ABB industrial drives

Programming manual
Drive application programming (IEC 61131-3)

REAL_TO_DINT

List of related manuals

Drive application and firmware manuals and Code (English)
guides

Drive (IEC 61131-3) application programming manual 3AUA0000127808

ACS880 primary control program firmware manual 3AUA0000085967
Drive composer start-up and maintenance PC tool 3AUA0000094606
user’s manual

AC500 Control Builder PS501 Complete English 3ADR025078MO2xX

documentation

You can find manuals and other product documents in PDF format on the Internet. See
section Document library on the Internet on the inside of the back cover. For manuals not
available in the Document library, contact your local ABB representative.

Programming manual

Drive application programming (IEC 61131-3)

3AUA0000127808 Rev C
EN
EFFECTIVE: 2015-04-03

© 2015 ABB Oy. All Rights Reserved

Table of contents

List of related Manuals ... 2
Introduction to the manual ... 13
Contents Of thiS CAPTET ... 13
(0] 4] 0 T= 1] o] 1P PP PP PPPPPPPRPO 13
B2 0 L= = 10 o 1= o o = 13
SAfELY INSIIUCTIONSeeieie ettt e e e e e s e e e e e e e e annneees 14
PUrpose of the MaNUALcooiiiiiii e 14
Contents Of the MANUAL ettt e eeeeeeeeeeeeees 14
Related OCUMENTS ... et e e e e e e e e e e e e e e e e s e s nnnnreeeeaeas 14
Terms and abBreVviationS........ i 15
1= a] g Lo TS = U (= To PP 17
Contents Of thisS ChAPTETeieiee e 17
Setting up the programming €NVIFONMENTcevveiiiiriiierieeeeeereeeeeeeerereeeerreerrerrreer—————————— 17
Overview Of drive ProgrammMiNgooceeeeeeeeeeeeeiiiie e e e e e e e e s e e e e e e e anneees 21
Contents Of thiS CHAPTETeeieeee e 21
Drive application Programiming.............eeeeeeeorirmiiiiee e e e e e e e s r e e e e e e s aannnneeeeaeas 21
Y21 (=T 1 L= o = 1 o o 22
Programming WOrK CYCIEcoooiiii i 23
SPECIAITASKS ...ttt a e e 23
Programming languages and MOAUIES............couiiiiiiie i 24
[o] = L = P SEPPR TP 24
PrOgram ©XECULIONueiiiiiiiie ettt e e e e e e et e e e e e e s et e e e e e e e e e e b e e e eeeas 24
DIVEINIEITACE ... 24
ApplicationParametersandEVENLSiii i 25
Creating appliCation PrOGramM ... e e e e e e e eneeees 26
(070 01 (=1 a1 53 o) I 1 AT [Sod 4= 1 (= G PP 26
Creating @ NEW PIOJECTooiiiiieie e ettt e e e e e e e s s e e e e e e e e b e e e e e e e e e e nnneees 27
Updating project information ... 29
YN o o= o [T To = T 4 T2V = 1O 32
WItING @ Program COUEcooiiiii e, 34

Continuous function chart (CFC) Program........cccoecoiveeeiiiiin e e e 35

Preparing a project for dOWNIOAoiiuiiiiiiiiei e e e 43
Establishing online connection to the drive...........cooooo i, 43
Downloading the program to the AriVe ..o e 50
EXECULING the PrOGIaMcoi it e e e e e e e e e e e e e aaanes 52
Creating @ DOOL PIOJECTiiiiieiiii e e e e e s e aeeeas 54
AU S .ottt e et e e e e e e et e nn s 56
Contents Of thiS CRAPLET ..., 56
(DY ot o T T oo | T Vo PP PPRPRR 56

Viewing device INfOrMAatiONuiii i e e e e e e e e e e eeenes 57

Upgrading or adding @ NEW AEVICE..........oiuuiiiiiiiiee ettt 59

Changing an exiStiNg AEVICEuuiiiiiiiiiiiii e 60

Viewing SOftWare UPAALEScooiviiiiiiiiiiiieieeeeeeeeeeeeeee et 61
Program organization UnitsS (POU).......cccoiiiiieiiiie e 63
(D F 1= 1Y 01T TP 64
Drive application programming lICENSEcoceiiiiiiiiiii e 64
Vo] o] lTer= iTe] g Ie [o)¥ a1 [oT= To o]] 1 10] o <00t 65
Removing the application from the target ...t 66
L = T Y= L =] 67
Task CONfIQUIALIONoooiiiiiiii 67

o o [T I =] 68

Lo gLy (ol Tl =] 71
Uploading and downloading SOUICE COUEccuiieiiiiiiiiiiiiieee et e e e e e 73
Adding symbol configUIatioN..........coooe i e e 75
Debugging and onling Changescccooooiiii i, 77

T2 1 (=30 (=1 10 T o 1 Vo PSS 77
(Y= Mo 11 o] E TP PSP PPPPPPPPPRPPR 78
MEIMOTY TIMITS ..ot e e e e e e e e e e e e e e e n e nn e e e e e e e e aannes 79
(4 e N {11011 7= 1o] o [80
Application 10ading PACKAGEuuuuuririiiiieiiiiiririirerieererer .. 81

Downloading loading package t0 @ AriVEccoiiiiiiiiiiiiiiieee e 83
TRV [N =] o = T = 87
Contents of thisS ChaPter.........cooi i, 87
IMplementing DrVEINTEITACEoiiiiii e 87
Selecting the ParamMeter SEL.......coooi i 89

Viewing parameter MapPiNg FEPOIT.uuuuuuuuerrrerruerrrrerrrerrrrrrrrrrrrrrr————————————————————————————. 90

MaPPING EXAMPIE ... e e e aas 91
Updating drive parameters from installed deViCeccccuviiiiiiiiiiiiiiiiee e 94
Updating drive parameters from parameters file ... 96
SEtHNG PAFAMETET VIEW.......eiiiiieiiiiiiieeiietteeeeeeeseaesaeeseesssessaeessessesesesesasessarsraessarrrarrrrrrrarrranranes 98
Application parameter and EVENTS. ... 100
(070101 (=] a1 ST e) IRt a1 I o3 0= 11 (= 100
ApplicationParametersandEVENTScooooiiiiii i 101
ParameterMaBNEAIGETcoouiiiii et e e ettt e e e e et et e e e e e e 103

Creating parameter QrOUPS........uuuuuiiieeeeeieeeriiiasseeeeeeeeetrnar e e eeeeeeeestnn e eereressrnnaaaeees 103

(01 =T (] aTo [=T = 1 4 (=1 (=] £ PP 104

Parameter SETNGSuueieiiiiee i e e s e e e e 106

SCAIING ..ttt e e e e et e e e e e e e aaae 108

Linking parameter to application Code............cccoeeii i, 109

Parameter TYPES ...ttt et e 110

Parameter famili@S.......coooo i 113

Y= [T 1o o I] £ 114

] €U PRRPP PP 115

PN o]][To= 11 o] o I =AV7=T o | £ 116
I o] = L= P PPUP TP 117
Contents Of thiS ChAPLE ..o e e e e e eeees 117
LI ANy QY PES e, 117
Adding a library t0 the PrOJECT........ueiii e 118
Creating @ NEW lIDFAIY ... e 121
INSLAllING @ NEW LIDFAIYcciiieii e e e e e e e e e e e e rr e e e 123
Managing library VEISIONSocooiiiiiiiii 125
Practical examples and tiPS ..ooooiieiiiiiii s 126
Contents Of thiS CRAPTET ... 126
Solving communication ProbIEMIS........cooiiiiii e 126

Question: What to do when scan network does not find any drives?ccccccooeee 126

Question: What to do if communication fails while establishing online connection to the

(017 PP PP UPPPRPPN 127

Question: What to do if communication fails between Automation Builder/Drive composer

[T (0T 0 o | 1Y = 128

Yo LY/ TaTo T o)1 g 1T gl o] o]] =] o 1 129

Question: How to prevent unauthorized access to an application that is running in the

(0 YU PTPTOTRR 129
Question: How to fix an unknown device in a Project?........ccceevvveviiieeiiiiiiiee e, 129
Question: How to remove a boot application from the flash memory card?................. 129
Question: What to do when | continuously receive “The project handle O is invalid” error
LR TSTEST= 16 [129
Question: What to do when stack overflow fault 6487 occurs?........cccccceeeeeeerivieiinnnnnnn. 130
Question: How to optimize the memory usage of the drive application? 130

Question: How to solve the problem causing error message “Creating boot application
failed: Adding Application Parameters & Groups to UFF generator :
XmliDeserializationFailed“? ... 130

Appendix A: Incompatible features between ACS880 Drive and AC500 PLC IEC

P OO AMIMITIG .t 131
Contents Of thiS CHAPTETeiiie e 131
INCOMPALIDIE TEALUIESo e e e e e e e e e e e e e e e eerenes 131
Appendix B: UNSUppPOrted fEALUIESooiiiiiiiiiiiiiiieieeeeeeeeeeeeeee et eeeeees 133
Appendix C: ABB drives system [iDrary ... 134
Contents Of thisS Chapter..........ooooi i 134
Introduction to ABB drives system liDrary ... 134
Function blocks of the system lbrary...........cooiii e 135
EVeNnt FUNCHON DIOCKSciiiiiiiiee e e e e e e e 137
R O PRSP 137
REAUEVENTLOQ ...ttt e e et eees 138
Parameter change function DIOCKSccuviiiiiiiiii e 140
PAR _UNIT _SEL....ooiiiiiieieeeeieeeeee et s s s s s s sttt eneeaneees 140
PAR_SCALE_CHG ...ttt e e e e e e s e e ee e s 141
Parameter limMit ChaNQE e 143
[G 11 @1 - [| O PRSP 143
PAR_LIM_CHG_REALvivivieeeeeeeeeeeeeeeee s nen e sttt 144
PAR _LIM_CHG _UDINT .ottt e e a e e e e e e st e e e e e e e e e nnnnnnnaeeeeens 145
Parameter default value Change...........uuuiiii e 146
PAR_DEF_CHG_DINT oiiiieiiiiitiieiee ettt e e e e e s e e e e e e e e st e e e e e e e s e nnnnnneeeeaens 146
PAR _DEF_CHG_REAL ...coeiiiiteeeteee ettt e et e e e e e e e e snnnnneeeeeees 147
PAR_DEF_CHG _UDINT ..ottt ettt ettt ettt en e, 148

Parameter decimal diSPIAYuueiiiiiiiiiiiii e 149

PAR_DISP_DEC ...ttt ettt e e e e e s a e e e e e 149
PAR REFRESH ... e e e e e e e s 150
o T L= (=T o o] £0] (= ox 1o] o 151
e o e o N 151
PAR_GRP_PROT ...ttt ettt e et e e e e e e e s st e e e e e e e e s snnsseeeaaaeeeeeannnenneees 152
Parameter read function DIOCKS............cooooiiiiii 153
e TR T (o] = | U PRI 153
ParRead_DINT ... ——————— 154
= L LT T I 4= I 155
ParRead_UDINT ... 156
Parameter write function BIOCKScooooiiiii i, 157
e TRV L1 (=] = | PP PERRP PR 157
P A Ve DINT i 158
= LTAT A (=T = A 159
ParWHtE _UDINT ... 160
Pointer parameter read fuNCioN DIOCKc..uviiiiiiiiiiii e 161
ParRead _BitPTR ... 161
ParRead_ValPTR _DINT ..o 162
ParRead_ValPTR_REAL.....cooiiiiiiiiiiiiie ettt e e a e e e e e nneeeeees 163
ParRead ValPTR_UDINT ...t e e e e e e e e e e e eereaaaas 164
Set pointer parameter to IEC variable function bIOCKS ..., 165
PArSet_BItPTR_IECcvivcvoveeeeeeeeeeeeeeeeeeeeeeseseses s eses s esessse st e eeseses e sesenenennnans 165
ParSet_ValPTR_IEC _DINT ..ottt e e e e e e e e e e e e e e e nnnenneees 166
ParSet_ ValPTR_IEC_REALccciiiiiiiiie ettt a e e 167
ParSet_ValPTR_IEC_UDINT ...c.ooiiiieee et seeee et en ettt en e 168
Set pointer parameter to parameter function DIOCKSeevviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniennes 169
ParSet BitPTR _Par......cco oo 169
ParSet ValPTR _Par......cccooiiiiii i, 170
Task time level funCtion DIOCKooiiiiiiiiii e 171
USEATIMELEVEL. ... 171
EFTOr COUBS ... 172
Appendix D: ABB D2D function BIOCKS.........uuiiiiiiccicis e 173
Contents Of thisS CRAPTET ... 173
Introduction to ABB D2D function BIOCKS ..., 173

D2D function blocks of the system library ..., 174

10

Data read/Write DIOCKSui s 175
DS _REAALOCAIuutuuiiiiiiiiiiiiiiii e 175
[T 1 =1 I oo | 176

D2D communication DIOCKS 177
LCT=T 1= | R 177
24 I ¥ O PEPPR TP 177
D2D _REC ..ottt ettt ettt ettt ettt ettt 179
D2D TRA REC .. e e e e e e e e e et e e e e e e e eaaaas 181
()2 R I = N |V 183

D2D configuration DIOCKSuuii e 185
(D24 O o 1 | O EEP PR 185
D2D_CONT_TOKEIN ...ttt nnnns 187
(DB R Vo] (T g = 1 = 189

EXAmPpPIES: D2D DIOCKS......uuuuiiii s 190
Example 1: D2D_TRA/ D2D REC bIOCKS......cccoiviiiiiiii e 190
Example 2: Token send configuration BIOCKS............ccccuuiiiiiiiiiiiiieeeee 191

Appendix E: ABB drives standard libraryccooviiiiii e 193

Contents Of thiS CRAPTETciii e 193

Introduction to ABB drives standard lIDraryoiiiiiiiiiiiiiiiiiin e 193

27 T (o {1 o ox 1T L PP RRTTPPTPRPPRRPR 195
2T OO EPP PSPPI 195
] = 196
D 1O RPN 197
DEMUXM ..ottt e e e e e ettt e e e e e e e s et e e e e e e e e e n s b ta e e e e e e e e e e e annnnnraeaaeeas 198
1 199
Y16 Y PP 200
X 4 PRSP 201
ST S P EP PP 202
YA 1O PP PRSPPI 203
1LY 1O RPN 204
L AT O 205

Special FUNCHONS......co o, 206

11

D)V oo 1 (o] TP PP PRPPPR PP 206
1= 209
U Tt T[0T o =T =T > o] 211
LY=o = 1o U 213
[I=T=To N F= o [T PPPPP S PPPP 215
MOLOT POLENTIOMELETiieiieeeeei ittt e e e e e e e e e e e s e r e e e e e e e e e nnnnneees 217
0 PSSR 219
=0 1] I 223
Further information ... 225

12

13

Introduction to the manual

Contents of this chapter

This chapter gives basic information on the manual.

Compatibility

This manual applies to the ABB drives equipped with the application programming functionality. For
example, ABB ACS880 and DCX880 industrial drives can be ordered with the application
programming functionality. The drive must be equipped with N8010 Application programming license
on ZMU-02.

This manual is compatible with the following product releases:
o ABB Automation Builder 1.1
e Drive composer pro 1.5 or later

For more details of compatibility information, refer the corresponding ACS880 or DCX880 drive
software release notes or contact your ABB representative.

Target audience

This manual is intended for a personnel performing drive application programming or for
understanding the programming environment capabilities. The reader of the manual is expected to
have basic knowledge of the drive technology and programmable devices (PLC, drive and PC) and
programming methods.

14

Safety instructions

Follow all safety instructions delivered with the drive.

¢ Read the complete safety instructions before you load and execute the application program
on the drive or modify the drive parameters. The complete safety instructions are delivered
with the drive as either part of the hardware manual, or, in the case of ACS880 multidrives,
as a separate document.

¢ Read the firmware function-specific warnings and notes before changing parameter values.
These warnings and notes are included in the parameter descriptions presented in chapter
Parameters of the firmware manual.

WARNING! Ignoring the following instruction can cause physical injury or damage to
the equipment.

Do not make changes to drive in the online mode or download programs while the
drive is running to avoid damages to the drive.

Purpose of the manual

This manual gives basic instructions on the drive-based application programming using ABB
Automation Builder programming tool. The programming tool is the international IEC 61131-3
programming standard. The online help of Automation Builder contains more detailed information of
the IEC languages, programming methods, editors and tool commands.

Contents of the manual

The manual consists of the following chapters:
e (etting started
e Overview of drive programming
e Creating application program
e Features
¢ Drivelnterface
e Application parameter and event creation
e Libraries
e Practical examples and tips

e Appendix A: Incompatible features between ACS880 Drive and AC500 PLC IEC
programming

e Appendix B: Unsupported features

e Appendix C: ABB drives system library
e Appendix D: ABB D2D function blocks

e Appendix E: ABB drives standard library

Related documents

A list of related manuals is printed on the inside of the front cover.

15

Terms and abbreviations

Term/
Abbreviation

Description

ACS-AP-x ACS-AP-| or ACS-AP-S control panel used with ACS880 and DCX880 drives.
The control panel has an USB connector enabling a PC tool connection for
common architecture drives.

BCU Type of control unit used in ACS880 and DCX880 drives

AB ABB Automation Builder programming tool

CFC Continuous function chart programming language

DI Digital input

Drive composer pro

ABB Drive composer is a 32-bit Windows application for commissioning and
maintaining ABB common architecture drives.

The full version is called Drive composer pro.

DUT Data type unit

FB Function block, type of POU

FBD Function block diagram programming language

FUN Function, type of POU

IEC 61131-3 Standardized programming language for industrial automation. Established by the

programming

International Electro-technical Commission (IEC)

IL Instruction list programming language

LD Ladder diagram programming language

OPC server OPC DA server interface for Drive composer pro that allows other programs, such
as Automation Builder, to communicate with the drive.

PIN IEC variable of the block, which can be connected to other blocks.

PLC Programmable logic controller

POU Program organization unit. POU unit is a unit, object or area where you can write
the program code. Also called as Block.

PRG Program, type of POU

RTS Run-time system

SFC Sequential function chart programming language

ST Structured text programming language

ZCU Type of control unit used in ACS880 and DCX880 drives that consists of a ZCON

board built into a plastic housing.

The control unit may be fitted onto the drive/inverter module, or installed
separately.

16

For more detailed descriptions, see Automation Builder online help.

17

Getting started

Contents of this chapter

This chapter includes the following information required for programming ACS880 and DCX880
drives using ABB Automation Builder tool:

e Quick steps for Setting up the programming environment.

e Procedure for Upgrading a new device, Changing an existing device and Viewing device
information.

Setting up the programming environment

The following software installations are required for programming ACS880 and DCX880 drives. For
details of version, refer the corresponding ACS880 or DCX880 drive software release notes or
contact your ABB representative.

e ACS880 drive or DCX880 converter with Drive application programming license (N8010)
e ABB Automation Builder 1.1

e ACS-AP-x control panel and micro USB cable

e Drive composer pro 1.5 or later

The Drive composer pro enables setting and monitoring of the drive parameters and signals. The
control panel acts as a USB/RS485 converter between Automation Builder, Drive composer pro and
the drive.

18

To setup ACS880 or DCX880 drive programming environment follow the pre-requisites and
installation steps listed below.

Pre-requisites:

e The ABB Automation Builder supports Windows XP and Windows 7 (32-bit and 64-bit
versions) operating systems.

e You must have Administrator user rights to install Automation Builder.
Installation steps:

1. Install Drive composer pro to enable communication with the target drive. For more details, see
Drive composer user’s manual (3AUA0000094606 [English]).

2. Inthe Drive composer pro System info -> Products/Licenses, check that the ACS880 or
DCX880 drive has an active IEC programming license and the drive firmware version is correct.
For details of version, refer the corresponding ACS880 or DCX880 drive software release notes
or contact your ABB representative.

Install ABB Automation Builder version 1.1 according to the instruction guide included in the
installation media of Automation Builder. All drive application programming related components are
automatically installed as well.

In Automation Builder, select Install Software Packages for -> Programmable Drive.

kR ABB Automation Builder Setup 1.1.0 Build 790 - Sele

Automation Builder

4L Hb ED
Ol - FADD
Engineering Productivity
Select type of installation: Description | Release Motes I Packages
[Premium Edition '] - Drive application programming -

Install software packages for: The application programming tool of ABB ACS5880 and

DCX880 drives

= =® W] ABB Automation Builder
= =®[w] PLC - AC500
=[] Safety PLC - AC500-5
=—[w] C/C++ Programming
=) [w] Centrel Panel - CPE00 This software package contains the following main components
= =B [w] Drives and features:

#) [w]| Drive Manager » programming drive in CODESYS V2 environment based on IEC 61131-3
_|:| Servo Drives standard
—[] Dnve composer pro # create additive parameters and events to drive user interface

=—[_| Robot Controller - IRCS » download, monitor and debug target over ABB Drives tools communication

Motice: Requires installation of Drive composer pro 1.6 or laters

w | Install also previous product versions
[] Automation Builder 1.0
[] Control Builder Plus 2.2
[] Control Builder Plus 2.1 ¥

=== NotInstalled o» Up to date (¥ Update requirad N _
— Previous] I Download and install] I Cancel
= Downloaded

Figure 1: Automation Builder — Selecting software packages for installation

19

To allow parallel communication with Automation Builder and Drive composer pro, follow these
steps:

1. Inthe main menu of Drive composer pro, click View and then click Settings.

2. In the Settings window, select Share connection with Control Builder Plus check box and
click Save.

I_Eﬁ Settings

Dnive composer default language: | In english

Dinve default language: |

[:l Disable local control

Share connection with Control Builder Plus

Save Cancel

Figure 2: Drive Composer Pro settings
After configuring the settings, restart Drive composer pro.
Drive composer now connects to the drive and allows opening the Automation Builder.
Now you can create an application program. See section, Creating application program.

20

21

Overview of drive programming

Contents of this chapter

This chapter provides an overview of ACS880 and DCX880 drive programming environment and a
typical work cycle of drive application programming.

Drive application programming

ABB ACS880 and DCX880 industrial drives can be ordered with the application programming
functionality. It allows you to add your own program code to the drive using the ABB Automation
Builder programming tool (version 1.1). The programming method and languages are based on the
IEC 61131-3 programming standard. ABB Automation Builder is also used for configuring and
programming the ABB AC500 PLC family devices.

With the drive application programming, you can create application specific features on top of the
drive firmware functionality. You can utilize the standard and extension I/O and communication
interfaces of the drive along with the appropriate firmware signals. Your program is executed in
parallel with the drive control tasks using the same hardware resources.

In addition, you can create your own parameters and events (faults and warnings) that are visible on
the ACS-AP-x control panel and in the Drive composer pro/entry commissioning tools.

Note: For using ABB Automation Builder online with the drive, enable the drive application
programming license in the target drive. See section, Establishing online connection to the
drive.

22

System diagram

The following simplified system diagram shows the application programming environment in the

same control unit as the drive firmware.

ZCU-xo or BCU-xx control unit

Fw paran'relers]

[FW events

IEC User Riesiint
funciil P s] | User events
libraries

A DD
‘al]

Automation Builder

Foee Internal
/n P
x13
PC

ABB S Panel

mh
AR Drive FW parameters
compasar pro ’ D2D communication, Ext /O, et

(IO, drive control)

ACS880 firmware

Figure 3: Application programming environment — System diagram
The following list describes the main components for application programming.
Drive control unit:
[]

Run-time system (RTS) executes the application program.

¢ Drivelnterface allows input/output mapping between the application program and drive

firmware parameters.

System function library enables access to the drive system services (parameters/ events/
drive-to-drive communication, extension 1/O).

User made parameters.

User made events (fault, warnings).

Drive System info includes version information of the application program.
Drive firmware parameters with 1/0 controls.

D2D function blocks enable drive to drive communication, I/O extension modules, and so on
for application programming.

Drive memory unit:
¢ Creates a permanent version of the application program (Boot application).
¢ Retains values of the application program variables .

¢ Consists of application source code (Note that the size of the memory is limited).

23

¢ Includes symbol and address information of the application program variables for monitoring
purposes.

PC tool programs:

o ABB Automation Builder for application program development and online operations.
e ABB Drive composer pro for drive parameter, signal, event log monitoring and settings.
e Application program function libraries (for example, ABB standard library).

e The USB/ACS-AP-x control panel enables communication between the Automation Builder,
Drive composer pro and the drive.

Programming work cycle

The following steps describes a typical work cycle of the drive application programming tasks of
performing the module:

1.

N oo o s

Creating a new project, adding objects, defining the target and first program module in the
Devices tree.

Defining the interface to drive firmware parameters (I/O access, drive control) in the
Drivelnterface object.

