

 aveva.com

AVEVA™
formerly Wonderware

InTouch HMI

Supplementary Components Guide

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 2

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved.

No part of this documentation shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of AVEVA.
No liability is assumed with respect to the use of the information contained herein.

Although precaution has been taken in the preparation of this documentation, AVEVA assumes no responsibility
for errors or omissions. The information in this documentation is subject to change without notice and does not
represent a commitment on the part of AVEVA. The software described in this documentation is furnished under
a license agreement. This software may be used or copied only in accordance with the terms of such license
agreement.

ArchestrA, Aquis, Avantis, Citect, DYNSIM, eDNA, EYESIM, InBatch, InduSoft, InStep, IntelaTrac, InTouch, OASyS,
PIPEPHASE, PRiSM, PRO/II, PROVISION, ROMeo, SIM4ME, SimCentral, SimSci, Skelta, SmartGlance, Spiral
Software, Termis, WindowMaker, WindowViewer, and Wonderware are trademarks of AVEVA and/or its
subsidiaries. An extensive listing of AVEVA trademarks can be found at: https://sw.aveva.com/legal. All other
brands may be trademarks of their respective owners.

Publication date: Monday, August 23, 2021

Contact Information

AVEVA Group plc
High Cross
Madingley Road
Cambridge
CB3 0HB. UK

https://sw.aveva.com/

For information on how to contact sales and customer training, see https://sw.aveva.com/contact.

For information on how to contact technical support, see https://sw.aveva.com/support.

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 3

Chapter 1 About Supplementary Components ... 7

Chapter 2 Using Recipe Manager ... 8

About Using Recipe Manager .. 8

Overview of Recipe Manager .. 8
Recipe Manager Utility ... 9
Recipe Template Files ... 9

Template Definition .. 9
Unit Definition .. 10
Recipe Definition .. 10

Editing Recipe Data in Recipe Manager .. 10
Configuring the Recipe Manager Editing Grid .. 10
Working with the Editing Grid .. 11
Defining Ingredient Names and Data Types ... 15
Mapping InTouch Tags to Ingredients .. 16
Defining Values for Ingredients in Different Recipes ... 17

Editing Recipe Data in Other Applications .. 18
Using Excel with a Recipe Template File .. 18
Using Notepad with a Recipe Template File .. 19

Nesting Recipes to Create Complex Structures ... 20

Using Recipes in InTouch ... 21
Loading and Saving Recipe Data From/to a Recipe File ... 22

RecipeLoad() Function .. 22
RecipeSave() Function .. 22

Deleting Recipes From a Recipe File .. 23
RecipeDelete() Function ... 23

Selecting Units (Tag Ingredient Mappings) .. 23
RecipeSelectUnit() Function ... 23

Selecting Individual Recipes from a Recipe File ... 24
RecipeSelectRecipe() Function ... 24
RecipeSelectNextRecipe() Function .. 25
RecipeSelectPreviousRecipe() Function ... 25

Understanding Error Messages Returned by Recipe Script Functions ... 26
Displaying Error Code Messages... 26

Contents

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 4

RecipeGetMessage() Function .. 28
Applying Security to Recipes .. 29

Chapter 3 Working with SQL Databases from InTouch 31

About Working with SQL Databases from InTouch ... 31

Setting Up a Data Source ... 32

Mapping InTouch Tags to Database Columns ... 32
Configuring the SQL Server String Delimiter in Bind Lists .. 34

Defining the Structure of a New Table ... 35

Working with Database Applications ... 37
SQL Server Database Applications ... 37
Microsoft Access Database Applications.. 38
Oracle Database Applications .. 39

Performing Common SQL Operations in InTouch .. 40
Connecting and Disconnecting the Database .. 43

SQLConnect() Function ... 44
SQLDisconnect() Function ... 44

Creating a New Table ... 45
SQLCreateTable() Function ... 45

Deleting a Table .. 45
SQLDropTable() Function .. 46

Retrieving Data from a Table ... 46
SQLSelect() Function ... 47
SQLGetRecord() Function ... 49
SQLNumRows() Function .. 49
SQLFirst() Function ... 50
SQLNext() Function ... 50
SQLPrev() Function ... 50
SQLLast() Function .. 51
SQLEnd() Function .. 51

Writing New Records to a Table ... 52
SQLInsert() Function ... 52
SQLInsertPrepare() Function .. 53
SQLInsertExecute() Function .. 53
SQLInsertEnd() Function ... 54

Updating Existing Records in a Table ... 54
SQLUpdate() Function .. 55
SQLUpdateCurrent() Function .. 55

Deleting Records from a Table ... 56
SQLClearTable() Function ... 56
SQLDelete() Function .. 57

Executing Parameterized Statements .. 58
SQLSetStatement() Function .. 58
SQLAppendStatement() Function ... 59

Creating a Statement or Loading an Existing Statement from a File ... 59
SQLLoadStatement() Function .. 59

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 5

Preparing a Statement ... 60
SQLPrepareStatement() Function ... 61

Setting Statement Parameters ... 61
SQLSetParamChar() Function ... 61
SQLSetParamDate() Function ... 62
SQLSetParamDateTime() Function ... 62
SQLSetParamDecimal() Function .. 63
SQLSetParamFloat() Function ... 64
SQLSetParamInt() Function .. 64
SQLSetParamLong() Function ... 65
SQLSetParamNull() Function .. 65
SQLSetParamTime() Function ... 66

Clearing Statement Parameters ... 67
SQLClearParam() Function .. 67

Executing a Statement ... 67
SQLExecute() Function .. 68

Releasing Occupied Resources ... 69
SQLClearStatement() Function ... 69

Working with Transaction Sets... 70
SQLTransact() Function ... 70
SQLCommit() Function .. 71
SQLRollback() Function ... 71

Opening the ODBC Administrator Dialog Box at Run Time .. 72
SQLManageDSN() Function .. 72

Understanding SQL Error Messages ... 72
SQLErrorMsg() Function ... 73

SQL Access Manager Result Codes and Messages ... 73

Reserved Word List ... 76

Chapter 4 Using the 16-Pen Trend Wizard .. 80

About Using a 16-Pen Trend .. 80

Creating a 16-Pen Trend .. 80

Configuring Which Tags to Display on the Trend Graph .. 81

Configuring the Trend Time Span and Update Rate .. 83

Configuring the Trend Display Options ... 83

Changing the Trend Configuration at Run Time .. 84

Controlling a 16-Pen Trend Wizard Using Scripts .. 85
ptGetTrendType() Function .. 86
ptLoadTrendCfg() Function .. 86
ptPanCurrentPen() Function .. 87
ptPanTime() Function ... 87
ptPauseTrend() Function .. 88
ptSaveTrendCfg() Function ... 89
ptSetCurrentPen() Function ... 89
ptSetPen() Function .. 89

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 6

ptSetPenEx() Function .. 90
ptSetTimeAxis() Function ... 91
ptSetTimeAxisToCurrent() Function ... 91
ptSetTrend() Function .. 92
ptSetTrendType() Function .. 92
ptZoomCurrentPen() Function ... 93
ptZoomTime() Function .. 93

Chapter 5 Symbol Factory .. 95

Symbol Factory About Symbol Factory.. 95

Symbol Types .. 95
Picture Wizards .. 95
Bitmap Wizards .. 96
Texture Wizards ... 96
InTouch Object ... 96

Using Symbol Factory .. 96
Getting Started Quickly .. 96
Placing a Symbol Factory Wizard in a Window .. 97
Configuring Symbol Options ... 98
Animating a Wizard .. 100
Editing a Symbol ... 101
Breaking a Wizard for Editing ... 101
Sharing a Category of Symbols on a Network .. 101
Making a Category Read-Only .. 102
Viewing Category Properties .. 102
Editing an Existing Category ... 103
Deleting a Category .. 103

Configuring Symbol Factory ... 104

Troubleshooting ... 105

Index .. 106

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 7

You can optionally install a set of four supplementary components along with InTouch HMI core components.
These supplementary components provide additional functions for your InTouch HMI application.

Application
Manager

WindowMaker WindowViewer ArchestrA IDE

InTouch Core Components

InTouch Supplementary Components

Recipe
Manager

SQL Access
Manager

16-Pen
Trend

Symbol
Factory

 Recipe Manager includes a set of spreadsheets and script functions to create manufacturing recipes.

 SQL Access Manager consists of a program and a set of SQL functions to store InTouch data to a database.

 16-Pen Trend includes a trend wizard and script functions to create real-time and historical trends.

 Symbol Factory provides a set of industrial symbols that can placed in InTouch applications to represent
process components.

Chapter 1

About Supplementary Components

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 8

About Using Recipe Manager
Manufacturing industries build products according to repeatable procedures that use standardized quantities of
raw materials. In essence, products are manufactured according to recipes. A recipe describes the raw materials,
their quantities, and how they are combined to produce a finished product. In the most intuitive case, a bakery
may follow a basic recipe that lists all ingredients and procedural steps to make cookies.

Recipe Manager is a supplementary component for the InTouch HMI that you can use to simplify the process of
creating manufacturing recipes. The following figure summarizes how Recipe Manager obtains information from
recipe templates to manage a process that creates a product.

Overview of Recipe Manager
Recipe Manager can be installed with InTouch as an optional component. Recipe Manager consists of the Recipe
Manager utility and a set of InTouch recipe script functions.

You can access the Recipe Manager utility from WindowMaker or from the Windows Start Menu. The Recipe
Manager utility includes an interface for you to create and edit recipe templates. Recipe Manager saves your
templates in a recipe file.

Chapter 2

Using Recipe Manager

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 9

Typically, tags associated with a manufacturing process use QuickScripts to access data within recipe template
files. Recipe Manager includes a set of QuickScript functions to select, load, modify, create, and delete the
manufacturing recipes contained in template files.

Recipe Manager Utility

The Recipe Manager utility provides a spreadsheet-like user interface to create and maintain a recipe template
file. A file consists of three templates. You create and edit these templates by adding or modifying data within
the cells of each template’s spreadsheet.

You save these templates to a Comma Separated Value (CSV) file. You can create and edit your recipe template
definitions with any program that supports the .csv file format like Notepad or Excel. But, Recipe Manager
provides preformatted spreadsheets and a set of editing tools to create and maintain templates reliably and
easily.

Recipe Template Files

A Recipe Manager template file contains the following information:

 Names of ingredients and their data types used in a recipe.

 Unit names that associate InTouch tags with recipe ingredient values.

 Recipe names containing the quantities or values for each ingredient used in a recipe instance.

Template Definition

The Template Definition template defines all recipe ingredients. A data type is associated with each recipe
ingredient. An ingredient data type can be analog, discrete, or message. Ingredient names are not required to be
InTouch tags.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 10

Unit Definition

The Unit Definition template associates InTouch tags with recipe ingredients. Many different loading definitions
can be created. These definitions are called units. You can use the RecipeLoad() function to load specific
instances of a recipe to associated InTouch tags. A Unit Definition can consist of all ingredients defined in the file
or just a subset of these ingredients.

Note: Unit tags can be memory types that can be viewed and edited in an InTouch window or I/O tags that can
be loaded directly to PLCs.

Recipe Definition

The Recipe Definition template specifies the name of each recipe and ingredient quantities used by the recipe.
Recipe instances can be modified, created, or deleted in run time through the recipe functions.

Editing Recipe Data in Recipe Manager
You create manufacturing recipes by completing a set of sequential tasks. The following list shows the Recipe
Manager tasks to create recipes and the order in which they should be completed:

 Configuring the Recipe Manager editing grid.

 Editing data within a template.

 Assigning ingredient names and unit types to the Template Definition template.

 Mapping InTouch tags to ingredients in the Unit Definition template.

 Assigning values to recipe ingredients in the Recipe Definition template.

Configuring the Recipe Manager Editing Grid

Before you create manufacturing recipes, you should configure Recipe Manager. There are two tasks to
configure Recipe Manager editing functions:

 Set the maximum limit for template items.

 Set the ENTER key scroll function.

Before you create recipes, you need to configure the maximum number of items that can be entered in your
recipe templates. You must assign a set of maximum limits for items, units, and recipe names.

Templates can contain up to a maximum of 9999 items, units, and recipe names. However, large maximum
limits can potentially affect system performance. Also, you may see an error message if the maximum limits you
set will require more memory than the computer’s available memory.

To configure recipe template maximum limits

1. Start Recipe Manager by one of the following methods:

o Start WindowMaker. On the Tools view, expand Applications, and then select Recipe Manager.

The Recipe Manager dialog box appears.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 11

2. On the Options menu, click Preferences. The Preferences dialog box appears.

3. In the Maximum Items box, enter the maximum number of item names allowed in your Template Definition
template.

4. In the Maximum Units box, enter the maximum number of units allowed in your Unit Definition template.

5. In the Maximum Recipes box, enter the maximum number recipe names allowed in your Recipe Definition
template.

Caution: The values you set in the Preferences dialog box are applied to all recipe template files that you create.
When you modify these values, all existing recipe template files are also modified.

6. Click OK.

Recipe Manager includes an option that simplifies entering data in recipe templates. When you select the Auto
Down on [Enter] option, you can press enter to move the cursor down to the next cell in the column.

To set ENTER key template scrolling

1. Open Recipe Manager.

By default, Recipe Manager does not scroll automatically to the next cell in the template spreadsheet.

2. On the Options menu, click Auto Down on [Enter] to set cell scrolling.

3. Click Auto Down on [Enter] again if you want to turn off cell scrolling.

Working with the Editing Grid

Recipe Manager includes a set of editing commands to add, modify, or delete data from the templates.
Generally, you select the data that you want to edit in the template, and then take an editing action. The
following table describes common features of recipe templates to enter and select template data.

Feature Description

Input Box Text input box used to enter data for the selected
template cell. When a template cell is selected, its
contents are shown in the text input box near the top
of the Recipe Manager dialog box.

Select All Cells Click the top left cell of the template to select all cells.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 12

Feature Description

Select All Rows Click on a template’s row name to select all cells
within the row.

Select All Columns Click on a template’s column heading to select all cells
within the column.

Auto-Size All
Columns

Double-click on a template to auto-size all columns in
the template to the width of the longest entry.

Auto-Size a
Column

Double-click on the heading to auto-size the column
to the width of its longest entry.

Note: The Item Type column in the Template
Definition template cannot be auto-sized.

When you edit a template, you can do the following:

 Clear data from a range of cells.

 Copy data from a range of cells to an adjacent range of selected cells.

 Insert a row within the Template Definition template.

 Insert a column within a template.

 Delete a row from the Template Definition template.

 Delete a column from a template.

To clear data from a range of cells

1. Select a range of cells from the template.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 13

2. On the Edit menu, click Clear. A message appears requesting confirmation that the selected range of cells
should be cleared.

3. Click Yes. The template clears data from the selected range of cells.

To copy a range of cells to an adjacent selected range

1. Select the cell or the range of cells to be copied.

2. Select the adjacent range of cells that you want to copy the data.

The selected ranges must be the same size and can be above, below, to the right, or to the left of the
original range of selected cells.

3. On the Edit menu, select the appropriate fill command. The data is copied to the selected range of cells.

Note: If the new column that the data is copied to is not big enough to accommodate the largest entry,
double-click on the column heading to change the width to the longest entry.

To insert a row in the Template Definition template

1. Select the Template Definition template.

2. Click the Item # to select the row in the Template Definition template to insert a new row above it.

You cannot directly insert rows in either the Recipe Definition or Unit Definition templates. Instead, all
modifications to the Template Definition are automatically inherited by the Recipe Definition and Unit
Definition templates.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 14

3. On the Edit menu, click Insert. A new row is inserted immediately above the row you selected and all
subsequent rows are automatically renumbered.

Note: If the maximum values configured for the Recipe Manager Preferences have been reached, the Insert
command is inactive. You must increase the numbers specified to add Items/Units/ Recipes to your recipe
templates.
When you modify the Preferences, the changes are applied to all existing recipe template files.

To insert a column

1. Click Unit # or Recipe # to select the column that will be to the right of the inserted column.

You can insert columns in the Recipe Definition or Unit Definition templates.

2. On the Edit menu, click Insert. A new column is inserted to the left of the selected column.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 15

In this example, Mixer2 data is moved to the Unit 3 column and a new column inserted as Unit 2.

To delete a column

1. Click the Unit # or Recipe # column heading to select the column that you want to delete.

You can delete columns from the Recipe Definition or Unit Definition templates.

2. On the Edit menu, click Delete. A confirmation message dialog box appears asking you to confirm the
deletion.

3. Click Yes. The column is deleted from the template and the remaining columns are renumbered.

To delete a row

1. Select the Template Definition template.

You can delete rows from the Template Definition template, but not the Recipe Definition or Unit Definition
templates.

2. Click the Item # row header to select the row that you want to delete.

3. On the Edit menu, click Delete. A confirmation message dialog box appears asking you to confirm the
deletion.

4. Click Yes. The row is deleted from the template.

Defining Ingredient Names and Data Types

The Template Definition template lists recipe ingredients and the item type associated with each ingredient. You
must complete the Template Definition template first before adding data to the other recipe templates.

To define a Template Definition template

1. Start Recipe Manager.

2. On the File menu, click New. The three Recipe Manager templates appear.

3. Click the Template Definition title bar to select the template window.

4. In the Item Name column cells, type the names you selected for recipe ingredients.

You can only type one ingredient per cell.

5. In the Item Type column cells, type a valid item type for the respective recipe ingredient.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 16

Valid item types are; analog, discrete, or message. Type A for analog, D for discrete, or M for message.
Recipe Manager automatically completes the remainder of the item type when you press ENTER.

Mapping InTouch Tags to Ingredients

The Unit Definition template associates InTouch tags with recipe ingredients for given units. As shown in the
following figure, the first two columns of the Unit Definition template list the Item Names and Item Types from
the Template Definition template.

The tags defined for a unit can be memory tags or remote tags that obtain PLC data from an I/O Server.

When you use the RecipeLoad() function in an InTouch QuickScript, you must specify a Unit Name. The values
contained in that Recipe Name definition are then loaded into the tags specified in the Unit Name when the
QuickScript runs.

