

 aveva.com

AVEVA™
formerly Wonderware

Historian Retrieval Guide

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 2

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved.

No part of this documentation shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of AVEVA.
No liability is assumed with respect to the use of the information contained herein.

Although precaution has been taken in the preparation of this documentation, AVEVA assumes no responsibility
for errors or omissions. The information in this documentation is subject to change without notice and does not
represent a commitment on the part of AVEVA. The software described in this documentation is furnished under
a license agreement. This software may be used or copied only in accordance with the terms of such license
agreement.

ArchestrA, Aquis, Avantis, Citect, DYNSIM, eDNA, EYESIM, InBatch, InduSoft, InStep, IntelaTrac, InTouch, OASyS,
PIPEPHASE, PRiSM, PRO/II, PROVISION, ROMeo, SIM4ME, SimCentral, SimSci, Skelta, SmartGlance, Spiral
Software, Termis, WindowMaker, WindowViewer, and Wonderware are trademarks of AVEVA and/or its
subsidiaries. An extensive listing of AVEVA trademarks can be found at: https://sw.aveva.com/legal. All other
brands may be trademarks of their respective owners.

Publication date: Tuesday, August 31, 2021

Contact Information

AVEVA Group plc
High Cross
Madingley Road
Cambridge
CB3 0HB. UK

https://sw.aveva.com/

For information on how to contact sales and customer training, see https://sw.aveva.com/contact.

For information on how to contact technical support, see https://sw.aveva.com/support.

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 3

Welcome .. 9

AVEVA Historian Documentation Set ... 9

Chapter 1 About Data Retrieval ... 11

Data Retrieval Subsystem Features.. 11

History Blocks: A SQL Server Remote Data Source .. 12

Retrieval subsystem .. 12

About the AVEVA Historian OLE DB Provider ... 12
Extension Tables for History Data .. 13
Linking the AVEVA Historian OLE DB Provider to the Microsoft SQL Server .. 14

AVEVA Historian I/O Server ... 15

Using SELECT to Retrieve Data ... 15
Using the Four-Part Naming Convention ... 16
Using an AVEVA Historian OLE DB Provider View .. 17
Using the OPENQUERY Function .. 18
Using the OPENROWSET Function ... 18
Supported Syntax Options.. 19
Unsupported or Limited Syntax Options .. 19

No Notion of Client Context ... 19
Limitations on Wide Tables .. 20
LIKE Clause Limitations ... 20
IN Clause Limitations .. 20
OR Clause Limitations ... 20
Using Joins within an OPENQUERY Function .. 21
Using Complicated Joins ... 21
Using a Sub-SELECT with a SQL Server Table and an Extension Table ... 22
WHERE Clause Anomalies ... 22
CONVERT Function Limitations ... 23
SQL Server Optimization of Complex Queries .. 23
Using Columns of a Variant Type with Functions ... 24
Using StartDateTime in the Query Criteria ... 25
Comparison Statements and NULL Values ... 25
OPENQUERY and Microsoft Query ... 25

AVEVA Historian Time Domain Extensions .. 25

Contents

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 4

Chapter 2 Data Retrieval Options .. 27

Understanding Retrieval Modes .. 27
Cyclic Retrieval ... 28

Cyclic Retrieval - How It Works ... 28
Cyclic Retrieval - Supported Value Parameters .. 29
Cyclic Retrieval - Query Example .. 29
Cyclic Retrieval - Initial Values .. 30
Cyclic Retrieval - Handling NULL Values ... 30

Delta Retrieval .. 30
Delta Retrieval - How It Works ... 30
Delta Retrieval - Supported Value Parameters ... 31
Delta Retrieval - Query Examples ... 31
Delta Retrieval - Initial Values... 35
Delta Retrieval - Handling NULL Values .. 35

Full Retrieval ... 36
Full Retrieval - How It Works .. 37
Full Retrieval - Supported Value Parameters ... 37
Full Retrieval - Query Example ... 37
Full Retrieval - Initial Values ... 38

Interpolated Retrieval .. 38
Interpolated Retrieval - How It Works .. 38
Interpolated Retrieval - Query Examples ... 39
Interpolated Retrieval - Initial and Final Values ... 42
Interpolated Retrieval - Handling NULL Values .. 42

Best Fit Retrieval .. 43
Best Fit Retrieval - How It Works .. 45
Best Fit Retrieval - Supported Value Parameters ... 45
Best Fit Retrieval - Query Example ... 46
Best Fit Retrieval - Initial and Final Values.. 47
Best Fit Retrieval - Handling NULL Values .. 47

Average Retrieval ... 47
Average Retrieval - How It Works ... 49
Average Retrieval - Supported Value Parameters .. 50
Average Retrieval - Query Examples .. 50
Average Retrieval - Initial and Final Values .. 52
Average Retrieval - Handling NULL Values ... 52

Minimum Retrieval ... 52
Minimum Retrieval - How It Works .. 52
Minimum Retrieval - Supported Value Parameters ... 53
Minimum Retrieval - Query Examples .. 54
Minimum Retrieval - Initial and Final Values .. 55
Minimum Retrieval - Handling NULL Values and Incomplete Cycles ... 56

Maximum Retrieval .. 57
Maximum Retrieval - How It Works ... 58
Maximum Retrieval - Supported Value Parameters ... 58
Maximum Retrieval - Query Examples ... 59
Maximum Retrieval - Initial and Final Values ... 60

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 5

Maximum Retrieval - Handling NULL Values and Incomplete Cycles ... 61
Integral Retrieval .. 62

Integral Retrieval - How It Works ... 62
Integral Retrieval - Supported Value Parameters ... 63
Integral Retrieval - Query Example ... 63
Integral Retrieval - wwExpression Query Example ... 64
Integral Retrieval - Initial and Final Values ... 65
Integral Retrieval - Handling NULL Values .. 65

Slope Retrieval .. 65
Slope Retrieval - How It Works ... 66
Slope Retrieval - Supported Value Parameters .. 66
Slope Retrieval - Query Example .. 67
Slope Retrieval - wwExpression Query Example .. 68
Slope Retrieval - Initial and Final Values ... 68
Slope Retrieval - Handling NULL Values.. 68

Counter Retrieval ... 69
Counter Retrieval - How It Works ... 69
Counter Retrieval - Calculations for a Manually Reset Counter ... 71
Counter Retrieval - Using a Counter Deadband ... 71
Counter Retrieval - Supported Value Parameters .. 71
Counter Retrieval - Initial and Final Values .. 72
Counter Retrieval - Handling NULL Values ... 72
Counter Retrieval - Handling Illegal Values .. 72
Counter Retrieval - Query Example .. 72

ValueState Retrieval ... 73
ValueState Retrieval - How It Works .. 74
ValueState Retrieval - Supported Value Parameters .. 75
ValueState Retrieval - Query Examples .. 75
ValueState Retrieval - Initial and Final Values .. 79
ValueState Retrieval - Handling NULL Values ... 79

RoundTrip Retrieval .. 79
RoundTrip Retrieval - How It Works ... 80
RoundTrip Retrieval - Supported Value Parameters .. 81
RoundTrip Retrieval - Query Examples ... 81
RoundTrip Retrieval - Initial and Final Values ... 82
RoundTrip Retrieval - Handling NULL Values.. 82
Edge Detection for Events (wwEdgeDetection) ... 82

Predictive Filter .. 92
Bounding Value Retrieval ... 92

Bounding Value Retrieval - How It Works .. 93
Bounding Value Retrieval - Query Examples .. 93

Understanding Retrieval Options ... 94
Which Options Apply to Which Retrieval Modes? ... 94
Using Retrieval Options in a Transact-SQL Statement ... 96
Cycle Count (X Values over Equal Time Intervals) (wwCycleCount) .. 96

Cycle Count - Query Examples .. 97
Resolution (Values Spaced Every X ms) (wwResolution) ... 99

Resolution - Query Example ... 100

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 6

About Phantom Cycles ... 101
Time Deadband (wwTimeDeadband) ... 103

Time Deadband - Query Examples ... 104
Value Deadband (wwValueDeadband) .. 107

Value Deadband - Query Examples .. 108
History Version (wwVersion) .. 111

History Version - Query Example .. 111
Interpolation Type (wwInterpolationType) .. 112
TimeStamp Rule (wwTimeStampRule) ... 114
Time Zone (wwTimeZone) .. 118
Quality Rule (wwQualityRule) .. 119

Quality Rule - Query Examples ... 120
State Calculation (wwStateCalc) .. 127
Analog Value Filtering (wwFilter) ... 128

Statistically Removing Outliers (SigmaLimit) .. 128
Converting Analog Values to Discrete Values (ToDiscrete) .. 130
"Zeroing" Around a Base Value (SnapTo) ... 132

Selecting Values for Analog Summary Tags (wwValueSelector) .. 133

Chapter 3 SQL Query Examples .. 137

Querying the History Table .. 137

Querying the Live Table ... 138

Querying the WideHistory Table .. 138

Querying Wide Tables in Delta Retrieval Mode .. 140

Querying the AnalogSummaryHistory View ... 141

Querying the StateSummaryHistory View .. 141

Using SliceBy... 142

Using an Unconventional Tagname in a Wide Table Query ... 147

Using an INNER REMOTE JOIN ... 147

Setting Both a Time and Value Deadband for Retrieval .. 148

Using wwResolution, wwCycleCount, and wwRetrievalMode in the Same Query 150

Determining Cycle Boundaries ... 151

Mixing Tag Types in the Same Query ... 152

Using a Criteria Condition on a Column of Variant Data .. 153

Using DateTime Functions ... 153

Using the GROUP BY Clause ... 154

Using the COUNT() Function .. 155

Using an Arithmetic Function .. 156

Using an Aggregate Function ... 156

Making and Querying Annotations .. 158

Using Comparison Operators with Delta Retrieval.. 159
Specifying the Start Date with ">=" .. 159

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 7

Specifying the Start Date with ">" .. 161
Specifying the End Date with "<=" ... 162
Specifying the End Date with "<" ... 163

Using Comparison Operators with Cyclic Retrieval and Cycle Count .. 164
Specifying Cycle Count with Two Equity Operators ... 164
Specifying Cycle Count with One Equity Operator ... 164
Specifying Cycle Count with No Equity Operators ... 166

Using Comparison Operators with Cyclic Retrieval and Resolution ... 167
Using Two Equality Operators for Comparison with Cyclic Retrieval and Resolution 167
Using One Equality Operator for Comparison with Cyclic Retrieval and Resolution 168
Using No Equality Operators for Comparison with Cyclic Retrieval and Resolution 169

Returning Time Between Value Changes .. 170
Example 1: Cyclic Retrieval ... 170
Example 2: Delta and Full Retrieval .. 171
Example 3: Querying the WideHistory Table ... 173
Example 4: Querying the History Table with the wwValueSelector Parameter 174
Example 5: Calculating Total Time Between Value Changes ... 175

SELECT INTO from a History Table.. 176

Moving Data from a SQL Server Table to an Extension Table .. 177

Using Server-Side Cursors .. 177

Using Stored Procedures in OLE DB Queries ... 179

Getting Data from the OPCQualityMap Table ... 179

Using Variables with the Wide Table ... 179

Retrieval Across a Data Gap in Classically Stored Data .. 180

Returned Values for Non-Valid Start Times .. 181

Querying Aggregate Data in Different Ways ... 182

Bitwise Retrieval for Process Data ... 184

Chapter 4 SQL Queries for Alarms and Events .. 186

Querying Alarms and Events .. 186

Datetime in Alarm and Event Queries .. 187
Example: Listing all events ... 187
Example: How often alarms occur ... 187
Example: Most frequent alarm per hour ... 188
Example: Pinpointing where alarms occur ... 189
Example: Showing average time to clearing an alarm ... 190
Example: Evaluating response time for alarms .. 191

Chapter 5 Browser-Friendly Data Retrieval .. 194

Historian Data REST API .. 194
Supported versions .. 195
iHistory and Account Authentication ... 196
Data retrieval .. 196

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 8

Retrieval resources ... 201
Retrieval examples ... 249

Querying History Blocks via SQL Server Reporting Services Extension ... 259

Retrieval errors ... 260

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 9

This guide describes how to retrieve data that is stored by an AVEVA Historian server.

You can retrieve data by using:

 Transact-SQL queries.

 Historian Client tools for query construction, queries within Excel workbooks, and trend mapping.

 Historian Insight, a web-based tool for tag-based searches and charting. With Insight, you can save and
reuse content (sets of tags and defined timeframes), and can share, embed, and download the results.
Historian Insight is installed as a part of AVEVA Historian.

 Historian SDK.

 Tools that use the REST OData interface.

AVEVA Historian Documentation Set
The AVEVA Historian documentation set includes the following guides:

 AVEVA System Platform Installation Guide
This guide provides information on installing the AVEVA Historian, including hardware and software
requirements and migration instructions.

 AVEVA Historian Concepts Guide
This guide provides an overview of the entire AVEVA Historian system and its key components.

 AVEVA Historian Scenarios Guide
This guide discusses how to use AVEVA Historian to address some common customer scenarios.

 AVEVA Historian Administration Guide
This guide describes how to administer and maintain an installed AVEVA Historian, such as configuring data
acquisition and storage, managing security, and monitoring the system.

 AVEVA Historian Retrieval Guide
This guide describes the retrieval modes and options that you can use to retrieve your data.

 AVEVA Historian Database Reference
This guide provides documentation for all of the AVEVA Historian database entities, such as tables, views,
and stored procedures.

Welcome

 AVEVA™ Historian Retrieval Guide
 Welcome

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 10

 AVEVA Historian Glossary
This guide provides definitions for terms used throughout the documentation set.

In addition, the AVEVA License Manager Guide describes the AVEVA License Manager and how to use it to
install, maintain, and delete licenses and license servers on local and remote computers.

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 11

Through the Data Retrieval subsystem, AVEVA Historian receives SQL queries from clients, locates the requested
data, performs necessary processing, and then returns the results.

For configuration and event data, retrieval is made possible by normal SQL queries, because these types of data
are stored in SQL Server database tables. Historical data, however, must be retrieved from history blocks and
then sent to clients as if it is stored in SQL Server tables.

To accomplish retrieval from both data repositories, the Data Retrieval subsystem includes:

 An implementation of a SQL Server data provider.
This determines whether the requested data is saved in SQL Server tables or in history blocks.

 Retrieval subsystem.
This subsystem is responsible for extracting the requested data from the history blocks and presenting to
the AVEVA Historian OLE DB provider as "virtual" history tables.

 A set of SQL Server extensions.
These are implemented as columns in the history tables. You can use these extensions to specify the nature
of the rowset that is returned, such as the number of rows returned, the resolution of the data, or the
retrieval mode.

For more information on data storage, see Managing Data Storage.

Data Retrieval Subsystem Features
Data Retrieval subsystem features include support for:

 Queries with all tag types
You can include all tag types in the same query when retrieving from the History table. Any combination of
tags can be submitted in a single query.

 Both fixed- and variable-length strings

 FILETIME for time computations
All internal time computation and manipulation is done using the Win32 FILETIME type. The resolution of
FILETIME is 100 nanoseconds.

 Time handled as Universal Time Coordinated
All times are handled internally as UTC. Conversions to and from local time are handled going in and out of
retrieval so the external interface is local time.

 Retrieval of different versions

Chapter 1

About Data Retrieval

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 12

Note: If you have an application that uses the older SQL Server datetime format, be aware that some rounding
can occur as compared to the newer datetime2 format (for example, 3.3ms vs. 100ns).

History Blocks: A SQL Server Remote Data Source
History blocks are remote data sources used by AVEVA Historian. That is, they are data repositories that exist
outside of a SQL Server database file (.MDF). Microsoft sometimes refers to these types of data sources as
"non-local data stores."

All tag data is stored in history blocks. For more information on history blocks, see Managing Partitions and
History Blocks in the AVEVA Historian Administration Guide.

OLE DB technology can be used to access data in any remote data store. This access is accomplished though a
software component called an OLE DB provider.

Retrieval subsystem
The Retrieval subsystem does the following:

 Fetches history data from history blocks on disk.

 Formats data so that it can be passed up through the system to the AVEVA Historian OLE DB provider or
other HCAL-enabled client applications.

 Returns information regarding the history blocks, such as the start and end dates and the location.

About the AVEVA Historian OLE DB Provider
OLE DB (short for "Object Linking and Embedding for Databases") is an application programming interface (API)
that allows COM-based client applications to access data that is not physically stored in the SQL Server to which
they are connecting.

OLE DB provides access to different types of data in a broader manner. By using OLE DB, you can simultaneously
access data from a variety of sources. A query that accesses data from multiple, dissimilar data sources such as
these is called a "heterogeneous" or "distributed" query.

SQL Server uses OLE DB to make linking data between the data sources easier. Through OLE DB, Microsoft SQL
Server supports Transact-SQL queries against data stored in one or more SQL Server and heterogeneous
databases without any need for specialized gateway server applications.

The interface required to access data in a non-local data store (such as the AVEVA Historian history blocks) is
provided by a "virtual" server, called an OLE DB provider. OLE DB providers allow you to use the power of the
SQL Server query processor to make linking data stored in the SQL Server databases and from history blocks
much easier and more robust. Also, the AVEVA Historian OLE DB provider has a rich set of query capabilities.

The name of the AVEVA Historian OLE DB provider is "INSQL". The AVEVA Historian OLE DB provider is installed
during AVEVA Historian installation and then associated, or linked, with the Microsoft SQL Server. For
information on the syntax for linking the AVEVA Historian OLE DB provider, see Linking the AVEVA Historian OLE
DB Provider to the Microsoft SQL Server on page 14.

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 13

Note: The INSQL OLE DB provider cannot be used in a standalone mode.

To access AVEVA Historian historical data using OLE DB, any COM-based client application must connect directly
to the SQL Server and then specify to use the AVEVA Historian OLE DB provider in the syntax of the query.

When you execute a query and specify the AVEVA Historian OLE DB provider in the syntax, the Microsoft SQL
Server parser will pass the appropriate parts of the data request to the AVEVA Historian OLE DB provider. The
AVEVA Historian OLE DB provider will then interface with the retrieval service to locate the data store, extract
the requested information, and return the data to the Microsoft SQL Server as a rowset. Microsoft SQL Server
will perform any other processing required on the data and return the data to the client application as a result
set and a set of output parameters, if applicable.

The AVEVA Historian OLE DB provider must be present on the server running Microsoft SQL Server. The set of
Transact-SQL operations that can be used to retrieve data in the history blocks depends on the capabilities of
the AVEVA Historian OLE DB provider.

For more information on OLE DB, see your Microsoft documentation.

Extension Tables for History Data

Many of Historian's tables are implemented as extension tables. That is, they are logical tables that are actually
populated from data in history blocks.

Note: Extension tables are also called remote tables.

Data access from the history blocks is made possible by SQL Server's OLE DB provider technology. Client
applications must connect directly to the Microsoft SQL Server and then specify to use the AVEVA Historian OLE
DB provider in the syntax of the query.

The extension tables are:

History [INSQL].Runtime.dbo.History

Live [INSQL].Runtime.dbo.Live

AnalogSummaryHistory [INSQL].Runtime.dbo.AnalogSummaryHistory

StateSummaryHistory [INSQL].Runtime.dbo.StateSummaryHistory

HistoryBlock [INSQL].Runtime.dbo.HistoryBlock

Events [INSQL].Runtime.dbo.Events

For more information on the history extension tables, see History Tables and Views in the Historian Database
Reference.

Legacy Process Data Extension Tables

These are legacy (backward compatible) extension tables for process data:

AnalogHistory [INSQL].Runtime.dbo.AnalogHistory

DiscreteHistory [INSQL].Runtime.dbo.DiscreteHistory

StringHistory [INSQL].Runtime.dbo.StringHistory

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 14

AnalogLive [INSQL].Runtime.dbo.AnalogLive

DiscreteLive [INSQL].Runtime.dbo.DiscreteLive

StringLive [INSQL].Runtime.dbo.StringLive

The AnalogHistory, DiscreteHistory, StringHistory, and History tables are the only tables which are updateable.
The remaining tables are read-only.

For more information about these tables, see Backward Compatibility Entities in the Historian Database
Reference.

Legacy Event Data Extension Tables

These are legacy (backward compatible) extension tables for events:

v_AlarmEventHistoryInternal2 [INSQL].Runtime.dbo.LegacyAlarmEventHistory

v_AlarmHistory [INSQL].Runtime.dbo.LegacyAlarmHistory

v_AlarmHistory2 [INSQL].Runtime.dbo.LegacyAlarmHistory2

v_EventHistory [INSQL].Runtime.dbo.LegacyEventHistory

v_AlarmEventHistory2 Same as v_AlarmEventHistoryInternal2

Linking the AVEVA Historian OLE DB Provider to the Microsoft SQL Server

Because the AVEVA Historian OLE DB provider retrieves data from the history blocks and presents it to Microsoft
SQL Server as a table, it can be thought of as a type of server. The AVEVA Historian OLE DB provider must be
added to the Microsoft SQL Server as a "linked" server before it can be used to process queries.

This linking is performed automatically during the AVEVA Historian installation. If, for some reason, you need to
re-link the AVEVA Historian OLE DB provider to the Microsoft SQL Server, the statements for linking are as
follows:

sp_addlinkedserver

@server = 'INSQL',
@srvproduct = '',
@provider = 'INSQL'
go
sp_serveroption 'INSQL','collation compatible',true
go
sp_addlinkedsrvlogin 'INSQL','TRUE',NULL,NULL,NULL
go

"INSQL" is the name of the AVEVA Historian OLE DB provider as the linked server. Use this name to specify the
AVEVA Historian OLE DB provider in a query.

To perform joins between the legacy analog history tables and discrete history tables, the installation program
also creates an alias for the same AVEVA Historian OLE DB provider:

sp_addlinkedserver

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 15

@server = 'INSQLD',
@srvproduct = '',
@provider = 'INSQL'
go
sp_serveroption 'INSQLD','collation compatible',true
go
sp_addlinkedsrvlogin 'INSQLD','TRUE',NULL,NULL,NULL
go

For example, if you want to execute a query that performs this type of join, use the normal alias in specifying the
first table (the analog history table), and use the second alias in specifying the second table (the discrete history
table, hence the "D" added to the alias name).

AVEVA Historian I/O Server
The AVEVA Historian I/O Server (aahIOSvrSvc.exe) is the interface for clients to access current data using the
SuiteLink protocol. The AVEVA Historian I/O Server can update items with current values for given topics,
providing "real-time" I/O Server functionality.

The AVEVA Historian I/O Server is pre-configured with a single topic, Tagname. The AVEVA Historian I/O Server
will listen for clients (such as WWClient or WindowViewer™) that are attempting to establish a connection using
the pre-configured topic. After a client connects with the AVEVA Historian I/O Server, a "hot" link is established
between the client and the AVEVA Historian I/O Server. For more information on I/O Server addressing
conventions, see I/O Server Addressing in the AVEVA Historian Administration Guide.

For example, the AVEVA Historian I/O Server could be used by InTouch WindowViewer to access system tag
values provided by the AVEVA Historian to monitor system health. You could configure WindowViewer to
generate an alarm when abnormal behavior is detected within the AVEVA Historian.

By default, the AVEVA Historian I/O Server runs as a Windows service and can be started and stopped using the
System Management Console. You can also monitor the AVEVA Historian I/O Server from within the System
Management Console. For more information on the System Management Console, see About Administrative
Tools in the AVEVA Historian Administration Guide.

The AVEVA Historian I/O Server is a read-only server; clients cannot update data.

The AVEVA Historian I/O Server sends the original OPC quality as it was stored in the AVEVA Historian. The OPC
quality remains the same throughout the system, including storage, retrieval, and the AVEVA Historian I/O
Server.

Using SELECT to Retrieve Data
The most common AVEVA Historian query is a SELECT statement:

SELECT select_list

FROM table_source
WHERE search_condition

[GROUP BY group_by_expression]
[HAVING search_condition]
[ORDER BY order_expression [ASC | DESC]]

A WHERE clause is mandatory when issuing a SELECT query against any extension table except HistoryBlock.

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 16

There are four variations for issuing a SELECT statement to the AVEVA Historian OLE DB provider to retrieve
history data:

 Using the Four-Part Naming Convention on page 16

 Using an AVEVA Historian OLE DB Provider View on page 17

 Using the OPENQUERY Function on page 18

 Using the OPENROWSET Function on page 18

You should use the four-part name or a provider view to specify the extension table, whenever possible.
However, there are instances when the OPENQUERY or OPENROWSET function must be used, such as for
queries on wide tables.

For general information on creating SQL queries, see your Microsoft SQL Server documentation.

Using the Four-Part Naming Convention

The linked server name is simply a name by which the AVEVA Historian OLE DB provider is known to the
Microsoft SQL Server. In order for a query to be passed on to the AVEVA Historian OLE DB provider, you must
specify the linked server name and the extension table name as part of a four-part naming convention.

For example, this query specifies to retrieve data from the History extension table in the AVEVA Historian OLE
DB provider:

SELECT * FROM INSQL.Runtime.dbo.History

WHERE TagName = 'SysTimeSec'
AND DateTime >= '2001-09-12 12:59:00'
AND DateTime <= '2001-09-12 13:00:00'

The four-part naming convention is described in the following table:

Part Name Description

linked_server Linked server name. By default, INSQL.

catalog Catalog in the OLE DB data source that contains the object from which you want to
retrieve data. For Microsoft SQL Server type databases, this is the name of the
database. To use the AVEVA Historian OLE DB provider, the catalog name will
always be "Runtime."

schema Schema in the catalog that contains the object. For Microsoft SQL Server type
databases, this is the name of the login ID for accessing the data. To use the AVEVA
Historian OLE DB provider, the catalog name will always be "dbo."

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 17

Part Name Description

object_name Data object that the OLE DB provider can expose as a rowset. For the AVEVA
Historian OLE DB provider, the object name is the name of the remote table that
contains the data you want to retrieve. For example, the History table.

In the case of four-part queries, SQL Server produces the statement that is sent to the AVEVA Historian OLE DB
provider from the statement that the user executes. Sometimes this produced statement is incorrect, too
complex, or lacks portions of the WHERE clause required for the AVEVA Historian OLE DB provider to return
data.

A typical error message when executing unsupported syntax is:

Server: Msg 7320, Level 16, State 2, Line 1
Could not execute query against OLE DB provider 'INSQL'.
[OLE/DB provider returned message: InSQL did not receive a WHERE clause from SQL Server. If one
was specified, refer to the InSQL OLE DB documentation]

For four-part queries against non-English SQL Servers running on non-English operating systems, the default
date format might differ from the English versions. For example, for a French or German SQL Server running on
the corresponding operating system, the date/time in a four-part query must be:

yyyy-dd-mm hh:mm:ss.fff

For example:

2003-28-09 09:00:00.000

The default SQL date format is dependent on SQL Server and not on the operating system used. However, you
can modify the format using the SQL Server Convert() method. The output of this method can be determined by
the regional settings configured for the operating system.

Using an AVEVA Historian OLE DB Provider View

Microsoft SQL Server views have been provided that will access each of the extension tables, eliminating the
need to type the four-part server name in the query. These views are named the same as the provider table
name.

Note: Backward compatibility views are named according to the v_ProviderTableName convention.

For example:

SELECT * FROM History

WHERE TagName = 'SysTimeSec'
AND DateTime >= '2001-09-12 12:59:00'
AND DateTime <= '2001-09-12 13:00:00'

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 18

Using the OPENQUERY Function

You can use the linked server name in an OPENQUERY function to retrieve data from an extension table. The
OPENQUERY function is required for retrieving from the wide table. For example:

SELECT * FROM OPENQUERY(INSQL, 'SELECT * FROM History

WHERE TagName = "SysTimeSec"
AND DateTime >= "2001-09-12 12:59:00"
AND DateTime <= "2001-09-12 13:00:00"
')

The following example retrieves data from a wide table:

SELECT * FROM OPENQUERY(INSQL, 'SELECT DateTime, SysTimeSec

FROM WideHistory
WHERE DateTime >= "2001-09-12 12:59:00"

AND DateTime <= "2001-09-12 13:00:00"
')

The OPENQUERY portion of the statement is treated as a table by SQL Server, and can also be used in joins,
views, and stored procedures. SQL Server sends the quoted statement, unchanged and as a string, to the AVEVA
Historian OLE DB provider. Consequently, only the syntax that the AVEVA Historian OLE DB provider can parse is
supported. Also, be sure that you do not exceed the 8000 character limit for the statement. Consider the
following example:

SELECT * FROM OpenQuery(INSQL, 'XYZ')

where "XYZ" is the statement to pass. You should be sure that the value of "XYZ" is not more than 8000
characters. This limit is most likely to cause a problem if you are querying many tags from a wide table.

Also, you should supply the datetime in an OPENQUERY statement in the following format:

yyyy-mm-dd hh:mm:ss.fff

For example:

2001-01-01 09:00:00.000

You cannot use variables in an OPENQUERY statement. For more information, see -old-Using Variables with the
Wide Table.

Using the OPENROWSET Function

The linked server name can be used as an input parameter to an OPENROWSET function. The OPENROWSET
function sends the OLE DB provider a command to execute. The returned rowset can then be used as a table or
view reference in a Transact-SQL statement. For example:

SELECT * FROM OPENROWSET('INSQL',' ', 'SELECT DateTime, Quality, QualityDetail, Value

FROM History
WHERE TagName in ("SysTimeSec")
AND DateTime >= "2001-09-12 12:59:00"
AND DateTime <= "2001-09-12 13:00:00"
')

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 19

Note: If the OpenRowSet/OpenDatasource component is turned off as part of the security configuration for the
server, you will receive an error when you try to run this query. If necessary, a system administrator can reset
SQL Server settings to enable use of ad hoc queries by executing the sp_configure command.

Supported Syntax Options

The following table indicates the syntax options that are available for queries that use either the four-part
naming convention (or corresponding view name) or the OPENQUERY function.

Syntax Element Four-Part Query OPENQUERY

ORDER BY Yes No. Does not work within the
OPENQUERY function. However, will
work if used outside of the function.

GROUP BY Yes No

TagName IN (..) Yes Yes

TagName LIKE '..' Yes Yes

Date and time functions (for example,
DateAdd)

Yes Yes

MIN, MAX, AVG, SUM, STDEV Yes MIN, MAX, AVG, SUM only

Sub-SELECT with one normal SQL Server
table and one extension table

Yes, with
restrictions

No

Sub-SELECT with two extension tables No No

Unsupported or Limited Syntax Options

The AVEVA Historian OLE DB provider does not support certain syntax options in queries. In general, these
limitations are due to underlying limitations in the current Microsoft SQL Server OLE DB Provider
implementation.

For general information on creating SQL queries, see your Microsoft SQL Server documentation.

No Notion of Client Context

The OLE DB provider has no notion of a client context. The OLE DB provider is entirely stateless, and there is no
persistence across queries in the same connection. This means that you must set the value of a AVEVA Historian
time domain extension (for example, cycle count) each time you execute a query.

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 20

Also, the OLE DB provider cannot continuously return data (similar to a "hot" link in InTouch HMI software). The
OLE DB specification (as defined by Microsoft) does not permit a provider to return rows to a consumer without
a request from the consumer.

Limitations on Wide Tables

Wide tables do not have a fixed schema, but a schema which varies from query to query. They are transient
tables, existing for the duration of one query only. For this reason, they must be accessed using the OPENQUERY
function, which bypasses many of the tests and requirements associated with fixed tables. Wide tables support
up to 1024 columns.

For more information on wide tables, see "Wide" History Table Format in the AVEVA Historian Database
Reference.

LIKE Clause Limitations

The LIKE clause is only supported for the TagName and Value columns. The syntax " ... Value LIKE 'a string'
... " is only supported for a string table. For example:

SELECT TagName, Value FROM History

WHERE TagName LIKE 'Sys%'
AND DateTime > '1999-05-24 14:30:00'
AND DateTime < '1999-05-24 14:32:00'

IN Clause Limitations

If you are querying analog, discrete, or string tags from the AnalogTag, DiscreteTag, or StringTag tables
(respectively), you cannot use the LIKE clause within an IN clause to condition the tagname unless you are
returning the vValue column. This restriction applies if you are using the four-part naming convention or an
extension table view.

For example:

SELECT DateTime, TagName, vValue, Quality, QualityDetail

FROM History
WHERE TagName IN (SELECT TagName FROM StringTag WHERE TagName LIKE 'SysString')

AND DateTime >='2001-06-21 16:00:00.000'
AND DateTime <='2001-06-21 16:40:00.000'
AND wwRetrievalMode = 'Delta'

However, it is more efficient to use an INNER REMOTE JOIN to achieve the same results. For more information,
see Using an INNER REMOTE JOIN.

OR Clause Limitations

You cannot use the OR clause to specify more than one condition for a time domain extension. For more
information, see AVEVA Historian Time Domain Extensions on page 25.

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 21

Using Joins within an OPENQUERY Function

Joins are not supported within a single OPENQUERY statement. For example, the following query contains an
implicit join between the Tag and Live tables, and will fail:

SELECT * FROM OPENQUERY(INSQL, 'SELECT v.DateTime, v.TagName, v.Value, t.Description

FROM Tag t, Live v
WHERE t.TagName LIKE "%Date%"

AND v.TagName = t.TagName
')

A workaround is to place the join outside of the OPENQUERY. For example:

SELECT v.DateTime, v.TagName, v.Value, t.Description

FROM OPENQUERY(INSQL, 'SELECT DateTime, TagName, Value
FROM Live

WHERE TagName LIKE "%Date%"
') v, Tag t

WHERE v.TagName = t.TagName

Explicit joins are also not supported within OPENQUERY. For example, the following query will fail:

SELECT * FROM OPENQUERY(INSQL, 'SELECT v.DateTime, v.TagName, v.Value, e.Unit

FROM Live v
JOIN AnalogTag t ON v.TagName = t.TagName
JOIN EngineeringUnit e ON t.EUKey = e.EUKey

WHERE v.TagName LIKE "%Date%"
')

A work-around is to place the join outside the OPENQUERY. For example:

SELECT v.DateTime, v.TagName, v.Value, e.Unit

FROM OPENQUERY(INSQL, 'SELECT DateTime, TagName, Value FROM Live
WHERE TagName LIKE "%Date%"

') v
JOIN AnalogTag t ON v.TagName = t.TagName
JOIN EngineeringUnit e ON t.EUKey = e.EUKey

ORDER BY t.TagName

In general, use four-part syntax wherever possible. All of the previous queries are more conveniently expressed
in four-part syntax. For example, the syntax for the preceding query would be:

SELECT v.DateTime, v.TagName, v.Value, e.Unit

FROM INSQL.Runtime.dbo.History v
JOIN AnalogTag t ON v.TagName = t.TagName
JOIN EngineeringUnit e ON t.EUKey = e.EUKey

WHERE v.TagName LIKE '%Date%'
ORDER BY t.TagName

Using Complicated Joins

You can only use simple joins between SQL Server tables and the AVEVA Historian OLE DB extension tables. Joins
typically require use of the INNER REMOTE JOIN syntax.

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 22

For an example of the INNER REMOTE JOIN syntax, see -old-Using an INNER REMOTE JOIN.

Using a Sub-SELECT with a SQL Server Table and an Extension Table

Using a sub-SELECT with a query on a normal SQL Server table and an extension table should be avoided; it is
very inefficient due to the way SQL Server executes the query. For example:

SELECT TagName, DateTime, Value

FROM INSQL.Runtime.dbo.History
WHERE TagName IN (select TagName FROM SnapshotTag WHERE EventTagName = 'SysStatusEvent')

AND DateTime = '2001-12-20 0:00'

Instead, it is recommended that you use the INNER REMOTE JOIN syntax:

SELECT h.TagName, DateTime, Value

FROM SnapshotTag st INNER REMOTE JOIN INSQL.Runtime.dbo.History h
ON st.TagName = h.TagName

AND EventTagName = 'SysStatusEvent'
AND DateTime = '2001-12-20 0:00'

The results are:

TagName DateTime Value

SysPerfCPUTotal 2001-12-20 00:00:00.000 15.0

SysSpaceMain 2001-12-20 00:00:00.000 1302.0

In general, use the following pattern for INNER REMOTE JOIN queries against the historian is:

<SQLServerTable> INNER REMOTE JOIN <HistorianExtensionTable>

For more information on INNER REMOTE JOIN, see your Microsoft SQL Server documentation.

WHERE Clause Anomalies

In some rare cases, the SQL Server query processor truncates the WHERE clause in an attempt to optimize the
query. If you execute a query with a WHERE clause, but an error message is returned stating that no WHERE
clause was received by the SQL Server, simply add another condition clause to the query.

For example, in the following query, the SQL Server query processor optimizes out the WHERE clause, because it
is superfluous.

SELECT DateTime, Value, QualityDetail

FROM History
WHERE TagName LIKE '%'

A workaround is to add another condition clause. For example:

SELECT DateTime, Value, QualityDetail

FROM History
WHERE TagName LIKE '%'

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 23

AND wwRetrievalMode = 'delta'

CONVERT Function Limitations

The CONVERT function is not supported on the vValue column in an OPENQUERY statement. If you are using
OPENQUERY on the History table, you must filter on the vValue column outside of the query.

In the following example, the value of the vValue column is converted to a float. Note that no string tags are
included in the query.

SELECT * FROM OpenQuery(INSQL, 'SELECT DateTime, Quality, OPCQuality, QualityDetail, Value,
vValue, TagName

FROM History
WHERE TagName IN ("SysTimeMin", "SysPulse")

AND DateTime >= "2001-12-30 04:00:00.000"
AND DateTime <= "2001-12-30 09:00:00.000"
AND wwRetrievalMode = "Delta"

')
WHERE convert(float, vValue) = 20.0

You can also use the following formats:

WHERE convert(float, vValue) = 0
WHERE convert(float, vValue) = 0.0
WHERE convert(float, vValue) = 1.0
WHERE convert(float, vValue) = 1
WHERE convert(float, vValue) = 20
WHERE convert(float, vValue) = 2.0000e01

The following example includes a string tag and converts the vValue value to a char or varchar datatype. All
values returned can be converted to a string.

SELECT * FROM OpenQuery(INSQL, 'SELECT DateTime, Quality, OPCQuality, QualityDetail, Value,
vValue, TagName

FROM History
WHERE TagName IN ("SysString", "SysTimeMin", "SysPulse")

AND DateTime >= "2001-12-30 04:00:00.000"
AND DateTime <= "2001-12-30 09:00:00.000"
AND wwRetrievalMode = "Cyclic"
AND wwCycleCount = 300

')
WHERE convert(varchar(30), vValue) = '2001-12-30 14:00:00'

You can also use the following formats:

WHERE convert(varchar(30), vValue) = '20'
WHERE convert(varchar(30), vValue) = '1'
WHERE convert(varchar(30), vValue) = '0'

SQL Server Optimization of Complex Queries

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 24

The SQL Server query optimizer may incorrectly parse a complex query and not send certain query criteria to the
Historian OLE DB provider for handling. This can cause unexpected results for the data.

If you suspect that this is happening, use SQL Server Management Studio tools to examine the query plan that
the optimizer is using and then modify your query so that the needed criteria gets directed to the Historian OLE
DB provider.

For example, the following query will be incorrectly parsed:

SELECT GETDATE()
DECLARE @TagList TABLE (TagName nvarchar(256))
INSERT @TagList

SELECT 'SysTimeSec' UNION
SELECT 'SysPerfCPUTotal'

-- Prevent the TagName criteria from being sent to the Historian OLE DB provider (incorrect)
SELECT DateTime, h.vValue, h.TagName

FROM History h
INNER REMOTE JOIN @TagList l
ON h.TagName = l.TagName
WHERE DateTime >= DATEADD(hour,-1,GETDATE())

AND DateTime < GETDATE()
AND wwRetrievalMode = 'AVG'
AND wwCycleCount=1

GO

To correct this issue, rewrite the query so that the tagname criteria is passed to the Historian OLE DB provider
correctly.

SELECT GETDATE()
DECLARE @TagList TABLE (TagName nvarchar(256))
INSERT @TagList

SELECT 'SysTimeSec' UNION
SELECT 'SysPerfCPUTotal'

-- Force the TagName criteria to be sent to the InSQL OLE DB Provider (correct)
SELECT DateTime, h.vValue, h.TagName

FROM @TagList l
INNER REMOTE JOIN History h
ON h.TagName = l.TagName
WHERE DateTime >= DATEADD(hour,-1,GETDATE())

AND DateTime < GETDATE()
AND wwRetrievalMode = 'AVG'
AND wwCycleCount=1

GO

Using Columns of a Variant Type with Functions

If you use a column of a variant type as the parameter for some functions, SQL Server returns a syntax error.
However, the error is not passed to the Historian OLE DB provider to return to clients.

For example, in the following query, the rounding is specified for the vValue column, which is of type variant.
The query does not work, but no error is returned by the Historian OLE DB provider.

SELECT DateTime, round(vValue, 2)

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 25

FROM History
WHERE TagName IN ('SysTimeSec')

AND DateTime = getdate()
AND wwRetrievalMode = 'Cyclic'

Using StartDateTime in the Query Criteria

You cannot use StartDateTime in the query criteria instead of DateTime. For example, the following query
works, except that it does not apply the StartDateTime >= @StartDate clause.

SET NOCOUNT ON
DECLARE @StartDate DateTime
DECLARE @EndDate DateTime
SET @StartDate = DateAdd(mi,-30,GetDate())
SET @EndDate = GetDate()
SET NOCOUNT OFF
SELECT History.TagName, DateTime = convert(nvarchar, DateTime, 21), Value, vValue, StateTime,
StartDateTime

 FROM History
 WHERE History.TagName IN ('Reactor1Level')

 AND wwRetrievalMode = 'RoundTrip'
 AND wwStateCalc = 'AvgContained'
 AND vValue = convert(SQL_VARIANT, '1')
 AND wwCycleCount = 1
 AND wwTimeStampRule = 'Start'
 AND wwQualityRule = 'Good'
 AND wwFilter = 'ToDiscrete(5.0,>)'
 AND wwVersion = 'Latest'
 AND DateTime >= @StartDate
 AND DateTime <= @EndDate
 AND StartDateTime >= @StartDate

Comparison Statements and NULL Values

SQL Server returns an error for a query that contains a comparison statement like 'Value > 0' whenever a NULL is
returned. Be sure that you always include 'AND Value IS NOT NULL', so that the NULL values are filtered out.

OPENQUERY and Microsoft Query

Microsoft Query is not able to process an OPENQUERY statement.

AVEVA Historian Time Domain Extensions

Data in the extension tables can be manipulated by using normal Transact-SQL code, as well as the specialized
SQL time domain extensions provided by the AVEVA Historian. The AVEVA Historian extensions provide an easy
way to query time-based data from the history tables. They also provide additional functionality not supported
by Transact-SQL.

 AVEVA™ Historian Retrieval Guide
 Chapter 1 – About Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 26

The time domain extensions are:

 wwCycleCount

 wwEdgeDetection

 wwFilter

 wwInterpolationType

 wwOption

 wwQualityRule

 wwResolution

 wwRetrievalMode

 wwStateCalc

 wwTimeDeadband

 wwTimeZone

 wwValueDeadband

 wwVersion

 wwTimeStampRule

 wwValueSelector

Note: The wwParameters and wwMaxStates parameters are reserved for future use. The wwRowCount
parameter is still supported, but is deprecated in favor of wwCycleCount.

The extensions are implemented as "virtual" columns in the extension tables. When you query an extension
table, you can specify values for these column parameters to manipulate the data that will be returned. You will
need to specify any real-time extension parameters each time that you execute the query.

For example, you could specify a value for the wwResolution column in the query so that a resolution is applied
to the returned data set:

SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-02 10:00:00'
AND DateTime <= '2001-12-02 10:02:00'
AND Value >= 50
AND wwResolution = 10
AND wwRetrievalMode = 'cyclic'

Because the extension tables provide additional functionality that is not possible in a normal SQL Server, certain
limitations apply to the Transact-SQL supported by these tables. For more information, see Unsupported or
Limited Syntax Options on page 19.

Although the Microsoft SQL Server may be configured to be case-sensitive, the values for the virtual columns in
the extension tables are always case-insensitive.

Note: You cannot use the IN clause or OR clause to specify more than one condition for a time domain
extension. For example, "wwVersion IN ('original', 'latest')" and "wwRetrievalMode = 'Delta' OR
wwVersion = 'latest'" are not supported.

For general information on creating SQL queries, see your Microsoft SQL Server documentation.

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 27

You can use a variety of retrieval modes and options to suit different reporting needs and applications.

Understanding Retrieval Modes
Different retrieval modes allow you to access the data stored in an AVEVA Historian in different ways. For
example, if you retrieve data for a long time period, you might want to retrieve only a few hundred evenly
spaced data points to minimize response time. For a shorter time period, you might want to retrieve all values
that are stored on the server to get more accurate results.

An AVEVA Historian with a version earlier than 9.0 supports two retrieval modes:

 Cyclic Retrieval on page 28

 Delta Retrieval on page 30

An AVEVA Historian with a version of 9.0 or higher supports various additional modes:

 Full Retrieval on page 36

 Interpolated Retrieval on page 38

 "Best Fit" Retrieval (see "Best Fit Retrieval" on page 43)

 Average Retrieval on page 47

 Minimum Retrieval on page 52

 Maximum Retrieval on page 57

 Integral Retrieval on page 62

 Slope Retrieval on page 65

 Counter Retrieval on page 69

 ValueState Retrieval on page 73

An AVEVA Historian with a version of 10.0 or higher supports the following additional mode:

 RoundTrip Retrieval on page 79

An AVEVA Historian version 11.6.14101 or higher supports the following additional mode:

 Predictive Retrieval (see "Predictive Filter" on page 92)

An AVEVA Historian with a version of 17.3.100 or higher supports the following additional mode:

Chapter 2

Data Retrieval Options

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 28

 Bounding Value Retrieval

Cyclic Retrieval

Cyclic retrieval is the retrieval of stored data for the given time period based on a specified cyclic retrieval
resolution, regardless of whether or not the value of the tag(s) has changed. It works with all types of tags. Cyclic
retrieval produces a virtual rowset, which may or may not correspond to the actual data rows stored on the
AVEVA Historian.

In cyclic retrieval, one row is returned for each "cycle boundary." You specify the number of cycles either
directly or by means of a time resolution, that is, the spacing of cycle boundaries in time. If you specify a number
of cycles, the AVEVA Historian returns that number of rows, evenly spaced in time over the requested period.
The cyclic resolution is calculated by dividing the requested time period by the number of cycle boundaries. If
you specify a resolution, the number of cycles is calculated by dividing the time period by the resolution.

If no data value is actually stored at a cycle boundary, the last value before the boundary is returned.

Beginning with AVEVA System Platform 2014 R2 SP1, Historian cyclic storage rules improve the handling of "slow
rate change" data tags. Instead of delaying posts to the database if tag values do not arrive in a timely manner,
new rules define a cyclic timeout when the database will be updated anyway. That timeout is typically one-half
the period for the tag’s cycle storage rate or the database server’s maximum cyclic storage timeout, whichever is
shorter. The time out is controlled by a the system parameter MaxCyclicStorageTimeout. For more information,
see System Parameters in the AVEVA Historian Administration Guide.

The default retrieval mode is cyclic for retrieval from analog tables, including analog and state summary tables.

Cyclic retrieval is fast and therefore consumes little server resources. However, it may not correctly reflect the
stored data because important process values (gaps, spikes, etc.) might fall between cycle boundaries. For an
alternative, see Best Fit Retrieval (see "Best Fit Retrieval" on page 43).

Cyclic Retrieval - How It Works

The following illustration shows how values are returned for cyclic retrieval:

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 29

Data is retrieved in cyclic mode with a start time of TC0 and an end time of TC2. The resolution has been set in
such a way that the historian returns data for three cycle boundaries at TC0, TC1, and TC2. Each dot in the graphic
represents an actual data point stored on the historian. From these points, the following are returned:

 At TC0: P2, because it falls right on the cycle boundary

 At TC1: P7, because it is the last point before the cycle boundary

 At TC2: P11, for the same reason

Cyclic Retrieval - Supported Value Parameters

You can use various parameters to adjust which values are returned in cyclic retrieval mode. For more
information, see the following sections:

 Cycle Count (X Values over Equal Time Intervals) (wwCycleCount) on page 96

 Resolution (Values Spaced Every X ms) (wwResolution) on page 99

 History Version (wwVersion) on page 111

 TimeStamp Rule (wwTimeStampRule) on page 114, for AVEVA Historian 9.0 and above

 Quality Rule (wwQualityRule) on page 119

Cyclic Retrieval - Query Example

To use the cyclic retrieval mode, set the following parameter in your query.

wwRetrievalMode = 'Cyclic'

For example, the following query returns data values for the analog tag 'ReactLevel'. If you do not specify a
wwCycleCount or wwResolution, the query will return 100 rows (the default).

SELECT DateTime, Sec = DATEPART(ss, DateTime), TagName, Value

FROM History
WHERE TagName = 'ReactLevel'

AND DateTime >= '2001-03-13 1:15:00pm'
AND DateTime <= '2001-03-13 2:15:00pm'
AND wwRetrievalMode = 'Cyclic'

The results are:

DateTime Sec TagName Value

2001-03-13 13:15:00.000 0 ReactLevel 1775.0

2001-03-13 13:15:00.000 36 ReactLevel 1260.0

2001-03-13 13:16:00.000 12 ReactLevel 1650.0

2001-03-13 13:16:00.000 49 ReactLevel 1280.0

2001-03-13 13:17:00.000 25 ReactLevel 1525.0

2001-03-13 13:18:00.000 1 ReactLevel 585.0

2001-03-13 13:18:00.000 38 ReactLevel 1400.0

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 30

2001-03-13 13:19:00.000 14 ReactLevel 650.0

2001-03-13 13:19:00.000 50 ReactLevel 2025.0

2001-03-13 13:20:00.000 27 ReactLevel 765.0

2001-03-13 13:21:00.000 3 ReactLevel 2000.0

2001-03-13 13:21:00.000 39 ReactLevel 830.0

2001-03-13 13:22:00.000 16 ReactLevel 1925.0

...

