents (discrete, integer, etc.)

Must remember the hDb passed in since this is required
for all calls to the Toolkit database
DbNewValueFromDevice().

Must return hProt which represents a handle that is
important to you. All subsequent calls that the Toolkit
makes to you regarding this point will pass hLogDev,
returned from ProtAllocateLogicalDevice() and hProt,
returned from ProtCreatePoint().

This function should return NULL if the point is invalid
or not accessible for this device. If this routine returns
NULL, the DDE message that caused the call to
ProtCreatePoint() will return a NAACO. (Do not call
DbNewValueFromDevice() until the
ProtActivatePoint() has been called.)

9-6 Chapter 9

Function Description

ProtDeactivatePoint() Called when the Toolkit wants to stop reporting point
value changes. At this point, the server should stop
polling for this point.

ProtNewValueForDevice() Called when the Toolkit wants to write a new value to
the device. The ptValue parameter is a union that is
used to pass point values to and from the Toolkit and
supports a discrete, integer, real or string.

ProtDeletePoint() Called when the Toolkit determines that no more clients
are interested in this point. The server should delete or
release any memory structures associated with the point.
If a write is still outstanding, the server should still
perform the write.

What is called on a Request
A Request is a one-time data transfer.

DDE User Toolkit The Server
---- WM_DDE_REQUEST --->|
 |--- ProtCreatePoint () --->
 | [if not created]
 |<-- return hProt and point type ----
 |
<--- NACK --------------| [if ProtCreatePoint() returns NULL]
 |
 |--- ProtActivatePoint () --->
 | [if not activated]
 |<-----------------------------------
 |
 | ...polling begins (if necessary)...
 |
 |<-- DbNewValueFromDevice () ---------
 |----------------------------------->
<--- WM_DDE_DATA -------|
 |--- ProtDeactivatePoint () --->
 | [if last activation]
 |<-----------------------------------

I/O Server Toolkit Function Summary 9-7

What is called on an Advise/Unadvise
An Advise asks for a notification of changes. An Unadvise asks for a discontinuation of
the notifications.

DDE User Toolkit The Server
--- WM_DDE_ADVISE ---> |
 |--- ProtCreatePoint () --->
 | [if not created]
 |<--- return hProt and point type ----
 |
<--- NACK ---------------| [if ProtCreatePoint() returns NULL]
 |
 |--- ProtActivatePoint () --->
 | [if not activated]
 |<------------------------------------
 |
 |... polling begins (if necessary) ...
 |
 |<--- DbNewValueFromDevice () ---------
 |------------------------------------>
<--- WM_DDE_DATA --------|
 |
 |<--- DbNewValueFromDevice () ---------
 |------------------------------------>
 |
<--- WM_DDE_DATA --------| [if data changes]
 |
 |<--- DbNewValueFromDevice() ---------
 |------------------------------------>
 |
<--- WM_DDE_DATA --------| [if data changes]
 |
 |
---- WM_DDE_UNADVISE --->|
 |--- ProtDeactivatePoint () --->
 | [if last activation]
 |<------------------------------------

What is called on a Poke
A Poke is a one-time write of a point value.

DDE User Toolkit The Server
---- WM_DDE_POKE ------->|
 |--- ProtCreatePoint () --->
 | [if point doesn't exist]
 |<-- return hProt and point type ----
 |
<--- NACK ---------------| [if ProtCreatePoint() returns NULL]
 |
 |--- ProtNewValueForDevice () --->
 |<-----------------------------------
 |
<--- WM_DDE_ACK ---------|
 |
 | ... send write to device ...
 |

A ptValue is a union that is used to pass point values to and from the Toolkit. The
ptValue supports discrete, integer, real and string. Strings are handled in a special way -
via the functions that are provided for you in TOOLKIT7.LIB. Refer to the API
Function Reference chapter for more details on the above routines.

9-8 Chapter 9

Toolkit Database Interface for Protocol Functions
This section describes the functions that are provided in TOOLKIT7.LIB to allow the
server to update the Toolkit database.

Function Description

DbNewVTQFromDevice() Is called every time a point value is retrieved from the
device. The Toolkit will determine whether or not the
value has changed since the last time it was read. This is
critical for compatibility with later versions of the
Toolkit.

DbNewTQFromDevice() Is called when communication problems with the PLC
occur. Errors or a lost connection means every point on
the effected message or topic should be marked as
having bad quality.

DbSetHProt() Allows the server to change the hProt value for a point
(item identifies from your code to the Toolkit database).

Timer Functions
This section describes the timer functions that must be called to set up the Toolkit timers at
rates appropriate for the protocol being used.

Function Description

SysTimerSetupProtTimer() Sets up a timer that goes off every dwMsec milliseconds
and calls ProtTimerEvent().

This timer should be set to a value that is reasonable for
the protocol data supply rate. Intervals that are
arbitrarily too short will result in needless system
overhead.

SysTimerSetupRequestTimer() Sets up a timer that goes off every dwMsec milliseconds
and checks for valid data timeout errors within the
Toolkit database.

This timer should be set to a value that is reasonable for
the protocol data timeout. The interval should be a
reasonable factor of the ValidDataTimeout parameter
returned in the ProtGetValidDataTimeout() calls.
Intervals that are arbitrarily too short will result in
needless system overhead.

I/O Server Toolkit Function Summary 9-9

String PTVALUE Manipulation Functions
The PTVALUE union is used to pass point values between the various functions
described in other sections of this document (for example, ProtNewValueForDevice()).

The following describes the functions that must be used to manipulate the hString field
of this structure.

Function Description

StrValSetNString() Initializes a ptValue string and does not require a NULL-
terminated string.

StrValSetString() Initializes a ptValue string.

StrValStringFree() Frees the associated string memory.

StrValStringLock() Locks a string in memory to allow access to it.

StrValStringUnlock() Unlocks the memory associated with a string.

Example Code #1 - Sending Data to the Toolkit Database
/* Send a string item to the database. Replace our local
 string first. */
ptValue.hString = NULL;
ptValue = StrValSetString(ptValue,lpszValNew);
DbNewValueFromDevice(idDev, hDbItem, ptValue);
 /* The Toolkit will free the ptValue memory for me.
 This ptValue is now untouchable, forget it. */

Example Code #2 - Accepting Data from the Toolkit for
the Device
ProtNewValueForDevice(hLogDev, hProt, ptValue)
 ...
 switch (info[i].ptype)
 case PTT_STRING:
 lpszValNew = StrValStringLock(ptValue);
 ...
 /* use string */
 ...
 StrValStringUnlock(ptValue);
 break;
 ...

9-10 Chapter 9

Caveats with StrVal Strings

Caveat #1 - Modifying PTVALUE without
StrValSetString()
Caution must be taken when using strings in ptValue.

The following code is a BAD example:

BOOL
FAR PASCAL
ChangeValue(ptValue, lpszNewVal)
PTVALUE ptValue;
LPSTR lpszNewVal;
{
 LPSTR lpszVal;
 BOOL rtn;
 rtn = FALSE;
 if(ptValue.hString != NULL) {
 lpszVal = StrValStringLock(ptValue);
 if(lpszVal) {
 /* UNSAFE - the memory allocated for
 ptValue may not be enough for lpszNewVal! */
 lstrcpy(lpszVal, lpszNewVal);
 StrValStringUnlock(ptValue);
 rtn = TRUE;
 }
 }
 return(rtn);
}

The moral of the above example is to always use StrValSetString() to change the value
of a string. This will correctly size the memory needed to store the string (by freeing the
memory associated with the old string and allocating new memory for the new string).

I/O Server Toolkit Function Summary 9-11

Caveat #2 - Modifying PTVALUEs from Database
When the database calls ProtNewValueForDevice(), consider the ptValue to be read-
only. The hString in the ptValue passed to ProtNewValueForDevice() is stored in the
Toolkit database. If you cause this memory to be freed, the database may malfunction.
Thus, only call StrValStringLock() and StrValStringUnlock() on the ptValue received
from ProtNewValueForDevice()! Never call StrValSetString() or
StrValStringFree() with this ptValue!

An example of correct usage of a string in ProtNewValueForDevice() is as follows:
BOOL
FAR PASCAL
ProtNewValueForDevice(hLogDev, hProt, ptValue)
HLOGDEV hLogDev;
HPROT hProt;
PTVALUE ptValue;
{
char buffer[200];
BOOL rtn;
 rtn = FALSE;
 /* This device handles only string point values. */
 if(hLogDev = 1 && hProt = 1 &&
 ptValue.hString != NULL) {
 /* Lock the read-only input string. */
 lpszVal = StrValStringLock(ptValue);
 if(lpszVal) {
 lstrcpy((LPSTR)buffer, lpszVal);
 StrValStringUnlock(ptValue);
 /* Now we can process the input string in the local
 buffer*/
 rtn = TRUE;
 }
 }
 return(rtn);
}

9-12 Chapter 9

Memory Management Functions
Wonderware has developed a heap manager that is similar to GlobalAlloc(),
GlobalLock(), GlobalUnlock(), GlobalFree(), and GlobalReAlloc(). This heap manager
allows the developer to allocate many different sized memory blocks while minimizing
the number of actual global memory handles (selectors) consumed. The corresponding
calls are wwHeap_Init(), wwHeap_AllocPtr(), wwHeap_ReAllocPtr(),
wwHeap_FreePtr() and wwHeap_Release(). All of these functions are described in
detail in the "API Function Reference" chapter.

For compatibility reasons, Wonderware has extended the heap manager to run on
Windows NT/ 2000. A new common API has been developed which supports heap
management on both Windows 98 and Windows NT / 2000. This new heap API will
work on either platform. If you have an existing I/O Server developed using the old
heap API functions, you will need to convert these function calls to the new API prior to
building your server. Refer to the "Getting Started with the I/O Server Toolkit" chapter
for details.

Function Description

wwHeap_AllocPtr() Allocate the specified amount of memory using the heap
specified by hHeap.

wwHeap_FreePtr() Free the allocated memory specified by lpPtr.

wwHeap_Init() Create and initialize a heap.

wwHeap_ReAllocPtr() Re-allocate the specified amount of memory used in the
heap specified by lpPtr.

wwHeap_Release() Free a heap created with wwHeap_Init().

Memory Access Permission Functions - Windows Only
For specialized applications that require access to fixed real mode addresses in memory,
there are two routines to support this addressing in Windows protected-mode:
RequestPermission() and RelinquishPermission().

Function Description

RelinquishPermission() Will release the selector that was allocated to this
memory address range, identified by hPermission.

RequestPermission() Access memory at a fixed Real Mode location.

I/O Server Toolkit Function Summary 9-13

Common Dialog Functions
Version 5.0 of the I/O Server Toolkit provides a new Dynamic Link Library (DLL) called
WWCOMDLG.DLL. This DLL provides a set of functions that are available to the I/O
Server developer for the purpose of providing a standard look and feel for dialogs,
message boxes, and graphical controls that are common to all servers. All serial servers,
for example, need to provide some way of configuring communications ports. The
Wonderware Common Dialog DLL provides the WWConfigureComPort() function for
this purpose.

Although not required, the Wonderware Common Dialog functions are recommended for
all I/O Servers. They provide a standard graphical user interface for server configuration
and message boxes. The UDBOARD and UDSERIAL sample servers included with the
Toolkit have been upgraded to include usage of the Wonderware Common Dialog
functions.

Function Description

WWCenterDialog() Places the specified dialog at the center of the screen.

WWConfigureComPort() Displays and manages the communications port settings
configuration dialog. It should only be used by serial
servers. This dialog allows configuration of
communications parameters for one or more serial
communications ports. These settings are written to the
WW_CP_DLG_LABELS structure for use by the
server.

WWConfigureServer() Displays and manages the server parameter
configuration dialog. This dialog allows configuration
of several parameters related to overall operation of the
I/O Server. These settings are written out as profile
information to the WIN.INI file by this dialog function
and only take effect upon restarting of the server.

WWConfirm() Displays and manages the confirmation dialog which
indicates the directory or file where server settings are to
be saved. It should only be called when the
configuration file does not currently exist.

WWDisplayAboutBox() Displays and manages the dialog displaying copyright
and version information. It is generally intended for use
by Wonderware servers since it displays the
Wonderware copyright information. However, it does
provide facilities for easily displaying version and date
information and is available for use by other servers.

WWDisplayConfigNotAllow() Displays a message box indicating that configuration of
the server is not allowed while the server is in use.

WWDisplayErrorCreating() Displays a message box indicating that an error was
encountered while creating the specified file.

WWDisplayErrorReading() Displays a message box indicating that an error was
encountered while reading the specified file.

WWDisplayErrorWriting() Displays a message box indicating that an error was
encountered while writing the specified file.

9-14 Chapter 9

Function Description

WWDisplayKeyNotEnab() Displays a message box indicating that the installed
security key does not enable operation of this I/O Server.

WWDisplayKeyNotInst() Displays a message box indicating that the required
security key is not installed on the system.

WWDisplayOutofMemory() Displays a message box indicating that an error was
encountered while allocating memory for the specified
object.

WWFormCpModeString() Creates a null-terminated string containing device
control information.

WWGetDialogHandle() Returns a window handle to the top-most dialog in the
current application.

WWInitComPortComboBox()
Creates a communications port selection box for display
on a dialog. Most commonly, it will be used in a topic
configuration dialog for selection of the communications
port for serial communications.

WWSelect() Displays a dialog containing a list box which will
contain a list of strings specified by the server. The user
will be provided options for adding, modifying, or
deleting entries from this list. This function is most
commonly used to display a list of topics or boards for
configuration.

WWTranslateCDlgToWinBaud()
Translates the WWCOMDLG constant for baud rate to
the Windows equivalent.

WWTranslateCDlgToWinData()
Translates the WWCOMDLG constant for number of
data bits to the Windows equivalent.

WWTranslateCDlgToWinParity()
Translates the WWCOMDLG constant for parity to the
Windows equivalent.

WWTranslateCDlgToWinStop()
Translates the WWCOMDLG constant for number of
stop bits to the Windows equivalent.

WWTranslateWinBaudToCDlg()
Translates the Windows constant for baud rate to the
WWCOMDLG equivalent.

WWTranslateWinDataToCDlg()
Translates the Windows constant for number of data bits
(7 or 8) to the WWCOMDLG equivalent.

I/O Server Toolkit Function Summary 9-15

Function Description

WWTranslateWinParityToCDlg()
Translates the Windows constant for parity to the
WWCOMDLG equivalent.

WWTranslateWinStopToCDlg()
Translates the Windows constant for number of stop bits
to the WWCOMDLG equivalent.

WWVerifyComDlgRev() Verifies that the version of WWCOMDLG.DLL
installed on the system is at least as new as the specified
version. It also returns the major and minor version
numbers of the installed WWCOMDLG.DLL to the
server. This function is intended for compatibility
checking.

9-16 Chapter 9

Selection Boxes - Optional
The following list of functions provide selection box capability, as used in InTouch. In
general, these functions are no longer necessary or recommended since the WWSelect()
function provides similar functionality.

Function Description

SelBoxAddEntry() Add a string entry to a selection box set of choices to be
displayed when the SelBoxUserSelect() call is done.

SelBoxSetupStart() Does the basic setup for a selection box.

SelBoxUserSelect() Actually displays the selection box and processes all the
buttons.

SelBoxUserSelection() Call this routine after SelBoxUserSelect() if you wish to
get a list of what the user selected.

SelListFree() Frees the memory associated with the selection list.

SelListGetSelection() Gets the indicator value for a selection at the specified
number.

SelListNumSelections() Returns how many entries are in the specified hSelList.

I/O Server Toolkit Function Summary 9-17

Miscellaneous Functions
This section describes the miscellaneous functions that can be used.

Function Description

AdjustWindowSizeFromWinIni()
Adjusts the size of the server window to the last saved
size.

CheckConfigFileCmdLine() Checks the command line for optional configuration file
path. By default, most of the I/O Servers save their
configuration file path in the Windows WIN.INI file. If
the user defines the file path on the command line
(default), or an alternate file is used, the server, with
proper coding, can read the configuration file other than
the one specified in the WIN.INI file.

debug() Sends a debug message to WWLOGGER.EXE which
can log it to disk, monochrome adapter, AUX port, etc.

The #include "debug.h" is a required include file.

GetAppName() Returns the application name for the server. This
application name is stored in the Toolkit and initially set
by a call to ProtGetDriverName() during server startup.

GetString() Retrieves a string from the resource file.

UdInit() Is intended for use by a Windows application that
already exists and needs to be extended to include the
DDE capability provided by the Toolkit. It is used to
initialize the I/O Server Toolkit and should only be used
by a Windows application which supplies its own
WinMain() function. UdInit() should be called early in
the activation of such applications. Most I/O Servers do
not have to call this function since they allow the Toolkit
to supply the WinMain() function. The parameter list is
identical to the parameter list for the Windows
WinMain() function.

UdReadAnyMore() Reads a bAnyMore flag from the configuration file. This
flag is used within the configuration file to indicate
whether more records of a certain type exist. Such a flag
is usually necessary when the number of records is
unknown.

UdReadVersion() Reads the version number from the server configuration
file. It also verifies that the magic number stored in the
file matches the specified magic number.

9-18 Chapter 9

Function Description
UdTerminate() Is intended for use by Windows applications that already

exist and need to be extended to include the DDE
capability provided by the toolkit. It is used to close the
I/O Server Toolkit, but it should only be used by a
Windows application which supplies its own WinMain()
function and calls the UdInit() function to initialize the
toolkit. UdTerminate() should be called at application
shutdown time. Most I/O Servers do not have to call this
function since they allow the toolkit to supply the
WinMain() function.

UdWriteAnyMore() Writes a bAnyMore flag to the configuration file. This
flag is used within the configuration file to indicate
whether more records of a certain type exist.

UdWriteVersion() Writes the version number, magic number, date, and
time to the server configuration file.

WriteWindowSizeToWinIni()
Saves the size of the server window to the last adjusted
size.

I/O Server Toolkit Function Summary 9-19

Windows NT Porting Functions
Version 5.0 of the I/O Server Toolkit includes an Windows NT version that provides
support for the Windows NT/2000 operating system. Since there are a large number of
I/O Servers which currently only operate on the Windows operating system, a significant
amount of porting work will be required to provide native Windows NT support for
these servers. To minimize this porting effort and, at the same time, to simplify software
maintenance, Wonderware has developed a set of porting functions and macros that can
be utilized for Windows NT. These tools will significantly reduce the amount of time
required to port a Windows server to the Windows NT environment.

Although not required, the Wonderware NT porting functions and macros are
recommended for all I/O Servers. They provide a common interface that allow the same
function call to be used on both Windows and Windows NT. The UDBOARD and
UDSERIAL sample servers included with the Toolkit have been upgraded to include
usage of Wonderware NT porting functions and macros.

There are three specific areas for Windows NT porting, they are:
• Windows Function Emulators
• Windows and Windows NT Compatibility Functions
• Macros for Portability

9-20 Chapter 9

Windows Function Emulators
The following set of functions provide Windows NT emulation of Windows functions.
They are only available in the Windows NT I/O Server Toolkit since the Windows API
already incorporates them.

Function Description

CloseComm() Closes a serial communications port.

FlushComm() Flushes all characters from the transmission or receiving
queue of the specified communications device.

GetCommError() Retrieves the most recent error value and current status
for the specified device. It also clears the error.

GetCommEventMask() Retrieves and then clears the event word for the
specified communications device.

GetTextExtent() Provides emulation of the Windows GetTextExtent()
function for the Windows NT platform.

OpenComm() Opens a serial communications port for communications.

ReadComm() Reads up to a specified number of bytes from the given
communications device.

SetCommEventMask() Does nothing on Windows NT. It is provided for
common code convenience only.

WriteComm() Writes the specified bytes to the specified
communications device.

I/O Server Toolkit Function Summary 9-21

Windows/Windows NT Compatibility Functions
These functions are available in both the Windows and Windows NT I/O Server Toolkit
and provide a compatible function to allow common code on both platforms.

Function Description

EnableCommNotification() Simulates the Windows EnableCommNotification()
function for Windows versions older than Windows 3.1
and for Windows NT. It performs no operation on these
platforms and is provided for common code convenience
only. On Windows versions prior to 3.0, it enables or
disables WM_COMMNOTIFY message posting to the
given window.

NTSrvr_BuildCommDCB() Translates a device-definition string into appropriate
serial device control block codes.

The return value from this function is compatible with
the Windows version of the BuildCommDCB()
function.

NTSrvr_GetCommState() Retrieves the device control block for the specified
device. The return value from this function is compatible
with the Windows version of the GetCommState()
function.

NTSrvr_SetCommState() Sets a communications device to the state specified by a
device control block. The return value from this function
is compatible with the Windows version of the
BuildCommDCB() function.

NTSrvr_SetDCB_Dtr() Modifies the DTR (data-terminal-ready) flow-control
setting in the device control block.

NTSrvr_SetDCB_Rts() Modifies the RTS (request-to-send) flow-control setting
in the device control block.

PfnSendEmSelectAll() Selects all the text in the identified edit control. It will
also scroll the caret into view if the bScrollCaret flag is
TRUE.

PfnSendEmSelectRange() Selects a range of text in the identified edit control. It
will also scroll the caret into view if the bScrollCaret
flag is TRUE.

9-22 Chapter 9

Macros for Portability
The following macros have been provided in the NTCONV.H header file to assist in
developing common code servers for Windows and Windows NT. These macros should
be self-explanatory by looking at their definitions .

Windows NT-only MACROS
#define huge
#define LocalInit(a, b, c) (1)
#define LockData(a)

#define lstrchr strchr
#define lstrncpy strncpy
#define lstrcpyn strncpy

#define MoveTo(A,B,C) MoveToEx(A, B, C, NULL)

Windows and Windows NT MACROS
#ifdef WIN32
#define FARWNDPROC WNDPROC
#else
#define FARWNDPROC FARPROC
#endif

#ifdef WIN32
#define SM_MINUS_ONE (HWND) 0xFFFFFFFF
#else
#define SM_MINUS_ONE 0xFFFF
#endif

#ifdef WIN32

#define OPENRead(A) _open(A, _O_RDONLY | _O_BINARY)
#define OPENCreate(A) _open(A, _O_BINARY | _O_RDWR |
_O_TRUNC | _O_CREAT,

_S_IREAD | _S_IWRITE);
#define LWRITE _write
#define LREAD _read
#define LSEEK _lseek
#define LCLOSE _close
#else
#define OPENRead(A) open(A, O_RDONLY | O_BINARY)
#define OPENCreate(A) open(A, O_RDWR | O_BINARY |
O_TRUNC | O_CREAT, S_IREAD |

S_IWRITE);
#define LWRITE _lwrite
#define LREAD _lread
#define LSEEK _llseek
#define LCLOSE close
#endif

I/O Server Toolkit Function Summary 9-23

Windows-only MACROS
#define InSendMessage() (FALSE)
#define FreeDDElParam(a, b)
#define PackDDElParam(a, b, c) (MAKELONG((b), (c)))
#define UnpackDDElParam(a, b, c, d) ((*(c) = LOWORD(b)) | (*(d) =
HIWORD(b)) | 1)

#if (WINVER < 0x030a)
typedef unsigned int UINT ;
typedef UINT WPARAM ;
typedef long LPARAM ;
#endif

9-24 Chapter 9

Additional Information

Required External Data
The following data items are required by the I/O Server Toolkit:

extern HWND hWndParent
extern HANDLE hInst

These data variables must be declared in the server for the Toolkit to function

properly.About the .DEF File
A .DEF file for the main executable is not needed for Win32 servers.

About the .RC File
The .RC (resource) file must contain the following items for the Toolkit to work
properly:

• Stringtable with PROTLIB.STR
• #include "tkitstrt.rci"

Note If the #include "tkitstrt.rci" is not in the resource file, the I/O Server will not
start.

Adding Help to the I/O Server
Windows will use the program WINHELP.EXE to display the on-line help *.hlp files
provided with any application. The TOOLKIT7.LIB provides a standard mechanism for
providing Help for the I/O Servers. We recommend that you use Microsoft Word to
generate the basic documentation file that will be used by the help compiler for
Windows (provided with the SDK) to generate the server .HLP file.

Note Refer to the Microsoft Professional Tools User's Guides for detailed information.

I/O Server Toolkit Function Summary 9-25

The serial and board sample server programs both show the basic use of a Help menu
item. If you start with an existing server and need to add the Help capability, follow
these general steps:

1. Add the following include statement to the .RC file and .C file that does
initialization and message processing.

#include "srvrhelp.h"

2. Add the following help menu items to the .RC file:
POPUP "&Help"

BEGIN
MENUITEM "&Contents", MENU_HELP_INDEX
MENUITEM "&How to Use Help", MENU_HELP_ON_HELP
MENUITEM SEPARATOR
MENUITEM "&About", MENU_HELP_ABOUT
END

3. In one of the .C files add the following variable declaration statement, which will be
picked up by the Toolkit functions:

BOOL bDoHelp = TRUE;

4. Add "About" message processing for the WM_COMMAND /
MENU_HELP_ABOUT. Refer to the "Serial" sample server UDMAIN.C to see
sample About processing.

5. N ow you must generate the server .HLP file, where server is the same name used
for the I/O Server's .EXE file and application name. For example,
UDSAMPLE.HLP for the server UDSAMPLE.EXE.

6. Be sure to copy the .HLP file to the installation floppy and/or into a directory in the
PATH.

Note There are several third-party help development software packages on the market
that can be used to simplify the creation of the help file once the documentation file has
been created. For example, "RoboHelp" by Blue Sky Software in La Jolla, California.

9-26 Chapter 9

10-1

C H A P T E R 1 0

API Function References

This chapter is a complete reference section for the I/O Server Toolkit Application
Programming Interface (API) functions. They are presented in alphabetic order. The
purpose, syntax, parameters and possible return values for all functions are included.
Functions that appear both bolded and underlined must be written and included in the
I/O Server. These functions are called by the Toolkit.

10-2 Chapter 10

AdjustWindowSizeFromWinIni
VOID WINAPI

AdjustWindowSizeFromWinIni (HWND hWnd)

This function adjusts the size and position of the server window to the last saved size.

Parameter Description

hWnd Window to size.

API Function References 10-3

CheckConfigFileCmdLine
VOID WINAPI

CheckConfigFileCmdLine(LPSTR lpszCmdLine,
LPSTR lpszCfgPath,
int nMaxString)

This function will check the command line for a string prefaced by "/D:". Be sure to
add CMDLNPTH.H to the list of included files and add this reference:

extern char szCmdLine[];

Parameter Description

lpszCmdLine Far string pointer to the szCmdLine.
lpszCfgPath Far string pointer to the string containing the final

configuration path that may be used for reading the file.
nMaxString Maximum length of the szCfgPath.
Return Value None.
Comments The syntax supporting this command line file path

definition is: SERVER EXENAME /D:{FILEPATH}
For example: MODBUS /D:C:\MBTEST

Note Before ProtInit() is called, the Toolkit initializes the string variable, szCmdLine,
to contain the command line that invoked the driver. The variable szCmdLine should be
the first argument to CheckConfigFileCmdLine().

Example
char szCfgPath[PATH_STRING_SIZE];
VOID FAR PASCAL GetConfigFilePath(VOID){
 char driverName[20];
 extern char szCmdLine[];
 ProtGetDriverName(driverName, sizeof(driverName));
 /* Get the ConfigurationFilePath from the WIN.INI file
 or set it to default to the current directory. */
 GetProfileString(driverName, "ConfigurationFile", "",
 szCfgPath, PATH_STRING_SIZE);

 /* If the command line specified a config file path,
 let it override the path stored in WIN.INI. */
 CheckConfigFileCmdLine(szCmdLine, szCfgPath,
 PATH_STRING_SIZE);
 if(strlen(szCfgPath) == 0) {
 getcwd(szCfgPath, PATH_STRING_SIZE);
 if (Verbose){
 debug("Config path is CWD %s", szCfgPath);
 }
 }
 if (szCfgPath[strlen(szCfgPath)-1] != '\\') {
 strcat(szCfgPath, "\\");
 }
}

10-4 Chapter 10

CloseComm
int

CloseComm(int idComDev)

This function closes a serial communications port.

Parameter Description

idComDev The id of the device to close. The OpenComm()
function returns this value.

Return Value The return value is zero if the function is successful.
Otherwise, it is less than zero.

Comments Windows NT/2000 only. Emulates Windows function.

API Function References 10-5

DbDevGetName
void WINAPI

DbDevGetName (IDLDEV idLogDev,
 LPSTR lpszTopicName)

Get name corresponding to indicated logical device (i.e. topic).

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocateLogicalDevice() call.

lpszTopicName Far pointer to the string buffer where the name will be
returned.

10-6 Chapter 10

DbGetGMTasFiletime
BOOL WINAPI

DbGetGMTasFiletime(FILETIME *pFileTime)

Get Greenwich Mean Time as a Win32 FILETIME structure.

FILETIME is a 64-bit value defined in Win32 as the number of 100 nanosecond
intervals since January 1, 1601. It is organized as two DWORDS, dwLowDateTime and
dwHighDateTime.

Parameter Description

pFileTime Far pointer to a FILETIME structure in which to store
the date/time stamp.

Return Value TRUE if the date/time stamp was obtained successfully.

API Function References 10-7

DbGetName
void WINAPI

DbGetName(IDLDEV idLogDev,
HDB hDb,
LPSTR lpszName)

Get name of database item for indicated logical device.

Note: This is the same as the following function:

VOID WINAPI UDDbGetName (IDLDEV idLogDev, HDB hDb, LPSTR lpszName)

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocateLogicalDevice() call.

hDb Handle from the Toolkit that is unique to this item and
was supplied as a parameter in the ProtCreatePoint()
call.

lpszName Far pointer to the string buffer where the name will be
returned.

10-8 Chapter 10

DbGetPointType
PTTYPE WINAPI

DbGetPointType (IDLDEV idLogDev,
 HDB hDb)

Get point type of indicated point from database.

Returns 0 (PTT_UNKNOWN) if database pointer invalid.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocateLogicalDevice() call.

hDb Handle from the Toolkit that is unique to this item and
was supplied as a parameter in the ProtCreatePoint()
call.

Return Value The type index should be one of the following,
according to the data type for the point:
PTT_DISCRETE, PTT_INTEGER, PTT_REAL,
PTT_STRING. If the database pointer hDb is invalid, a
value of 0 (PTT_UNKNOWN) is returned.

API Function References 10-9

DbGetPtQuality
PTQUALITY WINAPI

DbGetPtQuality (IDLDEV idLogDev,
 HDB hDb)

Get quality flags for indicated point.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocateLogicalDevice() call.

hDb Handle from the Toolkit that is unique to this item and
was supplied as a parameter in the ProtCreatePoint()
call.

Return Value The quality flags indicate whether the Toolkit database
entry for the point contains good data or some problem
exists. See the chapter on Quality Flags for information
on the specific flag settings.

10-10 Chapter 10

DbGetPtTime
PTTIME WINAPI

DbGetPtTime(IDLDEV idLogDev,
 HDB hDb)

Get date/time stamp for indicated point

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocateLogicalDevice() call.

hDb Handle from the Toolkit that is unique to this item and
was supplied as a parameter in the ProtCreatePoint()
call.

Return Value The date/time stamp is stored as a Win32 FILETIME
structure, which is a 64-bit value indicating the number
of 100 nanosecond intervals elapsed since January 1,
1601. The date/time stamp indicates when the point
information was last updated in the Toolkit database.

API Function References 10-11

DbGetValueForComm
PTVALUE WINAPI

DbGetValueForComm(IDLDEV idLogDev,
 HDB hDb)

Retrieve value for indicated point/logical device from the database.

Generally, this is used internally by the Toolkit to get the data value that is to be sent to
a particular client.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocateLogicalDevice() call.

hDb Handle from the Toolkit that is unique to this item and
was supplied as a parameter in the ProtCreatePoint()
call.

Return Value A union of type PTVALUE, the value corresponding to
the indicated data point. Note that for points of type
PTT_STRING, the value contains a pointer to a memory
buffer where the string is actually stored.

10-12 Chapter 10

DbNewQForAllPoints
BOOL WINAPI

DbNewQForAllPoints(IDLDEV idLogDev,
 PTQUALITY ptQuality)

This function is generally used when a problem occurs communicating to the PLC.
Then the quality flags and time stamps for all affected points should be set to indicate
the problem, without changing the value of the points. This function sets the quality on
all points in the Topic. The Toolkit supplies a default date/time stamp. See the chapter
on Time Marks for more information on the default time.

Note: You may instead prefer to scan through the list(s) of points yourself and call
DbNewTQFromDevice() for specific points, depending on the specific needs of your
server and whether different quality settings are needed for different points.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocateLogicalDevice() call.

ptQuality The quality flags, indicating whether the point was
accessed properly and whether the data had any
problems.

Return Value TRUE means the parameters were acceptable and the
time and quality have been moved into the database.

Comments If the quality of a point changes in the Toolkit database,
the value, time, and quality will be passed on to any
clients who have advised the item. (DDE clients are
updated only when the value changes.) When a client
requests an item, the current database VTQ will be sent
(once the item's value has been set).

API Function References 10-13

DbNewQFromDevice
BOOL WINAPI

DbNewQFromDevice(IDLDEV idLogDev,
 HDB hDb,

PTQUALITY ptQuality)

This function is generally used when a problem occurs communicating to the PLC.
Then the quality flags and time stamps for all affected points should be set to indicate
the problem, without changing the value of the points.

Functionally, this is similar to DbNewTQFromDevice(), except that the Toolkit
supplies a default date/time stamp. See the chapter on Time Marks for more information
on the default time.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocateLogicalDevice() call.

hDb Handle from the Toolkit that is unique to this item and
was supplied as a parameter in the ProtCreatePoint()
call.

ptQuality The quality flags, indicating whether the point was
accessed properly and whether the data had any
problems.

Return Value TRUE means the parameters were acceptable and the
time and quality have been moved into the database.

Comments If the quality of the point changes in the Toolkit
database, the value, time, and quality will be passed on
to any clients who have advised the item. (DDE clients
are updated only when the value changes.) When a
client requests an item, the current database VTQ will be
sent (once the item's value has been set).

10-14 Chapter 10

DbNewTopicList
BOOL WINAPI

DbNewTopicList(LPSTR lpszTopicList)

Sets the value for the statistic “Topics” item on the SYSTEM topic. The “Topics” item
is a tab-separated list of topics available in the I/O Server. The server will normally call
this function once at startup, and subsequently only when the configured list of topics
available in the server changes.

Parameter Description

lpszTopicList Points to a null-terminated character string containing a
tab-separated list of topics available in the server’s
protocol engine. If lpszTopicList is a NULL pointer or
points to an empty string, the list of protocol-specific
topics is considered to be empty.

Return Value TRUE if the topic list has been set successfully.

Comments This function call is optional. Note that at a minimum,
the “Topics” item will always contain the standard I/O
Server developer topics: SYSTEM, $DDE, $PORT,
$DEVICE, $SERVER, and $TKITIF. The Toolkit
appends this list of topics to the server-specified list of
topics.

API Function References 10-15

DbNewTQFromDevice
BOOL WINAPI

DbNewTQFromDevice(IDLDEV idLogDev,
 HDB hDb,
 LPPTTIME lpPtTime,
 PTQUALITY ptQuality)

This function is generally used when a problem occurs communicating to the PLC.
Then the quality flags and time stamps for all affected points should be set to indicate
the problem, without changing the value of the points.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocateLogicalDevice() call.

hDb Handle from the Toolkit that is unique to this item and
was supplied as a parameter in the ProtCreatePoint()
call.

lpPtTime Far pointer to a FILETIME structure that indicates when
the point information was updated. This can be obtained
via a call to DbGetGMTasFiletime().

ptQuality The quality flags, indicating whether the point was
accessed properly and whether the data had any
problems.

Return Value TRUE means the parameters were acceptable and the
time and quality have been moved into the database.

Comments If the quality of the point changes in the Toolkit
database, the value, time, and quality will be passed on
to any clients who have advised the item. (DDE clients
are updated only when the value changes.) When a
client requests an item, the current database VTQ will be
sent (once the item's value has been set).

10-16 Chapter 10

DbNewValueFromDevice
BOOL WINAPI

DbNewValueFromDevice(IDLDEV idLogDev,
HDB hDb,
PTVALUE value)

Note: With the advent of FactorySuite 2000, this function is outmoded. However, it
remains available for backwards compatibility. Internally, the Toolkit provides a default
date/time stamp and a default quality of good, then calls DbNewVTQFromDevice().
See the chapters on Time Marks and Quality Flags for more information on the default
time and quality settings.

When you receive a new point value from the device, you can tell the Toolkit's database
through a call to DbNewValueFromDevice().

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocateLogicalDevice() call.

hDb Handle from the Toolkit that is unique to this item and
was supplied as a parameter in the ProtCreatePoint()
call.

value A union of type PTVALUE. The user must know the
type of data associated with this point (set by the server
in *lpPtType during the ProtCreatePoint() call). Based
on the point type, use the appropriate field in this
structure (it contains fields for discrete, integer, and real,
as well as a handle to memory containing a string).

Return Value TRUE means the parameters were acceptable and the
value has been moved into the database.

Comments This function is supplied for backward compatibility
with previous versions of the Toolkit. You should call
DbNewVTQFromDevice() instead.See the comments
on DbNewVTQFromDevice() for further information
about how the Toolkit updates clients that have points on
advise or that make requests.

API Function References 10-17

DbNewVQFromDevice
BOOL WINAPI

DbNewVQFromDevice(IDLDEV idLogDev,
 HDB hDb,
 PTVALUE ptValue,
 PTQUALITY ptQuality)

Functionally, this is similar to DbNewVTQFromDevice(), except that the Toolkit
supplies a default date/time stamp. See the chapter on Time Marks for more information
on the default time.

When you receive a new point value from the device, you can tell the Toolkit's database
through a call to DbNewVQFromDevice().

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocateLogicalDevice() call.

hDb Handle from the Toolkit that is unique to this item and
was supplied as a parameter in the ProtCreatePoint()
call.

ptValue A union of type PTVALUE. The user must know the
type of data associated with this point (set by the server
in *lpPtType during the ProtCreatePoint() call). Based
on the point type, use the appropriate field in this
structure (it contains fields for discrete, integer, and real,
as well as a handle to memory containing a string).

ptQuality The quality flags, indicating whether the point was
accessed properly and whether the data had any
problems.

Return Value TRUE means the parameters were acceptable and the
value, time, and quality have been moved into the
database.

Comments To ensure compatibility with future Toolkit releases, this
function must be called for every poll. The Toolkit
keeps track in its database of the value of the data, the
timestamp, and the quality, and identifies when any of
these changes. If the value or quality changes, the value,
time, and quality will be passed on to any clients who
have advised the item. (DDE clients are updated only
when the value changes.) When a client requests an
item, the current database VTQ will be sent (once the
item's value has been set by a call to this function).

10-18 Chapter 10

DbNewVTQFromDevice
DbNewVTQFromDevice(IDLDEV idLogDev,

HDB hDb,
PTVALUE value,

 LPPTTIME lpPtTime,
PTQUALITY ptQuality)

When you receive a new value for a point, tell the Toolkit’s database through
DbNewVTQFromDevice(). You should provide a date/time stamp and appropriate
quality flags according to when the update occurred and how valid the data is.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocateLogicalDevice() call.

hDb Handle from the Toolkit that is unique to this item and
was supplied as a parameter in the ProtCreatePoint()
call.

value A union of type PTVALUE. The user must know the
type of data associated with this point (set by the server
in *lpPtType during the ProtCreatePoint() call). Based
on the point type, use the appropriate field in this
structure (it contains fields for discrete, integer, and real,
as well as a handle to memory containing a string).

lpPtTime Far pointer to a FILETIME structure that indicates when
the point information was updated.

ptQuality The quality flags, indicating whether the point was
accessed properly and whether the data had any
problems.

Return Value TRUE means the parameters were acceptable and the
value, time, and quality have been moved into the
database.

Comments To ensure compatibility with future Toolkit releases, this
function must be called for every poll. The Toolkit
keeps track in its database of the value of the data, the
timestamp, and the quality, and identifies when any of
these changes. If the value or quality changes, the value,
time, and quality will be passed on to any clients who
have advised the item. (DDE clients are updated only
when the value changes.) When a client requests an
item, the current database VTQ will be sent (once the
item's value has been set by a call to this function).