Defining user parameters and events (ApplicationParametersandEvents) module in the Devices
tree.

Developing the program structure and coding program units.
Defining the program execution task configuration editor.
Compiling and loading the code using Build menu.

Creating boot applications if new parameters, mappings, events or task configuration are added
in the Online menu.

Debugging the program code (stepping, forcing variables and breakpoints) in the Online menu.

Monitoring program variables in Automation Builder and Drive composer pro from the watch
windows of the View menu.

10. Repeating the cycle from step 2 to 8 for testing the program.

Special tasks

The following special tasks are part of the drive application programming tasks:

1.

Saving or restoring the source code to the permanent memory of the drive using the Online
menu.

Saving the drive IEC symbol data to permanent memory of the drive from the Devices tree using
the option Add Symbol configuration object to the tree.

Naming and versioning the application from the Application properties window or Project
information.

Removing the application from the target using Reset origin window on the Online menu.

24

Programming languages and modules

The programming environment supports programming languages as specified in the IEC 61131-3
standard with some useful extensions. The following programming languages are supported:

¢ Ladder diagram (LD)

¢ Function block diagram (FBD)

e Structured text (ST)

¢ Instruction list (IL)

e Sequential function chart (SFC)

e Continuous function chart (CFC), normal and page-oriented CFC editor

A program can be composed of multiple modules like functions, function blocks and programs. Each
module can be implemented independently with the above mentioned languages. Each language
has its own dedicated editors. For more information of the programming languages, see
Automation Builder online help and chapter Features.

Libraries

Program modules can be implemented in projects or imported into libraries. A library manager is
used to install and access the libraries.

The two main types of libraries are:
¢ Local libraries (IEC language source code, for example, AS1LB_Standard ACS880_V3_5)

o External libraries (external implementation and source code, for example,
AY1LB_System_ACS880_V3_5)

Local libraries include source code or can be compiled. If the library is compiled, source code is not
included in the library.

External libraries include AC500 PLC libraries used with the drive target by opening the library
project in Windows as Automation Builder project files (before V3.0).

For more information on compatibility, see chapter Libraries.

Program execution

The program is executed on the same central processing unit (CPU) as the other drive control tasks.
In real time applications, programs are typically executed periodically as cyclic tasks. The
programmer can define the cyclic task interval. For more information, see chapter Features.

Drivelnterface

The Drivelnterface object enables input and output mapping between the application program and
the drive firmware using the drive firmware parameters used in the application program. This list of
parameters may be different for each drive firmware versions. For more details on implementing the
Drivelnterface and updating parameter list, see section Drivelnterface.

25

ApplicationParametersandEvents

The ApplicationParameterandEvents Manager (APEM) object allows creating application parameter
groups, parameters, parameter types, parameter families, units and application events for the drive
in Automation Builder environment. For more details on how to create parameter related tasks and
application events, see section ApplicationParametersandEvents.

26

Creating application program

Contents of this chapter

This chapter describes the procedure to create application program.

For details of instructions and further development steps see chapters Drivelnterface, Application
parameter and event creation, Features and Libraries. For more detailed descriptions, see also the

Automation Builder online help.

27

Creating a new project

After starting ABB Automation Builder programming environment, you can create a new project.

1. Inthe Start Page, click New Project or in the main menu, click File and then click New Project.

EF| StartPage X

Automation Builder 1.1.0

Basic Operations

=] Mew Project...
ﬁr Open Project...
ﬂj Open Project fram PLC...

Figure 4: Automation Builder — Create a new project

2. Inthe New Project dialog box, select ACS880 or DCX880 project and click OK.

Categories: Templates:

{1 (General) iﬁ

ACS00 project ACSB30

project

Empty project

A project containing one drive, one application, and an empty implementation for PLC_PRG

Mame: Projectl

Location: Eﬂ

Figure 5: Select a project

Note: If required, rename the project in Name field and select the desired Location in the file
system.

28

In the Standard Project dialog box, select the type of control unit in Device drop-down list.
e ACS880_AINF_ZCU12_M_V3_5 for ZCU-xx control unit
e ACS880 AINF _BCU12 M V3 5 for BCU-xx control units

Check the control unit type of the target drive either from the unit itself, from the hardware
manual of drives or contact your local ABB representative.

In the PLC_PRG in drop-down list, select a programming language and click OK.

e You can later add program modules made with other languages to the project.

Standard Project

You are about to create a new standard project. This wizard will create the following
objects within this project:

il -

-0One programmable device as specified below

- A program PLC_PRG in the language specified below

- Task and openings as defined for the selected device. First created task will call
PLC_PRG.

- A reference to the newest version of the ABB Standard library and ABE System library
currently installed.

Device: [ACSBBU_AINF_ECU 12_M_V3_5 (ABBE Ov) w7]

PLC_PRG in: |Function Block Diagram (FED) - |
Continuous Function Chart (CFC)

Continuous Function Chart (CFC) - page-oriented
Function Block Diagram (FBD
Instruction List (IL)

Ladder Logic Diagram (LD)
Sequential Function Chart (SFC)
Structured Text (ST)

Figure 6: Select a programming language

A simple project for an ACS880 target drive is created in the Devices tree.

Devices ~ 1 X
=) Projecthamel -~
= - [|acs880_AINF_ZCU12_M_V3_5 (ACSBB0_AINF_ZCU12_M_V3_5)

=-E]] PLE Logic
= O Application

m Library Manager
ﬂ ApplicationParametersandEvents
PLC_PRG (FRG)
= @ Task Configuration
aﬁs Task_1 (Task_1)
ﬁ Drivelnterface (ACS380 parameters AINFX 1.30)
+--[] Device (ACSE80_AINF_BCU12_M_V3_5)

Figure 7: New project created in the Devices tree

29

The Devices tree includes:
e PLC Logic

¢ Drivelnterface for firmware signal and parameter mapping

¢ Application (for example, you can add the following objects under Application)

o Library Manager for installing function libraries

o ApplicationParametersandEvents for creating user parameters and events

o Program organization units (POUS)

o Task Configuration module for defining in which task the POUs are executed

o Textlist

o Symbol configuration

o Global variable list

o Data type units (DUT)

For changing the device type, see section Changing an existing device.

Updating project information

You can update a Company name and Version number for the application program in the Project
Information window. This information is visible in Drive composer tool and ACS-AP-x control panel in
the System info display. It also helps to identify the loaded application without the Automation
Builder tool. You can also name the application from the application tool.

To update project information in Automation Builder, follow these steps:

1. In the main menu, click Project and then click Project Information.

File Edit Wew | Project | Build Online

Update project
el Scan For Devices...
Add Folder...

Edit Object

Ly L

Devices
=2 Projecihame,

=[] |acsaso_
=81 rec

'-'.:;‘J

Edit Object With...
Chedk integrity
Bill of material

ﬁ Set Active Application

Debug Tools

i|ﬂ

Project Information. ..

o
“§
£ oriv &

Project Settings...
Project Environment...
Document...

Compare Objects

[} Compare...

Map pool devices...
User Management
Import

Export

»

Window

-

Help

I

x
£

NF_ZCII12_M_V3_5)

[NFX 1.80)

Figure 8 Updating project information

In the Project Information window, select Summary tab, update the desired information and click
OK.

Project Information

File Summary | Properties | Statistics | Licensing

Company: ABB TNDIA

Title: IEC TESTING

Version: [] Released
Library Categories:
Default namespace:

Author:

Description: IEC TESTING 2014

The fields in bold letters are used to identify alibrary.

[7] Automatically generate POUs for property access

[

Figure 9: Project information

The updated project information is not loaded to the target application. Further steps explain how
to copy this information to the application information fields.

In the Devices tree, right click Applications and select Properties.

Devices - 0 X

=5 Projectiamel (=]

=[] Acsss0_AINF_ZCU12_M_V3_5 (ACSEB0_AINF_ZCU12
=B PLC Logic

= u Application |

i) Library Copy

@ Appiic= Paste
PLC_P 1 ar
= @ Task C
& T X Delete
ﬁ DriveInterfac| Properties...
Add object
Update object

Scan For Devices. ..
Add Folder...
Edit Object

L, @

Edit Object With...

Import 4

Export 3

% Login

Figure 10 Application properties

31

4. In Properties window, click Information tab and then click Reset to values from project
information and click OK.

| Build | Boot application | Access contral |} Information ! e

Author:
Company: ABB INDIA
Version:

Description: IEC TESTING 2014 -

-

[Eesettovalues from project information]

i OK] [Cancel] Apply

Figure 11: Copy information to application information fields

The Automation Builder tool version and project identification code are registered automatically.

32

Appending a new POU

To append a new POU, follow these steps:
1. Inthe Devices tree, right-click Application and select Add object.

Devices + 31 X
=5 ProjeciName1 -
= [ACsSs80_AINF_ZCU12_M_V3_5 (ACS880_AINF_ZCU12]
=B PLE Logic
= u Application
Copy
Paste vents

Cut
Delete

&
w
iEoD Properties... rs AINFY 1.30)

| Addobject
Update object

Scan For Devices...

) Aadd Folder...
D"&

Edit Cbject

Edit Object With...

Import 4

Export 3
q Login

Figure 12 Application add object
2. Select POU and click Add object.

Add object below : Applicati

Object path:
ACSBB0_AINF_ZCU12_M_V3_5\Plc Logic\Application

Object name: POU

Categories| -
""" Generic objects MName Version Order Number Short Description

“.ﬁpplication Parameters
@ Data Server

SpuT

i@ Global Variable List
Image Pool

> Inteface

T Persistent Varables
ﬂ Recipe Manager

/8 Symbol corfiguration

T

Figure 13 Add POU object

In the Add POU window, Name the POU, select the Type of the POU and the used
implementation language and then click Add.

Add POU

@ Create a new POU (Program Organization Unit)

Name:
POL_1
Type:
@ Program
() Function Block
Extends:
Implements:

Access specifier:

Method implementation language:

Continuous Function Chart (CFC)
(") Function

Return type:

Implementation language:
Continuous Function Chart (CFC) v]

Add][Cancel]

Figure 14: Add POU

The appended POU, xxx (PRG) is added to the Devices tree under application and the POU
window is displayed with the declaration part and the program code.

POU X ToolBox + 0

-
PROGRAM PO -[E]| = <
O

k Pointer
‘i Control Point
= Input

VAR
END_VAR

Ly R

= Qutput
IF Box

1|

a4 LI k

— = Jump
= Label

= Return

I Composer

Tk Selector

= Comment

== Connection Mark - Source
== Connection Mark - Sink
IF Input Fin

JIF Output Pin

Figure 15 POU page

34

Writing a program code

A program organization unit (POU) is a unit, object or area where you can write the program code.
The units can be created either directly under the Applications in the Devices tree or in a separate
POUs window (View ->POUs or click POUs in the lower left corner).

The POU includes a declaration part (the upper window) and a program code part (the lower
window).

[1A_ID "[p) TORQUE_MEMORY | & Task 1 [[g) TENSION_TO_SPEED |[5] DIAMETER _HOLD [(g) WINDER_CONTROL [T5] »x
1 PROGRAM TORQUE_MEMORY j
- 2 VAR INPUT
3 ENABLE_TORQUE_MEMORY: BOOL: (* Selects the itvation sowrce to use the mexnc O
4 TORQUE_MEMORY_SAMPLE: BOOL: e 2

s TENSION_CONTROL_MODE_ACK: UINT;:
2 TORQ_REF_TO_TRQ_CTRL: REAL:
TORQUE_BOOST_MUL: REAL:

Declaration part
*

6T ml
[TENSION_CONTROL MODE AKX}
[|=0==F I
|
\ T
| AND] e e O W Program code part

- SET1 a1
| [TORQGUE_MEMORY SAMPLE } L oResET I
|
|
|
B de ,

; N e | @_l};l
< 4

Figure 16: POU window

There are two different types of views for declaration part: a textual view [and tabular view B. You
can switch between these views by clicking the buttons.

POU -
1| PROGRAM FOU i
p: VAR
3 END VAR D
L]] [F R
Fa
"la

Figure 17 POU view type

35

Continuous function chart (CFC) program
This example shows how to create a new project in the CFC implementation language.

Adding elements
1. Inthe Devices tree, select the xxx (PRG) under the Application.

Devices ~ 0 X
= Profectvamel =
=[] Acssa0_AINF_zCU12_M_V3_5 (ACSS30_AINF_ZCU12_M_V3_5)
=-E]l] PLE Logic

=1L} Application
m Library Manager
ﬂ ApplicationParametersandEvents
IPLC_PRG (PRG)
] POU {PRG)
= @ Task Configuration
Sﬁs Task_1 (Task_1)
ﬁ Drivelnterface (ACS880 parameters AINFX 1.80)

Figure 18 PLC PRG
2. In the View menu, select ToolBox.

File Edit | Wiew | Project CFC Buld Online Deby
%
e POUs Alt+0 h h

Devices Alt+1

Devices Messages

Element properties -

i
F
NE m{§

ToolBox
= Watch k
Breakpoints

Call Stack e
Cross Reference List
Start Page

Eull Screen Crl+Shift+-12

i O B | &

Properties...
£/ Drivelnterface (ACS880 parameters AINFX

Figure 19 ToolBox

ToolBox components are displayed and are used to add a CFC scheme.

ToolBox -~ 0
= OFRC

|k Pointer

b Control Point

= Input

= Qutput

IF Box

= Jump

= Label

= Return

I Composer

Tk Selector

= Comment

== Connection Mark - Source
= Connection Mark - Sink

3°F Input Pin
F Qutput Pin

Figure 20: CFC scheme

If an empty ToolBox list is already displayed on the right side of the window, double-click the xxx
(PRG) to display the Toolbox and the POU window. You can add, for example, SEL and AND
elements (logic operators, functions), use the Box element in the ToolBox list.

In the ToolBox list, drag the Box and drop in the program code area.

- | | ToOoIBoX -~ 0
= CRC

L M Paointer

& Control Point

m = Input

= Qutput
IF Box

= Jump

= Label

= Return

Figure 21: ToolBox: Box element

37

4. Enter the name of the function or operand in the ??? field.

e You can also use Input Assistant to find the function, keyword, and operator. To start
Input Assistant, click [-] or press F2.

* (| Input Assistant ” !
L Cotegories
Functionblocks & MName
Keywords & ADR
ConversionOperators & AND
2 ASIN
<> ATAN
> BITADR

Figure 22: Input assistant

HHH

Note: The number in the upper right corner of the white box indicates the execution order
of the function.

5. Right-click on input or output element and select Negate to invert.

B0 Cut
> Delete
Select Al

Input Assistant...

Add object

|Ipdate object

Import 4
Export 4

Megate

EN/ENOD

Figure 23: Invert input/ouput

38

Setting the execution order of the elements

Each element has its own execution order. The number in the upper right corner of the element
indicates the sequence in which the elements in a CFC network are executed in the online mode.
Processing starts from the element with the lowest number, that is 0. Note that the sequence
influences the result and are changed in certain cases.

To set execution order of the elements, follow these steps:
1. Right-click on element and then click Execution Order and select Set Execution Order.

AND E]
- Copy

Paste

Bl cut
¥ Delete

Select Al
Browse 3
Q Input Assistant...

Add object
Update object

Import »
Export 3
Megate
{En EM/ENO
SetRezet 3
| Execution Crder » | T4 sendToFront
Edit Parameters... 21 send ToBack
Connect Selected Pins Lh Move Up
{#F ResetPins L4 Move Down
4=F Remove Unused Pins | Set Execution Order...

Order By Data Flow

Order By Topology

Figure 24: Execution order

2. Inthe Set Execution Order window, type New Execution Order number and click OK.

Set Execution Driti‘ ﬂ

Current Bxecution Order: 0

Mew Execution Qrder (0-1): 0|

[oK] [Cancel

Figure 25 Set execution order

The block execution order is changed.

39

Adding comments to a CFC program

In the ToolBox, select Comment and drag to desired point in the program code area and enter the
comment text.

- | | ToOOIBOX -~ 0
= = CFC
g h; Pointer
b Control Point
= Input
AND = Qutput
IF Box

= Jump

e your conment oo o

= Return
I Composer
TE Selector

= Comment

m

== Connection Mark - Source
== Connection Mark - Sink
IF Input Pin

47F Output Fin

Figure 26: Add comment to a CFC program

Declaring variables

To create a new variable, you can either declare it in the declaration part of the editor window or use
Auto declaration.

Depending on the type of the declaration view (textual or tabular) add a new variable by writing its
properties to a new text row (textual view) or use the TAB button (tabular view). For changing
between the views, see section Writing a program code.

1. Inthe program code area, select the required object.

2. In the main menu, click Edit and then click Browse and select Auto Declare.

Ele | Edit | Miew Project Build Onlne Debug Tools Window Help
al ¥J Undo Ctrl+Z _'T
Redo Ctrl+Y
Device Find Replace 3 - 3 X
= _]]| Browse » | Browse Cross References 3
- Input Assistant... F2 | Auto Dedare... Shift+F2 |_
Mext Message Go To Source Position —
Previous Message

Figure 27 Auto declare option

40

The Auto Declare window is displayed.

AND Auto Declare ﬁ

i Scope: Name: Type:
[\..'AP_ -] Prev_DI1_value BOOL| -
Object: Initialization: Address:
| POU_1 [Appiication] - e
Flags: Comment:
[C] consTANT i
[T rRETAIN
[T] PERSISTENT -

Figure 28 Auto declare variables

If you enable the option to declare unknown variables automatically (Tools -> Options ->
SmartCoding), the Auto Declare window opens every time you use an unknown variable in your
program and you can declare the variable instantly.

Define the Scope, Name and Type of the variable (mandatory).
e Scope defines the type of variable (global, input, output, etc.).
e Name is a unique identifier of the variable and represents the purpose of the variable.
o Type is the IEC data type of the variable.

Optionally, you can also define the Initialization value, Address, Comment or Flags for the
variable.

Flags have the following meaning:

¢ CONSTANT means that the variable value cannot be changed and the variable maintains
its initial value all the time.

e RETAIN keeps its value over reboot and warm reset.
e PERSISTENT is not supported.

41

Adding inputs and outputs

You can add inputs and outputs by selecting ToolBox elements. See section Adding elements.

ToolBox - 1
= CFC

k- Pointer

i Control Point

= Input |

= Qutput

E Eh:ux[Insert an input elerment]
H=

=

Jump
Label
= Return
T Composer
1 Selector
= Comment
== Connection Mark - Source
= Connection Mark - Sink
4°F Input Pin
F Qutput Pin

Figure 29: ToolBox for adding inputs and outputs

Another way to add inputs and outputs straight to a block is to select a pin of a block and start typing
the name of a variable.

1. Inthe program code area, select the pin of the block.

POU X -
FROGRAM FOU - E
= 2 VAR =
3 In: BOOL: D
4 END VAR -
4 T 5

Figure 30 Naming inputs and outputs

2. Name the input or output by writing the variable nhame to the block or use input assistant as
described in Declaring variables.

3. To connect the input or output block to a pin, left-click the line connected to the block and drag it
to a pin of another block.

42

Creating a block scheme
Example:

Create the following CFC program:

Mumber_of_falling_edges

prev_DI1_value e
AND'—{|

prev_DI1_value

Figure 31: Example of CFC program
The following local variables are required in the block scheme.

PROGRAM FLC FRG

s _

r 2
=]
4 Number of falling edges: BOOL;
5 prev_DI1 walue: BOOL; /s := False:
DI: BOOL: /s := Trus;
7 END VAR

Figure 32 Local variables

During block scheme programming, the already created variables are displayed in the Input
Assistant and new declarations are added to the variable declaration area.

For using the Input Assistant, see section Adding elements in Continuous function chart (CFC)
program.

43

Preparing a project for download

To prepare a project for download, follow these steps:

1. In the main menu, click Build and select Build.

File Edit Wiew Project | Build | Online Debug Tools Window
Help ¥ Buid F11

E= 5 Rebuild

Generate code

Devices Generate runtime system files. .. i1
=3 Profeciamel Clean
- [[acssso_amF _zcL. ~
=-El] PLC Logic
=} Application
m Library Manager
ﬂ ApplicationParametersandEvents

PLC_PRG (PRG)
= @ Task Configuration
= @ Task_1 (Task_1)
H pLC_PRG
ﬁ DriveInterface (ACS880 parameters AINFY 1.50)

Ex

|

Clean all

Figure 33 Build
2. Inthe View menu, select Messages. A Messages window is displayed.

e Check that there are no errors or warnings. Otherwise, check and fix the application.

Messages - Totally 0 error(s), 0 warning(s), 10 message(s) -
Build ~ | € Oerror(s) & 0warning(s) % 5 message(s) | 3
Description Project Object Position

------ Build started: Application: Device.Applia...
The applicationis up to date

Compile complete — 0 errors, 0 warnings

Figure 34: Build project message window

In the example, the process is successfully completed without any errors or warnings and the
project is ready for download.

Establishing online connection to the drive

The Automation Builder communication gateway handles communication between Automation
Builder and the drive. The gateway is a software component that starts automatically at the power-
up of the PC after installing Automation Builder.

Before starting with the communication setup, follow the pre-requisites listed below.

Pre-requisites:

44

1. Connect PC to a drive through USB port of the ACS-AP-x control panel using a standard USB
data cable (USB Type A <-> USB Type Mini-B). For information on making the control panel to
PC USB connection, see ACS-AP-x control panel user’'s manual (3AUA0000085685 [English]).

Make sure the ACS-AP-x USB driver is installed. For installation procedure, refer Drive
composer user’s manual (SAUA0000094606 [English]).

Make sure the drive has application programming license N8010. To check license information in
Drive composer pro and in ACS-AP-x control panel, go to System info -> Licenses.

To establish online connection to the target drive after defining the device type, follow these steps:
In the Devices tree, double-click ACS880_AINF_ZCU12 M_V3_5 and then click

1.

Communication Settings.

e Gateway-1 is displayed by default.

Devices * I X
=5 Projectiamel (=]
= ﬁ'i |DEViCE (ACSBB0_AINF_ZCU12_M_V3_5)
=Ml PLC Logic
=4} Application
m Library Manager
ﬂ ApplicationParametersandE
[F] PLC_PRG {PRG)
= @ Task Configuration
= @ Task_1 (Task_1)
] pLC_PRG
§ DriveInterface (ACS8580 parameter

=T D= =Tt

FUL (R,

4 (L 2

=% Devices D POUs

ﬂi Device X

Communication Settings |,|!\pp|icati0ns | Log

| Users and Groups I Access Rights | Information

Select the network path to the controller:
Gateway-1

#1q Gateway-1

Device =
Name:
Gateway Add gateway...
-1

. Add device. ..
Driver:
TCPR/IP =
P-
Ridress
localhost

Filter =

Port:
1217 - Target ID e

|:| Don't store communication settings in project

[] Confirmed online mode

Sorting order :

Figure 35: Communication settings

45

g

control panel settings.

Communication Settings |App|it3tions I Log I Users and Groups I Access Rights I InFormaﬁonl

Select the network path to the contraller:

Gateway-1 - Set active path
i Gateway-1 Device Name:
Gateway-1
Add gateway...
Driver:
e
IP-Address:
localhost
port:
1217

Filter :

Target ID

[
&

=1

=

=1

o

E

=%

m

[}

4

|:| Don't store communication settings in project

[7] confirmed online made

Figure 36 Gateway disabled

Note: If the gateway displays red Fid , the CODESYS Gateway V3 is disabled in local

2

3.

. Open Control panel -> Administrative Tools -> Services in the user PC.
In the Services window, double-click CODESYS Gateway V3.

Eile Action

& |[EE o= HmE penwp

View Help

‘. Services (Local) ,-H& Services (Local)

a~

CODESYS Gateway V3 Version Mame

3.5.4.40

.,.: Certificate Propagaticn

£, Cisco AnyConnect Secure Mobility ...
£ Cisco AnyConnect Web Security Ag...
4 CNG Key Isolation

.,.: CodeMeter Runtime Server

f.q, CODESYS Gateway V3 Version 3.5.4.40
(., CODESYS ServiceControl Version 3.5...
.,.{ COM+ Event Systermn

.,.: COM+ Systern Application

Status

Started
Started
Started
Started

Started
Started

' m

Startup Type =

Manual
Automatic
Manual
Manual

Automatic
Dizabled

Automatic
Automatic
Manual

Extended){Standard /

Figure 37 Gateway services

A Properties window is displayed.

46

4. In the Properties window, select the desired Startup type from the available drop-down list and
click OK.

CODESYS Gateway V3 Versio

General | Log On | Recovery | Dependencies

Service namea: CODESYS Gateway V3
Display name: CODESYS Gateway V3 Version 3.5.4.40

Description: ‘

Path to executable:
"C:\Program Files* BB AutomationBuilderGatewayP LC\WGateway Service &

Startup type: | Disabled ~|

Automatic (Del Start
Help me corfigure :

Marual

) Dizabled
Service status: oroppea

Start Stop Pause Besume

You can specify the start paemeters that apply when you start the service
from here.