(100 row(s) affected)

Cyclic Retrieval - Initial Values

No special handling is done for initial values. The initial value will behave like a normal cycle boundary at the
start time. For information on initial values, see Delta Retrieval - Initial Values on page 35.

Cyclic Retrieval - Handling NULL Values

No special handling is done for NULL values. They are returned just like any other value.

Delta Retrieval

Delta retrieval, or retrieval based on exception, is the retrieval of only the changed values for a tag(s) for the
given time interval. That is, duplicate values are not returned. It works with all types of tags.

Delta retrieval always produces a rowset comprised of only rows that are actually stored on the historian; that
is, a delta query returns all of the physical rows in history for the specified tags, over the specified period, minus
any duplicate values. If there is no actual data point at the start time, the last data point before the start time is
returned.

Delta retrieval is the default mode for discrete and string tables and from the History table.

Delta Retrieval - How It Works

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 31

The following illustration shows how values are returned for delta retrieval:

Data is retrieved in delta mode with a start time of T1 and an end time of T2. Each dot in the graphic represents
an actual data point stored on the historian. From these points, the following are returned:

 P2, because there is no actual data point at T1

 P5, P8, P9, P10, and P11, because they represent changed values during the time period

For delta retrieval for replicated summary tags on a tier-2 historian, if a point with doubtful quality is returned as
the result of a value selection from an input summary point with a contained gap, the same point can be
returned again with good quality if the same value is selected again from the next input summary point that has
good quality.

Delta Retrieval - Supported Value Parameters

You can use various parameters to adjust which values are returned in delta retrieval mode. For more
information, see the following sections:

 Time Deadband (wwTimeDeadband) on page 103

 Value Deadband (wwValueDeadband) on page 107

 History Version (wwVersion) on page 111

 Quality Rule (wwQualityRule) on page 119

Delta Retrieval - Query Examples

To use the delta retrieval mode, set the following parameter in your query.

wwRetrievalMode = 'Delta'

For examples, see the following:

 Delta Retrieval - Query 1 on page 32

 Delta Retrieval - Query 2 on page 33

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 32

 Delta Retrieval - Query 3 on page 34

 Delta Retrieval - Query 4 on page 34

Delta Retrieval - Query 1

As an example of how delta mode works, consider the following query:

SELECT TagName, DateTime, Value, QualityDetail

FROM History
WHERE TagName = 'A001'

AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwRetrievalMode = 'Delta'

This query can be run against the following sample data:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:11 1.0 192

A001 2009-09-12 00:13 1.6 192

A001 2009-09-12 00:16 1.3 192

A001 2009-09-12 00:21 2.0 192

A001 2009-09-12 00:24 1.2 192

A001 2009-09-12 00:27 1.2 192

A001 2009-09-12 00:28 0.0 249

A001 2009-09-12 00:29 0.0 249

A001 2009-09-12 00:32 0.6 192

A001 2009-09-12 00:35 0.0 249

A001 2009-09-12 00:37 1.5 192

A001 2009-09-12 00:43 1.3 192

A graphical representation of the data is as follows:

The results are:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:20 1.3 192

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 33

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:21 2.0 192

A001 2009-09-12 00:24 1.2 192

A001 2009-09-12 00:28 NULL 249

A001 2009-09-12 00:32 0.6 192

A001 2009-09-12 00:35 NULL 249

A001 2009-09-12 00:37 1.5 192

The sample data points and the results are mapped on the following chart. Only the data falling between the
time start and end marks at 2009-09-12 00:20 and 2009-09-12 00:40 (shown on the chart as dark vertical lines)
are returned by the query.

Because there is no value that matches the start time, an initial value at 2009-09-12 00:20 is returned in the
results based on the value of the preceding data point at 2009-09-12 00:16. Because there is no change in the
value at 2009-09-12 00:27 from the value at 2009-09-12 00:24, the data point appears on the chart but does not
appear in the results. Similarly, the second 0.0 value at 2009-09-12 00:29 is also excluded from the results.

You can further control the number of rows returned by using the wwTimeDeadband, wwValueDeadband, and
wwCycleCount extensions. The use of a cycle count returns the first number of rows within the time range of the
query. For more information, see -old-Using wwResolution, wwCycleCount, and wwRetrievalMode in the Same
Query.

Also, the use of a time deadband and/or value deadband with delta retrieval produces differing results. For
more information, see Time Deadband (wwTimeDeadband) on page 103 and Value Deadband
(wwValueDeadband) on page 107.

Delta Retrieval - Query 2
SELECT DateTime, TagName, Value

FROM History
WHERE TagName IN ('SysTimeSec','SysTimeMin')

AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:36'
AND wwRetrievalMode = 'Delta'

The results are:

DateTime TagName Value

2001-12-09 11:35:00.000 SysTimeSec 0

2001-12-09 11:35:00.000 SysTimeMin 35

2001-12-09 11:35:01.000 SysTimeSec 1

2001-12-09 11:35:02.000 SysTimeSec 2

2001-12-09 11:35:03.000 SysTimeSec 3

2001-12-09 11:35:04.000 SysTimeSec 4

...

2001-12-09 11:35:58.000 SysTimeSec 58

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 34

2001-12-09 11:35:59.000 SysTimeSec 59

2001-12-09 11:36:00.000 SysTimeSec 0

2001-12-09 11:36:00.000 SysTimeMin 36

Delta Retrieval - Query 3
SELECT * FROM OpenQuery(INSQL,'SELECT DateTime, Value, Quality, QualityDetail

FROM AnalogHistory
WHERE TagName = "SysTimeSec"

AND wwRetrievalMode = "Delta"
AND Value = 10
AND DateTime >="2001-07-27 03:00:00.000"
AND DateTime <="2001-07-27 03:05:00.000"

')

The results are:

DateTime Value Quality QualityDetail

2001-07-27 03:00:10.000 10 0 192

2001-07-27 03:01:10.000 10 0 192

2001-07-27 03:02:10.000 10 0 192

2001-07-27 03:03:10.000 10 0 192

2001-07-27 03:04:10.000 10 0 192

Delta Retrieval - Query 4

For a delta query, if both a wwCycleCount and a Value comparison are specified, the query will return the first
number of rows (if available) that meet the value indicated.

SELECT * FROM OpenQuery(INSQL,'SELECT DateTime, Value, Quality, QualityDetail

FROM AnalogHistory
WHERE TagName = "SysTimeSec"

AND wwRetrievalMode = "Delta"
AND Value = 20
AND wwCycleCount = 10
AND DateTime >="2001-07-27 03:00:00.000"
AND DateTime <="2001-07-27 03:20:00.000"

')

The results are:

DateTime Value Quality QualityDetail

2001-07-27 03:00:20.000 20 0 192

2001-07-27 03:01:20.000 20 0 192

2001-07-27 03:02:20.000 20 0 192

2001-07-27 03:03:20.000 20 0 192

2001-07-27 03:04:20.000 20 0 192

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 35

DateTime Value Quality QualityDetail

2001-07-27 03:05:20.000 20 0 192

2001-07-27 03:06:20.000 20 0 192

2001-07-27 03:07:20.000 20 0 192

2001-07-27 03:08:20.000 20 0 192

2001-07-27 03:09:20.000 20 0 192

Delta Retrieval - Initial Values

Initial values are special values that can be returned from queries that lie exactly on the query start time, even if
there is not a data point that specifically matches the specified start time. If there is not a value exactly on the
query start time, the last point before the start time will be returned with its DateTime set to the query start
time and its Quality set to 133. If no value exists at or prior to the query start time, a NULL value will be returned
at start time with QualityDetail set to 65536, OPCQuality set to 0, and Quality set to 1.

Querying the start time in exclusive form with the > operator indicates that a value should not be returned for
the query start time if one does not exist. Querying the start time in inclusive form with the >= operator
indicates that an initial value should be returned.

For example, the following exclusive query statement does not return an initial value for 2009-01-01 02:00:00.

DateTime > '2009-01-01 02:00:00'

However, the following inclusive query statement does return an initial value for 2009-01-01 02:00:00.

DateTime >= '2009-01-01 02:00:00'

No special final value is returned.

Delta Retrieval - Handling NULL Values

The initial NULL value after a non-NULL is always returned. Multiple NULL values are suppressed. The first
non-NULL after a NULL is always returned even if it is the same as the previous non-NULL value.
SELECT TagName, DateTime, Value, QualityDetail

FROM History
WHERE TagName = 'A001'

AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwRetrievalMode = 'Delta'

This query can be run against the following sample data:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:17 0.8 192

A001 2009-09-12 00:24 0.0 249

A001 2009-09-12 00:27 0.0 249

A001 2009-09-12 00:28 0.5 192

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 36

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:31 0.0 249

A001 2009-09-12 00:33 0.0 24

A001 2009-09-12 00:35 0.0 24

A001 2009-09-12 00:36 0.5 192

The following is a graphical representation of the data:

The results are:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:20 0.8 192

A001 2009-09-12 00:24 NULL 249

A001 2009-09-12 00:28 0.5 192

A001 2009-09-12 00:31 NULL 249

A001 2009-09-12 00:36 0.5 192

The sample data points and the results are mapped on the following chart. Only the data falling between the
time start and end marks at 00:20 and 00:40 (shown on the chart as dark vertical lines) are returned by the
query.

Because there is no value that matches the start time, an initial value at 00:20 is returned in the results based on
the value of the preceding data point at 00:16. Because there is no change in the value at 00:27 from the value
at 00:24, the data point appears on the chart but does not appear in the results. Similarly, the two 0.0 values at
00:33 and 00:35 are also excluded from the results. However, the non-NULL value at 00:36 is returned, even
though it is the same as the value at 00:28, because it represents a delta from the preceding (NULL) value at
00:35.

Full Retrieval

In full retrieval mode, all stored data points are returned, regardless of whether a value or quality has changed
since the last value. This mode allows the same value and quality pair (or NULL value) to be returned
consecutively with their actual timestamps. It works with all types of tags.

By using full retrieval in conjunction with storage without filtering (that is, no delta or cyclic storage mode is
applied at the historian), you can retrieve all values that originated from the plant floor data source or from
another application.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 37

Full retrieval best represents the process measurements recorded by the AVEVA Historian. However, it creates a
higher load for the server, the network and the client system because a very large number of records may be
returned for longer time periods.

For full retrieval for replicated summary tags on a tier-2 historian, if a point with doubtful quality is returned as
the result of a value selection from an input summary point with a contained gap, the same point can be
returned again with good quality if the same value is selected again from the next input summary point that has
good quality.

Full Retrieval - How It Works

The following illustration shows how values are returned for full retrieval:

Data is retrieved in full mode with a start time of T1 and an end time of T2. Each dot in the graphic represents an
actual data point stored on the historian. From these points, the following are returned:

 P2, because there is no actual data point at T1

 P3 through P12, because they represent stored data points during the time period

Full Retrieval - Supported Value Parameters

You can use various parameters to adjust which values are returned in full retrieval mode. For more information,
see the following sections:

 History Version (wwVersion) on page 111

 Quality Rule (wwQualityRule) on page 119

Full Retrieval - Query Example

For example, the following query uses full retrieval mode:

SELECT DateTime, TagName, Value

FROM History

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 38

WHERE TagName IN ('SysTimeSec','SysTimeMin')
AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:36'
AND wwRetrievalMode = 'Full'

Full Retrieval - Initial Values

Full retrieval mode handles initial values the same way as delta mode. For more information on initial values,
see Delta Retrieval - Initial Values on page 35.

Interpolated Retrieval

Interpolated retrieval works like cyclic retrieval, except that interpolated values are returned if there is no actual
data point stored at the cycle boundary.

This retrieval mode is useful if you want to retrieve cyclic data for slow-changing tags. For a trend, interpolated
retrieval results in a smoother curve instead of a "stair-stepped" curve. This mode is also useful if you have a
slow-changing tag and a fast-changing tag and want to retrieve data for both. Finally, some advanced
applications require more evenly spaced values than would be returned if interpolation was not applied.

By default, interpolated retrieval uses the interpolation setting specified for the tag in the AVEVA Historian. This
means that if a tag is set to use stair-step interpolation, interpolated retrieval gives the same results as cyclic
retrieval.

Interpolation is only applied to analog tags. If you retrieve data for other types of tags, stair-step interpolation is
used, and the results are the same as for cyclic retrieval.

Interpolated retrieval is a bit slower than cyclic retrieval. It shares the limitations of cyclic retrieval in that it may
not accurately represent the stored process data.

Interpolated Retrieval - How It Works

The following illustration shows how the values for an analog tag that is configured for linear interpolation are
returned when using interpolated retrieval.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 39

Data is retrieved in interpolated mode with a start time of TC0 and an end time of TC2. The resolution has been
set in such a way that the historian returns data for three cycle boundaries at TC0, TC1, and TC2. P1 to P12
represent actual data points stored on the historian. Of these points, eleven represent normal analog values,
and one, P7, represents a NULL value due to an I/O Server disconnect, which causes a gap in the data between P7

and P8.

The green points (P2, PC1, PC2) are returned. The yellow points (P7, P11, P12) are used to interpolate the returned
value for each cycle. The red points are considered, but not used in calculating the points to return.

Because P2 is located exactly at the query start time, it is returned at that time without the need for any
interpolation. At the following cycle boundary, point PC1 is returned, which is the NULL value represented by P7
shifted forward to time TC1. At the last cycle boundary, point PC2 is returned, which has been interpolated using
points P11 and P12.

You can use various parameters to adjust which values are returned in interpolated retrieval mode. For more
information, see the following sections:

 Cycle Count (X Values over Equal Time Intervals) (wwCycleCount) on page 96

 Resolution (Values Spaced Every X ms) (wwResolution) on page 99

 History Version (wwVersion) on page 111

 Interpolation Type (wwInterpolationType) on page 112

 TimeStamp Rule (wwTimeStampRule) on page 114

 Quality Rule (wwQualityRule) on page 119

Interpolated Retrieval - Query Examples

To use the interpolated mode, set the following parameter in your query.

wwRetrievalMode = 'Interpolated'

For examples, see the following:

 Interpolated Retrieval - Query 1 on page 39

 Interpolated Retrieval - Query 2 on page 40

 Interpolated Retrieval - Query 3 on page 41

Interpolated Retrieval - Query 1

Two analog tags and a discrete tag are retrieved from the History table, using linear interpolation. The start and
end times are offset to show interpolation of the SysTimeMin tag. The data points at all cycle boundaries are
interpolated for the two analog tags, while the values returned for the discrete tag are stair-stepped.

SELECT DateTime, TagName, Value, wwInterpolationType FROM History

 WHERE TagName IN ('SysTimeMin', 'ReactTemp', 'SysPulse')

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 40

 AND DateTime >= '2005-04-11 12:02:30'
 AND DateTime <= '2005-04-11 12:06:30'
 AND wwRetrievalMode = 'Interpolated'
 AND wwInterpolationType = 'Linear'
 AND wwResolution = 60000

The results are:

DateTime TagName Value wwInterpolationType

2005-04-11 12:02:30.000 SysTimeMin 2.5 LINEAR

2005-04-11 12:02:30.000 ReactTemp 23.2 LINEAR

2005-04-11 12:02:30.000 SysPulse 1.0 STAIRSTEP

2005-04-11 12:03:30.000 SysTimeMin 3.5 LINEAR

2005-04-11 12:03:30.000 ReactTemp 139.96753 LINEAR

2005-04-11 12:03:30.000 SysPulse 0.0 STAIRSTEP

2005-04-11 12:04:30.000 SysTimeMin 4.5 LINEAR

2005-04-11 12:04:30.000 ReactTemp 111.49636 LINEAR

2005-04-11 12:04:30.000 SysPulse 1.0 STAIRSTEP

2005-04-11 12:05:30.000 SysTimeMin 5.5 LINEAR

2005-04-11 12:05:30.000 ReactTemp 17.00238 LINEAR

2005-04-11 12:05:30.000 SysPulse 0.0 STAIRSTEP

2005-04-11 12:06:30.000 SysTimeMin 6.5 LINEAR

2005-04-11 12:06:30.000 ReactTemp 168.99531 LINEAR

2005-04-11 12:06:30.000 SysPulse 1.0 STAIRSTEP

Interpolated Retrieval - Query 2

If you omit the interpolation type in the query, the historian determines which interpolation type to use for an
analog tag based on the value of the InterpolationType column in the AnalogTag table, in conjunction with the
InterpolationTypeInteger and InterpolationTypeReal system parameters.

In the following query both analog tags are set to use the system default through the AnalogTag table, while the
InterpolationTypeInteger and InterpolationTypeReal system parameters are set to 0 and 1, respectively. Because
SysTimeMin is defined as a 2-byte integer and ReactTemp is defined as a real we see that only rows for
ReactTemp are interpolated.

SELECT DateTime, TagName, Value, wwInterpolationType FROM History

WHERE TagName IN ('SysTimeMin', 'ReactTemp', 'SysPulse')
AND DateTime >= '2005-04-11 12:02:30'
AND DateTime <= '2005-04-11 12:06:30'
AND wwRetrievalMode = 'Interpolated'
AND wwResolution = 60000

The results are:

DateTime TagName Value wwInterpolationType

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 41

DateTime TagName Value wwInterpolationType

2005-04-11 12:02:30.000 SysTimeMin 2.0 STAIRSTEP

2005-04-11 12:02:30.000 ReactTemp 23.2 LINEAR

2005-04-11 12:02:30.000 SysPulse 1.0 STAIRSTEP

2005-04-11 12:03:30.000 SysTimeMin 3.0 STAIRSTEP

2005-04-11 12:03:30.000 ReactTemp 139.96753 LINEAR

2005-04-11 12:03:30.000 SysPulse 0.0 STAIRSTEP

2005-04-11 12:04:30.000 SysTimeMin 4.0 STAIRSTEP

2005-04-11 12:04:30.000 ReactTemp 111.49636 LINEAR

2005-04-11 12:04:30.000 SysPulse 1.0 STAIRSTEP

2005-04-11 12:05:30.000 SysTimeMin 5.0 STAIRSTEP

2005-04-11 12:05:30.000 ReactTemp 17.00238 LINEAR

2005-04-11 12:05:30.000 SysPulse 0.0 STAIRSTEP

2005-04-11 12:06:30.000 SysTimeMin 6.0 STAIRSTEP

2005-04-11 12:06:30.000 ReactTemp 168.99531 LINEAR

2005-04-11 12:06:30.000 SysPulse 1.0 STAIRSTEP

Interpolated Retrieval - Query 3
SELECT TagName, DateTime, Value, QualityDetail, wwInterpolationType

FROM History
WHERE TagName = 'A001'

AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwRetrievalMode = 'Interpolated'
AND wwResolution = '10000'

This query can be run against the following sample data:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:09 0.2 192

A001 2009-09-12 00:15 1.3 192

A001 2009-09-12 00:17 0.8 192

A001 2009-09-12 00:22 0.6 249

A001 2009-09-12 00:26 0.9 192

A001 2009-09-12 00:28 0.0 249

A001 2009-09-12 00:29 0.0 249

A001 2009-09-12 00:33 1.1 192

A001 2009-09-12 00:35 1.6 192

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 42

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:38 0.5 192

A001 2009-09-12 00:42 0.8 192

The following is a graphical representation of the data:

The results are:

Tagname DateTime Value QualityDetail wwInterpolationType

A001 2009-09-12 00:20 0.8 192 STAIRSTEP

A001 2009-09-12 00:30 NULL 249 STAIRSTEP

A001 2009-09-12 00:40 0.5 192 LINEAR

The sample data points and the results are mapped on the following chart. Only the data falling between the
time start and end marks at 00:20 and 00:40 (shown on the chart as dark vertical lines) are returned by the
query.

Because there is no value that matches the start time, an initial value at 00:20 is returned in the results based on
the preceding data point at 00:17 because the following data point at 00:22 is NULL. Because a NULL value
precedes the 00:30 cycle boundary at 00:29, the NULL is returned at the cycle boundary. The value at 00:40 is an
interpolation of the data points at 00:38 and 00:42.

Interpolated Retrieval - Initial and Final Values

A value is returned at the start time and end time of the query using interpolation of the surrounding points.

Interpolated Retrieval - Handling NULL Values

When a NULL value precedes a cycle boundary, that NULL will be returned at the cycle boundary.

If a valid value precedes a cycle boundary, but is followed by a NULL value after the cycle boundary, no
interpolation will be used and wwInterpolationType will be set to STAIRSTEP for that value.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 43

Best Fit Retrieval

For the " best fit" retrieval mode, the total time for the query is divided into even sub-periods, and then up to
five values are returned for each sub-period:

 First value in the period

 Last value in the period

 Minimum value in the period, with its actual time

 Maximum value in the period, with its actual time

 The first "exception" in the period (non-Good quality)

"Best fit" retrieval allows for a compromise between delta retrieval and cyclic retrieval. For example, delta
retrieval can accurately represent a process over a long period of time, as shown in the following trend.
However, to achieve this representation, a large number of data values must be returned.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 44

If cyclic retrieval is used to retrieve the data, the retrieval is much more efficient, because fewer values are
returned. However, the representation is not as accurate, as the following trend shows.

"Best fit" retrieval allows for faster retrieval, as typically achieved by using cyclic retrieval, plus the better
representation typically achieved by using delta retrieval. This is shown in the following trend.

For example, for one week of five-second data, 120,960 values would be returned for delta retrieval, versus
around 300 values for best-fit retrieval.

Best-fit retrieval uses retrieval cycles, but it is not a true cyclic mode. Apart from the initial value, it only returns
actual delta points. For example, if one point is both the first value and the minimum value in a cycle, it is
returned only one time. In a cycle where a tag has no points, nothing is returned.

As in cyclic retrieval, the number of cycles is based on the specified resolution or cycle count. However, the
number of values returned is likely to be more than one per cycle.

All points are returned in chronological order. If multiple points are to be returned for a particular timestamp,
then those points are returned in the order in which the corresponding tags were specified in the query.

The best-fit algorithm is only applied to analog and analog summary tags. For all other tags, delta results are
returned.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 45

Best Fit Retrieval - How It Works

The following illustration shows how the best-fit algorithm selects points for an analog tag.

Data is retrieved in best-fit mode with a start time of TC0 and an end time of TC2. The resolution has been set in
such a way that the historian returns data for two complete cycles starting at TC0 and TC1 and an incomplete
cycle starting at TC2. P1 to P12 represent actual data points stored on the historian. Of these points, eleven
represent normal analog values, and one, P7, represents a NULL value due to an I/O Server disconnect, which
causes a gap in the data between P7 and P8.

Because P2 is located exactly at the start time, no initial value needs to be interpolated at the start time.
Therefore, point P1 is not considered at all. All other points are considered, but only the points indicated by
green markers on the graph are returned.

From the first cycle, four points are returned:

 P2 as the initial value of the query, as well as the first value in the cycle

 P4 as the minimum value in the cycle

 P6 as both the maximum value and the last value in the cycle

 P7 as the first (and only) occurring exception in the cycle

From the second cycle, three points are returned:

 P8 as the first value in the cycle

 P9 as the maximum value in the cycle

 P11 as both the minimum value and the last value in the cycle

 As no exception occurs in the second cycle, none is returned.

Because the tag does not have a point exactly at the query end time, where an incomplete third cycle starts, the
end value PC2 is interpolated between P11 and P12, assuming that linear interpolation is used.

Best Fit Retrieval - Supported Value Parameters

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 46

You can use various parameters to adjust which values are returned in best-fit retrieval mode. For more
information, see the following sections:

 Cycle Count (X Values over Equal Time Intervals) (wwCycleCount) on page 96

 Resolution (Values Spaced Every X ms) (wwResolution) on page 99

 History Version (wwVersion) on page 111

 Interpolation Type (wwInterpolationType) on page 112

 Quality Rule (wwQualityRule) on page 119

Best Fit Retrieval - Query Example

To use the best fit retrieval mode, set the following parameter in your query.

wwRetrievalMode = 'BestFit'

For example, an analog tag is retrieved over a five-minute period using the best-fit retrieval mode. The
wwResolution parameter is set to 60000, thus specifying five 1-minute cycles. Within each cycle, the retrieval
sub-system returns the first, minimum, maximum, and last data points. There are no exception (NULL) points in
the time period. Notice how the points at the query start time and at the query end time are interpolated, while
all other points are actual delta points.

SELECT DateTime, TagName, CONVERT(DECIMAL(10, 1), Value) AS Value, wwInterpolationType AS IT
FROM History

WHERE TagName = 'ReactTemp'
AND DateTime >= '2005-04-11 12:15:00'
AND DateTime <= '2005-04-11 12:20:00'
AND wwRetrievalMode = 'BestFit'
AND wwResolution = 60000

The results are:

 DateTime TagName Value IT

(initial, first,
min)

2005-04-11 12:15:00.000 ReactTemp 40.7 LINEAR

(max in interval 1) 2005-04-11 12:15:38.793 ReactTemp 196.0 STAIRSTEP

(last in interval 1) 2005-04-11 12:15:58.810 ReactTemp 159.2 STAIRSTEP

(first, max in
interval 2)

2005-04-11 12:16:00.013 ReactTemp 156.9 STAIRSTEP

(last, min in
interval 2)

2005-04-11 12:16:58.857 ReactTemp 16.3 STAIRSTEP

(first, min in
interval 3)

2005-04-11 12:17:00.060 ReactTemp 14.0 STAIRSTEP

(last, max in
interval 3)

2005-04-11 12:17:58.793 ReactTemp 151.0 STAIRSTEP

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 47

 DateTime TagName Value IT

(first in interval
4)

2005-04-11 12:18:00.107 ReactTemp 156.0 STAIRSTEP

(max in interval 4) 2005-04-11 12:18:10.057 ReactTemp 196.0 STAIRSTEP

(last, min in
interval 4)

2005-04-11 12:18:58.837 ReactTemp 106.3 STAIRSTEP

(first, max in
interval 5)

2005-04-11 12:19:00.040 ReactTemp 104.0 STAIRSTEP

(min in interval 5) 2005-04-11 12:19:31.320 ReactTemp 14.0 STAIRSTEP

(last in interval 5) 2005-04-11 12:19:58.773 ReactTemp 26.0 STAIRSTEP

(end bounding
value)

2005-04-11 12:20:00.000 ReactTemp 30.7 LINEAR

Best Fit Retrieval - Initial and Final Values

A point will be returned at the query start time and the query end time for each tag queried, if a point exists for
that tag at or after the end time of the query. The values of the initial and final points will be determined by
interpolating the points preceding and following the query start or query end time.

Standard interpolation rules will be used to return the initial and final values. For more information, see
Interpolated Retrieval on page 38.

Best Fit Retrieval - Handling NULL Values

When any of the four good points are returned from a cycle that contains gaps or from an incomplete cycle with
the query end time located inside of the calculation cycle the quality detail of each of the non-null points
returned is modified to alert the user to this fact. This is done by performing a logical OR operation of the value
4096, which means partial cycle, onto the existing quality detail. (This is the delta point equivalent to the use of
PercentGood for cyclic.)

Average Retrieval

For the time-weighted average (in short: "average") retrieval mode, a time-weighted average algorithm is used
to calculate the value to be returned for each retrieval cycle.

For a statistical average, the actual data values are used to calculate the average. The average is the sum of the
data values divided by the number of data values. For the following data values, the statistical average is
computed as:

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 48

(P1 + P2 + P3 + P4) / 4) = Average

For a time-weighted average, values are multiplied by the time difference between the points to determine the
time-weighted value. Therefore, the longer a tag had a particular value, the more weight that value holds in the
overall average. The overall average is determined by adding all of the time-weighted values and then dividing
that number by the total amount of time.

Which values are weighted depends on the interpolation setting of the tag. For a tag that uses linear
interpolation, the midpoints between values are weighted. For a tag that uses stair-step interpolation, the
earlier of two values is weighted.

For the following data values of a tag that uses linear interpolation, the time-weighted average is computed as:

(((P1 + P2) / 2) x (T2 - T1)) + (((P2 + P3) / 2) x (T3 - T2)) + (((P3 + P4) / 2) x (T4 - T3)) / (T4 - T1) = Average

If the same tag uses stair-step interpolation, the time-weighted average is:

((P1 x (T2 - T1)) + (P2 x (T3 - T2)) + (P3 x (T4 - T3))) / (T4 - T1) = Average

The SQL Server AVG aggregate is a simple statistical average. Using the average retrieval mode with a cycle
count of 1 returns data much faster than the AVG aggregate, and usually more accurately due to the time
weighting. The Event subsystem also returns a simple statistical average.

Average retrieval returns one row for each tag in the query for each cycle. The number of cycles is based on the
specified resolution or cycle count.

The time-weighted average algorithm is only applied to analog and analog summary tags. If you use average
retrieval with other tags, the results are the same as when using regular cyclic retrieval.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 49

Average Retrieval - How It Works

The following illustration shows how the time-weighted average is calculated for an analog tag that uses linear
interpolation.

Data is retrieved in average mode with a start time of TC0 and an end time of TC2. The resolution has been set in
such a way that the historian returns data for two complete cycles starting at TC0 and TC1 and an incomplete
cycle starting at TC2. P1 to P9 represent actual data points stored on the historian. Of these points, eight
represent normal analog values, and one, P5, represents a NULL due to an I/O Server disconnect, which causes a
gap in the data between P5 and P6. Assume that the query calls for timestamping at the end of the cycle.

Results are calculated as follows:

 The "initial value" returned at the query start time (TC0) is the time-weighted average of the points in the last
cycle preceding TC0.

 The value returned at TC1 is the time-weighted average of the points in the cycle starting at TC0.

 The value returned at the query end time (TC2) is the time-weighted average of the points in the cycle
starting at TC1.

To understand how the time-weighted average is calculated, observe the last cycle as an example. First, the area
under the curve must be calculated. This curve is indicated by the red line through P6, P7, P8 and PC2, where PC2
represents the interpolated value at time TC2 using points P8 and P9. The data gap caused by the I/O Server
disconnect does not contribute anything to this area. If a quality rule of "good" has been specified, then points
with doubtful quality will not contribute anything to the area, either.

To understand how the area is calculated, consider points P6 and P7. The area contribution between these two
points is calculated by multiplying the arithmetic average of value P6 and value P7 by the time difference
between the two points. The formula is:

((P6 + P7) / 2) x (T7 - T6)

When the area for the whole cycle has been calculated, the time-weighted average is calculated by dividing that
area by the cycle time, less any periods within the cycle that did not contribute anything to the area calculation.
The result is returned at the cycle end time.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 50

If you take a closer look at points P4 and P5 in the example, you can see that the red line through point P4 is
parallel to the x-axis. This is because P5 represents a NULL, which cannot be used to calculate an arithmetic
average. Instead, the value P4 is used for the whole time period between points P4 and P5.

The area calculation is signed. If the arithmetic average between two points is negative, then the contribution to
the area is negative.

Average Retrieval - Supported Value Parameters

You can use various parameters to adjust which values are returned in average retrieval mode. For more
information, see the following sections:

 Cycle Count (X Values over Equal Time Intervals) (wwCycleCount) on page 96

 Resolution (Values Spaced Every X ms) (wwResolution) on page 99

 History Version (wwVersion) on page 111

 Interpolation Type (wwInterpolationType) on page 112

 TimeStamp Rule (wwTimeStampRule) on page 114

 Quality Rule (wwQualityRule) on page 119

Average Retrieval - Query Examples

To use the average mode, set the following parameter in your query.

wwRetrievalMode = 'Average'

For examples, see the following:

 Average Retrieval - Query 1 on page 50

 Average Retrieval - Query 2 on page 51

For an additional example, see Querying Aggregate Data in Different Ways.

Average Retrieval - Query 1

The time-weighted average is computed for each of five 1-minute long cycles.

Note that the wwTimeStampRule parameter is set to "Start" in the query. This means that the value stamped at
11:18:00.000 represents the average for the interval 11:18 to 11:19, the value stamped at 11:19:00.000
represents the average for the interval 11:19 to 11:20, and so on. If no timestamp rule is specified in the query,
then the default setting in the TimeStampRule system parameter is used.

In the first cycle there are no points, so a NULL is returned. In the second cycle value points are found covering
77.72 percent of the time as returned in PercentGood. This means that the returned average is calculated based
on 77.72 percent of the cycle time. Because the same OPCQuality is not found for all the points in the cycle,
OPCQuality is set to Doubtful. In the remaining three cycles, only good points occur, all with an OPCQuality of
192.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 51

Because no quality rule is specified in the query using the wwQualityRule parameter, the query uses the default
as specified by the QualityRule system parameter. If a quality rule of Extended is specified, any point stored with
doubtful OPCQuality will be used to calculate the average, and the point time will therefore be included in the
calculation of PercentGood.

SELECT DateTime, TagName, CONVERT(DECIMAL(10, 2), Value) AS Value, OPCQuality, PercentGood FROM
History

WHERE TagName = 'ReactTemp'
AND DateTime >= '2005-04-11 11:18:00'
AND DateTime < '2005-04-11 11:23:00'
AND wwRetrievalMode = 'Average'
AND wwCycleCount = 5
AND wwTimeStampRule = 'Start'

The results are:

 DateTime TagName Value OPCQuality PercentGood

(cycle 1) 2005-04-11
11:18:00.000

ReactTemp NULL 0 0.0

(cycle 2) 2005-04-11
11:19:00.000

ReactTemp 70.00 64 77.72

(cycle 3) 2005-04-11
11:20:00.000

ReactTemp 153.99 192 100.0

(cycle 4) 2005-04-11
11:21:00.000

ReactTemp 34.31 192 100.0

(cycle 5) 2005-04-11
11:22:00.000

ReactTemp 134.75 192 100.0

Average Retrieval - Query 2

This query demonstrates the use of the average retrieval mode in a wide query. Time-weighted average values
are returned for the analog tags ReactTemp and ReactLevel, while regular cyclic points are returned for the
discrete tag, WaterValve.

SELECT * FROM OpenQuery(INSQL,

'SELECT DateTime, ReactTemp, ReactLevel, WaterValve FROM WideHistory
WHERE DateTime >= "2004-06-07 08:00"

AND DateTime < "2004-06-07 08:05"
AND wwRetrievalMode = "Average"
AND wwCycleCount = 5

')

The results are:

DateTime ReactTemp ReactLevel WaterValve

2004-06-07 08:00:00.000 47.71621 1676.69716 1

2004-06-07 08:01:00.000 157.28076 1370.88097 0

2004-06-07 08:02:00.000 41.33734 797.67296 1

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 52

DateTime ReactTemp ReactLevel WaterValve

2004-06-07 08:03:00.000 122.99525 1921.66771 0

2004-06-07 08:04:00.000 105.28866 606.40488 1

Average Retrieval - Initial and Final Values

If wwTimeStampRule = END, the initial value is calculated by performing an average calculation on the cycle
leading up to the query start time. No special handling is done for the final value.

If wwTimeStampRule = START, the final value is calculated by performing an average calculation on the cycle
following the query end time. No special handling is done for the initial value.

Average Retrieval - Handling NULL Values

Gaps introduced by NULL values are not included in the average calculations. The average only considers the
time ranges with good values. TimeGood indicates the total time per cycle that the tags value was good.

Minimum Retrieval

The minimum value retrieval mode returns the minimum value from the actual data values within a retrieval
cycle. If there are no actual data points stored on the historian for a given cycle, nothing is returned. NULL is
returned if the cycle contains one or more NULL values.

As in cyclic retrieval, the number of cycles is based on the specified resolution or cycle count. However,
minimum retrieval is not a true cyclic mode. Apart from the initial value, all points returned are delta points.

Minimum retrieval only works with analog tags. For all other tags, normal delta results are returned.

All returned values are in chronological order. If multiple points are to be returned for a particular timestamp,
they are returned in the order in which the tags were specified in the query. If the minimum value occurs several
times in a cycle, the minimum value with the earliest timestamp is returned.

The minimum retrieval mode must use the "<=" operator for the ending date/time.

Using the minimum retrieval mode with a cycle count of 1 returns the same results as the SQL Server MIN
aggregate; however, the data is returned much faster.

Minimum Retrieval - How It Works

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 53

The following illustration shows how the minimum value is selected for an analog tag.

This example has a start time of TC0 and an end time of TC2. The resolution has been set in such a way that the
historian returns data for two complete cycles starting at TC0 and TC1, a "phantom" cycle starting at TCP, and an
incomplete cycle starting at TC2. The phantom cycle has the same duration as the first cycle in the query period,
extending back in time from the query start time.

For the queried tag, a total of 18 points are found throughout the cycles, represented by the markers P1 through
P18. Of these points, 17 represent normal analog values. The point P13 represents a NULL due to an I/O Server
disconnect, which causes a gap in the data between P13 and P14.

The minimum value for the "phantom" cycle starting at TCP is returned as the initial value at TC0. Point P18 is not
considered at all because it is outside of the query time frame. All other points are considered, but only the
points indicated by green markers on the graph are returned (P10, P13, and P17).

In total, four points are returned:

 P4 as the minimum value of the "phantom" cycle and the initial point

 P10 as the minimum value in the first cycle

 P13 as the first and only exception occurring in the first cycle

 P17 as the minimum value in the second cycle

No points are returned for the incomplete third cycle starting at the query end time, because the tag does not
have a point exactly at that time.

If the minimum value of the first cycle is located exactly at the query start time, both this value and the
minimum value of the phantom cycle are returned.

Minimum Retrieval - Supported Value Parameters

You can use various parameters to adjust which values are returned in minimum retrieval mode. For more
information, see the following sections:

 Cycle Count (X Values over Equal Time Intervals) (wwCycleCount) on page 96

 Resolution (Values Spaced Every X ms) (wwResolution) on page 99

 History Version (wwVersion) on page 111

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 54

 Quality Rule (wwQualityRule) on page 119

Minimum Retrieval - Query Examples

To use the minimum mode, set the following parameter in your query:

wwRetrievalMode = 'Min'

or

wwRetrievalMode = 'Minimum'

For examples, see the following:

 Minimum Retrieval - Query 1 on page 54

 Minimum Retrieval - Query 2 on page 55

 Minimum Retrieval - Query 3 on page 55

Minimum Retrieval - Query 1

In this example, an analog tag is retrieved over a five minute period, using the minimum retrieval mode. Because
the wwResolution parameter is set to 60000, each cycle is exactly one minute long. The minimum data value is
returned from each of these cycles.

SELECT DateTime, TagName, CONVERT(DECIMAL(10, 2), Value) AS Value FROM History

WHERE TagName = 'ReactTemp'
AND DateTime >= '2005-04-11 11:21:00'
AND DateTime <= '2005-04-11 11:26:00'
AND wwRetrievalMode = 'Minimum'
AND wwResolution = 60000

The initial value at the query start time is the minimum value found in the phantom cycle before the start time
of the query.

The results are:

 DateTime TagName Value

(phantom cycle) 2005-04-11 11:21:00.000 ReactTemp 104.00

(cycle 1) 2005-04-11 11:21:30.837 ReactTemp 14.00

(cycle 2) 2005-04-11 11:22:00.897 ReactTemp 36.00

(cycle 3) 2005-04-11 11:23:59.567 ReactTemp 18.60

(cycle 4) 2005-04-11 11:24:02.083 ReactTemp 14.00

(cycle 5) 2005-04-11 11:25:59.550 ReactTemp 108.60

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 55

Minimum Retrieval - Query 2

In this example, the minimum retrieval mode is used in a manner equivalent to using the SQL Server MIN
aggregate. Note that the cycle producing the result is the five-minute phantom cycle just before the query start
time.

SELECT TOP 1 DateTime, TagName, CONVERT(DECIMAL(10, 2), Value) AS Value FROM History

WHERE TagName = 'ReactTemp'
AND DateTime >= '2005-04-11 11:31:00'
AND DateTime <= '2005-04-11 11:31:00'
AND wwRetrievalMode = 'Minimum'
AND wwResolution = 300000

The results are:

 DateTime TagName Value

(phantom cycle) 2005-04-11 11:31:00.000 ReactTemp 14.00

Minimum Retrieval - Query 3

This example shows how the minimum retrieval mode marks the QualityDetail column to indicate that a
minimum value is returned based on an incomplete cycle. In this case, an incomplete cycle is a cycle that either
contained periods with no values stored or a cycle that was cut short because the query end time was located
inside the cycle. All values returned for the QualityDetail column are documented in the QualityMap table in the
Runtime database.

SELECT DateTime, TagName, Value, QualityDetail FROM History

WHERE TagName = 'SysTimeSec'
AND DateTime >= '2005-04-11 11:18:50'
AND DateTime <= '2005-04-11 11:20:50'
AND wwRetrievalMode = 'Minimum'
AND wwResolution = 60000

The results are:

 DateTime TagName Value QualityDetail

(phantom cycle) 2005-04-11
11:18:50.000

SysTimeSec NULL 65536

(cycle 1) 2005-04-11
11:19:13.000

SysTimeSec 13.0 4140

(cycle 2) 2005-04-11
11:20:00.000

SysTimeSec 0.0 192

(cycle 3) 2005-04-11
11:20:50.000

SysTimeSec 50.0 4288

Minimum Retrieval - Initial and Final Values

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 56

For analog tags, the minimum value of the tag in the cycle leading up to the query start time is returned with its
timestamp changed to the query start time. If there is no point exactly at the "phantom" cycle start time, the
point leading up to the phantom cycle is also considered for the minimum calculation.(No adjustments are made
to the quality of the initial point even though the timestamp may have been altered.) Apart from the initial
value, all points returned are delta points. (For more information on initial values, see Delta Retrieval - Initial
Values on page 35.)

If a point occurs exactly on the query end time, that point will be returned with the partial cycle bit, 4096, set in
quality detail. If there is more than one such point, only the first point will be returned.

Minimum Retrieval - Handling NULL Values and Incomplete Cycles

The first NULL value in a cycle is returned.

When a minimum value is returned from a cycle that contains gaps (including a gap extended from the previous
cycle) or from an incomplete cycle with the query end time located inside of the calculation cycle, the point’s
quality detail is modified to flag this. This is done by performing a logical OR operation of the value 4096, which
indicates a partial cycle, onto the existing quality detail.

As an example of how minimum retrieval mode handles NULLs, consider the following query:

SELECT TagName, DateTime, Value, QualityDetail

FROM History
WHERE TagName = 'A001'

AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Minimum'

This query can be run against the following sample data:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:09 0.2 192

A001 2009-09-12 00:15 1.3 192

A001 2009-09-12 00:17 0.8 192

A001 2009-09-12 00:22 0.5 192

A001 2009-09-12 00:26 0.9 192

A001 2009-09-12 00:28 0.0 249

A001 2009-09-12 00:29 0.0 249

A001 2009-09-12 00:33 1.1 192

A001 2009-09-12 00:35 1.6 192

A001 2009-09-12 00:38 0.5 192

A001 2009-09-12 00:42 0.8 192

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 57

The following is a graphical representation of the data:

The results are:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:20 0.2 192

A001 2009-09-12 00:22 0.5 4288

A001 2009-09-12 00:28 NULL 249

A001 2009-09-12 00:38 0.5 4288

The sample data points and the results are mapped on the following chart. Only the data falling between the
time start and end marks at 00:20 and 00:40 (shown on the chart as dark vertical lines) are returned by the
query. The resolution is set at 10,000 milliseconds.

Because there is no value that matches the start time, an initial value at 00:20 is returned based on the
minimum value of the preceding cycle, which is the data point at 00:09. In the two subsequent cycles, the
minimum values are at 00:22 and 00:38. The quality for these two values is set to 4288 (4096 + 192). The
remaining data points are excluded because they are not minimums. In addition, the first NULL at 00:28 is
included, but the second NULL (at 00:29) is not.

Maximum Retrieval

The maximum value retrieval mode returns the maximum value from the actual data values within a retrieval
cycle. If there are no actual data points stored on the historian for a given cycle, nothing is returned. NULL is
returned if the cycle contains one or more NULL values.

As in cyclic retrieval, the number of cycles is based on the specified resolution or cycle count. However,
maximum retrieval is not a true cyclic mode. Apart from the initial value, all points returned are delta points.

Maximum retrieval only works with analog tags. For all other tags, normal delta results are returned.

All returned values are in chronological order. If multiple points are to be returned for a particular timestamp,
they are returned in the order in which the tags were specified in the query. If the maximum value occurs
several times in a cycle, the maximum value with the earliest timestamp is returned.

The maximum retrieval mode must use the "<=" operator for the ending date/time.

Using the maximum retrieval mode with a cycle count of 1 returns the same results as the SQL Server MAX
aggregate; however, the data is returned much faster.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 58

Maximum Retrieval - How It Works

The following illustration shows how the maximum value is selected for an analog tag.

This example has a start time of TC0 and an end time of TC2. The resolution has been set in such a way that the
historian returns data for two complete cycles starting at TC0 and TC1, a "phantom" cycle starting at TCP, and an
incomplete cycle starting at TC2. The phantom cycle has the same duration as the first cycle in the query period,
extending back in time from the query start time.

For the queried tag, a total of 18 points are found throughout the cycles, represented by the markers P1 through
P18. Of these points, 17 represent normal analog values. The point P13 represents a NULL due to an I/O Server
disconnect, which causes a gap in the data between P13 and P14.

The maximum value for the "phantom" cycle starting at TCP is returned as the initial value at TC0. Point P18 is not
considered at all because it is outside of the query time frame. All other points are considered, but only the
points indicated by green markers on the graph are returned (P12, P13, and P15).

In total, four points are returned:

 P6 as the maximum value of the "phantom" cycle and the initial point

 P12 as the maximum value in the first cycle

 P13 as the first and only exception occurring in the first cycle

 P15 as the maximum value in the second cycle

No points are returned for the incomplete third cycle starting at the query end time, because the tag does not
have a point exactly at that time.

If the maximum value of the first cycle is located exactly at the query start time, this value and the maximum
value of the phantom cycle are returned.

Maximum Retrieval - Supported Value Parameters

You can use various parameters to adjust which values are returned in maximum retrieval mode. For more
information, see the following sections:

 Cycle Count (X Values over Equal Time Intervals) (wwCycleCount) on page 96

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 59

 Resolution (Values Spaced Every X ms) (wwResolution) on page 99

 History Version (wwVersion) on page 111

 Quality Rule (wwQualityRule) on page 119

Maximum Retrieval - Query Examples

To use the maximum mode, set the following parameter in your query:

wwRetrievalMode = 'Max'

or
wwRetrievalMode = 'Maximum'

For examples, see the following:

 Maximum Retrieval - Query 1 on page 59

 Maximum Retrieval - Query 2 on page 60

 Maximum Retrieval - Query 3 on page 60

Maximum Retrieval - Query 1

In this example, an analog tag is retrieved over a five-minute period, using the maximum retrieval mode.
Because the wwResolution parameter is set to 60000, each cycle is exactly one minute long. The maximum data
value is returned from each of these cycles.

SELECT DateTime, TagName, CONVERT(DECIMAL(10, 2), Value) AS Value FROM History

WHERE TagName = 'ReactTemp'
AND DateTime >= '2005-04-11 11:21:00'
AND DateTime <= '2005-04-11 11:26:00'
AND wwRetrievalMode = 'Maximum'
AND wwResolution = 60000

The initial value at the query start time is the maximum value found in the phantom cycle before the start time
of the query.

The results are:

 Cycle DateTime TagName Value

(phantom cycle) 2005-04-11 11:21:00.000 ReactTemp 196.00

(cycle 1) 2005-04-11 11:21:00.853 ReactTemp 101.70

(cycle 2) 2005-04-11 11:22:40.837 ReactTemp 196.00

(cycle 3) 2005-04-11 11:23:00.833 ReactTemp 159.20

(cycle 4) 2005-04-11 11:24:59.613 ReactTemp 146.00

(cycle 5) 2005-04-11 11:25:12.083 ReactTemp 196.00

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 60

Maximum Retrieval - Query 2

In this example, the maximum retrieval mode is used in a manner equivalent to using the SQL Server MIN
aggregate. Note that the cycle producing the result is the five-minute phantom cycle just before the query start
time.

SELECT TOP 1 DateTime, TagName, CONVERT(DECIMAL(10, 2), Value) AS Value FROM History

WHERE TagName = 'ReactTemp'
AND DateTime >= '2005-04-11 11:31:00'
AND DateTime <= '2005-04-11 11:31:00'
AND wwRetrievalMode = 'Maximum'
AND wwResolution = 300000

The results are:

 DateTime TagName Value

(phantom cycle) 2005-04-11 11:31:00.000 ReactTemp 196.00

Maximum Retrieval - Query 3

This example shows how the maximum retrieval mode marks the QualityDetail column to indicate that a
maximum value is returned based on an incomplete cycle. In this case, an incomplete cycle is a cycle that either
contained periods with no values stored or a cycle that was cut short because the query end time was located
inside the cycle. All values returned for the QualityDetail column are documented in the QualityMap table in the
Runtime database.

SELECT DateTime, TagName, Value, QualityDetail FROM History

WHERE TagName = 'SysTimeSec'
AND DateTime >= '2005-04-11 11:19:10'
AND DateTime <= '2005-04-11 11:21:10'
AND wwRetrievalMode = 'Maximum'
AND wwResolution = 60000

The results are:

 DateTime TagName Value QualityDetail

(phantom cycle) 2005-04-11
11:19:10.000

SysTimeSec NULL 65536

(cycle 1) 2005-04-11
11:19:59.000

SysTimeSec 59 4288

(cycle 2) 2005-04-11
11:20:59.000

SysTimeSec 59 192

(cycle 3) 2005-04-11
11:21:10.000

SysTimeSec 10 4288

Maximum Retrieval - Initial and Final Values

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 61

For analog tags, the maximum value of the tag in the cycle leading up to the query start time is returned with its
timestamp changed to the query start time. If there is no point exactly at the phantom cycle start time, the point
leading up to the phantom cycle is also considered for the maximum calculation. No adjustments are made to
the quality of the initial point even though the timestamp may have been altered. Apart from the initial value, all
points returned are delta points. (For more information on initial values, see Determining Cycle Boundaries on
page 151.)

If a point occurs exactly on the query end time, that point is returned with the partial cycle bit, 4096, set in
quality detail. If there is more than one such point, only the first point is returned.

Maximum Retrieval - Handling NULL Values and Incomplete Cycles

The first NULL value in a cycle is returned.

When a maximum value is returned from a cycle that contains gaps (including a gap extended from the previous
cycle) or from an incomplete cycle with the query end time located inside of the calculation cycle, the point’s
quality detail is modified to flag this. This is done by performing a logical OR operation of the value 4096, which
indicates a partial cycle, onto the existing quality detail.