API Function References 10-19

DbRegisterDemandScan
void WINAPI

DbRegisterDemandScan(DemandScanFncCallback lpfn)

Register a callback function for demand scan control.

The server-specific code calls this routine during initialization to provide the address of
a function that is implemented in the server-specific code, which will be called if a client
writes to the special statistical flag DemandScan to force an immediate scan of all
points on the corresponding topic. The default value for the function pointer is NULL,
meaning that no support is provided for the demand scan functionality.

The parameter type is defined as follows:

 typedef BOOL (CALLBACK *DemandScanFncCallback) (HLOGDEV);

Parameter Description

lpfn Pointer to a function with a prototype of form

 BOOL CALLBACK DemandScan(HLOGDEV);

 which is implemented in the server-specific code.

Return Value None.

Comments When a client writes (pokes) a value of 1 to the special
statistical flag DemandScan on a topic, the Toolkit
checks whether a demand scan callback function has
been registered.If not, no action is performed, and the
Toolkit sends a NACK to the client indicating that
demand scan was not set up. If a demand scan callback
function has been registered, theToolkit calls the
indicated function, passing the server-specific handle
hLogDev for the topic.It is the responsibility of the
programmer to implement the demand scan callback
function so that it forces an immediate scan of all points
on the indicated topic – even if those points are already
scheduled to be polled on a periodic basis. The function
should return TRUE if the setup for demand scan is
successful (in which the Toolkit will send an ACK to the
client), FALSE otherwise (in which case the Toolkit will
send a NACK). If a client pokes a value other than 1,
the Toolkit will perform no action and will return an
ACK to the client.

10-20 Chapter 10

DbRegisterScanState
void WINAPI

DbRegisterScanState(OnOffScanFncCallback lpfn)

Register a callback function for on/off scan control.

The server-specific code calls this routine during initialization to provide the address of
a function that is implemented in the server-specific code, which will be called if a client
writes to the special statistical flag OnScan to put a topic on-scan or take it off-scan.
The default value for the function pointer is NULL, meaning that no support is provided
for the on/off scan functionality.

The parameter type is defined as follows:

 typedef BOOL (CALLBACK *OnOffScanFncCallback) (HLOGDEV, INTG);

Parameter Description

lpfn Pointer to a function with a prototype of form

BOOL CALLBACK OnOffScan(HLOGDEV, INTG);

 which is implemented in the server-specific code.

Return Value None.

Comments When a client writes (pokes) to the special statistical flag
OnScan on a topic, the Toolkit checks whether an on/off
scan callback function has been registered. If not, no
action is performed, and the Toolkit sends a NACK to
the client indicating that on/off scan was not set up. If
an on/off scan callback function has been registered, the
Toolkit calls the indicated function, passing the server-
specific handle hLogDev for the topic and a mode
selection nMode. It is the responsibility of the
programmer to implement the on/off scan callback
function so that puts the topic on-scan or off-scan
according to the value of nMode. Generally, if nMode is
non-zero, the topic should be on-scan, i.e. all active
points on the topic are being polled. If nMode is zero,
the topic should be off-scan, i.e. none of the points on
the topic should be polled. The function should return
TRUE if the setup for on/off scan is successful (in which
the Toolkit will send an ACK to the client), FALSE
otherwise (in which case the Toolkit will send a NACK).

API Function References 10-21

DbSetHProt
BOOL WINAPI

DbSetHProt(IDLDEV idLogDev,
HDB hDb,
HPROT hProtOld,
HPROT hProtNew)

This function allows the server to change the hProt value for a point (item identifier
from your code to the Toolkit database). Generally, this is most useful if you are
changing how your server is keeping track of the memory structures for one or more
points (e.g. reducing the size of a symbol table or re-ordering its members).

Parameter Description

idLogDev Topic (logical device) identifier that was supplied as a
parameter in the ProtAllocateLogicalDevice() call.

hDb Handle from the Toolkit that is unique to this item and
was supplied as a parameter in the ProtCreatePoint

() call.

hProtOld Handle identifying the point which was the return from
the ProtCreatePoint() or the previous DbSetHProt()
call.

hProtNew The new handle (a non-zero number chosen by you and
unique to this item) that identifies this point/item in any
future ProtNewValueForDevice() ,
ProtActivatePoint(), and ProtDeactivatePoint() calls.

Return Value TRUE means the hProt value for this item has been
changed.

Comments The hProt value is used during calls to the server to
identify the point quickly (e.g.,
ProtNewValueForDevice() or ProtActivatePoint()).
This may be useful when managing the data structures
used to keep track of points in the server (e.g., hProtNew
can be the index entries into a new symbol table).

10-22 Chapter 10

DbSetPointType
BOOL WINAPI

DbSetPointType(IDLDEV idLogDev,
 HDB hDb,
 PTTYPE ptType)

Deferred setting of point type for indicated point on indicated logical device.

Returns TRUE if successful.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocateLogicalDevice() call.

hDb Handle from the Toolkit that is unique to this item and
was supplied as a parameter in the ProtCreatePoint()
call.

ptType One of the standard data types: PTT_DISCRETE,
PTT_INTEGER, PTT_REAL, PTT_STRING.

Return Value TRUE if the data type for the point was successfully
updated.

API Function References 10-23

DbValueWriteConfirm
BOOL WINAPI

DbValueWriteConfirm(IDLDEV idLogDev,
 HDB hDb,
 BOOL bSuccess,
 BYTE bReason)

When a client writes a value to the device (via a DDE POKE or a SuiteLink Write), the
value is passed to the server-specific code via ProtNewValueForDevice(). The server-
specific code then performs whatever actions are necessary to write that data to the PLC.
However, depending upon the communication protocol, this update may be immediate,
or there may be a considerable delay before the new data actually reaches the PLC. (For
some devices, e.g. those involving radio modems, this delay may be as long as several
minutes!) Sometimes, the only way to verify that the data actually arrived is to
subsequently poll the PLC for the point – or to poll other points that are affected by a
write-only point. More commonly, the operation used to write the value causes the PLC
to respond with some indicator of whether the new data was accepted or rejected; and if
rejected, the response usually includes a reason code indicating why it was rejected.
When such an accept/reject response is received, you can use DbValueWriteConfirm()
to tell the Toolkit whether the point was written successfully.

Note: This API call is at present non-functional. It is reserved for future expansion.

Parameter Description

idLogDev Topic (logical device) identifier that was supplied as a
parameter in the ProtAllocateLogicalDevice() call.

hDb Handle from the Toolkit that is unique to this item and
was supplied as a parameter in the ProtCreatePoint()
call.

bSuccess TRUE if the point was successfully written, FALSE
otherwise.

bReason The reason code, in case the write failed. This can be a
generic code, or can be specific to the PLC protocol.

Return Value TRUE means the notification to the Toolkit was
successful, i.e. that the parameters were valid.

Comments This API call is presently non-functional. It is reserved
for future expansion.

10-24 Chapter 10

debug
VOID far cdecl

debug(LPSTR lpszFmt,
... args)

This function sends a debug message to WWLOGGER.EXE which can log it to disk,
monochrome adapter, AUX port, etc.

Parameter Description

lpszFmt Format text string, see printf in C-Library.

args Any set of arguments applicable to printf.

Return Value None.

Comments The interface in the code is very straightforward. Simply
include debug.h and use debug() with parameters
identical to the C-Library printf(). Notice the
WWLOGGER.EXE options; the debug messages to be
saved on disk, displayed in the Wonderware Logger
window, and/or sent to the AUX port.

Since it is recommended that the Wonderware Logger
always be running, you should not leave extraneous
debug messages in the server. You should also make
sure that frequently occurring debug messages can be
turned off via a switch in the WIN.INI file.

Warning Note The ProtGetDriverName() function may not contain any calls to
debug() because debug() calls ProtGetDriverName() and an infinite loop will result.

The debug() function is often useful to have some debugging messages while
developing the server. In the sample application, an interface to the Wonderware
Logger WWLOGGER.EXE is provided. This interface allows you to optionally log
each debug message to disk and also send each message to either:

1. A window on the screen.

2. The AUX port (COM1 by default, or the monochrome display if OX.SYS is
installed).

3. A printer connected directly to the PC.

Wonderware Logger can be used during development to help debug the server.
Hardware or software problems should be logged for operator examination. Be advised
that extraneous logger messages frustrate users and should be eliminated when the
product is finished. It is useful to enable debug messages via a switch in the server
section of the WIN.INI in order to support customers at a later time.

API Function References 10-25

EnableCommNotification
BOOL WINAPI

EnableCommNotification(int idComDev,
HWND hwnd,
int cbWriteNotify,
int cbOutQueue)

This function simulates the Windows EnableCommNotification() function for Windows
versions older than Windows 3.1 and for Windows NT/2000. It performs no operation
on these platforms and is provided for common code convenience only. On Windows
versions prior to 3.0, it enables or disables WM_COMMNOTIFY message posting to
the given window.

Parameter Description

idComDev The id of the communications device. The
OpenComm() function returns this value.

hwnd Identifies the window whose WM_COMMNOTIFY
message posting will be enabled or disabled.

cbWriteNotify Indicates the number of bytes the COM driver must write
to the application’s input queue before sending a
notification message.

cbOutQueue Indicates the minimum number of bytes in the output
queue. When the number of bytes falls below this
number, the COM driver sends that application a
notification message.

Return Value The return value is non-zero if the function is successful.
Otherwise, it is zero.

Comments None.

10-26 Chapter 10

FlushComm
int WINAPI

FlushComm(int idComDev,
int fnQueue)

This function flushes all characters from the transmission or receiving queue of the
specified communications device.

Parameter Description

idComDev The id of the communications device to be flushed. The
OpenComm() function returns this value.

fnQueue Specifies the queue to be flushed. If this parameter is
zero, the transmission queue is flushed. If the parameter
is 1, the receiving queue is flushed.

Return Value The return value is zero if the function is successful.
Any other value indicates an error.

Comments When flushing the transmission queue, beware that this
function will clear all characters in it. Thus, this
function can conceivably terminate a previous write
operation before all submitted characters have been sent
from the UART. This may lead to unpredictable
behaviors in your server since the receiving device will
not receive the entire message intended. Windows NT
/2000 only. Emulates Windows function.

API Function References 10-27

GetAppName
PSTR WINAPI

GetAppName(VOID)

This function returns the application name for the server. This application name is
stored in the Toolkit and initially set by a call to ProtGetDriverName() during server
startup.

Parameter Description

Return Value Pointer to a character string containing the application
name for the server.

Comments None.

10-28 Chapter 10

GetCommError
int WINAPI

GetCommError(int idComDev,
COMSTAT * lpStat)

This function retrieves the most recent error value and current status for the specified
device. It also clears the error.

Parameter Description

idComDev The id of the communications device to be examined.
The OpenComm() function returns this value.

lpStat Points to the COMSTAT structure that is to receive the
device status. If this parameter is NULL, this function
returns only the error values. See the appropriate
Microsoft documentation for a description of this
structure.

Return Value The return value is a 32-bit value containing a mask
indicating the type of error. See discussion of the
ClearCommError() function in the appropriate Microsoft
Windows NT/2000 documentation for more information.

Comments This function clears the error condition. Windows
NT/2000only. Emulates Windows function.

API Function References 10-29

GetCommEventMask
UINT WINAPI

GetCommEventMask(int idComDev,
int fnEvtClear)

This function retrieves and then clears the event word for the specified communications
device.

Parameter Description

idComDev The id of the communications device to be examined.
The OpenComm() function returns this value.

fnEvtClear This parameter is ignored on Windows NT/2000.

Return Value The return value specifies the current 32-bit event mask
value for the specified communications device if the
function is successful. Each bit in the event mask
specifies whether a given event has occurred; a bit is set
(to 1) if the event has occurred.

Comments Windows NT/2000 only. Emulates Windows function.

10-30 Chapter 10

GetIOServerLicense
BOOL WINAPI

GetIOServerLicense(void FAR *lpKeyInfo,
 BOOL bExitOnFail)

This function should be called in ProtInit() to check whether the user has a license that
will allow the server to run. If a license is unavailable, this function presents a
MessageBox that gives the user the options of trying again, running the server in timed
demo mode, or exiting the program. If the function returns FALSE, the server should
return FALSE from ProtInit(), indicating the server could not run.

Note If you are developing products for Wonderware, this function will be of interest.
Note that a special version of the Toolkit is necessary to access the Wonderware License
Manager. Contact Wonderware for more information.

Parameter Description

lpKeyInfo A pointer to a buffer into which feature enablement flags
will be placed. If this parameter is NULL, no specific
feature flags will be returned.

bExitOnFail If TRUE, the function will exit the program if it is
unable to obtain a license. If FALSE, it will return, and
the return value will indicate whether the server should
run.

Return Value TRUE if the server has permission to run. This includes
the case where no license is available, but user has
selected running in the timed demo mode. If FALSE,
The server should return from ProtInit() with a return
value of FALSE, indicating the server cannot run.

Comments For the timed demo mode, the Toolkit keeps track of
how long it has been since the server started up. When
the time limit is reached, the Toolkit automatically issues
a message to the Wonderware Logger and shuts down
the server.

The following code would be placed in ProtInit(). If a valid license could not be
obtained, and the timed DEMO mode was not selected, the server should exit.

Example
/* check whether this product has a license to run */
if (!GetIOServerLicense (NULL, FALSE))
 return FALSE;}

API Function References 10-31

GetServerNameExtension
void WINAPI

GetServerNameExtension(void)

Set-up name extension for use in storing and retrieving Registry settings

Parameter Description

Return Value None.

Comments A call to GetServerNameExtension() should appear in
ProtGetDriverName(). This ensures that the function
is called early in the program, at the same time as the
Toolkit first gets the server’s “short” name, so that the
correct full name is generated for the I/O Server.

Example
BOOL WINAPI ProtGetDriverName(LPSTR lpszName, int nMaxLength)
{
 /** WARNING: No calls to debug()...
 debug() calls ProtGetDriverName(),
 therefore ProtGetDriverName() cannot call debug(). **/
 lstrcpy(lpszName, GetString(STRUSER + 76) /* "UDSAMPLE" */);
#ifdef WIN32
 GetServerNameExtension();
#endif
 return (TRUE);
} /* ProtGetDriverName */

10-32 Chapter 10

GetString
PSTR WINAPI

GetString(int nString)

This function will return a string from the resource file.

Parameter Description

nString The offset into the STRINGTABLE.

Return Value Pointer to the string.

Comments This function is used to reduce the amount of memory
that the server consumes and to allow the creation of a
foreign language version of the server. The resource file
can be edited later to change text or languages, this
capability is also know as localization. GetString()
accomplishes this by using Windows' string resources to
move string constants from the resource file to the data
segment. A sample follows:

MessageBox(GetFocus(),

GetString(STRUSER+1) /* "Hello There" */,
GetString(STRUSER+2) /* "Application" */,
MB_OK);

STRUSER is defined in udgetstr.h and all strings that
you use can go in udprot.str. The following is an
example of the string file that would correspond to the
above: STRUSER+1, "Hello There"

STRUSER+2, "Application"

GetString() loads the string named as its argument in a
temporary buffer and returns a pointer to the temporary
buffer. This is much easier than the standard method
used in Windows applications, which is to load the string
into a buffer and then use it.

Each string that is not put in the resource file consumes
memory byte-for-byte in the application's data segment
(DS). By using resource strings, code size can be
slightly increased. Code segments can be swapped - data
segments cannot!

GetString() also uses 20 string buffers circularly, so
only the most recent 20 strings are valid at any instant.

Note hInst must be initialized before making the first call to GetString(). Each string in
the STRINGTABLE is limited to 200 bytes, including the NULL.

API Function References 10-33

GetTextExtent
DWORD

GetTextExtent(HDC hdc,
LPCSTR lpString,
int cbString)

This function provides emulation of the Windows GetTextExtent() function for the
Windows NT/2000 platform.

Parameter Description

hdc Identifies the device context.

lpString Points to a string of text. The string does not need to be
zero-terminated.

cbString Specifies number of characters in the string.

Return Value The low-order word of the return value contains the
string width, in logical units, if the function is successful;
the high-order word contains the string height.

Comments Windows NT/2000 only. Emulates Windows function.

10-34 Chapter 10

NTSrvr_BuildCommDCB
int WINAPI

NTSrvr_BuildCommDCB(LPSTR lpszDef,
DCB FAR *lpdcb)

This function translates a device-definition string into appropriate serial device control
block codes.

The return value from this function is compatible with the Windows version of the
BuildCommDCB() function.

Parameter Description

lpszDef Points to a null-terminated string that specifies device-
control information. The string must have the same form
as the parameters used in the MS-DOS or Windows NT
mode command.

lpdcb Points to a DCB structure that will receive the translated
string. The structure defines the control settings for the
serial-communications device.

Return Value The return value is zero if the function is successful.
Otherwise, it is -1.

Comments This function only fills the lpdcb buffer. To apply the
settings to a port, the server should use the
NTSrvr_SetCommState() function.

API Function References 10-35

NTSrvr_GetCommState
int WINAPI

NTSrvr_GetCommState(int idComDev,
DCB FAR *lpdcb)

This function retrieves the device control block for the specified device. The return
value from this function is compatible with the Windows version of the GetCommState()
function.

Parameter Description

idComDev The id of the communications device to be examined.
The OpenComm() function returns this value.

lpdcb Points to a DCB structure that is to receive the current
device control block. The DCB structure defines the
control settings for the device.

Return Value The return value is zero if the function is successful.
Otherwise, it is less than zero.

Comments None.

10-36 Chapter 10

NTSrvr_SetCommState
int WINAPI

NTSrvr_SetCommState(int idComDev,
DCB FAR *lpdcb)

This function sets a communications device to the state specified by a device control
block. The return value from this function is compatible with the Windows version of
the BuildCommDCB() function.

Parameter Description

idComDev The id of the communications device to be set. The
OpenComm() function returns this value.

lpdcb Points to a DCB structure that contains the desired
communications settings for the device.

Return Value The return value is zero if the function is successful.
Otherwise, it is less than zero.

Comments This function reinitializes all hardware and controls as
defined by the DCB structure. It does not empty
transmission or receiving queues.

API Function References 10-37

NTSrvr_SetDCB_Dtr
int WINAPI

NTSrvr_SetDCB_Dtr(DCB FAR *lpdcb,
int iMask)

This function modifies the DTR (data-terminal-ready) flow-control setting in the device
control block.

Parameter Description

lpdcb Points to a DCB structure which is to be modified using
the specified iMask setting.

iMask Specifies the DTR flow control setting. Must be one of
the following:

NTSrvr_DTR_DISABLE, NTSrvr_DTR_ENABLE,
NTSrvr_DTR_HANDSHAKE.

Return Value The return value is zero if the function is successful.
Otherwise, it is less than zero.

Comments NTSrvr_DTR_DISABLE disables the DTR line when
the device is opened and leaves it disabled.

NTSrvr_DTR_ENABLE enables the DTR line when the
device is opened and leaves it enabled.

NTSrvr_DTR_HANDSHAKE enables DTR
handshaking.

Include header file: NTSRVR.H for bit mask definitions.

10-38 Chapter 10

NTSrvr_SetDCB_Rts
int WINAPI

NTSrvr_SetDCB_Rts(DCB FAR *lpdcb,
int iMask)

This function modifies the RTS (request-to-send) flow-control setting in the device
control block.

Parameter Description

lpdcb Points to a DCB structure which is to be modified using
the specified iMask setting.

iMask Specifies the RTS flow control setting. Must be one of
the following:

NTSrvr_RTS_DISABLE,

NTSrvr_RTS_ENABLE, NTSrvr_RTS_HANDSHAKE.

Return Value The return value is zero if the function is successful.
Otherwise, it is less than zero.

Comments NTSrvr_RTS_DISABLE disables the RTS line when the
device is opened and leaves it disabled.

NTSrvr_RTS_ENABLE enables the RTS line when the
device is opened and leaves it enabled.

NTSrvr_RTS_HANDSHAKE enables RTS
handshaking.

Include header file: NTSRVR.H for bit mask definitions.

API Function References 10-39

OpenComm
int WINAPI

OpenComm(LPCSTR lpszDevControl,
UINT cbInQueue,
UINT cbOutQueue)

This function opens a serial communications port for communications.

Parameter Description

lpszDevControl Points to a null-terminated string that specifies the
device name in the form COMn, where n is the device
number.

cbInQueue Specifies the size, in bytes, of the receiving queue.

cbOutQueue Specifies the size, in bytes, of the transmission queue.

Return Value The return value identifies the open device if the
function is successful. Otherwise, it is less than zero.

Comments The return value is actually a file handle when positive.
Windows NT/2000 only. Emulates Windows function.

10-40 Chapter 10

PfnSendEmSelectAll
void WINAPI

PfnSendEmSelectAll(HWND hDlg,
int idControl,
BOOL bScrollCaret)

This function selects all the text in the identified edit control. It will also scroll the caret
into view if the bScrollCaret flag is TRUE.

Parameter Description

hDlg Handle of dialog box window.

idControl Identifier of control to be selected.

bScrollCaret Scroll caret flag. TRUE indicates scroll caret into view.

Return Value None.

Comments This function calls SendMessage() internally.

API Function References 10-41

PfnSendEmSelectRange
void WINAPI

PfnSendEmSelectRange(HWND hDlg,
int idControl,
int nStart,
int nEnd,
BOOL bScrollCaret)

This function selects a range of text in the identified edit control. It will also scroll the
caret into view if the bScrollCaret flag is TRUE.

Parameter Description

hDlg Handle of dialog box window.

idControl Identifier of control to be selected.

nStart Starting text position.

nEnd Ending text position.

bScrollCaret Scroll caret flag. TRUE indicates scroll caret into view.

Return Value None.

Comments This function calls SendMessage() internally.

10-42 Chapter 10

ProtActivatePoint
BOOL WINAPI

ProtActivatePoint(HLOGDEV hLogDev,
HPROT hProt)

This function activates the specified point for reading (i.e., start supplying the Toolkit
database with fresh data for this point). The hProt is the handle you returned during the
ProtCreatePoint() call. As soon as you have valid data from the device, call
DbNewVTQFromDevice().

Parameter Description

hLogDev Handle identifying the logical device which was returned
from the ProtAllocateLogicalDevice() call.

hProt Handle identifying the point which was the return from
the ProtCreatePoint() call.

Return Value TRUE means a valid point has been activated.

Comments A point will be activated when a client has requested
data or has asked to be advised of data changes. The
server is then responsible for providing fresh data for
this point to the Toolkit.

API Function References 10-43

ProtAllocateLogicalDevice
HLOGDEV WINAPI

ProtAllocateLogicalDevice(LPSTR lpszTopicName,
IDLDEV idLogDev)

This function is called when a DDE conversation has been initiated to the topic name
(i.e., logical device name) lpszTopicName. You must first validate the topic name. If the
name is valid, return a non-NULL value. If the name is invalid, return NULL.

Parameter Description

lpszTopicName Far pointer to string that came from the client initiating a
new topic conversation.

idLogDev This is the Toolkit's handle to this logical device. This
parameter must be saved for subsequent calls to
DbNewVTQFromDevice() to identify the source device
(topic).

Return Value Handle (a non-zero number chosen which is unique to
this topic) that identifies this logical device (topic) in
future calls to ProtCreatePoint(), etc. NULL means no
device was allocated and the topic conversation is
rejected (i.e., the conversation is not established).

Comments Usually a topic name is associated with a single I/O
device. Be sure to save idLogDev (the Toolkit's handle
for this topic) for subsequent calls to
DbNewVTQFromDevice(). Return NULL only if the
topic name is illegal or you are out of memory - not if
communication with the logical device fails.

After one DDE client establishes a conversation to the
server with a specific topic name, subsequent
conversations to the same topic will NOT cause a call to
ProtAllocateLogicalDevice(), i.e., this function will
only be called when the first conversation to a topic is
established.

Note The name is a character string that may contain spaces and have mixed case (e.g.,
topic-Name). It is suggested that the lstrcmpi() function be used to compare the full
string and ignore the case. Do not call Windows MessageBox() during this function.

10-44 Chapter 10

ProtClose
VOID WINAPI

ProtClose(void)

This function is called when the server is shut down.

Parameter Description

Return Value None.

Comments At this point, it is intended for the server to free all
logical devices, free any allocated memory, close serial
ports, etc. ProtClose () is only called immediately prior
to the server closing.

API Function References 10-45

ProtCreatePoint
HPROT WINAPI

ProtCreatePoint(HLOGDEV hLogDev,
HDB hDb,
LPSTR lpszName,
LPPTTYP lpPtType)

This function is called when a conversation references an item (named *lpszName).
You must validate the name and determine point type (discrete, integer, real or string).
Return NULL if the point name is illegal or out of memory, etc. Otherwise, store the
point type in *lpPtType. Remember the hDb for this point, and return a handle (a non-
zero number chosen by you which is unique to this item) that subsequently will be used
to identify the point.

Parameter Description

hLogDev Handle identifying the logical device (generated by the
server code and returned from the call to
ProtAllocateLogicalDevice()). This ties the point/item
to a particular logical device (topic).

hDb Handle from the Toolkit which is unique to this item and
must be used in future calls to
DbNewVTQFromDevice().

lpszName Far pointer to a string which contains the item name as it
came from the client.

lpPtType Return the point type by storing one of the following in
*lpPtType:

Value Meaning

PTT_DISCRETE (0 or 1)
PTT_INTEGER (Signed 32-bit integer)
PTT_REAL (IEEE 32-bit floating point,

single precision)
PTT_STRING (Text string terminated by a

NULL character)

Return Value Handle (a non-zero number chosen by you and unique to
this item) that identifies this point/item in any future
ProtNewValueForDevice() , ProtActivatePoint() and
ProtDeactivatePoint() calls.

Comments The name is a character string that may contain spaces
and have mixed cases (e.g., "This Is An Item Name").
The lstrcmpi() function should be used to compare the
full string and ignore the case. The HPROT value
returned can be any non-zero number. Therefore,
choose one that is useful to your protocol (e.g., an index
into a symbol table). Based upon the item name, the
data type must be set in *lpPtType. Save the hDb for
this item. It must be used later when calling
DbNewVTQFromDevice().

10-46 Chapter 10

ProtDeactivatePoint
BOOL WINAPI

ProtDeactivatePoint(HLOGDEV hLogDev,
HPROT hProt)

This function deactivates (i.e., stops supplying data for) the specified point. No DDE
conversations are interested in the value of this point. Do not delete the symbol for the
point though - ProtDeletePoint() will be called if the symbol should actually be deleted
from your internal symbol tables.

Parameter Description

hLogDev Handle identifying the logical device which was the
return value from the ProtAllocateLogicalDevice() call.

hProt Handle identifying the point which was the return from
the ProtCreatePoint() call.

Return Value TRUE means the point is deactivated but still valid.

FALSE means error, invalid logical unit, symbol table,
point, etc. Return value is not used at this time, but
should be observed for future compatibility.

Comments When this function is called, stop polling the device for
this point and stop sending data for this point to the
Toolkit database. The point still has valid identifiers do
not delete it completely. This function should undo
anything that was done as a result of a previous
ProtActivatePoint() call. For example, it may need to
delete a poll message that was created in
ProtActivatePoint().

If a point is only poked (a one-time write to the point),
the point will be created with ProtCreatePoint(),
changed with ProtNewValueForDevice(). If a point is
advised (a request for notification whenever the point
changes), the point will be created with
ProtCreatePoint(), activated with ProtActivatePoint()
(in response to the advise) and changed with
ProtNewValueForDevice() (in response to pokes).
Eventually the point will be deactivated with
ProtDeactivatePoint() (in response to an unadvise).
ProtActivatePoint() and ProtDeactivatePoint() can be
called many times between the ProtCreatePoint() and
ProtDeletePoint() calls.

API Function References 10-47

ProtDefWindowProc
LRESULT CALLBACK

ProtDefWindowProc(HWND hWnd,
VINT message,
WPARAM wParam,
LPARAM lParam)

This function is called by the Toolkit to handle window messages directed to this
application.

Parameter Description

Return Value If no processing was done, use the following code return
(hWnd, message, wParam, lParam);. If processing was
done, the return is message-specific. Consult the
Windows SDK manuals.

Comments This function is only of interest if you wish to do some
specialized Windows programming. If not, leave the
code in ProtDefWindowProc () the same as delivered
in the sample application. Otherwise, the I/O Server will
not work.

Note When doing Windows programming, any message can be processed in
ProtDefWindowProc(). If adding your own user interface for the server, menu items
can be added to ProtMenu in the .RC file and WM_COMMAND messages can be
intercepted in ProtDefWindowProc(), etc. Examples of this are shown in the sample
servers.

10-48 Chapter 10

ProtDeletePoint
BOOL WINAPI

ProtDeletePoint(HLOGDEV hLogDev,
HPROT hProt)

This function will delete the specified point. No DDE conversations are interested in
this point's value. However, if a write is outstanding - still perform the write.

Parameter Description

hLogDev Handle identifying the logical device which was the
return from the ProtAllocateLogicalDevice() call.

hProt Handle identifying the point which was the return from
the ProtCreatePoint() call.

Return Value TRUE means point has been deleted.

FALSE means error, invalid logical unit, symbol table,
point, etc. Return value is not used at this time, but
should be observed for future compatibility.

Comments After this call, the hProt value will no longer be used (it
can then be reused by the server if so desired).

API Function References 10-49

ProtExecute
BOOL WINAPI

ProtExecute(HLOGDEV hLogDev,
LPSTR lpszName)

This function is called when the client sends an Execute DDE message to a conversation
on this server. The purpose is to communicate control commands to the I/O Server.
This function is optional since the Toolkit supplies a default ProtExecute()

Parameter Description

hLogDev Handle which identifies this logical device (topic) as
returned by ProtAllocateLogicalDevice() call.

lpszName Far pointer to the command string.

Return Value TRUE means the command was executed. FALSE
means the server had a problem with the command.

Comments This function should execute the string supplied by the
client and return success or failure based on the
command supplied.

Note Please use the execute format defined in the Microsoft Windows SDK
documentation.

Example
[opcodestring] {[opcodestring]} ...

where opcodestring is

 opcode { (parameter {, parameter } ...) }

For example:

 [connect][download(query1,results.txt)][disconnect]

10-50 Chapter 10

ProtFreeLogicalDevice
BOOL WINAPI

ProtFreeLogicalDevice(HLOGDEV hLogDev)

This function is called when there are no remaining DDE conversations on this logical
device identified by hLogDev. Delete all information associated with it.

Parameter Description

hLogDev Handle which identified this logical device (topic) as
returned by the ProtAllocateLogicalDevice() call
earlier.

Return Value TRUE means valid hLogDev device was freed.

Comments Each individual point may not be deactivated or deleted
when you receive this message. Be prepared to delete
the logical device and ALL associated information (e.g.,
point data structures, messages, symbol table, etc.). This
function will only be called when the last conversation
to a topic is terminated.

API Function References 10-51

ProtGetDriverName
BOOL WINAPI

ProtGetDriverName(LPSTR lpszName,
int nMaxLength)

This function will supply the driver name to the Toolkit to be used during the initiation
of DDE conversations.

Parameter Description

lpszName Far pointer to the server name stored as a null terminated
character string no longer than nMaxLength.

nMaxLength Maximum size for the server name string including the
NULL terminator character.

Return Value TRUE means the name stored.

Comments Place the name of the server in lpszName. nMaxLength
will be 9 (8 chars & NULL), since the server name must
be convertible to a .EXE filename. Unless you have
some reason not to, this name should be the same as the
.EXE name.

Note The ProtGetDriverName() function cannot contain any calls to debug() because
debug() calls ProtGetDriverName() and an infinite loop will result.

10-52 Chapter 10

ProtGetValidDataTimeout
DWORD WINAPI

ProtGetValidDataTimeout(void)

This function supplies the timeout value (in milliseconds) for the Toolkit when it is
waiting for first time data supplied by the protocol.

Parameter Description

Return Value Return (in milliseconds) how long the Toolkit should
wait for the protocol to supply data for the first time.

Comments When a WM_DDE_REQUEST from a client comes in
for a point, and the server has not received any values
for that point; the Toolkit will wait some amount of time
for the server to set a new value via
DbNewVTQFromDevice(). If it takes longer than that
amount of time to get a value from the device, the
Toolkit will Nack the item WM_DDE_REQUEST from
the client.

Note NetDDE Considerations The value returned for the valid data timeout must be 1
msec if the server is supplying data through NetDDE. This is a special case where the
Toolkit Nacks requests if there isn't valid data immediately available. Generally, this
timeout value is supplied in the configuration process of the server. The user must be
informed to set this for NetDDE.

API Function References 10-53

ProtInit
BOOL WINAPI

ProtInit(void)

This function is called to perform any necessary initialization. It is the first function
called within the server.

Parameter Description

Return Value TRUE means that the server is initialized and ready to
start DDE conversations (i.e., all basic requirements for
this server have been met). FALSE means the server
cannot continue and will cause it to exit.

Comments This function can perform any overall initialization
needed by the server, read configuration files, obtain
information from the WIN.INI file (through calls to
GetProfileInt() and GetProfileString()), etc.
Specifically, this function should call
SysTimerSetupProtTimer(),
SysTimerSetupRequestTimer(), and
AdjustWindowSizeFromWinIni().

10-54 Chapter 10

ProtNewValueForDevice
BOOL WINAPI

ProtNewValueForDevice(HLOGDEV hLogDev,
HPROT hProt,
PTVALUE value)

ProtNewValueForDevice() will be called whenever a new value for the point is
received from DDE.

Parameter Description

hLogDev Handle identifying the logical device which was the
return from the ProtAllocateLogicalDevice() call.

hProt Handle identifying the point which was the return from
the ProtCreatePoint() call.

value The user must know the type of data associated with this
point (set by the server in *lpPtType during the
ProtCreatePoint() call). Based on the point type, use
the appropriate field in this structure (it contains fields
for discrete, integer, and real, as well as a handle to
memory containing a string).

Return Value TRUE means the point is still valid and it is allowed to
send data to this point. FALSE indicates the point
cannot be written.

Comments The server should respond as soon as possible - i.e.,
schedule a message to write the new value to the device
and return immediately (if applicable).

API Function References 10-55

ProtTimerEvent
VOID WINAPI

ProtTimerEvent(DWORD dwTime)

This function will be called at the interval set by the last call to
SysTimerSetupProtTimer().

Parameter Description

dwTime Time in milliseconds that have passed since the last call
to this function.

Return Value None.

Comments Through this function's periodic execution, you can drive
the device protocol and supply data to the Toolkit
database. This is accomplished by making a call to
DbNewVTQFromDevice() with each of the data items
available in this time cycle. The dwTime is provided to
the protocol in case it is needed for timing related
activities.

Note Due to the nature of Windows and loading of the PC with other applications, this
function may not be called on at a precisely regular interval.

10-56 Chapter 10

ReadComm
int WINAPI

ReadComm(int idComDev,
void *lpvBuf,
int cbRead)

This function reads up to a specified number of bytes from the given communications
device.

Parameter Description

idComDev The id of the communications device to be read. The
OpenComm() function returns this value.

lpvBuf Points to the buffer for the read bytes.

cbRead Specifies the maximum number of bytes to be read.

Return Value The return value is the number of bytes read if
successful. Otherwise, it is less than zero and its
absolute value is the number of bytes read.

Comments Windows only. Emulates Windows function. When an
error occurs, the cause of the error can be determined by
using the GetCommError() function to retrieve the
error value and status. Since errors can occur when no
bytes are present, if the return value is zero the
GetCommError() function should be called to ensure
that no error occurred. The return value is less than the
number of bytes specified by cbRead if the number of
bytes in the receiving queue is less than cbRead.

API Function References 10-57

RelinquishPermission - Windows Only
VOID WINAPI

RelinquishPermission(HANDLE hPermission)

RelinquishPermission() will release the selector that was allocated to this memory
address range, identified by hPermission.

Parameter Description

hPermission The permission handle that was set when permission is
granted by RequestPermission().

Return Value None.

Comments None.

10-58 Chapter 10

RequestPermission - Windows Only
BOOL WINAPI

RequestPermission(WORD wSegment,
WORD wOffset,
DWORD dwLength,
LPSTR FAR *lplpProt,
LPHANDLE lphPermission)

RequestPermission() is used to access memory at a fixed real mode location.

Parameter Description

wSegment Real-mode address segment.
wOffset Real-mode address offset.
dwLength Length of the area for permission.
lplpProt Far pointer to the protected-mode far pointer. The

Protected-mode pointer is stored after the permission
process is completed. It may then be used to access the
special fixed memory block.

lphPermission Far pointer to a permission handle that is set when
permission is granted. This handle must be saved and
used when calling RelinquishPermission().

Return Value TRUE means permission was granted. FALSE means
there was a problem and no permission granted.

Comments Many plug-in I/O boards use memory mapped I/O to
transfer data and commands which will then be relayed
to an external device (e.g., the MODBUS Plus or AB
1784-KT boards). In order to access non-standard
memory from Windows while in protected-mode,
permission must be granted and a far pointer set up. The
permission handle must be saved and used later to call
RelinquishPermission(). A FALSE return indicates an
error condition in the request. After permission is
granted, that portion of memory may be freely accessed
using the lpProt pointer. When the protocol is shut
down, all requested blocks of memory must be
relinquished by the user.

Example
LPSTR lpProt;

HANDLE hPermission;

if(RequestPermission(0x0000, 0x40, (DWORD)0x0008,

 &lpProt, &hPermission)) {

 /* lpProt can be used to access 0:40 through 0:47. */

 RelinquishPermission(hPermission);

}

API Function References 10-59

SelBoxAddEntry
BOOL WINAPI

SelBoxAddEntry(LPSTR string,
LONG value,
WORD wFlags)

This function adds a string entry to a selection box set of choices to be displayed when
the SelBoxUserSelect() call is done.

Parameter Description

string Far pointer to the string to be added to the selection box
entries.

value If this entry is picked by the user, this value will be
returned as an indicator.

wFlags Control flags allowed:

SBENTRY_DISABLED

SBENTRY_SELECTED

Return Value FALSE means there was an out of memory error adding
the entry.

Comments None.

10-60 Chapter 10

SelBoxSetupStart
VOID WINAPI

SelBoxSetupStart(HWND hWnd,
PSTR title,
PSTR noEntryMsg,
int numCols,
LONG lFlags)

SelBoxSetupStart() does the basic setup for a selection box.

Parameter Description

hWnd In most cases use the extern hWndParent.

title Pointer to the text to be displayed in the caption.

noEntryMsg Pointer to the text to be displayed in the window when
there are no entries.

numCols Number of columns to be used. 0 will allow the Toolkit
to pick the optimum based on the text lengths.

lFlags Control flags can be one of the following:

SBSTYLE_RADIO_BUTTONS
(default is check-box style)

SBSTYLE_RETURN_ON_SELECTION
(default is wait for OK)

SBSTYLE_SORT_ENTRIES
(default is put in order of SelBoxAddEntry() calls)

SBSTYLE_ENTRIES_PRESORTED
(put in order but knows that they are sorted)

Return Value None.

Comments None.

API Function References 10-61

SelBoxUserSelect
LONG WINAPI

SelBoxUserSelect(HANDLE hInst,
LONG lButtons,
int vPosition,
int nFixed)

This function actually displays the selection box and processes all the buttons.

Parameter Description

hInst Always use the extern hInst for this application.

lButtons Specifies which of the following buttons should be
enabled (i.e., visible):

SB_BUTTON_NEW

SB_BUTTON_MODIFY

SB_BUTTON_DELETE

SB_BUTTON_CANCEL

SB_BUTTON_OK

vPosition Sets the vertical screen position of the box.

nFixed Set to 0 to allow free-format lengths. By setting nFixed
to non-zero, the sizes for the entries are fixed at the
length specified by nFixed.

Return Value One of the buttons was picked by the user:

SB_BUTTON_OK

SB_BUTTON_CANCEL

SB_BUTTON_NEW

SB_BUTTON_MODIFY

SB_BUTTON_DELETE

Comments When this function returns, the selection box is no
longer on the screen. The user selections can now be
processed based on which button was selected, see the
SelBoxUserSelection() function below.

10-62 Chapter 10

SelBoxUserSelection
HANDLE WINAPI

SelBoxUserSelection(void)

This function is called after SelBoxUserSelect() if you wish to get a list of what the user
selected.