Start parameters:

Figure 38 Startup type
CODESYS Gateway V3 is enabled and turned to green [d.

Communication Settings | Applications | Log I Users and Groups | Access Rights I Information

Select the network path to the controller:

Gateway-1 hd Set active path
..... #ig|Gateway-1 Device Name:
Gateway-1
Add gateway...

Driver:
S
IP-Address:
localhost
port:
1217

Filter :

Target ID

LA

&
=4
=

e
o
=5
o
m
i

4

|:| Don'tstore communication settings in project

[] Confirmed online mode

Figure 39 Gateway enabled

Ensure that the following default communication settings are correct.
¢ Node Name: Gateway-1
e Driver: TCP/IP
e |IP- Address: localhost (Remote gateways are not scanned)
e Port: 1217

If Gateway-1 is not available, click Add gateway.

[1] Device x =
Communication Settings |npdit3ﬁons | Log I Users and Groups | Access Rights | Information

Select the network path to the contraller:

| - Set active path

Add gateway...

Add device...

Scan network

Filter :
Target ID -

Sarting order :

Mame -

[7] Don't store communication settings in project

[] Confirmed online mode

Figure 40 Add new gateway
In the Gateway window, select the appropriate settings and click OK.

Mame: Gateway-1

Driver: ‘]’cpﬁ v'
ocalhost

IP-Address
Port 1217

The setting 'IP-Address’ can beused to specify an IP Address for the
gateway. This is useful if you want to connect to a remote gateway running
on another PC or device.

By default, this setting is localhost’ to directly connect to the gateway on
yoaur PC,

Figure 41 Gateway settings

48

8. Check that the USB cable is connected to the USB connector of the ACS-AP-x control panel and
the drive is powered.

For communication related problems, see practical examples and tips for Solving communication
problems.

9. Double-click Gateway-1 or click Scan network to search the target device.

o Filter Target ID displays only devices that are of the same type as the device selected in
the Devices window.

e The gateway device is added under Gateway-1.

m Device X -

Communication Settings |Applications I Log I Users and Groups I Access Rights I Information|

Select the network path to the controller:
Gateway-1 hd Set active path

= 1"1.|Gateway—1[scanning...) | Device
Name:
= gy IN-L-KBXID11166{0051.0001] Gateway-1

[l Acsaso[0051.0001.0201]

Driver: Add device...
TCR/IP

TP-Address:
localhost

Port:

1217
Filter :

Target ID

Don't store communication settings in project
B 3 B Sorting order :

[] confirmed online mode

Mame

Figure 42: Adding devices under Gateway

10. Under Gateway-1, double-click or right-click the device and select Set active path.

m Device X b

Communication Settings |Ap|:r|ications I Log I Users and Groups I Access Rights I Information|

Select the network path to the controller:

Gateway-1:0051.0001,0201 - Set active path
= g Gateway-1 Device -
Name:
= f‘f IN-L-KBXTRI 1166 (P051.0001] ACSE30 add gateway. .
[Tl Acssso[0051.0001.0201] (active) i 1
Device 3 Add device. ..
Address:
0051.0001.0
201 N
rarget 0
1612 0010
Target Filter :
T Name:
4 LLL} * < Target ID -

|:| Don't store communication settings in project

=| &
B3
3| =
=
mlﬂ
[=]
]
(=
]
4

[7] confirmed anline mode

Figure 43: Activating devices under gateway

¢ If the drive has appropriate license code, the selected device is set as active path and is
ready for downloading a program to the drive. See section Downloading the program to the
drive.

49

¢ If the drive does not have the required license code, the selected device is displayed with no
license.

(1] Device x
Communication Settings |App|i:3ﬁons I Log | Users and Groups | Access Rights Informatior1|

Select the network path to the controller:

Gateway-1:0001.0201 - [Set active path
= .{-‘.’1. Gateway-1 Device E.lame: -
ACS880 (no B
= §% IN-L-KBXTO11166 [0001] license) add gateway...
[f| \AC5880 (no license) [0001.0201] (active) _
Device A [Add device. ..]
Address: =
0001.0201
Target ID:
16120010 — | scannetwork |
Target Hame:
Filter :

[Target 1D -]

b Target Type: =

1 | 1] [e

[] Don'tstore communication settings in project Sorting order :

[Name -]

[] confirmed online mode

Figure 44: No license notification

7 Note: To see which port and node is used by each device, see the information in the

device name in brackets [GGGG.PPNN] where:
o GGGG is the gateway number
e PP isthe OPC channel number
e NN is the OPC node number

50

Downloading the program to the drive

After the project is ready for online communication with the drive, you can download and execute the
written program to the drive. Check that the active path to the target device is defined in the
communication settings. For more information, see section Establishing online connection to the
drive.

1. In the main menu, click Online and select Login.

File Edit Wew Project Build | Online | Debug Tools Window Help
AW & 2% Loan A4S
Logout Ctrl+Fa
Devices Create boot application
=i Profeciamel Logoff current online user
=[] Device (ACsa80_AINF_ZCL Download
=-El] PLC Logic e
" S Online Change
= Application
m] Library Manag Source download to connected device
ﬂ ApplicationPar Reset warm
[F] PLC_PRG (PRE Reset cold
POU (PRG)
Reset origin
= @ Task Configurz
=58 Task_1(Ts Restart ProxyRTS

& PLC_PRG
£[ig Drivelnterface (ACS880 parameters AINFX 1.80)

Figure 45 Login
The following dialog is displayed if the program is not downloaded before. Click Yes.

Automation Builder - Beta ﬁ

Mo program on the target: Do you want to perform a download?

EalaT

Figure 46: Perform a download

51

After the download is complete, the background color of the device name and the application
name in the Devices tree changes. The program is in stop mode and the status is shown in the
brackets [stop]. You can start the program by selecting Start in the Debug menu.

File Edit WView Project Build Online Debug Tools Window Help
B=zHE & ¢4 25 RO
Devices * 0 X m Device X -
= ‘@ Profectvamel E] Communication Settings |Ap1:|limt'ons | Log I Users and Groups | Access Rights I Information
= Dewvi ected] (ACS830_AINF_7CU12_M_V3
&i @l]\nce T ¢ = = LU Select the network path to the controller: &
= PLC Logi
S Gateway-1:0001,0201 v| [setactive path
=1} Application [stop]
m Library Manager = #—’-’io Gateway-1 Eg;élggr‘:lam e
ﬁ ApplicationParametersandEvents = —;fi IN-L-KBXTD11166 [0001] R T T
[f] PLC_PRG (PRG) [l acsssoM [0001.0201] (active) | |Device
Address: = A
POU (PRG) o) E Add device...
- Symbol configuration
= @ Task Configuration Iglzgoogom B =
= @ Task_1 (Task_1) Scan network
& pLC_PRG [(EC=ELETrs
§ Drivelnterface {ACS380 parameters AIMFX 1.80) Filter :
Ta T
« | I | » mqrqu == Target ID -
Don't store communication settings in project
< r | (] L Sorting order :
- [confirmed onlinemade g
=%, Devices POUs Name -
Lastbuild: € 0 % 0 Precompile: € _ Program loaded Program unchanged Current user: {nobody)
—

Figure 47 Program in stop mode

For more information on downloading program, see section Application download options in
chapter Features.

52

Executing the program

To execute a program, follow these steps:

1.

In the main menu, click Debug and select Start.

POU (PR

[ff] PLC_PRG (PRG)

G)

- Symbol configuration
= @ Task Configuration
= @ Task_1 (Task_1)
& PLC_PRG
£[iy Drivelnterface (ACS880 param

File Edit Wiew Project Build Online | Debug | Tools Window Help
s H S #h 5/ |y » st &
Stop Shift+F3
Devices Single Cyde Cirl+F5
=G FProfectVamel uﬁ Mew Breakpoint. ..
= 1] Device [connected] (ACS80_AINF_ Toggle Breakpoint F9
=-El] PLE Logic
. - Step Qwer F10
- I Application [stop] N
m Library Manager step Into Fa
ﬂ ApplicationParametersa Step Out Shift+F 10

Run to Cursor
Set next Statement

Show next Statement

Write values

Force values

nforce values

Figure 48: Debug menu

The application status changes to [run] and notifies that the program is executed successfully.

=[] Device [connected) (ACSB80_AINF_ZCU11_M_V3_5)

_ _B]_startPage
= ProjectName I b

PLC_PRG [[f] Device

ACS880_AINF_ZCU_M_¥3_5.Application.POU

= B PlcLogc Expression Type alue Prepared value Comment =
gy - % DIl BOOL Digitsl input 1 from 200 =
"} Application frm} @ prev_DI1_value BOOL Previuas DI value =
i) Lbrary Manager @ Number_of Faling_edges UDINT 0 Counter of fallng edges in DI1
@ ApplicationParametersandEvents
PLC_PRG (PRG)
=& Task Configuration
& Task_1(Task_1)
408 DrielnterFace (ACSS80 parmatars AINFX 1,30} Falling egoe ngger Fimpul 1 5TRUE . ihen ipix 35 copreoli0 Dupul olberie il 2
SEL
Loculio of e s oulpul seling must be affer fre AND blbck

Figure 49 Executing a program

To set or change a value of an existing variable, double-click the cell in the Prepared value
column, type a new value and press Enter.

In the Debug menu select Write values to apply the prepared value to the variable.

In the Debug menu, select Force values to force the prepared value to the variable.

In the Debug menu, select Unforce values to unforce a forced value.

The variable value is changed. The current variable values are displayed in the Value column
and in the source code near the variable.

53

6. Inthe Debug menu, click Stop and then in the Online menu, click Logout to logout.

A WARNING! Ignoring the following instruction can cause physical injury or damage to
the equipment.

Do not debug or make changes to drive in the online mode or while the drive is
running to avoid damage to the drive.

54

Creating a boot project

The regular downloading moves the application program to the RAM memory of the drive. Creating a
boot project copies the application to the non-volatile memory of the drive memory card and thus
retains the application after power cycle or reboot. For more details, see section Application
download options.

To create a boot project, follow these steps:
1. Inthe main menu, click Online and select Create boot application.

File Edit Wew Project Build | Online | Debug Tools Window Help

9 = H) % Login Alt+F3
¥ Logout Cirl+Fs
Devi | Create boot application
= FProfectvamel Logoff current online user
= ﬁ |De~.r||::e [connected] (ACS3E Download
=-Ell] PLC Logic
- r‘j Ap jon [sto Online Change
m Library Manag Source download to connected device
ﬂ ApplicationPar Reset warm
] PLC_PRG (PRG eyt
POU (PRG)
Reset origi
B2 symbol configy e
= @ Task Configurz Restart ProxyRTS
= @ Task_1(Task_1)

H pLC_PRG
£y Drivelnterface (ACS880 parameters AINFX 1.80)

Figure 50: Create boot application

The following message is displayed. Click Yes to reboot the drive.

Automation Builder - Beta

Creating a3 boot application will lead the drive to reboot. The drive must be in stopped state.
Do you want to continue?

[] Reset application parameters to defaults

Figure 51: Reboot drive after boot project

The reset to default values is optional. If you select Reset application parameters to defaults
option, the next boot resets all the application parameters to their default values. The previously
set values are not restored from the permanent memory.

55

Select this option when a new application is loaded to drive or a reset origin has been performed
or when application parameters of the new application are different from the previously loaded
application.

Note: It is recommended to select the Reset application parameters to defaults
option whenever you load a new application to the drive or whenever you change
the parameter definitions of the existing application (APEM).

After creating the boot application, the status changes from STOP to RUN.

System prompts to save the boot application, click Save.

56

Features

Contents of this chapter

This chapter describes the device handling information and features supported by Automation
Builder.

Device handling

In the application programming environment, devices represent hardware. The device description file
contains information about the target device (drive) from the programming point of view like the
device identifier, compiler type and memory size. The ABB Automation Builder installation package
installs the device description files automatically.

The device description may be updated later and a new file can be installed. The system monitors
that a project with an incompatible device description file is not loaded to the drive.

The following topics describe device handling:
¢ Viewing device information
e Upgrading or adding a new device
e Changing an existing device

e Viewing software updates

57

Viewing device information
To view the detailed device information, follow these steps:

¢ In Devices tree, double-click device and click Information tab.

Devices - 3 X m ACS8B0_AINF_ZCU12_M_V3_5 X -
=3 ProjectMamel
= ﬂ ACS880_AINF_ZCU12_M_V3_5 (ACSS880_AINF_ZCU12_M_V3_5)

| Communication Settings | Applications I Log I Users and Groups I Access Rights | Information L

= Bl PLC Logic General:
. S Name: AC5330_AINF_ZCU12 M_V3 5
=¥ s] _AINF_; L M_V3_
% Application @ vendor:ABE Oy
m Library Manager Groups: Drives
ﬂ i‘-\pplic_aﬁi:nf'ar_el:metersandEuents };ﬂ:gggm
PLC_PRG {PRG) Version: 3.5.4.0
=& Task Configuration Drive FW: AINFX
& Application Interface: 3.0.0.1
=% Task_1(Task_1) Description: ACS330 drive, ZCU-12 and ZCU-14 control boards

& pLC_PRG
§ Drivelnterface (ACS880 parameters AINFYX 1,80)

Image:

Figure 52: Device information

The Device ID (1612 0010), Drive FW name (AINFX) and application interface version (3.0.0.1) must
be identical in the project and drive target. In Drive composer pro, use the System info option to
check that the drive target has the corresponding application interface version and device type and
drive firmware name (displayed in parameter 7.04).

58

You can also check if the drive target has the corresponding application interface version and device
ID.

¢ In Drive composer pro, click System info -> Products -> More.

Drive name: JToELEn 9/4/2014 3:00:17 PM 0/4/2014 30105 PM =

Products

Dnive type: ACS830

Drive model: Mot selected More |
Serial number: -
Firmware version: AINFT v1.34 200.10 Licenses |
Description:

Drive name: ACS220

IMRP code:

Application % (=[O]

Application name

Aggncaﬁon version DCP version: . 0.0.411 Mare
Application id Eacg!.lp rest?{re Version: gl?\JE?D | at900.10

Int application name 0ading package: v1.84 200

Int agglication version | |Application device 1D: 0x1612 0010

Int application id Application device version: 34310

" Application interface version: 3001
M Application system library name:
Embedded ethernet Application system library version: 1.9.07

Ok

.

Figure 53: Checking drive compatible application and device

The name and version of the available system library is displayed. Make sure this information
matches with the installed system library of the Automation Builder project.

For more information, see parameter 7.23 for Application name and parameter 7.24 for version in
ACS880 FW.

For details of available functions, see chapter Libraries.

59

Upgrading or adding a new device
You can upgrade or add a new device to the programming environment.

1. Inthe main menu of Automation Builder, click Tools and select Device Repository.

File Edit Wiew Project Build Online Debug | Tools | Window Help
5= = k) ¢ & Bl] Create Device list C5V

Installation Manager

Devices IP-Configuration 1 x
=] ProjeciName] MultiOnlineChange E]
= m Device (ACS330_AINF_ZCU12_M_V3_5) Drive Overview
= Bl PLC Logic Install application parameters

=1L} Application &
m Library Manager
ﬂ ApplicationParametersandEvents

Library Repository...

| ﬂj Device Repository...

PLC_PRG (PRG) @ Install visualization style...
POU (FEB) Seripting 5
= @ Task Configuration .
= @ Task_1 L
& pLC_PRG

£y Drivelnterface (ACS880 parameters AINFX 2. 10)

Figure 54 Automation Builder device repository
Device repository window is displayed.

2. Click Install to select device description file.

=¥ Device Repository

Location: |System Repository v] [Edit LUCEtiOHS---]
(C:\ProgramData\tutomationBuilder'\AB_Devices_1.1)

Installed deyice descriptions:

MName Wendor Yerzion Install...

+-[{] Miscellaneous

+. &P Drives

+-[[] Fieldbusses

+- (] PLCs

Renew device
repositony

Close

Figure 55: Device Repository window

60

3. Inthe Install Device Description window, browse and select the device description file
(.devdesc.xml) in the file system.

Now you can add a new device to projects or upgrade currently existing devices in the project.
Changing an existing device
You can change an existing device in Automation Builder project.

1. Inthe Devices tree, right-click on Device and select Update object or in the main menu, click
Project and select Update project.

Devices - B X
=2 ProjectNamel =
= [[acssso_amF_zcuiz_ M _v3_5 (ACSBB0_AINF_ZCU12 M_V3_5) |

=g Source upload. ..

7 Source download. ..

Copy s
Paste

4 cut

¥ Delete

¢ [, Properties... INFX 1.80)

Add object
| Update object

Scan For Devices...

Add Folder...

Lo b

Edit Object

Edit Object With. ..

Export mappings to C5V...
Import mappings from CSV...
Import 3

Export 4

Chedk configuration

Figure 56: Update an object
The Update object window displays the available device types.

2. Select the required drive device and click Update object.

61

Update object : ACS880_AINF ZCU12
Object path:
ACSEED AINF_ZCU12_M_V3_5
Objectname: ACSBB0_AINF_ZCUT1_M_V3_5
Categories| -
""" Uncategorized | pame Version Order Number Sheort Description
(i ACSER0_AINF_BCUTZ M V35 3540 777
[ACSERD_AINF_ZCUT1_ M V35 3540 727
{ ACSEB_AINF_ZCUTZ M V35 3540 777
m ACS880_AISF_BCUI2_M_VY3_5 3540 ™
ﬁ ACSBB0_AISF_ZCU14_M_V3_5 3540 ™
ﬁ DCTEB0_DCTFI_CON_HOD1_M_V3 5 3540 777
e) [o

Figure 57 Update object device

Viewing software updates

¢ In the Automation Builder start page, click Automation Builder to download Automation Builder
update packages.

File Edit View Project Buld Online Debug Tools Window Help
B EHI &I | ¢4 25 |
Start Page X -
Basic Operations Latest News
=] Mew Project.. -
E a Project. Power and productivity “ .
pen Project... BLC ALTOMATION » ALTOMATION BUILOER @ cLosaLsTE - fora better world™ AR
ﬁ Open Project from PLC...
Highlights
Recent Projects g g
& Untitled1 Q, | Licenses Software Documents || Application
= Project updates examples E
[Untitled3 Q
& Untitled2 .,
& Project < Software options
& Project2 -
| e - :
. B g b 0 ke
[Project3 o = _ | B
E
& Projectl Platform PLCs Control Motion Drives Robotics
& ProjectNamel * | The Configuration| panels cantrol Programming | Option for
& Projecti Automation and The Option for option for modeling,
& ProjectNamel Builder programming | Automation Mint ACS880 offline
& Untitled1 platform is option of the | Builder alsc programming || industrial programming
& Projects the entire AC500 | offers and drives. and
Close page after projectload @ Copyright 2014 ABB | Provider information/impressum | Cookie and Privacy Policy e
Show page on startup 4 | m | 3
Lastbuild: € 0 & 0 Precompile: o Current user: (nobody)

Figure 58: Automation Builder start page

http://new.abb.com/plc/automationbuilder

62

This link is the download center for low voltage products and systems (India). For example, you
can find Automation Builder Service Release 1 — Release note, Automation Builder update
packages, and so on.

63

Program organization units (POU)
The POU types are:

o A program (PRG) may have one or several inputs/outputs. A program may be called by another
POU but cannot be called in a function (FUN). It is not possible to create program instances.

e A function (FUN) has always a return value and may have one or several inputs/outputs. The
functions contain no internal state information.

e A function block (FB) has no return value but may have one or several outputs as declared in the
variable declaration area. A function block is always called using its instance and the instance
must be declared in a local or global scope.

A created project may have POUs with a specified implementation language. Each added POU
has its own implementation language.

For more detailed description of the POU types, see the IEC programming environment user manual
and the IEC 61131-3 open international standard.

64

Data types

The ABB drives application programming does not support some of the standard IEC data types like
BYTE, SINT, USINT and STRING. The following list gives the standard IEC data types, sizes and
ranges.

Data type Size | Range Supported | Supported | Notes
(bits) by BCU-xx | by ZCU-xx
BOOL 8/16* | 0, 1 (FALSE, TRUE) Yes Yes 8 bit >BCU-xx
16 bit > ZCU-xx
SINT 8 -128...127 Yes No
INT 16 -215..215-1 Yes Yes
DINT 32 -231,..2%1-1 Yes Yes
LINT 64 -263,,.263.1 No Yes
USINT 8 0...255 Yes No
UINT 16 0...65535 Yes Yes
UDINT 32 0..2% Yes Yes
ULINT 64 0...254 No Yes
BYTE 8 0...255 Yes No
WORD 16 0...65535 Yes Yes
DWORD 32 0..2%-1 Yes Yes
LWORD 64 0...25%-1 No Yes
REAL 32 -1.2*10%8,..3.4*10% Yes Yes
LREAL 64 -2.3*10730%8 1.7*103%08 Yes Yes Slow. Do not use.
TIME 32 0 ms... 1193h2m47s295ms | Yes Yes
LTIME 64 0 ns...~213503d Yes Yes
TOD 32 00:00:00...23:59:59 Yes Yes
DATE 32 01.01.1970...~06.02.2106 Yes Yes
DT 64 01.01.1970 00:00... Yes Yes
~06.02.2106 00:00
STRING[xX] 0...255 characters Yes No
WSTRING[xX] 0...32767 characters Yes Yes

Drive application programming license

The drive application programming license N8010 is required for downloading and executing the
program code on the ACS880 or DCX880 drives. To check license information in Drive composer
pro or in ACS-AP-x control panel, go to System info -> Licenses. If the required license code is not
available, contact your local ABB representative.

65

Application download options

Before executing an application in the drive, download the application to the drive memaory. After
downloading, the application software is embedded in the firmware of the drive and has access to
system resources.

Note: It is not recommended to download a program to the RAM memory when the drive
is in RUN mode. The drive must be in STOP mode and Start inhibits must be possible to
set.

Before download, ensure that there is no fieldbus device, M/F-link or D2D-link connected to the drive
and Drive composer is not running data monitoring or back-up/restore at same time.

There are two different download options:

e Download — This is a regular download method that copies the compiled application to the
drive RAM memory. As a result, it is possible to execute the application, but after a power
cycle or reboot the memory is erased. This download method does not alter an application
that is located in the drive boot memory (ZMU) and the original application is available for
use after a reboot.

e Create boot application — This download method copies the application to the non-volatile
memory of the drive memory card. This way the application remains intact after a power
cycle or reboot. You should be logged into the drive to perform this operation. Features that
can work only after restarting the drive should be downloaded with this method.

Create boot application command (Online -> Create boot application) also includes booting
the drive. Rebooting stops the execution of the complete drive firmware for some time. For
this reason, it is allowed only when the drive is stopped and start inhibition is granted to the
Automation Builder.

Note:

e Firmware parameter mapping, task configuration, application parameters
and event configuration are activated only after the boot application is
loaded and the drive is booted.

¢ Start inhibition is not granted if the drive is running, disabled (DIL, Safety
function active) or faulted. Make sure that these conditions do not exist
before downloading the program.

66

Removing the application from the target

Use the Reset option if the application includes many changes like application parameter changes or
the application is replaced by another application. If the target already includes an application, use
the Reset origin selection in the Online tab before downloading a new application.

This command removes (clears all) old applications from the target and all the application related
references. Use this command at least once before the final version of application is loaded. The
command can be used only in the online mode. See also Reset options.

When you are prompted with the following message, click Yes.

Figure 59: Initiate reset origin

After you initiate the Reset origin option, the following message is displayed. Click Yes. The
command is executed only if Automation Builder receives the permission from the drive.

Automation Buillder - Be

I.-"'_"“-. This operation will rernove the application from drive and reboot the

W' drive. Drive must be stopped. Do you want to continue?

Figure 60: Confirm reset origin

67

Retain variables

Retain variables includes the RETAIN flag used to retain values throughout the drive reboot and
warm reset. A cold reset sets the retain variable to its initial value. The values of retain variables are
cyclically stored in the flash memory of the drive and restored to the stored value after the restart of
the program. The retain variables are stored in a separate 256-byte memory area which defines the
limits of their amount.

WARNING! In a function block, do not declare a local variable as RETAIN because the
complete instance of the function block is saved in the retain memory area and this large
function block instance may lead to running out of memory space.

In firmware version 1.7 and later, the power control board works with the parameter settings:

o |f parameter 95.04 = Internal 24V, retain values are saved immediately at the time the drive
loses power, meaning it is not cyclical.

o |f parameter 95.04 = External 24V, retain values are saved at periodic intervals of 3 minutes.
So the recovered variable may not be the recent value.

