
Tech Note 518
Managing Custom Script Function Libraries for Use in Application Server

All Tech Notes and KBCD documents and software are provided "as is" without warranty of any kind. See the Terms of Use for more information.

Topic#: 002252
Created: February 2008

Introduction

This Tech Note provides guidelines for developing and managing custom .NET Class Libraries, which are used as
Application Server Script Function Libraries. This Tech Note is especially helpful when the .NET Class Library is modified
and must be re-imported into the ArchestrA IDE. Steps are also provided to package the .aaSLIB file in case there
are dependent files for the .NET Class Library.

Application Versions

● Industrial Application Server 2.1 P02

● Wonderware Application Server 3.0, 3.0 P01

● VisualBasic 6 SP5 for VB6 COM dll

● Visual C++ 6.0 SP5 for Simple Win32 dll

● Visual Studio2003, C# for Application Server Script Library

Scenario 1: Importing All Dependent Files

This scenario describes a common import operation that includes the following DLLs (Figure 1 below):

file:///C|/Inetpub/wwwroot/t002252/T000792.htm

Figure 1: Scenario One Class Library List

● MiscOperations.dll: A .NET Class Library exposes methods that can be used as script functions in Application Server. It is
an Application Server script library, a .NET Class Library developed in C# using VS2003.

● ConvertTemp.dll & Interop.ConvertTemp.dll: This .NET Class Library uses methods from a COM dll and interop file.
The COM dll is developed in VB6.

● SimpleMultiply.dll: A dependent file which is a simple win32 dll with exported functions. This dll is developed in VS 6.0 C++.

When the MiscOperations.dll .NET Class Library is imported into the IDE, the import operation succeeds with the
following results:

Figure 2: Import Successful

However, when a UserDefined Object (UDO) is created and deployed with a Script that uses a method from the .NET
Class Library, the Script fails and generates the following error message in the SMC logger:

135378782 1/16/2008 2:48:23 PM 275 3020 3544 Error ScriptRuntime UserDefined_001.rr: Script performed
an illegal operation.

135378783 1/16/2008 2:48:23 PM 275 3020 3544 Error ScriptRuntime UserDefined_001.rr:
MiscOperations: Unable to load DLL (SimpleMultiply).

The error indicates that the Script function used is dependent on another DLL called SimpleMultiply.dll.

Solution

To use all the methods from the .NET Class Library, create an .aaSLIB file to package all the dependent files. When
this .aaSLIB file is then imported in ArchestrA IDE, all the dependent files are automatically copied at the relevant
directory location.

To create an .aaSLIB file

1. Export the MiscOperations script function library. This operation generates a file called
MiscOperations.aaSLIB in the designated directory.

2. Manually modify the XML file in an .aaSLIB file to add dependent files and also to designate a script
function library as a COM object requiring registration:

�❍ In Windows Explorer, rename the MiscOperations.aaSLIB file to MiscOperations.aaSLIB.cab.

�❍ Create a working folder on your computer as shown below.

Figure 3: Working File

�❍ Double-click the .cab file. The files included in the .cab file appear.

�❍ Select all files, right-click and click Extract.

�❍ Browse to the working folder and click Extract.

Figure 4: Extract .CAB File Contents

�❍ In Windows Explorer, browse to the working folder and open the __wwCabinetFileList.xml file using

Internet Explorer.

Figure 5: Viewing the XML File Using Internet Explorer

Note: The root node in this .xml file is <WWCabinetFileList>. Under this root are <FileItem> xml nodes. Each node
provides a mapping via the FileCode xml attribute and the FileName xml attribute.

�❍ Locate the FileItem element with the FileName = MiscOperations.xml and note the FileCode. In this case it
is: wcb881.tmp

�❍ Open the wcb881.tmp file using Notepad. The file content is shown below:

Figure 6: wcb881.tmp File Opened Using NotePad

�❍ Under the <dependentFiles> xml node, locate the <file> xml entry. For each dependent file, add

a corresponding <file> xml entry. Note that for the COM dll requiring registration, the
<registrationType> element should be eComDLL. The modified file in this example looks like following figure:

Figure 7: Modified XML Nodes

�❍ Save and close the file.

�❍ Copy the .NET Class Library and its dependent files to the working folder (Figure 8 below).

Figure 8: Copy files to the Working File

�❍ Open a Command Prompt window and navigate to the working folder.

�❍ Type Cabarc N MiscOperations.aaSSLIB *.* as shown in Figure 9 (below):

Figure 9: Command Prompt

Note: Download the .cab file utility, cabarc.exe, from the Microsoft website. The utility must be copied into your
\system32 folder.

The resulting MiscOperations.aaSLIB file can now be imported into the Galaxy. The script function library is
automatically deployed with its dependent files and any relevant COM dlls are registered.

3. Test this library to see if the error Unable to load DLL is resolved.

Scenario 2 - Implementing a Modified .NET Class Library

The .NET Class Library is imported and deployed in ArchestrA IDE. You decide to modify the .NET Class Library by adding
a new method. For this example, it is called MiscOperations.dll.