Parameter Description

Return Value The return is the handle of a selection list hSelList that
represents what the user selected during the last call to
SelBoxUserSelect().

Comments SelBoxUserSelection() is called after
SelBoxUserSelect() to see what the user selected. Use
the following functions to access this list:
SelListNumSelections(), SelListGetSelection(), and
SelListFree(). (Refer to the sample server code for
examples of the selection box usage).

API Function References 10-63

SelListFree
VOID WINAPI

SelListFree(HANDLE hSelList)

This function will free the memory associated with the selection list.

Parameter Description

hSelList The selection list handle obtained by calling
SelBoxUserSelection().

Return Value None.

Comments None.

10-64 Chapter 10

SelListGetSelection
LONG WINAPI

SelListGetSelection(HANDLE hSelList,
int nSelection)

This function gets the indicator value for a selection at the specified number.

Parameter Description

hSelList The selection list handle obtained by calling
SelBoxUserSelection().

nSelection The selection to be examined, the entries start at entry 0
and increase to SelListNumSelections(hSelList) -1.

Return Value The value set for this entry as an indicator by the
SelBoxAddEntry() call.

Comments None.

API Function References 10-65

SelListNumSelections
int WINAPI

SelListNumSelections(HANDLE hSelList)

This function returns how many entries are in the specified hSelList.

Parameter Description

hSelList The selection list handle obtained by calling
SelBoxUserSelection().

Return Value Count of selected entries during the SelBoxUserSelect()
call.

Comments None.

10-66 Chapter 10

SetCommEventMask
UINT FAR *WINAPI

SetCommEventMask(int nCid,
UINT fnEvt)

The SetCommEventMask() function does no operation on Windows NT/2000. It is
provided for common code convenience only.

Parameter Description

nCid This parameter is ignored on Windows NT/2000.

fnEvt This parameter is ignored on Windows NT/2000.

Return Value NULL pointer.

Comments Windows NT/2000 only but provides no operation.
Emulates Windows function.

API Function References 10-67

SetSplashScreenParams
void WINAPI

SetSplashScreenParams(BOOL bSuppressSplashScreen,
 int nSplashSelect,
 UINT iProductID,
 LPSTR lpszPrivateString)

A call to this function should be placed in ProtInit() to enable or disable the splash
screen at start-up, and determine how it will be displayed.

Parameter Description

bSuppressSplashScreen If TRUE, suppresses the splash screen entirely. This
may be appropriate if your program displays a splash
screen itself elsewhere. If FALSE, the selected splash
screen will be displayed for a few seconds and will then
be erased.

nSplashSelect If zero, displays the original Wonderware splash screen
using the dialog resource WWStartup. This is provided
for backward compatibility. If non-zero, displays the
Common User Interface splash screen.

iProductID Identifies the type of product. For a Win32 server, this
value should be COMMON_IOSERVER32ID. For the
Common UI splash screen, this is used to select the
bitmap file that will be displayed in the splash screen.
For the WWStartup splash screen, it has no function.

lpszPrivateString Pointer to a string that can be displayed in the Common
UI splash screen as additional information about the
program. For the WWStartup splash screen, it has no
function.

Return Value None.

Comments The default is for the Toolkit to display the Common
User Interface splash screen at start-up. Since the
server-specific code in ProtInit() is called before the
Toolkit displays the splash screen, this is the
programmer’s opportunity to control or alter this
behavior. If you are using the CommonUI splash screen,
you might prefer instead to call the function
WWAnnounceStartup(), which displays the
CommonUI splash screen and also issues a start-up
message that appears in the Wonderware Logger.

10-68 Chapter 10

StatAddValue
void WINAPI

StatAddValue(HSTAT hStat,
 PTVALUE value)

Add indicated value to indicated statistics item; for strings and discretes, no change.

Parameter Description

hStat Handle from the Toolkit that identifies a particular
statistics item, assigned by a call to either
StatRegisterCounter() or StatRegisterRate().

value A union of type PTVALUE. The user must know the
type of data associated with this statistical point. Based
on the point type, use the appropriate field in this
structure (it contains fields for discrete, integer, and real,
as well as a handle to memory containing a string).

Return Value None.

Comments This routine assumes that the statistics item and the value
in value are of the same data type – i.e. both are integers
or both are reals. No conversion is made. Mixing data
types will yield unpredictable results. This function
should not be called if the statistic has been unregistered.

API Function References 10-69

StatDecrementValue
void WINAPI

StatDecrementValue(HSTAT hStat)

Decrement value for indicated statistics item by 1; for strings and discretes, no change.

Parameter Description

hStat Handle from the Toolkit that identifies a particular
statistics item, assigned by a call to either
StatRegisterCounter() or StatRegisterRate().

Return Value None.

Comments This routine checks the type of data encoded in the
statistics item. If it is a numerical data type, the value is
decremented by 1 (by 1.0 in the case of reals). This
function should not be called if the statistic has been
unregistered.

10-70 Chapter 10

StatGetValue
PTVALUE WINAPI

StatGetValue(HSTAT hStat)

Retrieve the current value for indicated statistics item.

Parameter Description

hStat Handle from the Toolkit that identifies a particular
statistics item, assigned by a call to either
StatRegisterCounter() or StatRegisterRate().

Return Value A union of type PTVALUE, the value corresponding to
the indicated statistics point. Note that for points of type
PTT_STRING, the value contains a pointer to a memory
buffer where the string is actually stored.

Comments For a rate statistic, the value returned is always the
current calculated rate value, and will always be
accessed from ptValue.real. For a counter statistic, the
union member containing the value is determined by the
ptType passed to StatRegisterCounter(). If the
statistics handle hStat is invalid, a value of
PTVALUE.intg==0 is returned.

API Function References 10-71

StatIncrementValue
void WINAPI

StatIncrementValue(HSTAT hStat)

Increment value for indicated statistics item by 1; for strings and discretes, no change.

Parameter Description

hStat Handle from the Toolkit that identifies a particular
statistics item, assigned by a call to either
StatRegisterCounter() or StatRegisterRate().

Return Value None.

Comments This routine checks the type of data encoded in the
statistics item. If it is a numerical data type, the value is
incremented by 1 (by 1.0 in the case of reals). This
function should not be called if the statistic has been
unregistered.

10-72 Chapter 10

StatRegisterCounter
HSTAT WINAPI

StatRegisterCounter(IDLDEV idLogDev,
 IDSTDDEV idStdDev,
 LPSTR lpszName,
 PTTYPE ptType)

Register a statistical counter with the indicated name and point type. The statistic can be
associated either with a logical device (topic) defined in the protocol or with a standard
statistics device (standard topic) – such as $PORT, $DEVICE, or $SERVER. Once the
item is registered, the Toolkit will automatically handle validating the point name when
a client attempts to access it, and passing updated values to interested clients. The
server-specific code is responsible for updating the value indicated by HSTAT via calls
to StatIncrementValue(), StatAddValue(), etc.

Parameter Description

idLogDev Identifier of the logical device (topic) to which this
statistic is to be assigned. This is the handle supplied by
the Toolkit as a parameter in the
ProtAllocateLogicalDevice() call. If idLogDev is zero,
the statistic will be assigned to one of the standard
devices (topics) maintained internally by the Toolkit,
identified by the second parameter idStdDev.

idStdDev Identifier of the standard device (topic) to which this
statistic is to be assigned. This parameter is used only if
idLogDev is zero, and must be one of the following:
STDDEV_PORT, STDDEV_DEVICE, or
STDDEV_SERVER.

lpszName Far pointer to a string which contains the name of the
statistics item.

ptType Identifies the point type for the item. Typically this is
PTT_INTEGER, but can be any of the other point types
also: PTT_DISCRETE, PTT_REAL, PTT_STRING.

Return Value Handle of statistical item, a non-zero number assigned
by the Toolkit and unique to this item that identifies this
statistical point/item in any future calls to the statistical
functions. Returns NULL handle if unsuccessful. If the
indicated statistic is already registered, the handle of that
statistic will be returned.

Comments The statistic will automatically be initialized with a value
of zero (or for strings, to a NULL pointer, indicating “no
string assigned”). Also, the statistic will be reset to zero
if an I/O client pokes any value to “ResetAll” on the
SYSTEM topic or to “ResetStats” on the topic to which
this counter belongs. If the statistic becomes invalid,
you should call the function StatUnregisterCounter()
to unregister the statistic point.

API Function References 10-73

StatRegisterRate
HSTAT WINAPI

StatRegisterRate(IDLDEV idLogDev,
 IDSTDDEV idStdDev,
 LPSTR lpszName,
 DWORD interval,
 BYTE units,
 PTTYPE ctrType,
 HSTAT hStatCtr)

Register a statistical rate with the indicated name. The statistic can be associated either
with a logical device (topic) defined in the protocol or with a standard statistics device
(standard topic) – such as $PORT, $DEVICE, or $SERVER. Once the item is
registered, the Toolkit will automatically handle validating the point name when a client
attempts to access it, and passing updated values to interested clients.

The input value to the rate calculation is a counter value, which can either be another
statistical item counter or a counter value maintained internally within the rate item
itself. The output of the rate calculation will always be of point type PTT_REAL.

Parameter Description

idLogDev Identifier of the logical device (topic) to which this
statistic is to be assigned. This is the handle supplied by
the Toolkit as a parameter in the
ProtAllocateLogicalDevice() call. If idLogDev is zero,
the statistic will be assigned to one of the standard
devices (topics) maintained internally by the Toolkit,
identified by the second parameter idStdDev.

idStdDev Identifier of the standard device (topic) to which this
statistic is to be assigned. This parameter is used only if
idLogDev is zero, and must be one of the following:
STDDEV_PORT, STDDEV_DEVICE,
STDDEV_SERVER.

lpszName Far pointer to a string which contains the name of the
statistics item.

interval Unsigned 32-bit integer indicating the interval between
rate calculations, in milliseconds – i.e. how often the rate
value will be updated. Clients can modify this value by
accessing the point with the name specified by lpszName
concatenated with “$INTERVAL”.

units Identify the units for the divisor in the rate calculation:

Value Meaning

STATS_TIME_MSEC milliseconds

STATS_TIME_SEC seconds

STATS_TIME_MIN minutes

STATS_TIME_HR hours

STATS_TIME_DAY days

Example: If the rate indicates changes per second, this
should be STATS_TIME_SEC.

10-74 Chapter 10

ctrType Identify the point type for the input counter item for the
rate calculation. Must be PTT_INTEGER or
PTT_REAL. Note that this parameter is ignored if the
parameter hStatCtr is non-zero.

hStatCtr Handle of the associated statistics counter item for this
rate calculation. If hStatCtr is zero, this indicates that no
input counter is used and the counter will instead be
maintained internally within the rate item itself. In this
case, the internal counter must be manipulated via the
functions which manipulate statistics values
[StatAddValue(), StatIncrementValue(), etc]. If
hStatCtr is non-zero, then the rate calculation will be
performed using the counter value maintained separately
by the handle returned from StatRegisterCounter().

Return Value Handle of statistical rate item, a non-zero number
assigned by the Toolkit and unique to this item that
identifies this statistical point/item in any future calls to
the statistical functions. Returns NULL handle if
unsuccessful. If the indicated statistic is already
registered, the handle of that statistic will be returned.

Comments Providing both an interval and units allows complete
flexibility in the rate calculation frequency and units.
For example, you can get a per-hour rate (units =
TIME_HR) calculated once per minute (interval =
60000). This function call will automatically create two
I/O items – one for the rate itself and one for the rate
item interval, which can be accessed by clients via the
rate item name concatenated with the string
“$INTERVAL” (e.g. HOURLY_RATE$INTERVAL).
If the statistic becomes invalid, you should call the
function StatUnregisterRate() to unregister the statistic
point.

API Function References 10-75

StatSetCountersInterval
BOOL WINAPI

StatSetCountersInterval(IDLDEV idLogDev,
 IDSTDDEV idStdDev,
 DWORD interval)

Set a new update (i.e. reporting) interval for the counters on the indicated logical device
(topic) or standard statistics device (standard topic – such as $PORT, $DEVICE, or
$SERVER). This defines the time interval at which all registered statistical counters on
the device will be updated to any interested clients. If this function is not called, the
value specified by the WIN.INI setting “StatCountersInterval” (with a default interval of
10000 msec) is used. Note that the counter interval for a given logical device can also
be manipulated by a client via the “CounterInterval” item name on the topic.

Parameter Description

idLogDev Identifier of the logical device (topic) to which this
statistic is to be assigned. This is the handle supplied by
the Toolkit as a parameter in the
ProtAllocateLogicalDevice() call. If idLogDev is zero,
the statistic will be assigned to one of the standard
devices (topics) maintained internally by the Toolkit,
identified by the second parameter idStdDev.

idStdDev Identifier of the standard device (topic) to which this
statistic is to be assigned. This parameter is used only if
idLogDev is zero, and must be one of the following:
STDDEV_PORT, STDDEV_DEVICE,
STDDEV_SERVER.

interval Unsigned 32-bit integer indicating the interval between
updates, in milliseconds.

Return Value TRUE if successful.

Comments This function only affects statistical counters registered
with StatRegisterCounter(). This setting is not used to
control the interval at which the actual counter value
changes in the statistical sub-system – it is used only to
control the rate at which updates to external clients are
performed.

10-76 Chapter 10

StatSetRateInterval
BOOL WINAPI

StatSetRateInterval(HSTAT hStat,
 DWORD interval)

Set new update interval for indicated rate item.

Parameter Description

hStat Handle from the Toolkit that identifies a particular
statistics item, assigned by a call to StatRegisterRate().

interval Unsigned 32-bit integer indicating the interval between
rate calculations, in milliseconds.

Return Value TRUE if successful.

Comment This is equivalent to accessing the rate interval created
when StatRegisterRate() was called. Note that clients
can access this interval via the rate item name
concatenated with the string “$INTERVAL” (e.g.
HOURLY_RATE$INTERVAL).

API Function References 10-77

StatSetValue
void WINAPI

StatSetValue(HSTAT hStat,
 PTVALUE ptValue)

Set new value for indicated statistics item; this is used for counters and to calculate
rates.

Parameter Description

hStat Handle from the Toolkit that identifies a particular
statistics item, assigned by a call to either
StatRegisterCounter() or StatRegisterRate().

ptValue A union of type PTVALUE. The user must know the
type of data associated with this statistical point. Based
on the point type, use the appropriate field in this
structure (it contains fields for discrete, integer, and real,
as well as a handle to memory containing a string).

Return Value None.

Comment This function should not be called if the statistic has
been unregistered.

10-78 Chapter 10

StatSubtractValue
void WINAPI

StatSubtractValue(HSTAT hStat,
 PTVALUE ptValue)

Subtract indicated value from indicated statistics item; for strings and discretes, no
change.

Parameter Description

hStat Handle from the Toolkit that identifies a particular
statistics item, assigned by a call to either
StatRegisterCounter() or StatRegisterRate().

ptValue A union of type PTVALUE. The user must know the
type of data associated with this statistical point. Based
on the point type, use the appropriate field in this
structure (it contains fields for discrete, integer, and real,
as well as a handle to memory containing a string).

Return Value None.

Comments This routine assumes that the statistics item and the value
in value are of the same data type – i.e. both are integers
or both are reals. No conversion is made. Mixing data
types will yield unpredictable results. This function
should not be called if the statistic has been unregistered.

API Function References 10-79

StatUnregisterCounter
BOOL WINAPI

StatUnregisterCounter(IDLDEV idLogDev,
 IDSTDDEV idStdDev,

 HSTAT hStat)

Unregister the indicated counter on the indicated logical device. If the counter handle
hStat is NULL, unregister ALL counter statistics on this topic. The server-specific code
should call this function if the statistic counter is no longer valid. After unregistration,
this item will no longer be automatically validated or updated to any interested clients.
However, any clients which currently have the point on advise will retain the last
updated item for the value.

Parameter Description

idLogDev Identifier of the logical device (topic) to which this
statistic is to be assigned. This is the handle supplied by
the Toolkit as a parameter in the
ProtAllocateLogicalDevice() call. If idLogDev is zero,
the statistic will be assigned to one of the standard
devices (topics) maintained internally by the Toolkit,
identified by the second parameter idStdDev.

idStdDev Identifier of the standard device (topic) to which this
statistic is to be assigned. This parameter is used only if
idLogDev is zero, and must be one of the following:
STDDEV_PORT, STDDEV_DEVICE,
STDDEV_SERVER.

hStat Handle from the Toolkit that identifies a particular
statistics counter item, assigned by a call to
StatRegisterCounter(). If NULL, unregister all counter
statistics in this topic.

Return Value TRUE if successful. FALSE indicates that either
idLogDev, idStdDev, or hStat was unknown to the
Toolkit.

Comment This function should be called when the statistic counter
becomes invalid. However, it need not be called as part
of a ProtFreeLogicalDevice() function call for the
indicated idLogDev. In this case, the Toolkit calls this
function implicitly.

10-80 Chapter 10

StatUnregisterRate
BOOL WINAPI

StatUnregisterRate(IDLDEV idLogDev,
 IDSTDDEV idStdDev,
 HSTAT hStat)

Unregister the indicated rate on the indicated logical device. If the rate handle hStat is
NULL, unregister ALL rate statistics on this topic. The server-specific code should call
this function if the statistic rate is no longer valid. After unregistration, this item will no
longer be automatically validated or updated to any interested clients. However, any
clients which currently have the point on advise will retain the last updated item for the
value.

Parameter Description

idLogDev Identifier of the logical device (topic) to which this
statistic is to be assigned. This is the handle supplied by
the Toolkit as a parameter in the
ProtAllocateLogicalDevice() call. If idLogDev is zero,
the statistic will be assigned to one of the standard
devices (topics) maintained internally by the Toolkit,
identified by the second parameter idStdDev.

idStdDev Identifier of the standard device (topic) to which this
statistic is to be assigned. This parameter is used only if
idLogDev is zero, and must be one of the following:
STDDEV_PORT, STDDEV_DEVICE,
STDDEV_SERVER.

hStat Handle from the Toolkit that identifies a particular
statistics rate item, assigned by a call to
StatRegisterRate(). If NULL, unregister all rate
statistics for this topic.

Return Value TRUE if successful. FALSE indicates that either
idLogDev, idStdDev, or hStat was unknown to the
Toolkit.

Comment This function should be called when the statistic rate
becomes invalid. However, it need not be called as part
of a ProtFreeLogicalDevice() function call for the
indicated idLogDev. In this case, the Toolkit calls this
function implicitly.

API Function References 10-81

StatZeroValue
void WINAPI

StatZeroValue(HSTAT hStat)

Set zero value for indicated statistics item; for strings, clear string buffer pointer.

Parameter Description

hStat Handle from the Toolkit that identifies a particular
statistics item, assigned by a call to either
StatRegisterCounter() or StatRegisterRate().

Return Value None.

Comments This routine checks the data type of the indicated
statistics point. Numerical and Boolean items are set to
zero. For strings, the buffer pointer is cleared, indicating
no string is assigned. This function should not be called
if the statistic has been unregistered.

10-82 Chapter 10

StrValSetNString
PTVALUE WINAPI

StrValSetNString(PTVALUE ptValueOld,
LPSTR lpszValue,
int nMax)

StrValSetNString() is used to initialize or change the value of a ptValue string while
limiting the length of the input.

Parameter Description

ptValueOld If this is the initial call, set hString to NULL before this
call. If you are changing an existing string, this is the
ptValue used previously that may be removed or
overwritten.

lpszValue Far pointer to the new string (null terminated or to a
maximum of nMax) which will be moved into the system
memory for use by the Toolkit database.

nMax The maximum number of characters read from the
lpszValue string.

Return Value New ptValue to be saved.

Comments This function is functionally identical to
StrValSetString() except that a limit can be put on the
string size. This function will move characters until a
NULL is reached or the maximum limit (then a NULL is
stored).

Example
/* only sets the value to "This " */
ptValue = StrValSetNString(ptValue, "This is a new value", 5);

API Function References 10-83

StrValSetString
PTVALUE WINAPI

StrValSetString(PTVALUE ptValueOld,
LPSTR lpszValue)

StrValSetString() is used to initialize or change the value of a ptValue string.

Parameter Description

ptValueOld If this is the initial call, set hString to NULL before this
call. If you are changing an existing string, this is the
ptValue used previously that may be removed or
overwritten.

lpszValue Far pointer to the new string (null terminated) which will
be moved into the system memory for use by the Toolkit
database.

Return Value New ptValue to be saved.

Comments Be aware that calls to StrValSetString() (as well as
StrValSetNString()) cause heap memory to be
allocated. Only set the hString to NULL prior to the
first call, or memory will be lost. When you are done
with the ptValue, call StrValStringFree().

Example
/* We have never used the ptValue before so null it. */
ptValue.hString = NULL;
/* Now store strings ready to be sent to the Toolkit Database */
ptValue = StrValSetString(ptValue, "This is the new value");
ptValue = StrValSetString(ptValue, "This is a newer value &
 size");

Note Version 5.0 and later of the I/O Server Toolkit allocate string memory from the
heap rather than using system global memory resources.

10-84 Chapter 10

StrValStringFree
PTVALUE WINAPI

StrValStringFree(PTVALUE ptValue)

StrValStringFree() will free the memory used for a ptValue string.

Parameter Description

ptValue This is the ptValue supplied by the StrValSetString()
call.

Return Value This is the new ptValue to be saved for future string
function calls.

Comments Free strings only when the server has been using them
internally. If the ptValue came from or is going to the
Toolkit database, do not free it. To save or manipulate
the string, copy the string to an internal string element.

API Function References 10-85

StrValStringLock
LPSTR WINAPI

StrValStringLock(PTVALUE ptValue)

This function will lock a string in memory and return a far pointer to the beginning of
the string memory.

Parameter Description

ptValue This is the ptValue supplied by the StrValSetString()
call.

Return Value Far pointer to the string (null terminated) which is
pointed to by the ptValue memory handle. A NULL
return means the string memory could not be locked.

Comments Be sure to unlock any locked memory at the earliest
possible opportunity. When memory is locked, it cannot
be moved by Windows memory management. The less
locked memory, the better.

Note Be sure to execute the same number of locks and unlocks on any piece of memory.
If, for any reason, the memory is locked more than once, it must be unlocked more than
once.

Example (function using lock/unlock)
BOOL
FAR PASCAL
CompareString(ptValue)
PTVALUE ptValue; /* String from database or device */
{
LPSTR lpszVal;
BOOL rtn;
 rtn = FALSE;
 if(ptValue.hString != NULL) {
 lpszVal = StrValStringLock(ptValue);
 if(lpszVal) {
 if(lstrcmpi(lpszVal, "Value") == 0) {
 rtn = TRUE;}
 StrValStringUnlock(ptValue);
 }
 }
 return(rtn);
}

10-86 Chapter 10

StrValStringUnlock
VOID WINAPI

StrValStringUnlock(PTVALUE ptValue)

This function will unlock a string in memory previously locked by StrValStringLock().

Parameter Description

ptValue This is the ptValue supplied by the StrValSetString()
call.

Return Value None.

Comments StrValStringLock() and StrValStringUnlock() are
used to lock/unlock the value of a ptValue string. Refer
to the StrValStringLock() code example.

Note Be sure to execute the same number of locks and unlocks on any piece of
memory. If, for any reason, the memory is locked more than once, it must be unlocked
more than once.

API Function References 10-87

SysTimerSetupProtTimer
BOOL WINAPI

SysTimerSetupProtTimer(DWORD dwMsec)

This function sets up a timer that goes off every dwMsec milliseconds and calls
ProtTimerEvent ().

Parameter Description

dwMsec Interval timer range from 1 to 32767 milliseconds.

Return Value TRUE means that the interval requested was acceptable.
FALSE means that it was out of range and should be
changed.

Comments This timer should be set to a value that is reasonable for
the protocol data supply rate. Intervals that are
arbitrarily too short will result in needless system
overhead.

10-88 Chapter 10

SysTimerSetupRequestTimer
BOOL WINAPI

SysTimerSetupRequestTimer(DWORD dwMsec)

This function sets up a timer that goes off every dwMsec milliseconds and checks for
valid data timeout errors within the Toolkit database.

Parameter Description

dwMsec Interval timer range from 1 to 32000 milliseconds.

Return Value TRUE means that the interval requested was acceptable.
FALSE means that it was out of range and should be
changed.

Note This timer should be set to a value that is reasonable for the protocol data timeout.
The interval should be a reasonable factor of the ValidDataTimeout parameter return in
the ProtGetValidDataTimeout() calls. Intervals that are arbitrarily too short will result
in needless system overhead.

API Function References 10-89

UdAddFileTimeOffset
void WINAPI

UdAddFileTimeOffset(FILETIME *ft1,
 long lDelta,
 FILETIME *ft2)

Add indicated time difference (in 100 nsec / 8192) to source time mark.

Return result in destination time mark.

Note: FILETIME is a 64-bit value defined in Win32 as the number of 100 nanosecond
intervals since January 1, 1601. It is organized as two DWORDS, dwLowDateTime and
dwHighDateTime.

Parameter Description

ft1 Pointer to a FILETIME structure for a date/time stamp
which serves as the source time mark, i.e. the date/time
to which the indicated interval will be added.

lDelta Interval to be added to source date/time, in units of 100
nanoseconds / 8192, i.e. 1.220703125 milliseconds.

ft2 Pointer to a FILETIME structure for a date/time stamp
which serves as the destination time mark, i.e. the
resulting date/time stamp after the interval lDelta has
been added to the source date/time stamp.

Return Value None.

Comments The use of the 100 nsec / 8192 is provided for
convenience and rapid calculations, as it is close to a 1
msec interval, but requires only a simple shift operation
to calculate, instead of division or multiplication of a 64-
bit number. You may prefer to use the function
UdAddTimeMsec() instead

10-90 Chapter 10

UdAddTimeMSec
void WINAPI

UdAddTimeMSec(FILETIME *ft1,
 long lDelta,
 FILETIME *ft2)

Add indicated time difference (in msec) to source time mark.

Return result in destination time mark.

Note: FILETIME is a 64-bit value defined in Win32 as the number of 100 nanosecond
intervals since January 1, 1601. It is organized as two DWORDS, dwLowDateTime and
dwHighDateTime.

Parameter Description

ft1 Pointer to a FILETIME structure for a date/time stamp
which serves as the source time mark, i.e. the date/time
to which the indicated interval will be added.

lDelta Interval to be added to source date/time, in units of 1
millisecond.

ft2 Pointer to a FILETIME structure for a date/time stamp
which serves as the destination time mark, i.e. the
resulting date/time stamp after the interval lDelta has
been added to the source date/time stamp.

Return Value None.

Comments The use of 1 millisecond intervals is convenient, but
conversions to and from units of 100 nanoseconds
require division or multiplication of 64-bit numbers. If
large numbers of high-speed calculations are required,
you may prefer to use calls to the function
UdAddFileTimeOffset() instead.

API Function References 10-91

UDDbGetName
VOID WINAPI

UDDbGetName(IDLDEV idLogDev,
 HDB hDb,

 LPSTR lpszName)

Get name of database item for indicated logical device.

Note: this is the same as the following function:

VOID WINAPI DbGetName (IDLDEV idLogDev, HDB hDb, LPSTR lpszName);

Parameter Description

idLogDev Topic (logical device) identifier that was supplied by the
Toolkit as a parameter in the
ProtAllocateLogicalDevice() call.

hDb Handle from the Toolkit that is unique to this item and
was supplied as a parameter in the ProtCreatePoint()
call.

lpszName Far pointer to the string buffer where the name will be
returned.

10-92 Chapter 10

UdDeltaFileTime
long WINAPI

UdDeltaFileTime(FILETIME *ft1,
 FILETIME *ft2)

Calculate signed difference between 2 FILETIMEs in 100 nsec / 8192

delta = (ft1 - ft2) / 8192

Note: FILETIME is a 64-bit value defined in Win32 as the number of 100 nanosecond
intervals since January 1, 1601. It is organized as two DWORDS, dwLowDateTime and
dwHighDateTime.

Parameter Description

ft1 Pointer to a FILETIME structure for a date/time stamp
which serves as the ending time mark, i.e. the date/time
stamp at which some event or interval finished.

ft2 Pointer to a FILETIME structure for a date/time stamp
which serves as the starting time mark, i.e. the date/time
stamp at which some event or interval started.

Return Value Interval between the two date/time stamps, in units of
100 nanoseconds / 8192, i.e. 1.220703125 milliseconds.
Value is returned as a signed LONG integer.

Comments The use of the 100 nsec / 8192 is provided for
convenience and rapid calculations, as it is close to a 1
msec interval, but requires only a simple shift operation
to calculate, instead of division or multiplication of a 64-
bit number. You may prefer to use the function
UdDeltaTimeMsec() instead

API Function References 10-93

UdDeltaTimeMSec
long WINAPI

UdDeltaTimeMSec(FILETIME *ft1,
 FILETIME *ft2)

Calculate signed difference between 2 FILETIMEs in msec

(delta = (ft1 - ft2)/10000)

Return difference as a signed LONG integer.

Note: FILETIME is a 64-bit value defined in Win32 as the number of 100 nanosecond
intervals since January 1, 1601. It is organized as two DWORDS, dwLowDateTime and
dwHighDateTime.

Parameter Description

ft1 Pointer to a FILETIME structure for a date/time stamp
which serves as the ending time mark, i.e. the date/time
stamp at which some event or interval finished.

ft2 Pointer to a FILETIME structure for a date/time stamp
which serves as the starting time mark, i.e. the date/time
stamp at which some event or interval started.

Return Value Interval between the two date/time stamps, in units of 1
millisecond. Value is returned as a signed LONG
integer.

Comments The use of 1 millisecond intervals is convenient, but
conversions to and from units of 100 nanoseconds
require division or multiplication of 64-bit numbers. If
large numbers of high-speed calculations are required,
you may prefer to use calls to the function
UdDeltaFileTime() instead.

10-94 Chapter 10

UdInit
BOOL WINAPI

UdInit(HANDLE hInstance,
HANDLE hPrevInstance,
LPSTR lpszCmdLine,
int nCmdShow)

This function is intended for use by a Windows application that already exists and needs
to be extended to include the DDE capability provided by the Toolkit. It is used to
initialize the I/O Server Toolkit and should only be used by a Windows application
which supplies its own WinMain() function. UdInit() should be called early in the
activation of such applications. Most I/O Servers do not have to call this function since
they allow the Toolkit to supply the WinMain() function. The parameter list is identical
to the parameter list for the Windows WinMain() function.

Parameter Description

hInstance Handle of the current instance of the application.

hPrevInstance Handle of the previous instance of the application.

lpszCmdLine Pointer to a string containing the command line for the
application.

nCmdShow Specifies how the window is to be shown.

Return Value TRUE indicates the Toolkit initialized successfully.

FALSE indicates an initialization failure and that the
application should terminate.

Comments This function should only be called by an application
which must supply its own WinMain() function rather
than using the one supplied in the Toolkit.

API Function References 10-95

UdReadAnyMore
BOOL WINAPI

UdReadAnyMore(HFILE hCfgFile,
short FAR *pbAnyMore)

This function reads a bAnyMore flag from the configuration file. This flag is used
within the configuration file to indicate whether more records of a certain type exist.
Such a flag is usually necessary when the number of records is unknown.

Parameter Description
hCfgFile File handle of the configuration file.

pbAnyMore Pointer to the boolean value to be set with the value read
out of the configuration file.

Return Value TRUE if the read operation succeeded. FALSE
otherwise.

Comments None.

10-96 Chapter 10

UdReadVersion
BOOL WINAPI

UdReadVersion(long lMagic,
long FAR *lVersion,
HFILE hCfgFile)

This function reads the version number from the server configuration file. It also
verifies that the magic number stored in the file matches the specified magic number.

Parameter Description
lMagic Magic number to be checked against the magic number

in the configuration file.

lVersion Points to a longword variable to receive the
configuration file’s version number.

hCfgFile File handle of the configuration file.

Return Value TRUE if the magic number matches. FALSE otherwise.

Comments Configuration file must be previously opened.

API Function References 10-97

UdTerminate
void WINAPI

UdTerminate(HINSTANCE hInstance)

This function is intended for use by Windows applications that already exist and need to
be extended to include the DDE capability provided by the Toolkit. It is used to close
the I/O Server Toolkit, but it should only be used by a Windows application which
supplies its own WinMain() function and calls the UdInit() function to initialize the
Toolkit. UdTerminate() should be called at application shutdown time. Most I/O
Servers do not have to call this function since they allow the Toolkit to supply the
WinMain() function.

Parameter Description
hInstance Handle of the current instance of the application.

Return Value None.

Comments This function should only be called by an application
which must supply its own WinMain() function rather
than using the one supplied in the Toolkit.

10-98 Chapter 10

UdWriteAnyMore
BOOL WINAPI

UdWriteAnyMore(HFILE hCfgFile,
short bAnyMore)

This function writes a bAnyMore flag to the configuration file. This flag is used within
the configuration file to indicate whether more records of a certain type exist.

Parameter Description
hCfgFile File handle of the configuration file.

bAnyMore Boolean value to be written to the configuration file.

Return Value TRUE if the write operation succeeded. FALSE
otherwise.

Comments Configure file must be previously opened.

API Function References 10-99

UdWriteVersion
BOOL WINAPI

UdWriteVersion(long lMagic,
long lVersion,
HFILE hCfgFile,
char FAR *szDate,
char FAR *szTime)

This function writes the version number, magic number, date, and time to the server
configuration file.

Parameter Description
lMagic Magic number to be written to the configuration file.

lVersion Version number to be written to the configuration file.

hCfgFile File handle of the configuration file.

szDate Points to a date string to be written.

szTime Points to a time string to be written.

Return Value TRUE if the write operation succeeds. FALSE
otherwise.

Comments Configuration file must be previously opened.

10-100 Chapter 10

WriteComm
int WINAPI

WriteComm(int idComDev,
void *lpvBuf,

int cbWrite)

This function writes the specified bytes to the specified communications device.

Parameter Description
idComDev The id of the communications device to be written to.

The OpenComm() function returns this value.

lpvBuf Points to the buffer that contains the bytes to be written.

cbWrite Specifies the number of bytes to be written.

Return Value The return value specifies the number of bytes written, if
successful. The return value is less than zero if an error
occurs, making the absolute value of the return value the
number of bytes written.

Comments When an error occurs, the cause of the error can be
determined by using the GetCommError() function to
retrieve the error value and status.Windows NT/2000
only. Emulates Windows function.

API Function References 10-101

WriteWindowSizeToWinIni
VOID WINAPI

WriteWindowSizeToWinIni(HWND hWnd)

This function saves the size of the server window to the last adjusted size.

Parameter Description
hWnd Handle of window whose size is to be saved.

Return Value None.

Comments None.

10-102 Chapter 10

WWAnnounceStartup
void WINAPI

WWAnnounceStartup(UINT iProductID,
 LPSTR lpszSplashString

Set up to display Common User Interface splash screen and log start-up message, using
indicated product ID and private strings.

Parameter Description

iProductID Identifies the type of product. For a Win32 server, this
value should be COMMON_IOSERVER32ID. For the
Common UI splash screen, this is used to select the
bitmap file that will be displayed in the splash screen.

lpszSplashString Pointer to a string that can be displayed in the splash
screen as additional information about the program.

Return Value None.

Comments The default is for the Toolkit to display the Common
User Interface splash screen at start-up. Since the
server-specific code in ProtInit() is called before the
Toolkit displays the splash screen, this is the
programmer’s opportunity to control or alter this
behavior. If do not wish to use the CommonUI splash
screen, you should call SetSplashScreenParams() to
select the WWStartup dialog resource or to suppress the
splash screen altogether. In this case, you should also
call debug() to display your own startup message in the
Wonderware Logger.

Note If you are developing products for Wonderware, this function and its
corresponding definitions will be of interest..

The following code would appear in ProtInit().

Example
/* set up string with server name and version number */
strcpy (szServerIDstring,
 GetString (STRUSER+142)); /* "Sample I/O Server" */
L = strlen (szServerIDstring);
sprintf (&szServerIDstring[L],
 GetString (STRUSER+145), /* "- Version %s" */
 SERVER_VERSION);
/* set up to display common start-up message and splash screen */
WWAnnounceStartup (COMMON_IOSERVER32ID,
 (LPSTR) szServerIDstring);

API Function References 10-103

WWCenterDialog
VOID WINAPI

WWCenterDialog(HWND hDlg)

This function places the specified dialog at the center of the screen.

Parameter Description
hDlg Window handle for the dialog to be centered.

Return Value None.

Comments None.

10-104 Chapter 10

WWConfigureComPort
BOOL WINAPI

WWConfigureComPort(LPWW_CP_DLG_LABELS lpDlgLabels)

This function displays and manages the communications port settings configuration
dialog. It should only be used by serial servers. This dialog allows configuration of
communications parameters for one or more serial communications ports. These
settings are written to the WW_CP_DLG_LABELS structure for use by the server.

Parameter Description
lpDlgLabels Points to a WW_CP_DLG_LABELS structure that

contains initial and final dialog values and dialog control
information.

Return Value The return value is TRUE if the dialog box display is
successful. Otherwise, it is FALSE.

Comments The WW_CP_DLG_LABELS structure must be
properly initialized prior to calling this function. For a
complete description of how to implement, refer to "I/O
Server Toolkit Data Structures" section.

Structure typedef struct tagWW_CP_DLG_LABELS {

HWND hwndOwner;
char far *szDriverName;
LPWW_CP_PARAMS lpDefaultCpParams;
LPWW_CP_PARAMS lpCpParams;
int iNumPorts;
BOOL bAllowBaud110;
BOOL bAllowBaud300;
BOOL bAllowBaud600;
BOOL bAllowBaud1200;
BOOL bAllowBaud2400;
BOOL bAllowBaud4800;
BOOL bAllowBaud9600;
BOOL bAllowBaud14400;
BOOL bAllowBaud19200;
BOOL bAllowBaud38400;
BOOL bAllowBaud56000; /* not used */
BOOL bAllowBaud57600; /* not used */
BOOL bAllowBaud115200; /* not used */
BOOL bAllowBaud128000; /* not used */
BOOL bAllowDatabits7;
BOOL bAllowDatabits8;
BOOL bAllowStopbits1;
BOOL bAllowStopbits2;
BOOL bAllowParityEven;
BOOL bAllowParityOdd;
BOOL bAllowParityNone;
BOOL bAllowParityMark;
BOOL bAllowParitySpace;
char far *szCustom1BoxLabel;
char far *szCustom1Radio1Label;
char far *szCustom1Radio2Label;
struct tagWW_CP_DLG_LABELS FAR

*lpRadio2DlgLabels;
char far *szCustom2BoxLabel;
char far *szCustom2Radio1Label;

API Function References 10-105

char far *szCustom2Radio2Label;
char far *szCustom3BoxLabel;
char far *szCustom3Radio1Label;
char far *szCustom3Radio2Label;
char far *szCheck1Label;
char far *szCheck2Label;
char far *szCustomEditLabel;
UINT uCustomEditBase;
UINT uCustomEditLowLimit;
UINT uCustomEditHighLimit;
FARPROC lpfnConfigureSave;
int iInternalUseOnly;
char reserved[16];

} WW_CP_DLG_LABELS, FAR
*LPWW_CP_DLG_LABELS;

A variable with the type of WW_CP_PARAMS structure is a member of
WW_CP_DLG_LABELS and can be written and read directly from the server
configuration file. It is properly aligned for all platforms and has the following form:

typedef struct tagWW_CP_PARAMS {

unsigned long uBaud;
unsigned long uDataBits;
unsigned long uStopBits;
unsigned long Parity;
unsigned long uReplyTimeout;
unsigned long uCustomEdit;
short bCustom1Radio;
short bCustom2Radio;
short bCustom3Radio;
short bCheck1;
short bCheck2;
char reserved[30]; /* pad to 64 bytes */

} WW_CP_PARAMS, FAR *LPWW_CP_PARAMS;

For a full description of this structure, refer to the "I/O Server Toolkit Data Structures"
chapter.

10-106 Chapter 10

WWConfigureServer
BOOL WINAPI

WWConfigureServer(LPWW_SERV_PARAMS lpServerParams)

This function displays and manages the server parameter configuration dialog. This
dialog allows configuration of several parameters related to overall operation of the I/O
Server. These settings are written out as profile information to the WIN.INI file by this
dialog function and only take effect upon restarting of the server.