” Note: Declaring a local variable in a function as RETAIN has no effect and the variable
is not saved in the retain memory area.

The existing retain variables cannot be linked to application parameters.

Task configuration

The task configuration object handles call configuration of programs. A task is a project unit that
defines which program is called in the project and when it is called. The project can have more than
one task with different time levels.

There are two types of tasks:

e Cyclic task (Task_1, Task_2 and Task_3) — These tasks are processed cyclically according
to the task cycle time interval. The following table lists the time intervals available for cyclic
application programs. The highest priority is given to the task with the shortest execution

interval.
Task Time interval
Task 1 1...100 ms
Task_2 10 ... 100 ms
Task_3 100 ... 1000 ms

e Pre_task — This task is executed only once at start-up of the application program. This
feature is useful for one time initialization. POUs (blocks) assigned into this task are executed
before the start of cyclic tasks.

Note: The application program consists of its own quota of CPU resources. If the limit
exceeds, the drive tips to task overflow fault. For details, see ACS880 Firmware
manual.

68

Adding tasks

To
1.

add tasks to Task Configuration, follow these steps:

In the Devices tree, right-click Task Configuration and select Add Object.

Devices -~ 0 X
=) Frojecthame1 (=]
=[] Acsss0_aINF_zCU12_M_v3_5 (ACSBB0_AINF_ZCU12_M_V3_5)
=Bl PLE Logic

= a Application
ﬁﬂ Library Manager
ﬁ ApplicationParametersandEvents
PLC_PRG (PRG)
= @ Task Configuration
= Copy

Paste

ﬁ Drivel

MFX 1.80)
Cut

Hh

¥ Delete
Properties. ..
| Addobject

Update object
Scan For Devices...

) add Folder...
D"&

Edit Cbject

Edit Cbject With...
Import 3
Export 4

Figure 61 Task configuration

Select Task and click Add object.

Add object below : Task Col

Object path:
ACSEED AINF_ZCUNM2_M_V3_B\Plc Logic\Application\TaskConfiguration

Object name: Task

Categories| M

----- Generic objects

Name Version Order Mumber Short Description

S Task]

q 0 | 3

i) [o]

Figure 62 Task

69

3. Inthe Task drop-down list, select a task and click Add.

#::; A TIEC task

Mame:

Task_2
Task:

‘Tad{ 2 TI

Task_1

Task_3
Pre_task

] [Cancel

Figure 63: Add tasks
The selected tasks are added in the

Task Configuration object.

Devices

> & X || ¢b Task 2 x| -
_‘@ FProfectiame 1 E] Configuration
= [{J ACS80_AINF_ZCU12_M_V3_5 (ACSB80_AINF_ZCU12_M_V3| "
: @l] PLC Logi € Notice: Create boot application and target boot needed in orderto get new task configuration effective il
=N ogic
=} application Type
{fil) Library Manager Task: Task_2 Interval (10 ms - 1000 ms): 100 @
ﬁ ApplicationParametersandEvents
PLC_PRG (PRG) POUS
@ Task Configuration add POU POU Comment
=38 Task_1(Task_1)
]
@ PLC_PRG Remowve POU
Open POU E
§ Drivelnterface (ACS380 parameters AINFX 1.30) Change POU...
Mowve Up
Mowe Down

Figure 64: Tasks added

4. Click Add POU in the newly added Task_2 screen.

70

5. In the Input Assistant window, click Categories and then select PLC_PRG and click OK.

Programs

A MName

= u Application
lpLC_PrG

Structured view

[show documentation Insert with arguments Insert with namespace prefix

OK] [Cancel

Figure 65 Add POU input assistant

6. PLC_PRG is added to Task_2. Drag PLC_PRG to Task Configuration object.

Devices

* o X @ Task_2 x

= _@ ProjectName E] Configuration

=[] ACS880_AINF_ZCU12_M_V3_5 (ACSE30_AINF_ZCU132 |

@ﬂ PLE Logi € Notice: Create boot application and target boot needed in order to get new task configuration effective =
= ogic
= u Application Type
ffiff Library Manager Task: Task_2 Interval (10 ms - 1000 ms): 100 @
“ ApplicationParametersandEvents
PLC_PRG (PRG) POUS
= @ Task Configuration add Pou POU Comment
=38 Task_1(Task_1)
Remove POU PLC_FRG
H] pLC_PRG
=% Task_2 (Task_2) Open POU

m

] PLC_PRG

Change POU...
£y Drivelnterface (ACS880 parameters AINFX 1.80)

Move Up

Move Down

Figure 66 New PLC PRG

71

Monitoring tasks

Before adding the tasks for monitoring in Automation Builder, check parameter 7.21 Application
environment status in Drive composer pro.

Index | Name | value [unit | Min | Max | Default
- 7. System info
3 Drive rating id Mot selected NoUnit Mot selected
4 Firmware name AIMFT NoUnit
5 Firmware version 1.84.200.10 NoUnit 0.00.0.0 255.255.2! 0.00.0.0
i} Loading package name AINLY NoUnit
[Loading package version 1.84 20010 NoUnit 0.00.0.0 255.255.2! 0.00.0.0
11 Cpu usage 40 % 0 100 0
13 PU logic version number Q0000 MoUnit 0x0000 Oxfrrt 0x0000
21 Application environment statu DDI}DDDl MNolUnit 00000 Ob1111 11° 00000
” -

22 I_E_ﬁ Binary parameter editor Application environment status 1 {2}{1} ﬁ

Old value [bin] 0bC0000D [hex] 0x0000 [dec] O

New value [bin] Qb0 Q0000 0

Bit | Name | value

0 0 = Pre task 0

1 1 =Appl task1 0

2 2 = Appl taskz 0

3 3= Appl task3 0

4 4 a0

3] 3] 0

3] G 0

7 7 0

a a 0

]] 0

10 10 0

1 11 0

12 12 0

13 13 0

14 14 0

|| C— T T —
Refresh Ok ‘ Cancel ‘

Figure 67: Drive composer pro, parameter 7.21

The parameter bits 7.21.0, 7.21.1, 7.21.2, and 7.21.3 are used to monitor the application task related
execution. To check the continuous execution of tasks, write the specific task bit to 0. The executing
task bits are updated to 1, except the Pre task, which executes only once.

The calculation of tasks execution cycle (duration) is disabled by default. To view the tasks
execution monitoring in Automation Builder, change Bit 15 = Task monitoring to high.

72

To add task monitoring view in Automation Builder, follow these steps:
1. Inthe Devices tree, double click Task Configuration.
2. Click Monitor tab to check the status report of available tasks.

The status report of available tasks appears.

E] Start Page }Eg Task Configuration
Properties | Monitor |

Task Status IEC-Cyce Count Cyde Count Last Cycle Time (us) Average Cydle Time (us) Max. Cycde Time (us) Min. Cyde Time (us) Jitter (us) Min. Jitter (us) Max. Jitter (us)
& Pre_task Valid 0 0 0 0 0 0
& Task_1 Valid 2881 2881 128 174 1951 128

Figure 68: Task monitoring view

Note: The values in the task monitoring view are updated only setting the parameter
7.21.15 to high in Drive composer pro. This setting is configured again after the power
cycle or boot or control board.

73

Uploading and downloading source code

Optionally, the source code of the project can be saved in the drive. This feature is located in
Automation Builder main menu Online -> Source download to connected device and it ensures
that the files are easy to obtain if needed.

To retrieve the saved source code from the drive to a new project, follow these steps:

1. Inthe Devices tree, right-click Device and select Source upload.

Devices > 0 x
=5 thiited? -
= [| Device (ACS380 AINF ZCU12 M_V3_5)

Source upload...

Source download...

Copy

Paste

=rsandEvents

Cut

dh
P Delete

[Properties...
srameters AINFY 1.80)

Add object

ipdate ohject

Figure 69 Source upload
2. Select the drive and click OK.

Select Device Iﬁ

Select the network path to the controller:

= 3¥3 Gateway-1 Device Name: Add gateway...
ACS830M
= [m-L-KkBXI011166 [0001]

_ Add device...
[f] [acsssom [oo01.0201] Device Address: _
0001.0201

Target Version:
3.4.3.10 Scan netwaork

Target Vendor:

Target ID:
1612 0010
Target Name:

Target Type:
4099

oK l [Cancel

Figure 70 Source upload device

74

The size of the source code is limited to 500 KB. Check the archiving option to minimize the source
code size (File -> Project Archive -> Save/Send Archive...). Note that referenced devices and
libraries are needed, the rest is optional.

,,,,,,,, 9

Note: If the source code is saved on the ZMU memory unit, you can retrieve the program
with another PC without the authors consent unless the project is password protected.

75

Adding symbol configuration

To add symbol configuration in Automation Builder project, follow these steps:
1. Inthe Devices tree, right-click Application and select Add object.

Devices ~ 1 X
=) Projectamel >
=[] ACS880_AINF_ZCU12_M_V3_5 (ACSS80_AINF_ZCUI12_M_V3_5)
= PLC Logic
= 0|Applicaﬁnn
Copy

Paste

vents

& Cut
> Delete

Properties. ..

| Addobject

¢ D Update object

BE rs AINFX 1.80)

Scan For Devices...
) Add Folder...
Edit Object
Edit Cbject With...
Import 3

Export 4

q Login

Figure 71 Add object for symbol configuration
2. Select Symbol configuration and click Add object.

Add object below : Applicati

Object path:
ACSBB0_AINF_ZCU12_M_V3_5\Plc Logic\Application

Object name: Symbols

Categories]
Generic objects MName Version Order Number Short Description

ﬂﬂpplica’cion Parameters
@ Data Server

“pUT

i@ Global Variable List
Image Pool

= Interface

T Persistent Variables
=Bl

R Recipe Manager

Figure 72 Symbol configuration

76

3.

In the Add Symbol configuration window, click Add.

Add Symbel configuratior [5 |

B2 Remoteaccess symbol configuration.

MName:

[Add] [Cancel

Figure 73 Add symbol configuration
Symbol configuration object is added to the project.

Devices ~ 0 X

=3 Projectamel -

=[] Acssa0_AINF_ZCU12_M_V3_5 (ACS830_AINF_ZCU12_M_V3_5)
=-El] PLC Logic

= n' Application
m Library Manager
ﬂ ApplicationParametersandEvents

PLC_PRG (PRG)

il |51fmbnl configuration

= @ Task Configuration
= @ Task_1 (Task_1)
& PLC_PRG
= @ Task_2 (Task_2)
& PLC_PRG
£y Drivelnterface (ACS880 parameters AINFX 1.80)

Figure 74 Symbol configuration object

77

After adding Symbol configuration object to the project, the IEC variable to symbol data is loaded
into the drive during the create boot application download. See section Application download
options. This feature provides Drive composer pro access to the application variables which is used
for graphical monitoring and debugging.

For more information on the Symbol configuration editor and adding variables, see Automation
Builder Online help.

Debugging and online changes

The following debugging features and variable forcing are supported:
e Start / stop program execution
e Setting breakpoints
e Stepping code line by line or by function
e Forcing variables (constant setting of variable values)

¢ Writing variables (single setting of variable values)

Note: Online changes of the program code are not supported.

WARNING! Ignoring the following instruction can cause physical injury or damage to
the equipment.

Do not set breakpoints and force variables on a running drive that is connected to
motor.

Safe debugging

When debugging the application program of a running drive connected to motor in the online mode,
avoid the following actions:

e stopping the application program

e setting breakpoints to the application program

¢ forcing variable values

e assigning values to outputs

e changing the values of a local variable in function blocks
e assigning invalid input values

Breakpoints stop the entire application, instead of just the task that has the currently active
breakpoint.

78

Reset options

You can reset the application, using the reset selections in the Online mode.

1. Inthe Devices tree, select the Application.
2. In the main menu, click Online and select the desired reset method.

File Edit Wiew Project Build | Online | Debug Tools Window Help

9 = E % Login Alt+Fa8
¥ Logout Ctrl+Fa
Devices Create boot application %
=43l FProfectVame Logoff current anline user ll
= ﬂj Device [connected] (ACSSE Download
=-El] PLE Logic .
) Online C
= [, Application [run =SS
ﬁ] Library Manag: Source download to connected device
ﬂ. .'5||:I|:I|il:aﬁl:ll'|F'ar.| Eeset Warm

] PLC_PRG (PRG

Reset cold
POU (PRG)
- Symbaol configl Reset origin
= @ Task Configurz Restart ProxyRTS
= @ Task_1 (Task_1)
& PLC_PRG

£/ Drivelnterface (ACS880 parameters AINFX 1.80)

Figure 75 Reset options

o Reset warm resets all variables of the currently active application to their initial values
(except retain and persistent variables). In case of specific initial values, the variables are
reset exactly to those specific values.

e Reset cold resets all variables (normal and retain) of the currently active application to their
initial values.

e Reset origin erases the application, downloaded to the drive from the RAM and the memory
unit (Boot application). In case of specific initial values, variables are reset to those specific
values. Drive firmware parameter mappings, user-defined parameters and events are also
removed. Finally the drive is restarted.

+ Note: The reset origin action cannot be undone. However, the parameter values of the
~ old application are not removed. These values can be removed only when creating the
next boot application by selecting the Reset application parameters to defaults

option. See section Creating a boot project.

If the application is stopped, press F5 to restart the application.

79

Memory limits

To see the effective size of the program, follow these steps:

In the main menu, click Build and select Clean or Clean All to remove temporary code sections

from the program.

File Edit Wiew Project | Build

S S % mE

Devices
= Projectvamel

Online Debug Tools Window

Build F11

Rebuild
Generate code

Generate runtime system files. ..

= - [|pevice (acsaan_al|
L

Clean

=-E1ll PLE Logic

Clean all

=1L} Applicatit..

POU (PRG)

m] Library Manager
ﬂ ApplicationParametersandEvents
[ff] PLC_PRG (PRG)

- Symbol configuration
= @ Task Configuration
= @ Task_1 (Task_1)
& PLC_PRG
ﬁ Drivelnterface (ACS380 parameters AINFY 1.50)

Figure 76 Build clean

The build report shows the actual memory allocation.

Memory area 0 is assigned for code and data. Memory area 1 is assigned for retain variables.
See the example screen below.

Msnages
Buld

Description

generate relocations ...
@ Size of generated code: 76508 bytes
B Sze of global data: 13530 bytes

Build complete -- & emors, 0 wamings : ready for download

| Total memory for uss: 163540 |

@ Total allocated memory size for code and data: 100838 bytes

€ Memary area 0 contains Data, Inpat, Output, Memory and Cade: kighest used addres 5: argest cantiguaois memary gaps 63306 (38 %) Wirsch_[nt|

O Memory srea 1 contains Betain Data: highest used address: 256 fargest contiguous memany gap. '.IE:I[

- 0 x|
- ﬂnm[s]|"'f'ﬂwm[i]|'ﬂ'6m[s]
Project =

Winch_Int
Winch_Int
L Winch_Int

I Avaliabis memony : S35 I

Winch_Int

| Total retzsin memory for uss: 255 | | Avaliabla retain memorny: 160 |

Figure 77: Memory limits — example

Note: To optimize the memory consumption, avoid using function blocks and
unnecessary variable definitions.

80

CPU limitation

The maximum execution load of the application is limited to a certain value of 5 to 15% depending
on the drive type. To know the actual load limit, contact your local ABB representative.

Use parameter 7.11 to check the application load which monitors the CPU load. To know the load
difference, compare the values between with and without the application. Ensure that the difference
value is not greater than the value limit. If the application exceeds the limit, the drive trips to the task
overload fault 6481. The fault is registered to the event log of the drive and the fault-specific AUX
code indicates the overloaded tasks (10 = task 1, 11 = task 2 and 12= task 3).

Perform CPU load tests to ensure that the drive is capable of adequately running the application.
Enable the required drive functions during the execution of the application. For example, motor
control, communication modules, encoders, and so on.

81

Application loading package

This feature allows the user to create loading package containing an application program for
ACS880 drive. Loading package file is built with Automation Builder command Create Boot
Application in case the tool is in online connection to the drive.

Loading package file must be placed to the corresponding project folder with the file name
<project_name>_<device>_ <application>.Ip. The user can load application loading package using
Drive loader 2.1 tool. Application loading package functionality supports from AINFX 2.01 firmware
version onwards.

Before loading the package, Drive loader tool checks for the correct actual drive type and firmware
version to load the package. It also checks for the correct drive application programming interface
and programming license (N8010) is active in target drive.

To include symbol data and source code to application wrap file and loading package using
Automation Builder, follow these steps:

1. Inthe main menu of Automation Builder, click Project and then select Project Settings.

File Edit Wiew | Project | Build Online Debug Tools
B = H S Update project
Scan Faor Devices. ..

Add Folder. ..

Devices + 0
=5 Lintitled1 1" Edit Object |=]
=[] Device (& Edit Object With...
= PLC L
Ell]) Check integrity
=8 |
ﬁ Set Active Application

§ Pl Froject Information. ..

[|{} Project Settings...

Project Environment...
&h Document...
f .
£y Driy Compare Objects

[d Compare...

Map pool devices. ..

User Management 4
Import k
Export 4

Figure 78 Project settings

Project settings window is displayed.

82

2. Inthe Project Settings window, click Application loading settings and select the desired
check boxes.

|f=‘ applicationlicensing Application loading settings

@ Application loading settings

Include symbol file to "Application.wrp’ file and loading package

& Compiler warnings Include source fileto ‘Application.wrp’file and loading package
&h Page Setup Add supported firmwares
) Security [¥] AINFS 2.10.0.0

SFC
@ Source Download °

8 Users and Groups
@ Visualization
& Visualization Profile

Figure 79 Application loading settings

It is also possible to add more supported firmware versions to the application loading
package.

Tf Note: Ensure that the application is working correctly with the added firmwares.

3. Click @ to add new firmware.
4. Enter the firmware details and click Ok.

Add new firmware | AINFE - | Version 2

Figure 80 Adding supported firmwares
The added firmware is displayed in the Application loading settings.

83

Downloading loading package to a drive

Drive loader tool is used to download loading package to common platform drives.

1. Start Drive loader tool.
2. Click Open to download a loading package or click Scan to scan for a connected device.

Dnve loader 2

File Devices Tocls Help

Drive loader 2

Tool for downloading Loading Packages
to Common platform drives

Open a Loading Package to download

or scan for a connected device

Figure 81 Drive loader tool

Select the desired loading package file (.Ip) and click Open.

Eo ==

"i-\' g/ . < Drive Applicatio.. » Loading package - I| Search Loading package yel |
e — e —

Organize » New folder ==~ Ol @

-

MName Date modified Type

i Favorites b
@) Creative Cloud Files J || Device_Application.lp 12/9/2014 1:17 PM LP File

Bl Desktop
4 Downleoads

=
=1 Recent Places

4 Libraries
@ Documents
J’ Music
[k Pictures

E Videos

- 4 M | ¥

File name: Device_Application.lp ~ | ABB loading package ("p) |

| Open | [cancel |

Figure 82 Loading package
Select the desired drive and click Select.

Select Device

Select the type of device you
wish to download a Loading
Package to

Drives
ACS580

ACS880

Inverters
PRO-33.0-TL

Figure 83 Drive selection

85

5. Inthe Software Set drop-down list, select the appropriate selection.

1: Loads new application, set application parameters to default and removes user sets
from the drive.

2. Loads new application.

3: Removes the application from the drive (reset origin). Before using this option, the user
must first load application loading package using options 1 or 2.

4: Removes user sets from the drive.

Dnve loader 2

File Devices Tools Help

Make the appropriate selections and
download the Loading Package to the device

Selected device: ACSBB0

Loading Package: Ch\Users\inmamz ...
WOevice Applicationlp

P Loading Package Information

Software Set 1 -- default -- v
P Software Set Inf

2
3

Serial port; 4 H

Connected device Loading Package

Drive type: --- ---

Firmware:

or go back

Download E

Figure 84 Software set

6. Select the desired communication Serial port and click Download.

Before starting downloading, drive loader checks for the following:

Correct control board (ZCU/BCU).

Same device ID in Automation Builder project and drive control board.
Correct version of application environment.

Programming license loaded to target (N8010).

FW version supported in loading package.

L

Note: Before starting downloading, ensure Automation Builder and Drive composer are

not running at the same time.

86

A warning message is displayed. Click OK.

Dnive loader 2

Warning! You are about to start downloading the Loading
Package to the device. After the download has started,
interrupting the progress by e.g. unplugging or turning off the

device can seriously damage it. The download can take up to 15
minutes.

Figure 85 Warning message

In case of restrictions due to incompatible firmware version, the Drive loader stops and
displays an error message.

Dnve loader 2

An error has happened, please see details below.
W Error Information

Error Code: 27
Restrictions mismatch.

See log file for more information: downloadlog txd

Ok

Figure 86 Error message

Click downloading.txt to view error log file.

87

Drivelnterface

Contents of this chapter

This chapter describes how to implement Drivelnterface and map input/output settings between the

application programs and drive firmware parameters.

Implementing Drivelnterface

The interface between the drive firmware and application is implemented using Drivelnterface.

Devices - 0 X

=5 ProjectNamel (=]
=[] Device (ACS830_AINF_ZCU12_M_¥3_5)
=1l PLC Logic
=} Application
m Library Manager
ﬂ ApplicationParametersandEvents
[F] PLC_PRG (PRG)
POL
- Symbal configuration
= @ Task Configuration
= @ Task_1 (Task_1)
& PLC_PRG
§ Drivelnterface (ACS880 parameters AINFX 1.80)

[l Device x

| Communication Settings | Applications | Log

General:

@

Image:

Name: ACS880_AINF_ZCU12_M_V3_5
Vendor: AEE Oy

Groups: Drives

Type: 4099

ID: 15612 0010

Version: 3.5.4.0

Drive FIW: AINFX

Application Interface: 3.0.0.1

Description: ACS880 drive, ZCU-12 and ZCU-14 control boards

Figure 87: Drivelnterface

I Users and Groups | Access Rights | Information

88

Drivelnterface consists of all drive firmware parameters list that can be used in the application
program. This list is specific for each drive firmware (a new firmware may have new parameters).
You can assign a parameter to be an input for the application program and define that the parameter
is read at the beginning of the task execution. Similarly, user can assign parameters to be an output
of the application.

Task X i
Execution order
Read IEC Program Write
Inputs Outputs
Read par Write par
1.1 3012
Parameter Mame Assignment Mapping IEC Variable Data Type Min Max
=4 1Actual values
4% 1 Motorspeed used Input] Device_Motor_speed_used 1.1 REAL -30000.00 30000.00
=3 30 Limits
P 12 Maximum speed Qutput [Device_Maximum_speed_30_12 REAL -30000.00 30000.00

Figure 88: Drivelnterface — Assigning parameters for outputs in the application

Note:

- The parameter to IEC variable mappings is valid only after creating a boot application.
For more details, see section Application download options.

« Drive interface is not completely covering all drive parameters. If the firmware
parameter is not available in the drive interface list, use the AY1LB library functions to
read/write firmware parameters.

- In order to fully remove drive parameter settings from drive, use Reset origin option.
Also, re-save user sets (see parameter 96.08) after removing or replacing the
application. As user set may have incorrect mapping of firmware parameter to non-
existing application.

89

Selecting the parameter set

A drive can have different parameters depending on the firmware version. Before performing
parameter modification, ensure that the correct parameter set is selected in Drivelnterface. The
changes to parameter set in Drivelnterface removes all parameter mapping data.

To change the currently selected parameter set, follow these steps:

1. Inthe Devices tree, right-click Drivelnterface and select Update object.

Devices -~ I X
=G ProfectVamel =
=[] Device (ACSE80_AINF_ZCU12_M_V3_5)
=-El] PLC Logic

+ n' Application
ﬁ |Dri'uEIr1ter1'ace (ACS580 parameters AINFY 1,80

Copy

Faste

$ Cut
> Delete

= Properties...

Add object

| Update object

Scan For Devices...

Figure 89 Drivelnterface update object

2. In the Update object window, select the correct parameter set for the current target and click
Update object.

Update object : Drivelnterface

Object path:

Device'\Drivelnterface

Object name: Drivelnteface_1

Categorics RS
Uncategorized | | pame Version Order Number

[E= ACS280 parameters AINFX 1.80 JEEEN]

Figure 90 Drivelnterface parameter set

90

Viewing parameter mapping report

When you download the application program, a report of unresolved parameter mappings between
the project parameters and actual parameters in the drive is written in the PLC log.

