
Consuming and Acknowledging Alarms Using Application Server QuickScript

file:///C|/inetpub/wwwroot/t002590/t002590.htm[11/15/2011 3:06:27 PM]

Tech Note 804
Consuming and Acknowledging Alarms Using Application Server QuickScript

All Tech Notes, Tech Alerts and KBCD documents and software are provided "as is" without warranty of any kind. See the Terms of Use for more information.

Topic#: 002590
Created: October 2011

Introduction

This Tech Note provides detailed instructions in three parts:

Consuming Alarms Using Application Server QuickScript

Acknowledging Alarms Using Application Server QuickScript

Testing Application Server QuickScript for Consuming and Acknowledging Alarms

This is done by first creating an Instance of $UserDefined Template Object, and then creating 2 different scripts – one for consuming Alarms and
second for Acknowledging Alarm. Each Script is further documented with code snippets. By following along this TechNote, you will have a
$UserDefined Instance created and deployed in the Galaxy. Further, at the end of it, you will test both the Scripts to Consume and Acknowledge
Alarm. The end result will be Alarm Records logged in the Logger, depending on the Alarm Query.

This Tech Note provides the following benefits:

It provides a way to consume Galaxy Alarms, so that Alarms can be presented in a custom format if desired.

It serves as an example how to use Methods of a COM dll in Application Server Quickscript.

Application Versions

Wonderware Application Server 3.1 and later

Alarm Toolkit 8.0

Note: For this Tech Note, WAS 3.1 SP3 P01 and MS Windows XP SP3 were used.

About the Alarm Toolkit

The Wonderware Alarm Toolkit can be used to create custom Alarm Provider and custom Alarm Consumer. A custom Alarm Provider and Alarm
Consumer typically uses the COM wrappers like wnwrapserver.dll and wnwrapconsumer.dll to provide and consume Alarms. These COM
wrappers (dlls) are installed by InTouch® or Application Server Installation in …Program Files\Common Files\ArchestrA folder.

The current version of Alarm Toolkit is 8.0 (November 2011). The Alarm Toolkit installation CD is available within the Toolkits CD of Advanced
Development Studio. Alarm Toolkit 8.0 is supported with InTouch 8.0 and higher and with Application Server 2.0 and higher. This is because the
wrappers for Alarm Toolkit are installed by the product installations of InTouch and Application Server.

For more details on the Alarm Toolkit, refer to the AlarmToolKit User Guide on WDN.

file:///C|/inetpub/wwwroot/t002590/T000792.htm
https://wdnresource.wonderware.com/support/docs/tk/1/AlarmToolkitGuide.PDF

Consuming and Acknowledging Alarms Using Application Server QuickScript

file:///C|/inetpub/wwwroot/t002590/t002590.htm[11/15/2011 3:06:27 PM]

Prerequisites

Before diving into specifics of each script, there are couple of setup tasks required to be able to use the Alarm Toolkit COM Wrapper. In this
example, wnwrapconsumer.dll will be used since we are interested in consuming Alarms. Secondly, you need to create a $UserDefined Object.

Import wnwrapConsumer.dll

1. Open the ArchestrA IDE.

2. Click Import/Script Function Library and import from C:\Program Files\Common Files\ArchestrA\wnwrapConsumer.dll.

FIGURE 1: GALAXY -> IMPORT -> SCRIPT FUNCTION LIBRARY

Consuming and Acknowledging Alarms Using Application Server QuickScript

file:///C|/inetpub/wwwroot/t002590/t002590.htm[11/15/2011 3:06:27 PM]

FIGURE 2: FILE LOCATION

FIGURE 3: IMPORT SUCCEEDED

After importing:

The wnwrapConsumer.dll is copied to following folder: C:\Program Files\ArchestrA\Framework\FileRepository\
\Vendors\ArchestrA\wnwrapConsumer.dll.

Consuming and Acknowledging Alarms Using Application Server QuickScript

file:///C|/inetpub/wwwroot/t002590/t002590.htm[11/15/2011 3:06:27 PM]

Create an Instance of $UserDefined

1. Create an Instance of the $UserDefined Object.

For this Tech Note it is called UD_AlmConsumer. Host the UD_AlmConsumer under Area_001.