Parameter Description
lpServerParams Points to a WW_SERV_PARAMS structure that

contains initial and final dialog values and dialog control
information.

Return Value The return value is TRUE if the dialog box display is
successful. Otherwise, it is FALSE.

Comments The WW_SERV_PARAMS structure must be properly
initialized prior to calling this function. For a complete
description of how to implement, refer to "I/O Server
Toolkit Data Structures" for details.

Structure typedef struct tagWW_SERV_PARAMS {

HWND hwndOwner;
char far *szCfgPath;
int iSizeOfszCfgPath;
char far *szDriverName;
BOOL bIndefWriteRetrySupported;
BOOL bIndefWriteRetry;
BYTE bPreventChanges;
BYTE bNotService;
BYTE bCFGfileUnused;
BYTE nNTServiceSetting;
char far *szCaption;
char reserved[8];

} WW_SERV_PARAMS, FAR
*LPWW_SERV_PARAMS;

The value returned in nNTServiceSetting is an OR of the following bits:

#define WW_NTSERVICE_IS_SERVICE (0x01) /* set to run as NT service */
#define WW_NTSERVICE_CHANGED (0x02) /* setting was changed */
#define WW_NTSERVICE_ERROR (0x04) /* unable to establish new

 service settings */

API Function References 10-107

WWConfirm
BOOL WINAPI

WWConfirm(LPWW_CONFIRM lpConfirm)

This function displays and manages the confirmation dialog which indicates the
directory or file where server settings are to be saved. It should only be called when the
configuration file does not currently exist.

Parameter Description
lpConfirm Points to a WW_CONFIRM structure that contains

initial and final dialog values and dialog control
information.

Return Value The return value is TRUE if the dialog box display is
successful. Otherwise, it is FALSE.

Comments The WW_CONFIRM structure must be properly
initialized prior to calling this function. For a complete
description of this structure refer to the "I/O Server
Toolkit Data Structures" chapter.

Structure typedef struct tagWW_CONFIRM {

HWND hwndOwner;
* Identifies Window that owns the dialog box */
char far *szCfgPath;
/* points to a buffer that holds pathname */
int iSizeOfszCfgPath;
char far *szDriverName;
char reserved[16];

} WW_CONFIRM, FAR *LPWW_CONFIRM;

10-108 Chapter 10

WWDisplayAboutBox
BOOL WINAPI

WWDisplayAboutBox(LPWW_AB_INFO lpAbout)

This function displays and manages the dialog displaying copyright and version
information. It is generally intended for use by Wonderware servers since it displays the
Wonderware copyright information. However, it does provide facilities for easily
displaying version and date information and is available for use by other servers.

Parameter Description
lpAbout Points to a WW_AB_INFO structure that contains

dialog control information.

Return Value The return value is TRUE if the dialog box display is
successful. Otherwise, it is FALSE.

Comments The WW_AB_INFO structure must be properly
initialized prior to calling this function. For a complete
description on this structure, refer to the I/O Server
Toolkit Data Structures chapter.

Structure typedef struct tagWW_AB_INFO {

HWND hwndOwner;
char far *szDriverName;
char far *szId;
char far *szVersion;
char far *szCopyright;
HICON hIcon;
char far *szComment;
char reserved[12];

} WW_AB_INFO, FAR *LPWW_AB_INFO;

API Function References 10-109

WWDisplayAboutBoxEx
BOOL WINAPI

WWDisplayAboutBoxEx(LPWW_AB_INFO lpAbout,

 UINT iProductID,

 LPSTR szPrivateStr)

Display Common User Interface about box, using indicated product ID and private
string, or Wonderware Common Dialog about box, as is appropriate.

Note If you are developing products for Wonderware, this function will be of interest.
This function serves primarily to provide source code compatibility between FS2000
and pre-FS2000 servers.

Parameter Description
lpAbout Points to a WW_AB_INFO structure that contains

dialog control information.

iProductID Identifies the type of product. For a Win32 server, this
value should be COMMON_IOSERVER32ID. For the
Common UI splash screen, this is used to select the
bitmap file that will be displayed in the splash screen.

szPrivateStr Pointer to a string that can be displayed in the About
Box as additional information about the program.

Return Value The return value is TRUE if the dialog box display is
successful. Otherwise, it is FALSE.

Comments The WW_AB_INFO structure must be properly
initialized prior to calling this function. For a complete
description on this structure, refer to the I/O Server
Toolkit Data Structures chapter.

Structure typedef struct tagWW_AB_INFO {

HWND hwndOwner;
char far *szDriverName;
char far *szId;
char far *szVersion;
char far *szCopyright;
HICON hIcon;
char far *szComment;
char reserved[12];

} WW_AB_INFO, FAR *LPWW_AB_INFO;

10-110 Chapter 10

WWDisplayConfigNotAllow
VOID WINAPI

WWDisplayConfigNotAllow(LPSTR szAppName)

This function displays a message box indicating that configuration of the server is not
allowed while the server is in use.

Parameter Description
szAppName Pointer to a character string containing the server’s

application name.

Return Value None.

Comments None.

API Function References 10-111

WWDisplayErrorCreating
VOID WINAPI

WWDisplayErrorCreating(LPSTR szAppName,

LPSTR szFileName)
This function displays a message box indicating that an error was encountered while
creating the specified file.

Parameter Description
szAppName Pointer to a character string containing the server’s

application name.

szFileName Pointer to a character string containing the file name for
which the create operation failed.

Return Value None.

Comments None.

10-112 Chapter 10

WWDisplayErrorReading
VOID WINAPI

WWDisplayErrorReading(LPSTR szAppName,
LPSTR szFileName)

This function displays a message box indicating that an error was encountered while
reading the specified file.

Parameter Description
szAppName Pointer to a character string containing the server’s

application name.

szFileName Pointer to a character string containing the file name for
which the read operation failed.

Return Value None.

Comments None.

API Function References 10-113

WWDisplayErrorWriting
VOID WINAPI

WWDisplayErrorWriting(LPSTR szAppName,
LPSTR szFileName)

This function displays a message box indicating that an error was encountered while
writing the specified file.

Parameter Description
szAppName Pointer to a character string containing the server’s

application name.

szFileName Pointer to a character string containing the file name for
which the write operation failed.

Return Value None.

Comments None.

10-114 Chapter 10

WWDisplayKeyNotEnab
int WINAPI

WWDisplayKeyNotEnab(LPSTR szAppName)

This function displays a message box indicating that the installed security key does not
enable operation of this I/O Server.

Parameter Description
szAppName Pointer to a character string containing the server’s

application name.

Return Value Returns the MessageBox() return code.

Comments This function is not used by servers which do not utilize
a hardware security key.

API Function References 10-115

WWDisplayKeyNotInst
int WINAPI

WWDisplayKeyNotInst(LPSTR szAppName)

This function displays a message box indicating that the required security key is not
installed on the system.

Parameter Description
szAppName Pointer to a character string containing the server’s

application name.

Return Value Returns the MessageBox() return code.

Comments This function is not used by servers which do not utilize
a hardware security key.

10-116 Chapter 10

WWDisplayOutofMemory
VOID WINAPI

WWDisplayOutofMemory(LPSTR szAppName,
LPSTR szObjectName)

This function displays a message box indicating that an error was encountered while
allocating memory for the specified object.

Parameter Description
szAppName Pointer to a character string containing the server’s

application name.

szObjectName Pointer to a character string containing the description of
the object for which the memory allocating failed.

Return Value None.

Comments None.

API Function References 10-117

WWFormCpModeString
VOID WINAPI

WWFormCpModeString(LPWW_CP_PARAMS lpComPortParams,
int index,
char FAR *szMode)

This function creates a null-terminated string containing device control information.

Parameter Description
lpComPortParams Points to a WW_CP_PARAMS structure defining

communications port parameters. This structure is read
directly from the configuration file and returned by the
WWConfigureComPort() function.

index Communications port index (e.g. 1 for COM1).

*szMode Points to the string to receive the resulting device control
information string.

Return Value None.

Comments This string will have the same format as the MS-DOS
mode command.

10-118 Chapter 10

WWGetDialogHandle
HWND WINAPI

WWGetDialogHandle(void)

This function returns a window handle to the top-most dialog in the current application.

Parameter Description
Return Value Window handle of the top-most dialog in the current

application.

Comments None.

API Function References 10-119

WWGetDriverNameExtension
BOOL WINAPI
WWGetDriverNameExtension(LPSTR lpszNameExt,
 int nLen)
Get name extension for use in storing and retrieving Registry settings.

This function is implemented in the Wonderware Common Dialog DLL and is called by
GetServerNameExtension(). Locating the source of the extension string in a single
place helps ensure consistency between the server-specific code and the Common
Dialogs. The string is “_IOServer” and is appended to the “short” server name to
produce the full name of the server, which is used for accessing the Registry and the
Service Control Manager.

Parameter Description
lpszNameExt Points to a string buffer to which the extension string can

be copied.

nLen Length of the buffer at lpszNameExt.

Return Value True if successful.

Comments The string returned is “_IOServer” and is obtained from
the Wonderware Common Dialogs to ensure that it is
consistent.

10-120 Chapter 10

WWGetExeFilePath
char *

WWGetExeFilePath(char *szCfgPathStr,
 int maxlen)

Get path to directory where executable is located.

Replacement for _getcwd (temp_szCfgPath, PATH_STRING_SIZE);

Use this function to get the path to the server EXE file, instead of using getcwd() or
_getcwd(). The reason for this is that on a Windows NT/2000 platform, the CWD
(current working directory) may in fact be the directory of another program that is
starting up your server. [You can even encounter this problem when developing with
Microsoft Visual C++, if your project directory and your executable directory are
different.] WWGetExeFilePath() will get the correct path to the server executable,
regardless of how the server is invoked.

Parameter Description
szCfgPathStr Points to a string buffer into which the path string can be

stored.

maxlen Length of the buffer at szCfgPathStr.

Return Value Pointer to the path string. Returns NULL if
unsuccessful.

Comments The maximum length of a path string is defined in
Microsoft Visual C++ by the constant _MAX_PATH.

API Function References 10-121

WWGetOsPlatform
DWORD

WWGetOsPlatform(void);

Get platform, operating system info, summarize in global variable dwWWOsPlatform.

If dwWWOsPlatform is zero, perform operating system calls to determine the platform;
otherwise, just return the present value.

This routine is called by the I/O Server Toolkit early in its start-up sequence. You can
get the value from the global variable

 extern DWORD dwWWOsPlatform;

or you can force a re-read of the operating system by forcing the value to zero and
calling the function:

 dwWWOsPlatform = 0;
 WWGetOsPlatform();

The platform information is returned as a combination of bits, defined as follows:

#define WW_OSPLATFORM_W16 (0x00000001) /* Win 16 */

#define WW_OSPLATFORM_W32 (0x00000002) /* Win 32 */
#define WW_OSPLATFORM_WIN31 (0x00000100) /* Windows 3.1x */
#define WW_OSPLATFORM_WIN95 (0x00000200) /* Windows 95 */
#define WW_OSPLATFORM_NT (0x00000400) /* Windows NT */
#define WW_OSPLATFORM_WOW (0x00010000) /* WOW (Win16 on NT) */
#define WW_OSPLATFORM_INTEL (0x01000000) /* Intel processor */
#define WW_OSPLATFORM_ALPHA (0x02000000) /* DEC Alpha processor */
#define WW_OSPLATFORM_MIPS (0x04000000) /* MIPS processor */
#define WW_OSPLATFORM_PPC (0x08000000) /* Power PC processor */
#define WW_OSPLATFORM_UNKNOWN (0x80000000) /* unable to read info */

Example
/* determine platform */
WWGetOsPlatform();
if ((dwWWOsPlatform & (WW_OSPLATFORM_W32 | WW_OSPLATFORM_NT)) ==
 (WW_OSPLATFORM_W32 | WW_OSPLATFORM_NT))
{
 /* Win32 on Windows NT */
 debug ("Running on Windows NT");
}
else
{
 /* not Windows NT -- assume running on Windows 95 */
 debug ("Running on Windows 95 or earlier");
}

10-122 Chapter 10

wwHeap_AllocPtr
LPVOID WINAPI

wwHeap_AllocPtr(HHEAP hHeap,
WORD wGmemFlags,
DWORD dwSize)

wwHeap_AllocPtr() is used to allocate the specified amount of memory using the heap
specified by hHeap.

Parameter Description

hHeap The heap handle supplied by wwHeap_Init().

wGmemFlags Control flags for the allocated memory:

GMEM_ZEROINIT

GMEM_MOVEABLE

dwSize Number of bytes needed in this piece of memory.

Return Value A far pointer to the memory allocated. A NULL is
returned if the memory could not be allocated.

Comments When Windows memory is low or large blocks cannot
be allocated, a return of NULL may result. The
application must handle this situation gracefully. For
example, displaying a Message Box warning the
operator about low memory; then rejecting the current
operation.

Note Message Boxes indicating low memory must be SYSTEM modal or they won't
appear in low memory conditions. See WWDisplayOutofMemory() function.

API Function References 10-123

wwHeap_FreePtr
VOID WINAPI

wwHeap_FreePtr(HHEAP hHeap,
LPVOID lpPtr)

wwHeap_FreePtr() is used to free the allocated memory specified by lpPtr.

Parameter Description

hHeap The heap handle supplied by wwHeap_Init().

lpPtr Long pointer to the allocated memory.

Return Value None.

Comments None.

10-124 Chapter 10

wwHeap_Init
HHEAP WINAPI

wwHeap_Init(void)

wwHeap_Init() is used to create and initialize a heap.

Parameter Description

Return Value The handle for this heap. NULL means there was an
error and no memory heap was allocated.

Comments This call must be done prior to any
wwHeap_AllocPtr(), wwHeap_FreePtr(), and
wwHeap_ReAllocPtr().

API Function References 10-125

wwHeap_ReAllocPtr
LPVOID WINAPI

wwHeap_ReAllocPtr(HHEAP hHeap,
LPVOID lpPtr,
WORD wGmemFlags,
DWORD dwSize)

wwHeap_ReAllocPtr() is used to re-allocate the specified amount of memory used in
the heap specified by lpPtr.

Parameter Description

hHeap The heap handle supplied by wwHeap_Init().

lpPtr Long pointer to the allocated memory.

wGmemFlags Control flags for the allocated memory:

GMEM_ZEROINIT

GMEM_MOVEABLE

dwSize Number of bytes needed in this piece of memory.

Return Value A long pointer to the memory allocated. A NULL is
returned if the memory could not be allocated.

Comments When Windows memory is low or large blocks cannot
be allocated, a return of NULL may result. The
application must handle this situation gracefully. For
example, displaying a message box to warn the operator
about low memory; then rejecting the current operation.

Note Message boxes indicating low memory must be SYSTEM modal or they won't
appear in low memory conditions. See WWDisplayOutofMemory() function.

10-126 Chapter 10

wwHeap_Release
BOOL WINAPI

wwHeap_Release(HHEAP hHeap)

This function is used to release a heap which was created with wwHeap_Init().

Parameter Description

hHeap The heap handle supplied by wwHeap_Init().

Return Value TRUE indicates success. FALSE indicates failure.

Comments None.

API Function References 10-127

WWInitComPortComboBox
VOID WINAPI

WWInitComPortComboBox(HWND hDlg,
int iNumPorts,
int idControl)

This function creates a communications port selection box for display on a dialog. Most
commonly, it will be used in a topic configuration dialog for selection of the
communications port for serial communications.

Parameter Description
hDlg Window handle of the dialog to contain the combo box.

iNumPorts Number of communications ports to be listed.

idControl Control identifier of the selection box.

Return Value None.

Comments None.

10-128 Chapter 10

WWReadAnyMore
Note: the following functions have been retired, and no longer work:

WWReadVersion(), WWWriteVersion(),
WWReadAnyMore(), WWWriteAnyMore()

Either replace them with their corresponding UdXXX functions

UdReadVersion(), UdWriteVersion(),
UdReadAnyMore(), UdWriteAnyMore()

or create user-defined functions to accomplish the same result.

API Function References 10-129

WWReadVersion
Note: the following functions have been retired, and no longer work:

WWReadVersion(), WWWriteVersion(),
WWReadAnyMore(), WWWriteAnyMore()

Either replace them with their corresponding UdXXX functions

UdReadVersion(), UdWriteVersion(),
UdReadAnyMore(), UdWriteAnyMore()

or create user-defined functions to accomplish the same result.

10-130 Chapter 10

WWSelect
BOOL WINAPI

WWSelect(LPWW_SELECT lpSelectParams)

This function displays a dialog containing a list box which will contain a list of strings
specified by the server. The user will be provided options for adding, modifying, or
deleting entries from this list. This function is most commonly used to display a list of
topics or boards for configuration.

Parameter Description
lpSelectParams Points to a WW_SELECT structure that contains

information necessary for displaying the selection list.

Return Value The return value is TRUE if the dialog box display is
successful. Otherwise, it is FALSE.

Comments The WW_SELECT structure contains several pointers
to callback functions which must be supplied by the
server developer. For a complete description of how to
implement, refer to "I/O Server Toolkit Data Structure"
chapter.

Structure typedef struct tagWW_SELECT {

HWND hwndOwner;
char far *szTitle;
char far *szGroupBoxLabel;
GETLISTHEADPROC lpfnGetListHead;
GETNEXTNODEPROC lpfnGetNextNode;
GETNODENAMEPROC lpfnGetNodeName;
ADDNODEPROC lpfnAddNode;
CONFIGNODEPROC lpfnConfigNode;
DELETENODEPROC lpfnDeleteNode;
BOOL bAddDeleteModifyEnabled;
unsigned char bDoNotConfirmDeletes;
char reserved[15];

} WW_SELECT, FAR *LPWW_SELECT;

API Function References 10-131

WWSetAffinityToFirstCPU
void WINAPI

WWSetAffinityToFirstCPU(void)

This function locks the I/O Server execution to the first CPU on a SMP (symmetrical
multiprocessor) machine only.

Parameter Description
Return Value None.

Comments None.

10-132 Chapter 10

WWTranslateCDlgToWinBaud
UINT WINAPI

WWTranslateCDlgToWinBaud(UINT uCDlgBaud)

This function translates the WWCOMDLG constant for baud rate to the Windows
equivalent.

Parameter Description
uCDlgBaud Specifies WWCOMDLG constant representing the baud

rate for the characters sent and received.

Return Value The return value is the Windows constant corresponding
to the baud rate specified.

Comments None.

API Function References 10-133

WWTranslateCDlgToWinData
UINT WINAPI

WWTranslateCDlgToWinData(UINT uCDlgData)

This function translates the WWCOMDLG constant for number of data bits to the
Windows equivalent.

Parameter Description
uCDlgData WWCOMDLG constant representing number of bits in

the characters sent and received.

Return Value The return value is the Windows constant corresponding
to the number of data bits specified.

Comments None.

10-134 Chapter 10

WWTranslateCDlgToWinParity
UINT WINAPI

WWTranslateCDlgToWinParity(UINT uCDlgParity)

This function translates the WWCOMDLG constant for parity to the equivalent
Windows.

Parameter Description
uCDlgParity Specifies WWCOMDLG constant representing the

parity for the characters sent and received.

Return Value The return value is the Windows constant corresponding
to the parity specified.

Comments None.

API Function References 10-135

WWTranslateCDlgToWinStop
UINT WINAPI

WWTranslateCDlgToWinStop(UINT uCDlgStop)

This function translates the WWCOMDLG constant for number of stop bits to the
Windows equivalent.

Parameter Description
uCDlgStop WWCOMDLG constant representing number of stop

bits.

Return Value The return value is the Windows constant corresponding
to the number of stop bits specified.

Comments None.

10-136 Chapter 10

WWTranslateWinBaudToCDlg
UINT WINAPI

WWTranslateWinBaudToCDlg(UINT uBaud)

This function translates the Windows constant for baud rate to the WWCOMDLG
equivalent.

Parameter Description
uBaud Specifies baud rate for the characters sent and received.

Must be one of CS_BAUD_110, CS_BAUD_300,
CS_BAUD_600, CS_BAUD_1200, CS_BAUD_2400,
CS_BAUD_4800, CS_BAUD_9600,
CS_BAUD_14400, CS_BAUD_19200,
CS_BAUD_38400.

Return Value The return value is the WWCOMDLG constant
corresponding to the baud rate specified.

Comments None.

API Function References 10-137

WWTranslateWinDataToCDlg
UINT WINAPI

WWTranslateWinDataToCDlg(UINT uWinData)

This function translates the Windows constant for number of data bits (7 or 8) to the
WWCOMDLG equivalent.

Parameter Description
uWinData Specifies number of bits in the characters sent and

received. Can be 7 or 8.

Return Value The return value is the WWCOMDLG constant
corresponding to the number of data bits specified.

Comments None.

10-138 Chapter 10

WWTranslateWinParityToCDlg
UINT WINAPI

WWTranslateWinParityToCDlg(UINT uParity)

This function translates the Windows constant for parity to the WWCOMDLG
equivalent.

Parameter Description
uParity Specifies parity for the characters sent and received.

Must be one of CS_PARITY_EVEN,
CS_PARITY_ODD, CS_PARITY_NONE,
CS_PARITY_MARK, CS_PARITY_SPACE.

Return Value The return value is the WWCOMDLG constant
corresponding to the parity specified.

Comments None.

API Function References 10-139

WWTranslateWinStopToCDlg
UINT WINAPI

WWTranslateWinStopToCDlg(UINT uStopBits)

This function translates the Windows constant for number of stop bits to the
WWCOMDLG equivalent.

Parameter Description
uStopBits Specifies number of stop bits in the characters sent and

received. Must be ONESTOPBIT or TWOSTOPBITS.

Return Value The return value is the WWCOMDLG constant
corresponding to the number of stop bits specified.

Comments None.

10-140 Chapter 10

WWVerifyComDlgRev
BOOL WINAPI

WWVerifyComDlgRev(LPSTR szAppName,
int iRequiredRev,
int FAR *piMajorRev,
int FAR *piMinorRev)

This function verifies that the version of WWCOMDLG.DLL installed on the system is
at least as new as the specified version. It also returns the major and minor version
numbers of the installed WWCOMDLG.DLL to the server. This function is intended
for compatibility checking.

Parameter Description
szAppName Pointer to a character string containing the server’s

application name.

iRequiredRev Minimum required major version number for
WWCOMDLG.DLL.

piMajorRev Pointer to an integer to receive the major version number
of WWCOMDLG.DLL.

piMinorRev Pointer to an integer to receive the minor version number
of WWCOMDLG.DLL.

Return Value TRUE if the installed WWCOMDLG.DLL is compatible
with the server. FALSE otherwise.

Comments The server typically will call this function during
initialization in ProtInit() to verify that the installed
WWCOMDLG.DLL is compatible with the server. This
function will display a message box if the DLL is
incompatible. It is the server’s responsibility to exit if
the return value is FALSE.

API Function References 10-141

WWWriteAnyMore
Note: the following functions have been retired, and no longer work:

WWReadVersion(), WWWriteVersion(),
WWReadAnyMore(), WWWriteAnyMore()

Either replace them with their corresponding UdXXX functions

UdReadVersion(), UdWriteVersion(),
UdReadAnyMore(), UdWriteAnyMore()

or create user-defined functions to accomplish the same result.

10-142 Chapter 10

WWWriteVersion
Note: the following functions have been retired, and no longer work:

WWReadVersion(), WWWriteVersion(),
WWReadAnyMore(), WWWriteAnyMore()

Either replace them with their corresponding UdXXX functions

UdReadVersion(), UdWriteVersion(),
UdReadAnyMore(), UdWriteAnyMore()

or create user-defined functions to accomplish the same result.

11-1

C H A P T E R 1 1

The Chain Manager

This section describes the specifications and usage of the Chain Manager library, a
software tool for handling linked lists of any type of data – including mixed types.

Contents
! Background
! Chain Data Structures
! Setting Up a Chain and Linking Items
! Searching For Items in a Chain
! Removing Items From a Chain
! User-Supplied Chain Item Funchtions
! Extensible Array Data Structures
! Allocating, Extending, and Deleting an Extensible Array
! Examples of Usage
! Handling Linked Lists

11-2 Chapter 11

Background
The Chain Manager Library contains a set of software tools for handling linked lists and
extensible arrays. In many ways, it is like the container class library of C++ or Java.
However, it has been implemented in C and can be used with ordinary C or with C++
and does not require templates. Among the key capabilities provided by the Chain
Manager are the following:

 - Implementation of doubly-linked lists, with routines for adding items at the head of
the list, the tail of the list, or in the middle with or without sorting. No C++
templates are needed, and lists may contain mixed data types.

 - Pointers from one item to the next may be either C-type far pointers or unsigned
long offsets from a base pointer.

 - FindFirst () and FindNext () routines that accept pointers to user routines. These
permit easy searches of a list for items satisfying any criteria that the user wishes to
implement.

 - DeleteList () and DeleteFromList () routines that accept pointers to user routines.
These permit easy implementation of clean-up processes (much like destruct
methods in C++).

 - Implementation of extensible arrays. Allocation and extension routines accept
pointers to user routines that perform the actual memory management, permitting
allocation on the stack, heap, or anywhere else the user requires.

In many parts of an I/O Server, there are collections of structures that can be
implemented as linked lists. Among the most common are the following:

 - Lists of Boards, COM Ports, or other configured I/O channels
 - Lists of Topics
 - Lists of Messages
 - Symbol Tables

The process of writing servers can be greatly simplified if one can offload the
management of linked lists (which are here called CHAINs) to a set of standard, pre-
tested routines.

Typically, there are two basic kinds of data that might be linked into chains:

 - Data whose location in memory remains fixed
Examples: Topic configurations, Board or COM Port definitions, pending
messages

 - Data whose location might change
Example: Symbol Tables

The example I/O Server UDSAMPLE includes sample code which allocates a symbol
table as an array and links the elements together in two separate lists (with forward and
backward pointers): symbol entries in use and unused symbol entries. The symbol
table is extended by reallocating the array to a larger size. This means that the actual
location of the array elements in RAM may be different after the extension of the array.
The Chain Manager APIs take care of that by giving you a choice as to whether the
CHAIN uses pointers or offsets from a base pointer. The distinction is made by leaving
a base pointer NULL or setting it to the current base location. All the API calls for
handling the CHAIN are identical in both cases. The nice thing about this is that it
enables one to manage symbol tables VERY simply using the same set of linked list
routines for inserting, finding, unchaining, deleting, etc.

The Chain Manager also includes a set of APIs for handling extensible arrays.
Essentially, all you have to do is declare an extensible array structure, and provide the
routines for allocating, reallocating, and freeing the memory associated with the array.
This allows the programmer to specify whether to allocate from the stack, the heap, etc.

The Chain Manager 11-3

Chain Data Structures
Generally, a linked list can handle structures that have a CHAINLINK as the first part of
their structure:

typedef struct tagCHAINLINK FAR *LPCHAINLINK; /* pointer to chainlink */

typedef union tagCHAINLINKPTR /* chainlink member, pointer or offset */
 {LPCHAINLINK ptr;
 unsigned long offs;
 } CHAINLINKPTR;

typedef struct tagCHAINLINK /* chainlink structure */
 {CHAINLINKPTR next_item;

CHAINLINKPTR prev_item;
 } CHAINLINK;

Then the general item can have any size or structure the programmer requires, so long as
the first structure element is a CHAINLINK:

typedef struct tagITEM
 {chain_link

CHAINLINK;

 } ITEM;

Note that a list may contain items of different types and sizes. In such a mixed list, it is
up to the programmer to determine how to identify the type and/or size of any given
item. Items may be created on the stack, the heap, etc.

A list of items should be identified by a CHAIN manager structure

typedef struct tagCHAIN /* chain manager structure */
 {CHAINLINKPTR first_item;
 CHAINLINKPTR last_item;
 unsigned long item_count;
 char FAR *base;
 } CHAIN;

typedef CHAIN FAR *LPCHAIN; /* pointer to chain */

If the element base is NULL, the chain uses pointers for addressing. That is, the
forward and backward pointers in a CHAINLINK are pointers, and so are the pointers to
first_item and last_item. If the element base is set to a non-NULL location, the chain
uses offsets for addressing.

11-4 Chapter 11

Setting Up a Chain and Linking Items
/***/
/** Initialize a chain
 Clear all pointers, counts to create an empty chain
 Returns TRUE if successful **/
BOOL InitializeChain (LPCHAIN chain);

/***/
/** Set the base pointer for a based chain
 Returns TRUE if successful **/
BOOL SetChainBase (LPCHAIN chain, VOID FAR *new_base);

/***/
/** Insert an item at the head of a chain
 Returns TRUE if successful **/
BOOL InsertItemAtHead (LPCHAIN chain, LPCHAINLINK new_item);

/***/
/** Append an item at the tail of a chain
 Returns TRUE if successful **/
BOOL AppendItemAtTail (LPCHAIN chain, LPCHAINLINK new_item);

/***/
/** Insert an item before a specific point in a chain
 Returns TRUE if successful **/
BOOL InsertItemBefore (LPCHAIN chain,
 LPCHAINLINK new_item, LPCHAINLINK item);

/***/
/** Insert an item after a specific point in a chain
 Returns TRUE if successful **/
BOOL InsertItemAfter (LPCHAIN chain,
 LPCHAINLINK new_item, LPCHAINLINK item);

/***/
/** Insert an item in the middle of a chain
 using a comparison routine to keep the chain sorted
 Returns TRUE if successful **/
BOOL InsertItemInMiddle (LPCHAIN chain, LPCHAINLINK new_item,
 LPCOMPARISONROUTINE compare_routine, BOOL fwd);

Note The definition of LPCOMPARISONROUTINE is provided below, in the section
on User-Supplied Functions.

The Chain Manager 11-5

Searching For Items in a Chain
Generally, the programmer will search through a CHAIN in order to find a particular
item or an item with certain desired properties, do something with that item, and then
possibly search for and process other such items in the chain. To facilitate this process,
the Chain Manager provides several APIs for setting up a CHAINSCANNER which
handles the search. In a sense, this is much like setting up an iterator in C++ or Java;
but in practice it is more like using the C function FindFirstFile() with a FIND_DATA
structure, and continuing with the function FindNextFile().

The CHAINSCANNER structure is defined as follows:

typedef struct tagCHAINSCANNER /* chain scanner structure */

 {LPCHAIN chain; /* chain being searched */
 CHAINLINKPTR item; /* last item found, if any */
 BOOL forward; /* TRUE if scanning forward */
 void FAR *found_routine; /* returns TRUE if item found */
 void FAR *comparison_value; /* structure to use for evaluating criteria */
 } CHAINSCANNER;

typedef CHAINSCANNER FAR *LPCHAINSCANNER;

 /* pointer to chain scanner */

Note The definition of the found_routine is described below, in the section on User-
Supplied Functions.

/***/
/** Check whether item is in indicated chain
 Returns TRUE if item is in chain **/
BOOL IsInChain (LPCHAIN chain, LPCHAINLINK item);

/***/
/** Find first item in chain that satisfies criteria of found routine
 If found_routine is NULL, this routine uses AlwaysFound as a default.
 Search can proceed from head of chain (forward) or from tail (backward)
 Returns pointer if successful **/
LPCHAINLINK FindFirstItem (LPCHAIN chain, BOOL forward,
 LPFOUNDROUTINE found_routine,
 void FAR *comparisonValue,
 LPCHAINSCANNER scanner);

/***/
/** Find first item in chain that satisfies criteria of found routine, beginning with
 indicated item. This allows a search to begin in the middle of a chain, as needed,
 starting with a particular item.
 If found_routine is NULL, this routine uses AlwaysFound as a default.
 Search can proceed from head of chain (forward) or from tail (backward)
 If start_item is NULL, starts with the head or tail of the chain.
 Returns pointer if successful **/
LPCHAINLINK FindItemStartingAt (LPCHAINLINK start_item,
 LPCHAIN chain, BOOL forward,
 LPFOUNDROUTINE found_routine,
 void FAR *comparisonValue,
 LPCHAINSCANNER scanner);

11-6 Chapter 11

/***/
/** Find first item in chain that satisfies criteria of found routine, beginning with item
 that follows indicated item. This allows a search to begin in the middle of a chain,
 as needed, starting just after a particular item.
 If found_routine is NULL, this routine uses AlwaysFound as a default.
 Search can proceed from head of chain (forward) or from tail (backward)
 If start_item is NULL, starts with the head or tail of the chain.
 Returns pointer if successful **/
LPCHAINLINK FindItemFollowing (LPCHAINLINK start_item,
 LPCHAIN chain, BOOL forward,
 LPFOUNDROUTINE found_routine,
 void FAR *comparisonValue,
 LPCHAINSCANNER scanner);

/***/
/** Find next item in chain that satisfies criteria
 Returns pointer if successful **/
LPCHAINLINK FindNextItem (LPCHAINSCANNER scanner);

/***/
/** Get next item that scanner would examine.
 Note that this does not check whether the item satisfies the criteria.
 Also, it does not advance the scan pointer. **/
LPCHAINLINK GetScannerNextItem (LPCHAINSCANNER scanner);

The Chain Manager 11-7

Removing Items From a Chain
/***/
/** Remove item from chain
 Returns pointer if successful **/
BOOL UnchainItem (LPCHAIN chain, LPCHAINLINK item);

/***/
/** Perform indicated delete operation on item and remove it from chain
 If delete operation is unsuccessful, item is NOT removed from chain
 Returns TRUE if successful **/
BOOL DeleteItem (LPCHAIN chain,
 LPCHAINLINK item, DELETEROUTINE delete_routine);

/***/
/** Perform indicated delete operation on all items in chain and remove them from
 the chain
 If delete operation is unsuccessful on any item, operation stops and the pointer
 to the item is returned.
 If all items are deleted successfully, NULL is returned **/
LPCHAINLINK DeleteChain (LPCHAIN chain, DELETEROUTINE delete_routine);

Note The definition of the delete_routine is described below, in the section on User-
Supplied Functions.

11-8 Chapter 11

User-Supplied Chain Item Functions
For the search, comparison, and delete operations, the user must provide a routine to
perform the appropriate action. The following definitions are used:

typedef BOOL FAR FOUNDROUTINE (LPCHAINLINK item,
 void FAR *comparisonValue);
 /** result = TRUE if item satisfies criterion **/

typedef FOUNDROUTINE FAR *LPFOUNDROUTINE;

The pointers to item and to comparisonValue are of types LPCHAINLINK and void
FAR *, respectively, so that they can match any structures the programmer defines.
Inside the function, the programmer is responsible for casting item to a pointer to the
appropriate structure type and for defining the structure of the comparisonValue –
which can be anything from a simple basic type to something more complicated. The
programmer is also responsible for defining what portions of the structures need to be
compared and how to determine whether a match has been found.

typedef int FAR COMPARISONROUTINE (LPCHAINLINK item,
 LPCHAINLINK new_item);
 /** result = -1 if item < new_item
 = 0 if item = new_item
 = +1 if item > new_item **/

typedef COMPARISONROUTINE FAR *LPCOMPARISONROUTINE;

The pointers to item and new_item are of type LPCHAINLINK so they can match any
structures the programmer defines. As with the FOUNDROUTINE, the programmer is
responsible for casting item and new_item to the appropriate type(s) and for defining
how the comparison will be performed.

typedef BOOL FAR DELETEROUTINE (LPCHAINLINK item);
 /** result = TRUE if routine successful **/

typedef DELETEROUTINE FAR *LPDELETEROUTINE;

The pointer to item is of type LPCHAINLINK so that it can match any structure the
programmer defines. Inside the comparison function, the programmer is responsible for
casting item to the appropriate structure type, for performing the clean-up, and for
determining whether the clean-up was successful.

Also provided are two defaults, in case the user just wants to pass NULL for the pointer
to the found routine or to the delete routine:

/** default found routine -- always returns TRUE **/
BOOL FAR AlwaysFound (LPCHAINLINK item, void FAR *comparisonValue);

/** default delete routine -- does nothing, always returns TRUE **/
BOOL FAR AlwaysDeleted (LPCHAINLINK item);

The Chain Manager 11-9

Extensible Array Data Structures
An extensible array structure identifies where the start of the array is located, how it is to
be allocated, and how it is to be extended.

typedef struct tagEXTARRAY
 {void FAR *first_member; /* location of first member */
 unsigned long member_count; /* number of members in array */
 unsigned long member_size; /* number of bytes per member */
 unsigned long init_count; /* number of members to allocate first time */
 unsigned long extension_count; /* number of members to add when

 extending */
 void FAR *alloc_routine; /* pointer to allocation routine */
 void FAR *extend_routine; /* pointer to extension routine */
 void FAR *delete_routine; /* pointer to delete routine */
 } EXTARRAY;
typedef EXTARRAY FAR *LPEXTARRAY;

typedef LPVOID FAR ALLOCARRAYROUTINE (LPEXTARRAY array);
typedef ALLOCARRAYROUTINE FAR *LPALLOCARRAYROUTINE;

typedef LPVOID FAR EXTENDARRAYROUTINE (LPEXTARRAY array);
typedef EXTENDARRAYROUTINE FAR *LPEXTENDARRAYROUTINE;

typedef BOOL FAR DELETEARRAYROUTINE (LPEXTARRAY array);
 /** result = TRUE if routine successful **/
typedef DELETEARRAYROUTINE FAR *LPDELETEARRAYROUTINE;

11-10 Chapter 11

Allocating, Extending, and Deleting an Extensible Array
/***/
/** Initialize an extensible array:
 Set pointers to functions to allocate, extend, and delete array,
 Clear all pointers, counts to create an empty array
 Returns TRUE if successful **/
BOOL InitializeExtArray (LPEXTARRAY array,
 unsigned long initCount,
 unsigned long memberSize,
 unsigned long extCount,
 LPALLOCARRAYROUTINE allocRoutine,
 LPEXTENDARRAYROUTINE extendRoutine,
 LPDELETEARRAYROUTINE deleteRoutine);

/***/
/** Allocate an extensible array:
 Set all pointers, counts, and attempt to allocate memory
 Returns pointer to first array member if successful **/
LPVOID AllocExtArray (LPEXTARRAY array);

/***/
/** Extend an extensible array
 Update all pointers, counts, and attempt to allocate memory
 Returns TRUE if successful **/
LPVOID ExtendExtArray (LPEXTARRAY array);

Note: If ExtendExtArray () is called before AllocExtArray () has been called, the
software performs AllocExtArray () instead, ensuring that the array is allocated, if
possible.

/***/
/** Delete an extensible array
 Returns TRUE if successful **/
BOOL DeleteExtArray (LPEXTARRAY array);

/***/
/** Get pointer to indicated member of extensible array
 Returns pointer if valid, NULL if invalid or out of range **/
void FAR *GetExtArrayMemberPtr (LPEXTARRAY array, unsigned long index);

Note: The programmer is responsible for supplying routines to allocate, extend, and
delete the array. Examples are provided below for doing this on the heap.