As an example of how maximum retrieval mode handles NULLs, consider the following query:

SELECT TagName, DateTime, Value, QualityDetail

FROM History
WHERE TagName = 'A001'

AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Maximum'

If you run this query against the following sample data:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:09 0.2 192

A001 2009-09-12 00:15 1.3 192

A001 2009-09-12 00:17 0.8 192

A001 2009-09-12 00:22 0.5 192

A001 2009-09-12 00:26 0.9 192

A001 2009-09-12 00:28 0.0 249

A001 2009-09-12 00:29 0.0 249

A001 2009-09-12 00:33 1.1 192

A001 2009-09-12 00:35 1.6 192

A001 2009-09-12 00:38 0.5 192

A001 2009-09-12 00:42 0.8 192

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 62

The results are:

Tagname DateTime Value QualityDetail

A001 2009-09-12 00:20 1.3 192

A001 2009-09-12 00:26 0.9 4288

A001 2009-09-12 00:28 NULL 249

A001 2009-09-12 00:35 1.6 4288

The sample data points and the results are mapped on the following chart. Only the data falling between the
time start and end marks at 00:20 and 00:40 (shown on the chart as dark vertical lines) are returned by the
query. The resolution is set at 10,000 milliseconds.

Because there is no value that matches the start time, an initial value at 00:20 is returned based on the
maximum value of the preceding cycle, which is the data point at 00:15. In the two subsequent cycles, the
maximum values are at 00:26 and 00:35. The quality for these two values is set to 4288 (4096 + 192). The
remaining data points are excluded because they are not maximums. In addition, the first NULL at 00:28 is
included, but the second NULL (at 00:29) is not.

Integral Retrieval

Integral retrieval calculates the values at retrieval cycle boundaries by integrating the graph described by the
points stored for the tag. Therefore, it works much like average retrieval, but it additionally applies a scaling
factor. This retrieval mode is useful for calculating volume for a particular tag. For example, if one of your tags
represents product flow in gallons per second, integral retrieval allows you to retrieve the total product flow in
gallons during a certain time period.

Integral retrieval is a true cyclic mode. It returns one row for each tag in the query for each cycle. The number of
cycles is based on the specified resolution or cycle count.

Integral retrieval only works with analog tags. For all other tags, normal cyclic results are returned.

Integral Retrieval - How It Works

Calculating values for a cycle in integral retrieval is a two-step process:

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 63

 First, the historian calculates the area under the graph created by the data points. This works the same as in
average retrieval. For more information, see Average Retrieval on page 47.

 After this area has been found, it is scaled using the value of the IntegralDivisor column in the
EngineeringUnit table. This divisor expresses the conversion factor from the actual rate to one of units per
second.

For example, if the time-weighted average for a tag during a 1-minute cycle is 3.5 liters per second, integral
retrieval returns a value of 210 for that cycle (3.5 liters per second multiplied by 60 seconds).

Integral Retrieval - Supported Value Parameters

You can use various parameters to adjust which values are returned in integral retrieval mode. For more
information, see the following sections:

 Cycle Count (X Values over Equal Time Intervals) (wwCycleCount) on page 96

 Resolution (Values Spaced Every X ms) (wwResolution) on page 99

 History Version (wwVersion) on page 111

 Interpolation Type (wwInterpolationType) on page 112

 TimeStamp Rule (wwTimeStampRule) on page 114

 Quality Rule (wwQualityRule) on page 119

Integral Retrieval - Query Example

To use the integral retrieval mode, set the following parameter in your query.

wwRetrievalMode = 'Integral'

In this example, the integral is computed for each of five 1-minute long cycles. The wwQualityRule parameter is
used to ensure that only points with good quality are used in the computation, which means that points with
doubtful quality are discarded. The rules used to determine the returned OPCQuality are the same as described
for a time weighted average query.

SELECT DateTime, TagName, CONVERT(DECIMAL(10, 2), Value) AS Flow, OPCQuality, PercentGood FROM
History

WHERE TagName = 'FlowRate'
AND DateTime >= '2004-06-07 08:00'
AND DateTime < '2004-06-07 08:05'
AND wwRetrievalMode = 'Integral'
AND wwCycleCount = 5
AND wwQualityRule = 'Good'

The results are:

 DateTime TagName Flow OPCQuality PercentGood

(interval 1) 2004-06-07
08:00:00.000

FlowRate 2862.97 192 100.0

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 64

 DateTime TagName Flow OPCQuality PercentGood

(interval 2) 2004-06-07
08:01:00.000

FlowRate 9436.85 192 100.0

(interval 3) 2004-06-07
08:02:00.000

FlowRate 2480.24 192 100.0

(interval 4) 2004-06-07
08:03:00.000

FlowRate 7379.71 192 100.0

(interval 5) 2004-06-07
08:04:00.000

FlowRate 6317.32 192 100.0

Also, the "phantom" cycle affects the integral retrieval mode just as it does the average retrieval mode. For
examples, see Querying Aggregate Data in Different Ways on page 182.

Integral Retrieval - wwExpression Query Example

In this example, the integral of a tag named Speed (measured in m/s), is computed over two 1-minute long
intervals (wwResolution = 60000 milliseconds) to measure the distance traveled in meters over the interval.

SELECT StartDateTime, DateTime, TagName, Value, Quality, QualityDetail as QD, wwUnit

FROM History
WHERE TagName = 'Speed'

AND DateTime >= '2020-12-03 10:00'
AND DateTime < '2020-12-03 10:02'
AND wwRetrievalMode = 'Integral'
AND wwResolution = 60000

The results are:

StartDateTime DateTime TagName Value Quality QD wwUnit

2020-12-03
09:59:00.000

2020-12-03
10:00:00.000

Speed -2906.88948 0 192 m

2020-12-03
10:00:00.000

2020-12-03
10:01:00.000

Speed 877.57619 0 192 m

To display the results using a different unit of measure, you can use the wwExpression query parameter with the
following syntax:

wwExpression = 'UOM(TagName, target unit)'

For example, the integral of the Speed tag is computed again over two 1-minute long intervals, but this time the
value is converted to the distance in centimeters.

SELECT StartDateTime, DateTime, TagName, Value, Quality, QualityDetail as QD, wwUnit

FROM History
WHERE TagName = 'Speed'

AND DateTime >= '2020-12-03 10:00'
AND DateTime < '2020-12-03 10:02'
AND wwRetrievalMode = 'Integral'
AND wwResolution = 60000

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 65

AND wwExpression = 'UOM([Speed],cm)'

The results are:

StartDateTime DateTime TagName Value Quality QD wwUnit

2020-12-03
09:59:00.000

2020-12-03
10:00:00.000

Speed -290688.948 192 192 cm

2020-12-03
10:00:00.000

2020-12-03
10:01:00.000

Speed 87757.619 192 192 cm

Note: The engineering unit conversion feature is licensed separately. If you do not have the applicable license,
the results are returned in the original units.

Integral Retrieval - Initial and Final Values

If wwTimeStampRule = END, the initial value is calculated by performing an integral calculation on the cycle
leading up to the query start time. No special handling is done for the final value.

If wwTimeStampRule = START, the final value is calculated by performing an integral calculation on the cycle
following the query end time. No special handling is done for the initial value.

Integral Retrieval - Handling NULL Values

Gaps introduced by NULL values are not included in the integral calculations. The average only considers the
time ranges with good values. TimeGood indicates the total time per cycle that the tags value was good.

Slope Retrieval

Slope retrieval returns the slope of a line drawn through a given point and the point immediately before it, thus
expressing the rate at which values change.

This retrieval mode is useful for detecting if a tag is changing at too great a rate. For example, you might have a
temperature that should steadily rise and fall by a small amount, and a sharp increase or decrease could point to
a potential problem.

The slope retrieval mode can be considered a delta mode. Apart from the initial value and a value at the query
end time, all returned points are calculated delta points returned with the timestamp of an actual delta point.

Slope retrieval only works with analog tags. For all other tags, normal delta results are returned.

All returned values are in chronological order. If multiple points are to be returned for a particular timestamp,
they are returned in the order in which the tags were specified in the query.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 66

Slope Retrieval - How It Works

The following illustration shows how the slope is calculated for an analog tag.

This example has a start time of TS and an end time of TE.

For the queried tag, a total of nine points are found, represented by the markers P1 through P9. Of these points,
eight represent normal analog values. The point P5 represents a NULL due to an I/O Server disconnect, which
causes a gap in the data between P5 and P6.

For every point in the time period, slope retrieval returns the slope of the line going through that point and the
point immediately before it. For two points P1 and P2 occurring at times T1 and T2, the slope formula is as
follows:

(P2 - P1) / (T2 - T1)

The difference between T1 and T2 is measured in seconds. Therefore, the returned value represents the change
in Engineering Units per second.

In this example, point P2 is located at the query start time, and because there is a prior value (P1), the slope of
the line through both points is calculated and returned at time TS. Similarly, slopes are calculated to be returned
at times T3, T4, T7, and T8. The slope is also calculated for the line through P8 and P9, but that value is returned as
point PTE at the query end time.

For point P6, there is no prior point with which to perform a slope calculation. Instead, the slope of the flat line
going through the point (that is, the value 0) is calculated. At the time of P5, NULL is returned.

The quality detail and OPC quality returned with a slope point is always directly inherited from the point that
also provides the time stamp. In this example, this means that point P2 provides the qualities for the slope point
returned at the query start time, TS.

Slope Retrieval - Supported Value Parameters

You can use various parameters to adjust which values are returned in slope retrieval mode. For more
information, see the following sections:

 History Version (wwVersion) on page 111

 Quality Rule (wwQualityRule) on page 119

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 67

Slope Retrieval - Query Example

To use the slope retrieval mode, set the following parameter in your query.

wwRetrievalMode = 'Slope'

For example, the following query calculates and returns the rate of change of the ReactTemp tag in °C/second.
The initial value in the Quality column at the query start time shows no value is located exactly at that time, so
the slope returned is the same as the one returned at the next delta point. (For more information on initial
values, see Determining Cycle Boundaries on page 151.)

At 08:01:17.947 the tag has two delta points, so a slope is calculated and returned for the first point, while a
NULL is returned at the second one with a special QualityDetail of 17, indicating that no slope can be calculated
as it is either plus or minus infinite.

SELECT DateTime, TagName, CONVERT(DECIMAL(10, 4), Value) AS Slope, Quality, QualityDetail FROM
History

WHERE TagName = 'ReactTemp'
AND DateTime >= '2005-04-17 08:00'
AND DateTime <= '2005-04-17 08:05'
AND wwRetrievalMode = 'Slope'

The results are:

DateTime TagName Slope Quality QualityDetail

2005-04-17 08:00:00.000 ReactTemp 3.8110 133 192

2005-04-17 08:00:00.510 ReactTemp 3.8110 0 192

2005-04-17 08:00:01.713 ReactTemp 4.1563 0 192

2005-04-17 08:00:02.917 ReactTemp 4.1563 0 192

2005-04-17 08:00:04.230 ReactTemp 3.8081 0 192

2005-04-17 08:00:05.433 ReactTemp 4.1563 0 192

… … …

2005-04-17 08:01:16.743 ReactTemp -1.7517 0 192

2005-04-17 08:01:17.947 ReactTemp -27.0158 0 192

2005-04-17 08:01:17.947 ReactTemp NULL 1 17

2005-04-17 08:01:19.260 ReactTemp -1.7530 0 192

2005-04-17 08:01:20.463 ReactTemp -1.9119 0 192

2005-04-17 08:01:21.667 ReactTemp -1.9119 0 192

2005-04-17 08:01:22.977 ReactTemp -1.7517 0 192

… … …

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 68

Slope Retrieval - wwExpression Query Example

The following query calculates and returns the rate of change of the Distance tag. The results are returned in the
tag's default unit of measure, which in this case is feet/second.

SELECT DateTime, TagName, Value, QualityDetail, wwUnit FROM History

WHERE TagName = 'Distance'
AND wwRetrievalMode = 'Slope'

The results are:

DateTime TagName Value QualityDetail wwUnit

2020-07-29 06:50:53.748 Distance 1 192 ft/s

2020-07-29 06:50:54.748 Distance 2 192 ft/s

To display the results using a different unit of measure, you can use the wwExpression query parameter with the
following syntax:

wwExpression = 'UOM(TagName, target unit)'

For example, the following query calculates and returns the rate of change of the Distance tag in meters/second.

SELECT DateTime, TagName, Value, QualityDetail, wwUnit FROM History

WHERE TagName = 'Distance'
AND wwExpression = 'UOM(Distance, m/s)'
AND wwRetrievalMode = 'Slope'

The results are:

DateTime TagName Value QualityDetail wwUnit

2020-07-29 06:50:53.748 Distance 0.3048 192 m/s

2020-07-29 06:50:54.748 Distance 0.6096 192 m/s

Note: The engineering unit conversion feature is licensed separately. If you do not have the applicable license,
the results are returned in the original units.

Slope Retrieval - Initial and Final Values

An initial value is always generated. If a point is stored exactly at the query start time, the slope is returned as
the slope between that point and the previous point. Otherwise, the slope is calculated using the slope of the
points before and after the query start time.

A final value is always generated. If a point is stored exactly at the query end time, the slope is returned as the
slope between that point and the previous point. Otherwise, the slope is calculated using the slope of the points
before and after the query end time.

Slope Retrieval - Handling NULL Values

The first NULL following a non-NULL value is returned. Subsequent NULL values are not. If a point is preceded by
a NULL, the slope for that point will be zero.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 69

Counter Retrieval

Counter retrieval allows you to accurately retrieve the delta change of a tag’s value over a period of time even
for tags that are reset upon reaching a "rollover value." The rollover value is defined in the AVEVA Historian for
each tag.

This retrieval mode is useful for determining how much of an item was produced during a particular time period.
For example, you might have an integer counter that keeps track of how many cartons were produced. The
counter has an indicator like this:

The next value after the highest value that can be physically shown by the counter is called the rollover value. In
this example, the rollover value is 10,000. When the counter reaches the 9,999th value, the counter rolls back to
0. Therefore, a counter value of 9,900 at one time and a value of 100 at a later time means that you have
produced 200 units during that period, even though the counter value has dropped by 9,800 (9,900 minus 100).
Counter retrieval allows you to handle this situation and receive the correct value. For each cycle, the counter
retrieval mode shows the increase in that counter during the cycle, including rollovers.

Note: If Historian receives a data tag value that is outside of the specified engineering unit boundaries, Historian
ignores the received value and instead returns a 0. For example, if a value can be an integer between 1 and 8,
and the received value is 9, Historian returns 0 as the value for that tag during that cycle.

Counter retrieval also works with floating point counters, which is useful for flow meter data. Similar to the
carton counter, some flow meters "roll over" after a certain amount of flow accumulates. For both examples,
the need is to convert the accumulating measure to a "delta change" value over a given period.

Counter retrieval is a true cyclic mode. It returns one row for each tag in the query for each cycle. The number of
cycles is based on the specified resolution or cycle count.

The counter algorithm is only applied to analog tags and to discrete tags. For integer analog tags, the result will
be an integer returned as a float data type. For a real analog tag, the rollover value and the result may be real
values and can include fractional values. If a query contains tags of other types, then no rows are returned for
those tags. For discrete tags, the rollover value is assumed to be 2.

The rules used to determine the OPCQuality returned with a counter value are the same as for a time weighted
average query. For more information, see Quality Rule (wwQualityRule) on page 119. When a rollover has
occurred in the calculation cycle, a special quality detail of 212 is returned in all non-NULL cases.

CTU counters will default to "signed integer" tags when imported into the Historian, giving a normal range of
-2147483648 to 2147483647 (for a 32-bit integer). In operation, these counters will count up to the upper limit
and "rollover" to the lower limit on the next increment. If these tags are changed to be "unsigned integers" the
normal range will be 0 to 4294967295 and values will rollover to "0", conforming to the expected behavior of a
tag used with "counter" retrieval. When used with a 16-bit CTU counter, the same rules apply, but the range of
values is -32768 to 32767 as "signed" and 0 to 65535 for an "unsigned".

Counter Retrieval - How It Works

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 70

The following illustration shows how the counter algorithm determines the count for an analog tag.

This example has a start time of TC0 and an end time of TC3. The resolution has been set in such a way that the
historian returns data for three complete cycles starting at TC0, TC1, and TC2, and an incomplete cycle starting at
TC3.

For the queried tag, a total of twelve points are found throughout the cycles represented by the markers P1
through P12. Of these points, eleven represent normal analog values. The point P9 represents a NULL due to an
I/O Server disconnect, which causes a gap in the data between P9 and P10. Point P12 is not considered because it
is outside of the query time frame.

All points are considered in the counter calculation, but only the yellow ones are actually used to determine
which values to return to the client. The returned points are PC0, PC1, PC2 and PC3, shown in green at the top to
indicate that there is no simple relationship between them and any of the actual points.

All cycle values are calculated as the delta change between the cycle time in question and the previous cycle
time, taking into account the number of rollovers between the two points in time. The counter algorithm
assumes that a rollover occurred if the current value is lower than the previous value. The initial value at the
query start time (PC1) is calculated the same way, only based on a phantom cycle before the query start time.

For example, the formula to calculate PC1 is as follows:

PC1 = n * VR + P6 - P1

where:

 n = the number of rollovers that have occurred during the cycle

 VR = the rollover value for the tag

If either n or VR are equal to zero, PC1 is simply the difference between the values P1 and P6.

In the case of cycle C2, there is no value at the cycle time, so the NULL value represented by point P9 is returned.
In the case of cycle C3, a NULL is again returned, because there is no counter value at the previous cycle
boundary to use in the calculation. There must be a full cycle of values in order for the counter to be calculated.

If a gap is fully contained inside a cycle, and if points occur within the cycle on both sides of the gap, then a
counter value is returned, even though it may occasionally be erroneous. Zero or one rollovers are assumed,
even though the counter might have rolled over multiple times.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 71

Counter Retrieval - Calculations for a Manually Reset Counter

If you have a counter that you typically reset manually before it rolls over, you must set the rollover value for
the tag to 0 so that the count is simply how much change occurred since the manual reset.

For example, assume that you have the following data values for five consecutive cycle boundaries, and that the
value 0 occurs as the first value within the last cycle:

100, 110, 117, 123, 3

If you set the rollover value to 0, the counter retrieval mode assumes that the 0 following the value 123
represents a manual reset, and returns a value of 3 for the last cycle, which is assumed to be the count after the
manual reset. The value 0 itself does not contribute 1 to the counter value in this case.

If the rollover value is instead set to 200, then the counter retrieval mode assumes that the value 0 represents a
normal rollover, and a count of 80 is calculated and returned (200 - 123 + 3). In this case, the value 0 contributes
1 to the counter value, and that is the change from the value 199 to the value 200.

Counter Retrieval - Using a Counter Deadband

You can set a deadband for counter retrieval to better handle reporting of rates and quantities. For example,
setting a counter deadband can help to:

 Distinguish between counter resets and rollovers.

 Filter out counter reversals.

The counter deadband is the percentage of the full range of the counter.

For example, if you set the counter deadband to be 10, then any counter reset that occurs within the top 10% of
the range is assumed to be a rollover and is counted as such.

For a reversal, you might have a conveyor belt carrying boxes that are counted as they pass by a station. If a jam
occurs, you might reverse the conveyor belt to clear it, resulting in the counter decrementing and then
incrementing again. In this case, a counter deadband of 10 would discard any duplicate counts within 10% of the
range starting from the point of reversal. Only one reversal can be detected until the rollover occurs.

Counter Retrieval - Supported Value Parameters

You can use various parameters to adjust which values are returned in integral retrieval mode. For more
information, see the following sections:

 Cycle Count (X Values over Equal Time Intervals) (wwCycleCount) on page 96

 Resolution (Values Spaced Every X ms) (wwResolution) on page 99

 History Version (wwVersion) on page 111

 TimeStamp Rule (wwTimeStampRule) on page 114

 Quality Rule (wwQualityRule) on page 119

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 72

Counter Retrieval - Initial and Final Values

An initial value is returned using the period leading up to the query start time.

A data point that has a cycle time is used to generate the counter value for its preceding cycle. A NULL point
with cycle time will cause the preceding cycle to end in a gap and the following cycle to start with a gap.

Counter Retrieval - Handling NULL Values

If wwQualityRule is configured as OPTIMISTIC, NULL data points will not be used in calculation. 0.0 will be used
as the starting base value for the query unless the query data starts with a NULL. If the query starts with a NULL,
the value change for the cycle is calculated from the first actual value in the cycle, rather than 0.

Otherwise, if any points considered in a cycle have UNCERTAIN quality, the result for that row will also have
UNCERTAIN quality. Any cycle that starts or ends in a gap will have a quality detail of 65536.

The quality detail of DOUBTFUL will be used with the counter result for the cycles, if a NULL point is considered
for the cycle and the counter result is not NULL.

Counter Retrieval - Handling Illegal Values

If the configured rollover value is larger than 0.0, then the data points whose values are greater than or equal to
the rollover value causes the counter value for the cycle to be set to 0.0, with qdIO_FILTEREDPOINT applied to
the quality detail.

Similarly, if any data point with a value less than 0.0 is found in a cycle, the counter value for the cycle is set to
0.0, with qdIO_FILTEREDPOINT applied to the quality detail.

Counter Retrieval - Query Example

To use the counter mode, set the following parameter in your query.

wwRetrievalMode = 'Counter'

In the following example, the rollover value for the SysTimeSec system tag is set to 0. In a five-minute time span,
the SysTimeSec tag increments a total of 300 times. The following query returns the total count within the
five-minute time span, which begins with StartTime and ends with DateTime. The QualityDetail of 212 indicates
that a counter rollover occurred during the query time range.

select StartDateTime, DateTime, TagName, Value, wwUnit, QualityDetail as QD from History

where TagName = 'SysTimeSec'
and DateTime > '2020-12-02 1:00'
and DateTime <= '2020-12-02 1:05'
and wwRetrievalMode = 'counter'
and wwCycleCount = 1

The results are:

StartTime DateTime TagName Value wwUnit QD

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 73

2020-12-02
01:00:00.0000000

2020-12-02
01:05:00.0000000

SysTimeSec 300 Second 212

To display the results using a different unit of measure, you can use the wwExpression query parameter with the
following syntax:

wwExpression = 'UOM(TagName, target unit)'

The following example is similar to the previous example. The following query returns the total count within the
five-minute time span, which begins with StartTime and ends with DateTime, and converts the retrieved value
from its original units (seconds) to minutes.

select StartDateTime, DateTime, TagName, Value, Quality, QualityDetail as QD from History

where TagName = 'SysTimeSec'
and DateTime > '2020-12-02 1:00'
and DateTime <= '2020-12-02 1:05'
and wwRetrievalMode = 'counter'
and wwCycleCount = 1
and wwExpression = 'UOM(SysTimeSec,Minute)'

The results are:

StartTime DateTime TagName Value wwUnit QD

2020-12-02
01:00:00.0000000

2020-12-02
01:05:00.0000000

SysTimeSec 5 Minute 212

Note: Engineering unit conversion requires the advanced feature license. If your Historian does not have the
advanced feature license activated, the results are returned in the original units.

ValueState Retrieval

ValueState retrieval returns information on how long a tag has been in a particular value state during each
retrieval cycle. That is, a time-in-state calculation is applied to the tag value.

This retrieval mode is useful for determining how long a machine has been running or stopped, how much time
a process spent in a particular state, how long a valve has been open or closed, and so on. For example, you
might have a steam valve that releases steam into a reactor, and you want to know the average amount of time
the valve was in the open position during the last hour. ValueState retrieval can return the shortest, longest,
average, or total time a tag spent in a state, or the time spent in a state as a percentage of the total cycle length.

When you use ValueState retrieval for a tag in a trend chart, you must specify a single value state for which to
retrieve information. ValueState retrieval then returns one value for each cycle—for example, the total amount
of time that the valve was in the "open" state during each 1-hour cycle. This information is suitable for trend
display.

If you don’t specify a state, ValueState retrieval returns one row of information for each value that the tag was
in during each cycle. For example, this would return not only the time a valve was in the "open" state, but also
the time it was in the "closed" state. This information is not suitable for meaningful display in a regular trend.
You can, however, retrieve this type of information in a query and view it as a table.

ValueState retrieval works with integer, discrete, string, and state summary tags. For other types of tags, no
rows are returned. NULL values are treated like any other distinct state.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 74

The values returned at the query start time are the result of applying the algorithm to a "phantom" cycle
preceding the query range. It is assumed that the tag value at the start of the cycle is located at that point in
time.

To specify the type of calculation, set the wwStateCalc parameter in the query. For more information, see State
Calculation (wwStateCalc) on page 127.

ValueState Retrieval - How It Works

The following illustration shows how ValueState retrieval returns values for a discrete tag.

Time

Value

1 2 3 4 5 6 7 8 9

ON

 ValueState Retrieval

 TC2

C2

TC0

C0

TC1

1 C1

 TC3

C3

11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29

OFF

PC0 PC1 PC2 PC3

Gap

This example has a start time of TC0 and an end time of TC3. The resolution has been set in such a way that the
historian returns data for three complete cycles starting at TC0, TC1, and TC2, and an incomplete cycle starting at
TC3. Time is measured seconds.

A gap in the data occurs in the third cycle due to an I/O Server disconnect.

The state calculation is based on each cycle, and the values returned at the query start time are not regular
initial values, but are the resulting values that occur after applying the algorithm to the last cycle preceding the
query range. The returned points are PC0, PC1, PC2 and PC3, shown in green at the top to indicate that there is no
simple relationship between the calculated values and any of the actual points.

Assume the query is set so that the total time (wwStateCalc = ‘Total’)in the two states are returned. The
timestamping is set to use the cycle end time.

 For TC0, the query returns two rows (one for the "on" state and one for the "off" state), calculated as a result
of the "phantom" cycle that precedes the query start time. The values have a timestamp of the query start
time.

 For TC1, one row is returned for the "on" state. The "on" state occurred twice during the cycle--one time for
four seconds and again for two seconds before the cycle boundary, and the total time returned is six
seconds. The state was "off" twice during the cycle for a total time of four seconds, and one row is returned
with that value.

 For TC2, one row is returned for the "on" state, and one row is returned for the "off" state. The "on" state
occurred for a total of nine seconds between the cycle boundaries, and the "off" state occurred for a total of
one second.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 75

 For TC3, one row is returned for the "on" state, and one row is returned for the "off" state. The "on" state
occurred for a total of four seconds between the cycle boundaries, and the "off" state occurred for a total of
three seconds. An additional row is returned for the NULL state occurring as a result of the I/O Server
disconnect.

Using the same data, if you queried the total contained time for the states, the following is returned:

 For TC0, the query returns two values (one for the "on" state and one for the "off" state), calculated as a
result of the "phantom" cycle the precedes the query start time. The value has a timestamp of the query
start time.

 For TC1, one row is returned for the "on" state, and one row is returned for the "off" state. The "on" state
occurred one time for four seconds within the cycle. The two seconds of "on" time that crosses the cycle
boundary does not contribute to the total time. The state was "off" one time during the cycle for two
seconds completely within the cycle boundary.

 For TC2, the state was not "on" for any contained time between the cycle. Both occurrences of the "on" state
cross over a cycle boundary, so no rows are returned for this state. One row is returned for the "off" state.
The state was "off" one time during the cycle for one seconds completely within the cycle boundary.

 For TC3, one row is returned for the "on" state, and one row is returned for the "off" state. The state was
"on" for a single contained time of two seconds between the cycle boundaries. The state was "off" three
times during the cycle for three seconds completely within the cycle boundary. An additional row is returned
for the NULL state occurring as a result of the I/O Server disconnect. The state was NULL for a total of three
seconds. The I/O Server disconnect that "disrupted" the off state is treated as its own state, thereby
changing what would have been a single "off" state instance of five seconds into two instances of the "off"
state for one second each.

ValueState Retrieval - Supported Value Parameters

You can use various parameters to adjust which values are returned in ValueState retrieval mode. For more
information, see the following sections:

 Cycle Count (X Values over Equal Time Intervals) (wwCycleCount) on page 96

 Resolution (Values Spaced Every X ms) (wwResolution) on page 99

 History Version (wwVersion) on page 111

 TimeStamp Rule (wwTimeStampRule) on page 114

 Quality Rule (wwQualityRule) on page 119

 State Calculation (wwStateCalc) on page 127

ValueState Retrieval - Query Examples

To use the ValueState retrieval mode, set the following parameter in your query.

wwRetrievalMode = 'ValueState'

To specify the type of aggregation, set the wwStateCalc parameter in the query, such as:

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 76

wwStateCalc = 'Total'

Be sure that you use the "<=" operator for ending date/time.

For examples, see the following:

 ValueState Retrieval Query 1: Minimum Time in State on page 76

 ValueState Retrieval Query 2: Minimum Time in State for a Single Tag on page 76

 ValueState Retrieval Query 3 on page 77

 ValueState Retrieval Query 4 on page 77

 ValueState Retrieval Query 5 on page 78

 ValueState Retrieval Query 6: Querying State Summary Values on page 79

ValueState Retrieval Query 1: Minimum Time in State

 The following query finds the minimum time-in-state for the SteamValve discrete tag. Note that minimum
times are returned for each state for both the five-minute phantom cycle before the query start time and for the
single retrieval cycle between 10:00 and 10:05.

SELECT DateTime, TagName, vValue, StateTime, wwStateCalc FROM History

WHERE TagName IN ('SteamValve')
AND DateTime >= '2005-04-17 10:00:00'
AND DateTime <= '2005-04-17 10:05:00'
AND wwCycleCount = 1
AND wwRetrievalMode = 'ValueState'
AND wwStateCalc = 'Min'

The results are:

DateTime TagName vValue StateTime wwStateCalc

2005-04-17 10:00:00.000 SteamValve 0 35359.0 MINIMUM

2005-04-17 10:00:00.000 SteamValve 1 43749.0 MINIMUM

2005-04-17 10:05:00.000 SteamValve 0 37887.0 MINIMUM

2005-04-17 10:05:00.000 SteamValve 1 43749.0 MINIMUM

ValueState Retrieval Query 2: Minimum Time in State for a Single Tag

The following query finds the minimum time-in-state for the Mixer discrete tag for the "on" state. Note that
minimum times are returned for each state for both the five-minute phantom cycle before the query start time
and for the single retrieval cycle between 10:00 and 10:05.

SELECT DateTime, TagName, vValue, StateTime, wwStateCalc

FROM History
WHERE TagName IN ('Mixer')

AND DateTime >= '2017-12-11 08:00:00'
AND DateTime < '2017-12-12 08:00:00'
AND wwCycleCount= '1'
AND wwRetrievalMode = 'ValueState'
AND wwStateCalc = 'Min'

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 77

AND vValue = 1

The results are:

DateTime TagName vValue StateTime wwStateCalc

2017-12-11 08:00:00.0000000 Mixer 1 35906 Min

ValueState Retrieval Query 3

The following query finds the maximum time-in-state for the SteamValve discrete tag in the same time period as
in Query 1. Note how both the minimum and maximum values for the "1" state are very similar, while they are
very different for the "0" state. This is due to the "cut-off" effect.

SELECT DateTime, TagName, vValue, StateTime, wwStateCalc FROM History

WHERE TagName IN ('SteamValve')
AND DateTime >= '2005-04-17 10:00:00'
AND DateTime <= '2005-04-17 10:05:00'
AND wwCycleCount = 1
AND wwRetrievalMode = 'ValueState'
AND wwStateCalc = 'Max'

The results are:

DateTime TagName vValue StateTime wwStateCalc

2005-04-17 10:00:00.000 SteamValve 0 107514.0 MAXIMUM

2005-04-17 10:00:00.000 SteamValve 1 43750.0 MAXIMUM

2005-04-17 10:05:00.000 SteamValve 0 107514.0 MAXIMUM

2005-04-17 10:05:00.000 SteamValve 1 43750.0 MAXIMUM

ValueState Retrieval Query 4

The following query returns the total of time in state for a discrete tag. In this example, the TimeStampRule
system parameter is set to "End" (the default setting), so the returned values are timestamped at the end of the
cycle. The returned rows represent the time-in-state behavior during the period starting at 2005-04-13
00:00:00.000 and ending at 2005-04-14 00:00:00.000.

SELECT DateTime, vValue, StateTime, wwStateCalc FROM History

WHERE DateTime > '2005-04-13 00:00:00.000'
AND DateTime <= '2005-04-14 00:00:00.000'
AND TagName IN ('PumpStatus')
AND wwRetrievalMode = 'ValueState'
AND wwStateCalc = 'Total'
AND wwCycleCount = 1

The results are:

DateTime vValue StateTime wwStateCalc

2005-04-14 00:00:00 NULL 1041674.0 TOTAL

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 78

DateTime vValue StateTime wwStateCalc

2005-04-14 00:00:00 On 56337454.0 TOTAL

2005-04-14 00:00:00 Off 29020872.0 TOTAL

ValueState Retrieval Query 5

The following query returns the percentage of time in state for a discrete tag for multiple retrieval cycles. The
TimeStampRule system parameter is set to "End" (the default setting), so the returned values are timestamped
at the end of the cycle. Note that the first row returned represents the results for the period starting at
2003-07-03 22:00:00.000 and ending at 2003-07-04 00:00:00.000.

The "Percent" time-in-state retrieval mode is the only mode in which the StateTime column does not return
time data. Instead, it returns percentage data (in the range of 0 to 100 percent) representing the percentage of
time in state.

SELECT DateTime, vValue, StateTime, wwStateCalc FROM History

WHERE DateTime >= '2003-07-04 00:00:00.000'
AND DateTime <= '2003-07-05 00:00:00.000'
AND TagName IN ('PumpStatus')
AND Value = 1
AND wwRetrievalMode = 'ValueState'
AND wwStateCalc = 'Percent'
AND wwCycleCount = 13

The results are:

DateTime vValue StateTime wwStateCalc

2003-07-04 00:00:00 1 50.885 PERCENT

2003-07-04 02:00:00 1 82.656 PERCENT

2003-07-04 04:00:00 1 7.082 PERCENT

2003-07-04 06:00:00 1 7.157 PERCENT

2003-07-04 08:00:00 1 55.580 PERCENT

2003-07-04 10:00:00 1 28.047 PERCENT

2003-07-04 12:00:00 1 47.562 PERCENT

2003-07-04 14:00:00 1 74.477 PERCENT

2003-07-04 16:00:00 1 40.450 PERCENT

2003-07-04 18:00:00 1 78.313 PERCENT

2003-07-04 20:00:00 1 54.886 PERCENT

2003-07-04 22:00:00 1 39.569 PERCENT

2003-07-05 00:00:00 1 50.072 PERCENT

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 79

ValueState Retrieval Query 6: Querying State Summary Values

If state summary values are queried and the cycle boundaries match the summary periods, the ValueState
calculations are supported and return valid results.

If state summary points are queried and the cycle boundaries do not match the summary periods, the
ValueState calculations are supported, but they return DOUBTFUL (QualityDetail = 64) results.

State summaries are included in the cycle where the summary end time occurs. This causes results that do not
match queries against the source tag and may cause inaccurate results, such as a total state time that is greater
than the cycle time.

For example, this can occur if SysTimeSec is summarized with a state summary with one minute resolution, but
then queried with 10 second intervals. In most of the retrieval cycles, there will be no values, but in the cycle
that includes the summary end time (one in six of the retrieval cycles), all 60 states would be returned with each
state having a state time of 1 second for a total of 60 seconds of state time in a 10 second retrieval cycle.

ValueState Retrieval - Initial and Final Values

The values returned at the query start time are the result of applying the algorithm to the last cycle preceding
the query range.

ValueState Retrieval - Handling NULL Values

NULLs are considered a state and are reported along with the other states.

RoundTrip Retrieval

RoundTrip retrieval is very similar to ValueState retrieval in that it performs calculations on state occurrences in
the within a cycle period you specify. However, ValueState retrieval uses the time spent in a certain state for the
calculation, and RoundTrip retrieval uses the time between consecutive leading edges of the same state for its
calculations.

You can use the RoundTrip retrieval mode for increasing the efficiency of a process. For example, if a process
produces one item per cycle, then you would want to minimize the time lapse between two consecutive cycles.

The RoundTrip mode returns a row for each state in any given cycle. RoundTrip retrieval only works with integer
analog tags, discrete tags, and string tags. If real analog tags are specified in the query, then no rows are
returned for these tags. RoundTrip retrieval is not applied to state summary or analog summary tags. NULL
values are treated as any other distinct value and are used to analyze the round trip for disturbances.

RoundTrip retrieval is supported for the History and StateWideHistory tables.

Any point on the boundary of the end cycle will be considered to the next cycle. The point on the boundary of
the end query range is not counted in the calculation except that it is used to indicate that the previous state is a
contained state.

If no roundtrip state is found within the cycle for a supported tag, a NULL StateTime value is returned. If there is
no valid point prior to the phantom cycle, a NULL state is returned for the phantom cycle.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 80

RoundTrip Retrieval - How It Works

The following illustration shows how RoundTrip retrieval returns values for a discrete tag.

TC1

1 C1

Time

Value

1 2 3 4 5 6 7 8 9

ON

 RoundTrip Retrieval

 TC2

C2

TC0

C0

 TC3

C3

11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 29

OFF

PC0 PC1 PC2 PC3

Gap

Round-trip

Round-trip

This example has a start time of TC0 and an end time of TC3. The resolution has been set in such a way that the
historian returns data for three complete cycles starting at TC0, TC1, and TC2, and an incomplete cycle starting at
TC3. Time is measured seconds.

A gap in the data occurs in the third cycle due to an I/O Server disconnect.

The state calculation is based on each cycle, and the values returned at the query start time are not regular
initial values, but are the resulting values that occur after applying the algorithm to the last cycle preceding the
query range. The returned points are PC0, PC1, PC2 and PC3, shown in green at the top to indicate that there is no
simple relationship between the calculated values and any of the actual points.

Assume the query is set so that the total contained time in the two states are returned. The timestamping is set
to use the cycle end time. The RoundTrip retrieval mode returns values for states that are completely contained
within the cycle boundaries. The following is returned:

 For TC0, the query returns two values (one for the "on" state and one for the "off" state), calculated as a
result of the "phantom" cycle that preceeds the query start time. The value has a timestamp of the query
start time.

 For TC1, one row is returned for the "on" state, and one row is returned for the "off" state. The round-trip for
the "on" state occurred one time for four seconds completely within the cycle boundary. The round-trip for
the "off" state occurred one time during the cycle for five seconds.

 For TC2, a round-trip did not occur for either state within the cycle boundaries. One NULL row is returned for
this cycle.

 For TC3, one row is returned for the "on" state, and one row is returned for the "off" state. The state was
"on" for a single contained time of two seconds between the cycle boundaries. The state was "off" one time
during the cycle for one second completely within the cycle boundary. An additional row is returned for the
NULL state occurring as a result of the I/O Server disconnect.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 81

 For TC3, one row is returned for the "on" state, and one row is returned for the "off" state. The state was
"on" for a single contained time of three seconds between the cycle boundaries. One row is returned for the
"off" state for a total contained time of seven seconds. (The first round-trip for the "off" state includes the
I/O Server disconnect for a length of four seconds. The second round-trip has a length of three seconds.) An
additional row is returned for the NULL state occurring as a result of the I/O Server disconnect, and the
returned value is NULL because there is no round-trip during the cycle for it. The I/O Server disconnect that
"disrupted" the off state is treated as its own state, thereby changing what would have been a single "off"
state instance of five seconds into two instances of the "off" state for one second each.

RoundTrip Retrieval - Supported Value Parameters

You can use various parameters to adjust the values that must be returned in the RoundTrip retrieval mode. For
more information, see the following sections:

 TimeStamp Rule (wwTimeStampRule) on page 114

 Quality Rule (wwQualityRule) on page 119

 State Calculation (wwStateCalc) on page 127

RoundTrip Retrieval - Query Examples

To use the RoundTrip retrieval mode, set the following parameter in your query:

wwRetrievalMode = ‘RoundTrip’

The following queries compare the results between ValueState retrieval and RoundTrip retrieval.

This first ValueState retrieval query returns the average amount of time that the 'Reactor1OutletValve' tag is in
"on" state and the average amount of time it is in the "off" state for a single cycle. Any state changes that occur
across the cycle boundaries are not included.

SELECT DateTime, vValue, StateTime

FROM History
WHERE TagName IN ('Reactor1OutletValve')
AND DateTime >= '2009-09-16 12:35:00'
AND DateTime <= '2009-09-16 12:55:00'
AND wwRetrievalMode = 'ValueState'
AND wwStateCalc = 'AvgContained'
AND wwCycleCount = 1

The results are:

DateTime vValue StateTime

2009-09-16 12:35:00.0000000 0 215878

2009-09-16 12:35:00.0000000 1 61729

2009-09-16 12:55:00.0000000 1 62827.5

2009-09-16 12:55:00.0000000 0 212856

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 82

The first two rows are for the "phantom" cycle leading up to the query start time and have a timestamp of the
query start time.

The second two rows show the average amount of time for each state and have a timestamp of the query end
time (the default).

Compare these results to same basic query that instead uses RoundTrip retrieval:

SELECT DateTime, vValue, StateTime

FROM History
WHERE TagName IN ('Reactor1OutletValve')
AND DateTime >= '2009-09-16 12:35:00'
AND DateTime <= '2009-09-16 12:55:00'
AND wwRetrievalMode = 'RoundTrip'
AND wwStateCalc = 'AvgContained'
AND wwCycleCount = 1

The results are:

DateTime vValue StateTime

2009-09-16 12:35:00.0000000 1 277607

2009-09-16 12:35:00.0000000 0 278580

2009-09-16 12:55:00.0000000 0 275683.5

2009-09-16 12:55:00.0000000 1 273845

RoundTrip Retrieval - Initial and Final Values

The values returned at the query start time are the result of applying the algorithm to the last cycle preceding
the query range.

RoundTrip Retrieval - Handling NULL Values

Like in the ValueState retrieval mode, the NULL state is treated as a valid distinct value. This allows you to
analyze round trips for disturbances.

Edge Detection for Events (wwEdgeDetection)

For AVEVA Historian, an event is the moment at which a detection criterion is met on historical tag values in the
AVEVA Historian. At a basic level, anything that can be determined by looking at stored data can be used as an
event.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 83

When detecting events, it is useful to pinpoint rows in a result set where the satisfaction of criteria in a WHERE
clause changed from true to false, or vice versa. For example, you may want to know when the level of a tank
went above 5 feet. The WHERE clause in a query for this example might be TANKLEVEL > 5. As the tank level
approaches 5 feet, the criterion does not return true. Only when the level crosses the line from not satisfying
the criterion to satisfying it, does the event actually occur. This imaginary "line" where the change occurs is
called the edge.

Over a period of time, there may be many instances where the criteria cross the "edge" from being satisfied to
not satisfied, and vice-versa. The values on either side of this "edge" can be detected if you configure your event
tag to include this information. There are four possible options for edge detection: none, leading, trailing, or
both. You will get differing results based on which option you use:

Option Results

None Returns all rows that successfully meet the criteria; no edge detection is
implemented at the specified resolution.

Leading Returns only rows that are the first to successfully meet the criteria (return true)
after a row did not successfully meet the criteria (returned false).

Trailing Returns only rows that are the first to fail the criteria (return false) after a row
successfully met the criteria (returned true).

Both All rows satisfying both the leading and trailing conditions are returned.

Edge detection only applies to analog and discrete value detectors. Also, edge detection is handled slightly
differently based on whether you are using analog tags or discrete tags.

You can also use the ToDiscrete() query filter to determine when data values cross a particular threshold. For
more information, see Converting Analog Values to Discrete Values (ToDiscrete) on page 130.

For more information on event detection with the Classic Event subsystem, see Classic Event Subsystem in the
AVEVA Historian Supplemental Guide.

Edge Detection for Analog Tags

For example, the behavior of the WHERE clause as it processes a result set can be illustrated as:

A

B

C

D

E

F

G

V
A
L
U
E

TIME

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 84

Slopes A-B, C-D and E-F are rising edges, while slopes B-C, D-E and F-G are falling edges. The slopes are affected
by the WHERE clause, which is a combination of the wwEdgeDetection option and the comparison operator
used against the value.

The following table describes the rows that would be returned for the various edge detection settings:

Operator = < > <= >=

Leading Falling and
rising edges;
first value
that meets
the criteria.

Falling edge
only; first
value to meet
the criteria.*

Rising edge
only; first
value to meet
the criteria.

Falling edge
only; first
value to meet
the criteria. *

Rising edge
only; first
value to meet
the criteria.

Trailing Falling and
rising edges;
first value to
fail the
criteria after
a value meets
the criteria.

Rising edge
only; equal to
the first value
to fail the
criteria.

Falling edge
only; first
value to fail
the criteria.*

Rising edge
only; first
value to fail
the criteria.

Falling edge
only; first
value to fail
the criteria.*

* If the falling edge is a vertical edge with no slope, the query will return the lowest value of that edge.

The following query selects all values of "SysTimeSec" that are greater than or equal to 50 from the History table
between 10:00 and 10:02 a.m. on December 2, 2001. No edge detection is specified.

SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-02 10:00:00'
AND DateTime <= '2001-12-02 10:02:00'
AND wwRetrievalMode = 'Cyclic'
AND wwResolution = 2000
AND Value >= 50
AND wwEdgeDetection = 'None'

The results are:

DateTime Value

2001-12-02 10:00:50.000 50

2001-12-02 10:00:52.000 52

2001-12-02 10:00:54.000 54

2001-12-02 10:00:56.000 56

2001-12-02 10:00:58.000 58

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 85

2001-12-02 10:01:50.000 50

2001-12-02 10:01:52.000 52

2001-12-02 10:01:54.000 54

2001-12-02 10:01:56.000 56

2001-12-02 10:01:58.000 58

Leading Edge Detection for Analog Tags

If Leading is specified as the parameter in the edge detection time domain extension, the only rows in the result
set are those that are the first to successfully meet the WHERE clause criteria (returned true) after a row did not
successfully meet the WHERE clause criteria (returned false).

The following query selects the first values of "SysTimeSec" from the History table to meet the Value criterion
between 10:00 and 10:02 a.m. on December 2, 2001.

SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-02 10:00:00'
AND DateTime <= '2001-12-02 10:02:00'
AND wwRetrievalMode = 'Cyclic'
AND wwResolution = 2000
AND Value >= 50
AND wwEdgeDetection = 'Leading'

The query will return only the two values that were greater than or equal to 50 for the time period specified:

DateTime Value

2001-12-02 10:00:50.000 50

2001-12-02 10:01:50.000 50

Compare these results with the same query using no edge detection, as shown in Edge Detection for Analog
Tags on page 83. Notice that even though the original query returned ten rows, the edge detection only returns
the first row recorded after the event criteria returned true.

Trailing Edge Detection for Analog Tags

If Trailing is specified as the parameter in the edge detection extension, the only rows in the result set are those
that are the first to fail the criteria in the WHERE clause (returned false) after a row successfully met the WHERE
clause criteria (returned true).

The following query selects the first values of "SysTimeSec" from the History table to fail the Value criterion
between 10:00 and 10:02 a.m. on December 2, 2001.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 86

SELECT DateTime, Value
FROM History

WHERE TagName = 'SysTimeSec'
AND DateTime >= '2001-12-02 10:00:00'
AND DateTime <= '2001-12-02 10:02:00'
AND wwRetrievalMode = 'Cyclic'
AND wwResolution = 2000
AND Value >= 50
AND wwEdgeDetection = 'Trailing'

The query returns only the two values that were the first to fail the criteria in the WHERE clause for the time
period specified:

DateTime Value

2001-12-02 10:01:00.000 0

2001-12-02 10:02:00.000 0

Compare these results with the same query using no edge detection, as shown in Edge Detection for Analog
Tags on page 83. Notice that even though the original query returned ten recorded rows for each value, the
edge detection only returns the first row recorded after the event criteria returned false.

Both Leading and Trailing Edge Detection for Analog Tags

If Both is specified as the parameter in the edge detection extension, all rows satisfying both the leading and
trailing conditions are returned.

The following query selects values of "SysTimeSec" from the History table that meet both the Leading and
Trailing criteria between 10:00 and 10:02 a.m. on December 2, 2001.

SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-02 10:00:00'
AND DateTime <= '2001-12-02 10:02:00'
AND wwRetrievalMode = 'Cyclic'
AND wwResolution = 2000
AND Value >= 50
AND wwEdgeDetection = 'Both'

The results are:

DateTime Value

2001-12-02 10:00:50.000 50

2001-12-02 10:01:00.000 0

2001-12-02 10:01:50.000 50

2001-12-02 10:02:00.000 0

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 87

Compare these results with the same query using no edge detection, as shown in Edge Detection for Analog
Tags on page 83. Notice that value of the first row in the original query is returned in the result set.

Edge Detection for Discrete Tags

Edge detection for discrete tags operates differently than for analog tags. For example, assume the following
discrete tags are stored.

Tag Description

SysPulse Transitions between 1 and 0 every minute.

MyPulse Transitions between 1 and 0 every 40 seconds.

A representation of the data stored in the system is as follows:

The following queries select values of "SysPulse" and "MyPulse" that have a value of 1 (On) from the History and
WideHistory tables between 12:59 and 1:04 a.m. on December 8, 2001. No edge detection is specified.

This is a query of the History table:

SELECT DateTime, TagName, Value

FROM History
WHERE TagName IN ('SysPulse','MyPulse')

AND DateTime > '2001-12-08 00:59:00'
AND DateTime <= '2001-12-08 01:04:00'
AND wwRetrievalMode = 'Delta'
AND Value = 1
AND wwEdgeDetection = 'None'

The results are:

DateTime TagName Value

2001-12-08 00:01:00.000 SysPulse 1

2001-12-08 00:01:00.000 MyPulse 1

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 88

DateTime TagName Value

2001-12-08 00:02:20.000 MyPulse 1

2001-12-08 00:03:00.000 SysPulse 1

2001-12-08 00:03:40.000 MyPulse 1

The following is a query of the WideHistory table:

SELECT * FROM OpenQuery(INSQL, 'SELECT DateTime, SysPulse, MyPulse FROM WideHistory

WHERE DateTime > "2001-12-08 00:59:00"
AND DateTime < "2001-12-08 01:05:00"
AND SysPulse = 1
AND MyPulse = 1
AND wwRetrievalMode = "Delta"
AND wwEdgeDetection = "None"

')

The results are:

DateTime SysPulse MyPulse

2001-12-08 00:01:00.000 1 1

Leading Edge Detection for Discrete Tags

If Leading is specified as the parameter in the edge detection time domain extension, the only rows in the result
set are those that are the first to successfully meet the WHERE clause criteria (returned true) after a row did not
successfully meet the WHERE clause criteria (returned false).