2. Proceed to Consuming Alarms Using Application Server QuickScript.

Consuming Alarms Using Application Server QuickScript

Create UDAs

1. Open the UD_AlmConsumer object instance in ArchestrA IDE and select the UDAs tab.

2. Create following UDAs that will be used in the script:

Booleans: bConsumeAlms: Used to trigger the script for consuming and logging Alarm Records.

Create a Script

Click the Scripts tab, then Add Script. Call the script AlmCons. This script is used to Consume Alarms and then Log those Alarm Records in
Logger.

Verify that the Alarm Consumer Class Methods are Available for Use in the Script

Use the Display Script Function Browser button at the far right of the window (Figure 4 below).

FIGURE 4: DISPLAY SCRIPT FUNCTION BROWSER BUTTON

Consuming and Acknowledging Alarms Using Application Server QuickScript

file:///C|/inetpub/wwwroot/t002590/t002590.htm[11/15/2011 3:06:27 PM]

FIGURE 5: SCRIPT FUNCTION BROWSER

Creating the Scripts

Declare Script Variables

As per good programming practices, variable declarations are done in the Script editor's Declarations section.

Consuming and Acknowledging Alarms Using Application Server QuickScript

file:///C|/inetpub/wwwroot/t002590/t002590.htm[11/15/2011 3:06:27 PM]

FIGURE 6: DIMENSION DECLARATIONS

Script Example

Dim MyConsumer as WNWRAPCONSUMERLib.wwAlarmConsumerClass;
Dim currentXMLAlarms As Object;
Dim Result as Integer;

Dim almStr as String;
Dim xDoc as System.Xml.XmlDocument;
Dim node as System.Xml.XmlNodeList;
Dim leafnode as System.Xml.XmlNode;

WHERE

MyConsumer – in the Quickscript is used for Alarm Consumer Methods.

currentXMLAlarms – Alarm Records are returned in XML format.

Result – An integer to hold the result of Initialize and Register Alarm Consumer Methods.

almStr – Temporary storage for Alarm Records in XML format

xDoc, node and leafnode variables are used to parse the XML Alarm records string to break it into a single alarm record and then further
break into details within each alarm record like GUID, DATE, TIME, TAGNAME, TYPE, VALUE and STATE.

Create Your Startup Script

Execution Type: Startup: Startup script is called when an object containing the script is loaded into memory, such as during deployment,
platform, or engine start. Startup instantiates COM objects and .NET objects.

Depending on load and other factors, assignments to object attributes from the Startup method can fail.

Attributes that reside off-object are not available to the Startup method.

FIGURE 7: STARTUP SCRIPT

Consuming and Acknowledging Alarms Using Application Server QuickScript

file:///C|/inetpub/wwwroot/t002590/t002590.htm[11/15/2011 3:06:27 PM]

Script Example

MyConsumer = new WNWRAPCONSUMERLib.wwAlarmConsumerClass;
xDoc = new System.Xml.XmlDocument;

Result = MyConsumer.InitializeConsumer("ConsumerApplication");
LogMessage(StringFromIntg(Result, 10));
Result = MyConsumer.RegisterConsumer(0, "testConsumer", "ConsumerApplication", "1.1.1");
LogMessage(StringFromIntg(Result, 10));
LogMessage("---Instantiate, Initalize, Register AlarmConsumer, SetXMLAlarmQuery---");

MyConsumer.SetXmlAlarmQuery("<QUERIES FROM_PRIORITY=""1"" TO_PRIORITY=""999"" ALARM_STATE=""All""
DISPLAY_MODE=""Summary""><QUERY><NODE>localhost</NODE><PROVIDER>Galaxy</PROVIDER><GROUP>Area_001</GROUP></QUERY></QUERIES>");

System.AppDomain.CurrentDomain.SetData("AlarmConsumerApp", MyConsumer);

This script does the following:

Creates an instance of the Alarm consumer class WNWRAPCONSUMERLib.wwAlarmConsumerClass and XmlDocument class.