The Chain Manager 11-11

Examples of Usage

Memory Management for Extensible Arrays
/***/
/** Allocate an extensible array on the heap,
 Returns pointer to first member if successful **/

LPHVOID FAR AllocateHeapArray (LPEXTARRAY array)
{
 unsigned long newSize;
 LPHVOID firstPtr;

 /* initialize return value */
 firstPtr = NULL;

 if (array != NULL)
 {
 /* attempt to allocate initial array */
 if ((array->member_size > 0) &&
 (array->init_count > 0))
 {
 newSize = array->init_count * array->member_size;
 firstPtr = wwHeap_AllocPtr (hHeap,
 GMEM_MOVEABLE | GMEM_ZEROINIT,
 newSize);
 }
 }

#ifdef TRACE_HEAP_ARRAY
 if (firstPtr)
 debug ("AllocateHeapArray successful" endln);
 else
 debug ("AllocateHeapArray failed" endln);
#endif
 /* return pointer, if successful */
 return (firstPtr);
} /* AllocateHeapArray */

/***/
/** Extend an extensible array on the heap,
 Returns new pointer to first member if successful **/

LPHVOID FAR ExtendHeapArray (LPEXTARRAY array)
{
 unsigned long newCount;
 unsigned long newSize;
 LPHVOID newFirst;

 /* initialize return value */
 newFirst = NULL;

 if (array != NULL)
 {
 /* if array is extensible, attempt to reallocate */
 if ((array->first_member != NULL) &&
 (array->member_size > 0) &&
 (array->extension_count > 0))

11-12 Chapter 11

{
 newCount = array->member_count +
 array->extension_count;
 newSize = newCount * array->member_size;
 newFirst = wwHeap_ReAllocPtr (hHeap,
 array->first_member,
 GMEM_MOVEABLE | GMEM_ZEROINIT,
 newSize);
 }
 }
 /* return pointer, if successful */
 return (newFirst);
} /* ExtendHeapArray */

/***/
/** Delete an extensible array on the heap,
 Returns TRUE if successful **/

BOOL FAR DeleteHeapArray (LPEXTARRAY array)
{
 BOOL status;

 /* initialize return value */
 status = FALSE;

 if (array != NULL)
 {
 if (array->first_member != NULL)
 {
 /* free the memory used for the array */
 wwHeap_FreePtr (hHeap, array->first_member);
 status = TRUE;
 }
 }
 /* indicate success or failure */
 return (status);
} /* DeleteHeapArray */

The Chain Manager 11-13

Handling Linked Lists
The examples below use a generic item of the following form:

 typedef struct tagITEM
 {CHAINLINK chain_link;
 int address;
 char name[20+1];
 int contents;
 int flags;
 } ITEM;

/***/
/** Allocate a new ITEM with indicated properties,
 Return pointer to item if successful, NULL otherwise **/
ITEM FAR *AllocItem (int new_addr, char *new_name,
 int new_contents, int new_flags)
{
 ITEM FAR *lpItem;

 /* attempt to allocate new item on heap */
 lpItem = wwHeap_AllocPtr (hHeap,
 GMEM_MOVEABLE | GMEM_ZEROINIT,
 sizeof(ITEM));
 if (lpItem)
 {
 /* item successfully created, initialize it */
 lpItem->address = new_addr;
 lstrcpy (lpItem->name, new_name);
 lpItem->contents = new_contents;
 lpItem->flags = new_flags;
 }
 /* return pointer to item or NULL */
 return (lpItem);
} /* AllocItem */

/***/
/** Destroy indicated ITEM,
 Return TRUE if successful **/
BOOL FAR DeleteItem (LPCHAINLINK lpItem)
{
 /* free item from heap */
 wwHeap_FreePtr (hHeap, lpItem);
 /* indicate successful */
 return (TRUE);
} /* DeleteItem */

11-14 Chapter 11

/***/
/** Check whether item has indicated name,
 Return TRUE if match found **/
BOOL FAR StringFound (LPCHAINLINK lpChain_link,
 void FAR *lpComparisonValue)
{
 BOOL status;
 char FAR *lpSt;
 ITEM FAR *lpItem;

 /* initialize return status */
 status = FALSE;
 /* cast parameters as appropriate structures */
 lpItem = (ITEM FAR *) lpChain_link;
 lpSt = (char FAR *) lpComparisonValue;
 /* check whether match was found, return indicator */
 if (lstrcmpi (lpItem->name, lpSt) >= 0)
 status = TRUE;
 /* indicate whether match was found */
 return (status);
} /* StringFound */

/***/
/** Compare indicated item1 to item2,
 Return –1 if <, 0 if =, +1 if > */ if item1 < item2 **/
int FAR StringCompare (LPCHAINLINK lpChain_link1,
 LPCHAINLINK lpChain_link2)
{
 int retval;
 ITEM FAR *lpItem1, FAR *lpItem2;

 /* cast parameters as appropriate structures */
 lpItem1 = (ITEM FAR *) lpChain_link1;
 lpItem2 = (ITEM FAR *) lpChain_link2;
 /* compare items, set return value */
 retval = lstrcmpi (lpItem1->name, lpItem2->name);
 if (retval > 0)
 retval = 1;
 if (retval < 0)
 retval = -1;
 return (retval);
} /* StringCompare */

The Chain Manager 11-15

/* Examples of chain operations */

CHAIN people;
ITEM FAR *lpItem;
CHAINSCANNER item_scanner;
char search_name[21];

/* initialize the list of people */
InitializeChain (&people);

/* allocate several entries and add to list;
 note that the list ends up sorted,
 but we’re not explictly sorting, here */
lpItem = AllocItem (3579, "Fred", 7, 0xF3);
AppendItemAtTail (&people, lpItem);
lpItem = AllocItem (2468, "Jane", 2, 0x0B);
AppendItemAtTail (&people, lpItem);
lpItem = AllocItem (2473, "Jane", 4, 0x37);
AppendItemAtTail (&people, lpItem);
lpItem = AllocItem (1234, "Joe", 5, 0x00);
AppendItemAtTail (&people, lpItem);

/* find all items with indicated name */
strcpy (search_name, "Jane");
lpItem = FindFirstItem (&people, SCAN_FROM_HEAD,
 StringFound, (LPSTR) search_name,
 &item_scanner);
while (lpItem) {
 /* display item and address */
 debug ("Item found with name %Fs has address %d",
 (LPSTR) lpItem->name, (int) lpItem->address);
 /* find next item, if any */
 lpItem = FindNextItem (&item_scanner);
}

/* create new item and insert in sorted list */
lpItem = AllocItem (9742, "George", 3, 0x77);
InsertItemInMiddle (&people, lpItem,
 StringCompare, SCAN_FROM_HEAD);

/* delete certain items from list, one by one */
lpItem = FindFirstItem (&people, SCAN_FROM_HEAD,
 NULL, NULL, &item_scanner);
while (lpItem) {
 if (lpItem->flags >= 0x50) {
 UnchainItem (&people, (LPCHAINLINK) lpItem);
 wwHeap_FreePtr (hHeap, lpItem);
 }
 /* find next item, if any */
 lpItem = FindNextItem (&item_scanner);
}

/* delete all items in list */
lpItem = DeleteChain (&people, DeleteItem);

11-16 Chapter 11

12-1

C H A P T E R 1 2

I/O Server Toolkit Data
Structures

The I/O Server Toolkit contains several structures associated with the API functions.
These structures are defined in alphabetic order in this chapter.

Contents
! Data Structure Definitions

12-2 Chapter 12

Data Structure Definitions

PTVALUE
#include "protypes.h"

typedef union {

DISC disc;
INTG intg;
REAL real;
WHMEM hString;

} PTVALUE;

The PTVALUE union contains a value to be passed between the I/O Server Toolkit and
the server. The element of the union which contains the value is determined by the
point’s type.

Element Description
disc Byte containing value for a discrete point.

intg Long-word containing value for an integer point.

real Float containing value for a real point.

hString Memory handle for string value.

Comments Do not manipulate the hString value directly. Use the
string manipulation functions StrValSetString(),
StrValSetNString(), StrValStringLock(),
StrValStringUnlock(), and StrValStringFree().

I/O Server Toolkit Data Structures 12-3

WW_AB_INFO
#include "wwcomdlg.h"

typedef struct tagWW_AB_INFO {
HWND hwndOwner;
char far *szDriverName;
char far *szId;
char far *szVersion;
char far *szCopyright;
HICON hIcon;
char *szComment;
char reserved[12];

} WW_AB_INFO, FAR *LPWW_AB_INFO;

The WW_AB_INFO structure is used to configure the Wonderware About box dialog
invoked by a call to WWDisplayAboutBox() or WWDisplayAboutBoxEx().

Element Description
hwndOwner Handle of window which owns the dialog box.

szDriverName Pointer to a string containing the server name.

szId Pointer to a string describing the purpose of the server.
For example, "GE Fanuc Series 90 Protocol".

szVersion Pointer to a string containing the version number for the
server. For example, "5.1".

szCopyright Pointer to a string containing the year for the copyright
information. For example, "1995".

hIcon Handle of server icon to be displayed within the dialog
box.

szComment Pointer to a string containing a comment to be displayed
in the dialog box.

reserved[12] Reserved buffer space. Currently unused, but should be
initialized to 0 by caller.

Comments None.

12-4 Chapter 12

WW_CONFIRM
#include "wwcomdlg.h"

typedef struct tagWW_CONFIRM {
HWND hwndOwner;
char far *szCfgPath;
int iSizeOfszCfgPath;
char far *szDriverName;
char reserved[16];

} WW_CONFIRM, FAR *LPWW_CONFIRM;

The WW_CONFIRM structure is used to configure the Save Configuration dialog
invoked by a call to WWConfirm(). This dialog is used to confirm the location for
saving server configuration information.

Element Description
hwndOwner Handle of window which owns the dialog box.

szCfgPath Points to a string which contains the path where the
configuration file is to be saved. Changes typed by the
user will be placed in this buffer when WWConfirm()
returns.

iSizeofszCfgPath Maximum allowed length for configuration file path
name.

szDriverName Pointer to string containing server name.

reserved[16] Reserved buffer space. Currently unused, but should be
initialized to 0 by caller.

Comments None.

I/O Server Toolkit Data Structures 12-5

WW_CP_DLG_LABELS
#include "wwcomdlg.h"

typedef struct tagWW_CP_DLG_LABELS {
HWND hwndOwner;
char far *szDriverName;
LPWW_CP_PARAMS lpDefaultCpParams;
WW_CP_PARAMS lpCpParams;
int iNumPorts;
BOOL bAllowBaud110;
BOOL bAllowBaud300;
BOOL bAllowBaud600;
BOOL bAllowBaud1200;
BOOL bAllowBaud2400;
BOOL bAllowBaud4800;
BOOL bAllowBaud9600;
BOOL bAllowBaud14400;
BOOL bAllowBaud19200;
BOOL bAllowBaud38400;
BOOL bAllowBaud56000; /* not used at this time */
BOOL bAllowBaud57600; /* not used at this time */
BOOL bAllowBaud115200; /* not used at this time */
BOOL bAllowBaud128000; /* not used at this time */
BOOL bAllowDatabits7;
BOOL bAllowDatabits8;
BOOL bAllowStopbits1;
BOOL bAllowStopbits2;
BOOL bAllowParityEven;
BOOL bAllowParityOdd;
BOOL bAllowParityNone;
BOOL bAllowParityMark;
BOOL bAllowParitySpace;
char far *szCustom1BoxLabel;
char far *szCustom1Radio1Label;
char far *szCustom1Radio2Label;
struct tagWW_CP_DLG_LABELS FAR *lpRadio2DlgLabels;
char far *szCustom2BoxLabel;
char far *szCustom2Radio1Label;
char far *szCustom2Radio2Label;
char far *szCustom3BoxLabel;
char far *szCustom3Radio1Label;
char far *szCustom3Radio2Label;
char far *szCheck1Label;
char far *szCheck2Label;
char far *szCustomEditLabel;
UINT uCustomEditBase;
UINT uCustomEditLowLimit;
UINT uCustomEditHighLimit;
FARPROC lpfnConfigureSave;
int iInternalUseOnly;
char reserved[16];

} WW_CP_DLG_LABELS, FAR *LPWW_CP_DLG_LABELS;

12-6 Chapter 12

The WW_CP_DLG_LABELS structure is used with the WWConfigureComPort()
function to control the serial port configuration dialog. This structure contains
numerous boolean flags used to enable or disable various radio buttons or entire group
boxes. The convention for group boxes and labeled controls is that if the label field is
NULL, the group box and its contents are hidden from view.

Element Description
hwndOwner Handle of window which owns the dialog box.

szDriverName Pointer to string containing server name.

lpDefaultCpParams Pointer to a WW_CP_PARAMS structure which
contains the default port parameter settings. These
settings will be applied to the current selection when the
"Defaults" button is selected. This structure should be
initialized by the caller.

lpCpParams Pointer to array of WW_CP_PARAMS structures. This
array contains the initial and final settings for all
communications ports. There is one entry for each
communications port in the system.

iNumPorts Integer value indicating total number of entries in the
lpCpParams array.

bAllowBaud110 Boolean value indicating whether the radio button for
110 baud should be enabled. A value of TRUE will
enable the button.

bAllowBaud300 Boolean value indicating whether the radio button for
300 baud should be enabled. A value of TRUE will
enable the button.

bAllowBaud600 Boolean value indicating whether the radio button for
600 baud should be enabled. A value of TRUE will
enable the button.

bAllowBaud1200 Boolean value indicating whether the radio button for
1200 baud should be enabled. A value of TRUE will
enable the button.

bAllowBaud2400 Boolean value indicating whether the radio button for
2400 baud should be enabled. A value of TRUE will
enable the button.

bAllowBaud4800 Boolean value indicating whether the radio button for
4800 baud should be enabled. A value of TRUE will
enable the button.

bAllowBaud9600 Boolean value indicating whether the radio button for
9600 baud should be enabled. A value of TRUE will
enable the button.

bAllowBaud14400 Boolean value indicating whether the radio button for
14400 baud should be enabled. A value of TRUE will
enable the button.

I/O Server Toolkit Data Structures 12-7

Element Description
bAllowBaud19200 Boolean value indicating whether the radio button for

19200 baud should be enabled. A value of TRUE will
enable the button.

bAllowBaud38400 Boolean value indicating whether the radio button for
38400 baud should be enabled. A value of TRUE will
enable the button.

bAllowBaud56000 Not supported at this time.

bAllowBaud57600 Not supported at this time.

bAllowBaud115200 Not supported at this time.

bAllowBaud128000 Not supported at this time.

bAllowDatabits7 Boolean value indicating whether the radio button for 7
data bits should be enabled. A value of TRUE will
enable the button.

bAllowDatabits8 Boolean value indicating whether the radio button for 8
data bits should be enabled. A value of TRUE will
enable the button.

bAllowStopbits1 Boolean value indicating whether the radio button for 1
stop bit should be enabled. A value of TRUE will
enable the button.

bAllowStopbits2 Boolean value indicating whether the radio button for 2
stop bits should be enabled. A value of TRUE will
enable the button.

bAllowParityEven Boolean value indicating whether the radio button for
even parity should be enabled. A value of TRUE will
enable the button.

bAllowParityOdd Boolean value indicating whether the radio button for
odd parity should be enabled. A value of TRUE will
enable the button.

bAllowParityNone Boolean value indicating whether the radio button for no
parity should be enabled. A value of TRUE will enable
the button.

bAllowParityMark Boolean value indicating whether the radio button for
mark parity should be enabled. A value of TRUE will
enable the button.

bAllowParitySpace Boolean value indicating whether the radio button for
space parity should be enabled. A value of TRUE will
enable the button.

szCustom1BoxLabel Pointer to character string for the first custom group box
label. If NULL, no first custom group box will be
displayed.

szCustom1Radio1Label Pointer to character string for first radio button in first
custom group box. Only used if szCustom1BoxLabel is
not NULL.

12-8 Chapter 12

Element Description
szCustom1Radio2Label Pointer to character string for second radio button in first

custom group box. Only used if szCustom1BoxLabel is
not NULL.

lpRadio2DlgLabels Currently unused.

szCustom2BoxLabel Pointer to character string for the second custom group
box label. If NULL, no second custom group box will
be displayed.

szCustom2Radio1Label Pointer to character string for first radio button in second
custom group box. Only used if szCustom2BoxLabel is
not NULL.

szCustom2Radio2Label Pointer to character string for second radio button in
second custom group box. Only used if
szCustom2BoxLabel is not NULL.

szCustom3BoxLabel Pointer to character string for the third custom group box
label. If NULL, no third custom group box will be
displayed.

szCustom3Radio1Label Pointer to character string for first radio button in third
custom group box. Only used if szCustom3BoxLabel is
not NULL.

szCustom3Radio2Label Pointer to character string for second radio button in
third custom group box. Only used if
szCustom3BoxLabel is not NULL.

szCheck1Label Pointer to character string for the first custom check box
label. If NULL, no first custom check box will be
displayed.

szCheck2Label Pointer to character string for the second custom check
box label. If NULL, no second custom check box will
be displayed.

szCustomEditLabel Pointer to character string containing the label for the
custom edit control. If NULL, custom edit control will
be displayed.

uCustomEditBase Indicates radix of the number system for custom edit
control. For example, 10 for decimal, 16 for hex, etc.

uCustomEditLowLimit Indicates lowest allowed number to be entered for
custom edit control.

uCustomEditHighLimit Indicates highest allowed number to be entered for
custom edit control.

lpfnConfigureSave Points to a function which will be called when the port
settings are to be saved. This function will be called
when the "Save" button is selected or when the port
settings have been modified and the user selects a new
port. No arguments are passed to this function. This
function is expected to write all configuration
information contained in the lpCpParams array.

I/O Server Toolkit Data Structures 12-9

Element Description
iInternalUseOnly Reserved for internal use. Do not use.

reserved[16] Reserved buffer space. Currently unused, but should be
initialized to 0 by caller.

Comments None.

12-10 Chapter 12

WW_CP_PARAMS
#include "wwcomdlg.h"

typedef struct tagWW_CP_PARAMS {

unsigned long uBaud;
unsigned long uDataBits;
unsigned long uStopBits;
unsigned long uParity;
unsigned long uReplyTimeout;
unsigned long uCustomEdit;
short bCustom1Radio;
short bCustom2Radio;
short bCustom3Radio;
short bCheck1;
short bCheck2;
char reserved[30]; /* pad to 64 bytes */

} WW_CP_PARAMS, FAR *LPWW_CP_PARAMS;

The WW_CP_PARAMS structure contains the configuration settings for a serial
communications port.

Element Description
uBaud Contains the WWCOMDLG constant indicating the

baud rate setting.

uDataBits Contains the WWCOMDLG constant indicating the
number of data bits setting.

uStopBits Contains the WWCOMDLG constant indicating the
number of stop bits setting.

uParity Contains the WWCOMDLG constant indicating the
parity setting.

uReplyTimeout Contains the reply timeout in seconds.

uCustomEdit Contains the setting for the custom edit control.

bCustom1Radio Boolean flag indicating which radio button in the first
custom group box is selected. A value of TRUE
indicates that the first radio button is selected. A value
of FALSE indicates that the second radio button is
selected.

bCustom2Radio Boolean flag indicating which radio button in the second
custom group box is selected. A value of TRUE
indicates that the first radio button is selected. A value
of FALSE indicates that the second radio button is
selected.

I/O Server Toolkit Data Structures 12-11

Element Description
bCustom3Radio Boolean flag indicating which radio button in the third

custom group box is selected. A value of TRUE
indicates that the first radio button is selected. A value
of FALSE indicates that the second radio button is
selected.

bCheck1 Boolean flag indicating whether the first custom
checkbox is selected. A value of TRUE indicates that it
is selected.

bCheck2 Boolean flag indicating whether the second custom
checkbox is selected. A value of TRUE indicates that it
is selected.

reserved[30] Reserved buffer space. Currently unused, but should be
initialized to 0 by caller.

Comments None.

12-12 Chapter 12

WW_SELECT
#include "wwcomdlg.h"

typedef struct tagWW_SELECT {
HWND hwndOwner;
char far *szTitle;
char far *szGroupBoxLabel;
GETLISTHEADPROC lpfnGetListHead;
GETNEXTNODEPROC lpfnGetNextNode;
GETNODENAMEPROC lpfnGetNodeName;
ADDNODEPROC lpfnAddNode;
CONFIGNODEPROC lpfnConfigNode;
DELETENODEPROC lpfnDeleteNode;
BOOL bAddDeleteModifyEnabled;
unsigned char bDoNotConfirmDeletes;
char reserved[15];

} WW_SELECT, FAR *LPWW_SELECT;

The WW_SELECT structure is used with the WWSelect() function to populate and
manipulate a list box of items. This list box is typically used for presenting a list of I/O
topics. Some servers also use this listbox for presenting a list of interface boards for
perusal. The dialog box associated with the list contains buttons for adding, modifying,
and deleting entries, as well as the standard listbox traversal operations (arrow keys,
etc.)

Element Description
hwndOwner Handle of window which owns the dialog box.

szTitle Pointer to a string to be placed in the title bar of the
dialog.

szGroupBoxLabel Pointer to a string to be used to label the list box.

lpfnGetListHead Pointer to a function which will be called to obtain a
pointer to the head entry of the list.

lpfnGetNextNode Pointer to a function which will be called to obtain the
successor to a given list entry.

lpfnGetNodeName Pointer to a function which will be called to obtain the
name of a given list entry.

lpfnAddNode Pointer to a function which will be called to add a new
entry to the list. This function is called in response to
the "New..." button and will most likely put up an
application dialog box for collecting information
regarding the new item.

I/O Server Toolkit Data Structures 12-13

Element Description
lpfnConfigNode Pointer to a function which will be called to modify an

existing entry in the list. This function is called in
response to the "Modify..." button and will most likely
put up an application dialog box for collecting
information regarding the item.

lpfnDeleteNode Pointer to a function which will be called to delete an
existing entry in the list. This function is called in
response to the "Delete" button. It is up to the
application to determine if the delete operation is
allowed. For example, you would not want to delete an
adapter card which is in use by any topic.

bAddDeleteModifyEnabled Boolean value indicating whether the Add and Delete
dialog buttons will be enabled. If TRUE, these buttons
will be enabled. This parameter will be passed as a
parameter to the lpfnConfigNode callback function.

bDoNotConfirmDeletes Boolean value indicating whether a delete confirmation
dialog should be automatically displayed. If this value is
FALSE, the delete confirmation dialog will be displayed.

reserved[15] Reserved buffer space. Currently unused, but should be
initialized to 0 by caller.

Comments None.

12-14 Chapter 12

WW_SERV_PARAMS
#include "wwcomdlg.h"

typedef struct tagWW_SERV_PARAMS {
HWND hwndOwner;
char far *szCfgPath;
int iSizeOfszCfgPath;
char far *szDriverName;
BOOL bIndefWriteRetrySupported;
BOOL bIndefWriteRetry;
BYTE bPreventChanges;
BYTE bNotService;
BYTE bCFGfileUnused;
BYTE nNTServiceSetting;
char far *szCaption;
char reserved[8];

} WW_SERV_PARAMS, FAR *LPWW_SERV_PARAMS;

The WW_SERV_PARAMS structure is used with the WWConfigureServer() function
to initialize and manipulate the "Server Settings" dialog. This dialog is used to view and
set server settings such as configuration file path and protocol timer tick.

Element Description
hwndOwner Handle of window which owns the dialog box.

szCfgPath Pointer to string containing the configuration file path
name.

iSizeOfszCfgPath Maximum allowed length for configuration file path
name.

szDriverName Pointer to string containing server name.

bIndefWriteRetrySupported Boolean value indicating whether the server supports
indefinite retries of failed writes. If TRUE, this option
will be provided to the user.

bIndefWriteRetry Boolean value indicating whether the server should retry
failed writes indefinitely. Only applies if the
bIndefWriteRetrySupported flag is TRUE.

bPreventChanges Boolean value indicating whether modifications should
be disallowed. If TRUE, the OK button will be disabled,
making the dialog read-only.

bNotService Boolean value indicating whether server can be
configured as an NT service. If TRUE, checking the
“Run automatically as NT service” checkbox will
generate an error message.

bCFGfileUnused Boolean value indicating whether a configuration file is
used. If TRUE, the “Configuration File Directory” edit
box will be disabled.

nNTServiceSetting Integer value, combining several flags. This value is
returned as a result from WWConfigureServer() to
indicate whether changes have been made for running
the server as an NT service and with what success.

szCaption Pointer to a string that is used as the title caption for the
dialog. If NULL, the default caption is used.

I/O Server Toolkit Data Structures 12-15

reserved[8] Reserved buffer space. Currently unused, but should be
initialized to 0 by caller.

Comments None.

The value returned in nNTServiceSetting is an OR of the following bits:
#define WW_NTSERVICE_IS_SERVICE (0x01) /* set to run as NT service */
#define WW_NTSERVICE_CHANGED (0x02) /* setting was changed */
#define WW_NTSERVICE_ERROR (0x04) /* unable to establish new

 service settings */

12-16 Chapter 12

13-1

C H A P T E R 1 3

Common Dialogs

This chapter describes usage of WWDLG32A, a Windows 98/NT/2000 Dynamic Link
Library (DLL), which provides a common look and feel throughout the I/O Server family.

Contents
! Main Menu
! Com Port Settings
! Topic Definition
! Server Settings
! Configuration Files
! Convenience Functions

13-2 Chapter 13

Main Menu

Serial Servers
Serial servers should use the following standardized main menus.

Board-based Servers
Board-based servers are nearly identical, with the exception of the wording on the
interface settings menu item:

Common Dialog 13-3

Com Port Settings

Serial port configuration is stored in a WW_CP_PARAMS structure. The Wonderware
servers read and write this structure directly to a configuration file. In addition, the
configuration dialog used by WWConfigureComPort() uses this structure to
communicate settings with the caller.

typedef struct tagWW_CP_PARAMS {
 unsigned long uBaud;
 unsigned long uDataBits;
 unsigned long uStopBits;
 unsigned long uParity;
 unsigned long uReplyTimeout;
 unsigned long uCustomEdit;
 short bCustom1Radio;
 short bCustom2Radio;
 short bCustom3Radio;
 short bCheck1;
 short bCheck2;
 char reserved[30]; /* pad to 64 bytes */
} WW_CP_PARAMS, FAR *LPWW_CP_PARAMS;

13-4 Chapter 13

The values stored in the fields are generally dialog control IDs. Translation functions are
provided to map Windows constants like CBR_9600, etc., to the proper values. The
following translators are for mapping the Windows constants for word size, stop bits,
parity, and baud rate to the WW_CP_PARAMS equivalents:

UINT WINAPI WWTranslateWinDataToCDlg(UINT);

UINT WINAPI WWTranslateWinStopToCDlg(UINT);

UINT WINAPI WWTranslateWinParityToCDlg(UINT);

UINT WINAPI WWTranslateWinBaudToCDlg(UINT);

The following translators are for mapping the WW_CP_PARAMS constants for word
size, stop bits, parity, and baud rate:
UINT WINAPI WWTranslateCDlgToWinData(UINT);
UINT WINAPI WWTranslateCDlgToWinStop(UINT);
UINT WINAPI WWTranslateCDlgToWinParity(UINT);

UINT WINAPI WWTranslateCDlgToWinBaud(UINT);

The custom fields are for parameters which are peculiar to the particular type of serial
server. MODBUS, for instance, uses these fields to indicate whether the communication
port is connected to an ASCII- or an RTU- speaking host.

The appearance of the serial port configuration dialog is controlled by the
WW_CP_DLG_LABELS structure. This structure contains numerous boolean flags used
to enable or disable certain radio buttons, e.g. bAllowParityMark, or entire group boxes,
e.g. szCustom1BoxLabel. The convention for group boxes and labeled controls is that if
the label field is NULL, the group box and its contents are hidden from view.

Common Dialog 13-5

The following illustration shows the locations of the custom group boxes. Some fields
within the group boxes are mutually exclusive, and are therefore obscured in the picture.

The initial settings for all ports are passed in the lpCpParams[] array in the
WW_CP_DLG_LABELS structure. This array of WW_CP_PARMS structures has one
entry for each communication port in the system. There should be one entry in the
lpCpParams array for each entry in the "Com Port" list box. The size of the lpCpParams
array is indicated in the iNumPorts field. Changes to port configuration are placed in the
appropriate lpCpParams entry for the port selected by the list box.

The "Defaults" button copies the settings from the default port parameters structure
lpDefaultCpParams. This structure should be initialized appropriately.

Pressing the "Save" button invokes the lpfnConfigureSave callback function. Likewise, if
the port settings have been modified and the user selects a new port in the "Com Port" list
box, the lpfnConfigureSave callback is invoked after confirmation from the user. There are
no arguments to lpfnConfigureSave. The save function is expected to write all
configuration information in the lpCpParams array.

13-6 Chapter 13

The CustomEdit control is intended for entering a numeric value. The uCustomEditBase
field determines the radix for the value (e.g. uCustomEditBase of 16 will allow hex
numbers to be entered). The uCustomEditLowLimit and uCustomEditHighLimit are used
by WWConfigureComPort to validate the entry. Values below the LowLimit or above
the HighLimit will be rejected (with a message box.)

The WW_CP_DLG_LABELS structure is shown below in its entirety.
typedef struct tagWW_CP_DLG_LABELS {
 char far *szC
 HWND hwndOwner;
 char far *szDriverName;
 LPWW_CP_PARAMS lpDefaultCpParams;
 LPWW_CP_PARAMS lpCpParams;
 int iNumPorts;
 BOOL bAllowBaud110;
 BOOL bAllowBaud300;
 BOOL bAllowBaud600;
 BOOL bAllowBaud1200;
 BOOL bAllowBaud2400;
 BOOL bAllowBaud4800;
 BOOL bAllowBaud9600;
 BOOL bAllowBaud14400;
 BOOL bAllowBaud19200;
 BOOL bAllowBaud38400;
 BOOL bAllowBaud56000; /* not used at this time */
 BOOL bAllowBaud57600; /* not used at this time */
 BOOL bAllowBaud115200; /* not used at this time */
 BOOL bAllowBaud128000; /* not used at this time */
 BOOL bAllowDatabits7;
 BOOL bAllowDatabits8;
 BOOL bAllowStopbits1;
 BOOL bAllowStopbits2;
 BOOL bAllowParityEven;
 BOOL bAllowParityOdd;
 BOOL bAllowParityNone;
 BOOL bAllowParityMark;
 BOOL bAllowParitySpace;
 char far szCustom1BoxLabel;
 char far *szCustom1Radio1Label;
 char far *szCustom1Radio2Label;
 struct tagWW_CP_DLG_LABELS FAR
 lpRadio2DlgLabels;/ Not used at this time */
 char far *szCustom2BoxLabel;
 char far *szCustom2Radio1Label;
 char far *szCustom2Radio2Label;
 char far *szCustom3BoxLabel;
 char far *szCustom3Radio1Label;
 char far *szCustom3Radio2Label;
 char far *szCheck1Label;
 char far *szCheck2Label;
 char far *szCustomEditLabel;
 UINT uCustomEditBase;
 UINT uCustomEditLowLimit;
 UINT uCustomEditHighLimit;
 FARPROC lpfnConfigureSave;
 int iInternalUseOnly;
 char reserved[16];
} WW_CP_DLG_LABELS, FAR *LPWW_CP_DLG_LABELS;

Common Dialog 13-7

The "iInternalUseOnly" and "reserved" fields are for Wonderware use only. Before using,
always initialize these fields to zero (a memset(...,0,sizeof WW_CP_DLG_LABELS)
works nicely) to ensure compatibility with future versions of the WWDLG32A.

void WINAPI WWFormCpModeString(LPWW_CP_PARAMS, int, char FAR *);

Given a port parameter array, and a port number (1-based, i.e., 1 is COM1), return a
string suitable for use in a Windows OpenCom call (e.g. "COM1:9600,8,N,1").

void WINAPI WWInitComPortComboBox(HWND, int iNumPorts, int

idControl);

Given the control ID of a combo box (typically CI_TEXT_COMM_PORT for the
standard Communication Port Settings dialog) and the number of ports addressable for the
platform (typically 9 for Windows 3.1 and 32 for Windows NT), load the combo box
with the names of the ports (e.g. COM1, COM2...COM32).

BOOL WINAPI WWConfigureComPort(LPWW_CP_DLG_LABELS);

Given the dialog labels structure, display and run the "Communication Port Settings"
dialog.

13-8 Chapter 13

Topic Definition

The WW_SELECT data structure and WWSelect are used for populating and
manipulating a listbox of items. This listbox is typically used for presenting a list of
configured topics. Some servers also use this listbox for presenting a list of interface
boards for perusal. The dialog box associated with the list contains buttons for adding,
modifying, and deleting entries, as well as the standard listbox traversal operations (arrow
keys, etc.)

The structure WW_SELECT contains the parameters for the WWSelect listbox. The
fields of WW_SELECT are defined as follows:

HWND hwndOwner;

This is the window handle of the caller.

char far *szTitle;

This is the title string to place in the title bar of the selection dialog ("Topic Definition" in
the above dialog.)

char far *szGroupBoxLabel;

This is the label to place above the list box ("Topics" in the above dialog.)
typedef void far *(CALLBACK *GETLISTHEADPROC)(void);

GETLISTHEADPROC lpfnGetListHead;

This entry point is called to obtain a pointer to the list head. WWSelect does not interpret
the pointers representing listbox entries, other than passing them back to the manipulator
functions represented here.
typedef void far *(CALLBACK *GETNEXTNODEPROC)(void far *);

GETNEXTNODEPROC lpfnGetNextNode;

Get the successor to a given list node.
typedef char far *(CALLBACK *GETNODENAMEPROC)(void far *);

 GETNODENAMEPROC lpfnGetNodeName;

Get the name of a given node, (i.e. the Key field) for use in the listbox.
typedef void (CALLBACK *ADDNODEPROC)(HWND);

 ADDNODEPROC lpfnAddNode;

Common Dialog 13-9

Add a new node to the list. This routine is called in response to the "New..." button, and
will most likely need to put up an application specific dialog box for collecting
information regarding the new item. Note that there are no list element parameters to the
AddNode function -- it is up to the application to find the proper position in the list for the
new element.

BOOL bAddDeleteModifyEnabled;

If this value is TRUE, then the Delete and Modify dialog buttons will be enabled.
Otherwise, the Delete and Modify dialog buttons will be disabled and the lpfnConfigNode
and lpfnDeleteNode callbacks will never be invoked. Note that the Delete and Modify
buttons are also disabled when the listbox is empty.

unsigned char bDoNotConfirmDeletes;

If this value is FALSE, then prior to calling the lpfnDeleteNode, the following
confirmation dialog will be posted when the Delete button is pressed:

If the value is TRUE, the confirmation dialog will not appear. If the confirmation dialog is
enabled, and the user selects the "No" button, the lpfnDeleteNode function will not be
called. It is sometimes desirable to perform specialized feasibility checking before
presenting the confirmation dialog. In this case, enable the bDoNotConfirmDeletes flag,
then perform any feasibility checking in the lpfnDeleteNode function before presenting
your own confirmation dialog. (See the lpfnDeleteNode example, below.)
typedef void (CALLBACK *CONFIGNODEPROC)(HWND, void far *, BOOL);

CONFIGNODEPROC lpfnConfigNode;

Configure the given list entry. In general, this will put up the same dialog as for the
"New..." button, and will initialize the dialog with the values from the given entry. It is
reasonable for the user to be allowed to change the name of the entry, thereby creating a
new entry. This is equivalent to a "New..." operation.
typedef void (CALLBACK *DELETENODEPROC)(HWND, void far *);

 DELETENODEPROC lpfnDeleteNode;

Delete the given entry. Called in response to the "Delete" button. It is up to the
application to determine if the operation is possible or desirable. For example, the
MBPLUS server uses the WWSelect listbox for listing SA85 adapter cards. The
lpfnDeleteNode callback in this case checks to see if the given adapter card is in use by
any topics. If so, the user is notified and the card is not deleted.

char reserved[15];

Expansion space is reserved in the WW_SELECT structure. Always initialize this
reserved space to 0 to ensure compatibility with future versions of WWDLG32A.

BOOL WINAPI WWSelect(LPWW_SELECT);

Invoke the WWSelect() function with the completed WW_SELECT structure to display
and process the selection listbox.

13-10 Chapter 13

Server Settings

The "I/O Server Settings" dialog is one of the simplest dialogs in the WWDLG32A. In
response to the "Server Settings..." menu item, the server should initialize a
WW_SERV_PARAMS structure with the HWND of the main window, a buffer
containing the initial configuration path name (a backslash terminated directory name), the
size of the buffer, the name of the driver, and a flag indicating whether the server can
support the "Server as a service" capability.

The server keeps the configuration path name as a Windows "ProfileString" entry. In the
absence of a profile string (e.g. the first time the server is run) the current working
directory is provided as the initial value for this string. The values for "Protocol Timer
Tick" and "NetDDE being used" and "Start automatically…" are automatically maintained
as the "ProfileInt" entries "ProtocolTimer", "ValidDataTimeout". The "ProtocolTimer"
value is suitable for use in the call to the Toolkit routine SysTimerSetupProtTimer. The
"NetDDE being used" flag sets the "ValidDataTimeout" profile entry (an integral value) to
a value which is suitable for use in the ProtGetValidDataTimeout Toolkit callback. The
setting for whether the server is an NT service is stored in the registry in
HKEY_LOCAL_MACHINE\SOFTWARE\WONDERWARE\<server registry
name>\NTSERVICE and in
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\<server registry
name>.

Common Dialog 13-11

To ensure compatibility with future versions of WWDLG32A, always initialize the
reserved area to zero.

typedef struct tagWW_SERV_PARAMS {
 HWND hwndOwner; /* Identifies Window that owns the
dialog box */
 char far *szCfgPath; /* points to a buffer that holds
pathname */
 int iSizeOfszCfgPath;
 char far *szDriverName;
 BOOL bIndefWriteRetrySupported;
 BOOL bIndefWriteRetry;
 BYTE bPreventChanges;
 BYTE bNotService;
 BYTE bCFGfileUnused;
 BYTE nNTServiceSetting;
 char far *szCaption;
 char reserved[8];
} WW_SERV_PARAMS, FAR *LPWW_SERV_PARAMS;

BOOL WINAPI WWConfigureServer(LPWW_SERV_PARAMS);

WWConfigureServer puts up the "Server Settings" dialog box, initialized with the values
from the given LPWW_SERV_PARAMS structure and the above mentioned WIN.INI
profile settings. This function returns TRUE if the OK button was pressed, otherwise it
returns FALSE.

The returned value in nNTServiceSetting can be examined to determine whether the server
has been configured as a Windows NT service, whether that configuration has changed,
and whether there was any problem updating the system.

13-12 Chapter 13

Configuration Files

The "Save Configuration" dialog is a convenience dialog. The server should put up this
dialog when a "Save" operation is underway, and the configuration file does not exist in
the named directory. This is the last chance for the user to avoid putting a configuration
file in the wrong directory.

The WW_CONFIRM structure is used to configure the Save Configuration dialog. The
szCfgPath field should be initialized with the path where the configuration file is to be
saved. Changes typed by the user will be placed in this buffer when WWConfirm returns.
If the "Make this the default configuration file" box is checked, the path in the edit box is
written to the "ConfigurationFile" WIN.INI profile string. The "Make this the default
configuration file" box will be disabled if the contents of the edit field matches the current
default configuration file directory.

The path name is validated before being written to the configuration file. Only valid,
existing directory names are accepted.
typedef struct tagWW_CONFIRM {
 HWND hwndOwner; /* Identifies Window that owns the
dialog box */
 char far *szCfgPath; /* points to a buffer that holds
pathname */
 int iSizeOfszCfgPath;
 char far *szDriverName;
 char reserved[16];
} WW_CONFIRM, FAR *LPWW_CONFIRM;

HWND WINAPI WWGetDialogHandle(void);

Since WWConfirm is generally called from within a dialog procedure, it is not
appropriate for the HWND in WW_CONFIRM to be the main window. Instead, use
WWGetDialogHandle to return the window handle for the currently active dialog for use
in the hwndOwner field.

BOOL WINAPI WWConfirm(LPWW_CONFIRM);

WWConfirm puts up the "Save Configuration" dialog box.

Common Dialog 13-13

Convenience Functions
Many Wonderware servers use configuration files with sentinel codes embedded which
indicate if more configuration information follows. These functions encapsulate this logic.
UdWriteAnyMore writes the sentinel indicating if more information will be written to the
file. UdReadAnyMore reads this sentinel value. Both functions return TRUE unless
there was an I/O error, in which case they return FALSE.

void WINAPI WWCenterDialog(HWND hDlg);

Centers the given dialog within the screen dimensions.
void WINAPI WWDisplayErrorReading(LPSTR szAppName, LPSTR
szFileName);
void WINAPI WWDisplayErrorWriting(LPSTR szAppName, LPSTR
szFileName);
void WINAPI WWDisplayErrorCreating(LPSTR szAppName, LPSTR
szFileName);

Display a message box containing a message indicating one of three types of file I/O error.
void WINAPI WWDisplayOutofMemory(LPSTR szAppName, LPSTR
szObjectName);

Display a "Hard System Modal Message Box" indicating an inability to allocate memory
for the given object.

int WINAPI WWDisplayKeyNotEnab(LPSTR szAppName);

int WINAPI WWDisplayKeyNotInst(LPSTR szAppName);

Display a message box indicating problems validating security information with the copy
protection device. WWDisplayKeyNotEnab complains that the key does not contain
access bits for the current server. WWDisplayKeyNotInst complains that the key is not
responding.

13-14 Chapter 13

void WINAPI WWDisplayConfigNotAllow(LPSTR szAppName);

Display a message indicating that online configuration is not allowed. Servers display this
message box if the "Com Port Settings..." or "Topic Definition..." menu items are selected
when any topics are open.