The following queries select values of "SysPulse" and "MyPulse" that have a value of 1 (On) from the History and
WideHistory tables between 12:59 and 1:04 a.m. on December 8, 2001.

This example queries the History table, if the WHERE clause criteria specify to return only discrete values equal
to 1 (On), then applying a leading edge detection does not change the result set.

SELECT DateTime, TagName, Value

FROM History
WHERE TagName IN ('SysPulse','MyPulse')

AND DateTime > '2001-12-08 00:59:00'
AND DateTime <= '2001-12-08 01:04:00'
AND Value = 1
AND wwEdgeDetection = 'Leading'

The results are:

DateTime TagName Value

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 89

DateTime TagName Value

2001-12-08 00:01:00.000 SysPulse 1

2001-12-08 00:01:00.000 MyPulse 1

2001-12-08 00:02:20.000 MyPulse 1

2001-12-08 00:03:00.000 SysPulse 1

2001-12-08 00:03:40.000 MyPulse 1

This example queries the WideHistory table, applying a leading edge detection requires that the condition only
evaluate to true if both values are equal to 1 (On).

SELECT DateTime, SysPulse, MyPulse FROM OpenQuery(INSQL, 'SELECT DateTime, SysPulse, MyPulse

FROM WideHistory
WHERE DateTime > "2001-12-08 00:59:00"

AND DateTime <= "2001-12-08 01:04:00"
AND SysPulse = 1
AND MyPulse = 1
AND wwEdgeDetection = "Leading"

')

The results are:

DateTime SysPulse MyPulse

2001-12-08 00:01:00.000 1 1

2001-12-08 00:03:40.000 1 1

Compare these results with the same query using no edge detection, as shown in Edge Detection for Discrete
Tags on page 87. If you look at the diagram, you might think that a row could be returned at 00:03:00, but
because both tags change at exactly this instant, their values are not returned. In a normal process, it is unlikely
that two tags would change at exactly at the same instant.

Trailing Edge Detection for Discrete Tags

If Trailing is specified as the parameter in the edge detection extension, the only rows in the result set are those
that are the first to fail the criteria in the WHERE clause (returned false) after a row successfully met the WHERE
clause criteria (returned true).

This example queries the History table. If the WHERE clause criteria specifies returning only discrete values equal
to 1 (On), then applying a trailing edge detection is the same as reversing the WHERE clause (as if Value = 0 was
applied).

SELECT DateTime, TagName, Value

FROM History
WHERE TagName IN ('SysPulse','MyPulse')

AND DateTime > '2001-12-08 00:59:00'

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 90

AND DateTime <= '2001-12-08 01:04:00'
AND Value = 1
AND wwEdgeDetection = 'Trailing'

The results are:

DateTime TagName Value

2001-12-08 00:01:40.000 MyPulse 1

2001-12-08 00:02:00.000 SysPulse 1

2001-12-08 00:03:00.000 MyPulse 1

2001-12-08 00:04:00.000 SysPulse 1

This example queries the WideHistory table. It applies a trailing edge detection returns the boundaries where
the condition ceases to be true (one of the values is equal to 0).

SELECT DateTime, SysPulse, MyPulse FROM OpenQuery(INSQL, 'SELECT DateTime, SysPulse, MyPulse

FROM WideHistory
WHERE DateTime > "2001-12-08 00:59:00"

AND DateTime <= "2001-12-08 01:04:00"
AND SysPulse = 1
AND MyPulse = 1
AND wwEdgeDetection = "Trailing"

')

The results are:

DateTime SysPulse MyPulse

2001-12-08 00:01:40.000 1 1

2001-12-08 00:04:00.000 1 1

Compare these results with the same query using no edge detection, as shown in Edge Detection for Discrete
Tags on page 87. If you look at the diagram, you might think that a row could be returned at 00:03:00, but
because both tags change at exactly this instant, their values are not returned. In a normal process, it is unlikely
that two tags would change at exactly at the same instant.

Both Leading and Trailing Edge Detection for Discrete Tags

If Both is specified as the parameter in the edge detection extension, all rows satisfying both the leading and
trailing conditions are returned.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 91

The following queries select values of "SysPulse" and "MyPulse" that meet an edge detection of Both for a value
criterion of 1 (On) from the History and WideHistory tables between 12:59 and 1:04 a.m. on December 8, 2001.

SELECT DateTime, TagName, Value

FROM History
WHERE TagName IN ('SysPulse','MyPulse')

AND DateTime > '2001-12-08 00:59:00'
AND DateTime <= '2001-12-08 01:04:00'
AND Value = 1
AND wwEdgeDetection = 'Both'

The results are:

DateTime TagName Value

2001-12-08 00:01:00.000 SysPulse 1

2001-12-08 00:01:00.000 MyPulse 1

2001-12-08 00:01:40.000 MyPulse 1

2001-12-08 00:02:00.000 SysPulse 1

2001-12-08 00:02:20.000 MyPulse 1

2001-12-08 00:03:00.000 SysPulse 1

2001-12-08 00:03:00.000 MyPulse 1

2001-12-08 00:03:40.000 MyPulse 1

2001-12-08 00:04:00.000 SysPulse 1

SELECT DateTime, SysPulse, MyPulse FROM OpenQuery(INSQL, 'SELECT DateTime, SysPulse, MyPulse

FROM WideHistory
WHERE DateTime > "2001-12-08 00:59:00"

AND DateTime <= "2001-12-08 01:04:00"
AND SysPulse = 1
AND MyPulse = 1
AND wwEdgeDetection = "Both"

')

The results are:

DateTime SysPulse MyPulse

2001-12-08 00:01:00.000 1 1

2001-12-08 00:01:40.000 1 1

2001-12-08 00:03:40.000 1 1

2001-12-08 00:04:00.000 1 1

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 92

Compare these results with the same query using no edge detection, as shown in the Edge Detection for Discrete
Tags on page 87.

Predictive Filter

AVEVA Historian supports predictive retrieval. Beginning with AVEVA Historian 2014 R2 Patch 01, the historian
can return predictive data based on a "simple linear regression" (SLR) algorithm. More capabilities will be added
in future releases.

With AVEVA Historian, you can create a query based on data you have stored to predict additional values in a
trend. Historian returns predictive data based on a "simple linear regression" (SLR) algorithm.

For example, based on your currently stored values, you could use the predictive retrieval feature to help
predict if a certain production target will be met by the end of the shift. Or, if the Historian loses communication
with the data source, you could use predictive retrieval to determine whether and when a tank is likely to
become empty.

You can predict:

 Values in between other values.

 Values that extend beyond stored values.

For example, suppose you already captured data for a tag with timestamps up to 3 p.m. on a certain day, but not
for the rest of the shift, which ran until 5 p.m., because of a power cut. With predictive retrieval, you can view
the interpolated results based between 3 p.m. and 5 p.m. These results are based on the data you received
through 3 p.m.

The following is an example of a query that retrieves stored values and reports both those values and additional
predictive data:

SELECT DateTime, Value, wwFilter
FROM History

WHERE TagName = 'Tag1'
AND DateTime >= '2014-01-01 0:00:00.000'
and DateTime < '2014-01-01 1:00:00.000'
and wwFilter = 'SLR()'

In this example, "SLR" stands for "simple linear regression," the algorithm used by AVEVA Historian to analyze
currently stored values and predict other values within the detected trend.

Bounding Value Retrieval

The bounding value retrieval mode returns either the start bound point or the end bound point for a requested
point in time. For a start bound point, Historian retrieves the first value on or before the requested date/time.
For an end bound point, Historian retrieves the first value after the requested date/time.

If no time is specified, Historian returns the bounding point at the current time.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 93

Bounding Value Retrieval - How It Works

The following illustration shows how bounding value retrieval returns a start bound point:

In this case, Historian retrieves the first point on or before the datetime requested in the query. The line (TC0) is
the timestamp for which the start bound point is requested. P1 is returned because that is the start or first point
for the query date time.

Historian can also use bounding value retrieval to return an end bound point, as in the following illustration:

In this case, Historian returns first point after the datetime requested in the query. TC0 is the timestamp for
which the end bound point is requested and P3 is returned as the ending bound point because this is the first
point after the query date time.

Bounding Value Retrieval - Query Examples

You can use the Bounding Value retrieval mode to return a start bound point or an end bound point for a
specified date and time. If no time is specified, Historian returns the bounding point at the current time.

To return a start bound point, set the following parameter in your query.

wwRetrievalMode = 'StartBound'

To return an end bound point, set the following parameter in your query.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 94

wwRetrievalMode = 'EndBound'

Example 1 - Retrieve start bound point
select DateTime,TagName,Value
where TagName 'Plant2.R31.BatchNum'
and wwRetrievalMode = 'StartBound'
and DateTime >= '2019-04-24 12:00:00'

The results are:

DateTime TagName Value

2019-04-24 11:53:08.5430000 Plant2.R31.BatchNum 912

Example 2 - Retrieve end bound point
select DateTime,TagName,Value
where TagName in 'Plant2.R31.BatchNum'
and wwRetrievalMode = 'EndBound'
and DateTime >= '2019-04-24 12:00:00'

The results are:

DateTime TagName Value

2019-04-24 14:11:13.3840000 Plant2.R31.BatchNum 926

Understanding Retrieval Options

In all retrieval modes, you can adjust which values the historian returns by specifying retrieval options. The
retrieval options are implemented as special parameters that you set as part of the retrieval query. This section
explains each of these options. For an overview of which options apply to which retrieval modes, see Which
Options Apply to Which Retrieval Modes? on page 94.

Which Options Apply to Which Retrieval Modes?

The following table shows which retrieval options apply to which modes. If you specify an option in a mode
where it isn’t applicable, the option is ignored.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 95

 C
yc

le
 C

o
u

n
t

(X
 V

a
lu

es
 o

ve
r

Eq
u

a
l T

im
e

In
te

rv
a

ls
)

(w
w

C
yc

le
C

o
u

n
t)

 o
n

 p
ag

e
9

6

R
es

o
lu

ti
o

n
 (

V
a

lu
es

 S
p

a
ce

d
 E

ve
ry

 X
 m

s)

(w
w

R
es

o
lu

ti
o

n
)

o
n

 p
ag

e
9

9

Ti
m

e
D

ea
d

b
a

n
d

 (
w

w
Ti

m
eD

ea
d

b
a

n
d

)
o

n

p
ag

e
1

0
3

V
a

lu
e

D
ea

d
b

a
n

d
 (

w
w

V
a

lu
eD

ea
d

b
a

n
d

)
o

n

p
ag

e
1

0
7

H
is

to
ry

 V
er

si
o

n
 (

w
w

V
er

si
o

n
)

o
n

 p
ag

e
1

1
1

In
te

rp
o

la
ti

o
n

 T
yp

e
(w

w
In

te
rp

o
la

ti
o

n
Ty

p
e)

o
n

 p
ag

e
1

1
2

Ti
m

eS
ta

m
p

 R
u

le
 (

w
w

Ti
m

eS
ta

m
p

R
u

le
)

o
n

p

ag
e

1
1

4

Q
u

a
lit

y
R

u
le

 (
w

w
Q

u
a

lit
yR

u
le

)
o

n
 p

ag
e

1
1

9

St
a

te
 C

a
lc

u
la

ti
o

n
 (

w
w

St
a

te
C

a
lc

)
o

n
 p

ag
e

1
2

7

A
n

a
lo

g
 V

a
lu

e
Fi

lt
er

in
g

 (
w

w
Fi

lt
er

)
o

n
 p

ag
e

1
2

8
Se

le
ct

in
g

 V
a

lu
es

 f
o

r
A

n
a

lo
g

 S
u

m
m

a
ry

 T
a

g
s

(w
w

V
a

lu
eS

el
ec

to
r)

 o
n

 p
ag

e
1

3
3

 P
re

d
ic

ti
ve

 R
et

ri
ev

a
l (

w
w

Fi
lt

er
)

(s
ee

"P
re

d
ic

ti
ve

 F
ilt

er
"

o
n

 p
ag

e
9

2
)*

*

Cyclic Retrieval on page
28

Y Y Y Y* Y Y Y

Delta Retrieval on page
30

 Y Y Y Y Y Y Y

Full Retrieval on page 36 Y Y Y Y Y

Interpolated Retrieval on
page 38

Y Y Y Y Y Y Y Y

Best Fit Retrieval (see
"Best Fit Retrieval" on
page 43)

Y Y Y Y Y Y Y Y

Average Retrieval on
page 47

Y Y Y Y Y Y Y Y

Minimum Retrieval on
page 52

Y Y Y Y Y Y

Maximum Retrieval on
page 57

Y Y Y Y Y Y

Integral Retrieval on
page 62

Y Y Y Y Y Y Y Y

Slope Retrieval on page
65

 Y Y Y Y

Counter Retrieval on
page 69

Y Y Y Y Y Y

ValueState Retrieval on
page 73

Y Y Y Y Y Y Y

RoundTrip Retrieval on
page 79

Y Y Y Y Y Y Y

Bounding Values
Retrieval (see "Bounding
Value Retrieval" on page
92)

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 96

* - only on AVEVA Historian 9.0 and later
** - only AVEVA Historian 2014 R2 P01 and later

Using Retrieval Options in a Transact-SQL Statement

You can retrieve data in the AVEVA Historian extension tables using normal Transact-SQL code, as well as the
specialized SQL time domain extensions provided by the AVEVA Historian. The AVEVA Historian extensions
provide an easy way to query time-based data from the history tables. They also provide additional functionality
not supported by Transact-SQL.

Note: The wwParameters extension is reserved for future use. The wwRowCount parameter is still supported,
but is deprecated in favor of wwCycleCount.

The extensions are implemented as "virtual" columns in the extension tables. When you query an extension
table, you can specify values for these column parameters to manipulate the data that will be returned. You will
need to specify any real-time extension parameters each time that you execute the query.

For example, you could specify a value for the wwResolution column in the query so that a resolution is applied
to the returned data set:

SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-02 10:00:00'
AND DateTime <= '2001-12-02 10:02:00'
AND Value >= 50
AND wwResolution = 10
AND wwRetrievalMode = 'cyclic'

Because the extension tables provide additional functionality that is not possible in a normal SQL Server, certain
limitations apply to the Transact-SQL supported by these tables. For more information, see Unsupported or
Limited Syntax Options on page 19.

Although the Microsoft SQL Server may be configured to be case-sensitive, the values for the virtual columns in
the extension tables are always case-insensitive.

Note: You cannot use the IN clause or OR clause to specify more than one condition for a time domain
extension. For example, "wwVersion IN ('original', 'latest')" and "wwRetrievalMode = 'Delta' OR
wwVersion = 'latest'" are not supported.

For general information on creating SQL queries, see your Microsoft SQL Server documentation.

Cycle Count (X Values over Equal Time Intervals) (wwCycleCount)

In retrieval modes that use cycles, the cycle count determines the number of cycles for which data is retrieved.
The number of actual return values is not always identical with this cycle count. In "truly cyclic" modes (Cyclic,
Interpolated, Average, and Integral), a single data point is returned for every cycle boundary. However, in other
cycle-based modes (Best Fit, Minimum, Maximum, Counter, ValueState, and RoundTrip), multiple or no data
points may be returned for a cycle, depending on the nature of the data.

The length of each cycle (the "resolution" of the returned values) is calculated as follows:

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 97

DC = DQ / (n – 1)

Where DC is the length of the cycle, DQ is the duration of the query, and n is the cycle count.

Instead of specifying a cycle count, you can specify the resolution. In that case, the cycle count is calculated
based on the resolution and the query duration. For more information, see Resolution (Values Spaced Every X
ms) (wwResolution) on page 99.

This option is relevant in the following retrieval modes:

 Cyclic Retrieval on page 28

 Interpolated Retrieval on page 38

 "Best Fit" Retrieval (see "Best Fit Retrieval" on page 43)

 Average Retrieval on page 47

 Minimum Retrieval on page 52

 Maximum Retrieval on page 57

 Integral Retrieval on page 62

 Counter Retrieval on page 69

 ValueState Retrieval on page 73

 RoundTrip Retrieval on page 79

The application of the cycle count also depends on whether you are querying a wide table. If you are querying
the History table, the cycle count determines the number of rows returned per tag. For example, a query that
applies a cycle count of 20 to two tags will return 40 rows of data (20 rows for each tag). If you are querying a
WideHistory table, the cycle count specifies the total number of rows to be returned, regardless of how many
tags were queried. For example, a query that applies a cycle count of 20 to two tags returns 20 rows of data.

Values chosen:

 If wwResolution and wwCycleCount are not specified, then a default of 100 cycles are chosen.

 If wwResolution and wwCycleCount are set to 0, then a default of 100000 cycles are chosen.

 If wwResolution and wwCycleCount are both set, then wwCycleCount is ignored.

 If wwCycleCount is specified and is less than 0, then a default of 100 cycles are chosen.

 For ValueState retrieval, if the start time of the cycle is excluded, no states are returned for the first cycle.

 For ValueState retrieval, if the end time of the cycle is excluded, no states are returned for the last cycle.

Cycle Count - Query Examples

See the following examples of queries that demonstrate the cycle count behavior if applied to a single tag or to
multiple tags in the same query:

 Cycle Count - Query 1: Using a Single Tag on page 98

 Cycle Count - Query 2: Using Multiple Tags on page 98

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 98

Cycle Count - Query 1: Using a Single Tag
SELECT DateTime, TagName, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-09 11:35'
AND DateTime < '2001-12-09 11:36'
AND wwRetrievalMode = 'Cyclic'
AND wwCycleCount = 300

The results are:

DateTime TagName Value

2001-12-09 11:35:00.000 SysTimeSec 0

2001-12-09 11:35:00.200 SysTimeSec 0

2001-12-09 11:35:00.400 SysTimeSec 0

2001-12-09 11:35:00.600 SysTimeSec 0

...

2001-12-09 11:35:59.200 SysTimeSec 59

2001-12-09 11:35:59.400 SysTimeSec 59

2001-12-09 11:35:59.600 SysTimeSec 59

2001-12-09 11:35:59.800 SysTimeSec 59

Cycle Count - Query 2: Using Multiple Tags
SELECT DateTime, TagName, Value

FROM History
WHERE TagName IN ('SysTimeMin','SysTimeSec')

AND DateTime >= '2001-12-09 11:35'
AND DateTime < '2001-12-09 11:36'
AND wwRetrievalMode = 'Cyclic'
AND wwCycleCount = 300

The results are:

DateTime TagName Value

2001-12-09 11:35:00.000 SysTimeMin 35

2001-12-09 11:35:00.000 SysTimeSec 0

2001-12-09 11:35:00.200 SysTimeMin 35

2001-12-09 11:35:00.200 SysTimeSec 0

2001-12-09 11:35:00.400 SysTimeMin 35

2001-12-09 11:35:00.400 SysTimeSec 0

2001-12-09 11:35:00.600 SysTimeMin 35

2001-12-09 11:35:00.600 SysTimeSec 0

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 99

...

2001-12-09 11:35:59.200 SysTimeMin 35

2001-12-09 11:35:59.200 SysTimeSec 59

2001-12-09 11:35:59.400 SysTimeMin 35

2001-12-09 11:35:59.400 SysTimeSec 59

2001-12-09 11:35:59.600 SysTimeMin 35

2001-12-09 11:35:59.600 SysTimeSec 59

2001-12-09 11:35:59.800 SysTimeMin 35

2001-12-09 11:35:59.800 SysTimeSec 59

Notice that the values of the two tags are mixed together in the same column.

Resolution (Values Spaced Every X ms) (wwResolution)

In retrieval modes that use cycles, the resolution is the sampling interval for retrieving data, that is, the length of
each cycle.

The number of cycles, therefore, depends on the time period and the resolution:

number of cycles = time period / resolution

The number of actual return values is not always identical with this cycle count. In "truly cyclic" modes (Cyclic,
Interpolated, Average, and Integral), a single data point is returned for every cycle boundary. However, in other
cycle-based modes (Best Fit, Minimum, Maximum, Counter, and ValueState), multiple or no data points may be
returned for a cycle, depending on the nature of the data.

Note: The rowset is guaranteed to contain one row for each tag in the normalized query at every resolution
interval, regardless of whether a physical row exists in history at that particular instance in time. The value
contained in the row is the last known physical value in history, at that instant, for the relevant tag.

Instead of specifying a resolution, you can specify the cycle count directly. In that case, the resolution is
calculated based on the cycle count and the query duration. For more information, see Cycle Count (X Values
over Equal Time Intervals) (wwCycleCount) on page 96.

This option is relevant in the following retrieval modes:

 Cyclic Retrieval on page 28

 Interpolated Retrieval on page 38

 "Best Fit" Retrieval (see "Best Fit Retrieval" on page 43)

 Average Retrieval on page 47

 Minimum Retrieval on page 52

 Maximum Retrieval on page 57

 Integral Retrieval on page 62

 Counter Retrieval on page 69

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 100

 ValueState Retrieval on page 73

 RoundTrip Retrieval on page 79

For delta retrieval, you can achieve similar results by using a time deadband. For more information, see Time
Deadband (wwTimeDeadband) on page 103.

Resolution - Query Example

The following query returns rows that are spaced at 2 sec (2000 msec) intervals over the requested time period.
Data is retrieved cyclically.

SELECT DateTime, TagName, Value

FROM History
WHERE TagName IN ('SysTimeMin','SysTimeSec')

AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:36'
AND wwRetrievalMode = 'Cyclic'
AND wwResolution = 2000

The results are:

DateTime TagName Value

2001-12-09 11:35:00.000 SysTimeMin 35

2001-12-09 11:35:00.000 SysTimeSec 0

2001-12-09 11:35:02.000 SysTimeMin 35

2001-12-09 11:35:02.000 SysTimeSec 2

2001-12-09 11:35:04.000 SysTimeMin 35

2001-12-09 11:35:04.000 SysTimeSec 4

2001-12-09 11:35:06.000 SysTimeMin 35

...

2001-12-09 11:35:54.000 SysTimeMin 35

2001-12-09 11:35:54.000 SysTimeSec 54

2001-12-09 11:35:56.000 SysTimeMin 35

2001-12-09 11:35:56.000 SysTimeSec 56

2001-12-09 11:35:58.000 SysTimeMin 35

2001-12-09 11:35:58.000 SysTimeSec 58

2001-12-09 11:36:00.000 SysTimeMin 36

2001-12-09 11:36:00.000 SysTimeSec 0

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 101

About Phantom Cycles

The phantom cycle is the name given to the cycle that leads up to the query start time. It is used to calculate
which initial value to return at the query start time for all retrieval modes. Some retrieval modes use the
phantom cycle to simply find the last known value prior to the query start time, whereas other retrieval modes
use the entire cycle to calculate aggregates. The different uses of the phantom cycle can be seen in the following
table.

Simple use of phantom
cycle

Cycles not defined, but similar simple
use of time before query start time

Phantom cycle used to calculate
aggregates

Cyclic Delta Min

Interpolated Full Max

Best Fit Slope Average

 Integral

 Counter

 ValueState

 RoundTrip

It’s common to expect a single aggregate row returned for a particular time interval. You can accomplish this in
several ways.

The following example is querying for hourly averages. It returns a single row time stamped at the query start
time. If the query included the query end point by including an equal sign for it, the query would also have
returned an additional row at the query end time.

SELECT DateTime, Value, Quality, QualityDetail, OPCQuality

FROM History
WHERE TagName IN ('SysTimeSec')

AND DateTime >= '2017-12-12 08:00:00'
AND DateTime < '2017-12-12 09:00:00'
AND wwRetrievalMode = 'Avg'
AND wwResolution = 3600000

The results are:

DateTime Value Quality QualityDetail OPCQuality

2017-12-1208:00:00.0000000 29.5 0 192 192

What may be confusing in this example is the calculation of the average in the returned row for the phantom
cycle leading up to the query start time. The query specifies a positive one hour time interval between the query
start time and the query end time. You may therefore expect that the calculated and returned average should
be for the specified interval.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 102

However, the time difference between start and end time in the above query is not actually required because
the resolution is provided explicitly (wwResolution = 36000000). If the query specified an end time equal to the
specified start time and if it included the equal sign for the end time, the query would still return the same single
row of data.

SELECT DateTime, Value, Quality, QualityDetail, OPCQuality

FROM History
WHERE TagName IN ('SysTimeSec')

AND DateTime = '2017-10-16 08:00:00'
AND DateTime <= '2017-10-16 09:00:00'
AND wwRetrievalMode = 'Avg'
AND wwCycleCount = 1

The results are:

DateTime Value Quality QualityDetail OPCQuality

2017-10-16 08:00:00.0000000 29.5 0 192 192

This second example also asks for hourly averages and it also returns only a single row of data stamped at the
query start time. This query, however, must specify a time difference between the start and end time, because
the resolution is not explicitly defined in the query.

As in the preceding query, the specified interval and cycle count of 1 may look like the returned row has been
calculated for the specified interval, but the returned row is once again for the phantom cycle leading up to the
start time.

For some queries, you may want to be certain to include values on a cycle boundary. For example, the following
query is looking for a minimum value within a cycle. In this query, the beginning DateTime statement uses ">="
to ensure that the entire cycle is queried. Even if the minimum value happens to be at the beginning of the
cycle, the following query will provide an accurate result:

SELECT StartDateTime, *

FROM History
WHERE TagName = 'SysTimeSec'
AND DateTime >= '2016-03-31 15:41:10'
AND DateTime < '2016-03-31 15:41:20'
AND wwRetrievalMode = 'Min'
AND Quality <> 133
AND wwCycleCount = 1

The StartDateTime makes it easier to see which time interval was used to calculate the returned aggregate. This
column returns the time stamp of the beginning of the cycle used for the aggregate calculation. The time stamp
is always returned in accordance with the specified time zone and always has the same offset as the time stamp
returned in the DateTime column, even when the two time stamps are on different sides of a DST change.

Assuming results are timestamped at the end of the cycle (as is done by default when wwTimeStampRule is set
to END), the initial rows in the examples above would return a DateTime equal to '2009-10-16 08:00:00', and the
StartDateTime column would return '2009-10-16 07:00:00' making it easy to interpret the result.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 103

If instead the query were to ask for results time stamped at the beginning of the cycle with wwTimeStampRule
set to START, the initial rows in the same examples would still return a DateTime equal to '2009-10-16 08:00:00',
but the time stamp has now been shifted in accordance with the time stamp request. The result is therefore
calculated for the specified time interval between 8 a.m. and 9 a.m. In this example, the new StartDateTime
column would return the same time stamp as the DateTime column, '2009-10-16 08:00:00', again making it
easier to interpret the result.

For retrieval modes for which cycles are defined, the StartDateTime column returns the cycle start time. These
modes are:

 Cyclic Retrieval on page 28

 Interpolated Retrieval on page 38

 "Best Fit" Retrieval (see "Best Fit Retrieval" on page 43)

 Average Retrieval on page 47

 Minimum Retrieval on page 52

 Maximum Retrieval on page 57

 Integral Retrieval on page 62

 Counter Retrieval on page 69

 ValueState Retrieval on page 73

 RoundTrip Retrieval on page 79

In the remaining retrieval modes, the StartDateTime column returns the same time stamp as the DateTime
column.

For an additional example, see Querying Aggregate Data in Different Ways on page 182.

Time Deadband (wwTimeDeadband)

A time deadband for retrieval controls the time resolution of data returned in delta mode. Any value changes
that occur within the time deadband are not returned.

Time deadbands can be applied to analog, discrete, and string tags.

The deadband "base value" is reset each time that a value is returned, so that the last value returned acts as the
basis for the deadband.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 104

The following illustration shows an example of applying a time deadband:

Data is retrieved for the time period starting with TS and ending with TE. All points in the graphic represent data
values stored on the historian. The gray areas represent the time deadband, which starts anew with every
returned value. Only the green points (P2, P4, P7, P8, P9, P11) are returned. The other points are not returned
because they fall within a deadband.

Time Deadband - Query Examples

To apply a time deadband, set the wwTimeDeadband parameter in your query.

For examples, see the following:

 Time Deadband - Query 1 on page 104

 Time Deadband - Query 2 on page 105

 Time Deadband - Query 3 on page 106

Note: All of these example queries return data values for the analog tag 'SysTimeSec'.

Time Deadband - Query 1

This query specifies to only return data that changed during a 5 second time deadband.

SELECT DateTime, TagName, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:37'
AND wwRetrievalMode = 'Delta'

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 105

AND wwTimeDeadband = 5000

The results are:

DateTime TagName Value

2001-12-09 11:35:00.000 SysTimeSec 0

2001-12-09 11:35:06.000 SysTimeSec 6

2001-12-09 11:35:12.000 SysTimeSec 12

2001-12-09 11:35:18.000 SysTimeSec 18

2001-12-09 11:35:24.000 SysTimeSec 24

2001-12-09 11:35:30.000 SysTimeSec 30

2001-12-09 11:35:36.000 SysTimeSec 36

2001-12-09 11:35:42.000 SysTimeSec 42

2001-12-09 11:35:48.000 SysTimeSec 48

2001-12-09 11:35:54.000 SysTimeSec 54

2001-12-09 11:36:00.000 SysTimeSec 0

2001-12-09 11:36:06.000 SysTimeSec 6

2001-12-09 11:36:12.000 SysTimeSec 12

2001-12-09 11:36:18.000 SysTimeSec 18

2001-12-09 11:36:24.000 SysTimeSec 24

2001-12-09 11:36:30.000 SysTimeSec 30

2001-12-09 11:36:36.000 SysTimeSec 36

2001-12-09 11:36:42.000 SysTimeSec 42

2001-12-09 11:36:48.000 SysTimeSec 48

2001-12-09 11:36:54.000 SysTimeSec 54

2001-12-09 11:37:00.000 SysTimeSec 0

Time Deadband - Query 2

This query specifies to only return data that changed during a 4900 millisecond time deadband.

SELECT DateTime, TagName, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:37'
AND wwRetrievalMode = 'Delta'
AND wwTimeDeadband = 4900

The results are:

DateTime TagName Value

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 106

2001-12-09 11:35:00.000 SysTimeSec 0

2001-12-09 11:35:05.000 SysTimeSec 5

2001-12-09 11:35:10.000 SysTimeSec 10

2001-12-09 11:35:15.000 SysTimeSec 15

2001-12-09 11:35:20.000 SysTimeSec 20

2001-12-09 11:35:25.000 SysTimeSec 25

2001-12-09 11:35:30.000 SysTimeSec 30

2001-12-09 11:35:35.000 SysTimeSec 35

2001-12-09 11:35:40.000 SysTimeSec 40

2001-12-09 11:35:45.000 SysTimeSec 45

2001-12-09 11:35:50.000 SysTimeSec 50

2001-12-09 11:35:55.000 SysTimeSec 55

2001-12-09 11:36:00.000 SysTimeSec 0

2001-12-09 11:36:05.000 SysTimeSec 5

2001-12-09 11:36:10.000 SysTimeSec 10

2001-12-09 11:36:15.000 SysTimeSec 15

2001-12-09 11:36:20.000 SysTimeSec 20

2001-12-09 11:36:25.000 SysTimeSec 25

2001-12-09 11:36:30.000 SysTimeSec 30

2001-12-09 11:36:35.000 SysTimeSec 35

2001-12-09 11:36:40.000 SysTimeSec 40

2001-12-09 11:36:45.000 SysTimeSec 45

2001-12-09 11:36:50.000 SysTimeSec 50

2001-12-09 11:36:55.000 SysTimeSec 55

2001-12-09 11:37:00.000 SysTimeSec 0

Time Deadband - Query 3

This query specifies to only return data that changed during a 2000 millisecond time deadband.

SELECT DateTime, TagName, Value

FROM History
WHERE TagName IN ('SysTimeSec','SysTimeMin')

AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:36'
AND wwRetrievalMode = 'Delta'
AND wwTimeDeadband = 2000

The results are:

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 107

DateTime TagName Value

2001-12-09 11:35:00.000 SysTimeSec 0

2001-12-09 11:35:00.000 SysTimeMin 35

2001-12-09 11:35:03.000 SysTimeSec 3

2001-12-09 11:35:06.000 SysTimeSec 6

2001-12-09 11:35:09.000 SysTimeSec 9

2001-12-09 11:35:12.000 SysTimeSec 12

2001-12-09 11:35:15.000 SysTimeSec 15

2001-12-09 11:35:18.000 SysTimeSec 18

2001-12-09 11:35:21.000 SysTimeSec 21

2001-12-09 11:35:24.000 SysTimeSec 24

2001-12-09 11:35:27.000 SysTimeSec 27

2001-12-09 11:35:30.000 SysTimeSec 30

2001-12-09 11:35:33.000 SysTimeSec 33

2001-12-09 11:35:36.000 SysTimeSec 36

2001-12-09 11:35:39.000 SysTimeSec 39

2001-12-09 11:35:42.000 SysTimeSec 42

2001-12-09 11:35:45.000 SysTimeSec 45

2001-12-09 11:35:48.000 SysTimeSec 48

2001-12-09 11:35:51.000 SysTimeSec 51

2001-12-09 11:35:54.000 SysTimeSec 54

2001-12-09 11:35:57.000 SysTimeSec 57

2001-12-09 11:36:00.000 SysTimeSec 0

2001-12-09 11:36:00.000 SysTimeMin 36

Value Deadband (wwValueDeadband)

A value deadband for retrieval controls the value resolution of data returned in delta mode. Any data values that
change less than the specified deadband are not returned. The deadband is a percentage of a tag’s full scale in
engineering units.

The deadband "base value" is reset each time that a value is returned, so that the last value returned acts as the
basis for the deadband.

Changes in quality will force a value to be returned even if the value deadband has not been met.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 108

The following illustration shows an example of applying a value deadband:

Data is retrieved for the time period starting with TS and ending with TE. All points in the graphic represent data
values stored on the historian. The gray areas represent the value deadband, which starts anew with every
returned value. Only the green points (P2, P5, P6, P7, P9, P10, P11) are returned. The other points are not returned
because they fall within a deadband.

Value Deadband - Query Examples

See the following examples of queries that use value deadband:

 Value Deadband - Query 1 on page 108

 Value Deadband - Query 2 on page 109

Note: Each of these examples returns data values for the analog tag 'SysTimeSec'. The minimum engineering
unit for 'SysTimeSec' is 0, and the maximum engineering unit is 59.

Value Deadband - Query 1

This query specifies to return only data that changed by more than 10 percent of the tag's full engineering unit
range. Using a value deadband of 10 percent equates to an absolute change of 5.9 for 'SysTimeSec.'

SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:37'
AND wwRetrievalMode = 'Delta'
AND wwValueDeadband = 10

The results are:

DateTime Value

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 109

2001-12-09 11:35:00.000 0

2001-12-09 11:35:06.000 6

2001-12-09 11:35:12.000 12

2001-12-09 11:35:18.000 18

2001-12-09 11:35:24.000 24

2001-12-09 11:35:30.000 30

2001-12-09 11:35:36.000 36

2001-12-09 11:35:42.000 42

2001-12-09 11:35:48.000 48

2001-12-09 11:35:54.000 54

2001-12-09 11:36:00.000 0

2001-12-09 11:36:06.000 6

2001-12-09 11:36:12.000 12

2001-12-09 11:36:18.000 18

2001-12-09 11:36:24.000 24

2001-12-09 11:36:30.000 30

2001-12-09 11:36:36.000 36

2001-12-09 11:36:42.000 42

2001-12-09 11:36:48.000 48

2001-12-09 11:36:54.000 54

2001-12-09 11:37:00.000 0

Value Deadband - Query 2

This query specifies to only return data that changed by more than 5 percent of the tag's full engineering unit
range. Using a value deadband of 5 percent equates to an absolute change of 2.95 for 'SysTimeSec.'

SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-09 11:35'
AND DateTime <= '2001-12-09 11:37'
AND wwRetrievalMode = 'Delta'
AND wwValueDeadband = 5

The results are:

DateTime Value

2001-12-09 11:35:00.000 0

2001-12-09 11:35:03.000 3

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 110

2001-12-09 11:35:06.000 6

2001-12-09 11:35:09.000 9

2001-12-09 11:35:12.000 12

2001-12-09 11:35:15.000 15

2001-12-09 11:35:18.000 18

2001-12-09 11:35:21.000 21

2001-12-09 11:35:24.000 24

2001-12-09 11:35:27.000 27

2001-12-09 11:35:30.000 30

2001-12-09 11:35:33.000 33

2001-12-09 11:35:36.000 36

2001-12-09 11:35:39.000 39

2001-12-09 11:35:42.000 42

2001-12-09 11:35:45.000 45

2001-12-09 11:35:48.000 48

2001-12-09 11:35:51.000 51

2001-12-09 11:35:54.000 54

2001-12-09 11:35:57.000 57

2001-12-09 11:36:00.000 0

2001-12-09 11:36:03.000 3

2001-12-09 11:36:06.000 6

2001-12-09 11:36:09.000 9

2001-12-09 11:36:12.000 12

2001-12-09 11:36:15.000 15

2001-12-09 11:36:18.000 18

2001-12-09 11:36:21.000 21

2001-12-09 11:36:24.000 24

2001-12-09 11:36:27.000 27

2001-12-09 11:36:30.000 30

2001-12-09 11:36:33.000 33

2001-12-09 11:36:36.000 36

2001-12-09 11:36:39.000 39

2001-12-09 11:36:42.000 42

2001-12-09 11:36:45.000 45

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 111

2001-12-09 11:36:48.000 48

2001-12-09 11:36:51.000 51

2001-12-09 11:36:54.000 54

2001-12-09 11:36:57.000 57

2001-12-09 11:37:00.000 0

History Version (wwVersion)

The AVEVA Historian allows you to overwrite a stored tag value with later versions of the value. The original
version of the value is still maintained, so that effectively, multiple versions of the tag value exist at the same
point in time.

When retrieving data, you can specify whether to retrieve the originally stored version or the latest version that
is available. To do this, set the history version option to "Original" for the original version or "Latest" for the
latest available version. If you do not specify the version, the latest version is returned.

To distinguish between a latest value and an original value, the historian returns a special QualityDetail value of
202 for a latest point with good quality.

This option is relevant in all retrieval modes.

History Version - Query Example

This example illustrates using history version. First, consider this query:

SELECT TagName, DateTime, Value, wwVersion

FROM History
WHERE TagName IN ('SysTimeHour', 'SysTimeMin')

AND DateTime >= '2001-12-20 0:00'
AND DateTime <= '2001-12-20 0:05'
AND wwRetrievalMode = 'Delta'
AND wwVersion = 'Original'

The results are:

TagName DateTime Value wwVersion

SysTimeMin 2001-12-20 00:00:00.000 0 ORIGINAL

SysTimeHour 2001-12-20 00:00:00.000 0 ORIGINAL

SysTimeMin 2001-12-20 00:01:00.000 1 ORIGINAL

SysTimeMin 2001-12-20 00:02:00.000 2 ORIGINAL

SysTimeMin 2001-12-20 00:03:00.000 3 ORIGINAL

SysTimeMin 2001-12-20 00:04:00.000 4 ORIGINAL

SysTimeMin 2001-12-20 00:05:00.000 5 ORIGINAL

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 112

When retrieving the latest version, the wwVersion parameter always returns with a value of LATEST for all
values, even though many of the values may actually be the original values that came from the I/O Server. To
distinguish between an actual latest value and an original value, a special QualityDetail of 202 is returned for a
good, latest point.

For example:

SELECT DateTime, Value, Quality, QualityDetail, OPCQuality, wwVersion

 FROM History
 WHERE TagName IN ('PV')

AND DateTime >= '2005-04-17 11:35:00'
AND DateTime <= '2005-04-17 11:36:00'
AND wwRetrievalMode = 'Delta'
AND wwVersion = 'Latest'

The results are:

DateTime Value Quality QualityDetail OPCQuality wwVersion

2005-04-17
11:35:00.000

12.5 0 192 192 LATEST

2005-04-17
11:35:15.000

17.3 0 192 192 LATEST

2005-04-17
11:35:30.000

34.0 0 202 192 LATEST

2005-04-17
11:35:45.000

43.1 0 192 192 LATEST

2005-04-17
11:36:00.000

51.2 0 192 192 LATEST

Interpolation Type (wwInterpolationType)

For various retrieval modes, you can control how analog tag values at cycle boundaries are calculated if there is
no actual value stored at that point in time. The options are as follows:

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 113

 Stairstep: No interpolation occurs. The value at the cycle boundary is assumed to be the same value as the
last stored value before the cycle boundary.The last known point is returned with the given cycle time. If no
valid value can be found, a NULL is returned.

 Linear: The historian calculates a new value at the cycle boundary by interpolating between the last stored
value before the boundary and the first stored value after the boundary. If either of these values is NULL, it
returns the last stored value before the boundary.

Expressed as a formula, Vc is calculated as:

Vc = V1 + ((V2 - V1) * ((Tc - T1) / (T2 - T1)))

The type of data that you want to retrieve usually determines the interpolation type to use. For example, if you
have a thermocouple, the temperature change is linear, so it’s best to use linear interpolation. If you have a tag
that contains discrete measurements, such as a set point, then you probably want to use stair-stepped values. In
general, it is recommended that you use linear interpolation as the general setting, and use stair-stepped values
for the exceptions.

This option is relevant in the following retrieval modes:

 -old-Interpolated Retrieval

 "Best Fit" Retrieval

 Average Retrieval on page 47

 Integral Retrieval on page 62

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 114

The quality of an interpolated point is determined by the wwQualityRule setting. For more information, see
Quality Rule (wwQualityRule) on page 119.

The interpolation type can be set on three levels:

 The AVEVA Historian system-wide setting. The system-wide setting must be either stair-step or interpolated.
For more information, see "System Parameters" on page 36. This setting is configured using the AVEVA
Historian Configuration Editor.

 The individual analog tag setting. You can configure an individual analog tag to use the system-wide setting
or either stair-stepped values or linear interpolation. The individual tag setting will override the system-wide
setting. This setting is configured using the AVEVA Historian Configuration Editor.

 The setting for the wwInterpolationType parameter in the query. This setting overrides any other setting for
all tags in the query.

The wwInterpolationType parameter is dynamically used both for input for the query, when you need to
override the individual tag settings, and for output for each individual row to show whether a particular row
value was calculated using linear interpolation (returned as "LINEAR") or if it is a stair-stepped value (returned as
"STAIRSTEP").

To force a query to always use linear interpolation whenever applicable, specify the following in the query:

AND wwInterpolationType = 'Linear'

To force a query to always return stair-stepped values, specify the following in the query:

AND wwInterpolationType = 'StairStep'

TimeStamp Rule (wwTimeStampRule)

For various cycle-based retrieval modes, you can control whether the returned values are timestamped at the
beginning or at the end of each cycle.

To force a query to timestamp results at the start of a cycle, specify the following in the query:

AND wwTimeStampRule = 'Start'

To force a query to timestamp results at the end of a cycle, specify the following in the query:

AND wwTimeStampRule = 'End'

If you include the wwTimeStampRule column in your SELECT statement, it will show which timestamp rule has
been applied for the individual row, if applicable.

The options are as follows:

 Start: The value for a given cycle is stamped with the cycle start time. For example, in the following
illustration of a cyclic query, the following values are returned at the cycle boundaries:

o At TC0: P7, because it falls on the cycle boundary. In cyclic mode, if there is a value right on the cycle
boundary, it is considered to belong to the cycle before the boundary. In this case, this is the cycle
starting at TC0 and ending at TC1, and because the Start timestamp rule is used, the value is timestamped
at TC0.

o At TC1: P11, because it is the last value in the cycle starting at TC1 and ending at TC2

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 115

o At TC2: The last value in the "phantom" cycle starting at TC2

 End: The value for a given cycle is stamped with the cycle end time. For example, in the following illustration
of a cyclic query, the following values are returned at the cycle boundaries:

o At TC0: P1, because it is the last value in the "phantom" cycle ending at TC0. Because the End timestamp
rule is used, the value is timestamped at TC0.

o At TC1: P7, because it falls on the cycle boundary. In cyclic mode, if there is a value right on the cycle
boundary, it is considered to belong to the cycle before the boundary. In this case, this is the cycle
starting at TC0 and ending at TC1, and because the End timestamp rule is used, the value is timestamped
at TC1.

o At TC2: P11, because it is the last value in the cycle ending at TC2

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 116

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 117

 Server default: Either Start or End is used, depending on the system parameter setting on the AVEVA
Historian.

This option is relevant in the following retrieval modes:

 Cyclic Retrieval on page 28 (AVEVA Historian 9.0 and later)

 Interpolated Retrieval on page 38

 Average Retrieval on page 47

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 118

 Integral Retrieval on page 62

 Counter Retrieval on page 69

 ValueState Retrieval on page 73

 RoundTrip Retrieval on page 79

Time Zone (wwTimeZone)

For AVEVA Historianversion 8.0 and later, all history data is stored in Coordinated Universal Time (UTC). The
wwTimeZone extension allows you to specify the time zone to be used for the timestamps of the returned data
values. The Retrieval subsystem will convert the timestamps to local time in the specified time zone.

The wwTimeZone extension may be assigned any of the values stored in the TimeZone column of the TimeZone
table in the Runtime database.

The TimeZone table is repopulated at every system startup from Microsoft operating system registry entries,
and will therefore reflect the time zones available from the server operating system, including any new or
custom time zones which might be added by operating system service packs or installed software.

The Retrieval subsystem will automatically correct for daylight savings time in the requested time zone. When
computing daylight savings and time zone parameters, the settings of the server operating system are used. The
Retrieval subsystem does not provide any means for using client-side settings.

If wwTimeZone is not specified, the time zone for retrieval defaults to the time zone of the AVEVA Historian
computer.

For example:

SELECT TagName, DateTime, Value, wwTimeZone

FROM History
WHERE TagName IN ('SysTimeHour', 'SysTimeMin')

AND DateTime >= '2001-12-20 0:00'
AND DateTime <= '2001-12-20 0:05'
AND wwRetrievalMode = 'Delta'
AND wwTimeZone = 'W. Europe Standard Time'

The results are:

TagName DateTime Value wwTimeZone

SysTimeMin 2001-12-20 00:00:00.000 0 W. Europe Standard Time

SysTimeHour 2001-12-20 00:00:00.000 15 W. Europe Standard Time

SysTimeMin 2001-12-20 00:01:00.000 1 W. Europe Standard Time

SysTimeMin 2001-12-20 00:02:00.000 2 W. Europe Standard Time

SysTimeMin 2001-12-20 00:03:00.000 3 W. Europe Standard Time

SysTimeMin 2001-12-20 00:04:00.000 4 W. Europe Standard Time

SysTimeMin 2001-12-20 00:05:00.000 5 W. Europe Standard Time

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 119

Quality Rule (wwQualityRule)

The quality rule can be used to specify whether values with certain characteristics are explicitly excluded from
consideration by data retrieval. This parameter will override the setting of the QualityRule system parameter.
Valid values are GOOD, EXTENDED, or OPTIMISTIC.

 A quality rule of GOOD means that data values with uncertain (64) OPC quality are not used in the retrieval
calculations and are ignored. Values with bad QualityDetail indicate gaps in the data.

 A quality rule of EXTENDED means that data values with both good and uncertain OPC quality are used in
the retrieval calculations. Values with bad QualityDetail indicate gaps in the data.

 A quality rule of OPTIMISTIC means that calculations that include some good and some NULL values do not
cause the overall calculations to return NULL.

You can apply a quality rule to all retrieval modes.

The OPTIMISTIC setting for the quality rule lets you retrieve information that is possibly incomplete but may
nevertheless provide better results where the calculation cycle contains data gaps. This setting calculates using
the last known good value prior to the gap (if possible). The logic for determining the quality of the points
returned remains unchanged. The integral retrieval mode is an exception to this where the integral is scaled up
to cover gaps. For more information, see Integral Retrieval on page 62.

The following figure shows a counter retrieval situation in which three of the four shown cycle boundaries are
located in data gaps. Without using OPTIMISTIC, counter queries would return a NULL at all cycle boundaries
because the mode needs valid good values at each end of the cycle calculate a precise difference.

If the query were to specify OPTIMISTIC, the counter mode will always return rows with numeric counter values
and good quality. These rows may or may not be precise. The PercentGood column of the row returns the
percentage of time in each cycle in which retrieval was able to find values stored with good quality, so if the
PercentGood is anything less than 100, then the returned row may be incorrect. Quality is returned as uncertain
if percent good is not 100 percent.

Now look at the counter values that are returned using OPTIMISTIC quality in the preceding illustration. The
query skips the value to be returned at the first cycle boundary, because there is not enough information about
the cycle prior to that boundary. At the second cycle boundary, the value 0 will be returned, because there was
a gap in the data for the entire first cycle. In the second cycle, there are two points, P1 and P2. The query uses
P2 as the end value of the cycle and infers a start value of the cycle from P1. At the third cycle boundary, Tc2, the
query returns P2 – P1. Similarly, at the last cycle boundary, the query returns P4 – P3.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 120

For the integral retrieval mode, the query does not summarize data for gaps because there is no way to know
which value to use for the summarization. However, if the query specifies OPTIMISTIC quality, the query uses
the last known good value for the summarization in the gap. As described for the counter retrieval example, the
PercentGood column also expresses the quality of the calculated value in integral retrieval, so if the
PercentGood is anything less than 100, then the returned row may be incorrect.

Quality Rule - Query Examples

To force a query to exclude points with doubtful OPC quality, specify the following in the query:

AND wwQualityRule = 'Good'

To force a query to use points with both good and doubtful OPC quality, specify the following in the query:

AND wwQualityRule = 'Extended'

For examples, see the following:

 Quality Rule - Query 1 on page 120

 Quality Rule - Query 2 on page 121

 Quality Rule - Query 3 on page 122

 Quality Rule - Query 4 on page 122

 Quality Rule - Query 5 on page 123

 Quality Rule - Query 6 on page 124

 Quality Rule - Query 7 on page 125

 Quality Rule - Query 8 on page 126

Quality Rule - Query 1

If you include the wwQualityRule column in a SELECT statement, it will show which quality rule was used for the
individual row, if applicable.