[f] ACSBBO_AINF_ZCU_M_V3_S5 |

[oOffline-Logging:

- X

|® 0 warning(s) | o lerror(s}l E 0 exception(s) | [] 14ir1Formation[s}|| <Al components =

~ | Logger: <Defaultlogger:=

- R *

' Communication Settings I Applications I Files Log |PLC settings I PLC shell I Users and Groups I Access Rights I Task deplomentl Status I Information I

Severity

| Time Stamp

| Description

| Component

PR ROPRRRERR®

1.01.1970 0:00:0:0
1.01.1970 0:00:0:0
1.01.1970 0:00:0:0
1.01.1970 0:00:0:0
1.01.1970 0:00:0:0
1.01.1970 0:00:0:0
1.01.1970 0:00:0:0
1.01.1970 0:00:0:0
1.01.1970 0:00:0:0
1.01.1970 0:00:0:0
1.01.1970 0:00:0:0
1.01.1970 0:00:0:0
1.01.1970 0:00:0:0
1.01.1970 0:00:0:0
1.01.1970 0:00:0:0

Application Application loaded
Application Application loaded

CoDeSys Controlready

CH_INIT_COMM done

Call CH_INIT_COMM...

CH_INIT_TASKS done

Application Applicationnot foundto start
Call CH_INIT_TASKS...

CH_INIT3 done
Call CH_INIT3...
CH_INIT201 done
Call CH_INIT201...
CH_INIT2 done
Call CH_INITZ...
CH_INIT done

CmpAppEmbedded
CmpAppEmbedded
CM
CM
CM
CM
CmpAppEmbedded
CM
CM
CM
CM
CM
CM
CM
CM

Figure 91: Parameter mapping report

For more details on downloading, see sections Downloading the program to the drive and
Application download options.

91

Mapping example

To read digital input DI1 of the ACS880 control unit to the previous CFC example (Creating a block
scheme), open group 10 and select index 1.

1.

2.

In the Devices tree, double-click Drivelnterface.

Devices

> & X [l Device Drivelnterface X

=3 Profectamel

=-El PLC Logic
+.1C} Application

E] & Notice: Create boot application and target boot needed to get mapping effective
=[] Device (ACS830_AINF_ZCU12_M_V3_5)

T - |’@ Inputs |K@ Outputs § Unassigned

-

#|

§ |DriveInter1’aoe (ACSB80 parameters Parameter Name

1 Actual values

3 Input references

4 Warnings and faults
5 Diagnostics

6 Control and status waords
7 System info

10 Standard DI, RO

11 Standard DIO, FI, FO
12 Standard AI

13 Standard A0

19 Operation mode

20 Startistop/direction

VFERRPRPRPRRRE

+
-

Assignment

IEC Variable

Figure 92: Parameter mapping window

In the Driveinterface window, right-click on the required Assignment cell and select Input or you
can also select the desired Assignment from the available drop-down list.

DriveInterface X

MNotice: Create boot application and target boot needed to get mapping effective

M - |’@ Inputs

" Outputs @ Unassigned

Parameter Mame

= @ 1DIstatus
& 0DI1
@ 1DI2

@ 2DI3

Assignment Mapping IEC Wariable

=@ 10 Standard DI, RO

Inassigned

Llnassiined
D

Data Type

UINT
BOOL
BOOL
BOOL

Figure 93: Selecting input for parameter mapping

92

3. Double-click default IEC variable name Device_DI1_10_1. A button is displayed to the right of

the selected name to change the name.

DriveInterface X
MNotice: Create boot application and target boot needed to get mapping effective

M - |’@ Inputs i Cutputs # Unassigned

Parameter Mame Assignment Mapping IEC Variable Data Type

=34 10 5tandard DI, RO

= @ 1DIstatus IInassigned UINT

%% 0DI Input @ Device_DI1_10_{| (... BOOL
@ 1DI2 Inassigned BOOL
@ 2DI3 Inassigned BOOL
@ 3014 IUnassigned BOOL
@ 4DI5 Inassigned BOOL

Figure 94: Default IEC variable name

4. Click [.-] to change the name. Input Assistant window is displayed.

5. Click Categories and then expand Drivelnterface tree to select the Device and click OK.

Input Assistant

Variables + [Mame T}rpe

=~ o Drivelnterface

@ Device_DI_status_10_1 LT
|Device_DI1_10_1 BOOL

Address

= Drivelnterface VAR _GLOBAL

4 L1

Structured view

Filter: [None

Show documentation Insert with arguments
Documentation:

[1nsert with namespace prefix

Device_DI1_10_1: BOOL;
(VAR_GLOBAL)

[oK] [Cancel

Figure 95: Drivelnterface Input assistant

93

IEC variable name is changed.

Drivelnterface X

MNotice: Create boot application and target boot needed to get mapping effective

i - |’@ Inputs B Qutputs @ Unassigned -
Parameter Name Assignment Mapping IEC Variable Data Type
=4 10 standard DI, RO
= @ 1DIstatus Inassigned UINT
4% DI Input T |Applicatinn.Deviu:e_DIl_l[l... BOOL
@ 1DI2 Inassigned BOOL
@ 2DI3 Inassigned BOOL
@ 304 IInassigned BOOL
@ 4DI5 Inassigned BOOL

Figure 96 Drivelnterface variable name

“7 Note: If you want to select existing variable DI1 from the POU variable list, expand
Application and under POU, select DI1. DI1 is connected to drive parameter 10.1. DI

status bit 0.

Input Assistant
Categories

Documentation:

Variables & Name Address Origir
= aApplicatinn
= POU
D11
@ outp
+- @ readdint
I + - % Drivelnterface
Il T [
[¥] structured view Filter: |Maone -
Show documentation Insert with arguments Insert with namespace prefix

DIL: INT;
(VAR)

Figure 97 Existing variable

The mapped parameters are available as IEC variables in the program editors (press F2).

“7 Note: Bit and value pointer parameters can be used as outputs and then the pointer is

linked directly to the application memory.

94

Updating drive parameters from installed device

You can update the parameter list from the installed device or you can take the actual drive
parameter set used in Drivelnterface from Drive composer pro. See section Updating drive
parameters from parameters file.

To update the parameters from the installed device, follow these steps:

1. Inthe Devices tree, right click Drivelnterface and select Update Drive Parameter Set.

Devices ~ 3 X
== Profectamel =
= [l Device (ACSB80_AINF_ZCUI12_M_V3_5)
=-Ell] PLC Logic

+ .10} Application

Drivelnterface (ACS880 parameters AINFX 1.80)
Copy

Paste

Jbl Cut

> Delete
Properties...
Add object
|Ipdate object
Scan For Devices...

Disable Device

IUpdate Drive Parameter Set...

Figure 98: Update drive parameter set

95

2. In From installed device option, expand Miscellaneous and select the device and then click
Update.

1J Update parameter se

@ Frominstalled device

e S|

Device:

Vendor: [<All vendors =

Marme Vendor Yersion

= [Miscellaneous
(£ ACS880 parameters AINFX 1.80 | ABB Oy 3.5.4.0

Group by category
[7] Display all versions{for experts only)

[7] Display outdated versions

Information:

[y Mame: ACS330 parameters AINFY 1,80
Vendor: ABE Oy

Groups:

Version: 3.5.4.0

Model Number: %

Description: Firmware Option —
="

i) From parameter file

Update][Cancel

Figure 99: Update parameter from installed device

The parameter list from the selected device is displayed.

96

Updating drive parameters from parameters file

Optionally, you can update the actual drive parameter set using the Drive composer pro backup file.

To update the parameters backup file, follow these steps:
1. Inthe Devices tree, right click Drivelnterface and select Update Drive Parameter Set.

Devices ~ 0 %
=4 ProjectMamel =
=[] Device (ACSB80_AINF_7CU12_M_V3_5)
=-E1l] PLE Logic

+-1C} Application

Drivelnterface (ACSB30 parameters AINFX 1.80)
Copy

Paste

¥ Ccut

W Delete

[Properties...
Add object
LIpdate object
Scan For Devices. ..

Disable Device

IUpdate Drive Parameter Set...

Figure 100 Update drive parameter set

97

2. Inthe Update parameter set window, select From parameter file option and browse to select

dcparams (.xml) backup file and then click Update.

T Upate paramerer =

() Frominstalled device

Vendor: | <all vendors >

=

Mame Vendar

= ﬂj Miscellaneous
[EL ACS880 parameters AINFX 1.80 ABB Oy

Version

3.5.4.0

i@ From parameter file

Figure 101: Select parameter file

The changes/deleted parameters are displayed. Click OK.

L]

98

Setting parameter view

In Automation Builder, you can select the required parameter details to view in the ACS-AP-x control
panel and the Drive composer pro display:

1. Inthe Devices tree, double-click Drivelnterface.

Devices - I X

=15 Projectamel (|
=[] Device (ACSE80_AINF_ZCU12_M_V3_5)
=-E]] PLE Logic
=-IC} Application
m Library Manager
ﬂ ApplicationParametersandEvents
4] PLC_PRG (PRG)
POU (PRG)
- Symbol configuration
+ @ Task Configuration
ﬁ Drivelnterface (ACS880 parameters AINFX 1.80)

Figure 102 Drivelnterface parameter view

2. In the upper-left corner of the Drivelnterface window, select Settings.

DriveInterface X

-

Motice: Create boot application and target boot needed to get mapping effective

i} v| |’@ Inputs |“@ Outputs # Unassigned

Advanced View Assignment
B Simple View
| Settings... |

Mapping IEC Variable

2% Expand All

== Collapse All

ards

-4 7 Systeminfo

Figure 103: Drivelnterface settings

99

3. Select the required view option for the corresponding parameter and click OK.

.—Simpl-efﬁtdvanced View Setti

Simple View Advanced View

Parameter Name Parameter Name
[Assignment Lssignment
Mapping Mapping

|EC Variable |EC Variable
Data Type Data Type

] Min Min

] Max Max

[Unit Unit

[Default Default

] Hide Hide

] Total Hide Total Hide

[Hide Group Hide Group

[] Total Hide Group Total Hide Group

0K || Cancel

Figure 104: Hide options
The selected options in the view list are displayed in the Drivelnterface parameter window.

100

Application parameter and events

Contents of this chapter

This chapter describes how to use the Parameter Manager and provides detailed information on
parameter settings.

101

ApplicationParametersandEvents

You can create your own application parameters and events visible in the panel and Drive
Composer pro tools.

1. Inthe Devices tree, right-click Applications and then click Add Object.

Devices + 31 X
=[5 Projectisme -
=[] ACS880_AINF_ZCU12_M_V3_5 (ACS880_AINF_ZCU12]
=-El PLC Logic
= u Application
Copy
Paste vents

& cut
P Delete

fiED Properties. .. rs AINFY 1.30)

| Add object
Update object

Scan For Devices...

) Add Folder...
O

Edit Object

Edit Object With...

Imnport 3

Export 4
q Login

Figure 105: ApplicationParameterandEvents tool

2. Inthe Add object window, select Application Parameters and click Add object. Add Application
Parameters window is displayed.

Add object below : Applicatio

Object path:
Device\Ple Logic\Application

Object name: ApplicationParametersandEvents

Generic objects Name

" Application Parameters

@ Data Server
“epuT

{@ Global Variable List
Image Foaol

=2 Interface

T Persistent Variables
& FOU

ﬂ Recipe Manager

Reset filter]

Figure 106 Application parameters

102

Note: You can create only one ApplicationParametersandEvents object at the time.

3. Click Add to add the Application Parameters to Devices tree.

Add Application Para

“ This object holds all system parameter

MName:

ApplicationParametersandEvents

[] From File

Path to Xml file:

Cancel]

Figure 107 Add application parameters
ApplicationsParametersandEvents object is added under Applications in the Devices tree.

103

ParameterManager

In the ParameterManager window, you can create new groups of parameters, parameter families,
selection lists, units, events and language translations for the names of all the previous items.

¢ In the Devices tree/Application, double-click the ApplicationParametersandEvents object. The
ParameterManager window is displayed.

Devices e @ ParameterManager X
=31 Frofectivamel B “e Import XML “e Exportto XML [Parameters VI
= [Device (ACS380_AINF_zCU12_M_V3_5)
= Bl PLC Logic Parameter Groups and Parameters | Parameter Families | Selection Lists | Units
=1L} Application 4 Group 4y Parameter |Names
m Library Manager Delete Collapse all = Add Delete

ﬂ |Ap|:-licaﬁonParametersandEvents

] PLC_PRG (PRG) ot e

POU (PRG)

- Symbaol configuration
+ @ Task Configuration

£y Drivelnterface (ACS880 parameters AINFX

Figure 108: Parameter manager window
Creati ng param eter groups

All the drive parameters belong to a specific parameter group. Before creating any new parameters
create a new parameter group. Ensure that all the groups have unique name and number. You can
change the group number and name. You can also add translations into other languages in addition
to the default language which is English.

¢ In the ParameterManager window, click [6reur | to add group.

ﬂ ParameterManager X

"o Import XML T Export to XML ’Parameters T]

Parameter Groups and Parameters | Parameter Families | Selection Lists | Units | Events

|4 Group | 44 Parameter |Names
» Delete Collapse all =l Add Delete

No Add Group e Language Id Mame

'—JIZI Group 9 Enalish {en) Group 9

Figure 109 Adding parameter group

ParameterManager automatically selects the first free parameter group number that is not used
in the drive firmware or ParameterManager.

104

Creating parameters
1. Inthe ParameterManager window, select a parameter group.

2. Click '#FParameter | tg create a new parameter.

@ ParameterManager X

Yo Import XML Te Export to XML lParameters T]

Parameter Groups and Parameters | parameter Families | Selection Lists | Units | Events

MNames

7. Delete Collapse all = Add Delete

Add Parameter

English {en) Group 9

[Group | gy Parameter

guage Id Mame

Group level Protections

[[] Human Hide [] Total Hide

Figure 110 Adding new parameter

The Parameter Settings window is displayed. You can set the properties of the parameter. See
section Parameter Settings. The Parameter Settings window is identical for all the parameters
but there are also custom settings available depending on the parameter type. For more
information on the type-specific windows, see section Parameter types.

105

3. Inthe Parameter Settings window, enter the Name of a parameter and click Add.

Parameter Settings

Name Test|

Parameter Type [Decimal number M

|EC Variable

@ New

@) Existing | & | |
Parameter Family [(_ None - ']
Function Type [Seﬂing (adjustable) ']
Saving Type [immediate ']
Scaling

Base value 1 <

Tool ! Fieldbus 32-bit interface

1 =

32-bit scaler

Decimal display ’ﬂ v]

Eieldbus 16-bit interface

16-bit interface support [no v]
16-bit scaler 1 A

-

[F] WP Run
Include in user set
[Exclude from Backup

Minimum 0.00
Mastimum 0.00

Default value |0.00

Protections
[F] Human WP] Total WP

[F] Human Hide [7] Total Hide

Testing for scaling

Internal value

Internal value

x 32-bit scalar / Base value = External 32-bit value

x 16-bit scalar / Base value = External 16-bit value

Figure 111 Naming parameter

The new parameter added to the selected group.

@ ParameterManager X

“e Import XML Te Export to XML lParameters *]

Parameter Groups and Parameters | parameter Families | Selection Lists | Units | Events |

[4 Group gy Parameter X Delete Collapze all

Mo.
=3 9 Group 9

1 [Test REAL

Mame | IEC Variable Type

Mames
Parameter Type | = Add Delete
Language Id Mame
Decimal number English {en) Test

Figure 112 New parameter

106

Parameter settings

In the Parameter Settings window, you can set parameter properties.

|

Parameter Settings
Mame Test]
Parameter Type [Decimal number -
|EC Variable Protections
© New Type [] Human WP] Total WP
[] Human Hide [] Tetal Hide
® Existng | @ | | |
Parameter Family [4_ Mone —> vl [WP Run
Include in user set
Function Type | Setting (adjustable) -] Exclude from Backup
Saving Type [irnmediate 'l
Scaling o
Base value 1 = R 0.00 d
Maximum 0.00 =
Tool / Fieldbus 32-bit interface
. Default value |0.00 =
32-bit scaler 1 =
) . Unit No Unit -
Decimal display ’1] v]

Fieldbus 16-bit interface Testing for scaling

16-bit interface support ’no v] Internal value % 32-bit scalar / Base value = External 32-bit value

16-bit scaler 1 =

Internal value % 16-bit scalar / Base value = BExternal 16-bit value

Figure 113: Parameter settings window

Parameter name is the name shown in the parameter list when using Drive composer or ACS-AP-x
control panel.

Parameter type defines the kind of parameter created. There are following parameter types:
e Decimal number
e Formatted number
e Bit pointer
e Value pointer
e Plain value list and
e Bit list (16 bit)

For more information, see section Parameter types.

107

IEC variable name is used to define an IEC variable for the parameter.

e The New option maps the parameter to a new IEC variable. If you do not give a name for the
new IEC variable, the parameter name is used as the IEC variable name.

When you create a new IEC variable, you must select the variable type, for example, REAL.
For more information on the variable types, see section Data types in chapter Features. The
selected parameter type restricts the variable type selection and only the allowed types are
shown in the IEC variable/Type list.

e The Existing option maps the parameter to an already existing IEC variable by finding the
parameter from the list of the Input Assistant or writing the name to the field.

Parameter family includes a parameter as part of the parameter family and inherits the settings
defined for the family. For more information, see section Parameter families.

Function types are flag configurations for parameters which determine the parameter behavior with
the ACS-AP-x control panel and PC tool displays. There are five different configurations:

e Setting (adjustable) — This function type is a generic configuration parameter. When a
parameter with this function type is changed by ACS-AP-x control panel or Drive composer,
the changed value is saved. If the value is written cyclically, the saving type for the parameter
must be no (for example, motor speed limits).

e Setting (reverts to default) — This function type is used for requesting a function. When this
request is processed, the parameter returns to its default value.

¢ Signal (read only) — This function type displays the application parameter value in the ACS-
AP-x control panel or Drive composer. A parameter of this function type does not have any
meaningful default value.

e Signal (resettable) — This function type is identical to the read-only signal and also allows
resetting parameters to their default values.

e Custom — This function type enables you to change values in the application.

Saving types define the method of storing the parameter value to the non-volatile memory. There
are three different saving types:

e No — This type does not store the parameter values changes done in the ACS-AP-x control
panel or Drive composer pro.

e Powerfail — If the parameter 95.04 is set as Internal 24V, the powerfail type parameters are
saved immediately at the time of power failure in the drive. If parameter 95.04 = External
24V, the values are saved at periodic intervals of 1 minute. The power fail saved parameters
are limited to < 10.

e Immediate — If the parameter value is changed using keypad or PC tool, this type saves the
value immediately within 10 seconds. This saving type is used for controls, but not for
signals.

Protection, hiding and excluding from backup allows you to set the following protections for
parameters or set them on the parameter group level by selecting a parameter group in
ParameterManager.

¢ Human WP/Human Hide write-protects/hides the parameter from a human user
manipulation. This setting can be bypassed using configuration tools, fieldbus controllers,
and so on.

e Total WP/Total Hide write protects/hides the parameter from any kind of manipulation
outside firmware. These parameters are used only by the application.

108

The following settings are for parameters only:
e WP Run protects the parameter from writing when the drive is running.

¢ Include in user set includes parameter as part of the process where all parameters become
a user set.

o Exclude from Backup leaves the parameter out of parameter backup, but restores the
default parameter values. This setting applies only for parameters.

Minimum, Maximum and Default value are set for decimal and formatted numbers.

e Minimum and Maximum define the limits for the value of the parameter. These values
should not exceed the limits of the data type defined for the parameter.

o Default value is the value of the parameter at the start-up of the program and it must be
within the limits defined by the minimum and maximum values. The default value returns if
you restore defaults or clear all with parameter 96.06 (see the drive firmware manual).

Scaling

Scaling

Base value 1 =

Tool ! Fieldbus 32-hit interface
32-but scaler 1 =

Decimal display |1} vl

Fieldbus 16-bit interface

16-bit interface support |nn vl

16-bit scaler 1 =

Figure 114: Scaling

Base value is the internal firmware value. The scaling values in Base value, 32-bit scaler and 16-bit
scaler should match each other and define how a value of the parameter is represented in other
contexts. Scaling for all the other values of the parameter is calculated on the basis of the scaling
values defined.

If the scaling factor is 1, meaning direct transform from one representation to another, use the same
number for all of the scaling values.

Example:

The firmware uses values 0...1 for motor rotation speed measurement. The maximum speed is
1500 rpm, and therefore the ACS-AP-x control panel displays 1500 rpm when the internal value
is 1 (the maximum speed). The 16-bit fieldbus device shows 100%.

In this example the values are:
Base value =1

Value (32-bit int) = 1500
Value (16-bit int) = 100

109

Tool/Fieldbus 32-bit interface

o 32-bit scaler - 32-bit external value (for example, Drive composer or ACS-AP-x control
panel)

o Decimal display - Decimal display defines the number of decimal digits displayed on the
Drive composer or ACS-AP-x control panel. This setting applies only for external value, but
has no effect on the internal value.

Fieldbus 16-bit interface

e 16-bit interface support - This field defines if the 16-bit external format is allowed, for
example, in fieldbus devices and how it is scaled to the 32-bit external format:

No — 16-bit external format is not allowed.

Direct — 32-bit scaling is used but the value is displayed as a 16-bit value. Therefore, value
(16-bit int) is considered meaningless.

Scaled — separate 16-bit scaling is used. Value (16-bit int) must be defined.
e 16-bit scaler - 16-bit external value (for example, fieldbus devices)

Testing for scaling

Testing for scaling

Internal value 0.7 x 32-bit scalar / Base value = External 32-bit value | 1050.0

Internal value 0.7 x 16-bit scalar / Base value = External 16-bit value | 70.0

Figure 115: Testing for scaling

Internal value - Calculates the scaling of 32 and 16 bit fieldbus interface with the corresponding IEC
variable. For description of formula, see PAR_SCALE_CHG function block.

Linking parameter to application code

The IEC variable field in the Parameter settings window enables to link a parameter to an
application program code. There are two options to link a parameter with an application program
code.

¢ The New option adds a new IEC variable to programs and is visible in the input assistant
under ApplicationParametersandEvent object.

e The Existing option allows linking a parameter to the existing IEC program variable using
browser. Make sure to select the correct data type. If you change the link to the existing IEC
variable, a build error occurs. See the message box for information on incorrect linked
parameters. Check the full path to correct the missing linked parameters according to the
program.

Note: The existing retain variables cannot be linked to application parameters.

110

Parameter types

In the Parameter Settings window, you can select the Parameter Type for the newly created
parameter.

Farameter Type B -
IEC Variable Decimal number
i Formatted number
@ Mew Bit pointer
Walue pointer
Plain value list
i) Existing | & Bit list {16 bit)

Figure 116: Parameter type

Decimal number creates a parameter with actual numeric contents, either decimal or non-decimal
numbers. The available IEC types are REAL, UDINT, UINT, DINT and INT.

Formatted number parameter type is used to make special purpose parameters like date displays,
version texts, passcodes, and so on. The available IEC types are UDINT, UINT, DINT and INT. In
the Display format for Data Parameter, you can define the format in which the value should be
displayed in the Drive composer or ACS-AP-x control panel.

Parameter Settings
Mame
Parameter Type Formatted number -
|EC Variable
@ Mew Type |UDINT -
) Basting | & | |
Parameter Family [4_ None —> v] [WP Run
Include in user set
Function Ty i i -
uncticn Type [Seﬂlng (adjustable) [F] Exclude from Backup
Saving Type [immediate "]
Minimum 0 =
Maxcimum 0 =
Default value] =
Dizplay format for Data Parameter | None -
Passcode (™)
Duration (00d 00h 00min)
Short ver (1.03A)
Short date (DD .MM)
Long date (DD.MM.YYYY)
Hex/MAC addr (01:23:CD:EF)
Long ver/IF {000.152 254 255)
ParNo (P01.05)
Long time {hh:mm:ss)
Bit list + bin
Bit list + hez
Binary (00001111 01001110 bin
Hex (01EF hex)

Figure 117: Display format for data parameter

111

Bit pointer creates a pointer parameter which can be assigned to point to a bit of another
parameter. You must associate the bit pointer parameter to a selection list (a bit pointer list) that
must be created beforehand. For more information, see section Selection lists. The only available
IEC type for bit pointer is BOOL. You can define the default selection from the list.

Parameter Settings

MName

Parameter Type Bit pointer -

|EC Variable

Type |BOOL -
Parameter Fﬂmllfpr Iq— MNone - TI I:l WP Run
Include in user set

Function Type ISeﬂing {adjustable) - [] Exclude from Backup
Saving Type [immediate -]

Selection list | <~ None —> -|

Default selection I - I

Figure 118: Selection list

Value pointer creates a pointer parameter which can be assigned to point to another parameter.
You must associate the value pointer parameter to a selection list (a value pointer list). For more
information, see section Selection lists. The only available IEC type for the value pointer is UDINT.
You can define the default selection from the list.