14-1

C H A P T E R 1 4

Adding the Toolkit to an
Existing Windows Application

The Toolkit can be used to add DDE (Dynamic Data Exchange) or SuiteLink capability
to an existing Windows application. In order to accomplish this, there are several things
that need to be done:

•••• Must link with the Toolkit library, it is named TOOLKIT7.LIB.

•••• Must call UdInit() early in your application to initialize the Toolkit.

•••• Must call UdTerminate() at application shutdown time to close the Toolkit.

•••• Application must not register classes containing the application name returned by
ProtGetDriverName() or the string "WddeWnd".

•••• Application must define external data hWndParent and hInst. These variables are
initialized by UdInit().

extern HWND hWndParent
extern HANDLE hInst

•••• Application must not use global variable hWndParent.

• File UDMAIN.C or file containing equivalent functionality must be added to the
application and linked in.

• Unknown messages must be passed to ProtDefWindowProc(), not
DefWindowProc ().

• User must define the boolean variable bLinkedToExistingEXE and initialize it to
TRUE before calling UdInit().

extern BOOL bLinkedToExistingEXE = TRUE;

•••• Application’s resource (.RC) file must contain STRINGTABLE for protlib.str.

• Application’s resource (.RC) file must include tkitstrt.rci.

To add HELP to your application you must do your own calls to WINHELP. The
Toolkit cannot do this for you.

14-2 Chapter 14

15-1

C H A P T E R 1 5

Running as an NT Service

This section describes how to set up an I/O Server to run as a Windows NT service.

Contents
! Overview of Services
! Configuration Dialog
! Driver Name
! Service Dependencies

15-2 Chapter 15

Overview of Services
On Windows 98, an I/O Server runs as an application. Typically, this is also how a
server runs on a Windows NT/2000 platform. However, it is also possible to configure
a server to run on Windows NT/2000 as a service.

From a functional standpoint, the main difference between a service and an application
is this: on Windows NT/2000, someone has to be logged on to the computer for an
application to run. That is, the computer boots up, Windows is started up, and any
applications can then be started. Applications can even be started automatically, e.g. by
placing icons for them in the STARTUP folder. This can be set up to happen
completely automatically from a cold start on Windows 98. However, on Windows NT/
2000, the programs in the STARTUP folder are not activated until a user logs on. This
can be a problem if someone is trying to set up a completely automatic start-up, as might
be desirable for handling recovery from a power-loss.

Windows NT/ 2000 services run under a “system account” that starts up during the boot-
up process for Windows NT/ 2000. Many functions are provided by programs running
as services “in the background,” such as TCP/IP. Also, since some services are
dependent upon having other services up and running before they can start, Windows
NT/2000 provides several ways of controlling the order in which services are started up.

Once services are in place and running, a computer running Windows NT/2000 can
continue running these services, even if no user ever logs onto the machine. Also, if
someone does log on, performs some operations, and logs off, programs running as
services continue to function after the user logs off from the system.

Before a service can be started, it must be installed via the Service Control Manager.
Once it is installed, the start-up for the service can be configured in one of three ways:
automatic, manual, or disabled. An I/O Server should be configured to start
automatically, since the intention of making an I/O Server run as a service is to have it
start as part of the boot-up process for Windows NT/ 2000.

More details about Windows NT/2000 and services can be found in Microsoft’s
manuals and help files.

Running as an NT Service 15-3

Configuration Dialog
The simplest way to set up an I/O Server as a Windows NT service is to use the
Wonderware Common Dialog for Server Configuration. This dialog contains a
checkbox that enables or disables running the server as an NT service:

When the user clicks this checkbox and then clicks OK, the Common Dialog DLL does
two things:

1. It attempts to set a flag in the Registry indicating to the server that it should run as
an NT service. This flag is in the key HKEY_LOCAL_MACHINE\SOFTWARE\
Wonderware\<server extended name> and is named NTService: REG_DWORD.
For example, for the server TESTPROT, the entry would be

HKEY_LOCAL_MACHINE
SOFTWARE

Wonderware
TESTPROT_IOServer

With value NTService: REG_DWORD: 1.

2. It attempts to get the Service Control Manager (SCM) to install the server as a
service, mark it for automatic start-up, and to set up a standard set of dependencies
on other services. These settings can be found in HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\Services\<server extended name>. For example, for
the server TESTPROT, the entry would be

HKEY_LOCAL_MACHINE
SYSTEM

CurrentControlSet
Services

TESTPROT_IOServer

Various Registry values get set, including ImagePath (the path to the executable),
Start (set to 0x2, i.e. automatic), and DependOnService (set to a list of services
upon which the server depends – see below).

If the attempt to establish these settings is successful, the server is ready to run as a
service. To ensure proper operation, you should shut the server down and reboot the
computer.

15-4 Chapter 15

Typically, a server calls the Server Configuration dialog in a very generic way:
/***/
/* set general I/O server settings */

VOID
WINAPI
ServerSettings (HWND hWnd)
{
 WW_SERV_PARAMS ServParams;
 char driverName [20];
 char temp_szCfgPath [PATH_STRING_SIZE];

 /* get name of driver application */
 ProtGetDriverName (driverName, sizeof (driverName));

 /* try reading the configuration path from WIN.INI */
 temp_szCfgPath [0] = 0;
 GetProfileString(driverName,
 NAME_PATH,
 DEFAULT_PATH,
 temp_szCfgPath,
 PATH_STRING_SIZE);
 if (strlen (temp_szCfgPath) == 0) {
 /* no config path defined, use default path to EXE */
 WWGetExeFilePath(temp_szCfgPath, PATH_STRING_SIZE);
 }

 /* ensure pathname ends with a backslash */
 if (temp_szCfgPath[strlen (temp_szCfgPath) - 1] != '\\') {
 strcat (temp_szCfgPath, "\\");
 }

 /* set up I/O server settings via common dialog */
 memset (&ServParams, 0, sizeof ServParams);
 ServParams.hwndOwner = hWnd;
 ServParams.szCfgPath = (LPSTR) temp_szCfgPath;
 ServParams.iSizeOfszCfgPath = PATH_STRING_SIZE;
 ServParams.szDriverName = GetAppName();
 ServParams.bIndefWriteRetrySupported = FALSE;
 if (iAllocatedDevices) {
 /* protocol running, don't reconfigure now */
 WWDisplayConfigNotAllow (GetAppName ());
 ServParams.bPreventChanges = 1;
 } else {
 /* nothing allocated, go ahead and configure */
 ServParams.bPreventChanges = 0;
 }
 /* configure, or allow user to look at configuration */
 WWConfigureServer((LPWW_SERV_PARAMS) &ServParams);
} /* ServerSettings */

To disallow the user from checking the “run as a service” checkbox, before you call
WWConfigureServer(), insert the following statements:
/* disallow setting as an NTservice */
ServParams.bNotService = TRUE;

This does not disable the checkbox; but the server will display an error message if the
user attempts to check it and clicks OK.

Running as an NT Service 15-5

After WWConfigureServer() returns, you can check whether the server was configured
as an NTservice, whether that setting was changed, and whether there was any problem
updating the Registry:
if ((ServParams.nNTServiceSetting & WW_NTSERVICE_IS_SERVICE)
 != 0) {
 /* server is configured as an NT service */
}
if ((ServParams.nNTServiceSetting & WW_NTSERVICE_CHANGED) != 0) {
 /* setting was changed by the user */
}
if ((ServParams.nNTServiceSetting & WW_NTSERVICE_ERROR) != 0) {
 /* something went wrong updating the Registry */
}

You can use these in various combinations to determine whether to change Registry
entries for additional drivers, etc. according to whether the server is being set up as a
service or as an application. See the section below on Dependencies.

If the user un-checks the checkbox, the Common Dialog DLL does not uninstall the
server. Instead, it tells the Service Control Manager to disable start-up of the service.
This is necessary because the I/O Server may be running as a service when the Server
Configuration Dialog is accessed, and additional activities may be necessary before
shutting down the server. To ensure proper operation, after reconfiguration you should
shut down the system and reboot the computer.

15-6 Chapter 15

Driver Name
It is important to note that the Wonderware Common Dialogs use the extended server
name when accessing the Registry and the Service Control Manager. That is, the
extension “_IOServer” is appended to the “short” server name to produce the extended
server name. For example, TESTPROT becomes TESTPROT_IOServer.

The function GetServerNameExtension() sets up the extended server name so the
server-specific code can access it. To ensure that the name of your server is handled
consistently, you should be sure to insert a call to this function inside the routine
ProtGetDriverName(), which is the routine used by the I/O Server Toolkit to obtain the
“short” name of your server:
/***/
/** Copy name of driver to string at indicated location **/

BOOL
WINAPI
ProtGetDriverName(LPSTR lpszName,
 int nMaxLength)
{
 /** WARNING: No calls to debug()...
 debug() calls ProtGetDriverName(),
 therefore ProtGetDriverName() cannot call debug(). **/
 lstrcpy(lpszName, GetString(STRUSER + 76) /* "UDSAMPLE" */);
#ifdef WIN32
 GetServerNameExtension();
#endif
 return (TRUE);
} /* ProtGetDriverName */

This extension was found to be necessary where some I/O Servers had the same name as
third-party drivers (such as MODBUS.exe vs. MODBUS.sys), and attempting to
configure both as NT services caused name clashes in the Registry and Service Control
Manager.

Actually, GetServerNameExtension() is a function in the Toolkit that obtains the
extension string from WWDLG32A.DLL (the Wonderware Common Dialog DLL). Not
all products that use the I/O Server Toolkit need an extended name, which is why this
call is performed explicitly. If GetServerNameExtension() is never called, the
application name and Registry key would merely be the short name (e.g.
“TESTPROT”). This is fine for most applications; but it is important to remember that
the “Run as NT Service” checkbox in WWDLG32A.DLL assumes the name with the
extension.If you don't call the function GetServerNameExtension(), you must then
provide your own set-up dialog and routines for making the application an NTservice.

Running as an NT Service 15-7

Service Dependencies
Some programs depend upon the presence of other programs to run properly. For
example, if you are using a word processor and want to print a document, you must have
a printer driver loaded. It may or may not be possible to start the driver after the
program is already running, depending on the nature of the dependency.

If an I/O Server is to run as a Windows NTservice and it depends upon other services to
run, it may be necessary to start the other services first before the server will function
properly. When the “Run as a service” checkbox is checked in the Server Settings
dialog, WWDLG32A.DLL sets up the following default set of dependencies, in this
order:

DependOnService: REG_MULTI_SZ: WWLOGSVC WWNETDDE SLSSVC

These services are as follows:
WWLOGSVC

The Wonderware Logger Service. This passes messages from debug() calls to
the Wonderware Logger.

WWNETDDE
The Wonderware NetDDE Helper Service. This service is necessary for DDE
conversations to continue even with no one logged on a the computer.

SLSSVC
The Wonderware SuiteLink Service. This service passes messages between
applications using the SuiteLink protocol.

When the computer is booted up, Windows NT/2000 inspects the Registry for
information regarding the order in which various drivers and services are to be started
up. Services and drivers can actually be put into specific groups to be loaded in specific
orders. Services with no specific group are loaded last. Within a group, if a service
depends upon other services, NT/2000 checks first to see whether other services are
running and, if not, attempts to start them. Any problems are identified by messages in
the Windows NT/2000 Event Log, which can be accessed via the Windows NT/2000
EventViewer.

Your server may have additional services upon which it depends, particularly if it
requires a device-specific driver or service to run properly. In this case, you should
make your own calls to access the Registry or the Service Control Manager to establish
these additional dependencies. If you use the Wonderware Common Server
Configuration Dialog, you can check the returned information in
ServParams.nNTServiceSetting to check whether operation as a service has
successfully been changed, enabled, or disabled and determine whether to make your
additional Registry changes accordingly.

15-8 Chapter 15

16-1

C H A P T E R 1 6

Porting to Windows NT

This chapter will be useful for two different audiences. The first and primary audience
is the developer who wants to port an existing 16-bit Windows server to the Windows
NT environment. If you fall in this category, you will find that this chapter provides a
useful recipe for accomplishing this port. The goal is to make this port as
straightforward as possible by giving you a concise set of step-by-step instructions.

The secondary audience for this chapter is the developer who wants to develop a new
server that will operate in both 16-bit Windows and 32-bit Windows. If you fall in this
category, the step-by-step instructions for porting an existing server to Windows NT will
provide you with some useful ideas for accomplishing this task.

Contents
! Primary Goals
! Server Porting Instructions
! Miscellaneous Debugging Hints

16-2 Chapter 16

Primary Goals
Keep the following goals in mind when porting a server from 16-bit Windows to the 32-
bit Windows NT environment:

1. The source code for the server should maintain as much common code as possible
between the two operating systems. In cases where common code is not possible,
condition compiles using "#ifdef WIN32" macros will be used.

2. If there is a server configuration file which is used to store topic, device and
communications configurations, it should have the same file structure on both
platforms. This allows the same configuration file to be used seamlessly regardless
of platform.

3. The server should maintain a common graphical user interface between the two
platforms. A user should not have to learn how to use your server again upon
moving to a new operating system. A side benefit of this goal is that any user-level
documentation you provide for your server will not have to be customized for
Windows NT.

Server Porting Instructions
The server porting process is sequential and categorized into several phases.Generally,
the earlier phases are more mechanical and simple in nature.As you progress through the
phases, you will find they require more time and thought.If you have any questions
about the meaning of any of these phases, please refer to the UDSERIAL or UDBOARD
sample servers included with this Toolkit. These servers provide useful illustrations of
the instructions described below.

Warning Backup your source code to another location prior to beginning this work.
Keep in mind the following abbreviations: Win16 refers to 16-bit Windows; Win32
refers to 32-bit Windows.

Porting to Windows NT 16-3

Phase I - General, Quick Edits of "C", "H" Files
Goal: Do simple, mass edits typical of all servers. Use the sample server as a reference
guide.

1. For each C file, move "#include <windows.h>" to the top of the list of includes.
Insure that the windows.h is enclosed by the brackets and not double quotes.

2. Replace each "FAR PASCAL" in function definitions and prototypes with the
portable "WINAPI".

3. For each C file, delete the large collection of "#define NOxxxxx" macros at or near
the top if they exist. They are no longer needed for versions of the Windows SDK
greater than 3.0.

4. For each C file, add "#include "ntconv.h"" to the list of includes. This header file
contains porting macros which simplify the porting process. Refer to the Windows
NT Porting Functions and Macros for a list of the porting macros.

5. Replace the obsolete "assert.h" include with "wwassert.h".

6. Delete the obsolete "tools.h" include, which is no longer needed.

7. Check if you need "lmem.h" and "listrcmp.h"; They are OK but very old. listrcmp
is simply lstrcmpi.

8. Replace the obsolete "lmemclr.h" include with "lmem.h" if you are using the
"lmemclear()" function call.

16-4 Chapter 16

Phase II - More Edits
Goal: Do edits typical of all servers which require more time and thought. Use the
sample server as a reference guide. Refer to the "I/O Server Toolkit Functions" section
for details on Windows NT Porting Functions and Macros.

1. Change all definitions and prototypes for Windows procedures, dialog procedures,
and callbacks to use the new parameter declarations.

From: HWND, unsigned, WORD, LONG
To: HWND, UINT, WPARAM, LPARAM

2. Search for all occurrences of WM_COMMAND. For each occurrence, make sure
that "LOWORD(wParam)" is used to get the control identifier rather than just
"wParam".

3. Search for all occurrences of EM_SETSEL. The message packing for this function
varies between Windows and Windows NT. Use the new portable functions listed
below instead of sending an EM_SETSEL message directly.

#include "portfncs.h"
PfnSendEmSelectAll(HWND hDlg, int idControl, BOOL bScrollCaret
);
PfnSendEmSelectRange(HWND hDlg, int idControl, int nStart, int
nEnd, BOOL bScrollCaret);

For more information on these functions, see the "API Function Reference" chapter.

4. If you use the Windows ChangeMenu() function, with the 4th parameter set to "-
1", change it to "0xffff". If you have time, consider converting to the newer menu
functions AppendMenu(), DeleteMenu(), InsertMenu(), ModifyMenu(), and
RemoveMenu().

5. Search for all SendMessage function calls. If the first parameter is 0xffff, this is
not portable, since it would need to be 0xffffffff on Windows NT. Replace the
0xffff with SM_MINUS_ONE (macro in NTCONV.H).

6. Search for references to ConfigurePort(). This function name conflicts with a
native Windows NT function. Change the function name to ConfigPort() or
something similar.

7. In all ".C", ".RC", and ".H" files, search for "BAUD_" references and change to
"WW_BAUD_" references. This will prevent conflicts with native Windows NT
definitions in WINBASE.H.

8. In all ".C", ".RC", and ".H" files, search for "PARITY_" references and change to
"WW_PARITY_" references. This will prevent conflicts with native Windows NT
definitions in WINBASE.H.

9. If you have not already, convert to the new version of the Wonderware Heap API as
described in the "Getting Started with the I/O Server Toolkit" section. Briefly, you
will need to change all Wonderware HeapXxXxxx style function calls to
wwHeap_XxXxxx. Add the HHEAP (heap handle) as the new first parameter to
the wwHeap_ReAlloc and wwHeap_FreePtr function calls.

10. Change each "Assert(FALSE);" to "ASSERT_ERROR;".

11. If the Windows function GetTextExtent() is used, change it to the portable
GetTextExtentPoint() function.

12. If the Windows function MoveTo() is used, change it to the portable MoveToEx().

Porting to Windows NT 16-5

Phase III - Porting Tool (optional step)
Goal: Locate any pending porting problems at this time.

At this time, you are well on the way to taking care of most of the basic porting issues
associated with moving a server to Windows NT. Some more difficult areas related to
file I/O and communications remain.

The Microsoft Win32 SDK includes a utility called "PortTool" which you can use to
locate any potential porting problems which still remain. This is a good time to use this
tool on each of your ".C" files. For the most part, it will point out potential difficulties
which you have already solved. However, it also may catch some items which would
otherwise slip through the cracks and cause more mysterious problems later.

Phase IV - Compiling
Goal: Compile each file in the server on Win32 with no warnings/errors.

You are not yet finished making modifications, but this is a good time to compile your
source code and let the compiler catch any obvious problems which exist. Any
problems related to communications functions and file I/O can be ignored at this time.

1. Compile under Windows NT. You should expect some warnings and errors at this
time.

Some tips on resolving compiler problems:
NULLs need to be cast to the appropriate type.

There may be errors with communications items such as fRtsDisable, fRtsflow,
fDtrDisable, fDtrflow. For now, simply comment out the code. It will be fixed in the
next phase.

There may be errors with communications items such as CE_CTSTO, CE_DSRTO,
CE_RLSDTO. For now, simply put the code under a "#ifndef WIN32" conditional.

Numerical constants such as -1,-2, -3, etc. when used in logical expressions can have
problems. Make sure you cast them appropriately.

16-6 Chapter 16

Phase V - Communications

(Windows COMM Driver Serial Servers Only)
Goal: Add common source communications function calls. Use the sample server
source for UDSERIAL as a reference guide. Refer to the "I/O Server Toolkit
Functions" section for details on Windows NT Porting Functions and Macros.

Note If you are developing a board-based server on Windows NT, a kernel device
driver must also be developed or purchased which interfaces directly with the board of
interest. Your server then must be modified to communicate with the device driver in
order to send and receive messages. It can no longer access the board directly as was
possible under Windows. Documentation of device drivers and device driver interfacing
is beyond the scope of these instructions. Please refer to the Microsoft Device Drivers
Kit (DDK) for instructions and information.

1. To all ".C" files which call communications functions, add include of
"NTSRVR.H". This file provides prototypes for functions which emulate the
communications functions found in Windows. Typical files which contain
communications functions will be xxLDCFG.C, xxFREE.C, and xxPROTCL.C.

2. Change BuildCommDCB() to the compatible function
NTSrvr_BuildCommDCB().

3. Change SetCommState() to NTSrvr_SetCommState() and add the new first
parameter.

4. Change GetCommState() to NTSrvr_GetCommState(). The
NTSrvr_GetCommState() call should be located after the OpenComm() and
before the NTSrvr_buildCommDCB(). The DCB needs to be initialized, and the
Windows NT version does not initialize all members of the DCB structure. This is
the easiest way to accomplish this initialization and it works on both platforms.

5. Group the setting of the DCB's fRtsflow and fRtsDisable members together and
replace with a call to function NTSrvr_SetDCB_Rts with the parameter of:
NTSrvr_RTS_DISABLE if the "fRtsDisable" was set.
NTSrvr_RTS_ENABLE if the "fRtsDisable" was NOT set

and "fRtsflow was NOT set.
NTSrvr_RTS_HANDSHAKE if the "fRtsflow" was set.

6. Group the setting of the DCB's fDtrflow and fDtrDisable together and replace with
a call to function NTSrvr_SetDCB_Dtr() with the parameter of:
NTSrvr_DTR_DISABLE if the "fDtrDisable" was set.
NTSrvr_DTR_ENABLE if the "fDtrDisable" was NOT set

and "fDtrflow" was NOT set.
NTSrvr_DTR_HANDSHAKE if the "fDtrflow" was set.

Porting to Windows NT 16-7

Phase VI - Compile Again
Goal: Compile each file in the server on Win32.

At this time, all your communications functions should be in place and ready for
compilation. Compile again on both platforms and resolve any warnings or errors.

Phase VII - File I/O
Goal: Replace Win16 file I/O with common source file I/O macros. Use the sample
server as a reference guide. Refer to the "I/O Server Toolkit Functions" section for
details on Windows NT Porting Functions and Macros.

Your server probably has some file I/O calls such as open(), close(), _lread(), _lwrite(),
etc. These function calls should be modified to use the portable macros provided in
NTCONV.H and listed in the "I/O Server Toolkit Functions" section. Follow these
instructions:

1. Change each read-only open() to "OPENRead(filename)".

2. Change each file-create open() to "OPENCreate(filename)".

3. Change each "read()", "_read()", or "_lread()" to simply "LREAD()".

4. Change the variations of "write" to "LWRITE".

5. Change the variations of "lseek" to "LSEEK".

6. Change the variations of "close" to "LCLOSE".

Phase VIII - Compile Again (see above)
Goal: Compile on both platforms with no warnings or errors.

At this time, all your file I/O functions should be in place and ready for compilation.
Compile again on both platforms and resolve any warnings or errors.

Phase IX - Symbol Table Entry Size
In your xxMAIN.C file, there is a check of the symbol table entry size. This check is no
longer required under Windows NT, so conditionalize this check of
"sizeof(SYMENT)" under a "#ifndef WIN32". See the UDMAIN.C in the UDSERIAL
sample server for an example.

16-8 Chapter 16

Phase X - Compile Again (see above)

Phase XI - Config File Compatibility
Goal: Server configuration file (xxxxxx.CFG) is identical on both platforms. This
allows users to move it between platforms with no compatibility issues. Use the sample
server as a reference guide.

A major goal is that the configuration (.CFG) file created and used by the server can be
moved between the Windows NT and Win16 platforms seamlessly. This requires that
extra work be done in the server to retain this compatibility. This is because the
structures (specifically the "topic" structure variant) that are used to directly read and
write the configuration file may be packed differently between Win16 and Windows
NT. This is because Windows NT forces structure members to be aligned on their
natural boundaries (e.g. WORD on word boundary, DWORD on double word boundary,
etc.). The approach that should be used is to define an extra intermediate (or scratch)
structure for each (port and topic) which is used exclusively for the read/write
operations. All members of these structures are arrays of type "char" to force byte
alignment as on Win16. For example, in the UDSERIAL sample server’s
UDCONFIG.C you will find the following structure definition:
/*
* This structure is the one used to read in the config file into
* a structure that has members whose alignment/packing will be
* identical to the file's. (This is an NT issue). This means
* words are on even boundaries, and longwords are on longword
* (multiple of 4) boundaries. To make this easiest and most
* straightforward, each structure member is of type char, and
* will be an array if necessary to match the actual member size
* in number of bytes. Then, memcpy’s will be done out of this
* structure and into the real one.
*/

typedef struct tagTOPIC_file {
char tp_next[4];
char tp_comPort[2];
char tp_name[33];
char tp_topicAddress;
char tp_coilReadSize[2];
char tp_regReadSize[2];
char tp_updateInterval[4];

} TOPIC_CFG_FILE;

Porting to Windows NT 16-9

Then, immediately after the read or immediately before the write, the data is moved
from or to this temporary structure into the actual usable structure already in place in the
code.

Note You'll need to do this in xxCONFIG.C and xxCONVERT.C (if any). The
xxCONVERT.C will only exist if the configuration file format has changed during the
release lifetime of the server.

Note The maximum number of serial ports allowed on Windows 16 was previously 4.
You have the option of increasing this number to 9 on Windows and to 32 on Windows
NT. This will require a change to the configuration file also. See the sample servers for
an example of how to add the additional communications ports to the configuration file.

Note The WW_CP_PARAMS communications port structure can be read and written
directly to the configuration file. It is properly aligned for all platforms.

Phase XII - Compile Again (see above)

Phase XIII - Common Dialogs (optional)
Goal: Give server standard look and feel. Use sample server for examples.

You may choose to use the new Common Dialog API. This will require substantial
changes. Refer to the "Common Dialogs" section. You may want to postpone this
phase until you are done testing below.

Phase XIV - Final Compile and Link
Goal: Compile and Link server on Windows NT / 2000 or Windows 98 Second Edition.

At this time, all source code modifications which are necessary to build and execute
your server on Windows NT / 2000 should be complete. You should now compile and
link your server and prepare for testing and debugging.

Phase XV - Test the Server
Goal: No bugs.

Test on Intel processor first on Windows NT if possible, then Windows 98 Second
Edition.

Note that on Windows 98 Second Edition , the SuiteLink protocol may not be available
and the server cannot run as a Windows NT service.

16-10 Chapter 16

Miscellaneous Debugging Hints
Check "union" type structures for any "int" types. Make sure that you did not want a
"short". "short" and "int" are the same size (2 bytes) on Windows 16, but not Windows
NT. If a WORD and an "int" are overlaid, you may need to initialize the "int"; you also
may need to sign extend, etc. If you have an array overlaid with another array, be
careful.

When building messages or extracting data from messages, be careful with data pointers.
If you use a BYTE pointer to process the data, all is OK! But if you use WORD,
DWORD, or structure pointers to process the data, it MUST be aligned. To get it to be
so, you'll have to use memcpys to workaround the problems. Test thoroughly! (i.e. all
message types).

When converting data, casting a WORD to an "int" will work on Win16; but on Win32
you need to be careful. If you have 2 bytes of data from the device and the data has
been saved in a WORD variable, casting it to an "int" will NOT sign extend (first cast as
a "short"). Test thoroughly!

17-1

C H A P T E R 1 7

Porting an Existing
Server to FS2000

This section describes the software changes necessary to upgrade an existing I/O Server,
developed with a previous Wonderware Toolkit, to FS2000.

Contents
! Overview
! Driver Name
! CommonUI Splash Screen and Start-up Message
! CommonUI About Box
! Value, Time, Quality

17-2 Chapter 17

Overview
If you have an existing I/O Server written with a previous version of the Wonderware
DDE Server Toolkit, porting your code to Factory Suite 2000 should be fairly easy –
particularly if your server has been written as a Win32 program for Windows NT.
Most of the changes in the Toolkit involve enhancements that are transparent to the
programmer. However, you will want to make changes to four basic areas of your code:

 - handling the driver name
 - handling the start-up Splash Screen and Start-up Message
 - handling the About Box
 - handling updates to Value/Time/Quality (VTQ)

Porting an Existing Server to FS2000 17-3

Driver Name
The routine ProtGetDriverName() is the routine used by the I/O Server Toolkit to
obtain the “short” name of your program. You should insert a call to the function
GetServerNameExtension() inside this function:
/***/
/** Copy name of driver to string at indicated location **/

BOOL
WINAPI
ProtGetDriverName
(LPSTR lpszName,
 int nMaxLength)
{
 /** WARNING: No calls to debug()...
 debug() calls ProtGetDriverName(),
 therefore ProtGetDriverName() cannot call debug(). **/
 lstrcpy(lpszName, GetString(STRUSER + 76) /* "UDSAMPLE" */);
#ifdef WIN32
 GetServerNameExtension();
#endif
 return (TRUE);
} /* ProtGetDriverName */

For I/O Servers, the extension is “_IOServer” and this string gets internally stored in the
Toolkit. The extension gets appended to the basic name of the server to produce the full
name used in Registry keys, the NT service name (if the server is configured as a
service), etc. For example, the TESTPROT server uses the full name
“TESTPROT_IOServer”. This extension was found to be necessary where some I/O
Servers had the same name as third-party drivers (such as Modbus.exe vs. Modbus.sys),
and attempting to configure both as NT services caused name clashes in the Registry and
Service Control Manager.

Actually, GetServerNameExtension() is a function in the Toolkit that obtains a string
from WWDLG32A.DLL (the Wonderware Common Dialogs).Not all products that use
the I/O Server Toolkit need an extended name, which is why this call is performed
explicitly. If GetServerNameExtension() is never called, the application name and
Registry key would merely be the short name (e.g. “TESTPROT”). This is fine for most
applications; but it is important to remember that the “Run as NT Service” checkbox in
WWDLG32A.DLL assumes the name WITH the extension. If you don't call the
function GetServerNameExtension(), you must then provide your own set-up dialog and
routines for making the application an NT service.

17-4 Chapter 17

CommonUI Splash Screen and Start-up Message
When an I/O Server starts up, it displays a splash screen – a small window that identifies
the program that is starting up. Mostly, the purpose of the splash screen for any
program is to give the user something to look at while the program starts up – which
might take several seconds.

Previous versions of the Wonderware I/O Server Toolkit displayed a dialog with the
resource name WWStartup, which could be generic or which could be tailored by the
programmer as needed.This option is still available, but with the advent of FactorySuite
2000, the default behavior is to display the Common User Interface splash screen. The
CommonUI routines use one of a set of Wonderware bitmaps for the corresponding
product type, examine a particular set of resources for the product name and version
number, and interrogate the Wonderware License Manager for license features and
expiration dates. The information so obtained is then displayed in the splash screen and
in a start-up message. The problem is, this is very Wonderware-centric. If you're
developing a Wonderware product, this start-up display has been made quite easy, using
a call to WWAnnounceStartup(). Otherwise, you might want to display your own
splash screen, or no splash screen at all.

To tailor the handling of the start-up splash screen, in ProtInit() call
void WINAPI SetSplashScreenParams (BOOL bSuppressSplashScreen,

int nSplashSelect, UINT iProductID,
LPSTR lpszPrivateString);

with the appropriate parameters:
 bSuppressSplashScreen

If TRUE, suppresses the Splash Screen entirely. This may be appropriate if your
program displays a splash screen itself elsewhere.
If FALSE, the selected splash screen will be displayed for a few seconds and will
then be erased.

 nSplashSelect
If 0, displays the original Wonderware splash screen using the dialog resource
WWStartup. This is provided for backward compatibility.
If non-zero, displays the Common User Interface splash screen.

 iProductID and lpszPrivateString
These are used as a product selection and special string for the Common User
Interface splash screen.

Porting an Existing Server to FS2000 17-5

The routine SetSplashScreenParams() can be used to select between the CommonUI
splash screen, the “old-style” splash screen, or suppressing the splash screen. The
following code, taken from UDMAIN.C of the sample server, should appear near the
start of the routine ProtInit():

[Note: szServerIDstring is defined as a global variable as follows:
#ifdef WIN32
 char szServerIDstring[100];
#endif

]

#ifdef WIN32
 /* set up string with server name and version number */
 strcpy (szServerIDstring,
 GetString(STRUSER+142)); /* "Sample I/O Server" */
 L = strlen (szServerIDstring);
 sprintf (&szServerIDstring[L],
 GetString(STRUSER+145), /* "- Version %s" */
 SERVER_VERSION);
#endif

#if (defined(USING_WW_COMMONUI) && defined(WIN32))
 /* set up to display common start-up message
 and splash screen */
 WWAnnounceStartup(COMMON_IOSERVER32ID,
 (LPSTR) szServerIDstring);
#else
 /* Log our own startup message and version number */
 strcpy (tmpBuf, GetString(STRUSER+144)); /* "Startup" */
 L = strlen (tmpBuf);
 sprintf (&tmpBuf[L],
 GetString(STRUSER+145), /* "- Version %s" */
 SERVER_VERSION);
 debug (tmpBuf);
 /* set up to display start-up splash screen
 with resource name WWStartup */
 #ifdef WIN32
 /* select WWStartup splash screen
 instead of Common UI splash screen */
 SetSplashScreenParams (FALSE, 0, COMMON_IOSERVER32ID,
 (LPSTR) szServerIDstring);
 /* ensure common user interface
 has instance handle for application */
 Common_SetAppInstance (hInst);
 #endif
#endif

17-6 Chapter 17

CommonUI About Box
As with the splash screen, the CommonUI routines support the display of a standard
Wonderware FS2000 About Box, which includes information from a standard set of
resources and from the Wonderware License Manager. Again, this is very Wonderware-
centric. You have a choice of several ways you can display an About Box. All three of
these are illustrated by code in the sample server UDSAMPLE.

Display the CommonUI About Box
You will have to provide resource version information and a resource icon named
ABOUTICON. Normally, this would be the same as the main icon for your I/O Server.
 Common_SetAppInstance(hInst);
Common_ShowAboutBox (COMMON_IOSERVER32ID, szServerIDstring);

Display the Wonderware Common Dialog About Box
This can be somewhat tailored by putting information into the comment string.
 WW_AB_INFO AboutBoxInfo;
HICON hIcon;

memset (&AboutBoxInfo, 0, sizeof(AboutBoxInfo));
hIcon = LoadIcon(hInst, "Udprot");

AboutBoxInfo.hwndOwner = hWnd;
AboutBoxInfo.szDriverName = GetAppName();
AboutBoxInfo.szId = GetString(STRUSER + 142);
 /* "Sample I/O Server" */
AboutBoxInfo.szVersion = GetString(STRUSER + 0);
AboutBoxInfo.szCopyright = GetString(STRUSER + 143);
 /* "1997" */
AboutBoxInfo.hIcon = hIcon;
AboutBoxInfo.szComment = GetString(STRUSER + 149);
 /* "This is a sample server" */

WWDisplayAboutBox((LPWW_AB_INFO) &AboutBoxInfo);
DestroyIcon (hIcon);

Display an About Box of your own design.
You will have to provide a routine UdPrivateAbout() to handle the dialog.

FARPROC lpprocAbout;

lpprocAbout = MakeProcInstance((FARPROC) UdPrivateAbout, hInst);
DialogBox(hInst, GetString(STRUSER + 75) /* "ABOUT_BOX" */ ,
 hWnd, lpprocAbout);
#ifndef WIN32
 FreeProcInstance(lpprocAbout);
#endif

Porting an Existing Server to FS2000 17-7

Value, Time, Quality
One of the main functional differences between the FactorySuite 2000 I/O Server
Toolkit and previous versions of the Toolkit is the addition of Time and Quality stamps
to the data. The I/O Server can now pass to the client information about when a point
was last updated and whether the data is completely trustworthy or has some problems
associated with it.

To support the transfer of Value/Time/Quality (VTQ) information, the call to
DbNewValueFromDevice() has been replaced with several other calls:

DbNewVTQFromDevice() updates value, time, and quality
DbNewTQFromDevice() updates time and quality only (value unchanged)
DbNewQFromDevice() updates quality only (a current default time mark is used)

The function DbNewValueFromDevice() is still available, but what happens internally
is that it makes a call to DbNewVTQFromDevice() using default values for time and
quality. Quality is assumed good (WWQ_GOOD). The Toolkit provides a default time
mark only if one is needed. You can either choose to leave intact all your calls to
DbNewValueFromDevice(), or you can add code to explicitly get a time mark and pass
it to the Toolkit via one of the other functions.

Most PLCs do not have a date/time clock that is accessible to the I/O Server. For those
which do, you have the option of using that date/time clock as your time mark. In this
case, you should convert the time from the PLC’s format to a FILETIME value (see the
chapter on Time Marks). Otherwise, you should use the Toolkit API function
DbGetGMTasFiletime() to read the computer’s time.

If you are explicitly obtaining the time via a call to DbGetGMTasFiletime(), you should
take into account what these calls will do to server performance. If you're updating
10,000 points per second, their time marks aren't going to be very different from one
another; so you probably don't need 10,000 calls to DbGetGMTasFiletime(). You
should limit calls to this function in a way that maximizes performance while
maintaining a reasonable update rate for the time mark. Reasonable places to get the
time mark include the following:

 - Once per entry to ProtTimerEvent(), and then only if you need it
 - Once per response message (which would normally encode data for many points)

See the chapter on Time Marks for more information on optimizing how often you call
DbGetGMTasFiletime().

17-8 Chapter 17

There are four places where you should update the quality flags for a point:

1. In UdprotPrepareWriteMsg() if there is any problem with poked data. When a
client “pokes” a value to the server, ProtNewValueForDevice() passes the value to
the server-specific code. This, in turn, calls a routine such as
UdprotPrepareWriteMsg(), which creates the byte sequence that will be sent to the
device. If a string is too long, or a value is out of range, the server-specific code
should force the value to a legal setting, set a quality of WW_SQ_CLAMPLO or
WW_SQ_CLAMPHI, and report the information back to the Toolkit with
DbNewVQFromDevice(). Also, if the point is inaccessible or read-only, it may be
appropriate to set the quality to WW_SQ_NOACCESS and call
DbNewVQFromDevice().

2. In UdprotExtractDbItem() when the response from a device is interpreted as point
data and reported to the Toolkit via DbNewVTQFromDevice(). When a response
carries valid data for the point, the quality should normally be set to
WW_SQ_GOOD. However, if a string is too long, or a value is out of range, or a
data conversion yields an invalid result, the quality should be set to
WW_SQ_CLAMPLO, WW_SQ_CLAMPHI, or WW_SQ_NOCONVERT as is
appropriate. Also, some PLCs return status information along with the data. This
status information should be mapped to the corresponding WW_SQ_XX quality
setting.

3. In ProcessValidResponse() and other locations where an error response is received,
a bad quality should be reported for each point on a message that has a response
pending. If a polling (read) message elicits an error response, a quality of
WW_SQ_NOACCESS should be reported for each point that is being actively
polled by that message.

4. In UdprotSetTopicStatus() when the communication with the PLC fails, bad quality
of WW_SQ_NOCOMM should be flagged on all points on all messages for that
topic. This would be at the point where the server goes into slow poll mode,
attempting to re-establish communications with the PLC.

See the chapter on Quality Flags for more information and specific examples of setting
the quality flags.

18-1

C H A P T E R 1 8

I/O Server Code Samples

Example source code for an I/O Server is included on the installation media. It will
automatically be copied to your hard disk when you install the Toolkit. The sample code
illustrates the concepts of the Toolkit, demonstrates basic problems that must be addressed
for all I/O Servers (e.g., dialog boxes, file I/O for configuration), and gives you a starting
point for developing code from scratch. The code includes a simple simulated PLC, so you
can run the executable and see these concepts in action. Also, the sample server can be built
in two ways – as a serial server and as a board server – to illustrate the similarities and
differences between these two types of interfaces.

Contents
! Overview
! UDSAMPLE Architectural Overview
! Adapting the UDSAMPLE Server
! Modifying the User Interface – UDSAMPLE.RC and UDCONFIG.C
! Storing and Retrieving Configuration Files
! Setting Up Data Points – UDCONFIG.C
! Executing the Configuration – UDLDCFG.C
! Executing the Protocol – UDPROTCL.C
! Data Structures
! Compiling the Sample Code
! Debug and Support Functions
! Simulated PLC

18-2 Chapter 18

Overview
Wonderware Corporation has developed all of its I/O Servers using this Toolkit. The sample
code included in the Toolkit is the basis for many of the production I/O Servers. We highly
recommend experimenting with the sample server to learn more about the Toolkit's library
functions. These sample programs will be in the following sub-directories:

\WW\IOSERVER\UDSAMPLE The sample code contained in this directory is a skeleton
for a complete I/O Server. To build it as a functional EXE, you must copy three files from
one of the subdirectories: either UDSERIAL or UDBOARD.