After rebuilding the new .NET class library, it is packaged once again in the .aaSLIB file as described in the steps above.
The .NET Class library is re-imported, but the newly-added method does not appear in the Script Function Browser and
it cannot be used. It looks like the old dll is still in effect.

How do I get the newly rebuilt .NET Class library into effect?

Solution

Increment the version of the .NET Class Library and repackage it in the .aaSLIB file after making changes in the .NET
Class Library.

To reimport the .aaSLIB file

1. Update the version data in the .NET Class Library. Do this by incrementing the version number in
the AssemblyVersion attribute. For example, if this library is developed in C#, then increment the
version number in the "AssemblyVersion" attribute, in the AssemblyInfo.cs file.

2. Rebuild the .NET Class library.

3. Copy the new .NET Class Library in the Working folder as described in the step above.

4. Replace the old .tmp file with a newly created .tmp file. This step can be best explained by using the
same example of .NET Class Library as mentioned above.

Using the previous step (above), note the contents of the __wwCabinetFileList.xml file.

<FileItem FileName="MiscOperations.dll" FileCode="wcb880.tmp" />

In this example, MiscOperations.dll is the .NET class library for which there is a newer version. The above
line in the xml file __wwCabinetFileList.xml indicates that the file MiscOperations.dll has the
filecode wcb880.tmp.

Also note that the file wcb880.tmp exists in the working folder. This wcb880.tmp file is actually the same
as MiscOperations.dll. So when a newer version of MiscOperations.dll is desired, the corresponding .tmp
file should also be newly-created.

To do this, simply make a copy of MiscOperations.dll in the Working folder and rename it to wcb880.tmp.

5. Now run the cabarc utility as shown in previous steps.

6. Import the new .aaSLIB file and test to see if this is the newer version of the .NET Class Library.

Scenario 3 - Automatically Copying Dependent Files

This Scenario includes the following elements (Figure 10 below):

The .NET Class Library Miscoperations.dll uses a COM dll called ConvertTemp.dll.

This COM dll has another dependent file called MakeTempFilenameDLL.dll, which is a simple Win32 dll with
exported functions.

How do I package all the dependent files so that they are automatically copied to correct ArchestrA directories when the .
NET Class library is imported and deployed?

Figure 10: Scenario Three Class Library List

Solution

If a COM library developed with Visual Studio 6 or earlier has file dependencies, ensure that you include those files in
the .aaSLIB file and include a <file> ... </file> entry in the .xml file under the <dependentFiles> node for

each dependent file. Otherwise, objects that use the script function library will not be deployed properly.

To package dependent files of any COM library used in the .NET Class Library

With reference to the example presented in Figure 10 (above):

● Miscoperations.dll is a .NET Class Library.

● ConvertTemp.dll is a COM library that is used in the .NET Class Library.

● MakeTempFilenameDLL.dll is a simple Win32 dll that is used in the ConvertTemp.dll COM dll.

In this case the XML file entries should be modified as follows:

Figure 11: Add <file> Entries For Each Dependent DLL in Notepad

Scenario 4 - Working with Third Party Methods and Multiple Dependencies

The .NET Class Library Miscoperations.dll uses methods exposed by a third party software product. This product consists
of many dependent files and the vendor has provided a Merge Module (.msm file) for redistributing the dependent files.

How do I package the Merge Module so that all the required dependent files are automatically copied to correct
ArchestrA directories when the .NET Class library is imported and deployed?

Solution

● Modify the __wwCabinetFileList.xml file to include the Merge Module provided by the vendor.

● Modify the .tmp file corresponding to the .xml Filename attribute.

If a COM library developed with Visual Studio 6 or earlier has file dependencies, ensure that you include those files in
the .aaSLIB file and include a <file> ... </file> entry in the .xml file under <dependentFiles> for each dependent
file. Otherwise, objects that use the script function library will not be deployed properly.

To package the Merge Module provided by the Vendor in an .aaSLIB file

Example: The .NET class library Miscoperations.dll uses the files provided in the ThirdParty.msm merge module.

1. Include the Merge Module in the__wwCabinetFileList.xml file as follows:

Figure 12: Include the Merge Module in the FileList Node

2. Modify the .tmp file- wcb881.tmp corresponding to the MiscOperations.xml Filename attribute as follows.
Note the <registrationType> is eMsiMergeModule:

Figure 13: Modify the .tmp File in Notepad

3. Copy the ThirdParty.msm as wcb882.tmp to the working folder.

4. Run the cabarc utility to package the Miscoperations.aaSLIB file.

P. Kulkarni

Tech Notes are published occasionally by Wonderware Technical Support. Publisher: Invensys Systems, Inc., 26561 Rancho Parkway South, Lake Forest,
CA 92630. There is also technical information on our software products at www.wonderware.com/support/mmi

http://www.wonderware.com/support/mmi

For technical support questions, send an e-mail to support@wonderware.com.

 Back to top

©2008 Invensys Systems, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying, recording, broadcasting, or by anyinformation storage and retrieval system, without
permission in writing from Invensys Systems, Inc. Terms of Use.

mailto:support@wonderware.com
file:///C|/Inetpub/wwwroot/t002252/T000792.htm