To define a Unit Definition template

1. Click the Unit Definition template's title bar to select the template window.

2. In the Unit Names row, type the name of each unit that you want to define.

3. In the Unit # column cells, use one of the following methods to enter the name of the InTouch tag for each
respective recipe ingredient:

o Type the tag name.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 17

o If WindowMaker is running, double-click the cell to display the Select Tag dialog box. Then, double-click
the desired tag to insert it into the cell or select it, and then click OK.

4. Repeat this procedure for each Unit/Recipe combination.

Defining Values for Ingredients in Different Recipes

The Recipe Definition template specifies the name of each recipe and ingredient quantities used by the recipe.
The Recipe Definition template displays the Item Name and Item Type information from the previously defined
Template Definition template.

Ingredient values are loaded into the InTouch tags when the RecipeLoad() function is executed in an InTouch
QuickScript.

To define a Recipe Definition template

1. Click the Recipe Definition template's title bar to select the template window.

2. In the Recipe Names row, type the name of each recipe that you want to define.

3. In the Recipe # column cells, type the values for each respective recipe ingredient in the Item Name column.

4. On the File menu, click Save to save your recipe template file.

To open an existing recipe template file

1. Open Recipe Manager.

2. On the File menu, click Open. The Open a Recipe Template dialog box appears.

3. Locate and select the Recipe file, then click Open. The three recipe templates in the file appear within Recipe
Manager for editing.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 18

To delete a recipe template file

1. On the File menu, click Delete. The Delete a Recipe Template dialog box appears.

2. Locate and select the recipe file, then click Open or double-click the file name. A message box appears
asking you to confirm the deletion.

Note: Open recipe template files cannot be deleted.

3. Click Yes to delete the file.

Editing Recipe Data in Other Applications
You can create and edit your recipe template definitions with any program that supports comma delimited data.
You can use Microsoft Excel or Notepad to create and edit the Recipe Manager template file.

Using Excel with a Recipe Template File

You can use Excel to create or edit a recipe template if you do not want to use the Recipe Manager utility. You
must save the Recipe Manager template created or edited with Excel to a file with a .csv file name extension.

To open an existing recipe template file in Microsoft Excel

1. Start Excel.

2. On the File menu, click Open. The Open dialog box appear.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 19

3. Locate and select the .csv file then, click Open or, double-click the file name. Excel shows the contents of the
file.

4. Edit the contents of the recipe file and save your changes.

To create a new recipe template file in Excel

1. Start Excel.

2. Create a new workbook.

3. Enter recipe data in the spreadsheet, as shown in the following figure.

The entries must be made in the order shown in the figure. Unit Names must be defined in columns to the
left of columns containing Recipe Names.

4. Save the spreadsheet with a .csv file name extension.

Using Notepad with a Recipe Template File

You can use Notepad to create or edit a recipe template if you do not want to use the Recipe Manager utility.
You must save the Recipe Manager template created or edited with Notepad to a file with a .csv file name
extension.

To open an existing recipe template file in Notepad

1. Start Notepad.

2. On the File menu, click Open. The Open dialog box appear.

3. Locate and select the recipe file, then click Open or double-click the file name.

4. Edit the contents of the recipe file and save your changes.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 20

To create a new recipe template file in Notepad

1. Start up Notepad.

2. On the File menu click New.

3. Enter following data in this format:
:IngredientName,IngredientType[,Unit]...[,Recipe]...
:Names,,[,UnitName]...[,RecipeName]...
IngredientName,{Analog,Discrete,Message},[,tag]...[,value]

Note: All Unit Names must be defined in the file before any Recipe Names are defined.

4. Save the file with a .csv file name extension.

Nesting Recipes to Create Complex Structures
Multiple recipe template files can be linked to each other with InTouch QuickScripts to create complex
applications. You link recipe template files by defining an ingredient name that is associated with a message tag
in the Unit Name template. Then, you load the message tag with the name of a recipe.

Linking recipe template files allows you to create master recipe template files that define machine configuration
parameters used by various recipes in different recipe files. Keeping this type of information in one central file
greatly reduces the time it takes to maintain and update data whenever it changes.

In the following figure, the Item Name Setup tag is defined as a message type and the units contain the Setup
message tag for this item. Each recipe contains a second recipe name defined in a different recipe file that is
loaded into the Setup tag when the recipe is selected.

To do so, the following script would be entered:
RecipeName="Recipe2";
RecipeLoad("c:\recipe\recfilea.csv", "Review", RecipeName);

When this script runs, the value of the Setup tag becomes Setup3A and is loaded into the Review unit. The value
of the Setup tag is then used as the Recipe Name in the next recipe loading that loads the machine setup
parameters into the tags defined for the PLC1 unit by running the following script:

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 21

RecipeLoad("c:\recipe\machine.csv", "PLC1", Setup);

Using Recipes in InTouch
You use InTouch QuickScripts to interact with your recipe template files. Recipe Manager includes a set of script
functions that can be inserted into QuickScripts. Using scripts containing these functions, you can select, modify,
insert, or delete records in your recipe template file.

You add recipe functions to any type of script using the InTouch script editor. The following figure shows the
InTouch script editor’s window listing recipe functions. All recipe functions are identified by the prefix Recipe as
part of the function name.

InTouch recipe functions read and write directly to the recipe template file. Therefore, the Recipe Manager
program does not need to be running in order for the recipe functions to run properly in InTouch QuickScripts.

If the recipe template file is being used by the InTouch HMI, any new recipes you create or any changes you
make to existing recipes cannot be written to the recipe template file. Recipe Manager only creates recipe
template files. After you create Recipe template files, close Recipe Manager.

To automatically insert a recipe function into a script

1. Open an InTouch script editor.

2. Place the cursor within the script where you want to insert a recipe function.

3. Under Functions, click Add-ons. The Choose function dialog box appears.

4. Click the recipe function that you want to insert into your QuickScript. The dialog box closes and the
function is inserted at the cursor position.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 22

Loading and Saving Recipe Data From/to a Recipe File

Recipe Manager provides separate InTouch QuickScript functions to load and save recipe data within a recipe
file.

RecipeLoad() Function

The RecipeLoad() function loads data from a recipe to a specific unit of tags in an InTouch application.

Category

Recipe

Syntax
RecipeLoad("Filename","UnitName","RecipeName");

Arguments

FileName
Name of the recipe template file. The value associated with FileName can be a string constant or a message
tag containing the name of the recipe template file.

UnitName
Name of the specific unit in the designated recipe template file. The RecipeSelectUnit() function returns a
value to this parameter. The value associated with UnitName can be a string constant or a message tag that
contains the name of the unit.

RecipeName
Name of the specific recipe in the designated recipe template file. The value associated with RecipeName
can be a string constant or a message tag that contains the name of the recipe.

Example

The following statement loads the values of the Recipe1 recipe to the tags defined for Unit:
RecipeLoad("c:\recipe\recfile.csv", "Unit1", "Recipe1");

RecipeSave() Function

The RecipeSave() function saves a new recipe or changes made to an existing recipe to a specified recipe
template file.

Category

Recipe

Syntax
RecipeSave("Filename","UnitName","RecipeName");

Arguments

FileName
Name of the recipe template file. The value associated with FileName can be a string constant or a message
tag containing the name of the recipe template file.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 23

UnitName
Name of the specific unit in the designated recipe template file that will be used by the function. The
RecipeSelectUnit() function returns a value to this parameter. The value associated with UnitName can be a
string constant or a message tag that contains the name of the unit.

RecipeName
Name of the specific recipe in the designated recipe template file. The value associated with RecipeName
can be a string constant or a message tag that contains the name of the recipe.

Example

The following example saves changes made to the Recipe3 recipe in the recfile.csv file. If Recipe3 does not
currently exist in the recfile.csv file, it is created. The values set the values of the tags defined for Unit2:
RecipeSave("c:\recipe\recfile.csv", "Unit2", "Recipe3");

Deleting Recipes From a Recipe File

Use the RecipeDelete function to delete a recipe from a specified recipe template file.

RecipeDelete() Function

The RecipeDelete function deletes a recipe from a specified recipe template file.

Category

Recipe

Syntax
RecipeDelete("Filename","RecipeName");

Arguments

FileName
Name of the recipe template file. The value associated with FileName can be a string constant or a message
tag containing the name of the recipe template file.

RecipeName
Name of the specific recipe in the designated recipe template file. The value associated with RecipeName
can be a string constant or a message tag that contains the name of the recipe.

Example

The following statement deletes the Distlt1 recipe from the recfile.csv file:
RecipeDelete("c:\recipe\recfile.csv", "Distlt1");

Selecting Units (Tag Ingredient Mappings)

Use the RecipeSelectUnit() function to select the unit of tags to which the current recipe values are loaded.

RecipeSelectUnit() Function

The RecipeSelectUnit() function opens the Select a Unit dialog box so that the run-time user can select a unit.
The selected unit name is returned to a message tag. Both the RecipeSelectRecipe() and RecipeSelectUnit()
functions are used in conjunction with the RecipeLoad() function.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 24

Category

Recipe

Syntax
RecipeSelectUnit("Filename",UnitName,Number);

Arguments

FileName
Name of the recipe template file. The FileName argument can be a string constant or a message tag
containing the name of the recipe template file.

UnitName
Message tag to which the name of the selected unit is written. Actual message tag without quotes or a string
literal.

Number
Maximum string length returned to the argument. In InTouch, string (message) tags have a maximum length
of 131 characters. Use 131 for this argument unless you have reduced the maximum string length of the
InTouch tag. Number or integer tag.

Example

The following statement causes the Select a Unit dialog box to open:
RecipeSelectUnit("c:\recipe\recfile.csv", UnitName, 131);

After a Unit is selected, its name is returned to the UnitName tag.

Selecting Individual Recipes from a Recipe File

Recipe Manager includes a set of functions to select an individual recipe from the recipe file. When you use
these functions in a script, you can select a recipe from the file by its name or the next or previous recipe in
sequence within the file.

RecipeSelectRecipe() Function

The RecipeSelectRecipe() function opens the Select a Recipe dialog box so that the run-time user can select a
recipe. The selected recipe name is returned to a message tag.

Category

Recipe

Syntax
RecipeSelectRecipe("Filename","RecipeName", Number);

Arguments

FileName
Name of the recipe template file. The FileName argument can be a string constant or a message tag
containing the name of the recipe template file.

RecipeName
Message tag to which the name of the selected recipe is written. Actual message tag without quotation
marks or a string literal.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 25

Number
Maximum string length returned to the argument. InTouch message tags have a maximum length of 131
characters. Use 131 for this parameter unless you have reduced the maximum string length of the InTouch
tag. Number or Integer tag.

Example

The following statement causes the Select a Recipe dialog box to open:
RecipeSelectRecipe("c:\recipe\recfile.csv", RecipeName, 131);

After a recipe is selected from the dialog box, its name is returned to the RecipeName tag.

RecipeSelectNextRecipe() Function

The RecipeSelectNextRecipe() function selects the next recipe in the recipe template file.

Category

Recipe

Syntax
RecipeSelectNextRecipe("Filename", "RecipeName", Number);

Arguments

FileName
Name of the recipe template file. The FileName argument can be a string constant or a message tag
containing the name of the recipe template file.

RecipeName
Message tag that contains the recipe name to use as a starting point (before the function is executed) and
the selected recipe name (after the function is executed). Actual message tag without quotation marks or a
string literal.

Number
Maximum string length returned to the argument. In InTouch, string (message) tags have a maximum length
of 131 characters. Use 131 for this parameter unless you have reduced the maximum string length of the
InTouch tag. Number or integer tag.

Example

The following statement reads the current value of the tag RecipeName and returns the next recipe on file. If the
value of RecipeName is blank or cannot be found, the first recipe on file is returned. If RecipeName currently
contains the last Recipe Name on file, it is returned unchanged. Recipes are saved in the recipe template file in
the order in which they are created.
RecipeSelectNextRecipe("c:\recipe\recfile.csv",
RecipeName, 131);

RecipeSelectPreviousRecipe() Function

The RecipeSelectPreviousRecipe() function selects the previous recipe defined in the recipe template file.

Category

Recipe

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 26

Syntax
RecipeSelectPreviousRecipe("Filename","RecipeName",Number);

Arguments

FileName
Name of the recipe template file. The FileName argument can be a string constant or a message tag
containing the name of the recipe template file.

RecipeName
Message tag that contains the recipe name to use as a starting point (before the function is executed) and
the selected recipe name (after the function is executed). Actual message tag without quotation marks or a
string literal.

Number
Maximum string length returned to the parameter. In InTouch, Message tags have a maximum length of 131
characters. Use 131 for this parameter unless you have reduced the maximum string length of the InTouch
tag. Number or Integer tag.

Example

The following statement causes the system to read the current value of the tag RecipeName and return the
previous Recipe Name on file. This returned string will be stored in RecipeName and will overwrite the current
value. If the value of RecipeName is blank or cannot be found, the last recipe on file is returned. If RecipeName
currently contains the first Recipe Name on file, it is returned unchanged. (Recipes are saved in the order in
which they are created.)
RecipeSelectPreviousRecipe("c:\recipe\recfile.csv", RecipeName, 131);

Understanding Error Messages Returned by Recipe Script Functions

You troubleshoot recipe applications using diagnostic error codes returned by a recipe function. This section
includes a list of recipe function error codes and how to use the RecipeGetMessage() function to show the
message associated with an error code.

The RecipeLoad() function sets the value of the analog ErrorCode tag to 0 if it is successful. If RecipeLoad() fails,
it sets the ErrorCode tag to the number of the specific error condition.

To retrieve the error code of a recipe function, it must be equated to an InTouch analog tag. The following
example shows a script statement to return a recipe function error code:
ErrorCode = RecipeLoad(FileName, UnitName, RecipeName);

Displaying Error Code Messages

Each recipe function returns a number that represents the error condition for the function. By using the
RecipeGetMessage() function in an InTouch Data Change script, the corresponding error code can be written to
an analog tag and the associated error code message can be written to a message tag.

The following code example shows a Data Change script.
RecipeGetMessage(ErrorCode, ErrorMessage, 131);

This script runs automatically whenever the value of the ErrorCode tag changes. When this script runs, the
RecipeGetMessage() function reads the current numeric value of the ErrorCode tag and returns the message
associated with that value to the ErrorMessage tag.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 27

The following table lists possible error codes, their corresponding error messages, and descriptions:

Value Error Message Description

 0 Success The called recipe function executed
successfully.

-1 No Such Recipe
Template

The specified recipe template file
does not exist.

-2 View Not Active The recipe function called by another
program cannot execute because
WindowViewer is not running.

-3 Out of Memory There is not enough memory to
complete the current activity.

-4 Line too long in recipe
template file

A line in the recipe template file
exceeds the maximum allowed
length.

-5 Truncated line in the
recipe file

A line in the recipe template file is
truncated.

-6 Not a valid recipe
template file

The specified file is not a valid recipe
template file.

-7 Expecting "unit" or
"recipe"

A unit name or recipe name is
missing from the recipe template file.

-8 No units defined in
recipe template file

No units have been defined in the
Units Definition template of the
recipe file.

-9 Recipe name not found
in recipe template file

The specified recipe is not defined in
the recipe template file.

-10 Unit name not found in
recipe template file

The specified unit name is not
defined in the unit definition
template file

-12 Expecting "Analog",
"Discrete", "Message"

An incorrect type has been entered
for an item in the recipe template
file. Valid types are analog, discrete
or message.

-13 Type of tag mismatches
"Analog", "Discrete",
"Message"

The specified tag does not match the
item type. For example, a recipe item
is defined as analog and a message
tag has been defined as the unit for

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 28

Value Error Message Description

it.

-14 Invalid discrete value,
expecting "0", "1"

An incorrect value has been entered
for a discrete tag in the recipe
template file. The only valid values
for discrete tags are 0 or 1.

-15 Unable to open
temporary file

The temporary file cannot be opened
possibly because of insufficient free
disk space.

-16 Write error while
saving recipe template
file

An error occurred while saving the
recipe template file.

-17 User did not select The user selected Cancel in the Select
a Recipe dialog box instead of a
recipe name.

-19 Recipe template in use
by another application

The recipe template file specified is
open and, therefore, cannot be
accessed by WindowViewer.

RecipeGetMessage() Function

The RecipeGetMessage() function takes an error number (returned by some other recipe function) and returns
the plain text error message for that error number.

Category

Recipe

Syntax
RecipeGetMessage(Analog_Tag,Message_Tag,Number);

Arguments

Analog_Tag
Error number for which you want to get the error message.

Message_Tag
Actual message tag with no quotes or string literal.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 29

Number
The Number argument sets the maximum length of the string returned with the Message_Tag argument. By
default, InTouch message tags are set to the maximum length of 131 characters. Use 131 for this parameter
unless you have reduced the maximum string length of Message_Tag in the InTouch Tagname Dictionary.
The Number argument can be a constant or an integer tag containing a number.

Example

By using the RecipeGetMessage() function in an InTouch Data Change QuickScript, the error code is written to
the ErrorCode tag and the associated error code message is written to the ErrorMessage tag:
Data Change Script Tagname[.field]:ErrorCode
Script body:RecipeGetMessage(ErrorCode, ErrorMessage,131);

This QuickScript automatically runs whenever the value of the ErrorCode tag changes. When this QuickScript
runs, the RecipeGetMessage() function reads the current numeric value of the ErrorCode tag and returns the
message associated with that value to ErrorMessageTag.
ErrorCode = RecipeLoad
 ("c:\App\recipe.csv","Unit1","cookies");
RecipeGetMessage(ErrorCode, ErrorMessageTag, 131);

Applying Security to Recipes

Access to recipes can be controlled by defining an Item Name in the recipe template file that sets the minimum
security access level required to load, save, or delete a recipe.

In the following file sample, the SecurityLevel Item Name is defined as an analog tag. The Review unit contains
the SecurityLevel analog tag for this item. Each recipe defines a value that is loaded into the SecurityLevel tag
when the recipe is loaded into the Review unit.

You can create a window containing an access denied message that is shown whenever your security access
level is invalid for a selected recipe. To do so, the selected recipe must be loaded into a unit that contains only
an analog tag to which the selected recipe's security level value is loaded for verification.