You can combine OPC qualities in a query. For example, if you combine a mixture of good OPC qualities (such as
192 to 219), a good OPC quality (192) will be returned as a combined result.

SELECT TagName, DateTime, Value, QualityDetail, OPCQuality, wwRetrievalMode

FROM History
WHERE TagName = 'I0R5'
AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Avg'

If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

I0R5 2009-09-12 00:07 2 193

I0R5 2009-09-12 00:14 3 195

I0R5 2009-09-12 00:22 0 196

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 121

Tagname DateTime Resolution QualityDetail

I0R5 2009-09-12 00:25 1 199

I0R5 2009-09-12 00:27 0 200

I0R5 2009-09-12 00:29 2 207

I0R5 2009-09-12 00:33 3 215

I0R5 2009-09-12 00:36 0 216

I0R5 2009-09-12 00:39 1 219

The results are:

Tagname DateTime Value QualityDe
tail

OPCQuality wwRetrievalMode

I0R5 2009-09-12 00:20 2.6 192 192 AVERAGE

I0R5 2009-09-12 00:30 1.0 192 192 AVERAGE

I0R5 2009-09-12 00:40 1.6 192 192 AVERAGE

Quality Rule - Query 2

Similar to Quality Rule - Query 1 on page 120, if you combine a mixture of doubtful OPC qualities, a doubtful OPC
quality (64) will be returned as the combined OPC quality.

SELECT TagName, DateTime, Value, QualityDetail, OPCQuality, wwRetrievalMode

FROM History
WHERE TagName = 'I0R5'
AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Integral'

If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

I0R5 2009-09-12 00:07 2 65

I0R5 2009-09-12 00:14 3 68

I0R5 2009-09-12 00:22 0 71

I0R5 2009-09-12 00:25 1 74

I0R5 2009-09-12 00:27 0 79

I0R5 2009-09-12 00:29 2 80

I0R5 2009-09-12 00:33 3 88

I0R5 2009-09-12 00:36 0 92

I0R5 2009-09-12 00:39 1 64

The results are:

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 122

 Tagname DateTime Value QualityDetail OPCQuality wwRetrievalMode

I0R5 00:20 26.0 64 64 INTEGRAL

I0R5 00:30 10.0 64 64 INTEGRAL

I0R5 00:40 16.0 64 64 INTEGRAL

Quality Rule - Query 3

When you combine the same OPC quality then that OPC quality will be returned. However, when there is no
good point in a cycle for cyclic modes such as Integral, Average, Counter, or AnalogSummary, the returned NULL
value will have an OPC quality of 0 and a Quality Detail of 65536, regardless of combined qualities.

SELECT TagName, StartDateTime, EndDateTime, OPCQuality, PercentGood, wwRetrievalMode, first

FROM AnalogSummaryHistory
WHERE TagName = 'F0R5'
AND StartDateTime >= '2009-09-12 00:20'
AND EndDateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Cyclic'

If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

F0R5 2009-09-12 00:07 1.6 78

F0R5 2009-09-12 00:14 3.1 78

F0R5 2009-09-12 00:22 0.2 78

F0R5 2009-09-12 00:25 0.8 78

F0R5 2009-09-12 00:27 0.4 78

F0R5 2009-09-12 00:29 2.2 78

F0R5 2009-09-12 00:33 3.3 78

F0R5 2009-09-12 00:36 0.3 78

F0R5 2009-09-12 00:39 1.2 78

The results are:

Tagname StartDate
Time

EndDate Time OPCQualit
y

PercentG
ood

wwRetrievalMode first

F0R5 2009-09-12
00:20

2009-09-12
00:30

78 100 CYCLIC 0.200

F0R5 2009-09-12
00:30

2009-09-12
00:40

78 100 CYCLIC 3.300

Quality Rule - Query 4
SELECT TagName, DateTime, Value, QualityDetail, OPCQuality, wwRetrievalMode

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 123

FROM History
WHERE TagName = 'F0R5'
AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Avg'

If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

F0R5 2009-09-12 00:07 1.6 15

F0R5 2009-09-12 00:14 3.1 15

F0R5 2009-09-12 00:22 0.2 15

F0R5 2009-09-12 00:25 0.8 15

F0R5 2009-09-12 00:27 0.4 15

F0R5 2009-09-12 00:29 2.2 15

F0R5 2009-09-12 00:33 3.3 15

F0R5 2009-09-12 00:36 0.3 15

F0R5 2009-09-12 00:39 1.2 15

The results are:

Tagname DateTime Value QualityDe
tail

OPCQuality wwRetrievalMode

F0R5 2009-09-12 00:20 NULL 65536 0 AVERAGE

F0R5 2009-09-12 00:30 NULL 65536 0 AVERAGE

F0R5 2009-09-12 00:40 NULL 65536 0 AVERAGE

Quality Rule - Query 5

When you combine a mixture of good, bad, and uncertain OPC qualities, a doubtful OPC quality (64) will be
returned as a combined result.

SELECT TagName, DateTime, Value, QualityDetail, OPCQuality, wwRetrievalMode

FROM History
WHERE TagName = 'F0R5'
AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Avg'
AND wwQualityRule = 'Optimistic'

If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

F0R5 2009-09-12 00:07 1.6 15

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 124

Tagname DateTime Resolution QualityDetail

F0R5 2009-09-12 00:14 3.1 69

F0R5 2009-09-12 00:22 0.2 78

F0R5 2009-09-12 00:25 0.8 200

F0R5 2009-09-12 00:27 0.4 15

F0R5 2009-09-12 00:29 2.2 92

F0R5 2009-09-12 00:33 3.3 88

F0R5 2009-09-12 00:36 0.3 199

F0R5 2009-09-12 00:39 1.2 196

The results are:

Tagname DateTime Value QualityDe
tail

OPCQuality wwRetrievalMode

F0R5 2009-09-12 00:20 2.012 64 64 AVERAGE

F0R5 2009-09-12 00:30 0.820 64 64 AVERAGE

F0R5 2009-09-12 00:40 1.751 64 64 AVERAGE

Quality Rule - Query 6

For RoundTrip, StateSummary, and ValueState modes, the OPC qualities are only combined with the same state
in a cycle. If the state only occurs once in a cycle, then the qualities of that state will be returned. The returned
NULL state will always have an OPC quality of 0 and Quality Detail of 65536. The same qualities are returned for
a state that has no roundtrip in RoundTrip mode.

SELECT TagName, DateTime, Value, QualityDetail, OPCQuality, StateTime

FROM History
WHERE TagName = 'I001'

AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'RoundTrip'
AND wwStateCalc = 'MaxContained'

If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

I001 2009-09-12 00:12 1 90

I001 2009-09-12 00:15 2 65

I001 2009-09-12 00:22 1 85

I001 2009-09-12 00:23 2 75

I001 2009-09-12 00:26 1 75

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 125

Tagname DateTime Resolution QualityDetail

I001 2009-09-12 00:29 2 70

The results are:

Tagname DateTime Value QualityDe
tail

OPC-Quality StateTime

I001 2009-09-12 00:20 NULL 65536 0 NULL

I001 2009-09-12 00:20 1.0 90 90 NULL

I001 2009-09-12 00:20 2.0 65 65 NULL

I001 2009-09-12 00:20 1.0 64 64 4000

I001 2009-09-12 00:20 2.0 64 64 6000

Quality Rule - Query 7

The returned Quality Detail is the same as OPC quality unless there is special flag for certain indication; for
example, when there is indication for rollover in counter mode.

SELECT TagName, DateTime, Value, QualityDetail, OPCQuality

FROM History
WHERE TagName = 'I0R5'

AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Avg'

If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

I0R5 2009-09-12 00:07 2 218

I0R5 2009-09-12 00:14 3 218

I0R5 2009-09-12 00:22 0 218

I0R5 2009-09-12 00:25 1 218

I0R5 2009-09-12 00:27 0 218

I0R5 2009-09-12 00:29 2 218

I0R5 2009-09-12 00:33 3 218

I0R5 2009-09-12 00:36 0 218

I0R5 2009-09-12 00:39 1 218

The results are:

Tagname DateTime Value QualityDetail OPCQuality

I0R5 2009-09-12 00:20 2.6 218 218

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 126

Tagname DateTime Value QualityDetail OPCQuality

I0R5 2009-09-12 00:30 1.0 218 218

I0R5 2009-09-12 00:40 1.6 218 218

Quality Rule - Query 8

For Interpolated mode only, the returned row with Linear wwInterpolationType will have combined qualities.

SELECT TagName, DateTime, Value, QualityDetail, OPCQuality, wwRetrievalMode,
wwInterpolationType

FROM History
WHERE TagName = 'I0R5'

AND DateTime >= '2009-09-12 00:20'
AND DateTime <= '2009-09-12 00:40'
AND wwResolution = 10000
AND wwRetrievalMode = 'Interpolated'
AND wwInterpolationType = 'Linear'

If you run this query against the following sample data:

Tagname DateTime Resolution QualityDetail

I0R5 2009-09-12 00:07 2 193

I0R5 2009-09-12 00:14 3 195

I0R5 2009-09-12 00:22 0 196

I0R5 2009-09-12 00:25 1 199

I0R5 2009-09-12 00:27 0 200

I0R5 2009-09-12 00:29 2 207

I0R5 2009-09-12 00:33 3 215

I0R5 2009-09-12 00:36 0 216

I0R5 2009-09-12 00:39 1 219

The results are:

Tagname DateTime Value QualityD
etail

OPC
Quality

wwRetrieval
Mode

wwInter
polation
Type

I0R5 2009-09-12 00:20 0.8 192 192 Interpolated Linear

I0R5 2009-09-12 00:30 2.3 192 192 Interpolated Linear

I0R5 2009-09-12 00:40 1.0 192 219 Interpolated Linear

Note: Cyclic, Full, Delta, Maximum, Minimum, and BestFit do not have combined qualities; therefore, the rules
are not applied to these modes..

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 127

State Calculation (wwStateCalc)

The state calculation setting applies to ValueState and RoundTrip retrieval.

For ValueState retrieval, you can choose the type of state calculation (aggregation) to be performed on the data:

 Minimum: The shortest amount of time that the tag has been in each unique state.

 Maximum: The longest amount of time that the tag has been in each unique state.

 Average: The average amount of time that the tag has been in each unique state.

 Total: The total amount of time that the tag has been in each unique state.

 Percent: The total percentage of time that the tag has been in each unique state.

 MinContained: The shortest amount of time each tag has been in each unique state for each cycle,
disregarding the occurrences that are not fully contained with the calculation cycle.

 MaxContained: The longest amount of time that the tag has been in each unique state for each cycle,
disregarding the occurrences that are not fully contained with the calculation cycle.

 AvgContained: The average amount of time that the tag has been in each unique state for each cycle,
disregarding the occurrences that are not fully contained with the calculation cycle.

 TotalContained: The total amount of time that the tag has been in each unique state for each cycle,
disregarding the occurrences that are not fully contained with the calculation cycle.

 PercentContained: The percentage of time that the tag has been in each unique state for each cycle,
disregarding the occurrences that are not fully contained with the calculation cycle.

All results except Percent are in milliseconds. Percent is a percentage typically between 0.0 and 100.0. The
percentage can be higher than 100 in certain circumstances.

The nature of the data and how you set the cycle count determines whether you should use a "contained"
version of the aggregation. The calculations apply to each unique value state that the tag was in during each
retrieval cycle for the query. The total and percent calculations are always exact, but the minimum, maximum,
and average calculations are subject to "arbitrary" cycle boundaries that do not coincide with the value changes.
Therefore, non-intuitive results may be returned. This is most apparent for slowly-changing tags queried over
long cycles.

For example, a string tag that assumes only two distinct values changing every 10 minutes is queried with a cycle
time of two hours. Going into a cycle, the value (state) at the cycle boundary is recorded. If the value then
changes a short while into the cycle, the state found at the cycle start time will most likely end up being the
minimum value. Likewise, the state at the cycle end time is cut short at the cycle end time. The two cut-off
occurrences in turn skew the average calculation.

For RoundTrip retrieval, you can only specify the following types of state calculations (aggregations) to be
performed on the data. The calculations are for each unique state within each retrieval cycle for the query.

 MinContained. The shortest time span between consecutive leading edges of any state that occurs multiple
times within the cycle, while disregarding state occurrences that are not fully contained inside of the cycle.

 MaxContained. The longest time span between consecutive leading edges of any state that occurs multiple
times within the cycle, while disregarding state occurrences that are not fully contained inside of the cycle.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 128

 AvgContained. The average time span between consecutive leading edges of any state that occurs multiple
times within the cycle, while disregarding state occurrences that are not fully contained inside of the cycle.
(This is the default.)

 TotalContained. The total time span between consecutive leading edges of any state that occurs multiple
times within the cycle while disregarding state occurrences that are not fully contained inside of the cycle.

 PercentContained. The percentage of the cycle time spent in time span between consecutive leading edges
for a state that occurs multiple times within the cycle while disregarding value occurrences that are not fully
contained inside of the cycle.

Analog Value Filtering (wwFilter)

You can use the following analog filters for all retrieval modes:

 Statistical removal of outliers

 Analog to discrete conversion

 Zero around a base value

These filters are applied in a query to retrieve data from the History table, WideHistory table, or
StateWideHistory table. These filter only apply to analog tags. All other types of tags, including analog summary
tags, are not supported.

You need to specify a filter name in the virtual column wwFilter, with or without an override, to the set of
parameters that are defined for the specified filter. The filters are specified as C-like functions: parentheses are
always required, even when you choose not to override the default parameters by passing no parameters.

The default value for the wwFilter column is ‘NoFilter’. If the query does not specify the wwFilter element at all,
or if its default value is not overridden, then no filter is applied.

When you use the analog filters in a query that uses wwQualityRule, wwQualityRule is applied first and wwFilter
is applied later. You can only use one filter per query.

Statistically Removing Outliers (SigmaLimit)

This analog filter removes outliers from a set of analog points based on the assumption that the distribution of
point values in the set is a normal distribution.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 129

The following illustration shows an example of outliers.

You can filter outliers by specifying a filter called ‘SigmaLimit()’. This filter has one parameter defined for
specifying the value of n. This parameter is of type double. If the parameter is omitted, then a default parameter
of 2.0 is used.

When this filter is specified in any retrieval mode, a time weighted mean, ì (mu), and time weighted standard
deviation, ó (sigma), are found for each analog tag for the entire query range including phantom cycles if any,
and points falling outside of the range [ì - nó, ì + nó] are removed from the point set before the points are
processed further. In other words, the value will be filtered out if value > ì + nó or value < ì – nó.

Time weighted standard deviation is calculated as:

Math.Sqrt((integralOfSquares - 2 * timeWeightedAverage * integral + totalTime * timeWeightedAverage *
timeWeightedAverage)/totalTime);

This is the single pass equivalent to the formula:

Ranges where the value is NULL are excluded from these calculations.

A cyclic query example using a ‘SigmaLimit()’ filter without specifying the n value would look like this:

SELECT DateTime, Value, wwFilter

FROM History
WHERE TagName = ('TankLevel')

AND DateTime >= '2008-01-15 15:00:00'
AND DateTime <= '2008-01-15 17:00:00'
AND wwRetrievalMode = 'Cyclic'
AND wwFilter = 'SigmaLimit()'

Not specifying the n-value as done here is the same as specifying ‘SigmaLimit(2)’. The result set might look like
this:

DateTime Value wwFilter

2008-01-15 15:00:00.000 34.56 SigmaLimit()

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 130

DateTime Value wwFilter

2008-01-15 16:00:00.000 78.90 SigmaLimit()

2008-01-15 17:00:00.000 12.34 SigmaLimit()

If the first value would be filtered out by the SigmaLimit filter, the value will be replaced with the time weighted
mean.

Converting Analog Values to Discrete Values (ToDiscrete)

The analog to discrete conversion filter allows you to convert value streams for any analog tag in the query tag
list into discrete value streams. The filter can be used with all the retrieval modes.

To convert analog values to discrete values, specify the ToDiscrete() filter in the wwFilter column. This filter has
two parameters:

Parameter Valid Values Default Value

CutoffValue any double value 0.0

Operator >, >=, or <= >

The following are supported syntaxes.

 ToDiscrete()

 ToDiscrete(2)

 ToDiscrete(2, >=)

The following are unsupported syntaxes.

 ToDiscrete(2,)

 ToDiscrete(, >=)

 ToDiscrete(>=)

The cutoff value holds the value that signifies the boundary between values that are to be interpreted as OFF
and values that are to be interpreted as ON.

The operator parameter controls the value range relative to the cutoff value to convert to the ON value and vice
versa.

NULLs encountered in the analog value stream are copied unchanged to the discrete value stream. The quality
of each discrete point is copied from the analog point that causes its production. However, the quality detail for
values modified with this filter will have the QualityDetail flag 0x2000 (value changed by filter) set. For example,
consider the following ValueState query:

SELECT DateTime, vValue, StateTime, wwFilter

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 131

FROM History
WHERE TagName IN ('SysTimeSec')

AND DateTime >= '2008-01-15 15:00:00'
AND DateTime <= '2008-01-15 17:00:00'
AND wwRetrievalMode = 'ValueState'
AND wwStateCalc = 'MinContained'
AND wwResolution = 7200000
AND wwFilter = 'ToDiscrete(29, >)'

Here the operator is specified as >, so values greater than but not including 29 are internally converted to ON,
whereas values from 0 to 29 are converted to OFF. This query could return the following rows:

DateTime vValue StateTime wwFilter

2008-01-15 15:00:00.000 0 30000 ToDiscrete(29, >)

2008-01-15 15:00:00.000 1 30000 ToDiscrete(29, >)

2008-01-15 17:00:00.000 0 30000 ToDiscrete(29, >)

2008-01-15 17:00:00.000 1 30000 ToDiscrete(29, >)

The values returned in the StateTime column show that the shortest amount of time that SysTimeSec had values
equivalent to either ON or OFF and remained in that state was 30 seconds. A similar RoundTrip query would look
like this:

SELECT DateTime, vValue, StateTime, wwFilter

FROM History
WHERE TagName IN ('SysTimeSec')

AND DateTime >= '2008-01-15 15:00:00'
AND DateTime <= '2008-01-15 17:00:00'
AND wwRetrievalMode = 'RoundTrip'
AND wwStateCalc = 'MaxContained'
AND wwResolution = 7200000
AND wwFilter = 'ToDiscrete(29, <=)'

Here the operator is specified as <=, so the resulting conversion is exactly opposite to that performed in the
previous query. Now values smaller than or equal to 29 are internally converted to ON, whereas values from 30
to 59 are converted to OFF. This query could return the following rows:

DateTime vValue StateTime wwFilter

2008-01-15 15:00:00.000 0 60000 ToDiscrete(29, <=)

2008-01-15 15:00:00.000 1 60000 ToDiscrete(29, <=)

2008-01-15 17:00:00.000 0 60000 ToDiscrete(29, <=)

2008-01-15 17:00:00.000 1 60000 ToDiscrete(29, <=)

The values returned in the StateTime column now show that the longest amount of time found between
roundtrips for both the OFF and the ON state within the 2-hour cycles was 60 seconds.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 132

Using the ToDiscrete() filter is similar to using edge detection for event tags. Edge detection returns the
actual value with a timestamp in history for when a value matched a certain criteria. The ToDiscrete() filter
returns either a 1 or 0 to show that the criteria threshold was crossed. The ToDiscrete() filter is more
flexible, however, in the following ways:

 You can use it with delta and full retrieval.

 You can combine it with "time-in-state" calculations to determine how long a value is above a certain
threshold or the duration between threshold times.

Use the ToDiscrete() filter if you are mostly interested in when something occurred, and not necessarily the
exact value of the event.

For more information on edge detection, see Edge Detection for Events (wwEdgeDetection) on page 82.

"Zeroing" Around a Base Value (SnapTo)

This analog filter lets you force values in a well-defined range around one or more base values to "snap to" that
base value. For example, you can use this filter when a tank is known to be empty, but the tag that stores the
tank level returns a "noisy" value close to zero.

The filter can be used with all retrieval modes, but its main benefits are in the aggregate retrieval modes:
average, integral, minimum, and maximum.

To zero values around the base value, specify the SnapTo() filter in the wwFilter column of the query.

The syntax for this filter is:

SnapTo([tolerance[,base_value_1[, base_value_2]…]])

This filter has two parameters:

Parameter Valid Values Default Value

Tolerance any double value 0.01

BaseValue zero, one, or up to 100 comma-separated double
values

single base value of 0.0

The following are supported syntaxes.

 SnapTo() – Same as SnapTo(0.01, 0.0)

 SnapTo(3.7) – Same as SnapTo(3.7, 0.0)

 SnapTo(3,) – Syntax Error

 SnapTo(,0) – Syntax error

 SnapTo(,) – Syntax error

 SnapTo(3, 4, -5) – Tolerance=3, Base Values 4 and -5.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 133

When the Snap to filter is specified, point values falling inside any of the ranges [Base value – Tolerance, Base
value + Tolerance] will be forced to the base value before the point goes into further retrieval processing. The
result is undefined if the base value +/- tolerance exceeds the range of the double data type. The range is
calculated using this expression:

If (x <= Base value + Tolerance AND x >= Base value – Tolerance)
x = Base value

where x is the value of the point then if ranges overlap, the first matching base value will be used.

A query example from the History table looks like this:

SELECT DateTime, Value, wwFilter

FROM History
WHERE TagName = ('TankLevel')

AND DateTime >= '2008-01-15 15:00:00'
AND DateTime <= '2008-01-15 17:00:00'
AND wwRetrievalMode = 'Average'
AND wwResolution = 3600000
AND wwFilter = 'SnapTo(0.01, 0, 1000)'

The following rows might be returned:

DateTime Value wwFilter

2008-01-15 15:00:00.000 0 SnapTo(0.01, 0, 1000)

2008-01-15 16:00:00.000 875.66 SnapTo(0.01, 0, 1000)

2008-01-15 17:00:00.000 502.3 SnapTo(0.01, 0, 1000)

When a value is snapped, the QualityDetail bit flag 0x2000 is set.

If the filter syntax is not correct, a syntax error is returned and no rows are returned.

Selecting Values for Analog Summary Tags (wwValueSelector)

For an analog summary tag, multiple summarized values can be stored in the historian for a single
summarization period. When you query analog summary data, a single value, time, and quality (VTQ) must first
be extrapolated from the summarized values.

You set the value selector in the query to specify which summarized value to return. The possible values are as
follows:

Value Selector Setting Value Returned Timestamp Returned

AUTO The retrieval mode determines the
value. See the following table for
how AUTO applies to the value
selection. This is the default value.

The retrieval mode determines the
timestamp. See the following table
for how AUTO applies to the value
selection. This is the default value.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 134

Value Selector Setting Value Returned Timestamp Returned

FIRST The first value that occurs within the
summary period.

The actual timestamp of the first
value occurrence within the
summary period.

LAST The last value that occurs within the
summary period.

The actual timestamp of the last
value occurrence within the
summary period.

MIN or MINIMUM The first minimum value that occurs
within the summary period.

The actual timestamp of the first
minimum value occurrence within
the summary period.

MAX or MAXIMUM The first maximum value that occurs
within the summary period.

The actual timestamp of the first
maximum value occurrence within
the summary period.

AVG or AVERAGE A time-weighted average calculated
from values within the summary
period.

The summary period start time.

INTEGRAL An integral value calculated from
values within the summary period.

The summary period start time.

STDDEV or
STANDARDDEVIATION

A standard deviation calculated from
values within the summary period.

The summary period start time.

The following table describes the value to be considered if the value selector is set to AUTO:

Retrieval Mode Analog Summary Behavior

Cyclic The last value within the summary period is used. The actual timestamp of the last
value occurrence within the summary period is used.

Delta The last value within the summary period is used. The actual timestamp of the last
value occurrence within the summary period is used.

Full The last value within the summary period is used. The actual timestamp of the last
value occurrence within the summary period is used.

Interpolated The retrieval mode determines the appropriate value to return. See the following
table for how AUTO applies to the value selection. This is the default value.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 135

Retrieval Mode Analog Summary Behavior

Best Fit The first, last, min, and max points from analog summaries are all considered as
analog input points. Best fit analysis is done with these points. If the analog
summary percentage good is not 100%, the cycle is considered to have a NULL.

Average The averages of analog summaries are calculated using the values from the
Average column of the AnalogSummaryHistory table. Interpolation type is ignored
for analog summary values, and STAIRSTEP interpolation is always used.
PercentGood is calculated by considering the TimeGood of each analog summary.

If cycle boundaries do not exactly match the summary periods of the stored analog
summaries, the averages and time good are calculated by prorating the average
and time good values for the portion of the time the summary period overlaps
with the cycle. Quality will be set to 64 (uncertain) if cycle boundaries do not
match summary periods.

If the QualityDetail of any analog summary considered for a cycle is uncertain (64),
the resulting quality is set to 64.

Minimum The first minimum value within the summary period is used. The actual timestamp
of the first minimum value occurrence within the summary period is used.

Maximum The first maximum value within the summary period is used. The actual timestamp
of the first maximum value occurrence within the summary period is used.

Integral The integrals of analog summaries are calculated using the Integral column of the
AnalogSummaryHistory table. Interpolation type is ignored for analog summary
values, and STAIRSTEP interpolation is always used. PercentGood is calculated by
considering the TimeGood of each analog summary.

If cycle boundaries do not exactly match the summary periods of the stored analog
summaries, the integrals and time good are calculated by prorating the integral
and time good values for the portion of the time the summary period overlaps
with the cycle. Quality is set to 64 (uncertain) if cycle boundaries do not match
summary periods.

If the QualityDetail of any analog summary considered for a cycle is uncertain (64),
the resulting quality will be set to 64.

Slope The last value within the summary period is used. The actual timestamp of the last
value occurrence within the summary period is used.

ValueState Cannot be used with analog summary data. No values are returned.

Counter Cannot be used with analog summary data. No values are returned.

RoundTrip Cannot be used with analog summary data. No values are returned.

 AVEVA™ Historian Retrieval Guide
 Chapter 2 – Data Retrieval Options

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 136

For an analog summary tag, if any of the data within a summary period has an OPCQuality other than Good, the
OPCQuality returned will be Uncertain. This is true even for summary values that are not calculated, such as
first, last, minimum, maximum, and so on. For example, if the OPCQuality for a last value is actually Good, but
there was a I/O Server disconnect during the summary calculation period, the OPCQuality for the last value is
returned as Uncertain. A QualityDetail of 202 is used to distinguish between the original point and the latest
point.

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 137

In addition to query examples that use the AVEVA Historian time domain extensions, other query examples are
provided to demonstrate how to perform more complex queries or to further explain how retrieval works.

The examples provided are not exhaustive of all possible database queries, but they should give you an idea of
the kinds of queries that you could write.

For general information on creating SQL queries, see your Microsoft SQL Server documentation.

Note: If you have configured SQL Server to be case-sensitive, be sure that you use the correct case when
writing queries.

Querying the History Table
The History table presents acquired plant data in a historical format. For more information, see History Tables
and Views in the AVEVA Historian Database Reference.

The following query returns the date/time stamp and value for the tag "ReactLevel." The query uses the remote
table view (History is used in place of INSQL.Runtime.dbo.History).

If you do not specify a wwCycleCount or wwResolution, the query will return 100 rows (the default).

SELECT DateTime, Sec = DATEPART(ss, DateTime), TagName, Value

FROM History
WHERE TagName = 'ReactLevel'

AND DateTime >= '2001-03-13 1:15:00pm'
AND DateTime <= '2001-03-13 2:15:00pm'
AND wwRetrievalMode = 'Cyclic'

The results are:

DateTime Sec TagName Value

2001-03-13 13:15:00.000 0 ReactLevel 1775.0

2001-03-13 13:15:00.000 36 ReactLevel 1260.0

2001-03-13 13:16:00.000 12 ReactLevel 1650.0

2001-03-13 13:16:00.000 49 ReactLevel 1280.0

2001-03-13 13:17:00.000 25 ReactLevel 1525.0

Chapter 3

SQL Query Examples

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 138

2001-03-13 13:18:00.000 1 ReactLevel 585.0

2001-03-13 13:18:00.000 38 ReactLevel 1400.0

2001-03-13 13:19:00.000 14 ReactLevel 650.0

2001-03-13 13:19:00.000 50 ReactLevel 2025.0

2001-03-13 13:20:00.000 27 ReactLevel 765.0

2001-03-13 13:21:00.000 3 ReactLevel 2000.0

2001-03-13 13:21:00.000 39 ReactLevel 830.0

2001-03-13 13:22:00.000 16 ReactLevel 1925.0

...

(100 row(s) affected)

Querying the Live Table
The Live table presents the latest available streamed data for each tag in the table.

Note: In certain situations, data can bypass the Live table. These situations include:
 - Receiving non-streamed original data (store/forward or CSV);
 - Receiving revision data for a Latest value;
 - Receiving no new streamed values after Historian was shut down and disabled, or after the computer was
rebooted.

For more information, see History Tables and Views in the AVEVA Historian Database Reference.

The following query returns the current value of the specified tag. The query uses the remote table view (Live is
used in place of INSQL.Runtime.dbo.Live).

SELECT TagName, Value

FROM Live
WHERE TagName = 'ReactLevel'

The result is:

TagName Value

ReactLevel 1145.0

(1 row(s) affected)

Querying the WideHistory Table
The wide extension table is a transposition of the History table. Use the wide history tables any time you want to
find the value of one or more tags over time and need to specify different filter criteria for each tag.

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 139

For more information, see History Tables and Views in the AVEVA Historian Database Reference.

The following query returns the value of two tags from the WideHistory table. The WideHistory table can only be
accessed using the OPENQUERY function. The "Runtime.dbo." qualifier is optional.

SELECT * FROM OpenQuery(INSQL,'

SELECT DateTime, ReactLevel, ReactTemp
FROM Runtime.dbo.WideHistory

WHERE Reactlevel > 1500
AND ReactTemp > 150

')

The results are:

DateTime ReactLevel ReactTemp

2001-03-02 06:20:00.000 1865.0 191.3

2001-03-02 06:21:00.000 2025.0 195.9

2001-03-02 06:22:00.000 2000.0 195.9

2001-03-02 06:23:00.000 2025.0 180.9

2001-03-02 06:27:00.000 1505.0 177.5

(5 row(s) affected).

In the WideHistory table, the column type is determined by the tag type.

SELECT * FROM OpenQuery(INSQL, 'SELECT DateTime, SysTimeMin, SysPulse, SysString FROM
WideHistory

WHERE DateTime >= "2001-12-20 0:00"
AND DateTime <= "2001-12-20 0:05"
AND wwRetrievalMode = "delta"

')

The results are:

DateTime SysTimeM
in

SysPulse SysString

2001-12-20 00:00:00.000 0 0 2001/12/20 08:00:00

2001-12-20 00:01:00.000 1 1 2001/12/20 08:00:00

2001-12-20 00:02:00.000 2 0 2001/12/20 08:00:00

2001-12-20 00:03:00.000 3 1 2001/12/20 08:00:00

2001-12-20 00:04:00.000 4 0 2001/12/20 08:00:00

2001-12-20 00:05:00.000 5 1 2001/12/20 08:00:00

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 140

Querying Wide Tables in Delta Retrieval Mode
Wide tables in delta retrieval mode will behave normally if only one tag is returned. However, for a multiple tag
display, a complete row is returned to the client for each instance in which one or more of the tags in the query
returns a different value. The row will reflect the actual values being returned for the tags returning results, and
will reflect the previous values for the remaining tags in the result set (similar to cyclic retrieval).

Note: The value can be "invalid" or some other quality value.

The following query returns values for three tags from the WideHistory table. "MyTagName" is a tag that
periodically is invalid.

SELECT * FROM OpenQuery(INSQL,'

SELECT DateTime, SysTimeSec, SysTimeMin, MyTagName
FROM WideHistory

WHERE DateTime >= "2001-05-12 13:00:00"
AND DateTime <= "2001-05-12 13:02:00"
AND wwRetrievalMode = "Delta"

')

The results are:

DateTime SysTimeSec SysTimeMin MyTagName

...

2001-05-12 13:00:55.000 55 00 1

2001-05-12 13:00:56.000 56 00 1

2001-05-12 13:00:57.000 57 00 1

2001-05-12 13:00:57.500 57 00 null

2001-05-12 13:00:58.000 58 00 null

2001-05-12 13:00:59.000 59 00 null

2001-05-12 13:01:00.000 00 01 null

2001-05-12 13:01:00.500 00 01 2

2001-05-12 13:01:01.000 01 01 2

2001-05-12 13:01:02.000 02 01 2

2001-05-12 13:01:03.000 03 01 2

...

Notice that 57 appears twice since the occurrence of 1 changing to NULL for tag "MyTagName" occurs sometime
between the 57th and 58th second. The same applies for NULL changing to 2. The same behavior applies to
discrete values.

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 141

Querying the AnalogSummaryHistory View
The AnalogSummaryHistory view is a "wide" view that allows you to return multiple statistics for a single tag
within a single query.

The following query returns the minimum, maximum, and average values for the SysTimeSec tag for the last
hour.

declare @End datetime
set @End = left(convert(varchar(30),getdate(),120),14)+'00:00'
SELECT Tagname, OPCQuality, Minimum as MIN, Maximum as MAX, Average as AVG

FROM AnalogSummaryHistory
WHERE TagName = 'SysTimeSec'

AND StartDateTime >= dateadd(minute,-60,@End)
AND EndDateTime < @End
AND wwCycleCount = 2

The results are:

Tagname OPCQuality MIN MAX AVG

SysTimeSec 192 0 59 29.5

Note: When querying the AnalogSummaryHistory view, a data point occuring at the same timestamp as the
EndDateTime is not considered part of the query interval. Instead, it is treated as the first data point in the next
interval beginning at EndDateTime, and so is not included in the maximum or average value calculations.

Querying the StateSummaryHistory View
The StateSummaryHistory view is a "wide" view that allows you to return multiple statistics for a single tag
within a single query.

The following query returns the state count, total time in state, and the percentage of time in state for the
SysPulse system tag for the last hour. One row is returned for each state.

DECLARE @End DateTime
SET @END = getdate()

SELECT
TagName,
Value,
OPCQuality,
StateCount,
StateTimeTotal,
StateTimePercent

FROM dbo.StateSummaryHistory
WHERE TagName = N'SysPulse'

AND StartDateTime >= dateadd(minute,-60,@End)
AND EndDateTime <= @End
AND wwCycleCount = 1

The results are:

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 142

TagName Value OPCQuality StateC
ount

StateTimeTotal StateTimePercent

SysPulse 1 192 30 1800000

50

SysPulse 0 192 30 1800000

50

The following query returns the minimum time in state, the minimum contained time in state, and value for the
SysTimeSec system tag.

SELECT

TagName,
StartDateTime,
EndDateTime,
StateTimeMin as STM,
StateTimeMinContained as STMC,
Value

FROM StateSummaryHistory
WHERE TagName='SysTimeSec'

AND wwRetrievalMode='Cyclic'
AND wwResolution=5000
AND StartDateTime>='2009-10-21 17:40:00.123'
AND StartDateTime<='2009-10-21 17:40:05.000'

The results are:

TagName StartDateTime EndDateTime STM STMC Value

SysTimeSec 2009-10-21
17:40:00.123

2009-10-21
17:40:05.123

877 0 0

SysTimeSec 2009-10-21
17:40:00.123

2009-10-21
17:40:05.123

1000 1000 1

SysTimeSec 2009-10-21
17:40:00.123

2009-10-21
17:40:05.123

1000 1000 2

SysTimeSec 2009-10-21
17:40:00.123

2009-10-21
17:40:05.123

1000 1000 3

SysTimeSec 2009-10-21
17:40:00.123

2009-10-21
17:40:05.123

1000 1000 4

SysTimeSec 2009-10-21
17:40:00.123

2009-10-21
17:40:05.123

123 0 5

Using SliceBy
You can retrieve summary statistics for a tag per batch by using the SliceBy parameter in a query. Batches can
be defined by changes in a different tag, such as a batch ID or valve position.

For example, suppose you wanted statistics on flow rate depending on the position of a valve. Each time the
valve position changes, a new batch is reported. Here is a query to retrieve that information:

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 143

select SliceByValue, TagName, StartDateTime, EndDateTime, OPCQuality, PercentGood,
wwResolution, Average
from AnalogSummaryHistory
where TagName='M31.FlowIn'
and SliceBy='M31.ValveIn'
and StartDateTime>='2018-11-27 0:00'
and EndDateTime<='2018-11-28 0:00'

The results are:

SliceBy
Value

TagName StartDateTim
e

EndDateTime OPCQual
ity

Percent
Good

wwResolut
ion

Average

0 M31.FlowIn 2018-11-27
07:56:11

2018-11-27
09:49:47

192 100 6816000 57.4379

1 M31.FlowIn 2018-11-27
09:49:47

2018-11-27
15:23:23

192 100 20016000 0.5108

0 M31.FlowIn 2018-11-27
15:23:23

2018-11-27
17:24:17

192 100 7254000 50.3615

1 M31.FlowIn 2018-11-27
17:24:17

2018-11-27
21:50:59

192 100 16002000 0.5220

0 M31.FlowIn 2018-11-27
21:50:59

2018-11-27
23:47:17

192 100 6975000 51.4363

This query uses the same data. This time, using SliceByValue, the query retrieves statistics on the flow rate, but
only for those batches when the valve is open.

select SliceByValue, TagName, StartDateTime, EndDateTime, OPCQuality, PercentGood,
wwResolution, Average
from AnalogSummaryHistory
where TagName='M31.FlowIn'
and SliceBy='M31.ValveIn'
and SliceByValue=1
and StartDateTime>='2018-11-27 0:00'
and EndDateTime<='2018-11-28 0:00'

The results this time are:

SliceBy
Value

TagName StartDateTim
e

EndDateTime OPCQual
ity

Percent
Good

wwResoluti
on

Average

1 M31.FlowIn 2018-11-27
09:49:47

2018-11-27
15:23:23

192 100 20016000 0.5108

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 144

1 M31.FlowIn 2018-11-27
17:24:17

2018-11-27
21:50:59

192 100 16002000 0.5220

In the previous two queries,
"StartDateTime>=" and "EndDateTime<="
define boundaries for the query to
include only those batches that both start
and end within the boundaries set. Any
batches that begin before or end after
the reporting period are excluded.

This next query is the same as the
previous one, but swaps the start and
end time criteria to include batches that
begin before or end after the reporting
period:

select SliceByValue, TagName, StartDateTime, EndDateTime, OPCQuality, PercentGood,
wwResolution, Average
from AnalogSummaryHistory
where TagName='M31.FlowIn'
and SliceBy='M31.ValveIn'
and SliceByValue=1
and EndDateTime>='2018-11-27 0:00'
and StartDateTime<='2018-11-28 0:00'

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 145

The results are:

SliceBy
Value

TagName StartDateTim
e

EndDateTime OPCQua
lity

Percent
Good

wwResoluti
on

Average

1 M31.FlowIn 2018-11-26
23:08:08

2018-11-27
07:56:11

192 100 31683000 0.5386

1 M31.FlowIn 2018-11-27
09:49:47

2018-11-27
15:23:23

192 100 20016000 0.5108

1 M31.FlowIn 2018-11-27
17:24:17

2018-11-27
21:50:59

192 100 16002000 0.5220

1 M31.FlowIn 2018-11-27
23:47:14

2018-11-28
10:53:20

192 100 39966000 0.5039

SliceBy Queries That Include Future

If you define a timeframe that includes a batch that is not completed, you will get an summary statictics for the
batch data currently available, but it will be marked with "OPCQuality=64", meaning the quality is uncertain
because the end time is unknown. An ending batch can be incomplete because:

 The batch is currently in progress and the next batch has not yet initiated. Batches are defined by changes in
a different tag. If that tag has not yet changed, the current batch is in progress and the next batch has not
initiated.

 The batch did physically completed, but the data hasn’t yet been written to the server due to latency,
power-outage, etc.

Here is an example. This query retrieves average values for batches that completed on Nov 28. The "select
getdate()" line shows that the current timestamp for the query is Nov 28, 2018 at 4:31. Since the day is not over,
the system cannot know for sure that another batch won’t be initiated. Therefore, the last retrieved batch is
incomplete.

select SliceByValue, TagName, StartDateTime, EndDateTime, OPCQuality, PercentGood,
wwResolution, Average
from AnalogSummaryHistory
where TagName='M31.Level'
and SliceBy='M31.Batch'
and EndDateTime>='2018-11-28 0:00'
and StartDateTime<='2018-11-29 0:00'
select getdate()

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 146

The results are:

SliceBy
Value

TagName StartDateTim
e

EndDateTime OPCQual
ity

Percent
Good

wwResoluti
on

Average

CRC-4 M31.Level 2018-11-27
21:44:23

2018-11-28
03:03:41

192 100 19158000 94.9624

 M31.Level 2018-11-28
03:03:41

2018-11-28
04:12:20

192 100 4119000 1.6700

BLB-7 M31.Level 2018-11-28
04:12:20

2018-11-28
00:00:00

64 1.7020 NULL 134.8897

(No column name)

2018-11-28 04:31:33

Using Group By with SliceBy

You can use Group By in a query to get an overall summary off all occurrences of a state. For example, you
might want an overall summary of production when a piece of equipment was in a certain position.

Here is an example of using Group By to organize data by tag state. This query retrieves an overall summary of
statistics for each position of the valve. One line summarizes all batches for the day where the valve was closed
(0) and another line for all batches with the valve open (1).

select SliceByValue, TagName, StartDateTime=min(StartDateTime),
EndDateTime=max(EndDateTime), TotalTime=sum(wwResolution), Maxiumum=max(Maximum),
Total=sum(Integral), Average=sum(Average*wwResolution)/sum(wwResolution),
AvgOfAvg=avg(Average)
from AnalogSummaryHistory
where TagName='M31.FlowIn'
and SliceBy='M31.ValveIn'
and EndDateTime>='2018-11-27 0:00'
and StartDateTime<='2018-11-28 0:00'
group by TagName, SliceByValue

The results are:

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 147

TagName SliceB
yValue

StartTime EndTime TotalT
ime

Maxim
um

Total Averag
e

AvgOfAv
g

M31.
FlowIn

0 2018-11-27
09:49:47

2018-11-27
21:50:59

360180
00

6.75 309.66 0.51 0.51

M31.
FlowIn

1 2018-11-27
07:56:11

2018-11-27
23:47:14

210450
00

114.9
2

18593.13 53.00 53.078

Note: This example correctly calculates the overall average for each state in the "Average" column by weighting
the duration of each state. As explained by Simpson’s Paradox, the simpler, "AvgOfAvg" calculation is not
statistically accurate and can differ significantly with some data sets.

Using an Unconventional Tagname in a Wide Table Query

In a SQL query against a wide table, unconventional tag names must be delimited with brackets ([]), because
the tagname is used as a column name. For example, tagnames containing a minus (-) or a forward slash (/)
must be delimited, otherwise the parser will attempt to perform the corresponding arithmetic operation. No
error will result from using brackets where not strictly necessary. For more information on unconventional
tagnames, see Tag Naming Conventions.

The following is an example of how to delimit a tagname in a query on a wide table. "ReactTemp-2" and
"ReactTemp+2" are tagnames. Without the delimiters, the parser would attempt to include the "-2" and "+2"
suffixes on the tagnames as part of the arithmetic operation.

For clarity and maintainability of your queries, however, it is recommended that you do not use special
characters in tagnames unless strictly necessary.

SELECT * FROM OpenQuery(INSQL,

'SELECT ReactTemp, [ReactTemp-2]-2, [ReactTemp+2]+2 FROM WideHistory WHERE ... ')

Using an INNER REMOTE JOIN

Instead of using " … WHERE TagName IN (SELECT TagName …) ", it is more efficient to use INNER REMOTE JOIN
syntax.

In general, use the following pattern for INNER REMOTE JOIN queries against the historian:

<SQLServerTable> INNER REMOTE JOIN <HistorianExtensionTable>

This query returns data from the history table, based on a string tag that you filter for from the StringTag table:

SELECT DateTime, T.TagName, vValue, Quality, QualityDetail

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 148

FROM StringTag T inner remote join History H
ON T.TagName = H.TagName

WHERE T.MaxLength = 64
AND DateTime >='2002-03-10 12:00:00.000'
AND DateTime <='2002-03-10 16:40:00.000'
AND wwRetrievalMode = 'Delta'

This query returns data from the history table, based on a discrete tag that you filter for from the Tag table:

SELECT DateTime, T.TagName, vValue, Quality, QualityDetail

FROM Tag T inner remote join History H
ON T.TagName = H.TagName

WHERE T.TagType = 2
AND T.Description like 'Discrete%'
AND DateTime >='2002-03-10 12:00:00.000'
AND DateTime <='2002-03-10 16:40:00.000'
AND wwRetrievalMode = 'Delta'

Setting Both a Time and Value Deadband for Retrieval
If both time and value deadbands are specified, then every sample is checked for both deadbands, against the
current basis value (the last sample returned).

If it passes both tests, then it is returned and acts as the basis for checking the next sample.

For example:

SELECT DateTime, TagName, Value

FROM History
WHERE TagName = 'ReactTemp'

AND DateTime >= '2002-03-13 10:08'
AND DateTime <= '2002-03-13 10:28'
AND wwRetrievalMode = 'Delta'
AND wwTimeDeadband = 5000
AND wwValueDeadband = 5

The tag selected, ReactTemp, has a MinEU value of 0 and a MaxEU value of 220. Thus, the value deadband will
be 5 percent of (220 - 0), which equals 11. ReactTemp changes rapidly between its extreme values, but the value
remains constant for short periods near the high and low temperature limits. Therefore, when changes are
rapid, the value deadband condition is satisfied first, then the time deadband is satisfied. In this region, the
behavior is dominated by the time deadband, and the returned rows are spaced at 5 second intervals. Where
the temperature is more constant (particularly at the low temperature end), the time deadband is satisfied first,
followed by the value deadband. Both deadbands are satisfied only when the value of a row is more than 11
degrees different from the previous row. Thus, the effect of value deadband can be seen to dominate near the
low and high temperature extremes of the tag.

The results are:

DateTime TagName Value

2002-03-13 10:08:00.000 ReactTemp 121.0

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 149

DateTime TagName Value

2002-03-13 10:08:10.000 ReactTemp 189.10000610351562

2002-03-13 10:08:20.000 ReactTemp 147.69999694824219

2002-03-13 10:08:30.000 ReactTemp 106.30000305175781

2002-03-13 10:08:40.000 ReactTemp 30.100000381469727

2002-03-13 10:08:50.000 ReactTemp 16.399999618530273

2002-03-13 10:09:00.000 ReactTemp 61.0

2002-03-13 10:09:10.000 ReactTemp 151.0

2002-03-13 10:09:20.000 ReactTemp 173.0

2002-03-13 10:09:30.000 ReactTemp 131.60000610351562

2002-03-13 10:09:40.000 ReactTemp 57.700000762939453

2002-03-13 10:09:50.000 ReactTemp 16.299999237060547

2002-03-13 10:10:10.000 ReactTemp 96.0

2002-03-13 10:10:20.000 ReactTemp 186.0

2002-03-13 10:10:30.000 ReactTemp 156.89999389648437

2002-03-13 10:10:40.000 ReactTemp 115.5

2002-03-13 10:10:50.000 ReactTemp 41.599998474121094

2002-03-13 10:11:00.000 ReactTemp 21.0

2002-03-13 10:11:10.000 ReactTemp 41.0

2002-03-13 10:11:20.000 ReactTemp 131.0

2002-03-13 10:11:30.000 ReactTemp 184.5

2002-03-13 10:11:40.000 ReactTemp 140.80000305175781

2002-03-13 10:11:50.000 ReactTemp 99.400001525878906

2002-03-13 10:12:00.000 ReactTemp 25.5

2002-03-13 10:12:20.000 ReactTemp 76.0

2002-03-13 10:12:30.000 ReactTemp 166.0

2002-03-13 10:12:50.000 ReactTemp 124.69999694824219

2002-03-13 10:13:00.000 ReactTemp 50.799999237060547

2002-03-13 10:13:10.000 ReactTemp 16.399999618530273

2002-03-13 10:13:30.000 ReactTemp 111.0

2002-03-13 10:13:40.000 ReactTemp 193.69999694824219

2002-03-13 10:13:50.000 ReactTemp 152.30000305175781

2002-03-13 10:14:00.000 ReactTemp 108.59999847412109

2002-03-13 10:14:10.000 ReactTemp 34.700000762939453

2002-03-13 10:14:20.000 ReactTemp 21.0

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 150

DateTime TagName Value

2002-03-13 10:14:30.000 ReactTemp 51.0

2002-03-13 10:14:40.000 ReactTemp 146.0

2002-03-13 10:14:50.000 ReactTemp 177.60000610351562

2002-03-13 10:15:00.000 ReactTemp 136.19999694824219

2002-03-13 10:15:10.000 ReactTemp 92.5

2002-03-13 10:15:20.000 ReactTemp 18.600000381469727

2002-03-13 10:15:40.000 ReactTemp 86.0

2002-03-13 10:15:50.000 ReactTemp 181.0

2002-03-13 10:16:00.000 ReactTemp 161.5

2002-03-13 10:16:10.000 ReactTemp 120.09999847412109

2002-03-13 10:16:20.000 ReactTemp 76.400001525878906

2002-03-13 10:16:30.000 ReactTemp 20.899999618530273

2002-03-13 10:16:50.000 ReactTemp 81.0

2002-03-13 10:17:00.000 ReactTemp 176.0

2002-03-13 10:17:10.000 ReactTemp 163.80000305175781

2002-03-13 10:17:20.000 ReactTemp 122.40000152587891

2002-03-13 10:17:30.000 ReactTemp 46.200000762939453

2002-03-13 10:17:40.000 ReactTemp 18.700000762939453

2002-03-13 10:18:00.000 ReactTemp 116.0

2002-03-13 10:18:10.000 ReactTemp 189.10000610351562

2002-03-13 10:18:20.000 ReactTemp 147.69999694824219

...

