
Extending User Defined Attribute Arrays to DASABCIP Arrays

file:///C|/inetpub/wwwroot/t002595/t002595.htm[11/18/2011 10:43:22 AM]

Tech Note 808
Extending User Defined Attribute Arrays to DASABCIP Arrays

All Tech Notes, Tech Alerts and KBCD documents and software are provided "as is" without warranty of any kind. See the Terms of Use for more information.

Topic#: 002595
Created: November 2011

Introduction

This Tech Note outlines how to populate a User Defined Object’s (UDO's) User Defined Attribute (UDA) Array with array values from a
ControlLogix/CompactLogix processor using DASABCIP.

Application Versions

Application Server 3.1 SP3 p01

DASABCIP 4.1 SP2

Note: This Tech Note only addresses reading of array values, not poking of new values.

Overview

A UDA array is not directly extendable to IO sources; however, customers would often like to be able to directly map arrays from their Logix
processors to a UDA array. DASABCIP has block read capabilities that can be utilized to accomplish this requirement. When this block read is
executed via an OPCClient DIObject, the array values are returned with a comma delimiter and then can be parsed with a simple script to move
the values into corresponding UDA Array elements.

Important Limitations and Information

The OPCClient DIObject is required to accomplish this functionality since the values are returned with a comma delimiter. If you try to use
the DDESuitelinkClient DIObject, the values are returned in Hex, making the process more difficult since a hex to decimal conversion will be
required.

Logix arrays are base-0, but UDA Array are base-1, so you will need to remember that there is an offset that will occur.

DASABCIP Block Read syntax is required:
• <Tag_Name>[<first_element_X>],L<number_of_items_#>

DASABCIP only supports Block Reads and Writes of one-dimensional arrays from the supported ControlLogix, FlexLogix, and CompactLogix
controllers.
• The following features are NOT supported by the DAServer:

Block Reads/Writes of strings

Block Reads of structures (either predefined or user-defined)

Block Reads of greater than 486 bytes
• There are five different data types that are supported, each of which requires a different allowance on the qualifier due to the block size limitation (Table 1 below).

file:///C|/inetpub/wwwroot/t002595/T000792.htm

Extending User Defined Attribute Arrays to DASABCIP Arrays

file:///C|/inetpub/wwwroot/t002595/t002595.htm[11/18/2011 10:43:22 AM]

• There are three optimization modes supported, each with a different maximum qualifier allowance as shown in the following table: Optimize for Reads, Optimize for
Startup, and No Optimization.
• Note: The number in the "Ln" qualifier should not need an offset, because it is the total number counting from 1 (one).

Data Type Qualifier Allowance (number of items)

 Optimize for Read Optimize for Startup

 No Optimization

Boolean 3840 3831

SINT 486 478

INT 243 239

DINT 121 119

REAL 121 119

LINT 60 59

TABLE 1: BLOCK READ QUALIFIER LIMITS

Sample Configuration

Controller Tag Configuration

For this example, we’ve created a 10 element DINT array called TestArray in a SoftLogix processor (Figure 1 below).

FIGURE 1: CONTROLLER ARRAY EXAMPLE

DASABCIP Configuration

No special configuration is required here. Just set up a typical connection to a Logix processor as described in the DASABCIP help (Figure 2
below).

Extending User Defined Attribute Arrays to DASABCIP Arrays

file:///C|/inetpub/wwwroot/t002595/t002595.htm[11/18/2011 10:43:22 AM]

FIGURE 2: SAMPLE DASABCIP CONFIGURATION

OPCClient DIObject Configuration

Configure the OPCClient DIObject to communicate via OPC to DASABCIP (Figure 3 below).

Extending User Defined Attribute Arrays to DASABCIP Arrays

file:///C|/inetpub/wwwroot/t002595/t002595.htm[11/18/2011 10:43:22 AM]

FIGURE 3: OPCCLIENT GENERAL CONFIGURATION

A scan group must be created with an attribute that utilizes the proper syntax to block read the Logix array (Figure 4 below).

If you use an alias in the Attribute Column, it will make the scripting simpler

The item syntax is a concatenation of the object names in the DASABCIP configuration hierarchy, separated by periods, then
<Tag_Name>[<first_element_X>],L<number_of_items_#>
• If you are having trouble with the item reference syntax, you can press the blue + symbol on the attribute list, then the ellipsis […] in the
item reference field to browse the DASABCIP hierarchy.
• In the figure below you can see that we’re reading an array named “TestArray”, beginning at element 0, and reading 10 elements total.
(TestArray[0],L10), using an alias name of “TestArrayAlias”

Extending User Defined Attribute Arrays to DASABCIP Arrays

file:///C|/inetpub/wwwroot/t002595/t002595.htm[11/18/2011 10:43:22 AM]

FIGURE 4: OPCCLIENT SCAN GROUP CONFIGURATION

User Defined Object Configuration

You need to define two UDAs, one to hold the raw IO data from the Logix array (string), and another that is the UDA array to be populated,
which is an integer array in this example (Figures 5 & 6 below).

Extending User Defined Attribute Arrays to DASABCIP Arrays

file:///C|/inetpub/wwwroot/t002595/t002595.htm[11/18/2011 10:43:22 AM]

FIGURE 5: UDA STRING TO HOLD RAW ARRAY IO DATA

Extending User Defined Attribute Arrays to DASABCIP Arrays

file:///C|/inetpub/wwwroot/t002595/t002595.htm[11/18/2011 10:43:22 AM]

FIGURE 6: UDA ARRAY

The string UDA that holds the raw IO data needs to be extended to the input with a special syntax as below in order to capture the elements in
the proper comma delimited format (Figure 7 below).

Extending User Defined Attribute Arrays to DASABCIP Arrays

file:///C|/inetpub/wwwroot/t002595/t002595.htm[11/18/2011 10:43:22 AM]

FIGURE 7: UDA STRING EXTENSION

Sample Script

An OnDataChange Script can monitor the raw data for changes, then parse the raw data and populate the UDA array using the Microsoft .NET
System String Split method as needed (Figure 8 below).

Extending User Defined Attribute Arrays to DASABCIP Arrays

file:///C|/inetpub/wwwroot/t002595/t002595.htm[11/18/2011 10:43:22 AM]

FIGURE 8: USING .NET SYSTEM STRING SPLIT TO PARSE THE RAW DATA AND POPULATE THE UDA ARRAY

Here are the example attributes as seen from Object Viewer (Figure 9 below).

FIGURE 9: OBJECT VIEWER WITH EXAMPLE ATTRIBUTES

D. Scott and G. Alldredge

Extending User Defined Attribute Arrays to DASABCIP Arrays

file:///C|/inetpub/wwwroot/t002595/t002595.htm[11/18/2011 10:43:22 AM]

Tech Notes are published occasionally by Wonderware Technical Support. Publisher: Invensys Systems, Inc., 26561 Rancho Parkway South, Lake Forest, CA 92630. There is also technical
information on our software products at Wonderware Technical Support.

For technical support questions, send an e-mail to wwsupport@invensys.com.

 Back to top

©2011 Invensys Systems, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording, broadcasting, or by anyinformation storage and retrieval system, without permission in writing from Invensys Systems, Inc. Terms of Use.

https://wdn.wonderware.com/sites/WDN/Pages/Tech_Support/TechSupport.aspx
mailto:wwsupport@invensys.com
file:///C|/inetpub/wwwroot/t002595/T000792.htm

	Local Disk
	Extending User Defined Attribute Arrays to DASABCIP Arrays