For example:
RecipeSelectRecipe("c:\recipe\machine.csv",
MyRecipe, "131");

The Select a Recipe dialog box appears. After you select a Recipe Name, it is returned to the RecipeName tag
and the script continues running.
RecipeLoad("c:\Recipe\Machine.csv", "Review", MyRecipe);
IF SecurityLevel <= $AccessLevel THEN

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 2 – Using Recipe Manager

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 30

Status =RecipeLoad("c:\Recipe\Machine.csv", "PLC1", MyRecipe);
ELSE Show "Access Denied";

ENDIF;

When this script runs, if your access level is equal to or greater than 7000, the selected recipe's values are
loaded into PLC1 unit's tags. If not, the Access Denied window appears and the recipe is not loaded into PLC1.

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 31

About Working with SQL Databases from InTouch
A database stores information in tables that share a common attribute or field. Structured Query Language (SQL)
is the language you use to access that information in the form of a query. SQL Access Manager allows you to
access, modify, create, and delete database tables with queries.

SQL Access Manager is an optional program that can be installed with InTouch. SQL Access Manager allows you
to:

 Create and run complex queries. These queries can be built dynamically or saved in external files.
Additionally, these queries can contain parameters that are passed to the query at run time.

 Run SQL statements supported by your database and retrieve the results from the query. You can also use
stored procedures with SQL Access Manager, although not all stored procedure functions are fully
supported.

SQL functions can be automatically inserted into InTouch QuickScripts by clicking on the Add-ons button within
the QuickScript editor dialog. The SQL function is automatically inserted into the script at the current cursor
position.

You can use SQL Access Manager to transfer data, such as batch recipes from a SQL database to an InTouch
application. SQL Access Manager can also be used to transfer run-time data, alarm status, or historical data from
InTouch to a database. For example, after a machine cycle is completed, a company wants to save several sets of
data, each for a different application. SQL databases provide the ability for information to be transferred
between one or more third-party applications easily. SQL Access Manager allows this data to be accessed and
displayed in any InTouch application.

SQL Access Manager consists of a program and a set of SQL functions. The SQL Access Manager program creates
and associates database columns with InTouch tags. The process of associating database columns and InTouch
database tags is called binding. Binding the InTouch database tags to database columns allows SQL Access
Manager to directly manipulate InTouch data stored in a database.

SQL Access Manager saves the database field names and their associations in a comma-separated variable file
named SQL.DEF. This file resides in the InTouch application folder and can be viewed or modified using SQL
Access Manager or any text editor, such as Notepad. SQL Access Manager also creates Table Templates that
define the structure and format of the database used with InTouch.

Chapter 3

Working with SQL Databases from InTouch

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 32

SQL functions can be used in scripts to automatically run based on operator input, a tag value changing, or when
a particular set of conditions exist. These functions allow you to select, modify, insert, or delete records in the
tables you choose to access. For example, if an alarm condition exists, the application can run a script that
includes the SQLInsert() or SQLUpdate() functions that save all of the applicable data points and the state of the
alarm.

Setting Up a Data Source
SQL Access Manager is an ODBC-compliant application that communicates with any database that supports an
available ODBC driver or an OLE DB provider.

You can configure the connection string to the database by several methods:

 Use the Microsoft ODBC Administrator program to configure the ODBC driver for use with SQL Access
Manager.

 Run the SQLConnect() function and specify an OLE DB provider with argument values. For more information,
see SQL Server Database Applications on page 37.

 Set the database connection string with an external UDL file.

To configure an ODBC driver

1. Run the Microsoft ODBC Administrator program.

2. Select a driver or data source, and then click Add New Name, Set Default or Configure. The ODBC Driver
Setup dialog box appears.

Option Description

Data Source Name User-defined name that identifies the data
source.

Description User-defined description of the data source.

Database Directory Identify the folder that contains database files.
If none is specified, the current working folder
is used.

3. Click OK.

Note: When you create an ODBC Data Source, an ODBC.INI file is created in the Windows directory. You can
manually edit the ODBC.INI file.

Mapping InTouch Tags to Database Columns
You can map InTouch Tags to database columns. This is done with a Bind List. Most SQL Access functions use the
Bind List to enable InTouch tags to access data in SQL database tables.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 33

A Bind List associates database table columns to tags in the InTouch Tagname Dictionary. A Bind List also
includes a Table Template that describes the format of the database tables.

When you run a script containing the SQLInsert(), SQLSelect() or SQLUpdate() functions, the Bind List is updated
to specify which InTouch tags are used and which table columns are associated with these tags.

To create a new Bind List

1. On the Special menu, point to SQL Access Manager, and then click Bind List. A message requests
confirmation to create the SQL.DEF file.

2. Click Yes to create the SQL.DEF file. The Select a Bind List dialog box appears.

3. Click New. The Bind List Configuration dialog box appears.

4. In the Bind List Name box, type the Bind List Name.

A Bind List name can be up to 32 characters.

5. To define the tags for the Bind List, do one of the following:

o In the Tagname.FieldName box, type an InTouch tag name. You can also add an optional tag dotfield in
the form tag_name.dotfield_name.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 34

o Double-click Tagname to select an existing tag. The Select Tag dialog box appears. Select a tag from the
list.

Note: I/O type tags that are not used in your application, but are specified in a SQL Access Bind List, are
activated (advised to the DAServer) as soon as WindowViewer starts.

6. Select the dotfield to append to the tag by one of the following:

o In the Tagname.FieldName box, type a period and the dotfield name after the tag name

o Click FieldName. The Choose field name dialog box appears. Click the dotfield that you want to append
to the tag.

7. In the Column Name box, type the name of the column.

A column name can be up to 30 characters in length. If the column name has a space, use square brackets
around the column name in the Bind List and when used in a script. For example:
WHERE EXPR= "[Valve ID] = " + text (tagname,"#");

8. Position the tag within the Bind List by doing one of the following:

o Click Move Up to move the selected tag up one level in the list.

o Click Move Down to move the selected tag down one level in the list.

9. Click Add Item to add your new Tagname.FieldName and Column Name to the Bind List.

10. Click OK to save your new Bind List configuration and close the dialog box.

Configuring the SQL Server String Delimiter in Bind Lists

The SQLInsert() and the SQLUpdate() functions use a default format that encloses message strings within single
quotation marks. Some SQL databases expect to receive message strings enclosed by another type of delimiter.
For example, Oracle 8.0 expects to receive a date string surrounded by brackets. When this occurs, the Delim()
function must be used.

In the Bind List Configuration dialog box Column Name field, after the column name, use the delim() function.
The keyword "delim" must be entered followed by:

 a left parenthesis

 the left delimiter

 the list separator character defined in the system’s regional settings

 the right delimiter

 a right parenthesis

Example for an English system: datestring delim (',')

Example for a German system: datestring delim (';')

To use the same delimiter for both left and right, specify the delimiter in parentheses without the separator, as
shown in the following example:
datestring delim (' ')

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 35

To modify a Bind List

1. On the Special menu, point to SQL Access Manager, and then click Bind List. The Select a Bind List dialog box
appears.

2. Select the Bind List name that you want to change, and then click Modify. The Bind List Configuration dialog
box appears.

3. Modify the required items.

4. Click OK to save your changes and close the dialog box.

To modify a Bind List with Excel

SQL Access Manager saves the configuration information for the Bind Lists and table templates to the SQL.DEF
file. This file is formatted as a Comma Separated Value (CSV) file.

The SQL.DEF file can be modified with any product that supports Comma Separated Value files like Excel.

The data appears in the file as follows:
:BindListName, BindListName
Tagname1.FieldName,ColumnName1
Tagname2.FieldName,ColumnName2
Tagname3.FieldName,ColumnName3
:TableTemplateName, TableTemplateName
ColumnName1,ColumnType,[ColumnLength],Null,Index
ColumnName2,ColumnType,[ColumnLength],Null,Index
ColumnName3,ColumnType,[ColumnLength],Null,Index

To delete a Bind List

1. On the Special menu, point to SQL Access Manager, and then click Bind List. The Select a Bind List dialog box
appears.

2. Select the Bind List name that you want to delete.

3. Click Delete. A message appears requesting confirmation to delete the Bind List.

4. Click Yes to delete the selected Bind List. The Bind List Configuration dialog box reappears.

5. Click OK to close the dialog box.

Defining the Structure of a New Table
A Table Template defines the structure and format for new tables you create in the database. The Table
Template is stored in the SQL.DEF file.

To create a new Table Template

1. On the Special menu, point to SQL Access Manager, and then click Table Template.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 36

2. Click New. The Table Template Configuration dialog box appears.

3. In the Table Template Name box, type the name of the Table Template.

A Table Template name can be up to 32 characters without an index. If you are creating an index, unique or
otherwise, the Table Template name must not exceed 24 characters.

4. In the Column Name box, type the column name of the Table Template.

A column name can be up to 30 characters.

5. In the Column Type box, type the data type for the column. Data type selections vary according to the
database being used.

6. In the Index Type area, select one of the following options:

o Unique: Each column value must be unique.

o Non-Unique: Each column value is not required to be unique.

o None: No index.

Note: When you run a script containing the SQLCreateTable() function, an index file is automatically created.

7. Select Allow Null Entry to allow null data to be entered in this column.

Note: InTouch does not support null data.

When inserting data, if a value has not been entered for a tag, null values are assigned by the type of tag.

Data Type Value

Discrete 0

Integer 0

Message Strings with no characters

8. Click Add Item to add your new column name, column type, length, and index type to the Table Template.

9. Click OK to save your new Table Template configuration and close the dialog box.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 37

To modify a Table Template

1. On the Special menu, point to SQL Access Manager, and then click Table Template. The Select a Table
Template dialog box appears.

2. Select the Table Template name that you want to modify, and then click Modify. The Table Template
Configuration dialog box appears.

3. Modify the required item.

4. Click OK to save your changes and close the dialog box.

To delete a Table Template

1. On the Special menu, point to SQL Access Manager, and then click Table Template. The Select a Table
Template dialog box appears.

2. Select the Table Template name that you want to delete.

3. Click Delete. A message appears requesting confirmation to delete the Table Template.

4. Click Yes. The Table Template Configuration dialog box reappears.

5. Click OK to close the dialog box.

Working with Database Applications
SQL Access Manager supports Oracle, Microsoft SQL Server, and Microsoft Access databases. Each database's
requirements are unique. This section includes separate sections that describe how to configure the connection
between each database and SQL Access Manager.

SQL Server Database Applications

You use the SQLConnect() function in an InTouch QuickScript to connect to a Microsoft SQL Server database. The
SQLConnect() function logs on a user to a SQL Server database and opens a connection. The connection string
used by the SQLConnect() function is formatted as follows:

(SQLConnect(ConnectionId,"<attribute>=<value>;
<attribute>=<value>;...");

The ConnectionID argument is an integer tag containing a session number. This session number is used by
almost every other SQL Access function to reference the connection to the SQL Server database. The session
number increments by 1 with each SQLConnect() function call.

The following table describes the SQLConnect() function attributes used by Microsoft SQL Server:

Attribute Value

Provider SQLOLEDB

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 38

Attribute Value

Data Source Server name where the database is installed

Initial Catalog Database name

User ID Logon ID, case sensitive

Password Password, case sensitive

"Provider=SQLOLEDB.1;User ID=UserIDStr; Password=PasswordStr;Initial
Catalog=DatabaseName;Data Source=ServerName;"

SQL Access Manager associates the four types of InTouch tags (discrete, integer, real, and message) with other
SQL Server database data types.

Data Type Length Range Tag Type

char 8,000
characters

 1 to 131 Message

int -2,147,483,648 to
2,147,483,647

Integer

float 15 digits -1.79E+308 to 1.79E+308 Real

The char data type contains fixed-length character strings. InTouch message tags require a char data type. A
field length must be specified. Microsoft SQL Server databases support a char field with a maximum length of
8,000 characters. However, InTouch message tags are limited to 131 characters. If a message tag value contains
more characters than the length specified for a database field, the char string is truncated when inserted into
the database.

The int data type represents InTouch integer tags. If a field length is not specified, the length is set to the default
value of the database. If the length is specified, it is in the form Width. The Width determines the maximum
number of digits for the column.

The float data type represents InTouch real tags. The field length setting is fixed by the database. A field length
for this data type is not required.

Microsoft Access Database Applications

To communicate with Microsoft Access, you must connect to it by executing the SQLConnect() function in an
InTouch QuickScript.

The SQLConnect() function is used to connect to Microsoft Access databases. Running a script containing the
SQLConnect() function logs you on to the database server and opens a connection to allow other SQL functions
to be run. The connection string used by SQLConnect() is formatted as follows:

SQLConnect(ConnectionId,"<attribute>=<value>;
<attribute>=<value>;...");

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 39

DSN is a unique attribute used by Microsoft Access and identifies the name of the data source as configured in
the Microsoft ODBC Administrator.
SQLConnect(ConnectionId,"DSN=MSACC");

The valid data types that SQL Access Manager supports depends on the version of the ODBC driver being used.

Data Type Length Default Range Tag Type

text 255 characters -- -- Message

number -- -- -- Integer

number -- -- -- Real

The text data type contains fixed length character strings and are used with InTouch Message tags. A length
must be specified. Microsoft Access databases support text fields with a maximum length of 255 characters.
InTouch Message tags are limited to 131 characters. If a message variable contains more characters than the
length specified for a database field, the string will be truncated when inserted into the database. The Microsoft
Access ODBC driver supports up to 17 characters per column name. The maximum number of columns
supported when using SQLSetStatement(Select Col1, Col2, ...) is 40.

Oracle Database Applications

To establish communication between SQL Access and an Oracle database, you must connect to it by running a
script containing the SQLConnect() function.

To communicate with an Oracle 8.0 database

1. Verify the Oracle OLEDB Provider (MSDAORA.DLL) file is installed on the computer running InTouch. This file
is installed by MDAC, which is installed when you install InTouch.

2. Connect to Oracle by executing the SQLConnect() function in an InTouch action script.

The connection string used by the SQLConnect() function is formatted as follows:

SQLConnect(ConnectionId,"<attribute>=<value>;
<attribute>=<value>;...");

The following table describes the function attributes used by Oracle:

Attribute Value

Provider MSDAORA

User ID User name

Password Password

Data Source Oracle Server machine name

SQLConnect(ConnectionId, "Provider=MSDAORA; Data Source=OracleServer; User ID=SCOTT;
Password=TIGER;");

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 40

The following table lists the valid data types that SQL Access Manager supports for an Oracle database.

Data Type Length Default Range Tag Type

char 2,000
characters

1 character Message

number 38 digits 38 digits Integer

To log the date and time to an Oracle 8.0 date field, you must configure the bind list using the delim() function.

To log both date and time to an Oracle date field

1. In the Application Explorer under SQL Access Manager, double-click Bind List. The Bind List Configuration
dialog box appears.

2. In the Tagname.FieldName box, type the tag that you want to use. For example, DATE_TIME_TAG.

3. In the Column Name box, type the name of the Oracle date field. If you are using Oracle 8.0, use the delim()
function to specify any delimiters. The delim() function is not required if you are using Oracle 9.2 or later.

4. In your InTouch application, create a QuickScript to prepare input data from present date and time. For
example:
DATE_TIME_TAG = "TO_DATE('" + $DateString + " " + StringMid($TimeString,1,8) + "','mm/dd/yy
hh24:mi:ss')";

After the QuickScript runs in WindowViewer, the date appears in the following format:
TO_DATE('08/22/06 23:32:18' ,'mm/dd/yy hh24:mi:ss')

Performing Common SQL Operations in InTouch
InTouch uses SQL Access functions to interact with information stored in a database. These SQL Access functions
enable you to write scripts that select, modify, insert, or delete database records.

SQL actions are synchronous. When you run a database QuickScript from an InTouch application, control does
not return to InTouch until the database action requested by the function is complete.

SQL Access functions adhere to punctuation standards that describe the type of arguments associated with a
function. When an argument is entered in a script string surrounded by quotation marks ("Arg1") that exact
string is used. If no quotation marks are used, the argument value is assumed to be a tag name and the current
value of the tag is associated with the argument.

Most SQL functions return a result code. If the result code is non-zero, the function failed and other actions
should be taken. The result code can be used by the SQLErrorMsg() function.

You insert SQL functions in your QuickScripts using the InTouch QuickScript editor. The general procedure to
insert a SQL function into a script includes the following steps:

To add a SQL function to a script

1. Start InTouch WindowMaker.

2. Open the QuickScript with the QuickScript editor.

3. Place the cursor in the script where you want to insert the SQL function.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 41

4. In the Functions area, click Add-ons to show the Choose function dialog box.

5. Click on the SQL function that you want to insert into the QuickScript. The script updates and shows the SQL
function that you inserted.

The arguments associated with SQL Access functions consist of the following:

 BindList

Corresponds to a Bind List name defined in the SQL.DEF file.

 ConnectionID

The ConnectionID argument refers to the name of a memory integer tag that holds the number (ID) assigned
by the SQLConnect() function to each database connection.

 ConnectString

The ConnectString identifies the database system and any additional logon information. It is entered in the
following format:
"DSN=data source name[;attribute=value
[;attribute=value]...]"

Microsoft SQL Server Connection Strings

o Microsoft OLE DB Provider for SQL Server (recommended use).
"Provider=SQLOLEDB.1;User ID=sa; Password=;Initial Catalog=MyDB;Data Source=MyServer;"

The OLE DB Provider for SQL Server is sqloledb.

o Microsoft OLE DB Provider for SQL Server (recommended use)
"Provider=SQLOLEDB.1;uid=sa;pwd=;Database=MyDB"

o Microsoft OLE DB Provider for ODBC (using the default provider MSDASQL for SQL Server):
"DSN=Pubs;UID=sa;PWD=;"

o Microsoft OLE DB Provider for ODBC (using the default provider MSDASQL for SQL Server):
"Data Source=Pubs;User ID=sa;Password=;"

Oracle Connection Strings

o Microsoft OLE DB Provider for Oracle (recommended use)
"Provider=MSDAORA;Data Source=ServerName;User ID=UserIDStr; Password=PasswordStr;"

Microsoft Access Connection Strings

Microsoft OLE DB Provider for Microsoft Jet (recommended use). Microsoft.Jet.OLEDB.4.0 is the native OLE
DB Provider for Microsoft Jet (Microsoft Access Database engine).
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=d:\DBName.mdb;User
ID=UserIDStr;Password=PasswordStr;"

Microsoft OLE DB Provider for ODBC (using the default provider MSDASQL for MS Access):
"Provider=MSDASQL;DSN=DSNStr;UID=UserName; PWD=PasswordStr;"

 ErrorMsg

Message variable containing a text description of the error.