Calls methods of the Alarm Consumer class to Initialize and Register the consumer: InitializeConsumer and RegisterConsumer. The
InitializeConsumer method ensures that Alarm Manager has been started and Alarm system has been initialized.
The RegisterConsumer registers with the Distributed Alarm System, with a Product Name of testConsumer and Application Name
ofConsumerApplication.

Calls SetXmlAlarmquery method Alarm Consumer class to set the Alarm Query. In this case Alarm Query is set to consume all alarms from
the Galaxy under the Area_001 group.

The System.AppDomain.CurrentDomain.SetData method is used to share the MyConsumer Object connection with another script within
the same or another Application Server object instance. In this case the Myconsumer Object is shared with script AckAlarmByName within
the same object instance: UD_AlmConsumer.

Note: For more details on Alarm Toolkit Class Methods, refer to the AlarmToolkit Users Guide on WDN.

Create Execution Script Trigger

Create an Execution Script Trigger with the following:

Execution Type: Execute: This script is configured to trigger when AppEngine performs a scan, the Object is OnScan and when the boolean UDA
bConsumeAlms is set to TRUE.

FIGURE 8: EXECUTION SCRIPT TRIGGER

https://wdnresource.wonderware.com/support/docs/tk/1/AlarmToolkitGuide.PDF

Consuming and Acknowledging Alarms Using Application Server QuickScript

file:///C|/inetpub/wwwroot/t002590/t002590.htm[11/15/2011 3:06:27 PM]

FIGURE 9: SCRIPT

Script Example

LogMessage("----------------------GetAlarms-----------------------------");
MyConsumer.GetXmlCurrentAlarms2(100, currentXMLAlarms);

almStr = currentXMLAlarms.ToString();
LogMessage(almStr);

'Load XML Alarms
xDoc.LoadXml(almStr);

node = xDoc.SelectNodes("/ALARM_RECORDS/ALARM");
LogMessage("--");

'node.InnerText property Get the concatenated values of the node and all its child nodes
FOR EACH leafnode IN node
 LogMessage("Alarm Record..");
 LogMessage(leafnode["GUID"].InnerText);
 LogMessage(leafnode["DATE"].InnerText);
 LogMessage(leafnode["TIME"].InnerText);
 LogMessage(leafnode["TAGNAME"].InnerText);
 LogMessage(leafnode["TYPE"].InnerText);
 LogMessage(leafnode["VALUE"].InnerText);
 LogMessage(leafnode["STATE"].InnerText);
NEXT;

me.bConsumeAlms = false;

The boolean UDA bConsumeAlms is set to TRUE using the Object Viewer. This triggers the execution of the script. The
GetXmlCurrentAlarms2 method from the Alarm Consumer class is used to get all the alarm records in accordance with the Alarm Query set
in an earlier section.

The alarms in XML form are then copied in a temporary string called almStr.

Consuming and Acknowledging Alarms Using Application Server QuickScript

file:///C|/inetpub/wwwroot/t002590/t002590.htm[11/15/2011 3:06:27 PM]

The classes System.Xml.XmlDocument, System.Xml.XmlNodeList and System.Xml.XmlNode are then used to separate out each
individual element from the Alarm Records as shown above in the code snippet.

After this script executes, the boolean UDA bConsumeAlms is set back to FALSE to ensure that Alarms can be requested on a demand
basis and not continuously at every scan cycle. Also the LogMessage is used not only for logging alarm records but also used as debugging
tool to monitor the progress of the script execution.

Create Execution Script Type: Shutdown

A Shutdown script is called when the object is about to removed from memory, usually as a result of the AppEngine stopping. Shutdown scripts are
primarily used to destroy COM objects and .NET objects and to free memory.

FIGURE 10: SHUTDOWN SCRIPT

Script Example

LogMessage("---DeRegisterConsumer---");

MyConsumer.DeregisterConsumer();

Acknowledging Alarms Using Application Server QuickScript

Create UDAs

1. In the UD_AlmConsumer object instance in ArchestrA IDE and select the UDAs tab.

2. Create following UDAs that will be used in the script:

Booleans: bAckAlarm – used to enable the script for Acknowledging Alarm

String: strAlarmName – Alarm Name to be acknowledged.