Plain value list must be associated to a selection list (a plain value list) and it allows only values of
the list as its own value. The available IEC types are UDINT, UINT, DINT and INT. You can define
the default selection from the list.

112

Bit list (16 bit) consists of maximum 16 Boolean values (bits). You can add new rows (bits) to the
list using the Bitlist row button. You can change the names of the bits and their values to represent
their purpose. The default value is the bit value at the start-up of the program. The only available IEC

type is UINT.

Parameter Settings

Mame

Parameter Type [it list (16 bit)

|EC Variable
@ Mew

() BExsting . |

Parameter Family [q_ Nane —>

Function Type [Seﬂing (adjustable)

Saving Type [immediate

Display format [prinar:r *]

2 Bitlist row 3¢ Delete

Protections
[[7] Human WP [] Total WP

[] Human Hide [] Total Hide

Type |UINT -

[7] P Run
Include in user set
[[] Exclude from Backup

Bit Bit Marne (English) Default val...
20 handle_0 False
R handle_1 False
22 handle_2 False

=| Add Mame Delete
Languageld Mame
English (en]) handle_0
=| BitValue Delete

Languageld Marnefor 'False' value MNamefor True' value

English (en) text 0 text_0

Figure 119: Bitlist rows in Add Parameter window

113

Parameter families

If a parameter shares some of its attributes (scaling, minimum/maximum, and so on) with another
parameter, it can belong to a family that describes these common attributes. This way, when the
attribute is changed in one parameter, it is also changed in all parameters belonging to the same
family. The system library includes a function block to modify parameter attributes like
PAR_UNIT_SEL functions. See AY1LB_System_ACS880_V3_5 library in Appendix C: ABB drives
system library.

If you select a parameter family Version style, make sure the family has a unique Name. The
parameter families can define limit or scaling properties or both of them.

@ ParameterManager X
“e Import XML Te Export to XML [Parameters ']
| Parameter Groups and Parameters | Parameter Families | Selection Lists I Units | Events |
i Family < Delete Limit family =
Wersion Mame Limit Sealing Minimum |0 - Maximum |0 =
g 1.1 Test
Scaling family =
Internal Variable type uintls "]
Base value 1 =
32bit / float value external 1 =
16bit value external 1 =
Unit [Nounit v
Decimal Display [int Odec v]
Display format
Data Parameter |none | sitlist [pbBinary -

Figure 120: Parameter families

114

Selection lists

Selection lists are always associated to a parameter of the same type as in the list and they can be
accessed only through the parameters.

i" ParameterManager -
T Import XML Te Exportto XhAL IF‘arameters T‘
| Parameter Groups and Parameters I Parameter Families | Selection Lists | Lnits I Events |
i) Selection list =] List rowe < Delete Expand all Marmes
Mame Value / Source par List type Inverted | (= Add Delete
i) List Plain value lisk Language Id Mame
= -] List_1 Plain walue lisk English {en} ek
=] text] Danish (da-CK) text
F] 1 P 4 L F

Figure 121 Selection lists

Selection list name — The text visible to the user. Note that the name is not the official text since the
language translator just uses this text as a source when creating the official language texts.

Value/Source par — The value of the list row. For the bit and value pointers, it is the index of the row
in the list. For the value lists, it is an actual selectable value.

List type — There are three different types of selection lists:

¢ Bit pointer list — By default, it has the const_false and const_true values. You can add to
the bit pointer list single bits of any parameter of the appropriate type.

e Value pointer list — By default, it has the const_null value. You can add to the value pointer
list any parameter which has the same data type as the pointer associated to the list.

¢ Plain value list — You can add to the plain value list any values of types INT, DINT, UINT or
UDINT. The type has to be the same as the type of the pointer associated to the list.

Inverted — When a bit /value is read from a source parameter, it is inverted /negated for output when
the inverted flag is set.

115

Units

You can create own units for the application parameters. A unit has a unique number and a name.

The allowed unit codes for the application program are 128...255.
You can add translations of the name into other languages.

1. In the ParameterManager view, click Units tab.

ﬂ ParameterManager X

7]

| Parameter Groups and Parameters | Parameter Families | Selection Lists | Units

"o Import XML T Export to XML ’Parameters

Events

E

= Mew Unit Delete

Add Delete

Mo, Mame

Figure 122 Unit

2. Click New Unit to add unit and click Add to add Language Id.

4@ ParameterManager X

7)

| Parameter Groups and Parameters | Parameter Families I Selection Lists | Lnits

"o Import XML Te Export to XML ’Parameters

Events

= Mew Unit % Delete Mames

Mo, Mame =| Add Delete

=] 0 MoUnit Language Id Mame
=] 128 unit__128 English (en) unit__129
=) 129 [unit_129 | Finnish (fi-FI) unit__ 128

Figure 123 Units and translations

The units are attached to parameters in the Add Parameter options in Parameter Settings window.

116

Application events

You can configure your own application events (faults or warnings). The application program then
triggers the event and the event registers in the drive event logger with a time stamp. This tool
defines the event ID code, type and event name (with translation).

¢ Inthe ParameterManager view, click Events tab and then click Event to add Event.

ﬂ ParameterManager X

“e Import XML T Export to XML IParameters "‘

| Parameter Groups and Parameters | Parameter Families I Selection Lists | Lnits | Events

i Event 3 Delete Mames
=| Add Delete

Mame IEC Variable Ewvent Type EventID
Event_1 fault E100 LanguageId Mame
English {en) Event_1

Figure 124 Events
Events dialog box gives the following information:

e Name, in this example Event_1. The Event name is displayed on the ACS-AP-x control panel
and in the Drive composer tools when the event is activated / deactivated.
e Event Type, in this example fault.

The following event types are supported:

1 = Fault (Trips the drive.)

2 = Warning (Is registered to the event logger.)
3 = Pure event (Is registered to another logger.)

e Event ID, in this example E100. Each type of event has its numerical range (ID code). You can
select the ID code within the range.

The event is activated by using the EVENT function block in the program code (library

AY1LB System ACS880 V3 5, see chapter Libraries). Every event must have its own instance of
the EVENT block. The EVENT function block must have the same ID code and type as defined in
the previous dialog box.

117

Libraries

Contents of this chapter

This chapter contains general information of libraries and description of the ABB drives system and
standard libraries. You can find more detailed information in Appendix C: ABB drives system library
and Appendix E: ABB drives standard library.

Library types
The following libraries are installed by default in Automation Builder for drive programming.
Default libraries:
e ABB drives system library (AY1LB_ System_ ACS880 V3 5)
o ABB drives standard library (AS1LB_Standard_ACS880_V3_5).
Optional libraries:

o All generic Automation Builder IEC libraries (standard and util) can be installed, but ABB
does not guarantee their correct functioning. Note the data type limitations described in Data

types).

118

The Library Manager controls and manages the library usage in the project. Each project has its own
Library Manager which is added by default when you create a new project.

ﬁ] Library_Manager X -
5 Add library Delete library Properties Details | 5] Placeholders m Likrary repository
Mame Mamespace Effective version

+.+@ AS1LB_Standard_ACS880_V3_5, 1.0.1.1 (ABB Oy) AS1LB_Standard_ACS880_V3_5 1.0.1.1
+ AY1LB_System_ACS880_V3_5, 1.9.0.7 (ABB Oy) AY1LB_System_ACS880_V3_5 1.9.0.7

Figure 125: Library Manager

ABB drives standard library contains the most common and useful functions and function blocks
for drive control. All the functions are implemented locally using structured text language. The
automation builder and standard libraries include additional general purpose functions.

ABB drives system library includes all the drive-specific functions to interface the application with
the drive firmware and 1/O interface. This library has external implementation in the drive system
software.

Note: Make sure the drive has the corresponding system library installed:
1. Inthe Drive composer pro System info, select More in Products.

2. Check that the Application System Library displayed in the Drive composer pro has the
same library version as the Automation Builder project. If the versions are not
matching, part of the library may be incompatible.

Adding alibrary to the project

To add a Library Manager (library container) to the project:

1. Inthe Devices tree, right-click Application and select Add object.

2. Inthe Add object window, select Library Manager and click Add object.
3. Double-click Library Manager. Library Manager window is displayed.

i Library_Manager x -
¥ Add library Delete library Properties Details | 5] Placeholders mLihrar}rrepnsitDr}r

Mame Mamespace Effective version

Figure 126: Library manager

119

4. Click Add library to add library.
5. Inthe Add Library window, click Advanced.

Enter a string for a fulltext search in all libraries..,

Company

Library

+-2=: Application

+.-2=: (Miscellaneous)

Advanced...

Figure 127 Advanced option
6. Select the required library and click OK.

Enter a string for a fulltext search in all libraries. ..

Library | placehalder

Company: [(AJJ Companies)

2= ABB - Drives

8 AS1LB_Standard_ACSBB0V3S 1.0.1.1 4890y
AYILB_System_ACS880 V35 1.5.07 A550y
AYZLB_D2DComm_ACBBO_V3.5 1.8.0.1 4850y
AYZLB_D2DComm_ACS880_ V35 1.2.0.2 A550y
System Library 1.8.0.3 ABS5-Drves

EE% Common

= application

E: Intern

Group by category [[] Display all versians (for experts anly)

Details... | [Library Repository... |

Figure 128: Add library

120

The selected library is added successfully.

m Library_Manager X -
= Add library Delete library | E5 Properties Details | 5] Placeholders m Library repository
Mame Mamespace Effective version

+ AS1LB_Standard_ACS880_V3_5, 1.0.1.1 (ABB Oy) AS1LB_Standard_ACS880_V3_5 1.0.1.1

Figure 129: New library added in Library Manager

i

Note: To make SFC language programs or functions, the leCSfc system library must be
available in the project.

121

Creating a new library

The application programming environment allows you to create your own libraries to be used in the
projects. After starting the programming environment, a new library can be created with the New
Project dialog.

1. Inthe New Project dialog box, click Empty project, type the library Name and Location, then
click OK.

|=] Mew Project

Categories: Templates:
""" o = Bk Bk
ACS00 project ACS330 DCx&80
project project

I

Empty project

A project containing one drive, one application, and an empty implementation for PLC_PRG

Name: Projectl

Location: E] - E]

OK l ’ Cancel]

Figure 130: Creating a new library

The new library is added into the POUs tree.
2. To add a new POU into the created library, select POUs in the View menu.
3. Right-click on project name, select Add Object -> POU.
4. Give the new POU a name, for example, POUL.
5

Select the type of the POU, for example, Function Block and the implementation language, for
example, Structured Text (ST) and then click Add.

o

Open the created POU and add the following code into the variables declaration window:

FUNCTION BLOCK FOUL

VAR_INPUT
DI1 : BOOL;
END VAR

VAR OUTPUT
RO1 : BOOL;
END VAR

WAR

prev_DI1 walue : BOOL:
END VAR

Figure 131: Variables declaration window

122

Add the following code into the code area:

IF DIl = FALSE AND prev DIl value = TRUE THEN
ROL := NOT(RO1);
END _IF

prev_DI1 wvalue := DI1;

Figure 132: Code area

7. After the code is added all library objects must be checked before the library export. On the
Build menu, select Check all Pool Objects.

8. To use the created library in the future, select Project -> Project Information and fill in the
following information on the created project: company, title and version.

Project Information

File Summary | Properties | Statistics | Licensing |

Company: IVendor name

Title: ILibrarv example title

Version: |1.1.D.1 [~ Released
Library Categories: I _I

Default namespace: I

Author: I

Description: =]

The fields in bold letters are used to identify alibrary.

[~ Automatically generate POUs for property access

OK I Cancel |

Figure 133: Project information

9. After the information is added, it is possible to install this library directly to the Library Repository.
On the File menu, select Save Project and Install into Library Repository.

Or
10. To save the library as a usual file, select Save Project as... on the File menu.

Or

11. To save the library as a compiled library file, select Save Project as Compiled Library on the
File menu.

"7 Note: To protect the library source code, you must use a compiled library file. The non-
compiled library format does not protect the source code.

123

Installing a new library

If the needed library is not in the repository, it must be installed before use.
To install a new library, follow these steps:

1. Open Library Manager and click Add library.

2. Inthe Add Library window, click Advanced.

3. Click Library Repository.

| @ Add Library

Enter a string for a fulltext search in all libraries...

Company: |(All companies)

== (Miscellaneous)
+=: ABB - Drives
+=: Application
?_ Intern

s System

Group by category [] Display all versions (for experts only)

Details... ” Library Repasitory. .. l

Figure 134 Library repository

124

4. In the Library Repository window, click Install.

Location: [System v] [Edit Locations. ..]
(C:\ProgramD ata\&utomationBuilder\AB_Managed Libraries_1.1)

Installed libraries: Install...

Company: ’(AJI companies) 'l

Uninstall

=* (Miscellaneous)
ABB - Drives
Application
Intern

Details. ..

G b t
LB R Dependendies. ..

Library Profiles...

Figure 135 Installing library
5. Browse/select the required compiled library and click Open.

A new library is installed into the Library Repository and is ready for use in the project.

125

Managing library versions

Automation Builder allows you to use different versions of the selected library according to project
requirements.

To change the current effective library version:
1. Open Library Manager.

2. Select the required library and click the Properties.

fij Library_Manager X
% Add library 3 Delete library |57 Properties |73 Details 5] Placeholders | fiffl Library repository

Mame Mamespace Effective version
+ AS1LB_Standard_ACS880_V3_5, 1.0.1.1 (ABB Oy) AS1LB_Standard_ACS880_V3_5 1.0.1.1
+ AY1LB_System_ACS880_V3_5, 1.9.0.7 (ABB Oy) | AY1LB_System_ACS880_V3_5 1.9.0.7

Figure 136 Library manager properties

3. Select the Specific version in the drop-down list and click OK.

Properties - AY1LB_System_ACS880_V3_5, 1.9.0.7 (ABB Oy) [
General: Version:
Namespace: AYILB_System ACSS80_V3_5 @) Specific version: [N l:]
. i _1.5.0.4
Default library: (0) Newest versionah }'o'5'c
1,9,0.6
Visibility: 1.9.0.7

[] @nly allow qualified access to all identifiers.

If the current project is referenced as a library by another project:

[] Publish all IEC symbols tathat project as if this reference would have been included there directly.
[] Hide this reference in the dependency tree.

oK] [Cancel

Figure 137: System library version

The library version is changed and can be used in the project.

If you want to add a new library version that is not in the Specific version list, install the
version first. See section Installing a new library.

126

Practical examples and tips

Contents of this chapter

This chapter gives practical examples and tips on working with Automation Builder.

Solving communication problems

Question: What to do when scan network does not find any drives?

Answer

a. Check the communication settings.

b.

In Windows Computer Management -> Device Manager, check that your communication

port is correctly installed.

If the USB Serial Port (COMX) is not displayed under Device Manager, check that the
corresponding USB/communication port driver is installed.

= Fle Adion Vew Window Heb
&+ LB & 2E 8

i Computer Manasgement (Local) =
= i Srstem Tocks
+ | A Everi: Vieres
* Shared Folders
Ll Lisess & GF ol
[Performands Logs and Al
B, Device Manages
= i’ ko mge
¥ Bl R abis SHodbgE
Dialh, Dafv aeimsiiir
Disd Misnagement

= |8 tarares and Fne
4 i ¥

s W POMCIA adaplers
=l Pots (00M &LPT)

~F Blustooth-tietolisremportt (00M21)
¥ Blustoothetietolksnrepaorth (C0MS)
Commnacations Poet (C0ML)

7 InbellR:) Active Marugesant Tachnology - 500 (COM3)

5 Prinker Port (LPTL)
o WS Serial Port (COM24)

o S PrOCESioEg

SCEI an] RAID coftnilan
Sournd, video ard game controllars

o Syshem dewices

| et ol Soariond Rt rne e

Figure 138: Checking communication port installation

127

d. To check that the OPC server (DriveDA.exe) has started in Windows Task Manager, select
Ctrl + shift + esc -> Processes.

L=

File Options Yiew Help

Applications ~ Processes |PerF0rmance I Tebworking I

Irnage Marne | Lser Marne CPL | Merm Lsage LI

ckfrman, exe lalujark i} 3,640 K

cvpnd. exe SYSTEM oo 6,012 K

dbsrvd, exe lalujark ao 6,932 K

DLG.exe lalujark a0 3,364 K

DOZESVC.EXE SYSTEM Jul] 1,212 K

lalujark,

EvtEng.exe SYSTEM Jul] 18,420 K

explorer.exe lalujark a0 55,930 K

EZEIMMAR EXE lalujark Jul] 3,104 K

Firesvi,exe SYSTEM Jul] 2,960 K

FireTray. exe lalujark a0 2,272 K

FrameworkSetvice exe SYSTEM Jul] 4,704 K

GatewayService. exe SYSTEM oo 3,536 K

GatewaySysTray. exe lalujark ao 2,756 K

HIPSve.exe SYSTEM Jul] 3,320K

hkemnd. exe lalujark oo 5,072 K

ibmpmsve.exe SYSTEM oo 1,620 K

igfxext.exe lalujark ao 6,260 K

igfxpers.exe lalujark a0 2,964 K LI
[v show processes Fram all users End Process |

[Frocesses: 121 |CPU Usage: 28% [Commit Charge: 1312M | 5302M | 4

Figure 139: Checking OPC server in Windows task manager
e. Check that Drive composer pro (Drive OPC) finds the connection to the drive.
Note: You must allow Automation Builder to share communication with Drive composer pro.

To work in parallel with Drive composer pro, you must do the register setting of DriveDA OPC
server. This register setting is not included in the installation setup of Automation builder
version 1.0.

For details on how to allow Automation Builder to share communication with Drive composer
pro, see chapter Setting up the programming environment.

The reinstallation of the Drive composer pro adds a new InprocServer object to the registry.

Registry Editor

File Edit Yiew Favarites Help

-1 {F6LFFECI-7S4F-11d0-B0CA-O0AA
RS z
]

{23 Implemented Categories
[InprocServer3z.bak

00564363}« | | Name Type | Data
C9-43 29114BAD} (DeFauIt) REG_SZ DriveDA OPC Server by ABB Oy
»QDDID REG_5Z {B03975E3-6BF7-4152-61BA-0DE20AE7B4 74}

Figure 140: Registry

Question: What to do if communication fails while establishing online
connection to the drive?

Answer

a. Check the Firewall settings in your PC that may block connections to devices. ABB
Automation Builder needs port 1217 for connecting to the gateway.

b. If multiple nodes are displayed, it can mean that ProxyRTS is started twice or that the IP
address is not set as localhost (should not be possible to change).
To resolve this proxy issue, follow these steps:
i. In Windows task manager, close DriveDA.exe.
ii. From the Online menu in Automation Builder, select Restart ProxyRTS.

128

Online | Debug Tools Window Help
28 Login Alt+F8

Logout Ctrl+F8
Create boot application

Logoff current online user

Download

Online Change

Source download to connected device
Multiple Download. ..

Reset warm

Reset cold

Reset origin

| Restart ProxyRTS |

Figure 141: Restart ProxyRTS

Question: What to do if communication fails between Automation Builder/Drive
composer pro and drive?

Answer

e Check the control panel version to be newer than the version in the below screen.

' B
ABE Drives Assistant control panel (COMBE) Properties ﬂ

| General I Port Settings | Driver | Deiailsl

ABEB Drives Assistant control panel {COME)

l,

Driver Pravider: ~ ABB

[Driver Date: 482010
Driver Version: 2000
Digital Signer: ABB Oy

Driver Details To view details about the driver files.

Update Driver... To update the driver software for this device.

; o If the device fails after updating the driver, rall
Al R E e back to the previously installed driver.

I Disable Digables the selected device.

To uninstall the driver (Advanced).

Uninstall

[ok][Canesl

— . S, e — ——

o

Figure 142: Control panel driver details

e Check the Driver date.

g

Note: The next panel driver version is not known. For version details, refer the
corresponding ACS880 drive software release notes or contact your ABB representative.

129

Solving other problems

Question: How to prevent unauthorized access to an application that is
running in the drive?

Answer

A compiled project as well as the downloaded source code can be password protected. You can
make a backup copy of the protected application. The backup copy is encrypted and you need a
password for downloading or executing the copied application. The IEC function libraries and
projects can be protected as well by means of automation builder.

Question: How to fix an unknown device in a project?
Answer

Install the desired device description to the device repository if you do not have it already. Then
upgrade the device in the project to the newly installed one, by right-clicking the device in the
project and selecting Update Device....

Question: How to remove a boot application from the flash memory card?
Answer

Select Online -> Reset origin. Note that this removes the application permanently from the
drive. Ensure that you have the source project available.

Question: What to do when | continuously receive “The project handle O is
invalid” error message?

Answer
There are two ways to get rid of the error:
e Select Window -> Close All Editors and then restart automation builder.

e Save the project into a new empty folder.

Covesys |

':8:' The project handle 0 s invalid,

Figure 143: Error message “The project handle 0 is invalid”

130

Question: What to do when stack overflow fault 6487 occurs?

o If stack overflow fault 6487 occurs, the number of the local variables inside a function is
too large. Unfortunately the limit of the local variables is relatively small. The stack usage
is high especially if there are, for example, division operands inside the EXPT function.

e Also if the division function’s divider is zero (an exceptional case), the stack usage is
high.

Answer

Do not make big functions. Try to make a compact function with a limited number of the variables
(40 REAL). If the function is too large, change some of the local variables to global variables
(use, for example, multiple global variable lists GVL to group variables by functions). Consider to
use function blocks or program modules instead of functions.

Question: How to optimize the memory usage of the drive application?
The code memory of the application is running out. How to optimize the program?
Answer

The drive application programming environment has relatively limited memory and execution
capacity. There are a couple of tips to minimize the program code:

e Use functions as much as possible.

,,,,,,

Note: If there are many variables inside the function, the risk of stack overflow
increases.

e Try to design the application so that you do not need to create many instances of big
function blocks. Instead of function blocks use programs or functions.

e Use Drivelnterface to access drive parameters instead of the parameter read / write
functions

Question: How to solve the problem causing error message “Creating boot
application failed: Adding Application Parameters & Groups to UFF generator:
XmlDeserializationFailed”?

Answer
This problem is related to Application parameters and events module

e Check that all Value pointer, Bit pointer and Plain value list type of parameters have the
correct Selection List.

e Check that the Bit list (16 bit) parameters do not have same Bit names (English) multiple
times (for example, text Bit_Handle_0 occurs twice).

o Check the tool message box for details.

131

Appendix A: Incompatible features
between ACS880 Drive and AC500
PLC IEC programming

Contents of this chapter

This chapter lists the features that are not compatible between ACS880 Drive and AC500 PLC IEC
programming V3 and V2.3.

Incompatible features

Unlike the newer V3, V2.3 does not allow functions to have multiple outputs, thus the
VAR_OUTPUT or VAR _IN_OUT tags cannot be included in the description part of functions.
Converting the function into a function block solves this issue and provides an identical
interface on both platforms at the cost of additional memory usage.

Single-line comments “//” are not supported in V2.3. Use block comments instead “(*...*)".

Array initialization has different syntax. For this reason, it is not possible to have code that
initializes an array to non-default values at declaration that is suitable for both versions. This
can be solved by writing values to the array once right after the code is called.

Boolean operations are not allowed for integer types other than BYTE, WORD and DWORD in
V2.3.

Namespaces are not supported in V2.3.

At least one statement is required for IF, ELSEIF and ELSE instructions in V2.3.

132

References are not supported in V2.3. Assigning a value directly instead of a reference can
eliminate this limitation.

Unions are not available in V2.3.

Indexed access to variable pointers is not allowed in V2.3. For this reason, a pointer to the
first element of an array cannot be used to access elements. Instead, the pointer needs to be
declared as a pointer to an array of elements. For example:

e ptr: POINTER TO ARRAY[0..10] OF REAL
e instead of ptr: POINTER TO REAL; to access ptr[5]

In the newer V3, {attribute ‘hide_all_locals’} is used to hide local variables, whereas V2.3
{library private} is used. These pragmas can be combined to produce code that works in both
programming environments (only a warning is produced).

133

Appendix B: Unsupported features

The ACS880 and DCX880 drives do not support the following standard IEC programming V3
features:

Persistent variable type is not supported. In case the variable is saved over power cycle,
retain variable is used. Also, user defined drive parameter can be created to save value of
the variable.

Target-based tracing. You can use the Monitor feature in Drive composer pro. See Drive
composer user’s manual (3AUA0000094606 [English]).

Some data types are not supported.

The number of program execution tasks are limited to 4. One of the task is a pre task which
is executed only once after power up. Other tasks are cyclically executed.

Program code simulation is not supported.

Target based visualization is not supported.