 FileName

Name of the file in which the information is contained.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 42

 MaxLen

Maximum size of the column associated with a parameter. This argument determines whether the data is of
varying character or long varying character type. If MaxLen is less than or equal to the largest character
string allowed by the database, then the data is varying character type. If greater, then the data is long
varying character type.

 OrderByExpression

Defines the columns and either ascending or descending sort order. Only column names can be used to sort.
The expression must be formatted:

ColumnName [ASC|DESC]

To sort the selected table by a column name in ascending order:
"manager ASC"

To sort by multi-columns, the expression is formatted:

ColumnName [ASC|DESC],

ColumnName [ASC|DESC]

To sort a selected table by one column name (for example, temperature) in ascending order and another
column name (for example, time) in descending order:
"temperature ASC, time DESC"

 ParameterNumber

Actual parameter number in the statement

 ParameterType

Data type of the specified parameter. Valid values are:

Type Description

Char Blank padded fixed length string

Var Char Variable Length String

Decimal BCD Number

Integer 4-byte signed integer

Small integer 2-byte signed integer

Float 4-byte floating point

Double Precision Float 8-byte floating point

DateTime 8-byte date time value

Date 4-byte date time value

Time 4-byte date time value

No Type No data type

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 43

 ParameterValue

Actual value to set.

 Precision

Is the decimal value's precision, the maximum size of the character, or the length in bytes of the date-time
value.

 RecordNumber

Actual record number to retrieve.

 ResultCode

Integer variable returned from most SQL functions. ResultCode is returned as zero (0) if the function is
successful and a negative integer if it fails.

 Scale

Is the decimal value's scale. This value is required only if applicable to the parameter being set to null.

 StatementID

When using the advanced functionality statements, SQL returns a StatementID, which it uses internally.

 SQLStatement

Actual statement, for example:
ResultCode=SQLSetStatement(ConnectionID, "Select LotNo, LotName from LotInfo");

 TableName

The TableName parameter contains the name of the table you want to access or create in the database.

 TemplateName

The TemplateName parameter is the name of the template in the SQL.DEF file that defines the table.

 WhereExpr

Defines a condition that can be either true or false for any row of the table. The function extracts only those
rows from the table for which the condition is true. The expression must be in the following format:

ColumnName comparison_operator expression

Note: If the column is a character data type, the expression must be enclosed within single quotation marks.

The following example selects all rows whose Name column contains the value EmployeeID:
Name='EmployeeID'

The following example selects all rows containing part numbers from 100 to 199:
partno>=100 and partno<200

The following example selects all records whose temperature column contains a value greater than 350:
temperature>350

Connecting and Disconnecting the Database

Use the SQLConnect() and SQLDisconnect() functions in a script to connect to and disconnect from a SQL
database.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 44

SQLConnect() Function

You use the SQLConnect() function in an InTouch QuickScript to connect to the database specified by the
ConnectString argument.<

SQLConnect() returns a value to the ConnectionID argument that is used as a parameter in all subsequent SQL
functions. You must have a Bind List defined in the application folder before using the SQLConnect function in a
script.

Category

SQL

Syntax
[ResultCode=]SQLConnect(ConnectionID, "ConnectString");

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

ConnectString
String that identifies the database and any additional logon information used in SQLConnect() function.

Remarks

You must have a Bind List (a SQL.DEF file) in the application folder. This function does not work without it.

If SQLTrace=1 is defined under the [InTouch] section of the win.ini file, each successful execution of SQLConnect
logs version information for the ADO, the provider, and the database system to the Log Viewer.

Examples

The following statements connects to IBM OS/2 Database Manager and to the database named SAMPLE:
[ResultCode=]SQLConnect(ConnectionID,"DSN=OS2DM;
DB=SAMPLE");

This function returns a value to the ConnectionID variable that is used as a parameter in all subsequent SQL
Functions.
"DSN=data source name[;attribute=value
[;attribute=value]...]"

SQLDisconnect() Function

The SQLDisconnect() function disconnects you from the database and cleans up all unreleased resources that
were obtained for SQLPrepareStatement() and SQLInsertPrepare() functions.

Category

SQL

Syntax
[ResultCode=]SQLDisconnect(ConnectionID);

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 45

Argument

ConnectionId
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

See Also

SQLConnect()

Creating a New Table

You use the SQLCreateTable() function in an InTouch QuickScript to create a table in the database using the
parameters from a specified Table Template.

SQLCreateTable() Function

You use the SQLCreateTable() function in an InTouch QuickScript to create a table in the database using the
parameters from a specified Table Template. Table Templates are defined in the SQL.DEF file, which includes the
structure of a database table.

Category

SQL

Syntax
[ResultCode=]SQLCreateTable(ConnectionID, TableName,TemplateName);

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

TableName
Name of the database table you want to create.

TemplateName
Name of the template definition you want to use.

Examples

The following example of the SQLCreateTable() function creates a table named BATCH1 with the column names
and data types defined in the OutputVal template:
ResultCode=SQLCreateTable(ConnectionID,"BATCH1",
"OutputVal");

See Also

SQLConnect()

Deleting a Table

You use the SQLDropTable() function in an InTouch QuickScript to drop a table from the database.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 46

SQLDropTable() Function

You use the SQLDropTable() function in an InTouch QuickScript to drop a table from the database. After the
QuickScript containing the SQLDropTable() function finishes, the table is no longer recognized and does not
respond to any SQL statements.

Category

SQL

Syntax
[ResultCode=]SQLDropTable(ConnectionID, TableName);

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

TableName
Name of the table that you want to drop from the database.

Example

The following example of the SQLDropTable() function drops the BATCH1 table from the database:
ResultCode=SQLDropTable(ConnectionID,"BATCH1");

See Also

SQLConnect()

Retrieving Data from a Table

You can use a set of SQL functions in scripts to retrieve data from a database and write the values to InTouch
tags.

 The SQLSelect() function retrieves information from a table and places this information in the form of
records into a temporary Results Table created in memory.

 The SQLGetRecord() function retrieves the record specified by RecordNumber from the current selection
buffer.

 The SQLNumRows() function returns the number of table rows that met the criteria specified in a previous
SQLSelect() function.

 The SQLFirst() function retrieves the first record of the Results Table created by the last SQLSelect()
function.

 The SQLNext() function retrieves the next record of the Results Table created by the last SQLSelect()
function.

 The SQLPrev() function retrieves data from the previous row of the logical table and fetch values from that
row into InTouch tags.

 The SQLLast() function retrieves the last row of the logical table and fetch values from that row into InTouch
tags.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 47

 The SQLEnd() function frees memory that stores the contents of the Results Table associated with
ConnectionId.

The SQLFirst(), SQLPrev(), SQLNext(), SQLLast(), and SQLGetRecord() functions retrieve data from specified
rows of the logical table and save it as InTouch tag values. If a field is NULL, the value of the associated InTouch
tag is set to zero or a zero-length string depending on whether the tag is of analog or message type.

If a string in the database is greater than 131 characters, only the first 131 characters are copied from the
database to the associated InTouch message tag.

SQLSelect() Function

The SQLSelect() function retrieves records from a table. When the script containing the SQLSelect() function is
processed, the retrieved records are placed in a temporary Results Table in memory. These records can be
browsed using the SQLFirst(), SQLLast(), SQLNext() and SQLPrev() functions.

Important: Always call the SQLEnd() function after the script containing the SQLSelect() function ends to free
memory used by the Results Table.

Category

SQL

Syntax
[ResultCode=]SQLSelect(ConnectionID,TableName, BindList,WhereExpr,OrderByExpression);

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

TableName
Name of the database table to access.

BindList
Defines which InTouch tags are used and which database.

WhereExpr
Defines a condition that can be either true or false for any row of the table. The SQLSelect() function extracts
data from only those rows in which the WhereExpr condition is true. The expression must be in the following
format:

ColumnName comparison_operator expression.

Note: If the comparison is made with a character expression, the expression must enclosed within single quotes.

The following example selects all rows whose name column contains the value EmployeeID:

name='EmployeeID'
The following example selects all rows containing part numbers from 100 to 199:
partno>=100 and partno<200

The following example selects all rows whose temperature column contains a value greater than 350:
temperature>350

WhereExpr - Memory message Tag
OrderByExpr - Memory message Tag

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 48

Speed_Input - Memory Real - User Input Analog
Serial_Input - Memory Message - User Input String

Analog Example
WhereExpr = "Speed = " + text
(Speed_Input,"#.##");

Because Speed_Input is a number, it must be converted to text so it can be concatenated to the WhereExpr
string.
String Example
WhereExpr = "Ser_No = ‘" +
Serial_input + "’";

Because Serial_Input is a string it must have single quotes around the value for example:WhereExpr =
"Ser_No=’125gh’";
String Example using the like statement
WhereExpr = "Ser_No like ‘-’"

When using the Like comparison operator the % char can be used as a wild card.
String and Analog Example using a Boolean AND operator
WhereExpr = "Ser_No = ‘" + Serial_input + "’" + " and " + "Speed = " +
text(Speed_Input,"#.##");OrderByExpr = "";

If the order does not matter, use a null string as shown above.
SQLSelect using WhereExpr tag
ResultCode = SQLSelect(Connect_Id,TableName,
BindList,
WhereExpr,OrderByExpr);
Error_msg = SQLErrorMsg(ResultCode);

SQLSelect WhereExpr built in function
ResultCode = SQLSelect(Connect_Id,TableName,
BindList,
"Ser_No = ‘" + Serial_input + "’", OrderByExpr);
Error_msg = SQLErrorMsg(ResultCode);

OrderByExpr
Defines the direction to sort data within a table column. Only column names can be used to sort and the
expression must be in this form:
ColumnName [ASC|DESC]
The following example sorts a table in ascending order by the data from the manager column:
"manager ASC"

You can also sort by multi-columns where the expression is in the form:
ColumnName [ASC|DESC],
ColumnName [ASC|DESC]
The next example sorts the selected table by the temperature column in ascending order and the time
column in descending order:
"temperature ASC,time DESC"

Examples

The following statement selects records from the BATCH table using a BindList named List1, whose column
name type contains the value cookie. It will present the information sorted by the amount column in ascending
order and the sugar column in descending order:
ResultCode=SQLSelect(ConnectionID,"BATCH", "List1","type='cookie'","amount ASC,sugar DESC");

The following statement selects all data in the database, do not specify a value for the WhereExpr and
OrderByExpr:
ResultCode=SQLSelect(ConnectionID,"BATCH", "List1", "","");

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 49

See Also

SQLFirst(), SQLConnect(), SQLLast(), SQLNext(), SQLPrev(), SQLEnd(), SQLSelect()

SQLGetRecord() Function

The SQLGetRecord() function retrieves the record specified by the RecordNumber argument from the current
selection buffer.

Category

SQL

Syntax
[ResultCode=]SQLGetRecord(ConnectionID, RecordNumber);

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

RecordNumber
Actual record number to retrieve.

Example
ResultCode=SQLGetRecord(ConnectionID,3);

See Also

SQLConnect()

SQLNumRows() Function

The SQLNumRows() function indicates how many rows met the criteria specified in the last SQLSelect() function.
For example, if a WhereExpr argument is used to select all rows with a column name AGE, where AGE is equal to
45, the number of rows returned could be 40 or 4000. This may determine which function is processed next.

Category

SQL

Syntax
SQLNumRows(ConnectionID);

Argument

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

Example

The following statement returns the number of rows selected to the NumRows integer tag:
NumRows=SQLNumRows(ConnectionID);

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 50

See Also

SQLConnect()

SQLFirst() Function

The SQLFirst() function selects the first record of the Results Table created by the last SQLSelect() function.

Category

SQL

Syntax
[ResultCode=]SQLFirst(ConnectionID);

Argument

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

See Also

SQLConnect(), SQLSelect()

SQLNext() Function

The SQLNext() function selects the next record in sequence of the Results Table created by the last SQLSelect()
function. A SQLSelect() function must be processed before running the SQLNext() function in a script.

Category

SQL

Syntax
[ResultCode=]SQLNext(ConnectionID);

Argument

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

Example
ResultCode=SQLNext(ConnectionID);

See Also

SQLConnect(), SQLSelect()

SQLPrev() Function

The SQLPrev() function selects the previous record of the Results Table created by the last SQLSelect() function.

Category

SQL

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 51

Syntax
[ResultCode=]SQLPrev(ConnectionID);

Argument

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

Remarks

A SQLSelect() function must be processed before using this command.

Example
ResultCode=SQLPrev(ConnectionID);

See Also

SQLConnect(), SQLSelect()

SQLLast() Function

The SQLLast() function selects the last record of the Results Table created by the previous SQLSelect() function.

Category

SQL

Syntax
[ResultCode=]SQLLast(ConnectionID);

Argument

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

Example
ResultCode=SQLLast(ConnectionID);

See Also

SQLConnect(), SQLSelect()

SQLEnd() Function

The SQLEnd() function is run after the SQLSelect() function to free memory used to store the contents of the
Results Table.

Category

SQL

Syntax
[ResultCode=]SQLEnd(ConnectionID);

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 52

Argument

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

See Also

SQLConnect(), SQLSelect()

Writing New Records to a Table

You can insert new records to a database using the SQLInsert() function. The SQLInsert() function uses the
current value of an InTouch tag to insert one record into a table. The SQLInsert() function is a one step operation
that prepares, inserts, and ends the statement.

If the string associated with an InTouch message tag is longer than the defined size of the corresponding text
field of the table, the number of characters used from the message tag will be the defined size of the field.

Note: InTouch tags cannot be NULL. It is impossible to update or insert NULL values into the database using
these functions if the Bind List includes the field. You can insert NULL values into a field using SQLExecute on an
INSERT statement that does not include the field, which should have been defined to allow NULL values.

SQL Access provides three other functions that separately prepare, insert, and clean up after a record insertion.
Using these functions together, you can write scripts that include a single prepare and end statement and add as
many record insert statements as needed. If you use individual functions to insert data instead of the SQLInsert()
function, you can reduce resource usage on the computer.

SQLInsert() Function

The SQLInsert() function inserts a new record into the referenced table using the values of the tags in the
supplied BindList. The BindList parameter defines which InTouch tags are used and which database columns they
are associated.

Use the SQLInsert() function to prepare, insert, and end the statement.

Category

SQL

Syntax
[ResultCode=]SQLInsert(ConnectionID, TableName, BindList);

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

TableName
Name of the database table you want to access.

BindList
Defines which InTouch tags are used and which database columns they are associated with.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 53

Example

The following statement inserts a new record into table ORG with the tag values specified in List1:
ResultCode=SQLInsert(ConnectionID,"ORG","List1");

SQLInsertPrepare() Function

The SQLInsertPrepare() function creates and prepares an Insert statement each time the function runs. The
Insert statement is not processed. The StatementID argument is an integer tag containing a value after the
statement is processed.

Category

SQL

Syntax
[ResultCode=]SQLInsertPrepare (ConnectionID, TableName, BindList, StatementID);

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

TableName
The name of the database table to access.

BindList
Defines which InTouch tags are used and which database columns they are associated with.

StatementID
Integer value returned by SQL when a SQLPrepareStatement() function is used.

See Also

SQLConnect(), SQLPrepareStatement()

SQLInsertExecute() Function

The SQLInsertExecute() function runs the previously prepared insert statement specified by the
SQLInsertPrepare() function.

The SQLInsertExecute() function uses the current values of InTouch tags to insert one row into the table
identified by the previous SQLInsertPrepare() function. If the BindList argument includes an Identity key field for
a MS SQL Server table, it is necessary to set the IDENTITY_INSERT option before running SQLInsertExecute().

The StatementID argument contains an integer value returned by SQL when a previous SQLInsertPrepare()
function is run within the script.

Category

SQL

Syntax
[ResultCode=]SQLInsertExecute(ConnectionID, BindList, StatementID);

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 54

Arguments

ConnectionID
A memory integer tag created by the user to hold the number (ID) assigned by the SQLConnect function to
each database connection.

BindList
Defines which InTouch tags are used and which database columns they are associated with.

StatementID
Integer value returned by SQL when a SQLPrepareStatement() function is used.

See Also

SQLConnect(), SQLPrepareStatement()

SQLInsertEnd() Function

The SQLInsertEnd function cleans up resources associated with the StatementID function created by
SQLInsertPrepare.

The following example shows how multiple insert functions should be specified in a script.
ResultCode = SQLSetStatement(ConnectionId, "SET IDENTITY_INSERT Products ON");
ResultCode = SQLExecute(ConnectionId, "", 0);
ResultCode = SQLInsertPrepare(ConnectionId, TableName, Bindlist, StatementID);
ResultCode = SQLInsertExecute(ConnectionId, Bindlist, StatementID);
ResultCode = SQLInsertEnd(ConnectionId, StatementID);

Category

SQL

Syntax
[ResultCode=]SQLInsertEnd(ConnectionID, StatementID);

Argument

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

StatementID
Integer value returned by SQL when a SQLPrepareStatement() function is used.

See Also

SQLConnect(), SQLPrepareStatement()

Updating Existing Records in a Table

SQL Access provides two functions to update table records with values from InTouch tags:

 SQLUpdate()

 SQLUpdateCurrent()

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 55

SQLUpdate() Function

The SQLUpdate() function uses the current values of InTouch tags to update all rows in a table that match the
condition set by the WhereExpr argument.

Category

SQL

Syntax
[ResultCode=]SQLUpdate(ConnectionID, TableName, BindList, WhereExpr);

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

TableName
The name of the database table to access.

BindList
Defines which InTouch tags are used and which database columns they are associated with.

WhereExpr
Defines a condition that can be either true or false for any row of the table. The function updates only those
rows from the table for which the condition is true. The expression must be in the following format:
ColumnName comparison_operator expression.

Note: If the column is a character data type, the expression must be in single quotes.

Example

The following example selects all rows whose name column contains the value EmployeeID:
name='EmployeeID'

The following example selects all rows containing part numbers from 100 to 199:
partno>=100 and partno<200

The following example selects all rows whose temperature column contains a value that is greater than 350:
temperature>350

The following statement updates all records in the table BATCH, whose lot number is 65, to the current values of
the tags specified in the BindList "List1":
ResultCode=SQLUpdate(ConnectionID,"BATCH", "List1","lotno=65");

Note: Be sure that all records are unique. If identical records exist in a table, all similar records are updated.