\WW\ IOSERVER\UDSAMPLE\UDBOARD This subdirectory contains three files:
UDSAMPLE..C, UDSAMPLE.H, and UDSAMPLE.ICO. To build the sample server as a
board server, type the following:

CD \WW\IOSERVER\UDSAMPLE\UDBOARD
COPY UDSAMPLE.* ..\COMMON

to copy the three files to the UDSAMPLE\COMMON directory with the appropriate names.
This example illustrates communicating to a PLC via a memory-mapped interface device
plug-in board (adapter card). The server program can directly access areas of memory that
are mapped to a device I/O board's specific protocol.

\WW\ IOSERVER\UDSAMPLE\UDSERIAL This subdirectory contains three files:
UDSAMPLE..C, UDSAMPLE.H, and UDSAMPLE.ICO. To build the sample server as a
serial server, type the following:

CD \WW\IOSERVER\UDSAMPLE\UDSERIAL
COPY UDSAMPLE.* ..\COMMON

to copy the three files to the UDSAMPLE \COMMON directory with the appropriate names.
The example illustrates communicating to a PLC via a serial interface (COM port).

The UDSAMPLE example server has symbol processing functions to handle many thousands
of active data points. It shows you how to set up lists of polling messages, how to optimize
polling messages, and much more. This example code is the basis for many of the
Wonderware I/O Servers. UDSAMPLE contains everything that you need to write an actual
I/O Server. It includes the user interface code, dialog boxes and the code necessary to
interact with them, configuration file management, and the necessary data structures. It can
be compiled for Win32 programming models. It contains functions to assist in debugging. It
also contains device and protocol-specific code for a simple, simulated PLC, to illustrate how
to construct polling messages and how to interpret the reply messages. This code and the
comments should provide an excellent starting point for the development of a server for your
specific needs.

I/O Server Code Samples 18-3

UDSAMPLE Architectural Overview
There are essentially three parts of UDSAMPLE: one part establishes the configuration of
the I/O Server, a second part collects and validates information requests, and the third part
actually does the communication.

UDSAMPLE establishes its configuration settings via dialogs with the user. This is used to
set up the I/O channels (COM ports or boards) and the available topics. The configuration
settings are stored in a file which gets loaded from the disk when the server is started up.

The I/O Server receives its information via DDE or SuiteLink requests. The Toolkit calls
functions in UDSAMPLE to set up and validate the topics and item names requested. Once
the topic and item names have been validated, messages are created to read information from
the PLC. UDSAMPLE is based on a master/slave communication model, where the server
sends a message to the device and receives a response back.

The I/O Server builds two kinds of messages: Read Messages for all the active points and
Write Messages for writing data back to the PLC.

Read Messages are built from the information in the symbol table and stay around. One read
message may read data for several points. Read messages repeatedly get sent to the PLC for
as long as the points are active. If points go inactive, the corresponding read messages may
be modified or deleted, depending on what points remain active.

Write Messages are built on demand (when a DDE POKE or SuiteLink WRITE is received)
and placed on the top of the message queue so they are sent on the next execution of the
protocol. Generally one write message is generated for every point that is written, although it
may be possible to optimize writes and send values for several points in a single message.
Write messages are deleted after they have been successfully received and processed by the
PLC.

The heart of the driver is in the UdprotDoProtocol() function. This function executes the
protocol. It examines the state of the server and executes the appropriate action. (For
example, if the I/O Server is in the idle state, it sends the next message to the device. If it is
in the awaiting response state, it looks for information from the device and processes that
information.) The server contains necessary logic to handle error conditions.

18-4 Chapter 18

Adapting the UDSAMPLE Server
There are several things that should be determined before you start coding a server:

I/O Channel: Does the server communicate over a serial port, a plug-in board (adapter
card), an Ethernet connection? What configuration information is necessary to identify
which particular I/O channel is being used? What settings need to be specified, e.g.
transmission rates, parity, data encoding, etc.?

Protocol Structure: If the protocol supports multiple message types, decide which
messages you will need to run the protocol. This should determine if there is any additional
information required at configuration time.

Topic Description: The topic configuration generally contains all of the information needed
to address a particular device. It contains a topic name, PLC address, update interval, and
any other information generally required to build and send a message (except for the
particular point to address).

Item Naming Convention: Item names should match the convention used in the PLC and
provide you with enough information to determine the data type, address and possibly
precision of the point. You should decide which points you are going to support. The
sample contains one built-in item name: STATUS. This item name is a discrete variable that
is TRUE when communication to the device is active and FALSE when communication is
inactive.

I/O Server Code Samples 18-5

Customizing the Start-Up Splash Screen and About
Box
When an I/O Server starts up, it normally displays a Splash Screen for a few seconds. This is
a window that identifies the I/O Server and the Toolkit, and any other information that seems
appropriate. When the I/O Server is running and its window is visible, the user can select
Help|About to display the About Box, an informational window that identifies the product,
version number, company, etc.

UDSAMPLE has two macros that function as compile-time flags that can be used to select
what kind of Splash Screen and About Box to use:

#define USING_WW_COMMONUI

This selects the Wonderware FactorySuite 2000 Splash Screen and About Box, which
are normally displayed by a Wonderware FS2000 production I/O Server. Information
for the program ID and version are provided in the version marker code section of the
*.RC file. If this macro is not defined, UDSAMPLE will display a Splash Screen
defined by the dialog resource named WWStartup. You can then use the dialog defined
in TKITSTRT.RCI or define your own Splash Screen. You can also suppress the
display of the splash screen entirely [see the section on the function
SetSplashScreenParams()].

#define USING_WW_ABOUT

This selects the Wonderware Common Dialog About Box (but only if the macro
USING_WW_COMMONUI is not defined). See the section on the Wonderware
Common Dialogs for more information on customizing the information displayed. If this
macro is not defined, the About Box defined by the dialog resource ABOUT_BOX is
displayed. You can customize this resource as needed.

UDSAMPLE also has a macro named USING_WW_LICENSE. If this macro is defined, the
server calls the function GetIOServerLicense() to check whether the server has a license to
run. This call requires a special version of the Wonderware Toolkit that provides access to
the Wonderware License Manager. Contact Wonderware for further information.

Modifying the User Interface – UDSAMPLE.RC and
UDCONFIG.C

The dialog boxes for generic Topic and Board configurations are contained in
UDSAMPLE.RC. The corresponding dialog handlers are functions contained in
UDCONFIG.C. These can be modified as needed for your protocol. (For example, you may
need to differentiate PLC devices.) It is also a good idea to change the name UDSAMPLE to
reflect the name of your PLC.

For configuring the serial ports (COM ports), the sample server uses the Wonderware
Common Dialogs. See the chapter on the common dialogs for more information on using the
optional edit fields, check boxes, and radio buttons.

18-6 Chapter 18

Storing and Retrieving Configuration Files
Once configuration information has been entered via the user interface, it needs to be stored
for retrieval next time the server is started up. The sample server handles this by storing the
I/O channel configurations and Topic configurations in a disk file named UDSAMPLE.CFG.
Two basic techniques are illustrated:

Configuration using binary structures – UDCFGBIN.C:
The data structures for COM ports, boards, and topics are simply written to a disk file as
sequences of bytes, and are read back the same way. While this provides the simplest
technique for configuration storage and retrieval, there are some shortcomings:

 - If the structures are changed in any way, the format of the data file also changes. For
backward compatibility, it is necessary to provide extra code to read old formats and
convert to the new data structures.

 - On different platforms, alignment issues may actually insert extra bytes between
structure members. Care must be taken to ensure compatibility when moving between
Win16 and Win32 systems.

 - There is usually no verification that the configuration is valid, although verification can
be added.

 - Configuration must be done using the user interface with a running I/O Server. The
configuration file can only be written or read by the I/O Server, and does not easily lend
itself to independent verification or to being printed out.

Configuration using ASCII text – UDCFGTXT.C:
The data structures for COM ports, boards, and topics are written to a disk file as
configuration “commands” with named parameters. When the file is read in by the I/O
Server, the server interprets the commands and parameters. Commands can be in any order
(e.g. COM ports then topics, topics then COM ports, or mixed). Within a command,
parameters can be in any order. Any missing parameters are given default values; any
obsolete parameters are merely ignored. A command can span several lines of text, and ends
with a semicolon (‘;’). This technique requires a little more code, but confers several
important advantages:

 - If the structures are changed, no version tracking is necessary, and backward
compatibility is automatic. (This can be even better than C++ serialization!)

 - The configuration file is platform-independent. There are no alignment issues.

 - As each command and each parameter is processed, the validity of the configuration can
be verified.

 - Configuration can be done without a server running, and on a completely separate
machine. Configuration files can be verified and printed.

UDSAMPLE can read its own configuration files in either binary or ASCII text. By default,
it stores configuration files in binary. To store configurations as text, in the [UDSAMPLE]
section of WIN.INI, simply include the following line:

WriteConfigInASCII=1
This setting is read in when the server starts up, in the routine ProtInit().

I/O Server Code Samples 18-7

Setting Up Data Points – UDCONFIG.C
First, determine the item/point naming convention. The item/point name should contain
enough information for the user to know its data type and address. For example, the item
name V23 indicates that this is an integer register in V-memory at address 23.

Function ValidatePoint()
The function ValidatePoint() needs to be written to parse and validate the item names for
your specific device. It is passed a text string of the item name, and the function must decode
this into information that is eventually placed in the symbol table. This information will be
used later to build the messages. The amount of information that needs to be stored into the
symbol table depends on what information you need to build the message and extract the data
back out. This structure may be modified to meet your needs. UDSAMPLE uses a
temporary data structure LPPPS to store information about the item until it has been fully
validated. The symbol table entry is built following a return from ValidatePoint().

Example of ValidatePoint: Valid Item Names are Vxxx
/*
 ValidatePoint() checks to see that a point name conforms to
 the convention:
 Vxxx
 The main purpose of the function is to fill in the LPPPS
 structure.
*/
BOOL
WINAPI
ValidatePoint(LPSTR lpszPointName,
 LPPPS ppp)
/* use the LPPPS structure to temporarily store the decoded
 information. UdprotAddSymbol will stuff this information
 into the symbol table entry when we are done. */
{
 PSTR pszReference;
 WORD Reference = 0;
 PTTYPE ExplicitType = NULL;
 BOOL PointOK = TRUE;
 char tc;
 BOOL input;
 BOOL Regs;
 if (bVerbose){
 debug("ValidatePoint: %Fs" ,
 lpszPointName);
 }
 ppp->ppsType = 0;
 ppp->ppsNumReg = 0; /* element size */
 ppp->ppsSeg = 0; /* seg is a field added to the symbol
 table */
 /* to identify the segment */
 ppp->ppsAlias = 0;

18-8 Chapter 18

 lstrcpy(tmpBuf, lpszPointName);
 strupr(tmpBuf);
 pszReference = tmpBuf;
 switch(*pszReference) {
 case 'V':
 ppp->ppsType = PTT_INTEGER;
 /* check register specification */
 pszReference++;
 if(!NumericsOnly(pszReference)) {
 PointOK = FALSE;
 break;
 }
 Reference = atoi(pszReference);
 /* range check the register address if appropriate */
 if(!ValidRegisterAddress((DWORD)Reference, Regs)){
 PointOK = FALSE;
 break;
 }
 ppp->ppsAlias = Reference - 1;
 /* zero based addressing */
 ppp->ppsSeg = REGISTER;
 break;
 default:
 PointOK = FALSE;
 break;
 }
 if (bVerbose) {
 if(PointOK) {
 debug("Valid Point: %Fs" , lpszPointName);
 debug(" ppsAlias=%05u ppsSeg=%u" ,
 ppp->ppsAlias, ppp->ppsSeg);
 debug(" ppsType=%04u", ppp->ppsType);
 debug(" ppsNumReg=%d ", ppp->ppsNumReg);
 } else {
 debug("Item rejected: %Fs" , lpszPointName);
 }
 }
 return PointOK;
} /* ValidatePoint */

static
BOOL
WINAPI
NumericsOnly(PSTR pstr) {
 if(!*pstr) return FALSE;
 while(*pstr) {
 if(!isdigit(*pstr++)) {
 return FALSE;
 }
 }
 return TRUE;
} /* NumericsOnly */

Note The above code does not match the code on the installation media, however, this code
is more useful for this example.

I/O Server Code Samples 18-9

Executing the Configuration – UDLDCFG.C
This section describes the functions that build the message queues. They are found in
UDLDCFG.C.

LogicalAddrCmp()
The function LogicalAddrCmp() is the function used to sort symbol table entries. Fields
from the symbol table entry, such as data type and address, are compared in this function to
determine the sort order of the symbol table. It may be necessary to add additional fields to
the comparison criteria to ensure that symbols are sorted properly. For example, the server
might support bits in registers and the bit identifier would need to be added to the sort
criteria. If the symbols are not in the correct order, the data will not be extracted properly.

Building Messages
The message data structure contains information about which symbols are referenced in the
message and the actual message itself. UdprotAddPoll() contains the logic to build the read
message, and UdprotPrepareWriteMsg() builds the write message. The actual message that
is sent to the device is built by either BldRead() or BldWrite().

UdprotAddPoll()
UdprotAddPoll() builds a read message to be placed in the message queue. Existing read
messages are examined to see if the point can be read from an existing message. If it can fit
into an existing message, the information in the LPMSG structure is updated. Otherwise, a
new message is built and added to the message queue. BldRead() builds the actual sequence
of bytes that is sent to the PLC.

UdprotPrepareWriteMsg()
This function builds the write message. Existing write messages are examined to see if the
point can be combined into a message that is already waiting to be sent. If it can fit into an
existing message, the information in the LPMSG structure is updated. Otherwise, a new
message is built and added to the message queue. BldWrite() builds the actual sequence of
bytes that is sent to the PLC.

Building Messages – UDBLDMSG.C
BldRead(), BldWrite(), BldCks(): These functions need to be supplied as they are totally
device-dependent. Write the code to build the correct message according to your protocol.
This message is typically a character buffer that is passed to the I/O driver via the function
WritePortMsg(). The message is part of the UDMSG data structure. Usually, a serial server
uses WriteComm() to pass the buffer to the Windows COM driver; while a board server
uses a function tailored to the particular board interface.

18-10 Chapter 18

Executing the Protocol – UDPROTCL.C
This section describes the functions that actually do the communication. The functions are
found in UDPROTCL.C.

UdprotDoProtocol()
This is the function called for every ProtTimerEvent. It contains the case statement that
determines what happens at a given state. In UDSAMPLE, it is assumed that there are a
limited number of states, namely IDLE, WAITRESP, and error conditions. If your device
has more states than these, add these states and whatever action needs to be taken.

UdprotGetResponse()
This function may need to be modified to determine if you have enough of the message to
continue processing.

ProcessValidResponse()
This function validates the response back from the device. (The response is in the lpPort
data structure, field mbRspBuffer.) It may validate the checksum, look for a particular field
in the message, or do anything required to ensure that the entire response has been received
correctly.

UdprotExtractReadData(), UdprotExtractDbItem()
These functions extract information from the response based on information in the message
structure and the symbol table. Modify these to suit your protocol.

UdprotHandleRspError()
This function handles problems with the communication protocol: incomplete responses,
error responses, timeouts, etc.

I/O Server Code Samples 18-11

Data Structures
There are several built-in data structures that the server needs to build messages, send them,
and extract the responses. These data structures may be modified to suit your needs.

PORT Data Structure
This data structure contains the information necessary to control the port in processing the
protocol. It contains a handle to a linked list of nodes, as well as handles to the currently
active node and message. It also contains the mbRspBuffer field which is the data coming
back from the PLC.

UDMSG Data Structure (Message)
This is the message data structure. It contains the actual message to be sent to the device, a
pointer to the topic, and indices into the symbol table for the first symbol contained in the
message and the last symbol contained in the message. This information allows the
information to be plucked out of the response.

STAT Data Structure (i.e. Station, Node, or Topic)
This structure contains all of the topic information. It has a handle to the associated symbol
table and a list of messages sent to a particular node.

SYMENT Data Structure (Symbol Table)
This data structure contains a one-to-one correspondence with the items that are being
requested (i.e. there should be one symbol table entry for every item requested). The symbol
table should be sorted according to data type and address (at the very least). If the item is a
bit address, the bit offset is often stored and sorted as well.

Note For Win16, the symbol table is an array of memory type HUGE, and consequently
needs to be allocated with data structure sizes that are a power of 2. In Win32, HUGE does
not exist, so the symbol table is a normal allocation.

18-12 Chapter 18

Compiling the Sample Code
Note The I/O Server Toolkit for FactorySuite 2000 has been built with Microsoft Visual
C++ version 6.0. Consequently, you must use version 6.0 sp3 or later to create Win32 I/O
Servers using this Toolkit. After following the instructions below, you will be able to build,
execute, and debug the sample server from the IDE.

Setting up a project for the sample code with Microsoft Visual C++ 6.0:

Create the new project:
- Click on File|New and select the “Projects” tab.
- Select Win32 Application
- For the project name, enter UDSAMPLE
- For the location, enter the path to the files, e.g.,

C:\WW\IOSERVER\COMMON\UDSAMPLE
- Click on Create New Workspace
- Click on OK

Copy the specific files for the desired server type to the UDSAMPLE directory
• For a board server, copy the files UDSAMPLE.C, UDSAMPLE.H and UDSAMPLE.ICO

from the UDBOARD directory to the C:\WW\IOSERVER\UDSAMPLE\COMMON
directory.

• For a serial server, copy the files UDSAMPLE.C, UDSAMPLE.H and UDSAMPLE.ICO
from the UDSERIAL directory to the C:\WW\IOSERVER\UDSAMPLE\COMMON
directory.

 Set up the files for the project
 - Click on Project|Add-to-Project|Files

 - In the dialog, select the directory where the files are located
 - Hold down the control key while clicking to select multiple files
 - Add all the *.C files and the *.RC file
 - Click on OK
 - Click on Project|Add-to-Project|Files again
 - In the dialog, select the directory where TOOLKIT7.LIB is located
 - Click on TOOLKIT7.LIB
 - Click on OK

Set up the appropriate compiler and linker options
 - Click on Project|Settings
 - Select the “C/C++” tab
 - For “Category,” select “Code Generation”
 - For “Use run-time library,” select “Multithreaded DLL”
 - Select the “Link” tab
 - For “Category,” select “Input”
 - Under “Ignore Libraries,” enter LIBC
 - Click on OK

Note The MSVC library OLEAUT32.LIB must also be linked to your project, either
explicitly or as one of the “Object/Library modules” on the “Link” tab.

Set up the appropriate directories
- Click on Tools|Options
- Select the “Directories” tab
- For “Show directories for” select “Include files”
- Add the path to the Toolkit include files, e.g., C:\WW\IOSERVERTOOLKIT\INC.
 Move this path to the top of the list of directories using "Move Item Up."
- Also add the path to C;\Program Files\DevStudio\VC\include\sys. Click on OK

I/O Server Code Samples 18-13

Debug and Support Functions
If you include DebugMenu=1 in the [UDSAMPLE] section of the Windows WIN.INI file
there will be several menu items that appear in the server system menu.

!!!! Dump prints the current port, topic, message, and symbol table structures to the
Wonderware Logger.

! ShowSend prints the messages sent to the PLC to the Wonderware Logger.
! ShowReceive prints the messages received from the PLC to the Wonderware Logger.
! ShowErrors prints enhanced error message information in the Wonderware Logger.
! Verbose prints program execution trace information in the Wonderware Logger.
! ShowEvents is primarily for tracing COM port activity for a serial server when an error

occurs. Events such as transmit buffer empty are printed in the Wonderware Logger.

Two other menu items are specific to the simulated PLC in UDSAMPLE:

! Simulator Read Paused stops the simulated PLC from responding to read messages.
This can be used to explore what happens when communication with the PLC fails.

! Simulator Write Paused stops the simulated PLC from responding to write messages.
This can be used to explore what happens when the server has a chance to accumulate
several write operations before the PLC is ready to process them.

If you are working with the Integrated Development Environment for a compiler, such as
Microsoft Visual C++ 6.0 sp3 or later, you can use breakpoints, watch windows, and other tools.
Note that if you do use a breakpoint to interrupt the normal operation of the program,
remember that some activities – such as PLC “keep alive” handshaking – may time out.

For debugging, feel free to make liberal use of debug() statements sent to the Wonderware
Logger. Hardware error and serious communications problems should always be sent to the
Wonderware Logger for operator use. Debug() statements to the Wonderware Logger
should be under menu control as Wonderware recommends that Wonderware Logger be
running at all times.

For more detailed information on debugging refer to the “Debugging and Testing” chapter.

18-14 Chapter 18

Simulated PLC
The sample I/O Server UDSAMPLE contains a simulator for a simple PLC. This simulator
is not intended to reflect the operation of any actual PLC; but it does provide a way to
illustrate the complete operation of the sample server. Points can be advised, requested, and
poked just as if the server were connected to a real device. The simulator can be paused to
explore what happens when communication gets lost, and resumed to explore how the server
recovers when communication is restored.

The serial server UDSERIAL and board server UDBOARD talk to the same simulated PLC.
The only difference is the communication protocol. The serial server uses hex ASCII strings
to send and receive messages, e.g.

:81000301002B4F;

with the start of the message marked with a colon (‘:’) and the end marked with a semicolon
(‘;’). By contrast, the board server uses straight binary to send and receive messages, e.g.

81 00 03 01 00 2B 4F

Otherwise, the points available and the protocols are the same.

For the serial server, one simulated PLC is implemented for each of the COM ports 1..4. For
the board server, one simulated PLC is implemented for each of the board segments 0xD000,
0xD400, 0xD800, 0xDC00.

The simulation has two PLC memory segments:

NAME ADDRESS RANGE DESCRIPTION FUNCTION
 V 1..512 variable memory holds value steady
 C 1..512 counter memory increments each time read

Addressing wraps around, so V814 = V((814-1) mod 512)+1 = V302

C-memory counters are always accessed as 16-bit integers.

However, points in V-memory can be accessed in additional ways:
V<number> 16-bit integer Example: V3
V<number>B 16-bit BCD integer Example: V3B
V<number>S 16-bit signed integer Example: V3S
V<number>D 32-bit DWORD Example: V3D (V3 and V4)
V<number>R 32-bit float (real number) Example: V3R (V3 and V4)
V<number>:<number> Bit of word (read only) Example: V3:12 (V3 bit 12)
V<number>-<number> String, blank-terminated Example: V1-5
V<number>-<number>B String, blank-terminated Example: V1-5B
V<number>-<number>C String, C-style Example: V1-5C
V<number>-<number>P String, Pascal-style Example: V1-5P

 (length byte first)

The PLC simulator in UDSAMPLE provides a way to illustrate various aspects of I/O Server
design with actual, running code. Topics can be configured, modified, and deleted. I/O
channels (COM ports or boards) can be configured and modified. Messages for reading and
writing PLC point values are created, “sent,” “received,” and interpreted just as if there were
a real device at the end of some kind of communication cable. In some cases, those messages
are “optimized” to improve performance.

I/O Server Code Samples 18-15

The use of the simulated PLC can be enabled or disabled at compile time, according to
whether the macro

#define SIMULATING

is defined or not in the module UDSAMPLE.C.
This approach makes it possible to include a complete or partial simulator in the source code
for a server and mask it out when the server is built for use with real I/O. As a failsafe, the first
time the simulator is accessed, it puts the message

Simulated I/O – for test purposes only!

into the Wonderware Logger. This helps ensure that, if you forget to mask out the
simulator, the log indicates that simulated I/O is being used.

While it may not be practical to include a complete or even partial simulator for an actual
PLC in your server, this technique can often be a significant aid in debugging – especially if
an actual PLC is unavailable for certain tests. See the chapter on debugging for additional
ideas on testing and debugging your server.

18-16 Chapter 18

19-1

C H A P T E R 1 9

Debugging and Testing

This section presents a basic development and testing methodology that will assist you
in completing the I/O Server quickly and efficiently.

Contents
! Basic Programming Rules for Windows and Windows NT
! General Debugging Topics
! Windows and Windows NT Debugging Tools
! Testing

19-2 Chapter 19

Basic Programming Rules for Windows
and Windows NT

The Toolkit uses C-language include files that use the WINAPI parameter passing
option. We recommend following Microsoft guidelines for writing compatible code.
The samples included have been written to compile Win32 models.

General Debugging Topics

Debug Messages
Liberal use of debug() message calls can greatly enhance your debugging arsenal.
These message calls are most useful at decision points to record data and flow through
the logic. The UDSAMPLE code described in the previous section illustrates how
debug() calls can be used to describe the device status returns. Until you become
familiar with the use of the Toolkit, we recommend that you put a debug() call at the
entry and exit of every new routine.The following are a few suggestions for debug()
usage:

1. Remember, always use far pointers to strings and be careful to keep the byte size of
the parameters equal to the format statement elements.

Example:

debug("UdprotFreeMsg(%04X)", (unsigned) hmsg);
debug("UdprotFreeSymEnt(%Fp, %Fp, %d)", lpnode, lpSymTab,
 (int) indx);
debug("UdprotUnchainSymEnt(%Fp, %Fp, %ld)", lpnode, lpSymTab,
 (long) lnum);

2. The debug() calls can take a lot of machine time to execute, especially if they are
being logged to disk (check the display options in Wonderware Logger). Allow
for this at first by selecting long timeouts, slow polling rates, and short messages.

When the server is completed, it is handy to leave a few protocol debug() calls in the
code. By using either a menu selection, a WIN.INI variable, or a Registry setting, you
can enable or disable these remaining debug() calls by putting the appropriate (if)
statements around them. This finer level of information gathering is useful when an
installation is first started up. When there is enough detail in the debug messages, they
will assist in isolating hardware problems, configuration errors, user problems, and the
lingering "one last bug" in the software.

Debugging and Testing 19-3

DDE Message Traffic Monitoring Using WIN.INI
The Toolkit will handle the entire DDE protocol for the server, but in rare cases you
may need to examine the DDE message traffic in detail. The Toolkit can be switched
into debug mode by using WIN.INI variables. The Toolkit routines will access the
WIN.INI file for a server by the name selected for the application name in the
ProtGetDriverName() function.The following two WIN.INI variables can be set to 1
to force the Toolkit to send DDE debugging messages to the Wonderware Logger:

[SERVERNAME]
DebugDDEMessages=1
PreventBlockedDDE=1

Below is a sample from the Wonderware Logger with the DebugDDEMessages debug
variable set. A simple sequence of INITIATE, REQUEST, POKE, ADVISE,
UNADVISE, then TERMINATE was done from DDEAPP.EXE:
90/07/24 21:48:08.301/UDSIMPLE/rcvd WM_DDE_REQUEST 4848 24E8 0001 C37D [T1]
90/07/24 21:48:09.851/UDSIMPLE/sent WM_DDE_DATA 24E8 4848 154E C37D [T1]
90/07/24 21:48:21.099/UDSIMPLE/rcvd WM_DDE_POKE 4848 24E8 154E C37D [T1]
90/07/24 21:48:21.264/UDSIMPLE/sent WM_DDE_ACK 24E8 4848 8000 C37D [T1]
90/07/24 21:48:27.646/UDSIMPLE/rcvd WM_DDE_ADVISE 4848 24E8 15FE C37D [T1]
90/07/24 21:48:27.756/UDSIMPLE/sent WM_DDE_ACK 24E8 4848 8000 C37D [T1]
90/07/24 21:48:27.921/UDSIMPLE/sent WM_DDE_DATA 24E8 4848 1026 C37D [T1]
90/07/24 21:48:31.821/UDSIMPLE/sent WM_DDE_DATA 24E8 4848 15FE C37D [T1]
90/07/24 21:48:36.874/UDSIMPLE/sent WM_DDE_DATA 24E8 4848 1636 C37D [T1]
90/07/24 21:48:38.466/UDSIMPLE/rcvd WM_DDE_UNADVISE 4848 24E8 0000 C37D [T1]
90/07/24 21:48:38.631/UDSIMPLE/sent WM_DDE_ACK 24E8 4848 8000 C37D [T1]
90/07/24 21:48:43.289/UDSIMPLE/sent WM_DDE_TERMINATE 24E8 4848 0000 0000 []

When using WindowViewer as the client to debug the DDE traffic, set the flag
PreventBlockedDDE to 1 to keep the server in the standard (slower) DDE mode.
WindowViewer will normally use its own extra message blocking protocol to speed up
the DDE transfers of large numbers of data points greatly.

Note: Remember to either set these both back to 0 or delete them from the WIN.INI file
when the server application is complete. With either one of these variables set,
performance will be severely degraded.

DDE Message Traffic Monitoring Using DDESpy
A Microsoft utility called DDESpy displays all the DDE messages on your computer
and tags each message with a window handle that will distinguish the messages from
multiple clients. An example of the level of detail that’s displayed with each message is
the DDE data message, where the output includes the source window handle, the data,
the data format and the item name.

You can get DDESpy from the Professional version of Microsoft's Visual C++ or from
CompuServe (enter GO WINSDK, file is DDESPY.ZIP). If you run DDESpy and get a
GPF or the output suddenly stops updating, you may not have the latest version of
DDESpy. Make sure you get the most recent version of DDESpy from CompuServe.

19-4 Chapter 19

Assertion Errors
Under certain illogical or fatal conditions, an Assertion Error message box will be
displayed showing a program line number, as shown in the example below:

An application can create these errors by calling ASSERT(boolean expression). If the
boolean expression evaluates to FALSE, the message box will come up. You can use
these calls at points in your code that should never happen or to indicate an illogical
situation.

Note: Use ASSERT_ERROR rather than using ASSERT (FALSE).

When an assertion error comes from the Toolkit library function, write down the
conditions that lead up to the error and the information in the message box. You can
respond Yes to the message box and, depending on the severity of the error condition,
the application may continue with no ill effects, get another assertion error, abort the
application and produce a DrWatson listing, or hang the system. Therefore, continue at
your own risk. If you respond No to the message box, the Toolkit will produce a
DrWatson listing which can be valuable in tracking the problem. Refer to the Microsoft
Professional Tools User's Guides for detailed information.

Another useful technique in tracking assertion errors that may come from the Toolkit is
to set a breakpoint at AssertLog. Then re-create the error and look at the CALL trace to
determine which routine in the server was called. Sometimes there are errors in the
calling routines parameters that are invalid and these errors do not get trapped as invalid
until they are several layers deep within the Toolkit.

Caution Note Assertion errors should be used sparingly since they will disable the
operation of your server. They should not be used to indicate communication errors,
nuisance errors, etc. Use the debug() function call to log these types of errors. As a
general rule, if the server can recover gracefully from an error, do not use an assert call.

Prior to contacting Technical Support, try to recreate the error and make note of the file
specification listed in the assertion message box. In many cases, the assert information
will be copied to the Wonderware Logger, resulting in an entry similar to the one
below:
90/10/22 16:13:25.542/UDSAMPLE/Assertion Error: "File
C:\WW\IOSERVER\UDSAMPLE\udmain.c Line 620"

Debugging and Testing 19-5

Windows and Windows NT Debugging Tools

Microsoft Visual C/C++ Debugger
Microsoft Visual C++ provides an integrated debugger to debug programs. If using
Visual C++ as the development environment, choose this full-featured debugger as the
debugging tool. It is strongly recommended that when you install Microsoft Visual C++,
you also perform the optional step of installing the Win32 symbol table. This will
facilitate tracing your program even when it makes calls to the operating system.

The Toolkit Library is now supplied with debugging information (symbols,
programmers database, and browsing). This requires Microsoft Visual C/C++ Version
6.0 sp3 or later.

Microsoft WINDBG Debugger
The Microsoft Windows NT SDK includes a powerful symbolic debugger called
WINDBG. If using the Windows NT SDK to develop a server, this debugger is an
essential tool for diagnosing and solving problems with code.

NuMega Bounds Checker
This tool is often of great help in tracking down memory leaks, bad memory pointers,
and out-of-range indexes. It does require a special effort to build your program for this
debugging tool, but it does provide a way of trapping mismatched memory
allocations/deallocations, resources accessed but not released, and invalid indexes.

NuMega Soft Ice
This tool can be useful if you find yourself debugging a server that uses drivers, such as
VxD programs for Windows 98 or kernel device drivers (KDDs) for Windows NT.

Rational/Pure/Atria Quantify Performance Monitor
This tool is of most value when your server is already running, but you want to look for
ways to improve performance. It does require a special effort to build your program for
this evaluation tool, but it does provide a way to examine areas where program
efficiency could be improved.

19-6 Chapter 19

Testing

WWClient Usage
The next most useful tool for debugging the new server code is the Wonderware
program WWClient that is included on the Wonderware Toolkit installation disks. This
program allows you to manually exercise DDE and SuiteLink functions in order to test
the server. (The program is discussed in the chapter entitled “I/O Server Code
Samples”.) This program will act as a client application. To use it, run
C:\Program Files\FactorySuite\COMMON\wwclient and select the various menu
options. The operations we will discuss are:

Connect
Register
Advise
Unadvise
Request
Poke
Unregister
Disconnect

By using WWClient you can simulate all of the typical client DDE and SuiteLink
actions. Follow the sequence listed below to observe the basic operations of the new
server:

1. Select Connect to bring up the Connect dialog. Enter the name of the node to which
you want to connect, the application name of the server, and a valid topic name for
the server. Then select whether the type of connection you want: DDE or IOT for
SuiteLink. [Note: If WWClient and your server are on the same machine, the node
name can be left blank for a DDE connection, but not for a SuiteLink connection.]
Finally, click on the “Connect” button. This will result in a call to
ProtAllocateLogicalDevice() and you can watch the server do its protocol setup.
If the connection is successful, a status line will appear in the WWClient main
window. An important test of the server logic is to use an invalid topic name. Also,
you can open up connections to several topics and several different servers from
this dialog. Click on the “Done” button when you are finished.

2. Select Item to bring up the Item dialog. Select which connection you want to use,
then enter a valid item name. Then click on the “Register” button. This will not
result in any calls to the server itself. However, an entry for each point registered
will appear under the corresponding topic in the WWClient main window. You can
also register a range of points in a single command. For example, typing “V1..5”
and clicking on “Register” will register points V1, V2, V3, V4, and V5. When you
register points under different connections, the points will be listed in the
WWClient main window under their corresponding connections.

Debugging and Testing 19-7

3. With a connection selected and a valid item name or range in the “Item” edit box,
click the “Advise” button. This will result in two calls to the server:
ProtCreatePoint() and ProtActivatePoint(). At this point, the server should
begin gathering data and return it by calling the Toolkit
DbNewVTQFromDevice() routine. The new data will be displayed in the
WWClient, and any of your debugging messages should be examined. Another
important test is to use an invalid item name.

4. With a connection selected and a valid item name or range in the “Item” edit box,
click the “Unadvise” button. Now ProtDeactivatePoint() will be called. This
should have exercised all of the basic data gathering paths.

5. With a connection selected and a valid item name or range in the “Item” edit box,
click the “Request” button. If the point is not already on advise, you will see calls
to ProtCreatePoint() and ProtActivatePoint(), followed by updates to the
Toolkit via the DbNewVTQFromDevice(), and a call to ProtDeactivatePoint().
You will also see current value for the point appears in the WWClient main
window. To examine what happens with a point that is already on advise, you can
use two instances of WWClient, one of which has the point on advise, and use the
other instance to request the point data. The instance of WWClient that makes the
request will show the current data value at the time of the request, but no updates to
that value will occur – even though updates are taking place in the other instance of
WWClient. See note below regarding multiple clients.

6. With a connection selected and a valid item name or range in the “Item” edit box,
select the type of data you want to send (Integer, Real, Discrete, or String) and enter
a new value in the “Value” edit box. Then click on the “Poke” button. Now you
will see a call to ProtNewValueForDevice() with the new data to be written by the
server to the device.

7. With a connection selected and a valid item name or range in the “Item” edit box,
click on the “Unregister” button. The listing for the point will be removed from the
main WWClient window. If the point is on advise, you will also see a call to
ProtDeactivatePoint().

8. Close the Item dialog box by clicking the “Done” button. Select Disconnect to
close the connection. If there is only one connection active, it will be closed.
Otherwise, the Disconnect dialog box will be displayed. You can close a particular
connection or all connections. Closing a connection will invoke a call to
ProtFreeLogicalDevice() and effectively shut down that topic in the server. See
note below regarding multiple clients.

19-8 Chapter 19

If you have multiple clients connected to the same topic, the call to
ProtAllocateLogicalDevice() only gets issued when the first client connects to the
topic. Likewise, ProtFreeLogicalDevice() gets called only when the last client
disconnects from the topic. Similarly, ProtCreatePoint() and ProtActivatePoint()
get called only when the first client connects to the point, and ProtDeactivatePoint()
gets called only when the last client disconnects from the point.

After the basic single topic, single item paths through the server have been tested. Now
you can move on to a more complicated test. Keep in mind that nearly all of the server
functions can be exercised using this simple tool. Plan your testing around the boundary
conditions of your protocol. The following are a few other basic test suggestions:

1. If you have implemented the STATUS item for the server's topics, use WWClient to
test its operation while causing protocol error conditions. Most of the protocol
error handling can be tested during this phase.

2. You can use multiple copies of WWClient to exercise overlapping operations. For
example, advise several points to check the protocol for optimizing its polling, and
do pokes to others points.

3. Clean up after topic termination (call ProtFreeLogicalDevice()) can be tested.
Have WWClient Advise several points and then do a Disconnect (without doing an
Unadvise first).

4. Clean up after shut down (calls to ProtClose()) can be tested by closing the server
while several points are Advised.

Scripts for WWClient
WWClient can be controlled from a script, so that complex or repetitive tests can be
recorded and replayed again later.
;Script test.scr
;Perform repeated connect, advise, and disconnect

Loop:-1
Connect_iot:\\FStest05\udsample|topic1
Register:v1..10
Advise:v1..10
Pause:1000
Disconnect:\\FStest05\udsample|topic1
Pause:1000
LoopEnd:

Debugging and Testing 19-9

Microsoft Excel Usage
Any cell in Excel can be set to input DDE data from the server. This can be useful for
testing and obviously for the completed application usage. To cause Excel to read DDE
data, select a cell and then enter the full address formula:

= Application|Topic!Item

For example:

=UDSAMPLE|Trans1!T1
=View|Tagname!ReactorLvl
=MODBUS|ReactorPLCFast!'40001'

If the item name contains special characters, Excel may try to evaluate the expression. It
is useful to put apostrophe marks (single quotes) around the item name.

In addition, Excel can be forced to do Pokes. The following two example pokes can be
used:

1. Using DDEView.

DDEView can be used to poke a single cell to an item or columns of cells to
multiple items. DDEView is shipped with Wonderware's NetDDE for Windows or
is available in the utilities section of Wonderware's Comprehensive Support CD.
Documentation on the installation and usage of DDEView is available in Appendix
C of the NetDDE for Windows User's Guide that comes with Wonderware's
NetDDE for Windows and the DDEView on-line help.