Using wwResolution, wwCycleCount, and wwRetrievalMode in the

Same Query
The results of a database query will vary depending on the combination of resolution, cycle count, and retrieval
mode that you use in the query. These results are summarized in the following table (where N is a numeric
value):

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 151

Retrieval
Mode Resolution Cycle Count Results

CYCLIC N 0 (or no
value)

All stored data for tags during the specified time
interval are queried, and then a resolution of N ms
applied.

CYCLIC 0 (or no value) 0 The server will return 100,000 rows per tag specified.

CYCLIC 0 (or no value) N All stored data for tags during the specified time
interval are queried, and then a cycle count of N
evenly spaced rows is applied.

CYCLIC N (any value is
ignored)

All stored data for tags during the specified time
interval are queried, and then a resolution of N ms
applied.

CYCLIC (no value) (no value or a
value less
than 0)

The server will return 100 rows per tag specified.

DELTA (any value is
ignored)

0 All values that changed during the specified time
interval are returned (up to 100,000 rows total).

DELTA (any value is
ignored)

N Values that changed during the specified time interval
are queried, and then a cycle count (first N rows) is
applied. The cycle count limits the maximum number
of rows returned, regardless of how many tags were
queried. For example, a query that applies a cycle
count of 20 to four tags will return a maximum of 20
rows of data. An initial row will be returned for each
tag, and the remaining 16 rows will be based on
subsequent value changes for any tag.

DELTA (any value is
ignored)

(no value) All values that changed during the specified time
interval are returned (no row limit).

In general, if there is an error in the virtual columns, or an unresolvable conflict, then zero rows are returned.

Determining Cycle Boundaries

Cycle boundaries are calculated based on the query start and end times, wwCycleCount, and wwResolution.

If you only specify wwCycleCount, evenly spaced cycles are returned based on the value of wwCycleCount.

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 152

If you only specify wwResolution, cycles are spaced wwResolution milliseconds apart starting at the query start
time until query end time is reached. The last cycle will have whatever duration is required to end exactly at the
query end time. If this last duration is shortened by this rule, it is known as a partial cycle. Because of this, the
final cycle duration may not match wwResolution.

If both wwCycleCount and wwResolution are specified, no result rows will be returned. If you specify neither
wwCycleCount nor wwResolution in the query, the query will return 100 rows.

Unless otherwise specified, a value is considered in a given full or partial cycle if its timestamp occurs at or after
the cycle start (timestamp >= cycle start) and before the cycle end (timestamp < cycle end).

Mixing Tag Types in the Same Query
The History and Live tables use the sql_variant data type for the vValue column, allowing the return of various
data types in a single column. In other words, these tables allow values for tags of different types to be retrieved
with a simple query, without the need for a JOIN operation.

For example:

SELECT TagName, DateTime, vValue

FROM History
WHERE TagName IN ('SysTimeMin', 'SysPulse', 'SysString')

AND DateTime >= '2001-12-20 0:00'
AND DateTime <= '2001-12-20 0:05'
AND wwRetrievalMode = 'delta'

The results are:

TagName DateTime vValue

SysTimeMin 2001-12-20 00:00:00.000 0

SysPulse 2001-12-20 00:00:00.000 0

SysString 2001-12-20 00:00:00.000 2001/12/20 08:00:00

SysTimeMin 2001-12-20 00:01:00.000 1

SysPulse 2001-12-20 00:01:00.000 1

SysTimeMin 2001-12-20 00:02:00.000 2

SysPulse 2001-12-20 00:02:00.000 0

SysTimeMin 2001-12-20 00:03:00.000 3

SysPulse 2001-12-20 00:03:00.000 1

SysTimeMin 2001-12-20 00:04:00.000 4

SysPulse 2001-12-20 00:04:00.000 0

SysTimeMin 2001-12-20 00:05:00.000 5

SysPulse 2001-12-20 00:05:00.000 1

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 153

Using a Criteria Condition on a Column of Variant Data
The AVEVA Historian OLE DB provider sends variant data to the SQL Server as a string. If the query contains a
criteria condition on a column containing variant type data, the filtering is handled by SQL Server. An example of
a criteria condition is:

WHERE ... vValue = 2

To perform the filtering, the SQL Server must determine the data type of the constant (in this example, 2), and
attempt to convert the variant (string) to this destination type. The SQL Server assumes that a constant without
a decimal is an integer, and attempts to convert the string to an integer type. This conversion will fail in SQL
Server if the string actually represents a float (for example, 2.00123).

You should explicitly state the destination type by means of a CONVERT function. This is the only reliable way of
filtering on the vValue column, which contains variant data.

For example:

SELECT DateTime, Quality, OPCQuality, QualityDetail, Value, vValue, TagName

FROM History
WHERE TagName IN ('ADxxxF36', 'SysTimeMin', 'SysPulse')

AND DateTime >= '12-04-2001 04:00:00.000'
AND DateTime <= '12-04-2001 04:03:00.000'
AND wwRetrievalMode = 'Delta'
AND convert(float, vValue) = 2

The following is another example:

SELECT DateTime, Quality, OPCQuality, QualityDetail, Value, vValue, TagName

FROM History
WHERE TagName IN ('VectorX', 'SysTimeMin', 'SysPulse')

AND DateTime >= '20020313 04:00:07.000'
AND DateTime <= '20020313 04:01:00.000'
AND wwRetrievalMode = 'Delta'
AND convert(float, vValue) > 1
AND convert(float, vValue) < 2

Using DateTime Functions
Date functions perform an operation on a date and time input value and return either a string, numeric, or date
and time value.

The following query returns the date/time stamp and value for the SysTimeSec tag for the last 10 minutes.

SELECT DateTime, TagName, Value, Quality

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= dateadd(Minute, -10, GetDate())
AND DateTime <= GetDate()
AND wwRetrievalMode = 'Cyclic'

The results are:

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 154

DateTime TagName Value Quality

2001-12-15 13:00:00.000 SysTimeSec 0.0 0

2001-12-15 13:00:06.060 SysTimeSec 6.0 0

2001-12-15 13:00:12.120 SysTimeSec 12.0 0

2001-12-15 13:00:18.180 SysTimeSec 18.0 0

2001-12-15 13:00:24.240 SysTimeSec 24.0 0

2001-12-15 13:00:30.300 SysTimeSec 30.0 0

2001-12-15 13:00:36.360 SysTimeSec 36.0 0

2001-12-15 13:00:42.420 SysTimeSec 42.0 0

...

For any query, the SQL Server performs all date/time computations in local server time, reformulates the query
with specific dates, and sends it on to the AVEVA Historian OLE DB provider. The AVEVA Historian OLE DB
provider then applies the wwTimeZone parameter in determining the result set.

For example, the following query requests the last 30 minutes of data, expressed in Eastern Daylight Time (EDT).
The server is located in the Pacific Daylight Time (PDT) zone.

SELECT DateTime, TagName, Value FROM History

 WHERE TagName IN ('SysTimeHour', 'SysTimeMin', 'SysTimeSec')
 AND DateTime > DateAdd(mi, -30, GetDate())
 AND wwTimeZone = 'eastern daylight time'

If it is currently 14:00:00 in the Pacific Daylight Time zone, then it is 17:00:00 in the Eastern Daylight Time zone.
You would expect the query to return data from 16:30:00 to 17:00:00 EDT, representing the last 30 minutes in
the Eastern Daylight Time zone.

However, the data that is returned is from 13:30:00 to 17:00:00 EDT. This is because the SQL Server computes
the "DateAdd(mi, -30, GetDate())" part of the query assuming the local server time zone (in this example,
PDT). It then passes the AVEVA Historian OLE DB provider a query similar to the following:

SELECT DateTime, TagName, Value FROM History

WHERE TagName IN ('SysTimeHour', 'SysTimeMin', 'SysTimeSec')
AND DateTime > 'YYYY-MM-DD 13:30:00.000'
AND wwTimeZone = 'eastern daylight time'

Because the OLE DB provider is not provided an end date, it assumes the end date to be the current time in the
specified time zone, which is 17:00:00 EDT.

Using the GROUP BY Clause
The GROUP BY clause works if the query uses the four-part naming convention or one of the associated views.

The following example will find the highest value of a specified set of tags over a time period.

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 155

SELECT TagName, Max(Value)
 FROM INSQL.Runtime.dbo.History

 WHERE TagName IN ('ReactTemp','ReactLevel','SysTimeSec')
 AND DateTime > '2001-12-20 0:00'
 AND DateTime < '2001-12-20 0:05'
 GROUP BY TagName

The results are:

SysTimeSec 59.0

Using the COUNT() Function
The COUNT(*) function works directly in a four-part query, but is not supported inside of the OPENQUERY
function.

For example:

SELECT count(*)

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-12-20 0:00'
AND DateTime <= '2001-12-20 0:05'
AND wwRetrievalMode = 'delta'
AND Value >= 30

The result is:

150

If you use the OPENQUERY function, you cannot perform arithmetic functions on the COUNT(*) column.
However, you can perform the count outside of the OPENQUERY, as follows:

SELECT count(*), count(*)/2 FROM OPENQUERY(INSQL, 'SELECT DateTime, vValue, Quality,
QualityDetail

FROM History
WHERE TagName IN ("SysTimeSec")

AND DateTime >= "2002-04-16 03:00:00.000"
AND DateTime <= "2002-04-16 06:00:00.000"
AND wwRetrievalMode = "Delta"

')

The result is:

10801 5400

(1 row(s) affected)

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 156

Using an Arithmetic Function
The following query adds the values of two tags from the WideHistory table.

SELECT * FROM OpenQuery(INSQL,'

SELECT DateTime, ReactLevel, ProdLevel, "Sum" = ReactLevel+Prodlevel
FROM WideHistory

WHERE DateTime > "2001-02-28 18:56"
AND DateTime < "2001-02-28 19:00"
AND wwRetrievalMode = "Cyclic"

')

The results are:

DateTime ReactLevel Prodlevel Sum

2001-02-28 18:56:00.000 1525.0 2343.0 3868.0

2001-02-28 18:56:00.000 1525.0 2343.0 3868.0

2001-02-28 18:56:00.000 1525.0 2343.0 3868.0

2001-02-28 18:56:00.000 1525.0 2343.0 3868.0

2001-02-28 18:56:00.000 2025.0 2343.0 4368.0

2001-02-28 18:56:00.000 2025.0 2343.0 4368.0

...

(100 row(s) affected)

If you use a math operator, such as plus (+), minus (-), multiply (*), or divide (/), you will need to add a blank
space in front of and after the operator. For example, "Value - 2" instead of "Value-2".

Using an Aggregate Function
The following query returns the minimum, maximum, average, and sum of the tag 'ReactLevel' from the
WideHistory table.

SELECT * FROM OpenQuery(INSQL,'

SELECT "Minimum" = min(ReactLevel),
"Maximum" = max(ReactLevel),
"Average" = avg(ReactLevel),
"Sum" = sum(ReactLevel)

FROM WideHistory
WHERE DateTime > "2001-02-28 18:55:00 "
AND DateTime < "2001-02-28 19:00:00"
AND wwRetrievalMode = "Cyclic"

')

The results are:

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 157

Minimum Maximum Average Sum

-25.0 2025.0 1181.2 118120.0

(1 row(s) affected)

If you perform a SUM or AVG in delta retrieval mode against the Wide table, the aggregation will only be
performed when the value has changed. The aggregation will not apply to all of the rows returned for each
column.

For example, the following query has no aggregation applied:

SELECT * FROM OpenQuery(INSQL, 'SELECT DateTime, SysTimeHour, SysTimeMin, SysTimeSec, SysDateDay

FROM AnalogWideHistory
WHERE DateTime >= "2001-08-15 13:20:57.345"

AND DateTime < "2001-08-15 13:21:03.345"
AND wwRetrievalMode = "Delta"

')
GO

The results are:

DateTime SysTimeHour SysTimeMin SysTimeSec SysDateDay

2001-08-15 13:20:57.343 13 20 57 15

2001-08-15 13:20:58.000 13 20 58 15

2001-08-15 13:20:59.000 13 20 59 15

2001-08-15 13:21:00.000 13 21 0 15

2001-08-15 13:21:01.000 13 21 1 15

2001-08-15 13:21:02.000 13 21 2 15

2001-08-15 13:21:03.000 13 21 3 15

(7 row(s) affected)

Then, a SUM is applied to all of the returned column values:

SELECT * FROM OpenQuery(INSQL,'SELECT Sum(SysTimeHour), Sum(SysTimeMin), Sum(SysTimeSec),
Sum(SysDateDay)

FROM WideHistory
WHERE DateTime >= "2001-08-15 13:20:57.345"

AND DateTime < "2001-08-15 13:21:03.345"
AND wwRetrievalMode = "Delta"

')
GO

The results are:

SysTimeHour SysTimeMin SysTimeSec SysDateDay

13 41 180 15

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 158

Thus, for delta retrieval mode, a SUM or AVG is applied only if the value has changed from the previous row.

If you perform an AVG in delta retrieval mode, AVG will be computed as:

SUM of delta values/number of delta values

For example, an AVG is applied to all of the returned column values:

SELECT * FROM OpenQuery(INSQL,'SELECT Avg(SysTimeHour), Avg(SysTimeMin), Avg(SysTimeSec),
Avg(SysDateDay)

FROM WideHistory
WHERE DateTime >= "2001-08-15 13:20:57.345"

AND DateTime < "2001-08-15 13:21:03.345"
AND wwRetrievalMode = "Delta"

')
GO

The results are:

SysTimeMin SysTimeSec

20.5 25.714285714285715

Making and Querying Annotations
The following query creates an annotation for the specified tag. The annotation is made in response to a pump
turning off. Then, the annotations for a particular tag are returned.

DECLARE @@UserKey INT
SELECT @@UserKey = UserKey

FROM UserDetail
WHERE UserName = 'wwAdmin'

INSERT INTO Annotation (TagName, UserKey, DateTime, Content)
VALUES ('ReactLevel', @@UserKey, GetDate(), 'The Pump is off')

SELECT DateTime, TagName, Content
FROM Annotation

WHERE Annotation.TagName = 'ReactLevel'
AND DateTime > '27 Feb 01'
AND DateTime <= GetDate()

The results are:

DateTime TagName Content

2001-02-28 19:18:00.000 ReactLevel The Pump is off

(1 row(s) affected)

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 159

Using Comparison Operators with Delta Retrieval

The system behaves differently when doing typical delta-based queries where a start date and end date are
specified using the comparison operators >=, >, <= and <. The comparison operators can be used on the
History and WideHistory tables. The comparison operators also apply regardless of how the query is executed
(for example, four-part naming, OLE DB provider views, and so on).

Delta queries that use the comparison operators return all the valid changes to a set of tags over the specified
time span. Using deadbands and other filters may modify the set of valid changes.

Specifying the Start Date with ">="

If the start date is specified using >= (greater than or equal to), then a row is always returned for the specified
start date. If the start date/time coincides exactly with a valid value change, then the Quality is normal (0).
Otherwise, the value at the start date is returned, and the Quality value is 133 (because the length of time that
the tag's value was at X is unknown).

Query 1

For this query, the start date will not correspond to a data change:

SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime >= '2001-01-13 12:00:30'
AND DateTime < '2001-01-13 12:10:00'

The start time (12:00:30) does not correspond with an actual change in value, and is therefore marked with the
initial quality of 133:

DateTime Value Quality

2001-01-13 12:00:30.000 0 133

2001-01-13 12:01:00.000 1 0

2001-01-13 12:02:00.000 2 0

2001-01-13 12:03:00.000 3 0

2001-01-13 12:04:00.000 4 0

2001-01-13 12:05:00.000 5 0

2001-01-13 12:06:00.000 6 0

2001-01-13 12:07:00.000 7 0

2001-01-13 12:08:00.000 8 0

2001-01-13 12:09:00.000 9 0

(10 row(s) affected)

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 160

Query 2

For this query, the start date will correspond to a data change:

SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime >= '2001-01-13 12:01:00'
AND DateTime < '2001-01-13 12:10:00'

The start time (12:01:00) does correspond exactly with an actual change in value, and is therefore marked with
the normal quality of 0.

DateTime Value Quality

2001-01-13 12:01:00.000 1 0

2001-01-13 12:02:00.000 2 0

2001-01-13 12:03:00.000 3 0

2001-01-13 12:04:00.000 4 0

2001-01-13 12:05:00.000 5 0

2001-01-13 12:06:00.000 6 0

2001-01-13 12:07:00.000 7 0

2001-01-13 12:08:00.000 8 0

2001-01-13 12:09:00.000 9 0

(9 row(s) affected)

Query 3

For this query, the start date will return at least one row, even though the query captures no data changes:

SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime >= '2001-01-13 12:00:30'
AND DateTime < '2001-01-13 12:01:00'

The query does not capture an actual change in value, and is therefore marked with the initial value quality of
133 for the start time of the query:

DateTime Value Quality

2001-01-13 12:00:30.000 0 133

(1 row(s) affected)

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 161

Specifying the Start Date with ">"

If the start date is specified using > (greater than), then the first row returned is the first valid change after (but
not including) the start date. No initial value row is returned. A query that uses > to specify its start date may
return zero rows.

Query 1

For this query, the first row that will be returned will be the first valid change after (but not including) the start
time (12:00:30):

SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime > '2001-01-13 12:00:30'
AND DateTime < '2001-01-13 12:10:00'

The first row returned is the first valid change after (but not including) the start time (12:00:30):

DateTime Value Quality

2001-01-13 12:01:00.000 1 0

2001-01-13 12:02:00.000 2 0

2001-01-13 12:03:00.000 3 0

2001-01-13 12:04:00.000 4 0

2001-01-13 12:05:00.000 5 0

2001-01-13 12:06:00.000 6 0

2001-01-13 12:07:00.000 7 0

2001-01-13 12:08:00.000 8 0

2001-01-13 12:09:00.000 9 0

(9 row(s) affected)

Query 2

For this query, the start date will correspond to a data change, but it will be excluded from the result set
because the operator used is greater than, not greater than or equal to.

SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime > '2001-01-13 12:01:00'
AND DateTime < '2001-01-13 12:10:00'

The start time (12:01:00) corresponds exactly with an actual change in value, but it is excluded from the result
set because the operator used is greater than, not greater than or equal to.

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 162

DateTime Value Quality

2001-01-13 12:02:00.000 2 0

2001-01-13 12:03:00.000 3 0

2001-01-13 12:04:00.000 4 0

2001-01-13 12:05:00.000 5 0

2001-01-13 12:06:00.000 6 0

2001-01-13 12:07:00.000 7 0

2001-01-13 12:08:00.000 8 0

2001-01-13 12:09:00.000 9 0

(8 row(s) affected)

Query 3

This query will return no rows, because no data changes are captured:

SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime > '2001-01-13 12:00:30'
AND DateTime < '2001-01-13 12:01:00'

The query does not capture an actual change in value; therefore, no rows are returned.

DateTime Value Quality

(0 row(s) affected)

Specifying the End Date with "<="

If the end date is specified using <= (less than or equal to) then the last row returned is the last valid change up
to, and including, the end date. If the end date uses "<=" then the last change returned may have a date/time
exactly at the end date. If there is a value exactly at the end date, it will be returned.

This query uses the remote table view.

SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime > '2001-01-13 12:00:30'
AND DateTime <= '2001-01-13 12:10:00'

Note that there is a valid change at exactly the end time of the query (12:10:00):

DateTime Value Quality

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 163

2001-01-13 12:01:00.000 1 0

2001-01-13 12:02:00.000 2 0

2001-01-13 12:03:00.000 3 0

2001-01-13 12:04:00.000 4 0

2001-01-13 12:05:00.000 5 0

2001-01-13 12:06:00.000 6 0

2001-01-13 12:07:00.000 7 0

2001-01-13 12:08:00.000 8 0

2001-01-13 12:09:00.000 9 0

2001-01-13 12:10:00.000 10 0

(10 row(s) affected)

Specifying the End Date with "<"

If the end date is specified using < (less than), then the last row returned is the last valid change up to (but not
including) the end date. If the end date uses "<" then the last event returned will have a date/time less than the
end date. If there is an event exactly at the end date, it will not be returned.

This query uses the remote table view.

SELECT DateTime, Value, Quality

FROM History
WHERE TagName = 'SysTimeMin'

AND wwRetrievalMode = 'Delta'
AND DateTime > '2001-01-13 12:00:30'
AND DateTime < '2001-01-13 12:10:00'

Note that there is a valid change at exactly the end time of the query (12:10:00), but it is excluded from the
result set.

DateTime Value Quality

2001-01-13 12:01:00.000 1 0

2001-01-13 12:02:00.000 2 0

2001-01-13 12:03:00.000 3 0

2001-01-13 12:04:00.000 4 0

2001-01-13 12:05:00.000 5 0

2001-01-13 12:06:00.000 6 0

2001-01-13 12:07:00.000 7 0

2001-01-13 12:08:00.000 8 0

2001-01-13 12:09:00.000 9 0

(9 row(s) affected)

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 164

Using Comparison Operators with Cyclic Retrieval and Cycle Count

Cyclic queries with the wwCycleCount time domain extension return a set of evenly spaced rows over the
specified time span. The result set will always return the number of rows specified by the cycle count extension
for each tag in the query. The resolution for these rows is calculated by dividing the time span by the cycle
count.

Specifying Cycle Count with Two Equity Operators

If the time range is specified using >= and <=, then the first row falls exactly on the start time, and the last row
falls exactly on the end time. In this case, the resolution used is (end date – start date) / (cyclecount – 1).

This query uses a cycle count of 60, resulting in a 1 second resolution for the data. The query uses the remote
table view.

SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2001-01-13 12:00:00'
AND DateTime <= '2001-01-13 12:00:59'
AND wwCycleCount = 60
AND wwRetrievalMode = 'Cyclic'

The results are:

DateTime Value

2001-01-13 12:00:00.000 0

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

...

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

(60 row(s) affected)

Specifying Cycle Count with One Equity Operator

If one end of the time range is excluded (by using > instead of >= or < instead of <=). then a gap of "resolution" is
left at the beginning (or end) of the result set.

The resolution is calculated as (end date – start date) / (cyclecount).

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 165

The row that equates to the time which is designated using the < (or >) operator is not returned.

These queries use the remote table view.

Query 1

This query uses a cycle count of 60, resulting in a 1 second resolution for the data. The starting time is set to >=.

SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND wwCycleCount = 60
AND DateTime >= '2001-01-13 12:00:00'
AND DateTime < '2001-01-13 12:01:00'

The results are:

DateTime Value

2001-01-13 12:00:00.000 0

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

...

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

(60 row(s) affected)

Query 2

This query also uses a cycle count of 60, resulting in a 1 second resolution for the data. The ending time is set to
<=.

SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND wwCycleCount = 60
AND DateTime > '2001-01-13 12:00:00'
AND DateTime <= '2001-01-13 12:01:00'

The results are:

DateTime Value

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 166

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

...

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

2001-01-13 12:01:00.000 0

(60 row(s) affected)

Specifying Cycle Count with No Equity Operators

If both ends of the time range are excluded (by using > and <) then a gap of "resolution" is left at the beginning
and end of the result set.

The resolution is calculated as (end date – start date) / (cyclecount + 1).

The row(s) that equate to the start and end times are not returned.

This query uses the remote table view.

SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND wwCycleCount = 60
AND DateTime > '2001-01-13 12:00:00'
AND DateTime < '2001-01-13 12:01:01'

The results are:

DateTime Value

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

...

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

2001-01-13 12:01:00.000 0

(60 row(s) affected)

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 167

Using Comparison Operators with Cyclic Retrieval and Resolution
Cyclic queries that use comparison operators and the resolution time domain extension return a set of evenly
spaced rows over the specified time span. The resolution for these rows is specified in the query.

Using Two Equality Operators for Comparison with Cyclic Retrieval and

Resolution

If the time range is specified using >= and <=, then the first row falls exactly on the start time. The last row will
fall exactly on the end time, if the resolution divides exactly into the specified time duration. If the resolution
does not divide exactly into the specified time duration, then the last row returned will be the last row satisfying
(start date + N*resolution) which has a timestamp less than the end date.

In short:

 <= endtime MAY return a last row containing the exact endtime (but it is not guaranteed to do so)

 < endtime is guaranteed NOT to return a last row containing the exact endtime

This query sets the resolution to 1 second.

SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND wwResolution = 1000
AND DateTime >= '2001-01-13 12:00:00'
AND DateTime <= '2001-01-13 12:01:00'

The results are:

DateTime Value

2001-01-13 12:00:00.000 0

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

...

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

2001-01-13 12:01:00.000 0

(61 row(s) affected)

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 168

Using One Equality Operator for Comparison with Cyclic Retrieval and

Resolution

If the start time is excluded (by using > instead of >=), then a gap of "resolution" is left at the beginning of the
result set. In this case, the first row returned will have the timestamp of the (start date + resolution). If the end
date uses "<" then the last row returned will be the last row defined by (start date + N*resolution) which has a
timestamp less than the end date.

The row that equates to the time that is designated using the < (or >) operator is not returned.

Query 1

This query uses a resolution of 1000, resulting in a 1 second resolution for the data.. The starting time is set to
>=.

SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

AND wwResolution = 1000
AND DateTime >= '2001-01-13 12:00:00'
AND DateTime < '2001-01-13 12:01:00'

The results are:

DateTime Value

2001-01-13 12:00:00.000 0

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

...

2001-01-13 12:00:55.000 55

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

(60 row(s) affected)

Query 2

This query also uses a row resolution of 1000, resulting in a 1 second resolution for the data. The starting time is
set to <=.

SELECT DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec'

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 169

AND wwResolution = 1000
AND DateTime > '2001-01-13 12:00:00'
AND DateTime <= '2001-01-13 12:01:00'

The results are:

DateTime Value

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

...

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

2001-01-13 12:01:00.000 0

(60 row(s) affected)

Using No Equality Operators for Comparison with Cyclic Retrieval and

Resolution

If both ends of the time range are excluded (by using > and <), then a gap of resolution is left at the beginning
and end of the result set.

The row(s) that equate to the start and end times are not returned.

This query uses a resolution of 1000, resulting in a 1 second resolution for the data.

SELECT DateTime, Value

FROM v_AnalogHistory
WHERE TagName = 'SysTimeSec'

AND wwResolution = 1000
AND DateTime > '2001-01-13 12:00:00'
AND DateTime < '2001-01-13 12:01:01'

The results are:

DateTime Value

2001-01-13 12:00:01.000 1

2001-01-13 12:00:02.000 2

2001-01-13 12:00:03.000 3

2001-01-13 12:00:04.000 4

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 170

DateTime Value

...

2001-01-13 12:00:56.000 56

2001-01-13 12:00:57.000 57

2001-01-13 12:00:58.000 58

2001-01-13 12:00:59.000 59

2001-01-13 12:01:00.000 0

(60 row(s) affected)

Returning Time Between Value Changes

You can return the amount of time before a tag's value changed to a subsequent value. This time is returned
using the wwResolution column.

This functionality works with the cyclic, delta, and full retrieval modes. The delta and full mode behavior of
wwResolution does not apply to the AnalogSummaryHistory and StateSummaryHistory tables.

If the time change value is greater than 2,147,000,000 milliseconds (~25 days), then the value of wwResolution
column is -1.

 Example 1: Cyclic Retrieval on page 170

 Example 2: Delta and Full Retrieval on page 171

 Example 3: Querying the WideHistory Table on page 173

 Example 4: Querying the History Table with the wwValueSelector Parameter on page 174

 Example 5: Calculating Total Time Between Value Changes on page 175

Example 1: Cyclic Retrieval

For this example, the following data is stored in the Historian:

DateTime Value

2012-01-01 07:59:53 34.42384

2012-01-01 08:00:13 15.02637

2012-01-01 08:00:33 20.29732

2012-01-01 08:00:53 37.40273

2012-01-01 08:01:13 24.31662

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 171

For cyclic retrieval, cycles start at the start DateTime and occur at intervals specified by wwResolution in the
query. If you query for the data 2012-01-01 08:00:00 to 2012-01-01 08:01:00 with four cycles, the wwResolution
column in the results show the time in milliseconds until the next point.

DateTime Value wwResolution

2012-01-01 08:00:00 34.42384 20000

2012-01-01 08:00:20 15.02637 20000

2012-01-01 08:00:40 20.29732 20000

2012-01-01 08:01:00 37.40273 20000

Example 2: Delta and Full Retrieval

In delta and full mode, the wwResolution column is used in the query results to show the time in milliseconds
until the next point. When the first point in the result occurs before the query start time, the wwResolution
column shows the time from the start of the query to the next point. If there are no more points after the first
point, the wwResolution column is NULL.

For example, the following data is stored:

DateTime Value

2012-01-01 07:59:53 34.42384

If you query for the data between 2012-01-01 08:00:00 to 2012-01-01 08:00:10, the results are:

DateTime
Value wwResolution

2012-01-01 08:00:00 34.42384 NULL

However, if the data stored is:

DateTime
Value

2012-01-01 07:59:53 34.42384

2012-01-01 08:00:13 15.02637

Then the results are:

DateTime
Value wwResolution

2012-01-01 08:00:00 34.42384 10000

When the last point in the result occurs before the query end time, the wwResolution column shows the time
until the end of the query when there is a next available point. If there are no more points, then the
wwResolution column shows NULL.

For example, the following is stored:

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 172

DateTime
Value

2012-01-01 07:59:53 34.42384

2012-01-01 08:00:13 15.02637

2012-01-01 08:00:33 20.29732

2012-01-01 08:00:53 37.40273

2012-01-01 08:01:13 24.31662

If you query for data from 2012-01-01 08:00:00 to 2012-01-01 08:05:00, the results are:

DateTime
Value wwResolution

2012-01-01 08:00:00 34.42384 13000

2012-01-01 08:00:13 15.02637 20000

2012-01-01 08:00:33 20.29732 20000

2012-01-01 08:00:53 37.40273 20000

2012-01-01 08:01:13 24.31662 NULL

If you query for data from 2012-01-01 08:00:00 to 2012-01-01 08:01:00, the results are:

DateTime
Value wwResolution

2012-01-01 08:00:00 34.42384 13000

2012-01-01 08:00:13 15.02637 20000

2012-01-01 08:00:33 20.29732 20000

2012-01-01 08:00:53 37.40273 7000

If the last point happens to be end of the query, then the wwResolution value is zero, even when there are no
more points after the last point. For example, if you query for data from 2012-01-01 08:00:00 to 2012-01-01
08:01:13, the results are:

DateTime
Value wwResolution

2012-01-01 08:00:00 34.42384 13000

2012-01-01 08:00:13 15.02637 20000

2012-01-01 08:00:33 20.29732 20000

2012-01-01 08:00:53 37.40273 20000

2012-01-01 08:01:13 24.31662 0

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 173

Example 3: Querying the WideHistory Table

If you execute a query on the WideHistory table for analog tags, wwResolution shows the time between the first
value change for ANY of the tags.

SELECT * FROM OpenQuery(INSQL,'

SELECT DateTime, SysTimeSec, SysTimeMin, wwResolution
FROM WideHistory

WHERE DateTime >= "20120119 12:44:00.000"
AND DateTime <= "20120119 12:45:00.000"
AND wwRetrievalMode = "Delta"

')

The results are:

DateTime SysTimeSec SysTimeMin wwResolution

2012-01-19
12:44:00.0000000

0 44 1000

2012-01-19
12:44:01.0000000

1 44 1000

2012-01-19
12:44:02.0000000

2 44 1000

2012-01-19
12:44:03.0000000

3 44 1000

2012-01-19
12:44:04.0000000

4 44 1000

2012-01-19
12:44:05.0000000

5 44 1000

...

The wwResolution column shows 1000 milliseconds because the smallest time change is for the SysTimeSec tag,
which is changing every second.

If you run the same query using the SysTimeHour tag instead of the SysTimeSec tag, the results are:

DateTime SysTimeHour SysTimeMin wwResolution

2012-01-19
12:44:00.0000000

12 44 60000

2012-01-19
12:45:00.0000000

12 45 0

The wwResolution column shows 60000 milliseconds because the smallest time change is for the SysTimeMin
tag, which is changing every minute (every 60 seconds). Because the query ended at the time of the last value, a
0 is shown for wwResolution for the ending value.

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 174

Example 4: Querying the History Table with the wwValueSelector

Parameter

You can query the History table with the wwValueSelector parameter.

SELECT DateTime, TagName, Value, wwResolution

FROM History
WHERE Tagname like 'MyTag'
AND DateTime >= '2012-01-19 10:00:00'
AND DateTime <= '2012-01-19 11:00:00'
AND wwValueSelector = 'STDDEV'

The results are:

DateTime TagName Value wwResolution

2012-01-19
10:00:00.0000000

MyTag 977.157928752564 60000

2012-01-19
10:01:00.0000000

MyTag 16.5619987924163 60000

2012-01-19
10:02:00.0000000

MyTag 16.5619987924163 60000

2012-01-19
10:03:00.0000000

MyTag 16.5619987924165 60000

2012-01-19
10:04:00.0000000

MyTag 16.5619987924163 180000

2012-01-19
10:07:00.0000000

MyTag 16.5619987924171 60000

2012-01-19
10:08:00.0000000

MyTag 16.5619987924163 60000

2012-01-19
10:09:00.0000000

MyTag 16.5619987924179 60000

2012-01-19
10:10:00.0000000

MyTag 16.5619987924163 180000

2012-01-19
10:13:00.0000000

MyTag 16.5619987924195 60000

2012-01-19
10:14:00.0000000

MyTag 16.5619987924163 240000

2012-01-19
10:18:00.0000000

MyTag 16.5619987924226 180000

2012-01-19
10:21:00.0000000

MyTag 16.5619987924163 60000

2012-01-19
10:22:00.0000000

MyTag 16.5619987924226 60000

2012-01-19 MyTag 16.5619987924038 60000

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 175

DateTime TagName Value wwResolution
10:23:00.0000000

...

Example 5: Calculating Total Time Between Value Changes

You can calculate the total time the multiple discrete tags are in a certain state. For example, you want to know
the total time that two pumps were on during a 24-hour period.

The following query returns a dataset that shows the time when both discrete tags had a value of 0:

SELECT * FROM OPENQUERY(INSQL,'

SELECT DateTime, Pump1, Pump2, wwResolution
FROM WideHistory

WHERE DateTime >= "2012-03-08 16:00"
AND DateTime < "2012-03-08 17:00"
AND wwRetrievalMode="DELTA"

')
WHERE Pump1+Pump2=0

The results are:

DateTime Pump1 Pump2 wwResolution

2012-03-08 16:00:00.0000000 0 0 67

2012-03-08 16:00:01.5980000 0 0 2521

2012-03-08 16:00:04.4470000 0 0 18500

2012-03-08 16:00:23.6000000 0 0 13995

2012-03-08 16:00:37.9140000 0 0 2625

...

The following query shows how to return the total time when both tags had a value of 0:

SELECT SUM(wwResolution) FROM OPENQUERY(INSQL,'

SELECT DateTime, Total=Pump1+Pump2, wwResolution
FROM WideHistory

WHERE DateTime >= "2012-03-08 16:00"
AND DateTime < "2012-03-08 17:00"
AND wwRetrievalMode="DELTA"

')
WHERE Total=0

The results are:

(No column name)

2551289

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 176

If you changed the ending WHERE clause to Total>0, the returned time would be for when more than one
discrete tag was true.

SELECT INTO from a History Table
The following query inserts the specified data from the WideHistory table into another table called MyTable.
Then, the data in the MyTable table is queried. This query uses the OPENQUERY function.

DROP TABLE MyTable
SELECT DateTime,

"Sec" = datepart(ss, DateTime),
"mS" = datepart(ms, DateTime),
ReactTemp, ReactLevel

INTO MyTable
FROM OpenQuery(INSQL, 'SELECT DateTime, ReactTemp, ReactLevel FROM WideHistory

WHERE wwResolution = 5000
AND DateTime >= "2001-03-13 1:58pm"
AND DateTime <= "2001-03-13 2:00pm" ')

SELECT * FROM MyTable

The results are:

DateTime Sec mS ReactTemp ReactLevel

2001-03-13 13:58:00.000 0 0 190.9 2025.0

2001-03-13 13:58:00.000 5 0 190.9 2025.0

2001-03-13 13:58:00.000 10 0 168.3 1215.0

2001-03-13 13:58:00.000 15 0 168.3 1215.0

2001-03-13 13:58:00.000 20 0 133.8 315.0

2001-03-13 13:58:00.000 25 0 133.8 315.0

2001-03-13 13:58:00.000 30 0 101.6 0.0

2001-03-13 13:58:00.000 35 0 101.6 0.0

2001-03-13 13:58:00.000 40 0 32.4 750.0

2001-03-13 13:58:00.000 45 0 32.4 750.0

2001-03-13 13:58:00.000 50 0 20.9 1700.0

2001-03-13 13:58:00.000 55 0 20.9 1700.0

2001-03-13 13:59:00.000 0 0 85.9 2000.0

2001-03-13 13:59:00.000 5 0 85.9 2000.0

2001-03-13 13:59:00.000 10 0 185.9 2000.0

2001-03-13 13:59:00.000 15 0 185.9 2000.0

2001-03-13 13:59:00.000 20 0 168.3 1235.0

2001-03-13 13:59:00.000 25 0 168.3 1235.0

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 177

2001-03-13 13:59:00.000 30 0 136.1 335.0

2001-03-13 13:59:00.000 35 0 136.1 335.0

2001-03-13 13:59:00.000 40 0 103.9 -25.0

2001-03-13 13:59:00.000 45 0 103.9 -25.0

2001-03-13 13:59:00.000 50 0 34.7 625.0

2001-03-13 13:59:00.000 55 0 34.7 625.0

2001-03-13 14:00:00.000 0 0 20.9 1575.0

(25 row(s) affected)

Moving Data from a SQL Server Table to an Extension Table

The following queries show how to insert manual data into a normal SQL Server table and then move it into the
History extension table.

First, insert the data into the SQL Server table. The following query inserts two minutes of existing data for the
SysTimeSec tag into the ManualAnalogHistory table:

INSERT INTO ManualAnalogHistory (DateTime, TagName, Value, Quality, QualityDetail, wwTagKey)

SELECT DateTime, TagName, Value, Quality, QualityDetail, wwTagKey
FROM History WHERE TagName = 'SysTimeSec'

AND DateTime >= '20050329 12:00:00'
AND DateTime <= '20050329 12:02:00'

Then, create a manual tag using the System Management Console. For a manual tag, "MDAS/Manual
Acquisition" is specified as the acquisition type. Be sure to commit the changes to the system. In this example, a
manual analog tag named MDAS1 was created.

Finally, insert the data from the ManualAnalogHistory table into History:

INSERT INTO History (TagName, DateTime, Value, QualityDetail)

SELECT 'MDAS1', DateTime, Value, QualityDetail FROM ManualAnalogHistory
WHERE TagName = 'SysTimeSec'

AND DateTime >= '20050329 12:00:00'
AND DateTime <= '20050329 12:02:00'

Using Server-Side Cursors
Cursors are a very powerful feature of SQL Server. They permit controlled movement through a record set that
results from a query.

For in-depth information on cursors, see your Microsoft SQL Server documentation.

The AVEVA Historian OLE DB Provider provides server-side cursors. Cursors can be used to do joins that are not
possible in any other way. They can be used to join date/times from any source with date/times in the history
tables.

The following query provides an example of using a server-side cursor. This query:

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 178

 Fetches all of the events in the EventHistory table.

 Shows a "snapshot" of three tags at the time of each event.

 Shows the event tag and its associated key value.

This query could easily be encapsulated into a stored procedure. The query uses the four-part naming
convention.

SET QUOTED_IDENTIFIER OFF
DECLARE @DateValue DateTime
DECLARE @EventTag nvarchar(256)
DECLARE @EventKey int
DECLARE @Qry1 nvarchar(500)
DECLARE @Qry2 nvarchar(500)
DECLARE @Qry3 nvarchar(500)
SELECT @Qry1 = N'SELECT EventTag = @EventTag, EventKey = @EventKey, DateTime, TagName, Value,
Quality

FROM History
WHERE TagName IN (N''SysTimeSec'', N''SysTimeMin'', N''SysTimeHour'')

AND DateTime = '''
SELECT @Qry2 = N''''
SELECT @Qry3 = N''
DECLARE Hist_Cursor CURSOR FOR
SELECT DateTime, TagName, EventLogKey

FROM Runtime.dbo.EventHistory
OPEN Hist_Cursor
FETCH NEXT FROM Hist_Cursor INTO @DateValue, @EventTag, @EventKey
WHILE @@FETCH_STATUS = 0
BEGIN

SELECT @Qry3 = @Qry1 + convert(nvarchar, @DateValue, 121) + @Qry2
--PRINT @Qry3
EXEC sp_executesql @Qry3, N'@EventTag nvarchar(256),
@EventKey int', @EventTag, @EventKey
FETCH NEXT FROM Hist_Cursor INTO @DateValue, @EventTag, @EventKey

END
CLOSE Hist_Cursor
DEALLOCATE Hist_Cursor

The results are:

EventTag EventK
ey

DateTime TagName Value Quality

SysStatusEvent 3 2001-01-12
13:00:27.000

SysTimeSec 27.0 0

SysStatusEvent 3 2001-01-12
13:00:27.000

SysTimeMin 0.0 0

SysStatusEvent 3 2001-01-12
13:00:27.000

SysTimeHour 13.0 0

(3 row(s) affected)

EventTag EventK
ey

DateTime TagName Value Quality

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 179

SysStatusEvent 4 2001-01-12
14:00:28.000

SysTimeSec 28.0 0

SysStatusEvent 4 2001-01-12
14:00:28.000

SysTimeMin 0.0 0

SysStatusEvent 4 2001-01-12
14:00:28.000

SysTimeHour 14.0 0

(3 row(s) affected)

Using Stored Procedures in OLE DB Queries
Any normal SQL Server stored procedure can make use of the tables exposed by the AVEVA Historian OLE DB
Provider. Stored procedures can use any valid Transact-SQL syntax to access AVEVA Historian historical data.

In other words, stored procedures can make use of four-part-queries, OPENQUERY and OPENROWSET functions,
cursors, parameterized queries and views. Stored procedures can be used to encapsulate complex joins and
other operations for easy re-use by applications and end users.

Getting Data from the OPCQualityMap Table

In general, an OPC quality has 16 significant bits. The lower 8 bits contain the quality as described in the table,
while the upper 8 bits hold server-specific information. To ensure correct results, it is important to consider only
the lower 8 bits in a query or join involving the OPCQualityMap table.

For example:

SELECT h.DateTime, h.TagName, h.Value, o.Description FROM History h

 INNER JOIN OPCQualityMap o
 ON (h.OPCQuality & 255) = o.OPCQuality

 WHERE TagName in (…)
 AND …

Using Variables with the Wide Table

You cannot use variables in an OPENQUERY statement. Therefore, if you want to use variables in a query on the
wide table, you must first build up the OPENQUERY statement "on the fly" as a string, and then execute it.

DECLARE @sql nvarchar(1000)
DECLARE @DateStart datetime

DECLARE @DateEnd datetime

SET @DateStart = '2001-8-29 11:00:00'
SET @DateEnd = '2001-8-29 11:11:00'

SET @sql = N'select *

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 180

FROM OPENQUERY(INSQL, ''SELECT DateTime, ReactLevel, ReactTemp, ProdLevel, BatchNumber,
ConcPump, Mixer, TransferValve, TransferPump, WaterValve, ConcValve, OutputValve, SteamValve

FROM WideHistory
WHERE DateTime >= "' + CONVERT(varchar(26), @DateStart, 113) + '"

 and DateTime <= "' + CONVERT(varchar(26), @DateEnd, 113) + '"
 AND wwResolution = 1000
 AND wwRetrievalMode = "cyclic"'') '

EXEC sp_executesql @sql

Retrieval Across a Data Gap in Classically Stored Data
For blocks created by the Classic Storage subsystem, if the data to be retrieved spans more than one history
block, and the start time of the later block is equal (within one tick) to the end time of the first block, you will
not notice any difference than when querying within a single block.

However, if the system was stopped between history blocks, there will be a gap in the data, as shown in the
following diagram:

Upon retrieval, additional data points (labeled A and B) will be added to mark the end of the first block's data
and the beginning of the second block's data. Point C is a stored point generated by the Storage subsystem.
(Upon a restart, the first value from each IDAS will be offset from the start time by 2 seconds and have a quality
detail of 252.)

The following paragraphs explain this in more detail.

For delta retrieval, the data values in the first block are returned as stored. After the end of the block is reached
and all of the points have been retrieved, an additional data point (A) will be inserted by retrieval to mark the
end of the data. The value for point A will be

Point A attribute Value(Hex) Value(Dec)

Value 0 0

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 181

Quality 100 256

Quality Detail 0 0

If there is no value stored at the beginning of the next block, an initial data point (B) will be inserted by retrieval
and will have the snapshot initial value as stored. The quality and quality detail values are as follows:

Point B attribute Value(Hex) Value(Dec)

Value Snapshot Snapshot

Quality 0 0

Quality Detail 96 150

In the case of cyclic retrieval, a point is required for each specified time. If the time coincides with the data gap,
a NULL point for that time will be generated. The inserted points will have the values defined in the following
table.

Cyclic NULL point Value(Hex) Value(Dec)

Value 0 0

Quality 100 256

Quality Detail 0 0

If you are using time or value deadbands for delta retrieval across a data gap, the behavior is as follows:

 For a value deadband, all NULLs will be returned and all values immediately after a NULL will be returned.
That is, the deadband is not applied to values separated by a NULL.

 For a time deadband, null values are treated like any other value. Time deadbands are not affected by
NULLs.

Returned Values for Non-Valid Start Times
One example of a non-valid query start time is a start time that is earlier than the start time of the first history
block. For delta retrieval, the first row returned will be NULL. The timestamp will be that of the query start time.
The next row returned will be timestamped at the start of the history block and have the following attributes:

Point attribute Value(Hex) Value(Dec)

Value Snapshot Snapshot

Quality 0 0

Quality Detail 96 150

For cyclic retrieval, NULL will be returned for data values that occur before the start of the history block.

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 182

Another non-valid start time is a start time that is later than the current time of the AVEVA Historian computer.
For delta retrieval, a single NULL value will be returned. For cyclic retrieval, a NULL will be returned for each data
value requested.

Querying Aggregate Data in Different Ways
There are four different ways you can retrieve summary data, such as an average, using the Historian.

 Using the SQL Server average function. This is appropriate for discrete samples. For example, a check
weigher, where you are measuring individual units against a target weight.

 Using the average retrieval mode. This is appropriate for most situations where you want to find an average,
as it is weighted according to time. For example, if you want to find the average for a flow rate or a
temperature.

 Setting up summary replication and then querying the AnalogSummaryHistory table. Replication uses the
average retrieval mode to do the calculations.

 Setting up a summary event and then querying the SummaryData table. The Event subsystem uses the SQL
Server average function.

The following examples show how you can get the same data using these different methods. All examples use
the SysTimeSec system tag, which has a range of 0 to 59.

Query 1

The following query uses the SQL Server average function to return the average value of the SysTimeSec tag
over the span of one minute.

SELECT AVG(Value) as 'SysTimeSec AVG'

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime > '2009-11-15 6:30:00'
AND DateTime < '2009-11-15 6:31:00'
AND wwRetrievalMode = 'Full'

The results are:

SysTimeSec AVG

29.5

Query 2

The following query uses the historian time-weighted average retrieval mode to return the average for the same
time period. Because the cycle count is set to 2, a first row is returned for the "phantom"cycle leading up to the
query start time. The StartDateTime column shows the time stamp at the start of the data sampling, which is the
start time of the phantom cycle. The second row returned reflects is the actual data that you expect. The time
stamp for the data value is 2009-11-15 06:31:00 because the default time stamping rule is set so that the ending
time stamp for the cycle is returned. For more information about the phantom cycle, see About Phantom Cycles
on page 101.

SELECT StartDateTime, DateTime, TagName, Value

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 183

FROM History
WHERE TagName = 'SysTimeSec'

AND DateTime >= '2009-11-15 6:30:00'
AND DateTime <= '2009-11-15 6:31:00'
AND wwRetrievalMode = 'Average'
AND wwCycleCount = 2
AND wwTimeStampRule = 'end'

The results are:

StartDateTime DateTime TagName Value

2009-11-15 06:29:00 2009-11-15 06:30:00 SysTimeSec 29.5

2009-11-15 06:30:00 2009-11-15 06:31:00 SysTimeSec 29.5

Query 3

For the following query, local replication has been set up so that the average of the SysTimeSec tag is calculated
every minute and stored to the SysTimeSec.1M analog summary tag. The query returns the value of the
SysTimeSec.1M tag for the time period specified.

SELECT TagName, StartDateTime, EndDateTime, Average as AVG

FROM AnalogSummaryHistory
WHERE TagName = 'SysTimeSec.1M'

AND StartDateTime >= '2009-11-15 6:30:00'
AND EndDateTime <= '2009-11-15 6:31:00'

The results are:

TagName StartDateTime EndDateTime AVG

SysTimeSec.1M 2009-11-15 06:30:00 2009-11-15 06:31:00 29.5

Query 4

The following query, the History table is used instead of the AnalogSummaryHistory table. Because the cycle
count is set to 2, this query returns a row for the phantom cycle. The time stamp for the data value is
2009-11-15 06:31:00 because the default time stamping rule is set so that the ending time stamp for the cycle is
returned.

SELECT TagName, DateTime, Value

FROM History
WHERE TagName = 'SysTimeSec.1M'

AND DateTime >= '2009-11-15 6:30:00'
AND DateTime <= '2009-11-15 6:31:00'
AND wwRetrievalMode = 'avg'
AND wwCycleCount = 2

The results are:

TagName DateTime Value

SysTimeSec.1M 2009-11-15 06:30:00 29.5

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 184

SysTimeSec.1M 2009-11-15 06:31:00 29.5

Query 5

The following query returns five minutes of summary data for an event tag that has been configured to store the
average value of the SysTimeSec tag every minute.