See Also

SQLConnect()

SQLUpdateCurrent() Function

The SQLUpdateCurrent() function updates the current row of the logical table using InTouch tags mapped to the
table fields by the Bind List specified in SQLSelect() or SQLExecute() function statements. If there are rows that
are identical to the current row, all rows are updated.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 56

Up to 54 identical records can be updated at once. If there are too many identical rows to be updated in SQL
Access, the SQLUpdateCurrent() function returns an error. The error message is similar to, "Microsoft Cursor
Engine: Key column information is insufficient or incorrect. Too many rows were affected by update."

To avoid this error, create a unique key field in the table that makes each row unique. It is strongly
recommended that all tables used by SQL Access have a unique key. For a table without a key, it is
recommended that a field of type AutoNumber (Access) or an integer field used as the row Identity (SQL Server)
be used as the primary key so that SQLUpdateCurrent() function updates only one row at a time. This primary
key field does not have to be included in a Bind List.

Category

SQL

Syntax
[ResultCode=]SQLUpdateCurrent(ConnectionID);

Argument

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

Example
ResultCode=SQLUpdateCurrent(ConnectionID);

See Also

SQLConnect()

Deleting Records from a Table

You can use two SQL functions to remove records from a database table.

SQL Access provides two functions to delete table records:

 SQLClearTable() deletes records from a table.

 SQLDelete() deletes records from a table that match a specified condition

SQLClearTable() Function

The SQLClearTable() function deletes all records from a table. It does not delete the table from the database.

Category

SQL

Syntax
[ResultCode=]SQLClearTable(ConnectionID, "TableName");

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 57

TableName
Name of the table in which all records are cleared.

Example

In the following example, the SQLClearTable() function clears all records from the BATCH1 table.
ResultCode=SQLClearTable(ConnectionID,"BATCH1");

See Also

SQLConnect(), SQLClearStatement()

SQLDelete() Function

The SQLDelete() function removes all records from a table that match a condition specified by the WhereExpr
argument.

Category

SQL

Syntax
[ResultCode=]SQLDelete(ConnectionID, TableName, WhereExpr);

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

TableName
Name of the table in which records are cleared that meet the condition specified by the WhereExpr
argument.

WhereExpr
Defines a condition that can be either true or false for any row of the table. The SQLDelete() function
deletes only those row records in which the WhereExpr condition is true. The expression must be in the
following format:
ColumnName comparison_operator expression

Note: The SQLDelete() function cannot contain a null WhereExpr argument.

Example

The following statement deletes all records in the BATCH1 table whose lot number is equal to 65:
ResultCode=SQLDelete(ConnectionID,"BATCH1", "lotno=65");

Note: If the column is a character data type, the expression must be in single quotes such as
"MachineID='AG_LX7_2'".

See Also

SQLConnect()

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 58

Executing Parameterized Statements

Use the SQLSetStatement() and the SQLAppendStatement() functions to build dynamic queries. The
SQLSetStatement() function starts a new SQL statement. This can be any valid SQL statement, including the
name of a stored procedure. The SQLAppendStatement() function continues a SQL statement using the contents
of string.

SQLSetStatement() Function

The SQLSetStatement() function starts a SQL statement buffer using the contents of SQLStatement, on the
established connection, ConnectionID. There can be one SQL Statement buffer per ConnectionID. Errors are
returned in the function return.

Category

SQL

Syntax
[ResultCode=]SQLSetStatement(ConnectionID, SQLStatement);

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

SQLStatement
Actual SQL statement, see the following examples.

Examples
ResultCode=SQLSetStatement(ConnectionID,"Select LotNo, LotName from LotInfo");

In the following example, the StatementID is set to zero so the statement does not have to call
SQLPrepare(Connect_Id, StatementID) before running the statement. Because the StatementID is not created by
the SQLPrepare to properly end this select, use the SQLEnd() function instead of the SQLClearStatement()
function.
SQLSetStatement(Connect_Id, "Select Speed, Ser_No from tablename where Ser_No =’" +
Serial_input + "’");
SQLExecute(Connect_Id,0);

In the following example, the StatementID is created by the SQLPrepareStatement() function and used in the
SQLExecute() function. To end this SELECT statement, use the SQLClearStatement() function to free resources
and the handle.
SQLSetStatement(Connect_Id, "Select Speed, Ser_No from tablename where Ser_No =’" +
Serial_input + "’");
SQLPrepareStatement(Connect_Id,StatementID);
SQLExecute(Connect_Id,StatementID);
SQLSetStatement(Connect_Id, "Select Speed, Ser_No from tablename where Ser_No =’" +
Serial_input + "’");
SQLPrepareStatement(Connect_Id,StatementID);
SQLExecute(Connect_Id,StatementID);

See Also

SQLConnect()

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 59

SQLAppendStatement() Function

The SQLAppendStatement() function continues a SQL statement using the contents of a string. A return value
indicates if an error occurred during the function call.

InTouch tags can support character strings to a maximum of 131 characters. You typically use the
SQLAppendStatement() function to concatenate additional strings to a statement.

Category

SQL

Syntax
[ResultCode=]SQLAppendStatement(ConnectionID, "SQLStatement");

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

SQLStatement
Actual statement to append.

Example
ResultCode=SQLAppendStatement(ConnectionID, "where tablename.columnname=TR-773-01");

See Also

SQLConnect(), SQLClearStatement()

Creating a Statement or Loading an Existing Statement from a File

You can create a query with other third-party database tools, and then use SQL Access to run the query. First,
you must load the SQL statement from an .SQL query file created by the third-party database tool.
ResultCode = SQLLoadStatement (ConnectionID, "c:\myappdir\lotquery.sql");

You load the SQL query using the SQLoadStatement() function. The statement is now ready to run.

SQLLoadStatement() Function

The SQLLoadStatement() function reads a SQL statement from a file.

There can be only one statement per file. However, SQLAppendStatement() function can be used to append
something to the statement if SQLPrepareStatement() function or SQLExecute() function has not been called.

Category

SQL

Syntax
[ResultCode=]SQLLoadStatement(ConnectionID, FileName);

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 60

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

FileName
Name of the file containing the SQL statement.

Remarks

After you load the statement and get the statement handle, use the SQLPrepareStatement() function to prepare
the statement for execution.

Example

The SQL.txt file contains the following SQL statement:
Select ColumnName from TableName where ColumnName>100;

The SQLLoadStatement() function loads the statement from the file.
ResultCode=SQLLoadStatement(ConnectionID,
"C:\SQL.txt")

See Also

SQLConnect(), SQLAppendStatement(), SQLExecute(), SQLPrepareStatement

Preparing a Statement

Using the following functions, you can create any parameterized statement you want, and then dynamically fill
in the parameters one by one. For example, you could save a generic statement in a file, load it using the
SQLLoadStatement() function, prepare it using the SQLPrepareStatement() funtion to get a statement ID, and
then fill in the statement parameters using the following functions:

 SQLPrepareStatement()

 SQLSetParamChar()

 SQLSetParamDate()

 SQLSetParamDateTime()

 SQLSetParamDecimal()

 SQLSetParamFloat()

 SQLSetParamInt()

 SQLSetParamLong()

 SQLSetParamNull()

 SQLSetParamTime()

 SQLClearParam()

 SQLClearStatement()

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 61

To perform parameter substitution on a SQL statement, place a "?" in the SQL statement where you want to
specify a subsequent parameter. The statement is prepared, parameters are set into the statement, and then
the statement is run.

SQLPrepareStatement() Function

The SQLPrepareStatement() function prepares the SQL statement to be run. It does not run the statement, it just
makes the statement active so you can set parameter values.

Category

SQL

Syntax
SQLPrepareStatement(ConnectionId, StatementID)

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

Remarks

Prepare the default statement and return a StatementID (1, 2, 3, and so on). This preparation is useful for
statements with parameters that need to be set using the SQLSetParam{Type} functions.

Setting Statement Parameters

SQL Access Manager provides a set of functions to modify the value assigned to a parameter included in a SQL
statement.

SQLSetParamChar() Function

The SQLSetParmChar() function can be used in a script to set the value of the specified parameter to the
specified string. The function can be called multiple times before executing, resulting in the parameter value
being set to the concatenation of all values sent. Lengths of 0 (zero) are ignored.

Category

SQL

Syntax
SQLSetParamChar(StatementID, ParameterNumber, ParameterValue, MaxLength);

Arguments

StatementID
Integer value returned by SQL when a SQLPrepareStatement() function is used.

ParameterNumber
Parameter number in the statement.

ParameterValue
Value to set as the parameter value.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 62

MaxLength
Maximum width of the column with which this parameter is associated. This setting determines whether the
parameter is of varying character or long varying character type. If MaxLength is less than or equal to the
largest character string allowed by the database, then the parameter is varying character type. If greater,
long varying character type.

See Also

SQLPrepareStatement()

SQLSetParamDate() Function

The SQLSetParamDate() function sets the value of a parameter to a specified date.

Category

SQL

Syntax
SQLSetParamDate(StatementID, ParameterNumber, "Value");

Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Integer value that identifies the parameter in the SQL statement identified by the StatementID argument.

Value
Date assigned to the parameter as a literal enclosed with double quotation marks or the name of a tag
whose value is a date. The time assigned to the date is 12:00:00 AM.

Example

This example sets the second parameter of the third statement to the date associated with the NewDate tag.
SQLSetParamDate(3, 2, NewDate);

See Also

SQLPrepareStatement()

SQLSetParamDateTime() Function

The SQLSetParamDateTime() function sets the value of a parameter to a specified date and time.

Category

SQL

Syntax
SQLSetParamDateTime(StatementID, ParameterNumber, Value, Precision);

Arguments

StatementID
Integer value that identifies a SQL statement within a query.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 63

ParameterNumber
Integer value that identifies the parameter in the SQL statement identified by the StatementID argument.

Value
Date and time to assign to the parameter identified by the ParameterNumber argument.

Precision
Integer that specifies the number of characters of the date-time value assigned as the value of the
parameter.

See Also

SQLPrepareStatement()

SQLSetParamDecimal() Function

The SQLSetParamDecimal() function sets the value of a parameter to a decimal number.

Category

SQL

Syntax
SQLSetParamDecimal(StatementID, ParameterNumber, Value, Precision,Scale);

Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Integer value that identifies the parameter in the SQL statement identified by the StatementID argument.

Value
Value can be either a string or an InTouch message tag that represents a decimal number (123.456) or an
InTouch memory real tag.
It is recommended that a message tag is used instead of a real tag to guarantee the precision of the
parameter. However, if Value must be a floating point number (for example, a real value received from an
DAServer), the function continues to work. But, high precision may not be guaranteed because of the
limitation of floating point representation.

Precision
Integer that specifies the total number of digits in the number.

Scale
Integer that specifies the number of digits to the right of the decimal point.

Example

This example sets the second parameter of the third SQL statement to 123.456. The precision is six digits and
the scale is three digits to the right of the decimal point.
SQLSetParamFloat(3, 2, 123.456, 6, 3)

See Also

SQLPrepareStatement()

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 64

SQLSetParamFloat() Function

The SQLSetParamFloat() function sets the value of a parameter to a 64-bit, signed, floating-point value.

Category

SQL

Syntax
SQLSetParamFloat(StatementID, ParameterNumber, Value);

Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Integer value that identifies the parameter in the SQL statement identified by the StatementID argument.

Value
64-bit, signed, floating-point number to assign as the value of the specified parameter.

Example

This example sets the second parameter of the third SQL statement to -5.
SQLSetParamFloat(3, 2, -5)

See Also

SQLPrepareStatement()

SQLSetParamInt() Function

The SQLSetParamInt() function sets the value of a parameter to a 16-bit signed integer.

Category

SQL

Syntax
SQLSetParamInt(StatementID, ParameterNumber, Value);

Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Integer value that identifies the parameter in the SQL statement identified by the StatementID argument.

Value
16-bit, signed, integer to assign as the value of the specified parameter.

Example

This example sets the second parameter of the third SQL statement to -5.
SQLSetParamInt(3, 2, -5);

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 65

See Also

SQLPrepareStatement()

SQLSetParamLong() Function

The SQLSetParamLong() function sets the value of a parameter to a 32-bit signed analog number.

Category

SQL

Syntax
SQLSetParamLong(StatementID, ParameterNumber, Value);

Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Integer value that identifies the parameter in the SQL statement identified by the StatementID argument.

Value
32-bit signed analog number to assign as the value of the specified parameter.

Example

This example sets the third parameter of the first statement to 4.5e12.
SQLSetParamLong(1, 3, 4.5e12);

See Also

SQLPrepareStatement()

SQLSetParamNull() Function

The SQLSetParamNull() function sets a specified parameter within a SQL statement to NULL.

Category

SQL

Syntax
SQLSetParamNull(StatementID, ParameterNumber, ParameterType, Precision, Scale)

Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Integer value that identifies the parameter in the SQL statement identified by the StatementID argument.

ParameterType
Integer value that specifies the type of data associated with the parameter specified by the
ParameterNumber argument. The ParameterType argument can be assigned the following values:
0: String

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 66

1: Date/time
2: Integer
3: Floating point number
4: Decimal number

Precision
Precision of the data associated with the parameter data type.

Scale
Decimal value's scale. This value is required only if applicable to the parameter being set to null.

Remarks

Comparison with the NULL value is controlled by the ANSI_NULLS option in SQL Server. In SQL Server 7.0, this
option is resolved at object creation time, not at query execution time. When a stored procedure is created in
SQL Server 7.0, this option is ON by default and thus a clause such as "WHERE MyField = NULL" always returns
NULL (FALSE) and no row is returned from a SELECT statement using this clause.

In order for the comparison = or <> to return TRUE or FALSE, it is necessary to set the option to OFF when
creating the stored procedure. If the ANSI_NULLS is not set to OFF, then SQLSetParamNull() does not work as
expected. In this case, comparison against NULL value should use the syntax "WHERE MyField IS NULL" or
"WHERE MyField IS NOT NULL".

Example

This transaction set returns all rows of the Products table where the ProductName is not NULL.
SET ANSI_NULLS OFF
GO
CREATE PROCEDURE sp_TestNotNull @ProductParam varchar(255)
AS SELECT * FROM Products WHERE ProductName <> @ProductParam
GO
SET ANSI_NULLS ON
GO

InTouch can run the following SQL Access scripts.
ResultCode = SQLSetStatement(ConnectionId, "sp_TestNotNull");
ResultCode = SQLPrepareStatement(ConnectionId, StatementID);
ResultCode = SQLSetParamNull(StatementID, 1, 0, 0, 0);
ResultCode = SQLExecute(ConnectionId, BindList, StatementID);
ResultCode = SQLFirst(ConnectionId);
ResultCode = SQLClearStatement(ConnectionId, StatementID);

See Also

SQLPrepareStatement()

SQLSetParamTime() Function

The SQLSetParamTime() function sets the value of the specified time parameter to a specified string.

Category

SQL

Syntax
SQLSetParamTime(StatementID, ParameterNumber, Value)

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 67

Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Actual parameter number in the SQL statement identified by the StatementID argument.

Value
Actual value to set. Set the parameter specified by the ParameterNumber argument to a time value. The
current date from the computer running the function is included with the specified time.

Example

This examples sets the second parameter from the fourth SQL statement to 10:00 a.m.
ResultCode=SQLSetParamTime(1, 3, "10:00:00 AM");

See Also

SQLPrepareStatement()

Clearing Statement Parameters

The SQLClearParam() function clears the value of the specified parameter.

SQLClearParam() Function

The SQLClearParam() function clears the value of the specified parameter. One of the SQLSetParamxxx()
functions must be called again to reload parameters before calling the SQLExecute() function to run the query.

Category

SQL

Syntax
[ResultCode=]SQLClearParam(StatementID,ParameterNumber);

Arguments

StatementID
Integer value returned when a SQLPrepareStatement() function runs.

ParameterNumber
The ParameterNumber argument identifies the actual argument within the SQL statement to modify. Set the
value of ParameterNumber associated with StatementID to zero or a zero-length string, depending on
whether the argument is numeric or a string.

See Also

SQLPrepareStatement(), SQLExecute()

Executing a Statement

The SQLExecute() function can be used within an InTouch script to run a SQL query during run time.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 68

SQLExecute() Function

The SQLExecute function runs a SQL query within a script. If the statement includes a SELECT, the BindList
argument designates the name of the Bind List to use for binding the database columns with InTouch tags. If the
Bind List is NULL, no tag associations are made.

Category

SQL

Syntax
SQLExecute(ConnectionID,BindList,StatementID);

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

BindList
The BindList argument can be a zero-length string. If StatementID is associated with a row-returning query,
then the logical table is updated with the result of SQLExecute(). If a real Bind List is specified, then the
result is associated with the BindList argument. A zero-length Bind List is useful when it is known in advance
that the StatementID is not associated with a row-returning query.

StatementID
Integer value returned by SQL when a SQLPrepareStatement() function is used.

Remarks

Errors are returned in the function return. If the statement has been prepared, the statement handle returned
from the prepare should be passed. If the statement has not been prepared, the statement handle should be
zero.

Note: The SQLExecute() function can be called only once for a statement that has not been prepared. If the
statement has been prepared, it can be called multiple times.

A default statement is associated with a connection ID. It can be a textual SQL statement (SELECT, INSERT,
DELETE, or UPDATE), the name of a query in MS Access (with or without parameters), or the name of a stored
procedure in MS SQL Server (with or without parameters).

The default statement is modified by the SQLLoadStatement(), SQLSetStatement(), and SQLAppendStatement()
functions. The default statement is used by SQLExecute() whenever StatementID = 0 is specified.

Examples

This example loads the SQL statements from the lotquery.sql file and places the results of the SELECT statement
to InTouch tags specified by the Bind List.
ResultCode = SQLLoadStatement (ConnectionID, "c:\myappdir\lotquery.sql");
ResultCode = SQLExecute (ConnectionID, "BindList", 0);
ResultCode = SQLNext (ConnectionID);

This SQLSetStatement() function must be used for complex queries and string expressions greater than 131
characters. When the string expression exceeds 131 characters use the SQLAppend() function.
SQLSetStatement(ConnectionID, "Select Speed, Ser_No from tablename where Ser_No =’" +
Serial_input + "’");

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 69

SQLExecute(ConnectionID, "BindList", 0);

In the previous example, the StatementID argument is set to zero so the statement does not have to call
SQLPrepareStatement(Connection_Id, StatementID) before the execute statement.

