
Tech Note 401
Fine-Tuning AppEngine Redundancy Settings

All Tech Notes and KBCD documents and software are provided "as is" without warranty of any kind. See the Terms of Use for more information.

Topic#: 002079
Created: February 2005
Updated: December 2005

Introduction

This technote provides the guidelines to establish settings for redundancy-configurable parameters based on size of the
application. In addition, this document provides tips related to redundancy-enabled engine deployment.

Redundancy Settings

Figure 1 (below) shows the default settings for AppEngine Redundancy listed in the Redundancy tab field:

file:///C|/Inetpub/wwwroot/t002079/T000792.htm

Figure 1: Default Redundancy Settings

The above settings are good for standard application size of 3-5,000 I/O (five hundred AppObjects with 10 I/O per Object).

When the application size increases, the above settings must be changed (tuned) to avoid unexpected behavior during
maintenance and under normal operating conditions of the production system.

It is very important to understand the redundancy-configurable parameters before you change them. The following information
explains the details of the parameters and their settings. Once the redundancy settings are changed, run test cycles to ensure
that the settings are appropriate for the size of your application.

1. Forced failover timeout: The maximum allowed time (milliseconds) for a standby engine to become
active and execute all objects hosted to it for a single scan. Assuming the force failover has been initiated
via ForceFailoverCmd. If the standby engine does not become active within this time period, this engine will
revert back to the active engine. The Default setting is 30,000 ms. This setting is recommended for up to
5,000 I/O points-per redundancy-enabled Engine.

Wonderware® QA tests have proven that for 40,000 I/O with 5000 AppObjects (Eight I/O-per-Object) took
3 minutes and 33 seconds to failover. It is safe to set 45,000 ms. between 3-5,000 I/O points, 180,000
ms up to 20,000 I/O and 240,000 ms from 20,000 to 40,000 I/O.

300,000 ms. is recommended for systems with more than 40,000 I/O points.

2. Maximum checkpoint deltas buffered: Maximum number of checkpoint deltas that can be buffered
before a full checkpoint synchronization is performed. In the case of Checkpoint deltas being sent to the
standby engine so quickly they cannot be processed fast enough by the standby engine, checkpoints will be
buffered.

The default setting is 0. This setting has no negative impact, and tuning is not recommended.

3. Maximum alarm state changes buffered: Maximum number of alarm state changes that can be buffered
before a full snapshot of the engines' alarm state changes is performed. In the case of Alarm state changes
being sent to the standby engine so quickly they cannot be processed fast enough by the standby engine,
alarm state changes will be buffered.

The default setting is 0. This setting has no negative impact, and tuning is not recommended.

4. Standby engine heartbeat period: Time interval (milliseconds) at which heartbeats are sent by the
failover service on the standby engine to the failover service on the active engine over the RMC.

The default setting is 1000 ms. Tuning is not recommended.

5. Active engine heatbeat period: Time interval (milliseconds) at which heartbeats are sent by the failover

service on the active engine to the failover service on the standby engine over the RMC.

The default setting is 1000 ms. Tuning is not recommended.

6. Maximum consecutive heartbeats missed from Active engine: The number of heartbeats from the
Active engine that can be missed before a bad connection (over the RMC with the standby engine) is
assumed by the Standby engine.

The default setting is 5. This means is that if the Standby engine doesn’t receive any heartbeats within 5
seconds from the Active engine, the standby will assume that he cannot reach the Active engine via RMC.

In a multiple redundant engine pair environment, set this value to a larger number to avoid false failover(s)
when the system is busy. The recommended setting is 10-30 seconds for systems with 5-40,000 I/O
points. In a very large system environment (40,000 + I/O points) ~60 is recommended.

7. Maximum consecutive heartbeats missed from Standby engine: The number of heartbeats from the
Standby engine that can be missed before a bad connection (over the RMC with the standby engine) is
assumed by the Active engine. When a bad connection is detected the Active engine will switch to Active-
standby Not Available status.

The default setting is 5. This means that if the active engine doesn’t receive any heartbeats within 5
seconds from the Standby engine, the Active engine will assume that he cannot reach the standby node via
RMC.

In a multiple redundant engine pair environment, set this value to a larger number. The recommended
setting is 10-30 seconds for systems with 5-40,000 I/O points. In a very large system environment
(40,000 + I/O points) ~60 is recommended.

8. Maximum time to maintain good quality after failure: Determine how long to wait after standby
engine has become Active and binds subscribed references to this engine before the quality can be set to
uncertain. The default setting is 15,000 ms. For systems between 5-40,000 I/O points, 120,000 ms. is
recommended. For systems with more than 40,000 I/O points, 150,000 ms. is recommended.