SELECT TagName, CalcType, SummaryDate, Value

FROM v_SummaryData
WHERE TagName = 'SysTimeSec'

AND SummaryDate >= '2009-11-15 18:30:00'
AND SummaryDate <= '2009-11-15 18:31:00'

The results are:

TagName CalcType SummaryDate Value

SysTimeSec AVG 2009-11-15 18:30:00.000 29.5

SysTimeSec AVG 2009-11-15 18:31:00.000 29.5

Bitwise Retrieval for Process Data
It is common to pack multiple digital states into the same PLC register as an integer rather than as individual
bits. You can still map the individual bits to separate Historian tags for most DAServers/PLCs, but if you instead
map the entire integer to a single Historian tag, you can address individual bits using standard SQL Server
queries.

For example, consider the following query that returns process data values for the ’SysTimeMin’ tag:

SELECT Value FROM dbo.History WHERE TagName = 'SysTimeMin'

However to get more bits of data, you can add 2 (bitposition-1) and use bitwise & operator on the Value column
as shown in the following query. Using the the Integer cast, you can query a maximum of 32 bits.

SELECT
CONVERT(BIT, CAST(Value AS INT) & 1) As 'Bit0',
CONVERT(BIT, CAST(Value AS INT) & 2) As 'Bit1',
CONVERT(BIT, CAST(Value AS INT) & 4) As 'Bit2',
CONVERT(BIT, CAST(Value AS INT) & 8) As 'Bit3',
CONVERT(BIT, CAST(Value AS INT) & 16) As 'Bit4',
CONVERT(BIT, CAST(Value AS INT) & 32) As 'Bit5',
CONVERT(BIT, CAST(Value AS INT) & 64) As 'Bit6',
CONVERT(BIT, CAST(Value AS INT) & 128) As 'Bit7'
FROM dbo.History WHERE TagName = 'SysTimeMin'

The results are:

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7

 AVEVA™ Historian Retrieval Guide
 Chapter 3 – SQL Query Examples

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 185

0 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0

1 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 186

Note: The alarm and event history functionality described in this chapter captures detailed histories from
Application Server. This functionality should not be confused with the Classic Event subsystem allows for some
basic events tracking and is based on historical data.

AVEVA Historian captures process data about your plant. In addition to real-time and historical data, this
includes information about events.

Events are like other process data – for example, temperature – because their values can change over time.
Events differ from other process data in these ways:

 Events usually change more slowly.

 Events usually are more complex than simply a value, time, and quality.

Event data answers questions like "When did this setpoint change and who changed it?" The event record could
include the name of the operator, the workstation from where the change was made, any comment about the
change, the name of the person who verified the change, and other related details.

Alarms are a specific kind of event. They represent state changes and have an associated lifecycle. This lifecycle
includes these states (usually in this order):

 Set – For example, when a temperature goes too high.

 Acknowledged – That is, when an operator recognizes it as an alarm and, ideally, addresses it.

 Clear – For example, when the temperature returns to normal.

Alarms may also have other states, but these are the key ones.

You can query the Events view, which references the History table, to track and analyze alarms and other
events. Because Events is actually an extension table (like History), its data is stored in blocks, not in SQL Server
tables.

Note: The Events view does not expose all application-specific columns that may be stored by Historian. (Such
columns are queryable from the REST/OData interface.) Also, it is not unusual for Events columns to contain
many NULL values.

For more information about the Events view, see Events in the AVEVA Historian Database Reference.

Querying Alarms and Events
Querying Alarm and Event data is helpful in keeping track of your production environment. For example, as an
operator, you could query the data to find out answers to these questions:

Chapter 4

SQL Queries for Alarms and Events

 AVEVA™ Historian Retrieval Guide
 Chapter 4 – SQL Queries for Alarms and Events

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 187

 How often alarm events occur?

 Where in the facility they occur?

 How critical the alarms are?

 How quickly they are addressed and cleared?

Datetime in Alarm and Event Queries
All queries of alarm and event data must include at least one datetime column.

Alarm and event queries use two ways to express time:

 UTC time
This format is used by EventTimeUtc.

 Local time for the location of the Historian server
This is used by columns like EventTime.

The value of wwTimeZone affects any datetime recorded in local time, but does not affect EventTimeUtc.

Example: Listing all events

One of the simplest queries for alarms and events data is to get a list of all events.

For example,a query like this one would list all events between the dates and times specified:

SELECT *

FROM Events
WHERE EventTime between '2015-10-25 0:00' and '2015-10-26 0:00'

Example: How often alarms occur

This query reports the average alarm rate on hourly basis.

DECLARE @StartTime as varchar(60)
DECLARE @EndTime as varchar(60)
SET @StartTime = '2015-10-25 12:00:00'
SET @EndTime = '2015-10-26 12:00:00'

DECLARE @AlarmRaise table
(

 EventTime nvarchar(60),
 ID nvarchar(50),
 AlarmState nvarchar(20),
 SourceArea nvarchar(20),
 SourceObject nvarchar(20)

)
INSERT @AlarmRaise select EventTime,Alarm_ID,Alarm_State,Source_Area,Source_Object from
Events where EventTime > @StartTime and EventTime < @EndTime and Alarm_State='UNACK_ALM'

 AVEVA™ Historian Retrieval Guide
 Chapter 4 – SQL Queries for Alarms and Events

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 188

--======================--

DECLARE @AlarmCounts table
(

 ForDate nvarchar(60),
 OnHour nvarchar(50),
 CountperHour nvarchar(20)

)

INSERT @AlarmCounts SELECT CAST(EventTime as date) AS ForDate,
 DATEPART(hour,EventTime) AS OnHour,
 Count(*) AS "CountperHour"
FROM @AlarmRaise
GROUP BY CAST(EventTime as date),
 DATEPART(hour,EventTime)

SELECT Avg(CAST(CountperHour as INT)) as "Average Alarm Rate on Hourly Basis" from
@AlarmCounts

The resulting report looks like this:

Average Alarm Rate on Hourly Basis

6

Example: Most frequent alarm per hour

This query reports the most frequent alarms for each hour:

DECLARE @StartTime as varchar(60)
DECLARE @EndTime as varchar(60)
SET @StartTime = '2017-11-10 12:00:00'
SET @EndTime = '2017-11-10 12:10:00'

DECLARE @AlarmRaise table
(

 EventTime nvarchar(60),
 ID nvarchar(50),
 AlarmState nvarchar(20),
 SourceArea nvarchar(20),
 SourceObject nvarchar(20),
 SourceConditionVariable nvarchar(40)

)
INSERT @AlarmRaise select
EventTime,Alarm_ID,Alarm_State,Source_Area,Source_Object,Source_ConditionVariable from
Events where EventTime > @StartTime and EventTime < @EndTime and Alarm_State='UNACK_ALM'
--======================--
SELECT CAST(EventTime as date) AS ForDate,

 DATEPART(hour,EventTime) AS OnHour,
 Count(*) AS "Count per Hour",

 SourceObject + SourceConditionVariable AS "Alarm Attribute"

 AVEVA™ Historian Retrieval Guide
 Chapter 4 – SQL Queries for Alarms and Events

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 189

FROM @AlarmRaise
GROUP BY CAST(EventTime as date),

 DATEPART(hour,EventTime),
 SourceObject,
 SourceConditionVariable

ORDER BY ForDate ASC,OnHour,[Alarm Attribute]

This resulting report looks like this:

ForDate OnHour Count per Hour Alarm Attribute

2017-11-10 12 10 AlarmHeartBeatAlarmHeartBeat.AlmHeartBeat.Hi

2017-11-10 12 2 Reactor_31Reactor_31.ReactLevel.Hi

2017-11-10 12 2 Reactor_31Reactor_31.ReactLevel.Lo

2017-11-10 12 2 Reactor_31Reactor_31.ReactTemp.Hi

2017-11-10 12 1 StorageTank_31StorageTank_31.ProdLevel.Lo

2017-11-10 12 6 VectorTagsVectorTags.VectorX.Hi

2017-11-10 12 3 VectorTagsVectorTags.VectorX.HiHi

2017-11-10 12 6 VectorTagsVectorTags.VectorX.Lo

2017-11-10 12 3 VectorTagsVectorTags.VectorX.LoLo

2017-11-10 12 2 VectorTagsVectorTags.VectorZ.Hi

Example: Pinpointing where alarms occur

This query reports the number of alarms raised from each source by area and by object.

DECLARE @StartTime as varchar(60)
DECLARE @EndTime as varchar(60)
SET @StartTime = '2015-10-25 12:00:00'
SET @EndTime = '2015-10-26 12:00:00'

DECLARE @AlarmRaise table
(

 EventTime nvarchar(60),
 ID nvarchar(50),
 AlarmState nvarchar(20),
 SourceArea nvarchar(20),
 SourceObject nvarchar(20)

)
INSERT @AlarmRaise select EventTime,Alarm_ID,Alarm_State,Source_Area,Source_Object from
Events where EventTime > @StartTime and EventTime < @EndTime and Alarm_State='UNACK_ALM'
--======================--
SELECT SourceArea AS "Source Area/Object" , count(*) AS "Total Number of Alarms" from
@AlarmRaise GROUP BY SourceArea UNION

 AVEVA™ Historian Retrieval Guide
 Chapter 4 – SQL Queries for Alarms and Events

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 190

SELECT SourceObject AS "Source Area/Object" , count(*) AS "Total Number of Alarms" from
@AlarmRaise GROUP BY SourceObject;

The results look like this:

Source Area/Object Total Number of Alarms

Area_001 6

UserDefined_001 6

Example: Showing average time to clearing an alarm

This query reports the average time to clear Critical, High, Medium, and Low alarms per hour.

DECLARE @start DateTime2
SET @start = '2017-12-11'
DECLARE @end DateTime2
SET @end = '2017-12-12'

-- ack time per severity per hour for high, medium and low
SELECT DATEADD(hour, DATEDIFF(hour, 0, e.EventTime), 0) as hour,

 e.Severity,
 avg(Alarm_UnAckDurationMs) as avg_unack,
 count(*) as count

FROM Events e
 WHERE

 e.EventTime < @end
 AND e.EventTime >= @start
 AND e.Severity <=3 -- critical = 1, high = 2 medium = 3 low = 4
 AND e.Type = 'Alarm.Acknowledged'

GROUP BY
 DATEADD(hour, DATEDIFF(hour, 0, e.EventTime), 0),

 severity
ORDER BY

 DATEADD(hour, DATEDIFF(hour, 0, e.EventTime), 0),
 e.severity

-- ack time by user by hour
SELECT DATEADD(hour, DATEDIFF(hour, 0, e.EventTime), 0) as hour,

 avg(Alarm_UnAckDurationMs) as avg_unack,
 e.User_Name,
 count(*) as count

FROM Events e
 WHERE

 e.EventTime < @end
 AND e.EventTime >= @start
 AND e.Type = 'Alarm.Acknowledged'

GROUP BY
 DATEADD(hour, DATEDIFF(hour, 0, e.EventTime), 0),

 AVEVA™ Historian Retrieval Guide
 Chapter 4 – SQL Queries for Alarms and Events

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 191

 e.User_Name
ORDER BY

 DATEADD(hour, DATEDIFF(hour, 0, e.EventTime), 0),
 e.User_Name

This query results in two reports. The first one looks like this:

hour Severity avg_unack count

2017-12-11 08:00:00.000 2 330949 73

2017-12-11 08:00:00.000 3 13723786 1

2017-12-11 09:00:00.000 2 23524 195

2017-12-11 09:00:00.000 3 4931 1

2017-12-11 10:00:00.000 2 22550 182

2017-12-11 11:00:00.000 2 24552 189

2017-12-11 12:00:00.000 2 22474 189

2017-12-11 13:00:00.000 2 23492 192

…

The second report looks like this:

hour avg_unack User_Name count

2017-12-11 08:00:00.000 453722 DefaultUser 92

2017-12-11 09:00:00.000 24997 DefaultUser 239

2017-12-11 10:00:00.000 22751 DefaultUser 222

2017-12-11 11:00:00.000 25528 DefaultUser 231

2017-12-11 12:00:00.000 23549 DefaultUser 233

2017-12-11 13:00:00.000 23807 DefaultUser 236

2017-12-11 14:00:00.000 25472 DefaultUser 237

2017-12-11 15:00:00.000 25350 DefaultUser 237

…

Example: Evaluating response time for alarms

This query reports when an alarm is raised, acknowledged, and cleared. The report lists both times and duration.

DECLARE @StartTime as varchar(60)
DECLARE @EndTime as varchar(60)

 AVEVA™ Historian Retrieval Guide
 Chapter 4 – SQL Queries for Alarms and Events

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 192

SET @StartTime = '2017-12-12 12:00:00'
SET @EndTime = '2017-12-12 12:02:00'

DECLARE @AlarmRaise table
(

 EventTime nvarchar(60),
 ID nvarchar(50),
 AlarmState nvarchar(20)

)
INSERT @AlarmRaise
 SELECT EventTime,Alarm_ID,Alarm_State
 FROM Events
 WHERE EventTime > @StartTime and EventTime < @EndTime and Alarm_State='UNACK_ALM'

DECLARE @AlarmAck table
(

 EventTime nvarchar(60),
 ID nvarchar(50),
 UnAckDuration nvarchar(20)

)
INSERT @AlarmAck
 SELECT EventTime,Alarm_ID,Alarm_UnAckDurationMs
 FROM Events
 WHERE EventTime > @StartTime and EventTime < @EndTime and Alarm_Acknowledged=1

DECLARE @AlarmClear table
(

 EventTime nvarchar(60),
 ID nvarchar(50),
 AlarmDuration nvarchar(20)

)
INSERT @AlarmClear
 SELECT EventTime,Alarm_ID,Alarm_DurationMs
 FROM Events
 WHERE EventTime > @StartTime and EventTime < @EndTime and Type='Alarm.Clear'

--======================--
SELECT 'Alarm Life - '+ s.ID

 ,CASE
 WHEN a.EventTime > c.EventTime THEN 'Cleared Before Ack'
 WHEN a.EventTime < c.EventTime THEN 'Acked Before Clear'
 ELSE '-' END as Comment

 ,s.EventTime as AlarmRaised
 ,a.EventTime as AlarmAcked
 ,c.EventTime as AlarmClear
 ,a.UnAckDuration as UnAckDuration
 ,c.AlarmDuration as AlarmDuration

FROM (@AlarmRaise s inner join @AlarmClear c on c.ID=s.ID)
LEFT JOIN @AlarmAck a on a.ID=c.ID and a.EventTime<>c.EventTime
ORDER BY AlarmRaised asc

The results look like this:

 AVEVA™ Historian Retrieval Guide
 Chapter 4 – SQL Queries for Alarms and Events

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 193

(No column
name) Comment AlarmRaised AlarmAcked AlarmClear

UnAckD
uration

Alarm
Durati
on

Alarm Life -
B0718EAE-130
1-1D00-46D6-
061A5265589
F

Cleared
Before Ack

2017-12-12
12:00:01.2540000

2017-12-12
12:00:56.5170000

2017-12-12
12:00:13.1430000 55263 11889

Alarm Life -
5FE1D46F-C6
D7-D7C6-DB2
4-A832B0361
562

Acked
Before
Clear

2017-12-12
12:00:40.1220000

2017-12-12
12:00:56.5150000

2017-12-12
12:01:00.1220000 16393 20000

Alarm Life -
39DBF54B-B4
ED-6D35-C1DF
-19EE53D6221
1

Cleared
Before Ack

2017-12-12
12:00:48.1290000

2017-12-12
12:00:56.9600000

2017-12-12
12:00:52.1240000 8831 3995

Alarm Life -
973B8CEA-DB
DA-7B4B-183
A-E423B1098
C91

Acked
Before
Clear

2017-12-12
12:00:57.6870000

2017-12-12
12:00:58.7880000

2017-12-12
12:01:03.6230000 1101 5936

Alarm Life -
B926FB71-B6
DE-4916-C23C
-CC85D5B01B
DE

Cleared
Before Ack

2017-12-12
12:01:45.7120000

2017-12-12
12:01:57.0140000

2017-12-12
12:01:53.2410000 11302 7529

Alarm Life -
A52B65BE-27F
2-CC6A-9369-
EDFD3E6D751
4

Cleared
Before Ack

2017-12-12
12:01:47.1270000

2017-12-12
12:01:57.0160000

2017-12-12
12:01:52.7340000 9889 5607

Alarm Life -
AFE96385-10B
4-F695-9302-3
20F02FA46A1

Cleared
Before Ack

2017-12-12
12:01:51.1570000

2017-12-12
12:01:57.0180000

2017-12-12
12:01:53.6230000 5861 2466

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 194

Historian Data REST API
With Historian Data REST API, you can upload data to and retrieve it from your Insight solution.

You can use these types of requests with Historian Data
REST API:

 Upload requests use the POST method to an upload
endpoint URL.

Upload requests send data or metadata to a specific
data source within your Insight solution.

See Data upload for details about upload requests.

 Retrieval requests use the GET method and a
different endpoint URL for retrieval from your
Insight solution.

See Data retrieval (see "Data retrieval" on page 196)
for two methods to retrieve data.

You can submit requests to the Historian Data REST API using a web browser or a client-side applications such as
these:

 Microsoft Excel (2013, 2016, or Office 365)

 Business Intelligence (BI) systems, such as Tableau and Microsoft Power BI

Supported OData features

OData is an industry standard for querying and updating data from a variety of sources. The implementation of
OData for the Historian Data REST API includes support for:

 JSON and atom formats.

 OData versions 3 and 4.

 Pagination. That is, if your request returns more than 5000 results, they will be returned in pages of up to
5000 records. Each page will include a link to retrieve the next page of records.

 A subset of the OData system query options.

Chapter 5

Browser-Friendly Data Retrieval

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 195

For more information, see OData.org JSON Verbose Format specification.

Recommendation: For best results, when you want to view the data returned by the Historian Data REST API,
use the JSONView extension for the Chrome browser.

Supported versions

Insight supports versions 1 and 2 of the Historian Data REST API.

Version 2

This is the current and recommended version of the Historian Data REST API.

Version 2 of this REST APis based on version 1 and includes further enhancements. Version 2 includes these
differences from version 1:

 The TagFilter parameter is supported as a part of a GET or POST query used with ProcessValues,
AnalogSummary, and StateSummary resources.

 The datetimeoffset parameter is not supported as part of the DateTime syntax.

 While Raw and ProcessValue entities use DateTime, summary entities use StartDateTime and
EndDateTime.

 For most version 2 queries, single quotes are not used for DateTime. For example:

https://online.wonderware.com/apis/Historian/v2/ProcessValues
?$filter=DateTime+gt+2017-07-13T00:00:00

However, when querying events, single quotes are required for DateTime. For example:

https://online.wonderware.com/apis/Historian/v2/Events
?$filter=EventTime+gt+'2017-07-13T00:00:00'

By contrast, version 1 queries do use single quotes for DateTime. For example:

https://online.wonderware.com/apis/Historian/v1/ProcessValues
?$filter=DateTime+gt+datetimeoffset'2017-07-13T00:00:00'

 TagProperty (see "TagProperties" on page 230) and Events (see "Events" on page 216) entity types are now
open type. That is, dynamic properties can be added to the response at runtime. This can be verified using
$metadata endpoint URL:

https://online.wonderware.com/s/<solution_id>/apis/historian/v2/$metadata

where there will be additional attribute, OpenType="true", under <EntityType> section.

 The Tags resource (see "Tags" on page 223) returns all the properties (fixed and extended) for a tag. A tag's
extended properties will be added to the response only if they exist. (The extended property name will not
be listed for tags that do not have a given extended property.)

 The combined Summary resource (see "Summary (v1 only)" on page 238) is not supported in version 2. Use
the individual AnalogSummary (see "AnalogSummary" on page 205) and StateSummary (see
"StateSummary" on page 211) resources instead to retrieve the summary of a tag.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 196

 Insight returns a list of resources and endpoints in JSON format instead of the previously used XML when
you specify the default endpoint URL for your solution (where <solution_id> is the identifier for your Insight
solution:

https://online.wonderware.com/s/<solution_id>/apis/historian/v2

 Version 2 adds support for the OData contains function for applicable resources and properties.

Version 1

This is the original version of Historian Data REST API based on the OData v4 specification.

 Version 1 uses the DateTime format used in this example:

https://online.wonderware.com/s/ik97r5/apis/Historian/v1
/AnalogSummary?$filter=FQN+eq+'Baytown.tank_level'
+and+StartDateTime+ge+datetimeoffset'2016-05-14T00:00:00.000-07:00'
+and+EndDateTime+le+datetimeoffset'2016-05-16T00:00:00.000-07:00'

iHistory and Account Authentication

The iHistory web service requires users to be authenticated via a login process before they can retrieve data.
The process for this differs between AVEVA Historian Insight and AVEVA Insight:

 AVEVA Historian Insight (on-premises)
Uses Windows integrated security. A user must belong to the aaAdministrators, aaPowerUsers, or aaUsers
Windows group. The iHistory web service uses Negotiate authentication, which is supported by most
modern browsers and web service clients (such as Microsoft Excel).

 AVEVA Insight (cloud-based)
Uses OpenID Connect and Basic authentication. Users must be invited to a specific account within AVEVA
Insight and can then access all data published to that account. When using OpenID Connect, the iHistory
web service uses "bearer token" authentication, per the OpenID Connect standard. As relatively new
standard, some web service clients (for example, Microsoft Excel) do not have native support for it.
However, some of those same clients (for example, Microsoft Power BI) support Basic authentication.

When you query on-premises data via iHistory, you will be prompted for authentication to the Historian.

 If you have a valid Windows login on the historian, you can retrieve general information about the services
and the kinds of data available.

 If you belong to the aaAdministrators, aaPowerUsers, or aaUsers Windows group, you can retrieve actual
application data -- including events, process history, tag information, and so on.

Data retrieval

The Historian Data REST API allows you to retrieve data from your Insight solution.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 197

Retrieval requests use a GET method and a retrieval
endpoint URL. The retrieval endpoint URL differs depending
on whether you are using token authentication (with a
retrieval token) or basic authentication, with no token.

 GET method with basic authentication
Requests to retrieve data via basic authentication
require no retrieval token. Rather, these requests must
use the endpoint URL specified by the Integration
Settings page. Get details here.

 GET method with token authentication
You can use retrieval token to access your Insight data
using token authentication. Get details here.

Forming retrieval requests

 With basic authentication, use this syntax to form your retrieval requests:

https://online.wonderware.com/s/<solution_ID>/apis/historian/<api_version>/<resource>?<q
uery_parameters>

 With token authentication, use syntax to form your retrieval requests:

https://online.wonderware.com/apis/historian/<api_version>/<resource>?<query_parameters>

For more information, see Retrieval endpoints and tokens.

This URL includes these parts:

Syntax element Explanation

https://online.wonderware.com/ The base URL

s/<solution_ID> The unique identifier for your Insight solution.

This is not used if you use token authentication with a solution-specific
retrieval token.

apis/historian/<api_version> The API and version (see "Supported versions" on page 195)

<resource> The Historian Data REST API retrieval resource. See the complete list (see
"Retrieval resources" on page 201).

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 198

?<query_parameters> Query parameters.

These may be OData parameters using OData syntax tokens and operators;
for example "$filter" as in this syntax:

https://online.wonderware.com/apis/historian/v2/
AnalogSummary?$filter=FQN+eq+'Baytown.tank_level'

Or, REST parameters; for example "TagFilter", as in this syntax:

https://online.wonderware.com/apis/historian/v2/
AnalogSummary?TagFilter=FQN eq 'Baytown.tank_level’

Note that TagFilter is used only with AnalogSummary (see
"AnalogSummary" on page 205), ProcessValues (see "ProcessValues" on
page 202), and StateSummary (see "StateSummary" on page 211).

For example, this retrieval request gets analog summary data via an endpoint URL using basic authentication:

https://online.wonderware.com/s/ik97r5/apis/historian/v2/AnalogSummary
?$filter=FQN+eq+'Depot.Train09'+and+StartDateTime+ge+2017-06-09T09:00:00-07:00+and
+EndDateTime+ge+2017-06-09T10:00:00-07:00&Resolution=3600000

Two powerful parameters: RetrievalMode and Resolution

You can use the RetrievalMode and Resolution parameters in retrieval queries to better control of your search
results.

 RetrievalMode specifies how the resulting data is calculated for Raw and ProcessValues entities. Valid
values are:

o Average  Cyclic  Integral  Minimum

o BestFit  Delta  Interpolated  Slope

o Counter  Full  Maximum

 Resolution specifies the granularity of data returned for Raw, ProcessValues, and Summary entities.

Using TagFilter

You can use the TagFilter parameter as a part of a GET or POST query with ProcessValues, AnalogSummary, and
StateSummary resources. See examples. (see "Retrieve data using PowerBI" on page 255)

It allows a query string using OData filter query notation.

TagFilter can include:

 Up to 20 AND clauses

 Up to 20 OR clauses

 Up to 2 UDF clauses

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 199

You cannot mix AND and OR in the same query.

Operators should be lowercase.

 Valid Format:
Historian/v2/ProcessValues?TagFilter=startswith(Source,'MVDS') and TagType eq 'string'

 Invalid Format:
Historian/v2/ProcessValues?TagFilter=startswith(Source,'MVDS') And TagType eq 'string'

Most searches are case-insensitive. However, search by these attributes is case-sensitive:

 InterpolationType

 MessageOn

 MessageOff

These are the supported (and not supported) features for TagFilter:

Supported Not Supported

 V2 controllers

 Use with ProcessValues, AnalogSummary and
StateSummary

 GET and POST queries

 StartsWith, EndsWith

 SkipToken

 Nested query with same operator type ("and" or
"or"). Examples:

Historian/v2/ProcessValues?
TagFilter=
startswith(Source,'MVDS') and TagType
 eq 'string' and EngUnit eq ‘None’

Historian/v2/ProcessValues?
TagFilter=
startswith(Source,'MVDS') or TagType
 eq 'string' or EngUnit eq ‘None’

 V1 controller

 Toupper and tolower functions

 Nested query with grouping precedence operator;
that is: ‘()’

 Query with mixed operator like "and, or"

 These attributes support only "eq" and not
"startswith or endswith"

o EngUnitMax

o EngUnitMin

o InterpolationType

o MessageOff

o MessageOn

o Any TagExtendedProperty that is not a string
(booleans, integers, doubles, guids)

 Geospatial primitives, such as Geolocation,
Geography, Geometry are not fully supported by
TagFilter .

Supported syntax tokens and operators

These tokens are supported for system query via the Historian Data REST API. They are all case-sensitive.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 200

Token Description

$filter Specifies an expression or function that must evaluate to true for a record to be returned in the
collection.

All typical OData functions are supported for the $filter clause.

The $filter expression supports references to properties and literals. Literal values include:

 Strings enclosed in single quotes

 Numbers and Boolean values (true or false)

Filtering for process value and summary data is case-sensitive.

However, while event property names are case-sensitive, filtering is case-insensitive. For
example, if you filter property values based on a value of "true," values such as "TRUE," "True,"
and "true" could be returned. The case returned in the query results reflects the case of the
stored value.

$select Specifies a subset of properties to return.

$skip Specifies the number of records to skip from the beginning of the result set.

$skiptoken Used to get the next record set that satisfies the query conditions. You do not need to include
this token in the query, but you will see it upon query execution.

$top Specifies the maximum number of records to return. This subset is formed by selecting only the
first N items of the set, where N is a positive integer specified by this query option.

These logical operators are supported for the query options:

Operator Description

eq Equal

ne Not equal

gt Greater than

ge Greater than or equal

lt Less than

le Less than or equal

and Logical and

or Logical or

not Logical negation

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 201

In the filter expression, you can have only a single time clause combined with a single filter clause using the
"and" operator. The filter clause itself can be complex, using any of the supported logical operators. Use
parentheses () to create precedence groups within an expression in filter clause.

Note: Use "%20" to indicate a space. Use "%27" to indicate a single quote.
If you are using the JSONView viewer in the Chrome browser, you can use a plus sign (+) to indicate a space to
make the URI string more readable.

If the expression includes multiple values for the criteria, you must specify each criteria separately using the "or"
operator. For example:

...
((Priority+eq+100+or+Priority+eq+200+or+Priority+eq+500+or+Priority+eq+700)+and+(filter
…))

Retrieval resources

The Historian Data REST API exposes various resources through an endpoint URL that is specific to your Insight
solution.

This API includes the following resources for retrieving data:

Process Data and
Events Resources

Tag Property Resources Resources for Version 1 Only

 ProcessValues (see
"ProcessValues" on page 202)

 AnalogSummary (see
"AnalogSummary" on page 205)

 StateSummary (see
"StateSummary" on page 211)

 Events (see "Events" on page
216)

 Tags (see "Tags" on page 223)

 TagProperties (see
"TagProperties" on page 230)

 TagPropertyValues (see
"TagPropertyValues" on page
231)

 TagGroups (see "TagGroups" on
page 232)

 TagSuggest (see "TagSuggest"
on page 234)

 TagSearch (see "TagSearch" on
page 236)

 TagExtendedProperties (see
"TagExtendedProperties" on
page 237)

 Summary

 Daily (see "Daily (v1 only)" on
page 240)

 Hourly (see "Hourly (v1 only)" on
page 246)

 Minutely (see "Minutely (v1
only)" on page 248)

Note: All property names are case-sensitive. Event storage preserves the case that you provide for any property
value. For example, a property value of "TRUE" is different than "True" and "true."

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 202

ProcessValues

Description Retrieves a set of process value records (where each record includes value
+ time + quality, or VTQ) for the specified tags.

URL
/ProcessValues

Method
GET

Required Parameters  FQN=[string]
The fully qualified name for the tag. A fully qualified name uses the
format: datasource.tagname.

 DateTime=[DateTimeOffset]
(v2 and later) Specified in UTC using the RFC3339 / ISO8601 format
with the Z time zone designator. For example:
2016-09-03T18:44:09.352247Z.

Optional Parameters  OPCQuality =[Int32]
The data quality as reported by the source.

 Value =[Double]
0 or 1.

 Text=[String]
For string tags, contain the value.

For discrete tags, contains the message associated the value (0 or 1).

Success Response
Code: 200
Content: { fqn: plant12.pump6, datetime:
2016-09-03T18:44:09.352247Z}

Error Response
Code: 404 NOT FOUND
Content: { error : "FQN doesn't exist" }

or
Code: 401 UNAUTHORIZED
Content: { error : "You are unauthorized to make this request."
}

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 203

Sample Query Scenario 1

This query produces process values for a list of tags that end with "level".
In this case, the user doesn't know the fully qualified name (FQN) of a
specific tag and wants a short list of possible matches.

https://online.wonderware.com/apis/historian/v2/ProcessValues
?TagFilter=endswith(FQN, 'level').

See more TagFilter examples. (see "Retrieve data using PowerBI" on page
255)

Scenario 2

This query returns process values for a specific tag identified by its fully
qualified name (datasource.tagname). Using a"$filter" clause, it specifies a
tag named tank_level within the Baytown data source. The result is a list of
values for the tank_level tag.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/Proc
essValues
?$filter=FQN+eq+'Baytown.tank_level'

Scenario 3

This query includes a start date time, end date time, and other query
parameters.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/Proc
essValues
?$filter=FQN+eq+'Baytown.tank_level'and DateTime ge
2014-07-04T23:57:29Z
and DateTime le
2014-07-05T00:02:29Z&RetrievalMode=BestFit&Resolution=6500

Sample Output
{
 "odata.metadata":
"https://online.wonderware.com/s/ik97r5/apis/historian/v2/
$metadata#ProcessValues",
 "value": [
 {
 "FQN": "20140805AK.TestSkipToken_0",
 "DateTime": "2014-08-06T17:25:19.216486Z",
 "OpcQuality": 192,
 "Value": 39816,
 "Text": "39816"
 },
 {
 "FQN": "20140805AK.TestSkipToken_0",
 "DateTime": "2014-08-06T17:25:20.196Z",
 "OpcQuality": 192,
 "Value": 39817,
 "Text": "39817"
 }
],
}

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 204

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 205

AnalogSummary

Description Retrieves analog statistics for the specified tags.

URL
/AnalogSummary

Method
GET

Required Parameters  FQN=[string]
The fully qualified name for the tag. A fully qualified name uses the
format: datasource.tagname.

 StartDateTime=[DateTimeOffset]
The starting date and time. This is always specified in UTC using the
RFC3339 / ISO8601 format with the Z time zone designator. For
example: 1985-04-12T23:20:50.52435Z

 EndDateTime=[DateTimeOffset]
The ending date and time. This is always specified in UTC using the
RFC3339 / ISO8601 format with the Z time zone designator. For
example: 1985-04-12T23:20:50.52435Z

Optional Parameters  RetrievalMode=[string]
Possible values are: Cyclic, Full.
Default is Cyclic.

 Resolution=[Int]
In milliseconds. Any positive integer.

 SliceBy=[Int|Discrete|String]
Performs dynamic resolution/cycle computation by tags. Returns one
Analog Summary value per tag per dynamic cycle with start and end
date time.
SliceBy can support up to 10 tags.

 SliceByValue=[string]
Specifies the filter criterion to get the summary values for SlicedBy,
based on that filter value.

 OPCQuality=[Int32]
Defines the OPC quality for the data.

Normal OPC quality retrieval logic is applied if all the point found and
processed for this row have GOOD quality. If they all have the same
GOOD quality, then that quality is returned.

If there is a gap in the entire calculation cycle, then BAD quality is
returned for the tag.

For any other scenario with any mixture of GOOD and BAD points, a
DOUBTFUL OPC quality (64) is returned.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 206

  PercentGood=[Double]
The ratio of the number of rows that have "good" quality to the total
number of rows in the retrieval cycle, expressed as a percentage in the
range 0 to 100.

 First=[Double]
If at least one non-NULL point exists for the tag in question within the
retrieval cycle, then the value returned is the first point stored with a
time stamp within the retrieval cycle. If no points exist within the
retrieval cycle, then the value returned is the current value at the cycle
start time.

If no non-NULL points can be found, then NULL is returned.

 FirstDateTime=[DateTimeOffset]
Timestamp associated with first value. This might be earlier than
StartDateTime if this is the initial value for the retrieval cycle.

 Last=[Double]
If at least one non-NULL point exists for the tag in question within the
retrieval cycle, then the value returned is the last point stored with a
time stamp within the retrieval cycle. If no points exist within the
retrieval cycle, then the value returned is the current value at the cycle
start time.

If no non-NULL points can be found, then NULL is returned.

 LastDateTime=[DateTimeOffset]
Timestamp associated with last value. This might be earlier than
StartDateTime if this is the initial value for the retrieval cycle.

 Minimum=[Double]
If at least one non-NULL point exists for the tag in question within the
retrieval cycle, then the value returned is the minimum point stored
with a time stamp within the retrieval cycle. If no points exist within
the retrieval cycle, then the value returned is the current value at the
cycle start time.

If no non-NULL points can be found, then NULL is returned.

 MinDateTime=[DateTimeOffset]
Timestamp associated with Min value. NULL if Min is NULL.

 Maximum=[Double]
If at least one non-NULL point exists for the tag in question within the
retrieval cycle, then the value returned is the maximum point stored
with a time stamp within the retrieval cycle. If no points exist within
the retrieval cycle, then the value returned is the current value at the
cycle start time.

If no non-NULL points can be found, then NULL is returned.

 MaxDateTime=[DateTimeOffset]
Timestamp associated with Max value. NULL if Max is NULL.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 207

  Average=[Double]
Time weighted average value of retrieval cycle. This is calculated by
using the individual summary averages. The calculation is
"Sum(average * delta t) / Total time of average in all cycles" - delta t is
prorated for any partially contained storage cycles For analog tags, the
calculation is "Sum(value * delta t) / Total time. (This is like the values
returned by an Average query against the History table for a cycle of
the same length, where the History row DateTime is the same as the
EndDateTime here.)

 StdDev=[Double]
Time weighted standard deviation value of the retrieval cycle. The
value is calculated using time weighted sums (Integrals) and time
weighted sums of squares (IntegralOfSquares) values, prorated for any
partially contained storage cycles.

For analog tags, similar StdDev values are produced for each cycle.

 Integral=[Double]
Area under value curve of retrieval cycle. The calculation is "Sum(value
* delta t) / Total time of integral in all cycles" - delta t is prorated for
any partially contained storage cycles For analog tags, the calculation
is "Sum(value * delta t) / Total time. (This is like the values returned by
an Integral query against the History table for a cycle of the same
length, where the History row DateTime is the same as the
EndDateTime here.)

For analog tags, similar Integral values are produced for each cycle.

 Count=[Double]
Number of values in a particular cycle.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 208

Sample Query Scenario 1

This query produces a list of tags that end with "level". In this case, the
user doesn’t know the fully qualified name (FQN) of a specific tag and
wants a short list of possible matches.

https://online.wonderware.com/apis/historian/v2/AnalogSummary
?TagFilter=
endswith(FQN, 'level').

See more TagFilter examples. (see "Retrieve data using PowerBI" on page
255)

Scenario 2

This query produces a list of values with analog summary for the
tank_level tag.

Notice that this example uses a fully qualified name
("Baytown.tank_level"), which is a combination of a data source name
("Baytown") and a tagname ("tank_level").

https://online.wonderware.com/s/ik97r5/apis/historian/v2/Anal
ogSummary
?$filter=FQN+eq+'Baytown.tank_level'

Because this query specifies no start or end time and no resolution, these
defaults are used for the returned results:

 EndTime defaults to DateTime.UtcNow

 StartTime defaults to one hour before EndTime

 Resolution defaults toTimespan

 Count defaults to1 (number of returned rows)

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 209

 Scenario 3

This query produces a list of tag values with analog summary data. The
"$filter" clause narrows the results further by specifying these parameters:

 Fully qualified name of the tag (FQN+eq+'Baytown.tank_level')

 Start and end times

 Result set returned at 1 hour intervals (Resolution=3600000). There
are 3.6 million milliseconds in an hour.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/Anal
ogSummary
?$filter=FQN+eq+'Baytown.tank_level'+and+StartDateTime+ge+201
7-05-14T00:00:00.000Z
+and+EndDateTime+le+2017-05-16T00:00:00.000Z&Resolution=36000
00

Scenario 4

This query specifies only StartTime and Resolution (600000 ms, or 10
minutes), but no EndTime.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/Anal
ogSummary
?$filter=FQN+eq+'Baytown.tank_level'
and StartDateTime ge 2017-06-29T00:00:00Z&Resolution=600000

In this case, Insight assumes:

 EndTime defaults to DateTime.UtcNow

The number of rows returned (Count) depends on the StartTime and
EndTime.

Scenario 5

This query specifies only EndTime, but no StartTime or Resolution.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/Anal
ogSummary
?$filter=FQN+eq+'Baytown.tank_level'and EndDateTime le
2017-06-29T00:00:00Z'

In this case, Insight assumes:

 StartTime defaults to one hour before EndTime

 Resolution defaults toTimespan

 Count defaults to1 (number of returned rows)

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 210

 Scenario 6

This query specifies uses SliceBy.

https://online.wonderware.com/apis/Historian/v2/AnalogSummary
?$
filter=FQN+eq+'Baytown.R21.Level'+and+StartDateTime+ge+2019-0
3-05T00:00:00.000Z+
and+EndDateTime+le+2019-03-05T12:00:00.000Z&SliceBy=Baytown.R
21.Batch

In this case, Insight calculates an analog summary for the
Baytown..R21.Level tag and batches the results per value for the
Baytown.R21.Batch tag.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 211

StateSummary

Description Retrieves state summary values for the specified tags.

URL
/StateSummary

Method
GET

Required Parameters  FQN=[string]
The fully qualified name for the tag. A fully qualified name uses the
format: datasource.tagname.

 StartDateTime=[DateTimeOffset]
The starting date and time for the retrieval cycle. This is always
specified in UTC using the RFC3339 / ISO8601 format with the Z time
zone designator. For example: 2016-09-03T18:44:09.352247Z

 EndDateTime=[DateTimeOffset]
The ending date and time for the retrieval cycle. This is always
specified in UTC using the RFC3339 / ISO8601 format with the Z time
zone designator. For example: 2016-09-03T18:44:09.352247Z

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 212

Optional Parameters  RetrievalMode=[string]
Possible values are: Cyclic, Full.
Default is Cyclic.

 Resolution=[Int]
In milliseconds. Any positive integer.

 OPCQuality=[Int32]
OPC quality. Normal OPC quality retrieval logic is applied if:

All the point found and processed for this row have GOOD quality. If
they all have the same GOOD quality, then that quality is returned.

If there is a gap in the entire calculation cycle, then BAD quality is
returned for the tag.

For any other scenario with any mixture of GOOD and BAD points, a
DOUBTFUL OPC quality (64) is returned.

 Text=[string]
Non-numeric state.

 Average=[Double]
Average time in this state among all occurrences of this state during
this retrieval cycle, including state occurrences that fall only partially
within the period.

 AverageContained=[Double]
Average time in this state among all occurrences of this state during
this retrieval cycle, excluding state occurrences that fall only partially
within the period. An occurrence that was partially contained in two or
more consecutive storage cycles is converted to a contained state
within the retrieval cycle if possible.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 213

Optional Parameters  Minimum=[Double]
Minimum time in this state among all occurrences of this state during
this retrieval cycle, including state occurrences that fall only partially
within the period. An occurrence that was partially contained in two or
more consecutive storage cycles is converted to a contained state
within the retrieval cycle if possible.

 MinimumContained=[Double]
The minimum of the contained times in this state among all
occurrences of this state during the entire retrieval cycle, excluding
state occurrences that fall only partially within the period. An
occurrence that was partially contained in two or more consecutive
storage cycles is converted to a contained state within the retrieval
cycle if possible.

 Maximum=[Double]
Maximum time in this state among all occurrences of this state during
this retrieval cycle, including state occurrences that fall only partially
within the period. An occurrence that was partially contained in two or
more consecutive storage cycles is converted to a contained state
within the retrieval cycle if possible.

 MaximumContained=[Double]
The maximum of the contained times in this state among all
occurrences of this state during the entire retrieval cycle, excluding
state occurrences that fall only partially within the period. An
occurrence that was partially contained in two or more consecutive
storage cycles is converted to a contained state within the retrieval
cycle if possible.

 Total=[Double]
Total time in this state during this retrieval cycle, including state
occurrences that fall only partially within the period.

 TotalContained=[Double]
Total time in this state during this retrieval cycle, excluding state
occurrences that fall only partially within the period. An occurrence
that was partially contained in two or more consecutive storage cycles
is converted to a contained state within the retrieval cycle if possible.

 Percent=[Double]
Percent of the time during this retrieval cycle that the tag was in this
state, including state occurrences that fall only partially within the
period.

 PercentContained=[Double]
The precentage of the entire retrieval cycle time that the tag was in
this state, excluding state occurrences that fall only partially within the
period. This is a ratio between StateTimeTotalContained and
StateTimeTotal expressed as a percentage in the range 0 to 100. An
occurrence that was partially contained in two or more consecutive
storage cycles is converted to a contained state within the retrieval
cycle if possible.

 Count=[Int64]
The number of times the state occurred within the retrieval cycle,
including states that only partially occur in the cycle.

 CountContained=[Int64]

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 214

Sample Query Scenario 1

This query produces a list of tags that end with "pump_03". In this case,
the user doesn’t know the fully qualified name (FQN) of a specific tag and
wants a short list of possible matches.

https://online.wonderware.com/apis/historian/v2/StateSummary?
TagFilter=
endswith(FQN, 'pump_03').

See more TagFilter examples. (see "Retrieve data using PowerBI" on page
255)

Scenario 2

This query specifies no start or end time and no resolution.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/Stat
eSummary
?$filter=FQN eq 'Baytown.pump_03'

In this case, these defaults are used for the returned results:

 EndTime defaults to DateTime.UtcNow

 StartTime defaults to one hour before EndTime

 Resolution defaults toTimespan

 Count defaults to1 (number of returned rows)

Scenario 3

This query specifies only StartTime and Resolution (600000ms, or 10
minutes), but no EndTime.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/Stat
eSummary
?$filter=FQN eq 'Baytown.pump_03' and StartDateTime ge
2017-06-29T00:00:00Z&Resolution=600000

In this case, Insight assumes:

 EndTime defaults to DateTime.UtcNow

The number of rows returned (Count) depends on the StartTime and
EndTime.

Scenario 4

This query specifies only EndTime, but no StartTime or Resolution.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/Stat
eSummary
?$filter=FQN eq 'Baytown.pump_03' and EndDateTime le
2017-06-29T00:00:00Z

In this case, Insight assumes:

 StartTime defaults to one hour before EndTime

 Resolution defaults toTimespan

 Count defaults to1 (number of returned rows)

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 215

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 216

Events

Description Retrieves information about events and alarms.

Note: All property names are case-sensitive. Event storage preserves the case
that you provide for any property value. For example, a property value of
"TRUE" is different than "True" and "true."

URL
/Events

Method
GET

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 217

Optional
Parameters

 ID=[GUID]
Globally unique identifier for the event.

 EventTime=[DateTime]
UTC timestamp indicating when the event occurred.

 Type=[String]
Main categorization of the event. Examples of valid values:
 - Alarm.Acknowledge - Application.Write
 - Alarm.Clear - User.Write
 - Alarm.Set - User.Write.Secured
 - Alarm.Write - User.Write.Verified

 Priority=[Int32]
Value indicating the importance of the event. Values range from 1 to 999,
with lower numbers indicating higher importance.

 Namespace =[String]
The namespace for this event tag.

 Severity=[Int32]
Categorization of the urgency of the event:
1 - Critical
2 - Major
3 - Minor
4 - Informational

 EventTimeUTCOffsetMins=[Int32]
For local time, the offset in minutes from UTC time.

 ReceivedTime=[DateTime]
UTC timestamp indicating when the event was received by the Historian
server.

 IsAlarm=[Bool]
"true" or "false" indicating whether this event is an alarm.

 Comment=[String]
A comment providing more information about the event.

Note: If an alarm comment from Application Server contains a backslash
(for example, \n), then an extra backslash appears in the event result (for
example, \\n) in the browser.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 218

Optional
Parameters

 InTouchType=[String]
InTouch Type value. Examples include:
 - ALM
 - RTN
 - ACK
 - SYS

 ValueString=[String]
The current value string.

 PreviousValueString=[String]
The previous value string.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 219

Optional Alarm
Parameters

 Alarm_ID=[String]
ID of the original Alarm event. For "Alarm.Set" events, this will be the
same as the event ID.

 Alarm_Class=[String]
InTouch alarm classification. Examples include "DSC" (discrete), "VALUE"
(LoLo, Hi, etc.), "DEV" (deviation), and "ROC" (rate of change).

 Alarm_Type=[String]
InTouch alarm type.

 Alarm_InAlarm=[Boolean]
"true" or "false" indicating whether the Alarm is still in the active state.

 Alarm_Acknowledged=[Boolean]
"true" or "false" indicating whether the user has acknowledged this alarm.

 Alarm_Condition=[String]
The condition being alarmed. Examples include "Limit.Hi", "ROC.Lo", and
"System" among others.

 Alarm_ValueString=[String]
Value logged for the variable related to the event.

 Alarm_LimitString=[String]
Limit being alarmed.

 Alarm_UnAckDuration=[Int32]
The duration, in milliseconds, for which the alarm went un-acknowledged.

 Alarm_Duration=[Int32]
The duration, in milliseconds, for which the alarm was active.

 Alarm_IsSilenced=[Boolean]
"true" or "false" indicating whether the alarm was silenced.

 Alarm_IsShelved=[Boolean]
"true" or "false" indicating whether the alarm was shelved.

 Alarm_ShelveStartTimeUTC=[DateTime]
Scheduled start of the shelve time if the alarm has been shelved.

 Alarm_ShelveEndTimeUTC=[DateTime]
Scheduled end of the shelve time if the alarm has been shelved.

 Alarm_ShelveReason=[String]
The reason the alarm was shelved.

 Alarm_ShelveUserLogin=[String]
The login ID for the person who shelved the alarm.

 Alarm_ShelveNode=[String]
The node of the shelved alarm.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 220

Optional Provider
Parameters

 Provider_NodeName=[String]
Name of the node that generated the event.

 Provider_System=[String]
Software system that generated the event. Examples include "Application
Server", "InTouch", and "InBatch".

 Provider_ApplicationName=[String]
Application that generated the event. For Application Server, this will be
the galaxy name. For InTouch, it will be the InTouch application name.

 Provider_SystemVersion=[String]
Software version (for example, 4566.1210.5811.1) for the component
identified by Provider_ApplicationName.

 Provider_InstanceNames=[String]
Provider-specific string that uniquely identifies the instance an application
on a given node.

Optional Source
Parameters

 Source_Name=[String]
The name of the data source for this event tag.

 Source_ProcessVariable=[String]
Process variable to which the event is related.

 Source_ProcessVariable_Units=[String]
Engineering units used for the process variable.

 Source_ConditionVariable=[String]
Condition variable related to the event. For example, if "TIC101" has a field
attribute "PV" and this is a "Hi" alarm, this value will be "TIC101.PV.Hi".

 Source_Object=[String]
Non-hierarchical name for the object to which the event is related, for
example, "TIC101".

 Source_HierarchicalObject=[String]
Hierarchical name for the source object. For example, "Reactor_001.TIC".

 Source_Area=[String]
Non-hierarchical Area name. For example, "Bottling_Zone".

 Source_HierarchicalArea=[String]
Hierarchical Area name. For example, "Plant_001.Building_002.Mixing".

 Source_Engine=[String]
Non-hierarchical engine name. For example, "AppEngine_001".

 Source_Platform=[String]
Non-hierarchical platform name. For example "WinPlatform_001".

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 221

Optional User
Parameters

 User_Account=[String]
This is the login name for the operator for the given application.

 User_Name=[String]
Name of the user.

 User_NodeName=[String]
Computer name from which a user action was executed.

 User_Email=[String]
The user's email address.

 User_Phone=[String]
The user's phone number.

 User_InstanceName=[String]
An instance name for the user.

 User_Agent=[String]
Application name that the user was running when the event was
generated.

Optional Verifier
Parameters

 Verifier_Account=[String]
This is the login name for theverifier.

 Verifier_Name=[String]
Name of the verifier.

 Verifier_NodeName=[String]
Computer name from which a verifier action was executed.