Because the StatementID is not created by the SQLPrepare statement to properly end this SELECT, use the
SQLEnd() function instead of the SQLClearStatement() function.
SQLSetStatement(Connection_Id, "Select Speed, Ser_No from tablename where Ser_No =’" +
Serial_input + "’");
SQLPrepareStatement(Connection_Id, StatementID);
SQLExecute(Connection_Id, StatementID);

In the above example, the StatementID is created by a SQLPrepareStatement function call and used by the
SQLExecute function. To end this SELECT statement, use a SQLClearStatement() function call within a script to
free resources and the StatementID.

The SQLExecute() function supports some stored procedures. For example, suppose you create a stored
procedure on the database server named "LotInfoProc," that contains the following select statement: "Select
LotNo, LotName from LotInfo."

You write the InTouch QuickScript to run the stored procedure based upon the type of database that you are
using. The following example shows script statements to run a stored procedure for a SQL Server database.
ResultCode = SQLSetStatement (ConnectionID,"LotInfoProc");
ResultCode = SQLExecute(ConnectionID, "BindList", 0);
ResultCode = SQLNext (ConnectionID);
{Get results of Select}

The following example shows script statements to run a stored procedure for an Oracle database.
ResultCode = SQLSetStatement (ConnectionID, "{CALL LotInfoProc}");
ResultCode = SQLExecute(ConnectionID, "BindList", 0);
ResultCode = SQLNext (ConnectionID);
{Get results of Select}

See Also

SQLConnect(), SQLPrepareStatement()

Releasing Occupied Resources

The SQLClearStatement function releases database resources associated with the statement specified by the
StatementID.

SQLClearStatement() Function

The SQLClearStatement() function releases database resources associated with the statement specified by the
StatementID argument.

Category

SQL

Syntax
[ResultCode=]SQLClearStatement(ConnectionID, StatementID);

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 70

Arguments

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

StatementID
Integer value returned by SQL when a SQLPrepareStatement() function is used.

See Also

SQLConnect(), SQLPrepareStatement()

Working with Transaction Sets

SQL Access includes a set of transaction functions to change insert, update, or delete records from a database.
Generally, these transactions are grouped within a script in the form of a transaction set. A transaction set is
committed at one time.

SQLTransact() Function

The SQLTransact() function defines the beginning of a group of SQL statements called a transaction set. A
transaction set is handled like a single transaction. After the SQLTransact() function runs, all subsequent
operations are not committed to the database until the SQLCommit() function runs successfully.

Category

SQL

Syntax
[ResultCode=]SQLTransact(ConnectionID)

Argument

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

Example

This example transaction set includes three insert statements.
ResultCode = SQLTransact(ConnectionID);
ResultCode = SQLInsertPrepare(ConnectionID, TableName, BindList, StatementID);
ResultCode = SQLInsertExecute(ConnectionID, BindList, StatementID);
ResultCode = SQLInsertExecute(ConnectionID, BindList, StatementID);
ResultCode = SQLInsertExecute(ConnectionID, BindList, StatementID);
ResultCode = SQLInsertEnd(ConnectionID, StatementID);
ResultCode = SQLCommit(ConnectionID);

See Also

SQLCommit(), SQLRollback()

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 71

SQLCommit() Function

The SQLCommit() function defines the end of a transaction set. After the SQLTransact() function runs, all
subsequent all SQL statements within the transaction set are not committed to the database until the
SQLCommit() function runs successfully.

Note: Use caution when writing QuickScripts that include the SQLCommit() function. Processing time increases
with the number of SQL statements in a transaction set.

Category

SQL

Syntax
[ResultCode=]SQLCommit(ConnectionID)

Argument

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

Example

This example script includes a transaction set that makes three database inserts.
ResultCode = SQLTransact(ConnectionID);
ResultCode = SQLInsertPrepare(ConnectionID, TableName, BindList, StatementID);
ResultCode = SQLInsertExecute(ConnectionID, BindList, StatementID);
ResultCode = SQLInsertExecute(ConnectionID, BindList, StatementID);
ResultCode = SQLInsertExecute(ConnectionID, BindList, StatementID);
ResultCode = SQLInsertEnd(ConnectionID, StatementID);
ResultCode = SQLCommit(ConnectionID);

See Also

SQLRollback(), SQLTransact(), SQLCommit()

SQLRollback() Function

The SQLRollback() function reverses or rolls back the most recent transaction set. A transaction set is a group of
commands issued between the SQLTransact() and the SQLCommit() functions.

A transaction set is handled like a single transaction. After the SQLTransact() function runs, all subsequent
operations are not committed to the database. Query changes to the database occur after the SQLCommit()
function runs. The SQLRollback() function rolls back the transaction set if it runs before the SQLCommit()
function.

Category

SQL

Syntax
[ResultCode=]SQLRollback(ConnectionID)

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 72

Argument

ConnectionID
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to each
database connection.

Example

This example rolls back the database values prior to the SQLTransact function within the script.
ResultCode =SQLTransact(ConnectionID);
ResultCode = SQLInsertPrepare(ConnectionID, TableName, BindList, StatementID);
ResultCode = SQLInsertExecute(ConnectionID, BindList, StatementID);
ResultCode = SQLInsertEnd(ConnectionID, StatementID);
ResultCode =SQLRollback(ConnectionID);

See Also

SQLCommit(), SQLTransact()

Opening the ODBC Administrator Dialog Box at Run Time

Use the SQLManageDSN() function to run the Microsoft ODBC Manager while an InTouch application is running.

SQLManageDSN() Function

The SQLManageDSN function runs the Microsoft ODBC Manager setup program while an InTouch application is
running. SQLManageDSN() can be used within a script to add, delete, and modify existing data source names of
a SQL Server or Access database.

Category

SQL

Syntax
SQLManageDSN(ConnectionId)

Argument

ConnectionId
ConnectionId is not used. It is retained for backward compatibility with older versions of SQL Access.
Therefore, any number can be passed to the function. No database connection needs to be established
before running the function to open Microsoft ODBC Manager.

Example
SQLManageDSN(0);

Understanding SQL Error Messages
This section explains how to troubleshoot InTouch applications that use SQL Access functions. The first section
describes the SQLErrorMsg() function and includes a table of SQL result codes with their corresponding error
messages. The second section includes tables with specific database error messages.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 73

SQLErrorMsg() Function

All SQL functions return a result code that can be used for troubleshooting. The SQLErrorMsg() function returns
the error message associated with the result code and assigns it as the value of an InTouch message tag.

Category

SQL

Syntax
ErrorMsg=SQLErrorMsg(ResultCode);

Argument

Result Code
Integer value returned by a previous SQL function. The SQLErrorMsg() function sets the value of an InTouch
message tag to the message associated with the result code. For more information about error messages
associated with result codes, see Understanding SQL Error Messages.

Remarks

Refer to your database documentation for undocumented result codes. Also, browse the Log Viewer for any
additional error messages.

The SQLTrace=1 flag defined under the [InTouch] section of the win.ini file is useful for debugging SQL Access
scripts.

Example

This example assigns the error message associated with the SQL Access Manager result code to the ErrorMsg
message tag.
ErrorMsg=SQLErrorMsg(ResultCode)

See Also

SQLConnect()

SQL Access Manager Result Codes and Messages

The following table lists some common SQL Access result codes, their corresponding error messages, and
descriptions:

Result Code Error Message Description

 0 No errors occurred The SQL function ran successfully without errors.

-1 <Message from the
database provider>

A specific error message from the vendor database.

-2 An empty statement
cannot be executed

A SQLExecute(ConnectionId, BindList, 0)
is run without previously calling SQLSetStatement or
SQLLoadStatement with a non-empty statement.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 74

Result Code Error Message Description

-4 Value returned was Null An integer or real value read from the database is null.
This is only a warning message sent to the Log Viewer.

-5 No more rows to fetch The last record in the table has been reached.

-7 Invalid parameter ID The SQLSetParamChar(), SQLSetParamDate(),
SQLSetParamDateTime(), SQLSetParamDecimal(),
SQLSetParamFloat(), SQLSetParamInt(),
SQLSetParamLong(), SQLSetParamNull(),
or SQLSetParamTime() function is called with an invalid
parameter ID.

-8 Invalid parameter list Example of an invalid parameter list: 1, 2, 3, 5 (Missing
4).

-9 Invalid type for NULL
parameter

The SQLSetParamNull function is called with an invalid
Type argument value.

-10 Changing data type of
parameter is not allowed

The SQLSetParamChar(), SQLSetParamDate(),
SQLSetParamDateTime(), SQLSetParamDecimal(),
SQLSetParamFloat(), SQLSetParamInt(),
SQLSetParamLong(), SQLSetParamNull(),
or SQLSetParamTime() function is called with a different
type for an existing parameter.

-11 Adding parameter after
the statement has been
executed successfully is
not allowed.

The SQLSetParamChar(), SQLSetParamDate(),
SQLSetParamDateTime(), SQLSetParamDecimal(),
SQLSetParamFloat(), SQLSetParamInt(),
SQLSetParamLong(), SQLSetParamNull(),
or SQLSetParamTime() function is called for a new
parameter ID after the statement has been run
successfully.

-12 Invalid date time format An invalid date time format is encountered, for example,
when executing SQLSetParamTime(),
SQLInsertExecute(),
or SQLUpdateCurrent().

-13 Invalid decimal format An invalid decimal format is encountered,
for example, when executing SQLSetParamDecimal(),
SQLInsertExecute(), or SQLUpdateCurrent().

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 75

Result Code Error Message Description

-14 Invalid currency format An invalid currency format is encountered, for example,
when executing SQLInsertExecute() or
SQLUpdateCurrent().

-15 Invalid statement type for
this operation

SQLInsertEnd is called for a statement ID created by
SQLPrepareStatement()
or SQLClearStatement() is called for a statement ID
created by SQLInsertPrepare().

-1001 Out of memory There is insufficient memory to run this function.

-1002 Invalid connection The value passed to the ConnectionId argument is not
valid.

-1003 No Bind List found The specified Bind List name does not exist.

-1004 No template found The specified Table Template name does not exist.

-1005 Internal Error An internal error occurred. Call Technical Support.

-1006 String is null Warning - the string read from the database is null. This
is only a warning message sent to the Log Viewer.

-1007 String is truncated Warning - the string read from the database is longer
than 131 characters and is truncated when selected. The
warning is sent to the Log Viewer.

-1008 No Where clause There is no Where clause on Delete.

-1009 Connection failed Check the Log Viewer for more information about the
failed connection to the database.

-1010 The database specified on
the DB= portion of the
connect string does not
exist

The specified database does not exist.

-1011 No rows were selected A SQLNumRows(), SQLFirst(), SQLNext(), SQLLast(), or
SQLPrev() function is called without running a
SQLSelect()
or SQLExecute() function first.

-1013 Unable to find file to load The SQLLoadStatement() function is called with a file
name that cannot be found.

Error messages from a vendor database return a ResultCode of -1. The SQL Access function ResultCode is always
-1, but the message is copied exactly from the database provider.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 76

For error messages that occur when using an Oracle database, refer to Oracle Server documentation for specific
error messages and solutions.

The following table lists common error messages that can occur when using a Microsoft SQL Server or Access
database.

Error Message Solution

You cannot have more
than one statement active
at a time

You are trying to run a SQL command after
calling the SQLSelect() function. Run SQLEnd()
to free system resources from the SQLSelect()
or use a separate ConnectionId for the second
statement.

There is not enough
memory available to
process the command

Try rebooting the client workstation.

Invalid object name table
name

The table name does not exist in the database
you are using. Try DB=database name.

Check your Microsoft SQL Server documentation for specific error messages and solutions.

Reserved Word List
This section lists keywords that are excluded from use with the SQL Access Bind List, the Table Template, and
the ODBC interface.

If a reserved keyword is used as the Column Name in a Bind List or Table Template, an error message appears in
the Log Viewer. The type of error depends upon the ODBC driver being used and the location where the
keyword is found. For example, one of the most common errors is using DATE and TIME for Column Names in a
Bind List or Table Template. To avoid this error, use a slightly different name, for example, "aDATE" and
"aTIME."

Reserved keywords define the Structured Query Language (SQL) used by InTouch SQL Access. The keywords are
also recognized by the specific ODBC driver being used. If the SQL command cannot be interpreted correctly,
SQL Access Manager generates an error message that can be viewed from the Log Viewer.

The following alphabetical list shows the reserved keywords for SQL Access and ODBC:

ABSOLUTE ADA ADD

ALL ALLOCATE ALTER

AND ANY ARE

AS ASC ASSERTION

AT AUTHORIZATION AVG

BEGIN BETWEEN BIT

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 77

BIT_LENGTH BY CASCADE

CASCADED CASE CAST

CATALOG CHAR CHAR_LENGTH

CHARACTER CHARACTER_LENGTH CHECK

CLOSE COALESCE COBOL COLLATE

COLLATION COLUMN COMMIT

CONNECT CONNECTION CONSTRAINT

CONSTRAINTS CONTINUE CONVERT

CORRESPONDING COUNT CREATE

CURRENT CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURSOR DATE

DAY DEALLOCATE DEC

DECIMAL DECLARE DEFERRABLE

DEFERRED DELETE DESC

DESCRIBE DESCRIPTOR DIAGNOSTICS

DICTIONARY DISCONNECT DISPLACEMENT

DISTINCT DOMAIN DOUBLE

DROP ELSE END

ESCAPE EXCEPT EXCEPTION

EXEC EXECUTE EXISTS

EXTERNAL EXTRACT FALSE

FETCH FIRST FLOAT

FOR FOREIGN FORTRAN FOUND

FROM FULL GET GLOBAL

GO GOTO GRANT

GROUP HAVING HOUR

IDENTITY IGNORE IMMEDIATE

IN INCLUDE INDEX

INDICATOR INITIALLY INNER

INPUT INSENSITIVE INSERT

INTEGER INTERSECT INTERVALL

INTO IS ISOLATION

JOIN KEY LANGUAGE

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 78

LAST LEFT LEVEL

LIKE LOCAL LOWER

MATCH MAX MIN

MINUTE MODULE MONTH

MUMPS NAMES NATIONAL

NCHAR NEXT NONE

NOT NULL NULLIF

NUMERIC OCTET_LENGTH OF

OFF ON ONLY

OPEN OPRN OPTION

OR ORDER OUTER

OUTPUT OVERLAPS PARTIAL

PASCAL PLI POSITION

PRECISION PREPARE PRESERVE

PRIMARY PRIOR PRIVILEGES

PROCEDURE PUBLIC RESTRICT

REVOKE RIGHT ROLLBACK

ROWS SCHEMA SCROLL

SECOND SECTION SELECT

SEQUENCE SET SIZE

SMALLINT SOME SQL

SQLCA SQLCODE SQLERROR

SQLSTATE SQLWARNING SUBSTRING

SUM SYSTEM TABLE

TEMPORARY THEN TIME

TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINU

TO TRANSACTION TRANSLATE

TRANSLATION TRUE UNION

UNIQUE UNKNOWN UPDATE

UPPER USAGE USING

VALUE VALUES VARCHAR

VARING VIEW WHEN

WHENEVER WHERE WITH

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 3 – Working with SQL Databases from InTouch

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 79

WORK YEAR

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 80

About Using a 16-Pen Trend
You can use an InTouch wizard to create real-time and historical trends capable of displaying data from up to 16
tags. The 16-Pen Trend is a supplementary component that you can install during an InTouch installation.

The 16-Pen Trend Wizard can be configured much like other InTouch chart wizards. The 16-Pen Trend wizard
allows you to configure the following trend properties:

 Tag assigned to each trend pen

 Trend line width and color

 Starting and ending dates and times for historical trends

 Update rate and time span for real-time trends

 Minimum and maximum engineering units assigned to a trend tag

 Major and minor trend time divisions

 Major and minor trend value divisions

Creating a 16-Pen Trend
You can create a trend by selecting the 16-Pen Trend Wizard from WindowMaker.

To create a 16-Pen real-time or historical trend

1. Open a window from WindowMaker to place the 16-Pen Trend.

2. Click the wizard tool in the Wizard Toolbar. The Wizard Selection dialog box appears.

3. Select Trends from the list of wizards. The right pane of the Wizard Selection dialog box shows a set of trend
wizard icons.

4. Select the 16-Pen Trend wizard and click OK. The Wizard Selection dialog box closes and your window
reappears.

5. Click in the window to place the 16-Pen Trend.

Chapter 4

Using the 16-Pen Trend Wizard

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 4 – Using the 16-Pen Trend Wizard

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 81

The wizard places a 16-Pen Trend template in the window.

6. Double-click the 16-Pen Trend template to open the PenTrend Control dialog box.

7. In the Trend Type area, select Historical or Realtime as the type of trend you want to create.

The PenTrend Control dialog box automatically shows the appropriate time and update options based upon
the type of trend you select.

8. In the Options area, select or clear the Enable runtime configuration option.

Selecting this option allows operators to modify some properties of the 16-Pen Trend while it is running.

Configuring Which Tags to Display on the Trend Graph
You can use the 16-Pen Trend Wizard to assign tags to trend pens. The 16-Pen Trend Wizard includes a set of
columns that specify tag properties shown on the trend. These columns use the default property values assigned
to the tag from the Tagname Dictionary. You can override these assigned tag values by specifying other values
when you configure the trend.

To configure 16-Pen Trend tags

1. If needed, open the window containing the 16-Pen Trend template.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 4 – Using the 16-Pen Trend Wizard

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 82

2. Double-click the 16-Pen Trend. The PenTrend Control dialog box appears with a grid area near the bottom
to specify the tags associated with trend pens.

3. In the Object Name box, assign a name to the 16-Pen Trend.

The default name is PenTrend_1, which increments the number in the name as you create each new trend.

4. In the Tagname box, enter the name of the tag to associate with the pen number listed at the left of the
grid.

Double-clicking within a cell beneath Tagname shows the Select Tag dialog box. You can assign a tag to a
pen by selecting the tag from the Select Tag dialog box.

Note: You remove a tag by selecting a Tagname box containing a tag name and pressing your keyboard space
bar.