Create Script

Create a second script for acknowledging alarm by name, and call it AckAlarmByName.

Declare Script Variables

Declarations

FIGURE 11: DECLARATIONS

Consuming and Acknowledging Alarms Using Application Server QuickScript

file:///C|/inetpub/wwwroot/t002590/t002590.htm[11/15/2011 3:06:27 PM]

Execution Type: Execute – This script is configured to trigger when AppEngine performs a scan, the Object is OnScan and when the
boolean UDA bAckAlarm is set to TRUE.

Execute Script:

FIGURE 12: EXECUTE SCRIPT

Script Example

MyConsumer = System.AppDomain.CurrentDomain.GetData("AlarmConsumerApp");

Result = MyConsumer.AlarmAckByName(me.strAlarmName, "\\localhost\Galaxy", "Area_001", "ack from
ppk","oprNameisPPK",System.Environment.MachineName,System.Environment.UserDomainName, System.Environment.UserName);

me.bAckAlarm = false;

The System.AppDomain.CurrentDomain.GetData method gets the value stored in the current application domain for MyConsumer. The
strAlarmName UDA is of type string and can be configured for a default value. For example: UD_AlmConsumer.Analog_001.LoLo. The string
can be changed at runtime to acknowledge other alarms by name.

Testing Application Server QuickScript for Consuming and Acknowledging Alarms

Note: The InTouch Alarm Provider must be enabled to consume Alarms (Figure 13 below).

Consuming and Acknowledging Alarms Using Application Server QuickScript

file:///C|/inetpub/wwwroot/t002590/t002590.htm[11/15/2011 3:06:27 PM]

FIGURE 13: INTOUCH ALARM PROVIDER CONFIGURATION

1. Deploy UD_AlmConsumer.

2. Set up a Field Attribute for generating Alarms within the Area_001 in the Galaxy. For example - Generate Lo, Hi, HiHi alarms.

3. Start Object Viewer and set up a Watch Window with the following AttributeReferences (Figure 14 below):

Consuming and Acknowledging Alarms Using Application Server QuickScript

file:///C|/inetpub/wwwroot/t002590/t002590.htm[11/15/2011 3:06:27 PM]

FIGURE 14: OBJECT VIEWER FOR UD_ALMCONSUMER OBJECT

4. Set bConsumeAlms to true. The AlmCons script will execute.

5. Look at the Log Viewer to see the logged Alarm Records (Figure 15 below).

Consuming and Acknowledging Alarms Using Application Server QuickScript

file:///C|/inetpub/wwwroot/t002590/t002590.htm[11/15/2011 3:06:27 PM]

FIGURE 15: LOG VIEWER ALARM RECORDS

6. Set bAckAlarm to true. The AckAlarmByName script executes.

7. To monitor that the falarm for UD_AlmConsumer.Analog_001.LoLo was acknowledged, repeat steps 4 and 5.

Notice in the logger that Alarm record for UD_AlmConsumer.Analog_001.LoLo alarm has status of ACK_ALM.

Consuming and Acknowledging Alarms Using Application Server QuickScript

file:///C|/inetpub/wwwroot/t002590/t002590.htm[11/15/2011 3:06:27 PM]

FIGURE 16: ACK_ALM STATUS

P. Kulkarni

Tech Notes are published occasionally by Wonderware Technical Support. Publisher: Invensys Systems, Inc., 26561 Rancho Parkway South, Lake Forest, CA 92630. There is also technical
information on our software products at Wonderware Technical Support.

For technical support questions, send an e-mail to wwsupport@invensys.com.

 Back to top

©2011 Invensys Systems, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording, broadcasting, or by anyinformation storage and retrieval system, without permission in writing from Invensys Systems, Inc. Terms of Use.

https://wdn.wonderware.com/sites/WDN/Pages/Tech_Support/TechSupport.aspx
mailto:wwsupport@invensys.com
file:///C|/inetpub/wwwroot/t002590/T000792.htm

	Local Disk
	Consuming and Acknowledging Alarms Using Application Server QuickScript