Sample Queries
https://online.wonderware.com/s/ik97r5/apis/Historian/v2/Events
?$filter=EventTime+gt+'2017-07-13T00:00:00'

https://online.wonderware.com/s/ik97r5/apis/Historian/v2/Events
?$filter=type+eq+'Alarm.Clear'

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 222

Sample Output
{
@odata.context:
"https://online.wonderware.com/s/ik97r5/apis/Historian/v2/Events
/$metadata#Events",
value: [
{
id: "ee9b042c-181e-4872-b4e8-cb9575c1f4f9",
eventtime: "2017-07-13T00:00:01.047Z",
type: "Alarm.Clear",
receivedtime: "2017-07-13T00:00:01.2553666Z",
source_name: "AaEvents",
namespace: "AaEvents",
alarm_acknowledged: false,
alarm_class: "VALUE",
alarm_condition: "Limit.LoLo",
alarm_durationms: 5006,
alarm_id: "f1e21e43-352e-d3db-7552-6e77f193d02d",
alarm_inalarm: false,
alarm_isshelved: false,
alarm_issilenced: false,
alarm_limitstring: "10.0",
alarm_originationtime: "2017-07-12T23:59:56.041Z",
alarm_state: "UNACK_RTN",
alarm_tagtype: "S",
alarm_type: "LoLo",
comment: "Severity 1",
eventtimeutcoffsetmins: -420,
intouchtype: "LoLo",
isalarm: true,
priority: 1,
provider_applicationname: "AlarmsandEvents",
provider_nodename: "INSIGHTCHARTAPP",
provider_system: "Application Server",
provider_systemversion: "4966.1210.14578.2",
severity: 1,
source_area: "Plant_Area",
source_conditionvariable:
"Drum_Conveyor.HorizontalMovement.LoLo",
source_hierarchicalarea: "Enterprise.Site.Plant.Plant_Area",
source_hierarchicalobject: "Drum_Conveyor",
source_object: "Drum_Conveyor",
source_processvariable: "Drum_Conveyor.HorizontalMovement",
valuestring: "30.0"
},

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 223

Tags

Description Using the GET verb, retrieves tag metadata. For version 2, this also includes
tag extended properties.

Using the POSTverb, manages multiple tags at once.

Using the DELETE verb, deletes a specified tag.

URL
/Tags

Methods
GET
POST
DELETE

Required Parameters  FQN=[string]
The fully qualified name for the tag. A fully qualified name uses the
format: datasource.tagname.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 224

Optional Parameters  Source=[string]
The data source.

 Description=[string]
The description of the tag.

 EngUnit=[string]
The engineering units used for the tag's recorded values.
EngUnitMax=[Double]
The maximum value of the tag, measured in engineering units.

 EngUnitMin=[Double]
The minimum value of the tag, measured in engineering units.
The minimum value of the tag, measured in engineering units.

 InterpolationType=[string]
The interpolation type for retrieval. 0 = Stair-stepped interpolation; 1 =
Linear interpolation (if applicable, based on the tag type); 254 = System
default interpolation mode. The system default interpolation type is to
use the system default for the analog type, either integer or real. The
system default interpolation type for an analog type is determined by
the setting of the InterpolationTypeInteger and InterpolationTypeReal
system parameters. This setting impacts Interpolated, Average, and
Integral retrieval modes.

 IntegralDivisor=[Double]
The factor to be applied when integrating a rate with the units
[EngUnits/TimeUnit] to a quantity with units [EngUnits]. This factor is
called the integral divisor.

The default value of 1 assumes a time unit of seconds and ensures that
a rate of [Unit/second] is correctly integrated to [Unit].

For a time unit of minutes, set the integral divisor value to 60; for a unit
of hours, set the integral divisor value to 3600. The integral divisor is
applied similarly to rates or quantities that are not expressed in terms
of a time unit. For example, to convert watts to watt-hours, the integral
divisor is 1/3600. To convert watts to kilowatt-hours, the integral
divisor is 1/3600000. Internal use only.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 225

Optional Parameters  RolloverValue=[Double]
The rollover value for the tag.

 MessageOff=[string]
The message associated with the FALSE state of the discrete tag. The
maximum number of characters is 64. A discrete tag set to 0 is in the
FALSE state.

 MessageOn=[string]
The message associated with the TRUE state of the discrete tag. The
maximum number of characters is 64. A discrete tag set to 1 is in the
TRUE state.

 TagName=[string]
The unique name of the tag within the AVEVA Historian system.

 TagType=[string]
The type of tag. 1 = Analog; 2 = Discrete; 3 = String; 5 = Event, 7 =
Summary tag (analog or state). TagType is a foreign key from the AVEVA
Historian TagRef table.

 Raw
Identifies related the raw acquired value.

 Minutely
Identifies related minutely summary.

 Hourly
Identifies related hourly summary.

 Daily
Identifies related daily summary.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 226

Get tags

 Sample Query Scenario 1
This query lists tag metadata for all tags in all data sources for
your Insight solution.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/Tags

Scenario 2

This query lists metadata for tags in a particular data source. The data source
in this example is named Baytown.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/Tags?
$filter=Source+eq+'Baytown'

Sample Output
{
@odata.context:
"https://online.wonderware.com/s/ik97r5/apis/Historian/v2/$met
adata#Tags",
value: [
{
 FQN: "14th aug app.Auto",
 Source: "14th aug app",
 Description: "Automatic mode",
 EngUnit: "",
 EngUnitMax: 0,
 EngUnitMin: 0,
 InterpolationType: "None",
 MessageOff: "Manu",
 MessageOn: "Auto",
 TagName: "Auto",
 TagType: "Discrete",
 Alias: "nareshtag-discrete",
 Location: "/Application Tag 2",
 Raw@odata.navigationLink:
 "https://online.wonderware.com/s/ik97r5/apis/Historian/v2
 /Tags('14th%252baug%252bapp.Auto')/Raw",
 Minutely@odata.navigationLink:
 "https://online.wonderware.com/s/ik97r5/apis/Historian/v2
 /Tags('14th%252baug%252bapp.Auto')/Minutely",
 Hourly@odata.navigationLink:
"https://online.wonderware.com/s/ik97r5/apis/Historian/v2
/Tags('14th%252baug%252bapp.Auto')/Hourly",
 Daily@odata.navigationLink:
 "https://online.wonderware.com/s/ik97r5/apis/Historian/v2
 /Tags('14th%252baug%252bapp.Auto')/Daily"
}
],
@odata.nextLink:
"https://online.wonderware.com/s/ik97r5/apis/Historian/v2/Tags
?$skiptoken=koen66nr4nGCReC02FqdxO4Y62C7zBVsv3uf7mO8XMQqxZveqw
8+v2/bVCsFdevT"
}

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 227

Delete a tag

Sample Query This query deletes a tag named Weather.Brisbane.Cloudiness.

DELETE /Historian/v2/Tags('Weather.Brisbane.Cloudiness')
HTTP/1.1
Host: nchdevruntime.cloudapp.net:8080
Content-Type: application/json
{
 "delete":
 {
 "FQN":["datasourcename.tagname"]
 }
}

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 228

Manage multiple tags

Sample Query Scenario 1: Bulk query

This query retrieves multiple tags.

POST /Historian/v2/Tags HTTP/1.1
Host: nchqaruntime.cloudapp.net:8080
Authorization: Basic …….
Content-Type: application/json
Cache-Control: no-cache
{
 "query":
 {

 "FQN":['Weather.Brisbane.Cloudiness','Weather.Auckland.
Cloudiness'],
 "select":"FQN,TagName"
 }
}

Scenario 2: Bulk edit

This makes updates to multiple tags. You can edit up to 100 tags at a time,
with maximum of 50 properties per tag.

Note: Historian Data REST API extended properties map to the AVEVA
Historian SDK tag extended properties API.

This makes updates to a tag's standard and extended properties.

POST /Historian/v2/Tags HTTP/1.1
Host: nchdevruntime.cloudapp.net:8080
Authorization: Basic …
Content-Type: application/json
Cache-Control: no-cache

{
 "properties":
 [
 {
 "FQN": "18Jul_kc.test1",
 "PropertyName": "Alias",
 "Text": "SysTimeSec",
 "Type": "String",
 "Searchable":false
 }
}

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 229

Sample Query Scenario 3: Bulk delete

This deletes multiple tags.

POST /Historian/v2/Tags HTTP/1.1
Host: nchdevruntime.cloudapp.net:8080
Content-Type: application/json
Cache-Control: no-cache
{
 "delete":
 {
 "FQN":["datasourcename.tagname1",
"datasourcename.tagname2"]
 }
}

Sample Output The output from a bulk edit includes results per tag. If any of a tag's
properties is invalid, the tag fails and results in an error message.

{
"value":
[
{
"FQN": "System.Tag1",
"$StatusCode": 200
},
{
"FQN": "System.Tag2",
"$StatusCode":500,
"$ErrorMessage":"Alias property contains illegal characters"
}
]
}

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 230

TagProperties

Description Lists all properties used in the system. Tag properties include both base and
extended properties of a tag.

Examples of TagProperties are DataSourceName and Unit.

URL
/TagProperties

Method
GET

Required Parameters  Name=[string]
The unique name of the tag property.

Optional Parameters  Values
Valid values for this property.

Sample Query This query lists all properties and extended properties for your Insight
solution:

https://online.wonderware.com/s/ik97r5/apis/Historian/v2/TagP
roperties

Sample Output
{
@odata.context:
"https://online.wonderware.com/s/ik97r5/apis/Historian/v2/$me
tadata#TagProperties",
value: [
 {
 Name: "DataSourceName",
 Type: "String",
 ReadOnly: true
 },
 {
 Name: "Namespace",
 Type: "String",
 ReadOnly: true
 },
 {
 Name: "TagName",
 Type: "String",
 ReadOnly: true
 },
 {
 Name: "FullyQualifiedName",
 Type: "String",
 ReadOnly: true
 },
...

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 231

TagPropertyValues

Description Retrieves values for one or more tag properties. Tag properties include base
and extended properties of Tag. Examples of TagProperties are
DataSourceName and Unit.

URL
/TagpropertyValues

Method
GET

Required Parameters  Name=[string]
Unique name of the tag property value.

 Value=[string]

Optional Parameters  Tags
Identifies related Tags.

Sample Query This query lists the property name ("Source") and value (that is, the data
source name) for all data sources:

https://online.wonderware.com/s/ik97r5/apis/Historian/v2/TagP
ropertyValues

Sample Output
{
@odata.context:
"https://online.wonderware.com/s/ik97r5/apis/Historian/v2
/$metadata#TagPropertyValues",
value: [
 {
 Name: "Source",
 Value: "Meter",
 Tags@odata.navigationLink:
 "https://online.wonderware.com/s/ik97r5/apis

/Historian/v2/TagPropertyValues(Name='Source',Value='Meter')
 /Tags"
 },
 {
 Name: "Source",
 Value: "Weather",
 Tags@odata.navigationLink:
 "https://online.wonderware.com/s/ik97r5/apis

/Historian/v2/TagPropertyValues(Name='Source',Value='Weather'
)
 /Tags"
 }
]
}

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 232

TagGroups

Description Retrieves information about data sources. Each data source contains a
group of tags.

URL
/TagGroups

Method
GET

Required Parameters  GroupID=[string]
Globally unique identifier for the tag group.

Optional Parameters  GroupName=[string]
The name of the data source.

 TypeID=[string]
The type of data source.

 ParentID=[string]

 Scope=[string]
Used for tag-level security, this defines a location within the data
source.

 Tags
Identifies related Tags.

 Groups
Identifies related TagGroups.

Sample Query This query lists the data sources (labeled "TagGroups" in this API) for your
Insight solution identified by solution ID. In this example, the solution ID
used is "ik97r5".

https://online.wonderware.com/s/ik97r5/apis/historian/v2/TagG
roups

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 233

Sample Output
{
@odata.context:
"https://online.wonderware.com/s/ik97r5/apis/Historian/v2
/$metadata#TagPropertyValues",
value: [
 {
 Name: "Source",
 Value: "Meter",
 Tags@odata.navigationLink:
 "https://online.wonderware.com/s/ik97r5/apis

/Historian/v2/TagPropertyValues(Name='Source',Value='Meter')
 /Tags"
 },
 {
 GroupID: "1cd29ff2-f7f3-428b-a593-55c917136a39",
 GroupName: "Weather",
 Type: "1000000",
 ParentID: "0",
 Scope: "Public",
 Tags@odata.navigationLink: "https://online.wonderware.com
 /s/ik97r5/apis/Historian/v2/TagGroups
 ('1cd29ff2-f7f3-428b-a593-55c917136a39')/Tags",
 Groups@odata.navigationLink:
"https://online.wonderware.com
 /s/ik97r5/apis/Historian/v2/TagGroups
 ('1cd29ff2-f7f3-428b-a593-55c917136a39')/Groups"
 }
]
}

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 234

TagSuggest

Description Retrieves content or tags based on search criteria from AVEVA Insight. It
returns the search results based on tag name, content name, keywords,
description, and so on. It also returns the summary of the search result --
for example, total matching search results for the given search text.

You can use the these query options:

 q -- (query) Limits the search to only specified fields instead of
searching all fields.

 Type -- Limits the search to only a certain type of data (Tag or
SavedContent).

URL
/TagSuggest

Method
GET

Required Parameters  Value=[string]
The suggested value.

Optional Parameters  FieldName=[string]
The related field name.

 Count=[Double]
The hit count for this query string.

 SearchRanking=[Double]
The search ranking for the tag.

 DisplayText=[string]
The associated display text.

 Search

 Tags
Identifies related Tags.

 ExpandSuggest

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 235

Sample Query Scenario 1

This query returns values from a search of all fields (default).

https://online.wonderware.com/s/ik97r5/apis/historian/v2/TagS
uggest

Scenario 2

This query uses the "q" query option to limit the search to only the
"location" field.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/TagS
uggest
?q=&searchfields=location

Scenario 3

This query uses the "Type" option to limit the search to only a certain type
of data (Tag or SavedContent).

https://online.wonderware.com/s/ik97r5/apis/historian/v2/TagS
uggest?q=d&Type=Tag

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 236

TagSearch

Description Provides tagname results based on provided search parameters.

The data returned by this entity is dependent on the historian’s
implementation of search functionality. Some historians will return empty
result sets.

It finds all the matching results for a given query string. It is basically used
to filter the results based on the suggestion results. It searches for the
matching record only on the fields provided in the key name as part of the
query parameter. The results contain basic tag metadata information; such
as FQN, tagname, source, and search ranking.

You can use these query options:

 q - Specifies the query string (for example, the value typed by the user
into the search box).

 kn - Specifies the key name (field name) to which the search will be
applied.

 kv - Specifies the key value which will be used for the search.

URL
/TagSearch

Method
GET

Required Parameters  FQN=[string]
The fully qualified name for the tag. A fully qualified name uses the
format: datasource.tagname.

Optional Parameters  Source=[string]
The data source.

 TagName=[string]
The name of the tag.

 DisplayText=[string]
The displayed text for the tag.

 SearchRanking=[Double]
The search ranking for this tag.

 Tag
Returns a URL to retrieve a list of Tag entity values for the tags that
match.

Sample Query This example uses the "q", "kn", and "kv" query options.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/T
agSearch
?q=r&kn=source&kv=atron

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 237

TagExtendedProperties

Description Retrieves both standard and extended properties for a tag.

URL
/TagExtendedProperties

Method
GET

Required Parameters  FQN=[string]
The fully qualified name for the tag. A fully qualified name uses the
format: datasource.tagname.

 PropertyName=[string]
The name of the property.

Optional Parameters  Value=[Double]
The value of the property.

 Text=[string]
The associated text for the property.

 Type=[string]
Can be one of these:

o [Edm.]String

o [Edm.]Int16, Int32, Int64

o [Edm.]Double

o [Edm.]DateTimeOffset

o [Edm.]Guid

o [Edm.]Boolean

o [Edm.]Geography types

o [Edm.]Geometry types

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 238

Summary (v1 only)

Description Retrieves summary data for a user-defined interval.

The additional query option "Resolution" is used to specify the interval to
be used for this entity.

The earliest and latest requested values of StartDateTime and/or
EndDateTime are used for determining the span of time covered by the
summary intervals returned.

URL
/Summary

Method
GET

Required Parameters  FQN=[string]
The fully qualified name for the tag. A fully qualified tagname uses the
format: DataSourceName.TagName.

 StartDateTime=[DateTimeOffset]
The starting date and time for the retrieval cycle. This is always
specified in UTC using the RFC3339 / ISO8601 format with the Z time
zone designator. For example: 2016-09-03T18:44:09.352247Z

 EndDateTime=[DateTimeOffset]
The ending date and time for the retrieval cycle. This is always specified
in UTC using the RFC3339 / ISO8601 format with the Z time zone
designator. For example: 2016-09-03T18:44:09.352247Z

Optional Parameters  OPCQuality=[Int32]
OPC quality. Normal OPC quality retrieval logic is applied if:

All the point found and processed for this row have GOOD quality. If
they all have the same GOOD quality, then that quality is returned.

If there is a gap in the entire calculation cycle, then BAD quality is
returned for the tag.

For any other scenario with any mixture of GOOD and BAD points, a
DOUBTFUL OPC quality (64) is returned.

 PercentGood=[Double]
The ratio of the number of rows that have "good" quality to the total
number of rows in the retrieval cycle, expressed as a percentage in the
range 0 to 100.

 Analog
An embedded collection that maps to AnalogSummary (see
"AnalogSummary" on page 205).

 Split
An embedded collection that maps to StateSummary (see
"StateSummary" on page 211) for the ValueState retrieval mode.

 Contained

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 239

An embedded collection that maps to StateSummary (see
"StateSummary" on page 211) for the ContainedState retrieval mode.

 Raw
A URL used to retrieve all stored values for a specified time period and
tag. This is equivalent to a preconfigured ProcessValue (see
"ProcessValues" on page 202) query.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 240

Daily (v1 only)

Description Retrieves daily (24-hour resolution) summary values for the tags specified.
The default for Daily is to report summary values for the last week.

URL
/Daily

Method
GET

Required Parameters  FQN=[string]
The fully qualified name for the tag. A fully qualified tagname uses the
format: DataSourceName.TagName.

 StartDateTime=[DateTimeOffset]
The starting date and time for the retrieval cycle. This is always
specified in UTC using the RFC3339 / ISO8601 format with the Z time
zone designator. For example: 2016-09-03T18:44:09.352247Z

 EndDateTime=[DateTimeOffset]
The ending date and time for the retrieval cycle. This is always specified
in UTC using the RFC3339 / ISO8601 format with the Z time zone
designator. For example: 2016-09-03T18:44:09.352247Z

Optional Parameters  TimeZone=[string]
The timezone used for the timeframe. See "Accepted values for
TimeZone" below.

 OPCQuality=[Int32]
OPC quality. Normal OPC quality retrieval logic is applied if:

All the point found and processed for this row have GOOD quality. If
they all have the same GOOD quality, then that quality is returned.

If there is a gap in the entire calculation cycle, then BAD quality is
returned for the tag.

For any other scenario with any mixture of GOOD and BAD points, a
DOUBTFUL OPC quality (64) is returned.

 PercentGood=[Double]
The ratio of the number of rows that have "good" quality to the total
number of rows in the retrieval cycle, expressed as a percentage in the
range 0 to 100.

 Analog=[analog statistics]
An embedded collection that maps to AnalogSummary (see
"AnalogSummary" on page 205).

 Split=[collection of state statistics]
An embedded collection that maps to StateSummary (see
"StateSummary" on page 211) for the ValueState retrieval mode.

 Contained=[collection of state statistics]
An embedded collection that maps to StateSummary (see

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 241

"StateSummary" on page 211) for the ContainedState retrieval mode.

 Raw
A URL used to retrieve all stored values for a specified time period and
tag. This is equivalent to a preconfigured ProcessValue (see
"ProcessValues" on page 202) query.

 Minute

 Hourly

Accepted values for TimeZone

UTC offset in minutes TimeZone value

0 UTC

0 Morocco Standard Time

0 GMT Standard Time

0 Greenwich Standard Time

60 W. Europe Standard Time

60 Central Europe Standard Time

60 Romance Standard Time

60 Central European Standard Time

60 W. Central Africa Standard Time

60 Namibia Standard Time

120 Jordan Standard Time

120 GTB Standard Time

120 Middle East Standard Time

120 Egypt Standard Time

120 E. Europe Standard Time

120 Syria Standard Time

120 West Bank Standard Time

120 South Africa Standard Time

120 FLE Standard Time

120 Israel Standard Time

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 242

120 Kaliningrad Standard Time

120 Libya Standard Time

180 Arabic Standard Time

180 Turkey Standard Time

180 Arab Standard Time

180 Belarus Standard Time

180 Russian Standard Time

180 E. Africa Standard Time

210 Iran Standard Time

240 Arabian Standard Time

240 Astrakhan Standard Time

240 Azerbaijan Standard Time

240 Russia Time Zone 3

240 Mauritius Standard Time

240 Georgian Standard Time

240 Caucasus Standard Time

270 Afghanistan Standard Time

300 West Asia Standard Time

300 Ekaterinburg Standard Time

300 Pakistan Standard Time

330 India Standard Time

330 Sri Lanka Standard Time

345 Nepal Standard Time

360 Central Asia Standard Time

360 Bangladesh Standard Time

360 Omsk Standard Time

390 Myanmar Standard Time

420 SE Asia Standard Time

420 Altai Standard Time

420 W. Mongolia Standard Time

420 North Asia Standard Time

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 243

420 N. Central Asia Standard Time

420 Tomsk Standard Time

480 China Standard Time

480 North Asia East Standard Time

480 Singapore Standard Time

480 W. Australia Standard Time

480 Taipei Standard Time

480 Ulaanbaatar Standard Time

510 North Korea Standard Time

525 Aus Central W. Standard Time

540 Transbaikal Standard Time

540 Tokyo Standard Time

540 Korea Standard Time

540 Yakutsk Standard Time

570 Cen. Australia Standard Time

570 AUS Central Standard Time

600 E. Australia Standard Time

600 AUS Eastern Standard Time

600 West Pacific Standard Time

600 Tasmania Standard Time

600 Vladivostok Standard Time

630 Lord Howe Standard Time

660 Bougainville Standard Time

660 Russia Time Zone 10

660 Magadan Standard Time

660 Norfolk Standard Time

660 Sakhalin Standard Time

660 Central Pacific Standard Time

720 Russia Time Zone 11

720 New Zealand Standard Time

720 UTC+12

720 Fiji Standard Time

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 244

720 Kamchatka Standard Time

765 Chatham Islands Standard Time

780 Tonga Standard Time

780 Samoa Standard Time

840 Line Islands Standard Time

-60 Azores Standard Time

-60 Cape Verde Standard Time

-120 UTC-02

-120 Mid-Atlantic Standard Time

-180 Tocantins Standard Time

-180 E. South America Standard Time

-180 SA Eastern Standard Time

-180 Argentina Standard Time

-180 Greenland Standard Time

-180 Montevideo Standard Time

-180 Saint Pierre Standard Time

-180 Bahia Standard Time

-210 Newfoundland Standard Time

-240 Paraguay Standard Time

-240 Atlantic Standard Time

-240 Venezuela Standard Time

-240 Central Brazilian Standard Time

-240 SA Western Standard Time

-240 Pacific SA Standard Time

-240 Turks And Caicos Standard Time

-300 SA Pacific Standard Time

-300 Eastern Standard Time (Mexico)

-300 Eastern Standard Time

-300 Haiti Standard Time

-300 Cuba Standard Time

-300 US Eastern Standard Time

-360 Central America Standard Time

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 245

-360 Central Standard Time

-360 Easter Island Standard Time

-360 Central Standard Time (Mexico)

-360 Canada Central Standard Time

-420 US Mountain Standard Time

-420 Mountain Standard Time (Mexico)

-420 Mountain Standard Time

-480 Pacific Standard Time (Mexico)

-480 UTC-08

-480 Pacific Standard Time

-540 Alaskan Standard Time

-540 UTC-09

-570 Marquesas Standard Time

-600 Aleutian Standard Time

-600 Hawaiian Standard Time

-660 UTC-11

-720 Dateline Standard Time

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 246

Hourly (v1 only)

Description Retrieves hourly summary values for the tags specified. The default for
Hourly is to report summary values for the last 24 hours.

URL
/Hourly

Method
GET

Required Parameters  FQN=[string]
The fully qualified name for the tag. A fully qualified tagname uses the
format: DataSourceName.TagName.

 StartDateTime=[DateTimeOffset]
The starting date and time for the retrieval cycle. This is always
specified in UTC using the RFC3339 / ISO8601 format with the Z time
zone designator. For example: 2016-09-03T18:44:09.352247Z

 EndDateTime=[DateTimeOffset]
The ending date and time for the retrieval cycle. This is always specified
in UTC using the RFC3339 / ISO8601 format with the Z time zone
designator. For example: 2016-09-03T18:44:09.352247Z

Optional Parameters  TimeZone=[string]
The timezone used for the timeframe. See "Accepted values for
TimeZone" below.

 OPCQuality=[Int32]
OPC quality. Normal OPC quality retrieval logic is applied if:

All the point found and processed for this row have GOOD quality. If
they all have the same GOOD quality, then that quality is returned.

If there is a gap in the entire calculation cycle, then BAD quality is
returned for the tag.

For any other scenario with any mixture of GOOD and BAD points, a
DOUBTFUL OPC quality (64) is returned.

 PercentGood=[Double]
The ratio of the number of rows that have "good" quality to the total
number of rows in the retrieval cycle, expressed as a percentage in the
range 0 to 100.

 Analog=[analog statistics]
An embedded collection that maps to AnalogSummary (see
"AnalogSummary" on page 205).

 Split=[collection of state statistics]
An embedded collection that maps to StateSummary (see
"StateSummary" on page 211) for the ValueState retrieval mode.

 Contained=[collection of state statistics]
An embedded collection that maps to StateSummary (see

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 247

"StateSummary" on page 211) for the ContainedState retrieval mode.

 Raw
A URL used to retrieve all stored values for a specified time period and
tag. This is equivalent to a preconfigured ProcessValue (see
"ProcessValues" on page 202) query.

 Minute

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 248

Minutely (v1 only)

Description Retrieves summary values with a 1-minute resolution for the tags specified.
Default duration for minutely summaries is the last 1 hour. The default for
Minutely is to report summary values for the last hour.

URL
/Minutely

Method
GET

Required Parameters  FQN=[string]
The fully qualified name for the tag. A fully qualified tagname uses the
format: DataSourceName.TagName.

 StartDateTime=[DateTimeOffset]
The starting date and time for the retrieval cycle. This is always
specified in UTC using the RFC3339 / ISO8601 format with the Z time
zone designator. For example: 2016-09-03T18:44:09.352247Z

 EndDateTime=[DateTimeOffset]
The ending date and time for the retrieval cycle. This is always specified
in UTC using the RFC3339 / ISO8601 format with the Z time zone
designator. For example: 2016-09-03T18:44:09.352247Z

Optional Parameters  TimeZone=[string]
The timezone used for the timeframe. See "Accepted values for
TimeZone" below.

 OPCQuality=[Int32]
OPC quality. Normal OPC quality retrieval logic is applied if:

All the point found and processed for this row have GOOD quality. If
they all have the same GOOD quality, then that quality is returned.

If there is a gap in the entire calculation cycle, then BAD quality is
returned for the tag.

For any other scenario with any mixture of GOOD and BAD points, a
DOUBTFUL OPC quality (64) is returned.

 PercentGood=[Double]
The ratio of the number of rows that have "good" quality to the total
number of rows in the retrieval cycle, expressed as a percentage in the
range 0 to 100.

 Analog=[analog statistics]
An embedded collection that maps to AnalogSummary (see
"AnalogSummary" on page 205).

 Split=[collection of state statistics]
An embedded collection that maps to StateSummary (see
"StateSummary" on page 211) for the ValueState retrieval mode.

 Contained=[collection of state statistics]

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 249

An embedded collection that maps to StateSummary (see
"StateSummary" on page 211) for the ContainedState retrieval mode.

 Raw
A URL used to retrieve all stored values for a specified time period and
tag. This is equivalent to a preconfigured ProcessValue (see
"ProcessValues" on page 202) query.

SystemParameters (on-premises only)

Description Retrieves names and values for system parameters.

(On-premises AVEVA Historian Insight only)

URL
/SystemParameters

Method
GET

Required Parameters  Name=[string]
The unique name for the system parameter.

Optional Parameters  Value=[string]
The value of this system parameter.

 Tags
Identifies related tags.

Retrieval examples

You can send retrieval requests to the Historian Data REST API from any modern web browser and from OData
client-side tools. Examples of such tools include Microsoft Excel (2013, 2016, or Office 365), and Business
Intelligence (BI) systems, such as Tableau and Microsoft Power BI.

Click below to see query examples using specific tools:

 Browser query examples (see "Retrieve data via browser query" on page 249)

 Postman query examples (see "Retrieve data using Postman" on page 250)

 Excel query examples (see "Retrieve data using Excel" on page 252)

 PowerBI query example (see "Retrieve data using PowerBI" on page 255)

Retrieve data via browser query

You can simply type an OData HTTP request in the address bar of a modern browser to query Historian Data API.

Note: Retrieval endpoints are unique for each Insight solution. The following examples use the endpoint
"https://online.wonderware.com/s/ik97r5", but yours will be different. Learn how to find the
basic-authentication retrieval endpoint for your solution.

 List root entities

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 250

This example lists the entities you can explore and submit additional queries against.

https://online.wonderware.com/s/ik97r5/apis/historian/v2

For more information, see Resources (see "Retrieval resources" on page 201).

 List data sources (tag groups)

This shows the data sources (labeled "TagGroups" in this API) for your Insight solution. If you have accounts
for more than one solution, this shows the data sources for your original Insight solution.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/TagGroups

 List tag metadata for all tags

This shows metadata for all tags in all data sources for your original Insight solution.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/Tags

 List tag metadata for a data source

This shows metadata for tags in a particular data source. The data source in this example is named Baytown.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/Tags?$filter=Source+eq+'Baytown
'

 List tag values for a data source

This example expands on the last one. It uses a "$filter" clause that specifies a particular tag named
tank_level within the Baytown data source. The result is a list of values for the tank_level tag.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/ProcessValues?$filter=FQN+eq+'B
aytown.tank_level'

 List tag values with analog summary data for a data source

This example result is a list of values with analog summary for the tank_level tag.

https://online.wonderware.com/s/ik97r5/apis/historian/v2/AnalogSummary?$filter=FQN+eq+'B
aytown.tank_level'

Notice that this example uses a fully qualified name ("Baytown.tank_level"), which is a combination of a
data source name ("Baytown") and a tagname ("tank_level").

Retrieve data using Postman

A great way to explore and learn about the AVEVA Insight APIs is by using a simple client, such as Postman.
Postman is a free developer tool allows you to query any API. You can download Postman from
https://postman.com/ https://www.getpostman.com/.

To query the AVEVA Insight APIs using Postman

1. Next to the GET button, type this address:

https://www.getpostman.com/

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 251

http://localhost:32569/historian/v2

2. From the Type dropdown list, select NTLM Authentication [Beta] to specify the authentication to use.

3. Enter the username and password for a user account with sufficient privileges to access the API.

4. In the upper-right of the screen, select Send.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 252

The result is a catalog of data entities from AVEVA Insight.

Retrieve data using Excel

To manually import Insight data to Excel

1. Open Excel 2013 or later.

2. From Data, choose Get External Data, choose From Other Sources, and then choose From OData Data
Feed.

3. In the Link or File box, specify a URL for your query, formatted as an atom feed (that is, end with
"$format=atom’").

Here is a query example:

https://online.wonderware.com/s/ik97r5/apis/historian/v2/TagGroups?$format=atom

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 253

Note: Retrieval endpoints are unique for each Insight solution. This example uses the endpoint
"https://online.wonderware.com/s/ik97r5", but yours will be different. Learn how to find the
basic-authentication retrieval endpoint for your solution.

4. Click Use this name and password, and specify your Insight user name and password. Click Next.

5. In the Select Tables box, mark the element to include. Click Next.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 254

6. Review the information displayed on Save Data Connection File and Finish and then click Finish. Excel
creates an ODC (OData Connection) file.

7. Specify how and where to place your data in the spreadsheet. Click OK.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 255

Excel will place the data where you specified:

Retrieve data using PowerBI

You can use PowerBI to retrieve Insight data. For syntax examples, see the Query Examples section below.

Note: You will need a query endpoint from AVEVA Insight for your query.

To import Insight data to Power BI

1. In AVEVA Insight, identify the retrieval endpoint for your Insight solution. You will use this in step 4.

2. Open PowerBI.

3. Click Get Data, and choose OData Feed.

4. In URL, specify the retrieval endpoint (from step 1) followed by any query parameters. Click OK.

See the "Query examples" section below.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 256

5. Specify Basic Authentication, and provide your Insight username and password.

6. Click Connect.

7. Power BI shows a preview of your data retrieved from Insight.

8. Click Load.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 257

9. In the upper-left corner, click to view the table of results.

Query examples

 Using GET method with ProcessValues:

Historian/v2/ProcessValues?TagFilter=EngUnit eq ‘rpm’&DurationHours=2

Historian/v2/ProcessValues?$filter=DateTime le
2019-01-15T03:57:29Z&TagFilter=startswith(Description, ‘Pump’)&DurationHours=10

Historian/v2/ProcessValues?$filter=DateTime ge 2019-01-15T03:57:29Z and DateTime le
2019-01-17T03:50:54.881Z&TagFilter=startswith(Location, ‘/Houston/Mixing’)

Historian/v2/ProcessValues?$filter=DateTime ge
2019-01-15T03:57:29Z&TagFilter=startswith(FQN, 'testds1')&DurationHours=5

Historian/v2/ProcessValues?TagFilter=endswith('Level',FQN)

 Using GET method with AnalogSummary:

Historian/v2/AnalogSummary?TagFilter=EngUnit eq ‘rpm’&DurationHours =2

Historian/v2/AnalogSummary?$filter=EndDateTime le 2019-01-15T03:57:29Z&TagFilter=
startswith(Description, ‘Pump’)&DurationHours=10

Historian/v2/AnalogSummary?$filter=StartDateTime ge 2019-01-15T03:57:29Z and EndDateTime
le 2019-01-17T03:50:54.881Z&TagFilter=startswith(Location, "/Houston/Mixing")

Historian/v2/AnalogSummary?$filter= StartDateTime ge
2019-01-15T03:57:29Z&TagFilter=startswith(FQN, 'testds1')&DurationInHour=5

Historian/v2/AnalogSummary?TagFilter=endswith(FQN, 'Level')

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 258

 Using GET method with StateSummary:

Historian/v2/StateSummary?TagFilter=EngUnit eq ‘rpm’& DurationHours =2

Historian/v2/StateSummary?$filter=EndDateTime le
2019-01-15T03:57:29Z&TagFilter=startswith(Description, ‘Pump’)& DurationHours =10

Historian/v2/StateSummary?$filter=StartDateTime ge 2019-01-15T03:57:29Z and EndDateTime le
2019-01-17T03:50:54.881Z&TagFilter=startswith(Location, ‘/Houston/Mixing’)

Historian/v2/StateSummary?$filter= StartDateTime ge
2019-01-15T03:57:29Z&TagFilter=startswith(FQN, 'testds1')&DurationHours=5

Historian/v2/StateSummary?TagFilter=endswith(FQN, 'Level')

Notes about post-retrieval filtering

Any post-retrieval filtering may require you to also change the data type for a specific the column in the results
list.

For example, suppose you ran this query:

/Historian/v2/ProcessValues?$filter=OPCQuality eq
192&DurationHours=24&Resolution=3600000&TagFilter= endswith(TagName,'%23testtag')

The results would be:

Then suppose you wanted to filter the "DateTime" column to include only yesterday's date. You must change
the data type of the DateTime column first, and then select the date you want:

1. Right-click the "DateTime" column header, select Change Type. and then click Date/Time.

2. Right-click the "DateTime" column and choose Yesterday from the displayed list.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 259

Then the filtering will take effect.

Querying History Blocks via SQL Server Reporting Services

Extension
Historian includes an extension for SQL Server Reporting Services to enable SQL queries against the OData
interface used for data stored in history blocks.

To configure the extension

1. Open the Configurator.

2. Under Historian, click the Reporting node.

3. Select the versions of Visual Studio installed with your SQL Server Reporting Services.

4. Click Configure.

To use the extension

1. Define a new Reporting Services data source.

2. Select "Historian OData Provider" as the source type.

3. Click Historian and then click Extension.

4. Enter a connection string in the form "Server=host:port"; for example:

Server=localhost:32569

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 260

Three Ways To Query the Source

You can query the source using one of these options:

 Use a SQL-style query. For example:

select * from Events where Source_Area='Site2' and EventTime >=
'2014-08-10T05:56:21.302Z'

 Use an OData query. This OData query example is equivalent to the query above:

http://Server1:32569/Historian/v1/Events?$filter=Source_Area+eq+%27Site2%27+and
EventTime+ge+datetimeoffset%272014-08-10T05:56:21.302Z%27

Note: For queries from a web browser, use "%20" to indicate a space. Use "%27" to indicate a single
quote.
If you are using the JSONView viewer in the Chrome browser, you can use a plus sign (+) to indicate a space
to make the URI string more readable.

 Use an SQL syntax used within the URL. For example, this is equivalent to the other two queries above:

http://Server1:32569/Historian/v1/Events?sql=select+*+from Events+where
Source_Area=%27ite2%27+and+EventTime+>=+%272014-08-10T05:56:21.302Z%27

Retrieval errors
The OData error codes listed in the following table may be returned by an operation on any of the storage
services.

Error code HTTP status code User message

ConditionNotMet Not Modified (304) The condition specified in the conditional
header(s) was not met for a read operation.

MissingRequiredQueryParameter Bad Request (400) A required query parameter was not specified
for this request.

UnsupportedQueryParameter Bad Request (400) One of the query parameters specified in the
request URI is not supported.

InvalidQueryParameterValue Bad Request (400) An invalid value was specified for one of the
query parameters in the request URI.

OutOfRangeQueryParameterValue Bad Request (400) A query parameter specified in the request
URI is outside the permissible range.

RequestUrlFailedToParse Bad Request (400) The url in the request could not be parsed.

 AVEVA™ Historian Retrieval Guide
 Chapter 5 – Browser-Friendly Data Retrieval

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 261

Error code HTTP status code User message

InvalidUri Bad Request (400) The requested URI does not represent any
resource on the server.

InvalidHttpVerb Bad Request (400) The HTTP verb specified was not recognized by
the server.

OutOfRangeInput Bad Request (400) One of the request inputs is out of range.

InvalidAuthenticationInfo Bad Request (400) The authentication information was not
provided in the correct format. Verify the
value of Authorizationheader.

InvalidInput Bad Request (400) One of the request inputs is not valid.

Unauthorized Unauthorized (401) Unauthorized: Access is denied due to invalid
credentials.

ResourceNotFound Not Found (404) The specified resource does not exist.

InternalError Internal Server Error
(500)

The server encountered an internal error.
Please retry the request.

OperationTimedOut Internal Server Error
(500)

The operation could not be completed within
the permitted time.

ServerBusy Service Unavailable
(503)

The server is currently unable to receive
requests. Please retry your request.

	Welcome
	AVEVA Historian Documentation Set

	About Data Retrieval
	Data Retrieval Subsystem Features
	History Blocks: A SQL Server Remote Data Source
	Retrieval subsystem
	About the AVEVA Historian OLE DB Provider
	Extension Tables for History Data
	Linking the AVEVA Historian OLE DB Provider to the Microsoft SQL Server

	AVEVA Historian I/O Server
	Using SELECT to Retrieve Data
	Using the Four-Part Naming Convention
	Using an AVEVA Historian OLE DB Provider View
	Using the OPENQUERY Function
	Using the OPENROWSET Function
	Supported Syntax Options
	Unsupported or Limited Syntax Options
	No Notion of Client Context
	Limitations on Wide Tables
	LIKE Clause Limitations
	IN Clause Limitations
	OR Clause Limitations
	Using Joins within an OPENQUERY Function
	Using Complicated Joins
	Using a Sub-SELECT with a SQL Server Table and an Extension Table
	WHERE Clause Anomalies
	CONVERT Function Limitations
	SQL Server Optimization of Complex Queries
	Using Columns of a Variant Type with Functions
	Using StartDateTime in the Query Criteria
	Comparison Statements and NULL Values
	OPENQUERY and Microsoft Query

	AVEVA Historian Time Domain Extensions

	Data Retrieval Options
	Understanding Retrieval Modes
	Cyclic Retrieval
	Cyclic Retrieval - How It Works
	Cyclic Retrieval - Supported Value Parameters
	Cyclic Retrieval - Query Example
	Cyclic Retrieval - Initial Values
	Cyclic Retrieval - Handling NULL Values

	Delta Retrieval
	Delta Retrieval - How It Works
	Delta Retrieval - Supported Value Parameters
	Delta Retrieval - Query Examples
	Delta Retrieval - Query 1
	Delta Retrieval - Query 2
	Delta Retrieval - Query 3
	Delta Retrieval - Query 4

	Delta Retrieval - Initial Values
	Delta Retrieval - Handling NULL Values

	Full Retrieval
	Full Retrieval - How It Works
	Full Retrieval - Supported Value Parameters
	Full Retrieval - Query Example
	Full Retrieval - Initial Values

	Interpolated Retrieval
	Interpolated Retrieval - How It Works
	Interpolated Retrieval - Query Examples
	Interpolated Retrieval - Query 1
	Interpolated Retrieval - Query 2
	Interpolated Retrieval - Query 3

	Interpolated Retrieval - Initial and Final Values
	Interpolated Retrieval - Handling NULL Values

	Best Fit Retrieval
	Best Fit Retrieval - How It Works
	Best Fit Retrieval - Supported Value Parameters
	Best Fit Retrieval - Query Example
	Best Fit Retrieval - Initial and Final Values
	Best Fit Retrieval - Handling NULL Values

	Average Retrieval
	Average Retrieval - How It Works
	Average Retrieval - Supported Value Parameters
	Average Retrieval - Query Examples
	Average Retrieval - Query 1
	Average Retrieval - Query 2

	Average Retrieval - Initial and Final Values
	Average Retrieval - Handling NULL Values

	Minimum Retrieval
	Minimum Retrieval - How It Works
	Minimum Retrieval - Supported Value Parameters
	Minimum Retrieval - Query Examples
	Minimum Retrieval - Query 1
	Minimum Retrieval - Query 2
	Minimum Retrieval - Query 3

	Minimum Retrieval - Initial and Final Values
	Minimum Retrieval - Handling NULL Values and Incomplete Cycles

	Maximum Retrieval
	Maximum Retrieval - How It Works
	Maximum Retrieval - Supported Value Parameters
	Maximum Retrieval - Query Examples
	Maximum Retrieval - Query 1
	Maximum Retrieval - Query 2
	Maximum Retrieval - Query 3

	Maximum Retrieval - Initial and Final Values
	Maximum Retrieval - Handling NULL Values and Incomplete Cycles

	Integral Retrieval
	Integral Retrieval - How It Works
	Integral Retrieval - Supported Value Parameters
	Integral Retrieval - Query Example
	Integral Retrieval - wwExpression Query Example
	Integral Retrieval - Initial and Final Values
	Integral Retrieval - Handling NULL Values

	Slope Retrieval
	Slope Retrieval - How It Works
	Slope Retrieval - Supported Value Parameters
	Slope Retrieval - Query Example
	Slope Retrieval - wwExpression Query Example
	Slope Retrieval - Initial and Final Values
	Slope Retrieval - Handling NULL Values

	Counter Retrieval
	Counter Retrieval - How It Works
	Counter Retrieval - Calculations for a Manually Reset Counter
	Counter Retrieval - Using a Counter Deadband
	Counter Retrieval - Supported Value Parameters
	Counter Retrieval - Initial and Final Values
	Counter Retrieval - Handling NULL Values
	Counter Retrieval - Handling Illegal Values
	Counter Retrieval - Query Example

	ValueState Retrieval
	ValueState Retrieval - How It Works
	ValueState Retrieval - Supported Value Parameters
	ValueState Retrieval - Query Examples
	ValueState Retrieval Query 1: Minimum Time in State
	ValueState Retrieval Query 2: Minimum Time in State for a Single Tag
	ValueState Retrieval Query 3
	ValueState Retrieval Query 4
	ValueState Retrieval Query 5
	ValueState Retrieval Query 6: Querying State Summary Values

	ValueState Retrieval - Initial and Final Values
	ValueState Retrieval - Handling NULL Values

	RoundTrip Retrieval
	RoundTrip Retrieval - How It Works
	RoundTrip Retrieval - Supported Value Parameters
	RoundTrip Retrieval - Query Examples
	RoundTrip Retrieval - Initial and Final Values
	RoundTrip Retrieval - Handling NULL Values
	Edge Detection for Events (wwEdgeDetection)
	Edge Detection for Analog Tags
	Leading Edge Detection for Analog Tags
	Trailing Edge Detection for Analog Tags
	Both Leading and Trailing Edge Detection for Analog Tags
	Edge Detection for Discrete Tags
	Leading Edge Detection for Discrete Tags
	Trailing Edge Detection for Discrete Tags
	Both Leading and Trailing Edge Detection for Discrete Tags

	Predictive Filter
	Bounding Value Retrieval
	Bounding Value Retrieval - How It Works
	Bounding Value Retrieval - Query Examples

	Understanding Retrieval Options
	Which Options Apply to Which Retrieval Modes?
	Using Retrieval Options in a Transact-SQL Statement
	Cycle Count (X Values over Equal Time Intervals) (wwCycleCount)
	Cycle Count - Query Examples
	Cycle Count - Query 1: Using a Single Tag
	Cycle Count - Query 2: Using Multiple Tags

	Resolution (Values Spaced Every X ms) (wwResolution)
	Resolution - Query Example

	About Phantom Cycles
	Time Deadband (wwTimeDeadband)
	Time Deadband - Query Examples
	Time Deadband - Query 1
	Time Deadband - Query 2
	Time Deadband - Query 3

	Value Deadband (wwValueDeadband)
	Value Deadband - Query Examples
	Value Deadband - Query 1
	Value Deadband - Query 2

	History Version (wwVersion)
	History Version - Query Example

	Interpolation Type (wwInterpolationType)
	TimeStamp Rule (wwTimeStampRule)
	Time Zone (wwTimeZone)
	Quality Rule (wwQualityRule)
	Quality Rule - Query Examples
	Quality Rule - Query 1
	Quality Rule - Query 2
	Quality Rule - Query 3
	Quality Rule - Query 4
	Quality Rule - Query 5
	Quality Rule - Query 6
	Quality Rule - Query 7
	Quality Rule - Query 8

	State Calculation (wwStateCalc)
	Analog Value Filtering (wwFilter)
	Statistically Removing Outliers (SigmaLimit)
	Converting Analog Values to Discrete Values (ToDiscrete)
	"Zeroing" Around a Base Value (SnapTo)

	Selecting Values for Analog Summary Tags (wwValueSelector)

	SQL Query Examples
	Querying the History Table
	Querying the Live Table
	Querying the WideHistory Table
	Querying Wide Tables in Delta Retrieval Mode
	Querying the AnalogSummaryHistory View
	Querying the StateSummaryHistory View
	Using SliceBy
	Using an Unconventional Tagname in a Wide Table Query
	Using an INNER REMOTE JOIN
	Setting Both a Time and Value Deadband for Retrieval
	Using wwResolution, wwCycleCount, and wwRetrievalMode in the Same Query
	Determining Cycle Boundaries
	Mixing Tag Types in the Same Query
	Using a Criteria Condition on a Column of Variant Data
	Using DateTime Functions
	Using the GROUP BY Clause
	Using the COUNT() Function
	Using an Arithmetic Function
	Using an Aggregate Function
	Making and Querying Annotations
	Using Comparison Operators with Delta Retrieval
	Specifying the Start Date with ">="
	Specifying the Start Date with ">"
	Specifying the End Date with "<="
	Specifying the End Date with "<"

	Using Comparison Operators with Cyclic Retrieval and Cycle Count
	Specifying Cycle Count with Two Equity Operators
	Specifying Cycle Count with One Equity Operator
	Specifying Cycle Count with No Equity Operators

	Using Comparison Operators with Cyclic Retrieval and Resolution
	Using Two Equality Operators for Comparison with Cyclic Retrieval and Resolution
	Using One Equality Operator for Comparison with Cyclic Retrieval and Resolution
	Using No Equality Operators for Comparison with Cyclic Retrieval and Resolution

	Returning Time Between Value Changes
	Example 1: Cyclic Retrieval
	Example 2: Delta and Full Retrieval
	Example 3: Querying the WideHistory Table
	Example 4: Querying the History Table with the wwValueSelector Parameter
	Example 5: Calculating Total Time Between Value Changes

	SELECT INTO from a History Table
	Moving Data from a SQL Server Table to an Extension Table
	Using Server-Side Cursors
	Using Stored Procedures in OLE DB Queries
	Getting Data from the OPCQualityMap Table
	Using Variables with the Wide Table
	Retrieval Across a Data Gap in Classically Stored Data
	Returned Values for Non-Valid Start Times
	Querying Aggregate Data in Different Ways
	Bitwise Retrieval for Process Data

	SQL Queries for Alarms and Events
	Querying Alarms and Events
	Datetime in Alarm and Event Queries
	Example: Listing all events
	Example: How often alarms occur
	Example: Most frequent alarm per hour
	Example: Pinpointing where alarms occur
	Example: Showing average time to clearing an alarm
	Example: Evaluating response time for alarms

	Browser-Friendly Data Retrieval
	Historian Data REST API
	Supported versions
	iHistory and Account Authentication
	Data retrieval
	Retrieval resources
	ProcessValues
	AnalogSummary
	StateSummary
	Events
	Tags
	TagProperties
	TagPropertyValues
	TagGroups
	TagSuggest
	TagSearch
	TagExtendedProperties
	Summary (v1 only)
	Daily (v1 only)
	Hourly (v1 only)
	Minutely (v1 only)
	SystemParameters (on-premises only)

	Retrieval examples
	Retrieve data via browser query
	Retrieve data using Postman
	Retrieve data using Excel
	Retrieve data using PowerBI

	Querying History Blocks via SQL Server Reporting Services Extension
	Retrieval errors