5. In the Color column, click each color box to open a color palette. Select a color for the pen.

6. In the EU Text column, enter the text that you want to initially use in run time as the header text for the pen
axis for each respective pen.

This text is the axis text when a pen is set to active. The EU Text column is initially assigned the tag’s
engineering units from the Tagname Dictionary. You can override the these default engineering units for the
16-Pen Trend.

7. In the Min EU column, enter the minimum engineering units value assigned to the pen.

The Min EU column initially shows the tag’s minimum engineering units value from the Tagname Dictionary.
You can assign another minimum engineering units value that applies only to a 16-Pen Trend.

8. In the Max EU column, enter the maximum engineering units assigned to the pen.

The Max EU column initially shows the tag’s maximum engineering units value from the Tagname
Dictionary. You can assign another maximum engineering units value that applies only to a 16-Pen Trend.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 4 – Using the 16-Pen Trend Wizard

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 83

Note: The Min/Max engineering units are very important for showing historical trend data. The historical trend
shows from 0-100 percent of engineering units scale.

9. In the Min Scale column, enter the percentage that you want to use initially in run time to calculate the
minimum pen axis grid for the respective EU scale.

10. In the Max Scale column, enter the percentage that you want to use initially in run time to calculate the
maximum pen axis grid for the respective EU scale.

11. In the Dec.Pos column, enter the number of decimal points that you want to use initially in run time when
labeling the pen axis grid.

12. In the Width column, select the pen line width in pixels to plot data values shown on the trend.

13. Continue with the next procedure to update the trend time and update rate of a 16-Pen Trend.

Configuring the Trend Time Span and Update Rate
The Pen Trend Control dialog box shows different options based upon whether you are creating a real-time or
historical 16-Pen Trend. You can set the time span for a historical trend and the update rate for a real-time
trend.

To configure the time span of a 16-Pen historical trend

1. Double-click a 16-Pen historical trend within a window. The Pen Trend Control dialog box appears with
options to set the starting and ending dates and time of a trend.

2. Set the starting and ending date and time of the historical trend.

Use the following format for both the starting and ending dates and times:

MM/DD/YY HH:MM:SS AM/PM

To configure the update rate of a 16-Pen real-time trend

1. Double-click a 16-Pen real-time trend object within a window. The Pen Trend Control dialog box appears
with options to set update rate and span of a real-time trend.

2. In the Update Rate box, type the number of seconds between each refresh interval of the historical trend.

3. In the Span box, type the number of seconds of the real-time interval shown in the trend.

Configuring the Trend Display Options
You can configure the visual appearance of a trend with the 16-Pen Trend Wizard.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 4 – Using the 16-Pen Trend Wizard

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 84

To configure the display options of a 16-Pen Trend

1. Double-click the 16-Pen Trend in WindowMaker. The Pen Trend Control dialog box appears.

2. In the Time Axis Format area, enter the number of major time divisions in Major Divisions. This option sets
the number of major time divisions on the horizontal axis of the trend.

3. Click the color box to the right of Major Divisions to open the color palette and select a color if you want to
assign another color to the major time division lines. Otherwise, skip this step and accept the default color
assigned to major time division lines.

4. In the Minor Divisions box, enter the number of minor time divisions shown on the horizontal axis of a
trend.

5. Select a color for the minor time division lines.

6. In the Value Axis Format area, enter the number of major divisions in Major Divisions. This option sets the
number of major divisions shown on the vertical value axis.

7. Set the color of the major value divisions.

8. In the Minor Divisions box, enter the number of minor value divisions shown on the vertical axis of the
trend.

9. Set the color of the minor value divisions.

10. In the Chart area, select the background and border colors of the trend.

11. Click Done to save the configuration changes to the 16-Pen Trend.

Changing the Trend Configuration at Run Time
If the Enable runtime configuration option is selected from the PenTrend Control dialog box, operators can
change some characteristics of a 16-Pen Trend while the application is running.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 4 – Using the 16-Pen Trend Wizard

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 85

Run-time changes to the 16-Pen Trend are not permanent. If operators close WindowViewer and then start the
application window again, the 16-Pen Trend retains the configuration originally defined from WindowMaker.
The following figure shows the PenTrend Control dialog box that appears if you click on a 16-Pen Trend while it
is running.

You can change the following during run time:

 Tags or expressions assigned to trend pens

 Characteristics of trend tags or expressions

 Type of trend (Historical or Realtime)

 Date and time range of a historical trend

 Update rate and frequency of a real-time trend.

After clicking Done, the trend retains the configuration changes for the duration of the current WindowViewer
application session.

Controlling a 16-Pen Trend Wizard Using Scripts
You can use a set of functions in QuickScripts to control a 16-Pen Trend object in run time. For example, you can
connect pens to the chart, add new events to the chart, remove or replot the grid, and remove or replot the
scooters.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 4 – Using the 16-Pen Trend Wizard

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 86

ptGetTrendType() Function

The ptGetTrendType() function can be used in a script to return a value that indicates whether the current mode
of a 16-Pen Trend shows historical or real-time data.

Category

Pen trend

Syntax
ptGetTrendType(TrendName);

Argument

TrendName
Name of the trend. TrendName must be either a string constant or message tag.

Return Value

Returns the trend type:

0 = Historical trend

1 = Real-time noscroll

2 = Real-time trend

Example

The following example returns a value that indicates whether the PumpPress trend shows historical or real-time
data.
ptGetTrendType("PumpPress");

ptLoadTrendCfg() Function

The ptLoadTrendCfg() function can be used in a script to load trend configuration values from a file.

Category

Pen trend

Syntax
ptGetTrendCfg(TrendName,FileName);

Arguments

TrendName
The name of the trend object. The value assigned to TrendName must be either a string constant or a
message tag.

FileName
Name of the configuration file. The folder path to the configuration file must be included with the Filename
argument.

Example

The TankFarm trend is configured with values from the c:\TrendCfg.txt file.
ptLoadTrendCfg("TankFarm","C:\TrendCfg.txt");

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 4 – Using the 16-Pen Trend Wizard

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 87

ptPanCurrentPen() Function

The ptPanCurrentPen() function can be used in a script to scroll a 16-Pen Trend’s pen upward or downward on
the vertical value axis. Vertical scrolling is determined by the number of major and minor trend units specified as
argument values.

Category

Pen trend

Syntax
ptPanCurrentPen(TrendName,MajorUnits, MinorUnits);

Arguments

TrendName
The name of the trend object. TrendName must be either a string constant or message tag.

MajorUnits
Multiplier to scroll by the number of units defined by the major division lines. A negative number indicates a
downward scroll of the vertical axis.

MinorUnits
Multiplier for additional scrolling by number of units defined by the minor division lines. A negative number
indicates a downward scroll of the vertical axis.

Examples

This example scrolls the pen upward one major division line.
ptPanCurrentPen("TrendName", 1, 0);

This example scrolls the pen upward half a minor trend division.
ptPanCurrentPen("TrendName", 0, 0.5);

This example scrolls the pen downward by 2 major division lines and half of a minor division line.
ptPanCurrentPen("TrendName", -2, -0.5);

This example scrolls one major division line up 1 and downward by 2 minor division lines.
ptPanCurrentPen("TrendName", 1, -2);

ptPanTime() Function

The ptPanTime() function can be used in a script to scroll a 16-Pen Trend’s pen left or right on the horizontal
time axis based on the number of specified major or minor trend units.

Category

Pen trend

Syntax
ptPanTime(TrendName, MajorUnits, MinorUnits);

Arguments

TrendName
The name of the trend object. TrendName must be either a string constant or message tag.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 4 – Using the 16-Pen Trend Wizard

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 88

MajorUnits
Multiplier for scrolling by the number of horizontal major division lines. A negative number indicates
panning left on the trend.

MinorUnits
Multiplier for additional scrolling by number of units defined by the minor division lines. A negative number
indicates panning left on the trend.

Remarks

The settings for Major Division and Minor Division specified in the PenTrend Control dialog box during
development are the basis from which the amount to scroll by is calculated. A trend with a time span of 120
seconds, a major division value of 10 and a minor division value of 2, results in a trend with a major division line
every 12 seconds and a minor division line every 6 seconds. The function ptPanTime("TrendName",1,0.5) scrolls
the time axis by 1*12 + 0.5*6 = 15 seconds.

Examples

This example scrolls the pen 1 major division to the right on the horizontal trend axis.
ptPanTime("TrendName", 1, 0);

This example scrolls the pen to the right on the horizontal axis of the trend by 0.5 minor division.
ptPanTime("TrendName", 0, 0.5);

This example scrolls the pen 2.5 major divisions to the left on the horizontal axis of the trend.
ptPanTime("TrendName", -2, -0.5);

This example scrolls the pen 1 major division to the right and 2 minor divisions to the left.
ptPanTime("TrendName", 1, -2);

ptPauseTrend() Function

The ptPauseTrend() function can be used in a script to temporarily stop a 16-Pen Trend from updating the graph.
The trend remains stopped until you call ptPauseTrend again with a value of 0.

Category

Pen trend

Syntax
ptPauseTrend(TrendName, Value);

Arguments

TrendName
The name of the trend object. TrendName must be either a string constant or message tag.

Value
A value of 1 pauses trend updates. A value of 0 resumes trend updating.

Example

This example pauses any further updates to the 16-Pen Trend while the Value argument is 1.
ptPauseTrend ("TrendName",1);

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 4 – Using the 16-Pen Trend Wizard

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 89

ptSaveTrendCfg() Function

The ptSaveTrendCfg() function can be used in a script to save a trend’s current configuration values to a file.

Category

Pen trend

Syntax
ptSaveTrendCfg(TrendName,FileName);

Arguments

TrendName
The name of the trend object. Must be either a string constant or message tag.

FileName
Name of the file to save the trend’s configuration values. The folder path to the configuration file can be
specified with the Filename argument.

Example

The ptSaveTrendCfg() function saves the values from the PumpTrend 16-Pen Trend to the c:\Config.txt file.
ptSaveTrendCfg ("PumpTrend", "C:\Config.txt")

ptSetCurrentPen() Function

The ptSetCurrentPen() function can be used in a script to select a pen by its assigned number to control the pen
axis.

Category

Pen trend

Syntax
ptSetCurrentPen(TrendName, PenNum);

Arguments

TrendName
Name of the trend. Must be either a string constant or message tag.

PenNum
Number of the pen (1-16) assigned as the current trend pen.

Example

The ptSetCurrentPen() function assigns pen 2 as the current pen of the PumpPress trend.
ptSetCurrentPen("PumpPress",2);

ptSetPen() Function

The ptSetPen() function can be used in a script to assign a tag to a trend pen.

Category

Pen trend

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 4 – Using the 16-Pen Trend Wizard

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 90

Syntax
ptSetPen(TrendName,PenNum,TagName);

Arguments

TrendName
The name of the trend object. Must be a string constant or a message tag.

PenNum
Number of the pen assigned as the current trend pen.

TagName
Name of the tag assigned to the trend pen.

Example

The ptSetPen() function assigns the PumpInP tag to pen 2 of the PumpPress trend.
ptSetPen ("PumpPress",2,"PumpInP");

ptSetPenEx() Function

The ptSetPenEx() function can be used in a script to assign a tag to a specific trend pen and override the tag’s
configuration values specified in the Tagname Dictionary.

Category

Pen trend

Syntax
ptSetPenEx(TrendName, PenNum, TagName, minEu, maxEU, minPercent, maxPercent, Decimal, EU);

Arguments

TrendName
The name of the trend object. Must be either a string constant or message tag.

PenNum
Number of the pen assigned as the current trend pen.

TagName
Name of the tag assigned to the trend pen.

minEU
The minimum engineering units value for the specified tag.

maxEU
The maximum engineering units value for the specified tag.

minPercent
The percentage to use initially in run time to calculate the minimum pen axis grid for the respective EU scale.

maxPercent
The percentage to use initially in run time to calculate the maximum pen axis grid for the respective EU
scale.

Decimal
Decimal precision of a tag’s value in the trend.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 4 – Using the 16-Pen Trend Wizard

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 91

EU
The label for the tag's engineering units.

Example

The ptSetPenEx() function assigns the PumpInP tag to pen 2 of the PumpPress trend. The tag’s engineering units
range is set between 0 to 1500 and its units are PSI. The percentages for the grid are 0 to 1, and the decimal
precision is set to 2.
ptSetPenEx ("PumpPress", 2, "PumpInP", 0, 1500, 0, 1, 2, "PSI");

ptSetTimeAxis() Function

The ptSetTimeAxis() function can be used in a script to set the trend’s starting date and time and ending date
and time.

Category

Pen trend

Syntax
ptSetTimeAxis(TrendName,StartDateTime,EndDateTime);

Arguments

TrendName
The name of the trend object. Must be either a string constant or message tag.

StartDateTime
The date and time when the trend begins. The format for the starting date and time is: mm/dd/yyyy
hh:mm:ss AM/PM

EndDateTime
The date and time when the trend ends. The format for the ending date and time is: mm/dd/yyyy hh:mm:ss
AM/PM.

Example

The ptSetTimeAxis() function sets the starting and ending dates and times of a trend for a 25 hour period
starting at 8:30 on May 22, 2007.
ptSetTimeAxis ("PumpPress", "05/22/2007 08:30:00 AM", "05/23/2007 09:30:00 AM");

ptSetTimeAxisToCurrent() Function

The ptSetTimeAxisToCurrent() function can be used in a script to calculate the current chart span and the chart's
ending time.

Category

Pen trend

Syntax
ptSetTimeAxisToCurrent(TrendName);

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 4 – Using the 16-Pen Trend Wizard

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 92

Argument

TrendName
The name of the trend object. TrendName must be a string constant or a message tag.

Example

The ptSetTimeAxisToCurrent() function sets the ending date and time of the PumpPress trend to the current
date and time.
ptSetTimeAxisToCurrent("PumpPress");

ptSetTrend() Function

The ptSetTrend() function can be used in a script to pause or restart updates to a 16-Pen Trend.

Category

Pen trend

Syntax
ptSetTrend(TrendName, EnableUpdates);

Arguments

TrendName
The name of the trend object. Must be either a string constant or message tag.

EnableUpdates
The value 1 starts updates to the trend. The value 0 stops trend updates.

Example

The ptSetTrend() function updates the PumpPress trend.
ptSetTrend("PumpPress",1);

ptSetTrendType() Function

The ptSetTrendType() function can be used in a script to specify whether the trend shows historical or real-time
data.

Category

Pen trend

Syntax
ptSetTrendType(TrendName, TrendType);

Arguments

TrendName
The name of the trend object. Must be either a string constant or Message tag.

TrendType
The value 1 indicates a historical trend. The value 2 specifies a real-time trend.

Example

The ptSetTrendtype() function specifies the PumpPress trend shows real-time data.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 4 – Using the 16-Pen Trend Wizard

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 93

ptSetTrendType("PumpPress",2);

ptZoomCurrentPen() Function

The ptZoomCurrentPen() function can be used in a script to change the value range shown on a trend’s Y-axis.
The range of the trend’s vertical value axis can be increased or decreased by a specified zoom ratio.

Category

Pen trend

Syntax
ptZoomCurrentPen(TrendName,ZoomFactor);

Arguments

TrendName
The name of the trend object. Must be either a string constant or message tag.

ZoomFactor
Assigning a number larger than 1.0 increases the value range of the trend by multiplying the current range
limits by the zoom factor. Assigning a zoom factor less than 1.0 decreases the value range shown in the
vertical axis of the trend.

Remarks

The zoom ratio is applied to the existing span of the current pen’s Y-axis range. For example, if the trend starts
with a Y-axis range of –50 to 50 and then you zoom by a ratio of 2.0, the new range is –100 to 100. If you zoom
by 2.0 again, then the new range is –200 to 200. The zoom ratio applies to the range currently in effect, not the
original Y-axis range.

The zoom ratio persists during run time for each of the trend’s pens. As you switch from one pen to another
using the ptSetCurrentPen() function, the Y-axis value range reflects the current scaling for the selected pen.

Example

The ptZoomCurrentPen function doubles the Y-axis range of the current tag in the trend named "PumpPress".
ptZoomCurrentPen("PumpPress",2);

ptZoomTime() Function

The ptZoomTime() function can be used in a script to change the time range shown on the trend’s horizontal
axis.

Category

Pen trend

Syntax
ptZoomTime(TrendName,Zoom);

Arguments

TrendName
The name of the trend object. Must be either a string constant or message tag.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 4 – Using the 16-Pen Trend Wizard

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 94

Zoom
Assigning a number larger than 1.0 increases the time period shown on the trend’s horizontal axis. Assigning
a number less than 1.0 decreases the time period shown on the horizontal axis.

Examples

The ptZoomTime() function increases the time period shown on the trend’s horizontal axis by 17 percent.
ptZoomTime("PenTrend_1",1.17);

The ptZoomTime() function decreases the time period shown on the trend’s horizontal axis by 50 percent. For
example, the ptZoomTime() function reduces the trend’s time period to 30 minutes if the original time range
was set to 1 hour.
ptZoomTime("PenTrend_1", 0.5);

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 95

About Symbol Factory
Symbol Factory includes a collection of over 4,000 industrial symbols that can be used as visual elements in your
InTouch application windows. Symbol Factory is a supplementary component that you can install during the
InTouch HMI installation.

Note: Use the Industrial Graphic Editor to create visual elements for InTouch applications that interact with
Application Server. You can also use the Graphic Editor to create intelligent visual elements for applications
independent of the InTouch HMI. For more information about the Industrial Graphic Editor, see the Application
Server documentation.

AVEVA provides no warranty of any kind for any of this product. You can report problems to Global Technical
Support. We highly recommend that you always back up your application and data before you install or use any
new utility or application.