Note: Assuming remote I/O, setting the value too low causes all I/O references to unsubscribe, then re-
subscribe on failover. The optimum setting ensures that remote I/O references are preserved for failover.
This behavior also applies in the RDI Object context.

9. Maximum time to discover partner: How long to wait when attempting to connect to the failover partner
before setting the failover partner state to Unknown. The default setting is 15,000 ms. Tuning is not
required for this setting.

10. Restart the engine when it fails: This feature is not recommended to use in a redundancy environment.
If the engine hangs or fails, failover occurs. By default this check box is not selected (Figure 2 below):

Figure 2: AppEngine Editor

11. Checkpoint period: Set to 0 by default. Checkpoints will be written to the disk at the engine scan period
intervals.

Do not set this value to too low or too high. Writing to disk at every scan period is resource-intensive. For a
20,000 I/O application, 20,000 ms. is recommended. For systems with 40,000 I/O points or more, 60,000
ms. is recommended.

It is important to note that in a redundancy environment, checkpoint synchronization is performed at every
scan and the synchronized data is stored in the memory on both Active and Standby nodes. If the Standby
node has to become active, it will first use this data for startup.

Figure 3: Checkpoint Period Default

12. Engine Failure Timeout: The amount of time (milliseconds) that the engine can go without notifying the
Bootstrap of its health. After this time, the EngineFailureAlarm is set to TRUE in the Engine.

Ensure that the value set into this attribute is not less then the engine’s configured scan period. The default
value is set to 10,000 ms as shown in Figure 4 (below).

Internally, the system will triple the value that you specify for this attribute. This means that the engine can
go without notifying the bootstrap of its health for 30 seconds if the value is set to 10 seconds. The failover
will then occur after 30 seconds.

In a redundancy setup the recommendation is to set this value to 5,000 ms.

Figure 4: Engine failure timeout interval

Platform Settings

1. Message Timeout: The number of milliseconds for response message MxTimeouts for cross-engine
communications. The default value is 30,000 ms as shown in Figure 5 (below).

It is recommended to set this at a higher number on GR Node to avoid engine communications issues
during deployment of large Galaxies. The recommended setting is 300,000 ms.

2. NMX Heartbeat period: The frequency in milliseconds at which heartbeats are sent to other platforms.
Heartbeats will only be set up between platforms when one platform needs to know if the other is still

running.

For example, if an engine on platform X is subscribed to data on an engine deployed to platform Y, the
heartbeats will be sent by platform Y to platform X. The default value is 2,000 ms. as shown in platform
editor. No tuning is recommended for this setting.

3. Consecutive number of missed NMX Heartbeats allowed: Maximum allowed number of consecutive
heartbeats missed prior to failing the primary communications channel to this platform. The default value is
3 as shown in platform editor.

This means that if an engine on platform X is subscribed to data on an engine deployed to platform Y,
heartbeats will be sent by Platform Y to platform X. If platform X doesn’t receive any hearbeats within 6
seconds from platform Y, Platform X assumes that communication is lost to platform Y.

It is recommended this value is set to 6 on the GRNode to avoid communication issues during deployment
of a large Galaxy (20-40,000 or more I/O points).

Figure 5: Missed NMX Heartbeats

4. Deployment: For small galaxies, a Cascade deployment from the Galaxy Object level is optimal.

For large galaxies, perform Cascade deployment from the Platform Level. When performing Cascade
Deployment from the Platform Level, it is important to make sure that you start deploying first with
platforms hosting primary engine(s) and then deploy platforms hosting backup engine(s). By doing this you
are starting primary as active and all objects running under this engine.

If you deploy platforms hosting backup engine first, this will become active first and then when you deploy
platform with primary engine, all objects will be running to active engine causing issues related to load-
balancing during deployment.

S. Mariyala

Tech Notes are published occasionally by Wonderware Technical Support. Publisher: Invensys Systems, Inc., 26561 Rancho Parkway South, Lake Forest, CA
92630. There is also technical information on our software products at www.wonderware.com/support/mmi

For technical support questions, send an e-mail to support@wonderware.com.

 back to top

©2005 Invensys Systems, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying, recording, broadcasting, or by anyinformation storage and retrieval system, without permission in
writing from Invensys Systems, Inc. Terms of Use.

http://www.wonderware.com/support/mmi
mailto:support@wonderware.com
file:///C|/Inetpub/wwwroot/t002079/T000792.htm

	Local Disk
	Fine-Tuning AppEngine Redundancy Settings