134

Appendix C: ABB drives system
library

Contents of this chapter

This appendix contains detailed information of the function blocks of the ABB drives system library
(AS1LB_Standard_ACS880_.V3_5)

Introduction to ABB drives system library

The ABB drives system library is intended to be used with the ACS880 drives. It provides event,
parameter read/write and program time level function blocks for application programming in the
automation builder environment. The description of the features in this document is based on the
ABB drives system library version 1.9.0.3.

Note: Using the Drive composer pro System info, check that the drive has the corresponding system
library installed. In the System info, the system library version is located under the Products/ More
view. The system library versions must be the same in the drive and the application program project.

135

Function blocks of the system library

Function block name

Description

Event function blocks

EVENT

Send the application event.

ReadEventLog

Read the drive’s faults and warnings.

Parameter change function blocks

PAR_UNIT_SEL

Changes the unit of a parameter.

PAR_SCALE_CHG

Changes the parameter scaling attributes.

PAR_LIM_CHG_DINT

Changes the limits of a parameter in DINT data format.

PAR_LIM_CHG_REAL

Changes the limits of a parameter in REAL data format.

PAR_LIM_CHG_UDINT

Changes the limits of a parameter in UDINT data format.

PAR_DEF_CHG_DINT

Changes the default values of a parameter in DINT data format.

PAR_DEF_CHG_REAL

Changes the default values of a parameter in REAL data format.

PAR_DEF_CHG_UDINT

Changes the default values of a parameter in UDINT data format.

PAR_DISP_DEC

Changes the decimal display of a parameter.

PAR_REFRESH

Notifies PC tools and panel of any parameter attribute changes.

Parameter protection

PAR_PROT

Protects individual parameters.

PAR_GRP_PROT

Protects a parameter group.

Parameter read function blocks

ParReadBit

Read the value of a bit in a packed-Boolean-type parameter.

ParRead_DINT

Read the value of a DINT/INT type parameter.

ParRead REAL

Read the value of a REAL type parameter.

ParRead UDINT

Read the value of a UDINT/UINT type parameter.

Parameter write function blocks

ParWriteBit

Write the value to a bit of a packed-Boolean-type parameter.

ParWrite_DINT

Write the value to a DINT/INT type parameter.

ParWrite_ REAL

Write the value to a REAL type parameter.

ParWrite_ UDINT

Write the value to an UDINT/UINT type parameter.

136

Function block name

Description

Pointer parameter read function blocks

ParRead BIitPTR

Read the pointed bit value from a bit pointer type parameter.

ParRead ValPTR_DINT

Read the pointed DINT/INT value from a value pointer type parameter.

ParRead ValPTR_REAL

Read the pointed REAL value from a value pointer type parameter.

ParRead ValPTR_UDINT

Read the pointed UDINT/UINT value from a value pointer type parameter.

Set pointer parameter function

blocks

ParSet BitPTR_IEC

Set a bit pointer parameter to point to a bit type IEC variable.

ParSet_ValPTR_IEC_DINT

Set a value pointer parameter to point to a DINT type IEC variable.

ParSet_ValPTR_IEC_REAL

Set a value pointer parameter to point to a REAL type IEC variable.

ParSet_ValPTR_IEC_UDINT

Set a value pointer parameter to point to an UDINT type IEC variable.

ParSet_BitPTR_Par

Set a bit pointer parameter to point to a bit of a packed Boolean
parameter.

ParSet ValPTR_Par

Set a value pointer parameter to point to a value parameter.

Task time level function block

UsedTimeLevel

Show time level (ms) of the program where the function block is located.

137

Event function blocks

EVENT
Summary
The application event function block is used to trigger a predefined event EVENT
(fault/warning/pure) from the IEC code. The event is registered to drive i o Emrp-
—{ AL =
event logger. EventType
—Trig
—{Enable

Connections

Inputs:

Name

Type

Value

Description

ID

WORD

O0xE100.. OXE2FF

Identification of the event (constant, cannot be changed on run
time). This is a unique value of the event. You can find the
supported values in the ApplicationParametersAndEvent tool. A
certain range is reserved for each application event type.
Faults:

O0xE100...E1FF

Warnings:

0xE200.. OXE2FF

AuxCode

DWORD

ANY

The auxiliary code that you can set freely (constant).

EventType

WORD

1,2

Type of the event (constant, cannot be changed on run time).
Supported event types: Fault = 1, Warning = 2, Pure = 8 (Notice
is not supported).

Trig

BOOL

T/F

The high level (TRUE) of this pin sends/activates the event, if
Enable is set to TRUE. Warning is deactivated automatically,
when Trig falls down. To clear the fault, give the reset command.

Enable

BOOL

T/F

Enable/disable event sending.

Outputs:

Name

Type

Value

Description

Err

WORD

ANY

The value is typically 0x0000.

0x0001 = Not used

0x0002 = Event is not user-defined event
0x0003 = Event type error

0x0004 = Event ID type error

0x0005 = Not used

0x0006 = Unknown event type

Description

You can configure an application event with the ApplicationParametersandEvents in Automation
Builder tool. (See Application parameter and event creation). This tool defines the ID and the event
text (description).

138

Automation Builder supports the following event types: Fault, Warning and Pure.

The event ID, text, auxiliary code, time and operation data is registered into the drive event logger.

The application events can be shown using the ACS-AP-x control panel and Drive composer tools,
or using the ReadEventLog block on the application level. A fault can be reset, for example, using

the control panel or Drive composer pro tool.

Tkt

Note: The current firmware supports execution of three event functions in the same task
cycle. If there are more event functions, do not enable all of them at the same time.

ReadEventLog

Summary
ReadEventLog is a special block for reading faults and warnings

- ReadEventlog
from the drive event system. The block does not read events or —EventType By
use the drive event or fault loggers. Instead it gets the events —{Index Code
straight from the event system itself. —(Cnt AuxCode
—Enzble Status
The purpose of the block is to forward drive events, for example, RdCnt
to external systems, like automation user interfaces. EventlostCnt
Inputs:
Name Type Value Description
EventType UINT 0 Not used. The block returns the drive’s faults and
warnings. Can be set to 0.
Index UINT 0 Not used. Can be set to 0.
Cnt UINT 0...6 Number of the wanted events at a time. (0...6)
Enable BOOL TIF Enable / disable the block execution. The falling edge
of this pin clears all the output vectors.
Outputs:
Name Type Value Description
Err UINT N/A Not used.
Code Array of Any of Event code (ID). The block supports maximum 6
UINT[10] allowed events at a time.
events
codes
AuxCode Array of ANY Auxiliary code of the event.
UINT[10]
Status Array of ANY Status of the event.
UINT[10] 1 = The event has been activated.
2 = The event has been deactivated.
3 = Acknowledgement requested.
4 = The event is reactivated (warnings).
5 = All faults have been deactivated.

139

RdCnt UINT 0...6 The number of the get/read events at a time.
Maximum 6
RdCnt value = 0 indicates that there are no new
events.

EventLostCnt | UINT ANY The number of the lost events (for monitoring).

it

Note: The current firmware supports execution of three event functions in the same task
cycle. If there are more event functions, do not enable all of them at the same time.

It is recommend to use event blocks only on the tasks which cycle time setting is higher
than 50ms.

Description

The block packs the event Code, AuxCode and Status to vectors that the user can read. The block
does not sort faults and warnings from each other. The 1%t event in the vector is the oldest one.

The block returns the maximum Cnt number of events in each execution cycle depending on how
many events exist at this time on the drive. RdCnt indicates how many events are got in each
execution cycle. The vectors and RdCnt are updated in every execution cycle if new events exist.
For this reason, only the value of RACnt matters when reading the event data from vectors. The
older events are overwritten by the newer ones.

Example:

In the 15t execution cycle, the user reads 2 events, for example, events 11, 12 (RdCnt = 2). Both are
valid. 12 is the last one.

In the 2" execution cycle, the user reads 1 event, for example, 21 (RdCnt = 1).

Now values 21, 12 can be seen in the Code vector, but because RdCnt is 1, only the first value is
valid (21). (12 read in the previous cycle.)

Vectors are cleared only on the falling edge of the Enable pin.

EventLostCnt indicates the number of the lost events. The value should be 0. In the opposite case,
the reason can be too slow execution cycle of this block.

it

Note: The execution cycle of this block is slow. To optimize the application resources, it is
recommended to use only one instance of this block.

140

Parameter change function blocks
PAR_UNIT_SEL

Summary PAR_UNIT_SEL
PAR_UNIT_SEL block enables changing the unit of a :E’:Zﬁ:f =
parameter from the IEC application. If one parameter of the —{Index

family parameter is changed using this block, the change —Unit

applies to all other parameters of that parameter family.

Connections

Inputs:
Name Type Value Description
Enable BOOL T/IF Enables unit change at the rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
Unit UNIT 128...255 Unit selection
Outputs:
Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the unit change of a parameter. Group and Index define the
parameter to be changed and Unit defines the unit of the parameter. The unit strings and
corresponding codes are defined in the Automation Builder, ApplicationparameterandEvents
manager (APEM). The units in the range of 128 to 255 only can be changed using this function
block.

G

Note: Use only the units defined in APEM. Selecting undefined units are not notified by the
Err output.

Err returns an error code if there is an error during a unit change, for example, the unit for change is
beyond the selection range. If the unit selection and change operation is successful, Err returns a 0.

141

PAR_SCALE_CHG

Summary PAR_SCALE_CHG
PAR_SCALE_CHG block enables changing the :E"FEBLE Bl
parameter scaling attributes from the IEC —Index
application. Initial scaling values are defined in the = —Basevalue
Parameter family settings. —(BIT32_scaler

—BIT16_scaler

Connections

Inputs:

Name Type Value Description

Enable BOOL TIF Enables scale change at the rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Basevalue DINT 128...255 Scales internal value to external 32 or 16 bit interface.
Used as divider.

BIT32 scaler DINT ANY Scaling factor for external 32 bit interface in panel
(ACS-AP-I), DriveComposer and fieldbus interface. The
value is used as a multiplayer.

BIT16_scaler INT ANY Scaling factor for external 16 bit interface for fieldbus
interface. The value is used as a multiplayer.

Outputs:
Name Type Value Description
Err INT ANY Error output
Description

This function block enables changing the parameter scaling factor that scales the internal value for
DriveComposer-tool, ACS-AP-I panel and fieldbus interface. The initial values of the scaling factors
are defined in ApplicationparameterandEvents manager (APEM) for all user parameters. The

changed parameter scaling applies to all parameters of a specific family (scaling) defined in APEM.

The rising edge of Enable input implies the parameter scaling change. Group and Index define the
parameter to be changed. The Basevalue scales the internal value to external 32 or 16 bit interface.

The BIT32_scaler and BIT16_scaler are used as scaling interfaces.

The Err output returns an error code if there is an error during the scaling change operation. If the
scaling changes are successful, Err returns a 0.

External 32-bit scaling

This is used by (ACS-AP-I), Drive Composer and PLC over fieldbus adapter. If the parameter type is
REAL, the number of decimals influence the scaling defined in ApplicationparametersandEvents
manager or the PAR_DISP_DEC block.

142

If external value is requested as 32-bit integer, the internal float is scaled to external float with the
same scaling factor and then converted to 32 bit integer with extra numbers for decimal values,
depending on the display format of decimals. For example: The value 1.23456 is displayed as 1.235
if the display format is 3 decimals.

Scaling formula:

BIT32_scalerx10(Pecimals)
Basevalue

External_value(32 bit) = X IEC_program_variable(internal value)

External 16-bit scaling

This scaling is used only for fieldbus interface to fit internal value with higher number of bits to the 16
bit scale. The 16 bit external value uses its own scaling factor with no display format for decimals.

Scaling formula:
BIT16_scaler

External_value(16 bit) = Basevalue

X IEC_program_variable(internal value)

143

Parameter limit change
PAR_LIM_CHG_DINT

Summary PAR_LIM_CHG_DINT

The PAR_LIM_CHG_DINT block enables changing the —|nable Brrl—
.. . . —{laraup

minimum and maximum values (in DINT data format) of a |

parameter from the IEC application. The changes in the limit —Min_Vval

values apply to all parameters belonging to same parameter —{Max_Val

family defined in APEM.

Connections

Inputs:
Name Type Value Description
Enable BOOL T/IF Enables changing parameter limits at the rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
Min_Val DINT ANY New minimum value in DINT data format
Max_Val DINT ANY New maximum value in DINT data format
Outputs:
Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the changed parameter limit values. Group and Index define
the parameter to be changed. The Min_Val and Max_Val are used to set the new minimum and
maximum values of the parameter respectively.

Note: Ensure the following conditions while defining the minimum and maximum values:
e The Min_Val must be greater than Max_Val.
e The Max_Val must be lesser than Min_Val.

¢ Min_Val should not be equal to Max_Val.

Err returns an error code if there is an error during the limits changes operation, for example, the
new limits are beyond the range. If the change operation is successful, Err returns a 0.

144

PAR_LIM_CHG_REAL

Summary PAR_LIM_CHG_REAL
The PAR_LIM_CHG_REAL block enables changing the :Eﬂﬂb't‘ Err
minimum and maximum values (in REAL data format) of the e
parameter from the IEC application. The changes in the limit —Min_val
values apply to all parameters belonging to same parameter —Max_Val
family defined in APEM.
Connections
Inputs:
Name Type Value Description
Enable BOOL TIF Enables changing parameter limits at the rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
Min_Val REAL ANY New minimum value in REAL data format
Max_Val REAL ANY New maximum value in REAL data format
Outputs:
Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the changed parameter limit values. Group and Index define
the parameter to be changed. The Min_Val and Max_Val are used to set the new minimum and
maximum values of the parameter respectively.

Note: Ensure the following conditions while defining the minimum and maximum values:
e The Min_Val must be greater than Max_Val.
e The Max_Val must be lesser than Min_Val.

¢ Min_Val should not be equal to Max_Val.

Err returns an error code if there is an error during the limits changes operation, for example, the
new limits are beyond the range. If the change operation is successful, Err returns a 0.

145

PAR_LIM_CHG_UDINT

Summary PAR_LIM_CHG_UDINT

The PAR_LIM_CHG_UDINT block enables changing the :Eﬁzﬁ:: B
minimum and maximum values (in UDINT data format) of a —Index

parameter from the IEC application. The changes in the limit ~ —Min_val

values apply to all parameters belonging to same parameter ~ —(Max_Val

family defined in APEM.

Connections

Inputs:
Name Type Value Description
Enable BOOL TIF Enables changing parameter limits at the rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
Min_Val UDINT ANY New minimum value in UDINT data format
Max_Val UDINT ANY New maximum value in UDINT data format
Outputs:
Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the changed parameter limit values. Group and Index define
the parameter to be changed. The Min_Val and Max_Val are used to set the new minimum and
maximum values of the parameter respectively.

Note: Ensure the following conditions while defining the minimum and maximum values:
e The Min_Val must be greater than Max_Val.
e The Max_Val must be lesser than Min_Val.

¢ Min_Val should not be equal to Max_Val.

Err returns an error code if there is an error during the limits changes operation, for example, the
new limits are beyond the range. If the change operation is successful, Err returns a 0.

146

Parameter default value change

PAR_DEF_CHG_DINT

Summary PAR_DEF_CHG_DINT

The PAR_DEF_CHG_DINT block enables changing the default :EanE::.E e
values (in DINT data format) of a parameter from the IEC — e

application. The value changes apply to all parameters of that —{Default

specific parameter family defined in APEM.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/IF Enables changing the default value of a parameter at the

rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Default DINT ANY New default value in DINT data format
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The rising edge of Enable input implies the changed parameter default values. Group and Index
define the parameter to be changed. The input Default is used to set the new default value of the

parameter.

"7 Note: Define a default value within the minimum and maximum value.

Err returns an error code if there is an error during the change operation. If the default value change
operation is successful, Err returns a 0.

147

PAR_DEF_CHG_REAL

Summary PAR_DEF_CHG_REAL

The PAR_DEF_CHG_REAL block enables changing the default :E"r;ﬁ::‘ Err
values (in REAL data format) of a parameter from the IEC —index

application. The value changes apply to all parameters of that —|Default

specific parameter family defined in APEM.

Connections

Inputs:

Name Type Value Description

Enable BOOL TIF Enables changing the default value of a parameter at the

rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Default REAL ANY New default value in REAL data format
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The rising edge of Enable input implies the changed parameter default values. Group and Index

define the parameter to be changed. The input Default is used to set the new default value of the

parameter.

Note: Define a default value within the minimum and maximum value.

Err returns an error code if there is an error during the change operation. If the default value change

operation is successful, Err returns a 0.

148

PAR_DEF_CHG_UDINT

summary PAR_DEF_CHG_UDINT

The PAR_DEF_CHG_UDINT block enables changing the —Eﬂﬁb“—‘ Err
default values (in UDINT data format) of a parameter fromthe ~ —| "3 ®

IEC application. The value changes apply to all parameters of _{pefault

that specific parameter family defined in APEM.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/IF Enables changing the default value of a parameter at the

rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Default UDINT ANY New default value in UDINT data format
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The rising edge of Enable input implies the changed parameter default values. Group and Index
define the parameter to be changed. The input Default is used to set the new default value of the

parameter.

HHHHG

Note: Define a default value within the minimum and maximum value.

Err returns an error code if there is an error during the change operation. If the default value change

operation is successful, Err returns a 0.

149

Parameter decimal display
PAR_DISP_DEC

Summary PAR_DISP_DEC
PAR_DISP_DEC block enables changing the number of :E"rzﬁ:: Err—
displayed decimals of a parameter from the IEC —{index

application. If one parameter of the family parameter is —{Decimals

changed using this block, the change applies to all other
parameters of that parameter family.

Connections

Inputs:
Name Type Value Description
Enable BOOL TIF Enables decimal display change at the rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
Decimals UNIT 128...255 Number of decimals to display
Outputs:
Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the decimal display change of a parameter. Group and Index
define the parameter to be changed and the input Decimals defines the number of decimal values to
display. If the parameter is in REAL data format, the value is scaled for fieldbus interface by scaling
factor 1Q(decimals)

Err returns an error code if there is an error during a unit change, for example, the unit for change is
beyond the selection range. If the unit selection and change operation is successful, Err returns a 0.

150

PAR_REFRESH

Summary PAR_REFRESH

PAR_REFRESH block notifies PC tools and panel of any —Refresh Errf—
parameter attribute changes. Cnti—

Connections

Input:

Name Type Value Description

Refresh BOOL TIF Enables refresh at the rising edge
Outputs:

Name Type Value Description

Err INT ANY Error output

Cnt UINT ANY Counts the number of refresh activation
Description

The rising edge of Refresh input notifies any parameter changes to PC tools and panel.

WARNING! Every time you activate the Refresh input in Automation Builder, a
notification appears in Drive Composer prompting to refresh the parameters. Click
OK to apply the parameter changes.

Err returns an error code if the parameter protection is applied successfully, Err returns a 0. The
output Cnt increments at every activation of the input Refresh.

151

Parameter protection

PAR_PROT PAR_PROT
—Enable Errf—
Summary -
PAR_PROT block is used for protecting individual :;Zs{eﬁmt
parameters. This block enables write protection and hides —IHide

flags dynamically from the IEC application. The changes do
not apply to any other parameter of the specific family.

Connections

Inputs:
Name Type Value Description
Enable BOOL TIF Enables protection change at the rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
WR_Prot UNIT ANY Applies write protection
0 = No protection
1 = Human WP [Drive Composer (Pro/Entry) and ACS-AP-I/
ACS-AP-S control panel]
Hide UINT ANY Hides flags
0 = No protection
1 = Human WP [Drive Composer (Pro/Entry) and ACS-AP-I/
ACS-AP-S control panel]
Outputs:
Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the protection change of a parameter. Group and Index
define the parameter to be changed. The inputs WR_Prot and Hide define the parameter for write
protection and parameter to hide respectively.

Err returns an error code if there is an error during a parameter protection change. If the parameter
protection is applied successfully, Err returns a 0.

152

PAR_GRP_PROT

Summary PAR_GRP_PROT
PAR_GRP_PROT block is used to protect a parameter :E':EELE Errf—
group. This block enables write protection and hides flags —|WR_Prot

dynamically from the IEC application. —Hide

Connections

Inputs:
Name Type Value Description
Enable BOOL T/IF Enables protection at the rising edge
Group INT ANY Parameter group
WR_Prot UNIT ANY Applies write protection
0 = No protection
1 = Human WP [Drive Composer (Pro/Entry) and ACS-AP-
I/ ACS-AP-S control panel]
Hide UINT ANY Hides flags
0 = No protection
1 = Human WP [Drive Composer (Pro/Entry) and ACS-AP-
I/ ACS-AP-S control panel]
Output:
Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the protection change of a parameter group. Group defines
the group to be changed. The inputs WR_Prot and Hide define the parameter group to be write
protected and hidden.

Err returns an error code if there is an error during a protection change. If the parameter group
protection is applied successfully, Err returns a 0.

153

Parameter read function blocks

ParReadBit
Summary
ParReadBit reads the value of a bit in a packed Boolean type ParReadBi
parameter. —Group Output -
—Index Errf-
Connections —BitNro
Inputs:
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
BitNro INT ANY Bit number
Outputs:
Name Type Value Description
Output BOOL TIF Output value
Err INT ANY Error output
Description

The function block reads the value of a bit in a packed Boolean type parameter. Group and Index
define the parameter to be read and BitNro defines the number of the bit. The value of the bit read is
returned from Output.

Err returns an error code if there is an error during the read operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

154

ParRead DINT

Summary
ParRead_DINT reads the value of a DINT/INT type parameter. ParRead DINT
Connections oo ouptr
Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index
Outputs:

Name Type Value Description

Output DINT ANY Output value

Err INT ANY Error output
Description

The function block reads the value of a DINT or INT type parameter. Group and Index define the
parameter to be read. The value of the parameter is returned from Output. The type of Output is
DINT even if the parameter to be read is of the INT type.

Err returns an error code if there is an error during the read operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

155

ParRead REAL

Summary

ParRead_REAL reads the value of a REAL type parameter.

Connections

ParRead_REAL

Inputs:
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs:
Name Type Value Description
Output REAL ANY Output value
Err INT ANY Error output
Description

The function block reads the value of a REAL type parameter. Group and Index define the

parameter to be read. The value of the parameter is returned from Output.

Err returns an error code if there is an error during the read operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

156

ParRead UDINT

Summary

ParRead_UDINT reads the value of a UDINT/UINT type

parameter.

Connections

ParRead_LIDINT
Group Ot
Index

put
Err

Inputs:
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs:
Name Type Value Description
Output UDINT ANY Output value
Err INT ANY Error output
Description

The function block reads the value of a UDINT or UINT type parameter. Group and Index define the
parameter to be read. The value of the parameter is returned from Output. The type of the output is
UDINT even if the parameter to be read is of the UINT type.

Err returns an error code if there is an error during the read operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

157

Parameter write function blocks

ParWriteBit

Parwritebit
Summary —Input Errf-
ParWriteBit writes a value to a bit of a packed Boolean type —Group
parameter. :gi?;}:o
Connections Store

Inputs:
Name Type Value Description
Input BOOL TIF Input value
Group INT ANY Parameter group
Index INT ANY Parameter index
BitNro INT ANY Bit number
Store BOOL T/IF Store input
Outputs:
Name Type Value Description
Err INT ANY Error output
Description

The function block writes the value of Input into a selected bit of a packed Boolean type parameter.
Group and Index define the parameter to be written and BitNro define the number of the bit. Store
defines if the current written value of the parameter is stored to the flash memory. During the power-
up of the drive, the value of the parameter is set to the latest stored value.

Err returns an error code if there is an error during the write operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the write operation is successful, Err returns a 0.

158

ParWrite_DINT

Summ ary | lnpl:ta r"."n'ritf:_['.lIINlTErr]
ParWrite_DINT writes a value to a DINT/INT type parameter. :E;;Iip
Connections —{Store
Inputs:

Name Type Value Description

Input DINT ANY Input value

Group INT ANY Parameter group

Index INT ANY Parameter index

Store BOOL TIF Store input
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The function block writes the value of Input into a selected DINT or INT type parameter. The type of
the Input is DINT even if the parameter to be written is of the INT type. Group and Index define the
parameter to be written. Store defines if the current written value of the parameter is stored to the
flash memory. During the power-up of the drive, the value of the parameter is set to the latest stored
value.

Err returns an error code if there is an error during the write operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the write operation is successful, Err returns a 0.

159

ParWrite_ REAL

Summ ary | Inpult:"a rwnite_REAL =l
ParWrite_ REAL writes a value to a REAL type parameter. :Eﬂ(ﬂ
Connections —(Store
Inputs:

Name Type Value Description

Input REAL ANY Input value

Group INT ANY Parameter group

Index INT ANY Parameter index

Store BOOL TIF Store input
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The function block writes the value of Input into a selected REAL type parameter. Group and Index
define the parameter to be written. Store defines if the current written value of the parameter is
stored to the flash memory. During the power-up of the drive, the value of the parameter is set to the
latest stored value.