Symbol Types
Symbol Factory includes four types of wizards:

 Picture Wizards

 Bitmap Wizards

 Texture Wizards

 InTouch Objects

Picture Wizards

Symbol Factory picture wizards are vector-based images of equipment or flow diagrams. As you are create your
application, you can modify picture wizard images by doing the following:

 Assign an animation to an image

 Flip an image horizontally or vertically

 Change the horizontal and vertical perspective of an image

 Rotate an image on its axis

 Change the fill color and pattern of an image

Chapter 5

Symbol Factory

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 5 – Symbol Factory

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 96

 Change the size, pattern, and color of image lines

Bitmap Wizards

Bitmap wizards are bitmap images, such as windows icons, or a block of text. As you are create your application,
you can modify picture bitmap wizard images by doing the following:

 Assign an animation to a bitmap

 Flip a image horizontally or vertically

 Change the horizontal and vertical length of a bitmap

 Place a border or a shadow around the bitmap border

 Rotate the bitmap image on its axis in 90 degree increments

 Define a transparent color

 Replace up to three colors in the bitmap with other colors

Texture Wizards

A texture wizard is similar to a bitmap wizard, except that it can be resized to form a continuous pattern.
Texture wizards are typically used to create backgrounds for windows or as a fill for a graphic object. You select
texture wizards from the Symbol Factory Textures category.

InTouch Object

An InTouch object is an InTouch cell or wizard that is stored "as is" in the Symbol Factory.

After you paste an InTouch object from the Symbol Factory into WindowMaker, you cannot edit it in Symbol
Factory.

When you double-click the object in WindowMaker, the Substitute Tagnames dialog box appears if the object is
a cell, or the animation link selection dialog box appears for an individual graphic object.

Using Symbol Factory
Using the Symbol Factory wizard is very similar to using other wizards. Select a wizard, place it in a window, and
configure it.

Getting Started Quickly

If you are familiar with Symbol Factory, review these tips for getting started quickly:

 To configure options for a wizard, double-click it in the window and then click Options in the Symbol Factory
by Reichard Software dialog box.

 To copy a wizard to another category, drag its thumbnail image into the Categories window and drop it on
another category. To move, hold down the SHIFT key.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 5 – Symbol Factory

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 97

 To edit a wizard's description, right-click the wizard thumbnail. To edit a category's description, right-click
the category.

 To delete a wizard, right-click the wizard thumbnail with and then click Delete Symbol.

 The Symbol Factory can be configured so that a group of developers can use and contribute to the same
library of wizards across a network.

 All of the wizards in a particular category are stored in a file with the .cat file name extension. Symbol
Factory category files are normally placed in the c:\program files\wonderware\intouch\symfac folder. You
can copy the file into the c:\program files\wonderware\intouch\symfac folder on another computer.

Placing a Symbol Factory Wizard in a Window

You place a Symbol Factory wizard in a window similar to placing other wizards.

To place a Symbol Factory wizard into a window

1. Open an application in WindowMaker.

2. Click the Wizard icon in the Wizards/ActiveX Toolbar. The Wizard Selection dialog box appears.

3. In the list of wizards shown in the left pane, click Symbol Factory.

4. Select the Symbol Factory wizard in the display area and then click OK.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 5 – Symbol Factory

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 98

5. Click in the window to place the wizard. The Symbol Factory by Reichard Software dialog box appears.

6. In the Categories list, select a category. The Symbol window shows the wizards for the category you
selected.

7. Select the wizard to place and then click OK.

Configuring Symbol Options

Wizard options vary for different wizards. Changing colors will impact the drawing speed of the bitmaps and
textures since each pixel must be scanned and possibly changed.

To configure wizard options

1. Open a window containing a Symbol Factory wizard.

2. Double-click the wizard. The Symbol Factory by Reichard Software dialog box appears.

3. Keep the wizard selected and click Options. The Symbol Options dialog box appears.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 5 – Symbol Factory

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 99

The image properties shown on the Symbol Options dialog box vary by the type of wizard you selected to
edit. The following example shows the options that are available when you selected a picture wizard symbol.

Tip: If the Enable alternatives to right mouse button option is selected in the Configure Symbol Factory dialog
box, the Edit Symbol button is shown and you can click it to configure the selected wizard.

4. In the Size and Rotation area, do any of the following:

o Select the Keep Original XY Proportions check box to retain the original aspect ratio of the wizard.

o Select the Flip Horizontal check box to flip the wizard horizontally.

o Select the Flip Vertical check box to flip the wizard vertically.

o In the Rotation Type box, type the number of degrees to rotate a wizard. Picture wizards can be rotated
to any angle. Bitmap and texture wizards can only be rotated in 90 degree increments (0, 90, 180, or
270). Click the button to automatically increment the rotation angle by 90 degrees.

5. If you are configuring a picture wizard, in the Line and Fill areas, do any the following:

o In the Fill Color Mode list, click a fill type. Double-click the Fill Color box to open the color palette.

o In the Line Color Mode list, click a line color. Double-click the Line Color box to access the color palette.

o In the Line Style list, click a line style.

o Select the Extra Lines check box to add lines at the borders of gradients within the wizard.

6. If you are configuring a bitmap or texture wizard, in the Effects and Change Colors areas, do any the
following:

o Select the Include Border check box to create a black border around a wizard.

o Select the Include Shadow check box to create a dark gray shadow behind the wizard.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 5 – Symbol Factory

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 100

o Click each color box to open the color palette to change the colors in the wizard.

7. Click OK.

Animating a Wizard

You can animate any Symbol Factory wizard. The Symbol Factory provides you with access to the most common
animation links.

If you need another type of animation link, you must break the wizard and then animate it using the standard
InTouch animation links.

To animate a wizard

1. Select a wizard in the Symbol Factory, or double-click the wizard if you have already pasted it into your
window. The Symbol Factory by Reichard Software dialog box appears.

2. Click Animation. The Animation Links dialog box appears.

3. Click the button for each type of animation link to apply to the selected wizard. An expression dialog box
appears.

4. In the Expression window, type the expression.

Double-click in the window to open the Select Tag dialog box. If you use an existing tag, you can double-click
the tag in your expression to open the Tagname Dictionary and see the tag definition.

If you use an undefined tag, you are prompted to define it when you close the expression dialog box.

5. Configure the details for the type of animation link.

6. Click OK.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 5 – Symbol Factory

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 101

Editing a Symbol

You can change the description in a wizard tool tip, delete a wizard, or copy a wizard to the Windows clipboard.

To edit a wizard

1. In the Symbol Factory by Reichard Software dialog box, select the category containing the wizard.

2. Right-click the wizard. The Edit Symbol dialog box appears.

3. Edit the wizard. Do any of the following:

o In the Symbol Description box, type the tool tip text. The maximum description is 80 characters.

o Click Delete Symbol to delete the wizard.

o Click Copy to Clipboard to copy the wizard to the Windows clipboard. If the wizard is a picture wizard, it
will be copied as a Windows metafile. If the wizard is a bitmap wizard or texture wizard, it will be copied
as a Windows bitmap.

4. Click OK.

Breaking a Wizard for Editing

You can break a Symbol Factory wizard for individual editing. However, after you break a wizard, it loses its
wizard properties. If you accidentally break a wizard, you can reassemble it by using the Undo tool.

To break a wizard

 On the WindowMaker Arrange menu, click Break Cell.

Sharing a Category of Symbols on a Network

You can configure the Symbol Factory to allow multiple developers across a network to use and contribute to
the category file of wizards.

To move the category file to a network folder

1. In the Symbol Factory dialog box, click Options. The Symbol Options dialog box appears.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 5 – Symbol Factory

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 102

2. Click Configure. The Configure Symbol Factory dialog box appears.

3. In the Category File Path box, type the full path to the network folder where the category file is saved.

4. Click OK.

Making a Category Read-Only

When storing a wizard file on a network folder, you may want to make the category read-only to prevent other
users from moving or renaming wizards.

To make a category read-only

 Set the file as read-only in Windows Explorer.

Viewing Category Properties

You can view the category path, file size, and number of wizards.

To view properties of a category

1. In the Symbol Factory dialog box, right-click the category in the Categories list. The Edit Category dialog box
appears.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 5 – Symbol Factory

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 103

2. In the Category Description box, type the new description for the category, and click OK. The maximum
length of the description is 40 characters.

3. In the Category Information area, view the properties.

Category
Information Description

Filename The category (.cat) file path. By default, this
path is c:\program files\wonderware\intouch\
symfac.

File Size Size of the category file, in kilobytes.

Number of Symbols Total number of wizards contained in the
category. Maximum is 32,767.

4. Click OK.

Editing an Existing Category

You can only edit the category name.

To edit an existing category

1. In the Symbol Factory dialog box, right-click the category in the Categories list. The Edit Category dialog box
appears.

2. In the Category Description box, type the new description for the category, and click OK. The maximum
length of the description is 40 characters.

3. Click OK.

Deleting a Category

Use Windows Explorer and delete the category (.cat) file by specifying the filename for the category.

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 5 – Symbol Factory

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 104

Tip: You can verify the category filename in the Edit Category dialog box.

Configuring Symbol Factory
When you configure the Symbol Factory, you can specify:

 Whether tool tips are shown when you select a wizard.

 Whether additional options should appear in the Symbol Factory by Reichard Software dialog box. By
default, to edit category and wizard descriptions, you must right-click the item.

 The location for your category (.cat) files. All data for all wizards in each category is stored in one category
file. For performance reasons, this path should contain only .cat files. To share wizards with other
developers, set this path to a network folder. See Sharing a Category of Symbols on a Network on page 101.

Caution: Do not place category files in your local InTouch application folder. Instead, save category files to:
C:\Program Files\Wonderware\intouch\symfac

To configure Symbol Factory

1. In the Symbol Factory dialog box, click Options. The Symbol Options dialog box appears.

2. Click Configure. The Configure Symbol Factory dialog box appears.

3. Configure Symbol Factory. Do the following:

o In the Category File Path box, type the location where you want to save your Symbol Factory category
(.cat) files.

o Select the Enable ToolTips check box if you want tool tips to be shown for wizards in the Symbol Factory
by Reichard Software dialog box.

o Select the Enable alternatives to right mouse button check box if you want buttons added to the
Symbol Factory by Reichard Software dialog box. You can use these buttons instead of the right mouse
button for editing categories and wizards:

 AVEVA™ InTouch HMI Supplementary Components Guide
 Chapter 5 – Symbol Factory

© 2021 AVEVA Group plc and its subsidiaries. All rights reserved. Page 105

Shows the Edit Category dialog box for a selected category.

Shows the Edit Symbol dialog box for a selected wizard.

4. Click OK.

Troubleshooting
If you accidentally uninstall the Symbol Factory wizard, you need to install it again. For more information on
installing wizards, see Wizards n the InTouch HMI Visualization Guide.

If you accidentally delete a wizard and you want it back, you must retrieve it.

To retrieve a deleted wizard from a category

1. Rename the file ~cat.bak to temp.cat.

2. Run Symbol Factory and see if the deleted wizard is back. Move it to its original category, then delete the
temp.cat file.

3. If the above step did not work, hold down the CTRL key while you right-click the category with the deleted
wizard. This compacts the category file and creates a fresh backup ~cat.bak.

Perform the previous steps until you find your deleted wizard.

1
16-Pen Trend

creatingIX16PenTrendcreating • 80

description • 80

F
functions

ptGetTrendType() function • 86

ptPanCurrentPen() function • 87

ptPanTime() function • 87

ptPauseTrend() function • 88

ptSaveTrendCfg() function • 89

ptSetCurrentPen() function • 89

ptSetPen() function • 89

ptSetPenEx() function • 90

ptSetTimeAxis() function • 91

ptSetTimeAxisToCurrent() function • 91

ptSetTrend() function • 92

ptSetTrendType() function • 92

ptZoomCurrentPen() function • 93

ptZoomTime() function • 93

RecipeDelete() function • 23

RecipeLoad() function • 22

RecipeSave() function • 22

RecipeSelectNextRecipe() function • 25

RecipeSelectPreviousRecipe() function • 25

RecipeSelectRecipe() function • 24

RecipeSelectUnit() function • 23

SQLAppendStatement() • 59

SQLClearParam() function • 67

SQLClearStatement() function • 69

Index

SQLClearTable() function • 56

SQLCommit() function • 71

SQLConnect() function • 44

SQLCreateTable() function • 45

SQLDelete() function • 57

SQLDisconnect() function • 44

SQLDropTable() function • 46

SQLEnd() function • 51

SQLErrorMsg() function • 73

SQLExecute() function • 68

SQLFirst() function • 50

SQLGetRecord() function • 49

SQLInsert() function • 52

SQLInsertEnd() function • 54

SQLInsertExecute() function • 53

SQLInsertPrepare() function • 53

SQLLast() function • 51

SQLLoadStatement() function • 59

SQLManageDSN() function • 72

SQLNext() function • 50

SQLNumRows() function • 49

SQLPrepareStatement() function • 61

SQLPrev() function • 50

SQLRollback() function • 71

SQLSelect() function • 47

SQLSetParamChar() function • 61

SQLSetParamDate() function • 62

SQLSetParamDateTime() function • 62

SQLSetParamDecimal() function • 63

SQLSetParamFloat() function • 64

SQLSetParamInt() function • 64

SQLSetParamLong() function • 65

SQLSetParamNull() function • 65

SQLSetParamTime() function • 66

SQLSetStatement() function • 58

SQLTransact() function • 70

SQLUpdate() function • 55

SQLUpdateCurrent() function • 55

P
ptLoadTrendCfg() function • 86

R
Recipe Manager

deleting a template row • 11

descriptionIXRecipeManagerdescription • 8

RecipeGetMessage() function • 28

S
SQL Access Manager

descriptionIXSQLAccessManagerdescription • 31

Symbol Factory

symbol types • 95

troubleshooting • 105

	About Supplementary Components
	Using Recipe Manager
	About Using Recipe Manager
	Overview of Recipe Manager
	Recipe Manager Utility
	Recipe Template Files
	Template Definition
	Unit Definition
	Recipe Definition

	Editing Recipe Data in Recipe Manager
	Configuring the Recipe Manager Editing Grid
	Working with the Editing Grid
	Defining Ingredient Names and Data Types
	Mapping InTouch Tags to Ingredients
	Defining Values for Ingredients in Different Recipes

	Editing Recipe Data in Other Applications
	Using Excel with a Recipe Template File
	Using Notepad with a Recipe Template File

	Nesting Recipes to Create Complex Structures
	Using Recipes in InTouch
	Loading and Saving Recipe Data From/to a Recipe File
	RecipeLoad() Function
	RecipeSave() Function

	Deleting Recipes From a Recipe File
	RecipeDelete() Function

	Selecting Units (Tag Ingredient Mappings)
	RecipeSelectUnit() Function

	Selecting Individual Recipes from a Recipe File
	RecipeSelectRecipe() Function
	RecipeSelectNextRecipe() Function
	RecipeSelectPreviousRecipe() Function

	Understanding Error Messages Returned by Recipe Script Functions
	Displaying Error Code Messages
	RecipeGetMessage() Function

	Applying Security to Recipes

	Working with SQL Databases from InTouch
	About Working with SQL Databases from InTouch
	Setting Up a Data Source
	Mapping InTouch Tags to Database Columns
	Configuring the SQL Server String Delimiter in Bind Lists

	Defining the Structure of a New Table
	Working with Database Applications
	SQL Server Database Applications
	Microsoft Access Database Applications
	Oracle Database Applications

	Performing Common SQL Operations in InTouch
	Connecting and Disconnecting the Database
	SQLConnect() Function
	SQLDisconnect() Function

	Creating a New Table
	SQLCreateTable() Function

	Deleting a Table
	SQLDropTable() Function

	Retrieving Data from a Table
	SQLSelect() Function
	SQLGetRecord() Function
	SQLNumRows() Function
	SQLFirst() Function
	SQLNext() Function
	SQLPrev() Function
	SQLLast() Function
	SQLEnd() Function

	Writing New Records to a Table
	SQLInsert() Function
	SQLInsertPrepare() Function
	SQLInsertExecute() Function
	SQLInsertEnd() Function

	Updating Existing Records in a Table
	SQLUpdate() Function
	SQLUpdateCurrent() Function

	Deleting Records from a Table
	SQLClearTable() Function
	SQLDelete() Function

	Executing Parameterized Statements
	SQLSetStatement() Function
	SQLAppendStatement() Function

	Creating a Statement or Loading an Existing Statement from a File
	SQLLoadStatement() Function

	Preparing a Statement
	SQLPrepareStatement() Function

	Setting Statement Parameters
	SQLSetParamChar() Function
	SQLSetParamDate() Function
	SQLSetParamDateTime() Function
	SQLSetParamDecimal() Function
	SQLSetParamFloat() Function
	SQLSetParamInt() Function
	SQLSetParamLong() Function
	SQLSetParamNull() Function
	SQLSetParamTime() Function

	Clearing Statement Parameters
	SQLClearParam() Function

	Executing a Statement
	SQLExecute() Function

	Releasing Occupied Resources
	SQLClearStatement() Function

	Working with Transaction Sets
	SQLTransact() Function
	SQLCommit() Function
	SQLRollback() Function

	Opening the ODBC Administrator Dialog Box at Run Time
	SQLManageDSN() Function

	Understanding SQL Error Messages
	SQLErrorMsg() Function
	SQL Access Manager Result Codes and Messages

	Reserved Word List

	Using the 16-Pen Trend Wizard
	About Using a 16-Pen Trend
	Creating a 16-Pen Trend
	Configuring Which Tags to Display on the Trend Graph
	Configuring the Trend Time Span and Update Rate
	Configuring the Trend Display Options
	Changing the Trend Configuration at Run Time
	Controlling a 16-Pen Trend Wizard Using Scripts
	ptGetTrendType() Function
	ptLoadTrendCfg() Function
	ptPanCurrentPen() Function
	ptPanTime() Function
	ptPauseTrend() Function
	ptSaveTrendCfg() Function
	ptSetCurrentPen() Function
	ptSetPen() Function
	ptSetPenEx() Function
	ptSetTimeAxis() Function
	ptSetTimeAxisToCurrent() Function
	ptSetTrend() Function
	ptSetTrendType() Function
	ptZoomCurrentPen() Function
	ptZoomTime() Function

	Symbol Factory
	About Symbol Factory
	Symbol Types
	Picture Wizards
	Bitmap Wizards
	Texture Wizards
	InTouch Object

	Using Symbol Factory
	Getting Started Quickly
	Placing a Symbol Factory Wizard in a Window
	Configuring Symbol Options
	Animating a Wizard
	Editing a Symbol
	Breaking a Wizard for Editing
	Sharing a Category of Symbols on a Network
	Making a Category Read-Only
	Viewing Category Properties
	Editing an Existing Category
	Deleting a Category

	Configuring Symbol Factory
	Troubleshooting

	Index