2. Using Excel 5.0 VBA macros.

An example of how to poke a single cell to an item using an Excel 5.0 VBA style
macro:

Sub GetUDSERIAL()
Dim rangeToPoke
Dim channelNumber

channelNumber = Application.DDEInitiate("UDSERIAL", "topic")
Set rangeToPoke = Worksheets("Sheet1").Cells(1, 1)
Application.DDEPoke channelNumber, "R1", rangeToPoke
Application.DDETerminate channelNumber

End Sub

19-10 Chapter 19

Index 1

Index
A
About the .DEF File, 9-30
About the .RC File, 9-30
Active Points, 3-10
Adding Help to the I/O Server, 9-30
Adding SuiteLink/DDE to an Existing Windows

Application, 14-1
Addressing in Windows Protected-Mode, 9-14
AdjustWindowSizeFromWinIni, 9-22, 10-2, 10-53
Advise, 9-7, 19-3, 19-6, 19-8
ALLOCARRAYROUTINE, 11-10
AllocExtArray, 11-11
AlwaysDeleted, 11-9
AlwaysFound, 11-6, 11-7, 11-9
API Function Reference, 10-1
AppendItemAtTail, 11-5, 11-16
Application Name, 3-3, 3-5, 3-6
Assertion Errors, 19-4
AUX port, 10-24

B
base, 11-2, 11-3, 11-4, 11-5
Basic Programming Rules, 19-2
Basic Setup for a Selection Box, 9-21, 10-60
bCFGfileUnused, 10-106, 12-14
bNotService, 10-106, 12-14
Boolean Expression, 19-4
Building Messages, 18-10
Built in Data Structures, 18-12

C
C file, 9-31
Called Timer (Setup and Event) Functions, 9-9
Caveats with StrVal strings, 9-12
CHAIN, 7-7, 7-10, 11-3, 11-4, 11-6, 11-16
Chain Manager, 11-1, 11-2, 11-3, 11-6
CHAINLINK, 11-4, 11-14
CHAINLINKPTR, 11-4, 11-6
CHAINSCANNER, 7-7, 7-10, 11-6, 11-16
CheckConfigFileCmdLine, 9-22, 10-3
Client Application, 4-2
CloseComm, 9-26, 10-4
Coil Read Size, 4-2
COM Port, 4-2
Command Line Builds, 2-6
Common Dialog DLL (WWDLG32A.DLL), 2-7
Common Dialog Functions, 9-16
Communication with the Device, 4-4
Compatibility Functions, 9-27
Compatibility with Later Versions of the Toolkit, 9-9
Compiling a Server, 2-5
Configuration File Path, 9-22
Configuring an I/O Server, 4-2
Control of DDEAPP from WIN.INI, 19-8
Conversation, 3-6
Correct Usage of a String, 9-13

D
Data Structures

CHAIN, 7-7, 7-10, 11-3, 11-4, 11-6, 11-16
CHAINLINK, 11-4, 11-14
CHAINLINKPTR, 11-4, 11-6
CHAINSCANNER, 7-7, 7-10, 11-6, 11-16
EXTARRAY, 11-10
FILETIME, 6-2, 10-6, 10-10, 10-15, 10-18, 10-89,

10-90, 10-92, 10-93, 17-7
HSTAT, 10-68, 10-69, 10-70, 10-71, 10-72, 10-73,

10-76, 10-77, 10-78, 10-79, 10-80, 10-81
LPCHAIN, 11-4, 11-5, 11-6, 11-7, 11-8
LPCHAINLINK, 7-8, 11-4, 11-5, 11-6, 11-7, 11-8,

11-9, 11-14, 11-15, 11-16
LPCHAINSCANNER, 11-6, 11-7
LPEXTARRAY, 7-7, 11-10, 11-11, 11-12, 11-13
PORT, 8-3, 10-14, 10-72, 10-73, 10-75, 10-79, 10-

80, 18-12
PTQUALITY, 7-7, 7-10, 10-9, 10-12, 10-13, 10-15,

10-17, 10-18
PTTIME, 10-10
PTVALUE, 9-12, 9-13, 10-11, 10-16, 10-17, 10-18,

10-54, 10-68, 10-70, 10-77, 10-78, 10-82, 10-
83, 10-84, 10-85, 10-86, 12-2

STAT, 18-12
SYMENT, 16-8, 18-12
WW_AB_INFO, 10-108, 10-109, 12-3, 17-6
WW_CONFIRM, 10-106, 10-107, 12-4, 12-14, 15-

4
WW_CP_DLG_LABELS, 9-16, 10-104, 10-105,

12-5, 12-6
WW_CP_PARAMS, 10-105, 10-117, 12-5, 12-6,

12-10, 16-10
WW_SELECT, 10-130, 12-12
WW_SERV_PARAMS, 12-14

Data Variables, 9-30
Database Handle Parameter, 9-5
DbDevGetName, 10-5
DbGetGMTasFiletime, 6-2, 6-3, 10-6, 10-15, 17-7
DbGetName, 10-7, 10-91
DbGetPointType, 10-8
DbGetPtQuality, 10-9
DbGetPtTime, 10-10
DbGetValueForComm, 10-11
DbNewQForAllPoints, 10-12
DbNewQFromDevice, 6-2, 7-8, 10-13, 17-7
DbNewTQFromDevice, 6-2, 9-9, 10-12, 10-13, 10-15,

17-7
DbNewValueFromDevice, 9-1, 10-16, 19-7
DbNewVQFromDevice, 7-5, 10-17, 17-8
DbNewVTQFromDevice, 6-2, 6-4, 7-5, 9-9, 10-16, 10-

17, 10-18, 10-42, 10-45, 10-52, 10-55, 17-7, 17-8,
19-7

DbRegisterDemandScan, 10-19
DbRegisterScanState, 10-20
DbSetHProt, 9-9, 10-21
DbSetPointType, 10-22
DbValueWriteConfirm, 10-23
DDE Conversation, 10-43
DDE Server Toolkit Data Structures, 12-1
DDEAPP.EXE, 19-3, 19-6

Index2

debug, 9-22, 10-24, 19-2
Debug and Support Functions, 18-14
Debug Messages, 19-2
DebugDDEMessages, 19-3
Debugging and Testing, 5-1, 6-1, 7-1, 8-1, 11-1, 15-1,

17-1, 19-1
Debugging the DDE Message Traffic, 19-3
DEF file, 9-30
DELETEARRAYROUTINE, 11-10
DeleteChain, 11-8, 11-16
DeleteExtArray, 11-11
DeleteItem, 11-8, 11-14, 11-16
DELETEROUTINE, 11-8, 11-9
Deleting an Extensible Array, 11-11
DemandScanFncCallback, 10-19
Designing the UDSERIAL Server, 18-4
Discrete (Boolean) Data Type, 3-4
Discrete Data Type, 9-5, 9-6, 9-7
dwWWOsPlatform, 10-121
Dynamic Data Exchange, 3-1

E
EnableCommNotification, 9-27, 10-25
Examples of Logical Device Management, 9-4
Excel Usage, 19-9
Executing the Configuration, 18-10
Executing the Protocol, 4-3, 18-11
EXTARRAY, 11-10
EXTENDARRAYROUTINE, 11-10
ExtractReadData/ExtractDbItem, 18-11

F
FastDDE, 3-3, 5-2, 5-7
File Description, 2-3

Include Files, 2-3
Sample Servers, 2-4
Utility Files, 2-3

FILETIME, 6-2, 10-6, 10-10, 10-15, 10-18, 10-89, 10-
90, 10-92, 10-93, 17-7

FindFirstItem, 7-10, 11-6, 11-16
FindItemFollowing, 11-7
FindItemStartingAt, 7-8, 11-6
FindNextItem, 7-8, 7-10, 11-7, 11-16
FlushComm, 9-26, 10-26
FOUNDROUTINE, 11-9
Freeing Memory, 9-2, 9-14
Freeing the Memory Associated with the Selection List,

9-21, 10-63
Freeing the Memory used for a ptValue String, 10-84
Functions

AdjustWindowSizeFromWinIni, 9-22, 10-2
AllocExtArray, 11-11
AlwaysDeleted, 11-9
AlwaysFound, 11-6, 11-7, 11-9
AppendItemAtTail, 11-5, 11-16
CheckConfigFileCmdLine, 9-22, 10-3
CloseComm, 9-26, 10-4
DbDevGetName, 10-5
DbGetGMTasFiletime, 6-2, 6-3, 10-6, 10-15, 17-7
DbGetName, 10-7, 10-91

DbGetPointType, 10-8
DbGetPtQuality, 10-9
DbGetPtTime, 10-10
DbGetValueForComm, 10-11
DbNewQForAllPoints, 10-12
DbNewQFromDevice, 6-2, 7-8, 10-13, 17-7
DbNewTQFromDevice, 6-2, 9-9, 10-12, 10-13, 10-

15, 17-7
DbNewValueFromDevice, 9-5, 10-16, 19-7
DbNewVQFromDevice, 7-5, 10-17, 17-8
DbNewVTQFromDevice, 6-2, 6-4, 7-5, 9-9, 10-16,

10-17, 10-18, 17-7, 17-8, 19-7
DbRegisterDemandScan, 10-19
DbRegisterScanState, 10-20
DbSetHProt, 9-9, 10-21
DbSetPointType, 10-22
DbValueWriteConfirm, 10-23
debug, 10-24, 19-2
DeleteChain, 11-8, 11-16
DeleteExtArray, 11-11
DeleteItem, 11-8, 11-14, 11-16
EnableCommNotification, 9-27, 10-25
ExtendExtArray, 11-11
FindFirstItem, 7-10, 11-6, 11-16
FindItemFollowing, 11-7
FindItemStartingAt, 7-8, 11-6
FindNextItem, 7-8, 7-10, 11-7, 11-16
FlushComm, 9-26, 10-26
GetAppName, 10-27
GetCommError, 9-26, 10-28
GetCommEventMask, 9-26, 10-29
GetExtArrayMemberPtr, 7-7, 11-11
GetIOServerLicense, 10-30, 18-5
GetScannerNextItem, 11-7
GetServerNameExtension, 10-31, 10-119, 15-6, 17-

3
GetString, 10-32
GetTextExtent, 10-33
InitializeChain, 11-5, 11-16
InitializeExtArray, 11-11
InsertItemAfter, 11-5
InsertItemAtHead, 11-5
InsertItemBefore, 11-5
InsertItemInMiddle, 11-5, 11-16
IsInChain, 11-6
NTSrvr_BuildCommDCB, 9-27, 10-34
NTSrvr_GetCommState, 9-27, 10-35
NTSrvr_SetCommState, 9-27, 10-36
NTSrvr_SetDCB_Dtr, 9-27, 10-37
NTSrvr_SetDCB_Rts, 9-27, 10-38
OpenComm, 9-26, 10-39
PfnSendEmSelectAll, 9-27, 10-40
PfnSendEmSelectRange, 9-27, 10-41
ProtActivatePoint, 9-5, 10-21, 10-42, 19-7
ProtAllocateLogicalDevice, 9-3, 10-43, 19-6
ProtClose, 9-2, 10-44, 19-8
ProtCreatePoint, 9-5, 10-45, 19-7
ProtDeactivatePoint, 9-6, 10-46, 19-7
ProtDefWindowProc, 9-2, 10-47
ProtDeletePoint, 10-48
ProtDefWindowProc, 14-1
ProtExecute, 9-3, 10-49
ProtFreeLogicalDevice, 9-3, 10-50, 19-7, 19-8

Index 3

ProtGetDriverName, 9-2, 9-22, 10-3, 10-24, 10-27,
10-31, 10-51, 14-1, 15-4, 15-6, 17-3, 19-3

ProtGetValidDataTimeout, 9-2, 9-10, 10-52
ProtInit, 9-2, 10-53
ProtNewValueForDevice, 9-6, 9-11, 9-13, 10-21,

10-54, 19-7
ProtTimerEvent, 9-2, 9-9, 10-55
ReadComm, 9-26, 10-56
RelinquishPermission, 9-14, 10-57
RequestPermission, 9-14, 10-58
SelBoxAddEntry, 9-21, 10-59
SelBoxSetupStart, 9-21, 10-60
SelBoxUserSelect, 9-21t, 10-61
SelBoxUserSelection, 9-21, 10-62
SelListFree, 9-21, 10-63
SelListGetSelection, 9-21, 10-64
SelListNumSelections, 9-21, 10-65
SetChainBase, 11-5
SetCommEventMask, 9-26, 10-66
SetSplashScreenParams, 10-67, 10-102, 17-4, 17-5,

18-5
StatAddValue, 10-68, 10-72, 10-74
StatDecrementValue, 10-69
StatGetValue, 10-70
StatIncrementValue, 10-71, 10-72, 10-74
StatRegisterCounter, 10-68, 10-69, 10-70, 10-71,

10-72, 10-74, 10-75, 10-77, 10-78, 10-79, 10-
81

StatRegisterRate, 10-68, 10-69, 10-70, 10-71, 10-
73, 10-76, 10-77, 10-78, 10-80, 10-81

StatSetCountersInterval, 8-4, 10-75
StatSetRateInterval, 10-76
StatSetValue, 10-77
StatSubtractValue, 10-78
StatUnregisterCounter, 10-72, 10-79
StatUnregisterRate, 10-74, 10-80
StatZeroValue, 10-81
StrValSetNString, 9-11, 10-82
StrValSetString, 9-11, 9-12, 9-13, 10-83
StrValStringFree, 9-11, 10-84
StrValStringLock, 9-11, 9-13, 10-85
StrValStringUnlock, 9-11, 9-13, 10-86
SysTimerSetupProtTimer, 9-2, 10-87
SysTimerSetupRequestTimer, 10-88
UdAddFileTimeOffset, 10-89, 10-90
UdAddTimeMSec, 10-90
UDDbGetName, 10-7, 10-91
UdDeltaFileTime, 10-92, 10-93
UdDeltaTimeMSec, 10-93
UdInit, 10-94
UdReadAnyMore, 9-22, 10-95, 10-128, 10-129, 10-

140, 10-141
UdReadVersion, 9-22, 10-96, 10-128, 10-129, 10-

140, 10-141
UdTerminate, 10-97
UdWriteAnyMore, 9-24, 10-98, 10-128, 10-129,

10-140, 10-141
UdWriteVersion, 9-24, 10-99, 10-128, 10-129, 10-

140, 10-141
UnchainItem, 11-8, 11-16
WriteComm, 9-26, 10-100
WriteWindowSizetoWinIni, 9-24
WriteWindowSizetoWinIni, 10-101

WWAnnounceStartup, 10-67, 10-102, 17-4, 17-5
WWCenterDialog, 9-16, 10-103
WWConfigureComPort, 9-16, 10-104
WWConfigureServer, 9-16, 10-106
WWConfirm, 9-16, 10-107
WWDisplayAboutBox, 9-16, 10-108
WWDisplayAboutBoxEx, 10-109, 12-3
WWDisplayConfigNotAllow, 9-16, 10-110
WWDisplayErrorCreating, 9-17, 10-111
WWDisplayErrorReading, 9-17, 10-112
WWDisplayErrorWriting, 9-17, 10-113
WWDisplayKeyNotEnab, 9-18, 10-114
WWDisplayKeyNotInst, 9-18, 10-115
WWDisplayOutofMemory, 9-18, 10-116
WWFormCpModeString, 9-18, 10-117
WWGetDialogHandle, 9-18, 10-118
WWGetDriverNameExtension, 10-119
WWGetExeFilePath, 10-120, 15-4
WWGetOsPlatform, 10-121
wwHeap_AllocPtr, 10-122
wwHeap_AllocPtr, 9-14
wwHeap_FreePtr, 10-123
wwHeap_FreePtr, 9-14
wwHeap_Init, 10-124
wwHeap_Init, 9-14
wwHeap_ReAllocPtr, 10-125
wwHeap_ReAllocPtr, 9-14
wwHeap_Release, 9-14, 10-126
WWInitComPortComboBox, 9-18, 10-127
WWSelect, 9-18, 10-130
WWTranslateCDlgToWinBaud, 9-18, 10-131
WWTranslateCDlgToWinData, 9-18, 10-132
WWTranslateCDlgToWinParity, 9-18, 10-133
WWTranslateCDlgToWinStop, 9-19, 10-134
WWTranslateWinBaudToCDlg, 9-19, 10-135
WWTranslateWinDataToCDlg, 9-19, 10-136
WWTranslateWinParityToCDlg, 9-20, 10-137
WWTranslateWinStopToCDlg, 9-20, 10-138
WWVerifyComDlgRev, 9-20, 10-139

G
GetAppName, 9-22, 10-27
GetCommError, 9-26, 10-28
GetCommEventMask, 9-26, 10-29
GetExtArrayMemberPtr, 7-7, 11-11
GetIOServerLicense, 10-30, 18-5
GetProfileInt, 10-53
GetProfileString, 10-53
GetScannerNextItem, 11-7
GetServerNameExtension, 10-31, 10-119, 15-6, 17-3
GetString, 9-22, 10-32
GetTextExtent, 10-33
Getting Started with the I/O Server Toolkit, 2-1
GlobalAlloc, 9-14
GlobalFree, 9-14
GlobalLock, 9-14
GlobalReAlloc, 9-14
GlobalUnlock, 9-14

Index4

H
Heap Manager, 9-14
Help Development Software Packages, 9-31
Help Files, 9-31
Help Menu Items

MENU_HELP_ABOUT, 9-31
MENU_HELP_INDEX, 9-31
MENU_HELP_ON_HELP, 9-31
SEPARATOR, 9-31

HSTAT, 10-68, 10-69, 10-70, 10-71, 10-72, 10-73, 10-
76, 10-77, 10-78, 10-79, 10-80, 10-81

hString Field, 9-11

I
I/O Conversation, 3-2, 3-3, 3-5, 9-3
I/O Server Code Samples, 18-1
I/O Server Toolkit Application Programming Interface,

10-1
I/O Server's Initialization, 9-2
Implementing a Configure Menu Option, 4-2
InitializeChain, 11-5, 11-16
InitializeExtArray, 11-11
Initializing a Heap, 9-14, 10-124
Initializing a ptValue String, 9-11
Initializing or Changing the Value of a ptValue string,

10-83
INITIATE, 19-3, 19-6
InsertItemAfter, 11-5
InsertItemAtHead, 11-5
InsertItemBefore, 11-5
InsertItemInMiddle, 11-5, 11-16
Installation Procedures

With a prior installation of the I/O Server Toolkit,
2-2

Integer Data Type, 3-4, 9-5, 9-6, 9-8
IsInChain, 11-6
Item Name, 3-6, 4-3
Item/Point, 3-3, 3-6, 4-2

L
Limiting the String Size, 10-82
Linked List, 11-14
Linking a Server, 2-6
Locking a String in Memory, 9-11, 10-85
Logging Hardware/Software Problems, 10-24
Logical Device, 3-3, 3-5, 4-2, 9-3
LogicalAddrCmp, 18-10
LPALLOCARRAYROUTINE, 11-10, 11-11
LPCHAIN, 11-4, 11-5, 11-6, 11-7, 11-8
LPCHAINLINK, 7-8, 11-4, 11-5, 11-6, 11-7, 11-8, 11-9,

11-14, 11-15, 11-16
LPCHAINSCANNER, 11-6, 11-7
LPDELETEARRAYROUTINE, 11-10, 11-11
LPDELETEROUTINE, 11-9
LPEXTARRAY, 7-7, 11-10, 11-11, 11-12, 11-13
LPEXTENDARRAYROUTINE, 11-10, 11-11
LPFOUNDROUTINE, 11-6, 11-7, 11-9
lstrcmpi, 10-43, 10-45

M
Macros for Portablility, 9-28
Managing Points, 9-5
Memory, 9-11
Memory Access Permission Functions, 9-14
Memory Address Range, 9-15
Memory Management Functions, 9-14
Memory Mapped I/O, 10-58
Miscellaneous Functions, 9-22
Modifying the User Interface - UDSERIAL.RC, 18-6
Multiple I/O Conversations, 3-8

N
nNTServiceSetting, 10-106, 12-14, 12-15, 15-5, 15-7
Non-Standard Memory, 10-58
Notation Convention for Application and Topic, 3-5, 3-6
Notes on the UDSAMPLE, 18-2
NTSrvr_BuildCommDCB, 9-27, 10-34
NTSrvr_GetCommState, 9-27, 10-35
NTSrvr_SetCommState, 9-27, 10-36
NTSrvr_SetDCB_Dtr, 9-27, 10-37
NTSrvr_SetDCB_Rts, 9-27, 10-38

O
Obtaining a File Path from the Command Line, 9-22
OnOffScanFncCallback, 10-20
OpenComm, 9-26, 10-39
OX.SYS, 10-24

P
PfnSendEmSelectAll, 9-27, 10-40
PfnSendEmSelectRange, 9-27, 10-41
Point/Item Management, 9-5
Poke, 9-7, 19-3, 19-7
Poll Frequency, 4-2
PORT Data Structure, 18-12
Porting to Windows NT, 16-1
PreventBlockedDDE, 19-3
ProcessValidResponse, 18-11
ProtActivatePoint, 9-5, 10-42, 10-46, 19-7
ProtAllocateLogicalDevice, 9-3, 9-5, 10-43, 10-48, 19-6
ProtClose, 9-2, 10-44
ProtCreatePoint, 9-5, 10-21, 10-23, 10-42, 10-45, 10-46,

10-48, 19-7
ProtDeactivatePoint, 9-6, 10-46, 19-7
ProtDefWindowProc, 9-2, 10-47, 14-1
ProtDeletePoint, 10-48
ProtExecute, 9-3, 10-49
ProtFreeLogicalDevice, 9-3, 10-50, 19-7, 19-8
ProtGetDriverName, 9-2, 9-22, 10-3, 10-24, 10-27, 10-

31, 10-51, 14-1, 15-4, 15-6, 17-3, 19-3
ProtGetValidDataTimeout, 9-2, 9-10, 10-52, 10-88
ProtInit, 9-1, 9-2, 10-3, 10-53
ProtNewValueForDevice, 9-6, 9-11, 9-13, 10-46, 10-54,

19-7
Protocol Initialization & Setup, 9-2
ProtTimerEvent, 9-2, 9-9, 10-55, 18-11

Index 5

PTQUALITY, 7-7, 7-10, 10-9, 10-12, 10-13, 10-15, 10-
17, 10-18

PTTIME, 10-10
ptValue, 9-11, 12-2

Q
Quality, 3-2, 6-2, 7-1, 7-2, 7-4, 7-5, 10-9, 10-16, 17-2,

17-7, 17-8

R
RC file, 9-30, 9-31
ReadComm, 9-26, 10-56
Real Data Type, 3-4, 9-5, 9-6, 9-8
Real Mode, 9-14
Register Read size, 4-2
RelinquishPermission, 9-14, 10-57, 10-58
Reporting Changing Point Values, 9-5
REQUEST, 19-3
RequestPermission, 9-14, 10-58
Resource File, 10-32
Retrieving a Point Value from the Device, 9-9
Returning a String from the Resource File, 10-32
Running a Server, 2-7

S
Sample I/O Servers

Board, 9-31
Board Sample, 4-4
Serial, 9-31

SampleI/O Servers
Serial Sample, 4-4

SAMPLES, 18-2
SelBoxAddEntry, 9-21, 10-59, 10-64
SelBoxSetupStart, 9-21, 10-60
SelBoxUserSelect, 9-21, 10-59, 10-61
SelBoxUserSelect, 10-62
SelBoxUserSelection, 9-21, 10-61, 10-62
Selection Box, 9-21
SelListFree, 9-21, 10-32, 10-62, 10-63
SelListGetSelection, 9-21, 10-62, 10-64
SelListNumSelections, 9-21, 10-62, 10-64, 10-65
Server Application, 3-3, 4-2, 9-3
Server Porting Instructions, 16-2
Server.HLP file, 9-31
SetChainBase, 11-5
SetCommEventMask, 9-26, 10-66
SetSplashScreenParams, 10-67, 10-102, 17-4, 17-5, 18-5
Setting the Vertical Screen Position of the Box, 10-61
Slave ID, 4-2
STAT Data Structure (or Node or Topic), 18-12
StatAddValue, 10-68, 10-72, 10-74
StatDecrementValue, 10-69
StatGetValue, 10-70
StatIncrementValue, 10-71, 10-72, 10-74
StatRegisterCounter, 10-68, 10-69, 10-70, 10-71, 10-72,

10-74, 10-75, 10-77, 10-78, 10-79, 10-81
StatRegisterRate, 10-68, 10-69, 10-70, 10-71, 10-73, 10-

76, 10-77, 10-78, 10-80, 10-81
StatSetCountersInterval, 8-4, 10-75

StatSetRateInterval, 10-76
StatSetValue, 10-77
StatSubtractValue, 10-78
StatUnregisterCounter, 10-72, 10-79
StatUnregisterRate, 10-74, 10-80
StatZeroValue, 10-81
Stop Reporting Point Value Changes, 9-6
stricmp, 3-8
String Buffers, 10-32
String Data Type, 3-4, 9-5, 9-6, 9-8
String PtValue Manipulation Functions, 9-9, 9-11
STRINGTABLE, 9-30
STRUSER, 10-32
StrValSetNString, 9-11, 10-82
StrValSetString, 9-11, 9-12, 9-13, 10-83
StrValStringFree, 9-11, 10-83, 10-84
StrValStringLock, 9-11, 9-13, 10-85, 10-86
StrValStringUnlock, 9-11, 9-13, 10-86
SuiteLink, 2-3, 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 4-2,

5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 5-7, 5-8, 6-4, 7-4, 8-3,
8-4, 8-5, 9-1, 10-23, 14-1, 15-7, 18-3, 19-6

Symbol Table, 11-2, 16-8, 18-12
SYMENT Data Structure (Symbol Table), 18-12
System Topic, 8-3
SysTimerSetupProtTimer, 9-2, 9-9, 10-53, 10-55, 10-87
SysTimerSetupRequestTimer, 9-2, 9-9, 10-53, 10-88
szCaption, 10-106, 12-14
szComment, 10-108, 12-3, 17-6

T
TERMINATE, 3-5, 19-3, 19-6, 19-7, 19-8
Time Mark, 6-2, 6-4, 10-12, 10-13, 10-16, 10-17, 17-7
Timeout, 4-2
Timer Event from the Toolkit, 4-3
Toolkit database, 3-2, 3-7, 3-8, 3-9, 5-4, 6-2, 6-4, 6-5, 7-

4, 9-5, 9-9, 9-10, 9-13, 10-9, 10-10, 10-12, 10-13,
10-15, 10-21, 10-42, 10-46, 10-55, 10-82, 10-83,
10-84, 10-88

Toolkit Database Interface for Protocol Functions, 9-9
Toolkit Functions, 9-1
Toolkit Library Routines, 3-6
TOOLKIT7.LIB, 9-7, 9-9, 9-30, 14-1
Topic Name, 3-3, 3-5, 3-6, 4-2, 4-3

U
UdAddFileTimeOffset, 10-89, 10-90
UdAddTimeMSec, 10-90
UDBLDMSG.C, 18-10
UDBOARD, 4-3
UDCONFIG.C - Function ValidatePoint, 18-8
UDDbGetName, 10-7, 10-91
UdDeltaFileTime, 10-92, 10-93
UdDeltaTimeMSec, 10-93
UdInit, 9-22, 10-94, 14-1
UDMAIN.C, 9-31
UDMSG Data Structure (Message), 18-12
UdprotAddPoll, 18-10
UdProtDoProtocol, 18-11
UdprotGetResponse, 18-11
UdprotPrepareWriteMsg, 18-10

Index6

UdReadAnyMore, 9-22, 10-95, 10-128, 10-129, 10-140,
10-141

UdReadVersion, 9-22, 10-96, 10-128, 10-129, 10-140,
10-141

UDSAMPLE, 18-2
UDSERIAL, 4-2
UDSERIAL Architectural Overview, 18-3
UdTerminate, 9-24, 10-97, 14-1
UdWriteAnyMore, 9-24, 10-98, 10-128, 10-129, 10-140,

10-141
UdWriteVersion, 9-24, 10-99, 10-128, 10-129, 10-140,

10-141
Unadvise, 9-7, 19-3, 19-8
UnchainItem, 11-8, 11-16
Unlocking a String in Memory, 10-86

V
ValidatePoint

Example, 18-8
ValidDataTimeout, 9-10, 10-88
VTQ, 5-2, 6-2, 6-4, 10-12, 10-13, 10-15, 10-17, 10-18,

17-2, 17-7

W
What is called on a Poke?, 9-7
What is called on a Request?, 9-6
What is called on a TERMINATE?, 9-4
What is called on an Advise/Unadvise?, 9-7
What is called on INITIATE?, 9-4
What is DDE?,1-4
What is SuiteLink?, 5-1
WIN.INI, 9-22, 10-24, 19-8
Windows Function Emulators, 9-26
Windows NT Only Macros, 9-28
Windows NT Porting Functions, 9-25
Windows' String Resources, 10-32
WindowViewer, 3-3, 3-6
WINHELP, 9-30
WinMain, 9-22, 9-24, 10-94, 10-97
WM_COMMAND / MENU_HELP_ABOUT, 9-31
WM_COMMAND Messages, 10-47
WM_DDE_REQUEST, 10-52
Wonderware InTouch, 3-3, 9-21
Wonderware Logger Sample, 19-3
WriteComm, 9-26, 10-100
WriteWindowSizetoWinIni, 9-24, 10-101
Writing a New Value to the Device, 9-6
WW_AB_INFO, 12-3
WW_CONFIRM, 12-4
WW_CP_DLG_LABELS, 12-5
WW_CP_PARAMS, 12-10
WW_SELECT, 12-12
WW_SERV_PARAMS, 12-14
WWAnnounceStartup, 10-67, 10-102, 17-4, 17-5
WWCenterDialog, 9-16, 10-103
WWConfigureComPort, 9-16, 10-104
WWConfigureServer, 9-16, 10-106
WWConfirm, 9-16, 10-107
WWDisplayAboutBox, 9-16, 10-108
WWDisplayAboutBoxEx, 10-109, 12-3

WWDisplayConfigNotAllow, 9-16, 10-110
WWDisplayErrorCreating, 9-17, 10-111
WWDisplayErrorReading, 9-17, 10-112
WWDisplayErrorWriting, 9-17, 10-113
WWDisplayKeyNotEnab, 9-18, 10-114
WWDisplayKeyNotInst, 9-18, 10-115
WWDisplayOutofMemory, 9-18, 10-116, 10-122, 10-

125
WWFormCpModeString, 9-18, 10-117
WWGetDialogHandle, 9-18, 10-118
WWGetDriverNameExtension, 10-119
WWGetExeFilePath, 10-120, 15-4
WWGetOsPlatform, 10-121
wwHeap_AllocPtr, 9-14, 10-122
wwHeap_FreePtr, 9-14, 10-123
wwHeap_Init, 9-14, 10-124
wwHeap_ReAllocPtr, 9-14, 10-125
wwHeap_Release, 9-14, 10-126
wwHeapAllocPtr, 10-124
wwHeapFreePtr, 10-124
wwHeapReAllocPtr, 10-124
WWInitComPortComboBox, 9-18, 10-127
WWLOGGER.EXE, 10-24
WWSelect, 9-18, 10-130
WWTranslateCDlgToWinBaud, 9-18, 10-131
WWTranslateCDlgToWinData, 9-18, 10-132
WWTranslateCDlgToWinParity, 9-18, 10-133
WWTranslateCDlgToWinStop, 9-19, 10-134
WWTranslateWinBaudToCDlg, 9-19, 10-135
WWTranslateWinDataToCDlg, 9-19, 10-136
WWTranslateWinParityToCDlg, 9-20, 10-137
WWTranslateWinStopToCDlg, 9-20, 10-138
WWVerifyComDlgRev, 9-20, 10-139

	Wonderware I/O Server Toolkit
	Contents

	Documentation Conventions
	Terms Used in this Document
	Limitation Summary

	Chapter 1 - Introduction to the I/O Server Toolkit
	What’s New?
	Installation
	Communication Protocols
	What is DDE?
	DDE Protocol

	Dynamic Data Exchange Management Library
	What is SuiteLink?
	SuiteLink Protocol

	Server Application Requirements
	Toolkit Content Overview
	Requirements for Developing on Windows 98, Windows NT and Windows 2000

	Chapter 2 - Getting Started with the I/O Server Toolkit
	Installation Process
	File Description
	Include Files
	Utility Files
	Sample Servers
	Help Files
	Online Book

	Compiling a Server
	Linking a Server
	Running a Server

	Chapter 3 - Overview of an I/O Server
	Data Flow
	Value/Time/Quality
	DDE and SuiteLink Conversations
	Logical Devices and Points
	Logical Devices/Topics
	Items/Points
	Advises, Requests and Pokes
	Toolkit Database

	Chapter 4 - Designing an I/O Server
	Configuring an I/O Server
	Executing the Protocol
	Communication with the Device

	Chapter 5 - SuiteLink
	SuiteLink Overview
	Components (Files) Associated with SuiteLink
	Starting Up a Server
	Automatic Throttling of the Data Rate
	SuiteLink Debug Flags
	Deactivating SuiteLink for a Particular Server
	Preventing a Server from Running if SuiteLink is Unavailable
	Preventing a Server from Reflecting SuiteLink Pokes

	Chapter 6 - Time Marks
	Reading Time Marks
	Understanding Time Marks

	Chapter 7 - Data Quality Flags
	Quality Flags
	Quality Flag Settings
	Updating Quality Flags

	Chapter 8 - Statistics Functions
	Overview
	Statistics from a Client Perspective
	Toolkit Standard Statistics

	Chapter 9 - I/O Server Toolkit Function Summary
	Protocol Initialization & Setup Functions
	Logical Device Management Functions
	Examples of Logical Device Management

	Point/Item Management Functions
	Toolkit Database Interface for Protocol Functions
	Timer Functions
	String PTVALUE Manipulation Functions
	Caveats with StrVal Strings

	Memory Management Functions
	Memory Access Permission Functions - Windows Only
	Common Dialog Functions
	Selection Boxes - Optional
	Miscellaneous Functions
	Windows NT Porting Functions
	Windows Function Emulators
	Windows/Windows NT Compatibility Functions

	Macros for Portability
	Windows NT-only MACROS
	Windows and Windows NT MACROS
	Windows-only MACROS

	Additional Information
	Required External Data
	Adding Help to the I/O Server

	Chapter 10 - API Function References
	Functions
	AdjustWindowSizeFromWinIni
	CheckConfigFileCmdLine
	CloseComm
	DbDevGetName
	DbGetGMTasFiletime
	DbGetName
	DbGetPointType
	DbGetPtQuality
	DbGetPtTime
	DbGetValueForComm
	DbNewQForAllPoints
	DbNewQFromDevice
	DbNewTopicList
	DbNewTQFromDevice
	DbNewValueFromDevice
	DbNewVQFromDevice
	DbNewVTQFromDevice
	DbRegisterDemandScan
	DbRegisterScanState
	DbSetHProt
	DbSetPointType
	DbValueWriteConfirm
	debug
	EnableCommNotification
	FlushComm
	GetAppName
	GetCommError
	GetCommEventMask
	GetIOServerLicense
	GetServerNameExtension
	GetString
	GetTextExtent
	NTSrvr_BuildCommDCB
	NTSrvr_GetCommState
	NTSrvr_SetCommState
	NTSrvr_SetDCB_Dtr
	NTSrvr_SetDCB_Rts
	OpenComm
	PfnSendEmSelectAll
	PfnSendEmSelectRange
	ProtActivatePoint
	ProtAllocateLogicalDevice
	ProtClose
	ProtCreatePoint
	ProtDeactivatePoint
	ProtDefWindowProc
	ProtDeletePoint
	ProtExecute
	ProtFreeLogicalDevice
	ProtGetDriverName
	ProtGetValidDataTimeout
	ProtInit
	ProtNewValueForDevice
	ProtTimerEvent
	ReadComm
	RelinquishPermission - Windows Only
	RequestPermission - Windows Only
	SelBoxAddEntry
	SelBoxSetupStart
	SelBoxUserSelect
	SelBoxUserSelection
	SelListFree
	SelListGetSelection
	SelListNumSelections
	SetCommEventMask
	SetSplashScreenParams
	StatAddValue
	StatDecrementValue
	StatGetValue
	StatIncrementValue
	StatRegisterCounter
	StatRegisterRate
	StatSetCountersInterval
	StatSetRateInterval
	StatSetValue
	StatSubtractValue
	StatUnregisterCounter
	StatUnregisterRate
	StatZeroValue
	StrValSetNString
	StrValSetString
	StrValStringFree
	StrValStringLock
	StrValStringUnlock
	SysTimerSetupProtTimer
	SysTimerSetupRequestTimer
	UdAddFileTimeOffset
	UdAddTimeMSec
	UDDbGetName
	UdDeltaFileTime
	UdDeltaTimeMSec
	UdInit
	UdReadAnyMore
	UdReadVersion
	UdTerminate
	UdWriteAnyMore
	UdWriteVersion
	WriteComm
	WriteWindowSizeToWinIni
	WWAnnounceStartup
	WWCenterDialog
	WWConfigureComPort
	WWConfigureServer
	WWConfirm
	WWDisplayAboutBox
	WWDisplayAboutBoxEx
	WWDisplayConfigNotAllow
	WWDisplayErrorCreating
	WWDisplayErrorReading
	WWDisplayErrorWriting
	WWDisplayKeyNotEnab
	WWDisplayKeyNotInst
	WWDisplayOutofMemory
	WWFormCpModeString
	WWGetDialogHandle
	WWGetDriverNameExtension
	WWGetExeFilePath
	WWGetOsPlatform
	wwHeap_AllocPtr
	wwHeap_FreePtr
	wwHeap_Init
	wwHeap_ReAllocPtr
	wwHeap_Release
	WWInitComPortComboBox
	WWReadAnyMore
	WWReadVersion
	WWSelect
	WWSetAffinityToFirstCPU
	WWTranslateCDlgToWinBaud
	WWTranslateCDlgToWinData
	WWTranslateCDlgToWinParity
	WWTranslateCDlgToWinStop
	WWTranslateWinBaudToCDlg
	WWTranslateWinDataToCDlg
	WWTranslateWinParityToCDlg
	WWTranslateWinStopToCDlg
	WWVerifyComDlgRev
	WWWriteAnyMore
	WWWriteVersion

	Chapter 11 - The Chain Manager
	Background
	Chain Data Structures
	Setting Up a Chain and Linking Items
	Searching For Items in a Chain
	Removing Items From a Chain
	User-Supplied Chain Item Functions
	Extensible Array Data Structures
	Allocating, Extending, and Deleting an Extensible Array
	Examples of Usage
	Memory Management for Extensible Arrays

	Handling Linked Lists

	Chapter 12 - I/O Server Toolkit Data Structures
	Data Structure Definitions
	PTVALUE
	WW_AB_INFO
	WW_CONFIRM
	WW_CP_DLG_LABELS
	WW_CP_PARAMS
	WW_SELECT
	WW_SERV_PARAMS

	Chapter 13 - Common Dialogs
	Main Menu
	Serial Servers
	Board-based Servers

	Com Port Settings
	Topic Definition
	Server Settings
	Configuration Files
	Convenience Functions

	Chapter 14 - Adding the Toolkit to an Existing Windows Application
	Chapter 15 - Running as an NT Service
	Overview of Services
	Configuration Dialog
	Driver Name
	Service Dependencies

	Chapter 16 - Porting to Windows NT
	Primary Goals
	Server Porting Instructions
	Phase I - General, Quick Edits of "C", "H" Files
	Phase II - More Edits
	Phase III - Porting Tool (optional step)
	Phase IV - Compiling
	Phase V - Communications
	Phase VI - Compile Again
	Phase VII - File I/O
	Phase VIII - Compile Again (see above)
	Phase IX - Symbol Table Entry Size
	Phase X - Compile Again (see above)
	Phase XI - Config File Compatibility
	Phase XII - Compile Again (see above)
	Phase XIII - Common Dialogs (optional)
	Phase XIV - Final Compile and Link
	Phase XV - Test the Server

	Miscellaneous Debugging Hints

	Chapter 17 - Porting an Existing Server to FS2000
	Overview
	Driver Name
	CommonUI Splash Screen and Start-up Message
	CommonUI About Box
	Value, Time, Quality

	Chapter 18 - I/O Server Code Samples
	Overview
	UDSAMPLE Architectural Overview
	Adapting the UDSAMPLE Server
	Customizing the Start-Up Splash Screen and About Box

	Modifying the User Interface – UDSAMPLE.RC and UDCONFIG.C
	Storing and Retrieving Configuration Files
	Setting Up Data Points – UDCONFIG.C
	Function ValidatePoint(€)

	Executing the Configuration – UDLDCFG.C
	LogicalAddrCmp(€)
	Building Messages
	UdprotAddPoll(€)
	UdprotPrepareWriteMsg(€)
	Building Messages – UDBLDMSG.C

	Executing the Protocol – UDPROTCL.C
	UdprotDoProtocol(€)
	UdprotGetResponse(€)
	ProcessValidResponse(€)
	UdprotExtractReadData(€), UdprotExtractDbItem(€)
	UdprotHandleRspError(€)

	Data Structures
	PORT Data Structure

	Compiling the Sample Code
	Debug and Support Functions
	Simulated PLC

	Chapter 19 - Debugging and Testing
	Basic Programming Rules for Windows�and Windows NT
	General Debugging Topics
	Debug Messages
	DDE Message Traffic Monitoring Using WIN.INI
	DDE Message Traffic Monitoring Using DDESpy
	Assertion Errors

	Windows and Windows NT Debugging Tools
	Microsoft Visual C/C++ Debugger
	Microsoft WINDBG Debugger
	NuMega Bounds Checker
	NuMega Soft Ice
	Rational/Pure/Atria Quantify Performance Monitor

	Testing
	WWClient Usage
	Microsoft Excel Usage

	Index