Err returns an error code if there is an error during the write operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the write operation is successful, Err returns a 0.

160

ParWrite_ UDINT

Summary
ParWrite_UDINT writes a value to a UDINT/UINT type ParWrite_UDINT
parameter. —Input Errf-
—Group
Connections g =
—{Store
Inputs:
Name Type Value Description
Input UDINT ANY Input value
Group INT ANY Parameter group
Index INT ANY Parameter index
Store BOOL T/IF Store input
Outputs:
Name Type Value Description
Err INT ANY Error output
Description

The function block writes the value of Input into a selected UDINT or UINT type parameter. The type
of Input is UDINT even if the parameter to be written is of the UINT type. Group and Index define the
parameter to be written. Store defines if the current written value of the parameter is stored to the
flash memory. During the power-up of the drive, the value of the parameter is set to the latest stored
value.

Err returns an error code if there is an error during the write operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the write operation is successful, Err returns a 0.

161

Pointer parameter read function block
ParRead_BitPTR

Summary

ParRead_BitPTR reads the pointed bit value from a bit pointer type

parameter. ParRead_BtPTR

—Group Clutput
—Index Errf-

Connections

Inputs:
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs:
Name Type Value Description
Output BOOL ANY Output value
Err WORD ANY Error output
Description

The function block reads the pointed value of a bit pointer type parameter. Group and Index define
the pointed parameter to be read. The pointed value of the parameter is returned from Output.

Err returns an error code if there is an error during the read operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

162

ParRead ValPTR_DINT

Summary

ParRead_ValPTR_DINT reads a pointed DINT/INT value from a

value pointer type parameter.

Connections

—Group
—{Index

ParRead_ValFTR_DINT

Output
Err

Inputs:
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs:
Name Type Value Description
Output DINT ANY Output value
Err INT ANY Error output
Description

The function block reads the pointed value of a DINT or INT pointer type parameter. Group and
Index define the pointed parameter to be read. The pointed value of the parameter is returned from
Output. The type of Output is DINT even if the parameter type is INT.

Err returns an error code if there is an error during the read operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

163

ParRead ValPTR_REAL

Summary

ParRead_ValPTR_REAL reads a pointed REAL value from a value
pointer type parameter.

Connections

ParRead_ValPFTR_REAL
Group Cutput
Index Emr

Inputs:
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs:
Name Type Value Description
Output REAL ANY Output value
Err INT ANY Error output
Description

The function block reads the pointed value of a REAL pointer type parameter. Group and Index
define the pointed parameter to be read. The pointed value of the parameter is returned from Output.

Err returns an error code if there is an error during the read operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

164

ParRead ValPTR_UDINT

Summary
ParRead_ValPTR_UDINT reads a pointed UDINT/UINT value from
a value pointer type parameter. ParRead_ValPTR_UDINT
—Graup Clutput
Connections —{Index Errf-
Inputs:
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs:
Name Type Value Description
Output UDINT ANY Output value
Err INT ANY Error output
Description

The function block reads the pointed value of a UDINT or UINT pointer type parameter. Group and
Index define the pointed parameter to be read. The pointed value of the parameter is returned from
Output. The type of Output is UDINT even if the parameter type is UINT.

Err returns an error code if there is an error during the read operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

165

Set pointer parameter to IEC variable function blocks

ParSet_BitPTR_IEC

Summary

ParSet_BitPTR_IEC sets a bit pointer parameter to point to a bit type
IEC variable.

ParSet_BitPTR_IEC

—Group Err
. —{Index
Connections _Bithro
BIEC_Var
Inputs:
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
BitNro INT 0 Bit setting is not supported.
IEC_Var BOOL TIF IEC variable
Outputs:
Name Type Value Description
Err INT ANY Error output
Description

The function block sets a bit pointer type parameter to point to an IEC variable of the Boolean type,

that is, the IEC variable overwrites the value of the bit pointer. The parameter to point must be of the
bit pointer type. Group and Index define the parameter. The BitNro input must be set to zero since
(at least in this library version) the type of IEC_Var must be Boolean and type of the parameter to be

set must be bit pointer. Therefore the bit number cannot be chosen. The IEC_Var input is the IEC

variable to be pointed.

Err returns an error code if there is an error during the set operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the set operation is successful, Err returns a 0.

166

ParSet_ValPTR_IEC_DINT

Summary

ParSet_ValPTR_IEC_DINT sets a value pointer parameter to ParSet_ValPTR IEC_DINT
point to a DINT type IEC variable. —Group Err
—{Index
Connections SHIEC_Var
Inputs:
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
IEC_Var DINT ANY IEC variable
Outputs:
Name Type Value Description
Err INT ANY Error output
Description

The function block sets a value pointer type parameter to point to an IEC variable of the DINT type,
that is, the IEC variable value overwrites the value of the value pointer. The parameter to point must
be a value pointer to the DINT or INT type. Group and Index define the parameter. The IEC Var

input is the IEC variable to be pointed.

Err returns an error code if there is an error during the set operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the set operation is successful, Err returns a 0.

167

ParSet_ValPTR_IEC_REAL

Summary

ParSet_ValPTR_IEC_REAL sets a value pointer parameter to ParSet_ValPTR_IEC_REAL
point to a REAL type IEC variable. :Egﬂiﬂ Err
Connections HIEC_Var
Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

IEC_Var REAL ANY IEC variable
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The function block sets a value pointer type parameter to point to an IEC variable of the REAL type,
that is, the IEC variable value overwrites the value of the value pointer. The parameter to point must
be a value pointer to the REAL type. Group and Index define the parameter. The IEC_Var input is
the IEC variable to be pointed.

Err returns an error code if there is an error during the set operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the set operation is successful, Err returns a 0.

168

ParSet_ValPTR_IEC_UDINT

Summary

ParSet_ValPTR_IEC_UDINT sets a value pointer parameter to

point to a UDINT type IEC variable.

ParSet_ValPTR_IEC_UDINT

—|Group Err

Connections ;:Ef:ej‘wr
Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

IEC_Var UDINT ANY IEC variable
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The function block sets a value pointer type parameter to point to an IEC variable of the UDINT type,
that is, the IEC variable value overwrites the value of the value pointer. The parameter to point must
be a value pointer to the UDINT or UINT type. Group and Index define the parameter. The IEC_Var

input is the IEC variable to be pointed.

Err returns an error code if there is an error during the set operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the set operation is successful, Err returns a 0.

169

Set pointer parameter to parameter function blocks

ParSet_BitPTR_Par

Summary

ParSet_BitPFTR_Par

ParSet_BitPTR_Par sets a bit pointer parameter to point to a bit of a :EZE%%: =
packed Boolean parameter. 1T Group
Connections I Index
Inputs:

Name Type Value Description

S_Group INT ANY Source parameter group

S_Index INT ANY Source parameter index

S_BitNro INT ANY Source bit number

T_Group INT ANY Target parameter group

T_Index INT ANY Target parameter index
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The function block sets a bit pointer parameter to point to a bit of a packed Boolean type parameter.

S_Group and S_Index define the parameter to be pointed (the source) and S_BitNro defines the

number of the bit. T_Group and T_Index define the pointer parameter (the target) which points to the
source parameter. The target parameter must be a Bit Pointer type and the source parameter must

be a packed Boolean type.

Err returns an error code if there is an error during the set operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the set operation is successful, Err returns a 0.

170

ParSet_ValPTR_Par

Summary

ParSet_ValPTR_Par sets a value pointer parameter to point to a value

Par5et_ValPFTR_Far

parameter. —5_Group Err
_ —5_Index
Connections —{T_Group
—T_Index
Inputs:
Name Type Value Description
S_Group INT ANY Source parameter group
S _Index INT ANY Source parameter index
T_Group INT ANY Target parameter group
T_Index INT ANY Target parameter index
Outputs:
Name Type Value Description
Err INT ANY Error output
Description

The function block sets a value pointer parameter to point to a value parameter. S_Group and

S_Index define the parameter to be pointed (the source). T_Group and T_Index define the pointer

parameter (the target) which points to the source parameter. The target parameter must be a pointer
parameter of the same type as the source parameter which must be a value parameter.

Err returns an error code if there is an error during the set operation, for example, the parameter is
not found or it is a parameter of a wrong type. If the set operation is successful, Err returns a 0.

171

Task time level function block

UsedTimelLevel

Summary
UsedTimeLevel shows_ the time'level (ms) of the program (task execution UsedTimeleve
cycle) where the function block is located. Outputl

Connections

Inputs:

Name Type Value Description

NONE

Outputs:

Name Type Value Description

Output INT ANY Used time level in ms

Description

The function block shows the time level of the program (task cycle) in which the particular function
block is located. Output gives the time level in milliseconds.

172

Error codes

The following list gives the most common error codes related to the function blocks of the ABB
drives system library. The error codes are received from the Err output and they indicate if there is
an error during the performance of the function block.

Error code Error code number | Description

e_success 0 (hex 0) Success, no error

e_WriteProtected 4 (hex 4) The parameter is write-protected.

e_Hidden 5 (hex 5) The parameter is hidden.

e_illegalOperation 6 (hex 6) _IIIe_gaI operation, for example, the parameter type
is incaorrect.

e_lowLimit 9 (hex 9) Parameter minimum value is exceeded.

e_highLimit 10 (hex A) Parameter maximum value is exceeded

e_noValuelnList 11 (hex B) No value in the list

e_parNotFound 13 (hex D) The parameter is not found.

e _OutsidelndexArea 774 (hex 306) Outside index area

e_OverLappingGroup 775 (hex 307) Overlapping group

e_UffError 777 (hex 309) UFF error

173

Appendix D: ABB D2D function
blocks

Contents of this chapter

This appendix contains detailed information of the drive to drive (D2D) communication function
blocks of the ABB drives system library (AY2LB_System_ACS880 V3 5)

Introduction to ABB D2D function blocks

The ABB D2D function blocks are intended to be used with the ACS880 drives. It provides drive to
drive communication and drive to drive configuration function blocks for application programming in
the automation builder environment. The description of the features in this document is based on the
ABB drives system library version 1.9.0.3.

Note: In the Drive Composer Pro system information, make sure the drive has the
corresponding system library installed. In System info, the system library version is
located under the Products/ More view. The system library versions must be the same in
the drive and the application program project.

174

D2D function blocks of the system library

Function block name

Description

Data read/write

DS_ReadLocal

Reads data from the local dataset.

DS_WriteLocal

Writes data to local dataset.

Drive to drive communication

D2D TRA Transmits data to a remote drive.

D2D_REC Receives data from the remote drive.

D2D_TRA _REC Transmits and receives data from the remote drive.
D2D TRA MC Transmits multicast messages to group of drives.

Drive to drive configuration

D2D_Conf

Configures token management on master drive.

D2D_Conf_Token

Configures the node related transmission cycle of token on master drive.

D2D_Master_State

Returns status of master drive connected with D2D link, except its own
status.

175

Data read/write blocks
DS_ReadLocal

Summary D5_ReadLocal

LocalDshr Ermer—
DS_ReadLocal block reads the dataset value from the Out1_16bitt—
local dataset table. The 48 bit dataset composes of 16 bit Sy

and 32 bit parts. The 32 bit part is available both in
DWORD or REAL data formats in the function block output. Inputs are pointer to actual data.
Dataset composes of three words in the output:

e 16 bit (WORD)
e 32 hit (DWORD or REAL)

Connections

Inputs:
Name Type Value Description
LocalDsNr UINT 1...255 Local dataset number
Outputs:
Name Type Value Description
Error UDINT ANY Error output
Outl_16bit WORD ANY 16-bit part of the dataset in WORD format
Out2_32bit DWORD ANY 32-bit part of the dataset as DWORD format
Out2_32bitReal REAL ANY 32-bit part of the dataset as REAL format
Description

The function block reads the local dataset value from the local dataset table. LocalDsNr defines the
local dataset number.

Output Outl_16bhit returns the first 16 bit of dataset as WORD data.
Output Out2_32bit returns 32 bit part of dataset as DWORD data.
Output Out2_32bitReal returns 32 bit part of dataset as REAL data.

Error returns an error code if there is an error during the read operation, for example, the dataset is
not found or if the dataset is beyond the dataset number range of 1...255. If the read operation is
successful, Error returns a 0.

176

DS_WriteLocal

Summary

DS_WriteLocal block writes data to local

dataset. The 48 bit dataset composes of 16 i . LB Erorl—
bit and 32 bit parts. Inputs are pointers to —pDatalnd_16bit
actual data. —ipDataln? 37bit
Connections
Inputs:
Name Type Value Description
LocalDsNr UINT 128...255 | Local dataset number
pDatalnl_16bit | WORD - Pointer to 16 bit value
POINTER
pDataln2_32bit | DWORD - Pointer to 32 bit data (REAL, DWORD)
POINTER
Outputs:
Name Type Value Description
Error UDINT ANY Error output
Description

The DS_WriteLocal function writes data to the local dataset. LocalDsNr defines the local dataset
number from 128 to 255. The input data of 16 bit and 32 bit is connected to the pointer inputs
pDatalnl_16bit and pDataln2_32bit respectively using the ADR operand.

Note: The data set numbers 128 to 255 are reserved for application programming.
However, you can set the data set numbers 1 to 127. There is risk of conflict with firmware
dataset.

Error returns an error code if there is an error during the write operation, for example, the dataset is
not found or if the dataset is beyond the dataset number range of 128...255. If the write operation is
successful, Error returns a 0.

177

D2D communication blocks

Genera

The D2D_TRA, D2D_REC and D2D_TRA_REC blocks can be used only in a master drive. These
blocks can work independently without token configuration. The D2D_TRA_MC block can be used in
both master and follower drives. When used in a follower drive, the token send configuration must be
done using D2D_Conf_Token and D2D_Conf blocks.

The D2D_Master_State block can be used without token configuration in both the master and
follower drives as well as the local dataset blocks DS_ReadLocal and DS_WriteLocal.

D2D_TRA

Summary
D2D_TRA block sends data from a Master
drive to a remote Follower drive. The 48 bit . D2D_TRA _
data composes of 16 bit and 32 bit parts. e SendMsgCntl—
The input data is given directly to the —Eemfeﬂo;«
function block inputs and so local datasets — _|yguan: s
are not required. —pDataln2_32bit
Connections
Inputs:
Name Type Value Description
Enable BOOL TIF Enables/disables sending data.
Pri UINT 1/2 Defines the priority of sending data; Standard (1) or Low
priority (2).
RemoteNode UINT 1...62 Defines the remote drive node address.
RemoteDsNr UINT 128....255 | Defines the remote drive dataset number.
pDatalnl_16bit | WORD - Pointer to 16 bit value
POINTER
pDataln2_32bit | DWORD - Pointer to 32 bit data (REAL, DWORD)
POINTER
Outputs:
Name Type Value Description
Error UDINT ANY Error output
SendMsgCnt UDINT ANY Counts successfully transmitted messages

178

Description

The D2D_TRA function sends application variables data from the master drive to a remote follower
drive. The Enable input enables or disables sending data. At the rising edge of Enable input Pri,
RemoteNode and RemoteDsNr are used. The input Pri defines the priority of data transmission.

e Standard (1): The priority is set to Standard if fast response (2 ms) is required. However,
maximum of 2 blocks can be executed in the same cycle.

e Low priority (2): The priority is set to Low priority if slow response is required. It is possible to
execute up to 64 blocks in the same cycle.

o 10 ms cycle time - 10 blocks are executed
o 100 ms cycle time - 64 blocks are executed

The inputs RemoteNode and RemoteDsNr define the remote drive node address and dataset
number respectively, where the data is sent and stored. The input data of 16 bit and 32 bit is
connected to the pointer inputs pDatalnl_16bit and pDataln2_32bit respectively using ADR
operand.

Error blocks input values and operation status if there is an error while sending data. If data is sent
successfully, Error returns a 0. The SendMsgCount tracks the number of successfully sent
messages.

For details of how data is sent in WORD and REAL data format to remote drive, see Example 1:
D2D TRA /D2D_REC blocks.

179

D2D REC
Summary D2D_REC

. —Enahle Errorf—
D2D_REC block enables the master drive to —Pri RovMsgCnth—
receive data from a remote follower drive. The —{RemoteNode Outl_16bitf—
block receives one 48 bit dataset from follower —R"-‘m':'tegf's”; G“ﬂb—_ﬂhi’T—
dataset table. The response is available at the —(2uspendtioce Qutz_S-bitReat—

output signals in 16 bit and 32 bit parts. An
additional 32 bit data is available in REAL format as own output.

Connections

Inputs:
Name Type Value Description
Enable BOOL T/IF Enables/disables receiving data.
Pri UINT 1/2 Defines the priority of receiving data; Standard (1) or Low
priority (2).
RemoteNode UINT 1...62 Defines the remote drive node address.
RemoteDsNr UINT 128...255 | Defines the remote drive dataset number.
SuspendMode UINT 0/1 Defines the behaviour of the application task whether the
D2D message is sent.
0 = message not sent
1 = message sent
Outputs:
Name Type Value Description
Error UDINT ANY Error output
RcvMsgCnt UDINT ANY Counts successfully received messages
Outl_16bit WORD ANY 16-bit dataset output value
Out2_32bit DWORD | ANY 32-bit dataset output value
Out2_32bitReal | REAL ANY 32-bit dataset output value in Real format.
Description

The D2D_REC block receives data from remote drive. The Enable input enables or disables
receiving data. At the rising edge of Enable input the inputs Pri, RemoteNode, RemoteDsNr and
SuspendMode are used. The input Pri defines the priority of receiving data.

e Standard (1): The priority is set to Standard if fast response (2 ms) is required. However,
maximum of 2 blocks can be executed in the same cycle.

o Low priority (2): The priority is set to Low priority if slow response is required. It is possible to
execute up to 64 blocks in the same cycle.

o 10 ms cycle time - 10 blocks are executed

o 100 ms cycle time - 64 blocks are executed

180

The inputs RemoteNode and RemoteDsNr define the remote drive node address and dataset
number respectively. The remote node number is set using parameter 60.02 in the ACS880 Primary
Control Program. The input SuspendMode defines the behavior of the application task whether the
intended message is sent.

0 = continues actual application task execution

1 = indicates that actual application task execution is pending to send messages and to receive
response of messages sent.

Error blocks input values and operation status if there is an error while receiving data. If receiving
data is successful, Error returns a 0. The RcvMsgCount tracks the number of successfully received
messages.

The 16 bit and 32 bit data at the output returns from Outl_16bit and Out2_32bit respectively. The 32
bit data of real data format returns from Out2_32bitReal.

For details of receiving data to master drive, see Example 1: D2D_TRA / D2D_REC blocks.

181

D2D_TRA_REC

Summary D2D_TRA_REC

—Enabl Emorf—
D2D_TRA_REC block enables the i SendMagent]—
master drive to send and receive data —JremoteNod: orel
from the remote drive. The 16-bit and 32- | paain_1eie uuu_;éb'.-.:;eal—
bit parts of the dataset are defined in the —{pDataln2_32bit

corresponding pointer type inputs. The
response is available at the output signal in 16-bit and 32-bit parts. An additional 32-bit data is
available in REAL format as own output.

Connections

Inputs:
Name Type Value Description
Enable BOOL TIF Enables/disables receiving data.
Pri UINT 1/2 Defines the priority of receiving data; Standard (1) or Low
priority (2).
RemoteNode UINT 1...62 Defines the remote drive node address.
RemoteDsNr UINT 128...255 | Defines the remote drive dataset number.
pDatalnl_16bit | WORD ANY 16 bit value connecting through ADR block
POINTER
pDataln2_32bit | DWORD ANY 32 bit integer or real value connecting through ADR block
POINTER
Outputs:
Name Type Value Description
Error UDINT ANY Error output
SendMsgCnt UDINT ANY Counts successfully transmitted messages
Outl_16bit WORD ANY 16-bit dataset output value
Out2_32hit DWORD ANY 32-bit dataset output value
Out2_32bhitReal | REAL ANY 32-bit dataset output value in Real format.
Description

The D2D_TRA_REC block sends data from master drive and receives data from the remote drive.
The Enable input enables/disables sending or receiving data. At the rising edge of Enable input the
inputs Pri, RemoteNode and RemoteDsNr are used. The input Pri defines the priority of receiving
data.

e Standard (1): The priority is set to Standard if fast response (2 ms) is required. However,
maximum of 2 blocks can be executed in the same cycle.

e Low priority (2): The priority is set to Low priority if slow response is required. It is possible to
execute up to 64 blocks in the same cycle.

182

o 10 ms cycle time - 10 blocks are executed
o 100 ms cycle time - 64 blocks are executed

The inputs RemoteNode and RemoteDsNr define the remote drive node address and dataset
number respectively. The response data is read from the dataset number RemoteDsNr+1 of the
remote drive. The data is selected using pointer inputs pDatalnl_16bit and pDataln2_32bit.

Error blocks input values and operation status if there is an error while sending or receiving data. If
sending or receiving data is successful, Error returns a 0. The SendMsgCount tracks the number of
successfully sent messages.

The 16-bit and 32-bit data at the output returns from Outl_16bit and Out2_32bit respectively. The
additional output Out2_32bitReal returns 32-bit data in REAL data format.

183

D2D_TRA_MC
Summary D2D_TRA_MC
] —Enable Error—
D2D_TRA_MC block enables the drive (Master ——# = SendMsglnti—
. —{MultiCait Type
or Follower) to send multicast messages to a —fRemotetiads
group of drives. This block also allows sending —,-“t;*f‘-_e_li!;*;“
follower to follower point to point messages.];;.:t:i.;_}:;.f
The multicast address is defined in the
D2D_Conf block.
Connections
Inputs:
Name Type Value Description
Enable BOOL TIF Enables/disables receiving data.
Pri UINT 1/2 Defines the priority of receiving data; Standard (1) or Low
priority (2).
MultiCastType | UINT 0/1 Allows sending multicast message types.
RemoteNode UINT 1...62 Defines the remote drive node address.
RemoteDsNr UINT 128...255 Defines the remote drive dataset number.
pDatalnl_16bit | WORD ANY 16 bit value connecting through ADR block
POINTER
pDataln2_32bit | DWORD ANY 32 bit integer or real value connecting through ADR block
POINTER
Outputs:
Name Type Value Description
Error UDINT ANY Error output
SendMsgCnt UDINT ANY Counts successfully transmitted messages
Description

The D2D_TRA_MC block sends multicast messages to a group of drives. It is possible for the
Master drive to receive messages from the Follower driver. For sending point to point messages or
standard multicast messages, the Follower drives need token messages from the Master drive.

The Enable input enables/disables sending data. At the rising edge of Enable input the inputs Pri,
MultiCastType, RemoteNode and RemoteDsNr are used.

184

The input Pri defines the priority of receiving data.

e Standard (1): The priority is set to Standard if fast response (2 ms) is required. However,
maximum of 2 blocks can be executed in the same cycle.

e Low priority (2): The priority is set to Low priority if slower response is sufficient. Up to 64
blocks can be executed in the same cycle.

o 10 ms cycle time - 10 blocks are executed
o 100 ms cycle time - 64 blocks are executed
The input MultiCastType enables sending multicast messages of 3 different types:
e Follower point to point transmit (3)

e Standard Multicast (4): This message type requires all Follower/Master drives to have a
corresponding multicast address equal to the RemoteNode.

e Broadcast (5): In this message type all drives in the drive to drive link receive the message
including the Master drive. In this mode, the input RemoteNode must be set to 255.

The inputs RemoteNode and RemoteDsNr define the remote drive node address and dataset
number respectively. The data is selected using pointer inputs pDatalnl_16bit and pDataln2_32bit.

Error blocks input values and operation status if there is an error while sending or receiving data. If
sending or receiving data is successful, Error returns a 0. The SendMsgCount tracks the number of
successfully sent messages.

185

D2D configuration blocks

D2D_Conf

Summary

D2D_Conf block configures token management on the D2D_Conf

master drive. The D2D_Conf_Token block must be —I{Enable Error
executed before the D2D_Conf block because —{MCastGrp

configuration data is built based on the node data in —(JokenTumiyde

D2D_Conf_Token block.

Connections

Inputs:
Name Type Value Description
Enable BOOL | T/F Enables/disables configuration data in Master drive.
Value FALSE stops sending token from master to
follower(s).
MCastGrp UINT - Defines multicast group address.

TokenTxmCycle | UINT 1000...10000 | Sends the interval of token message.
0 = indicates that current configuration is removed

Outputs:
Name Type Value Description
Error UDINT | Any Error output
Description

The D2D_Conf block is intended to execute only once, and for this reason, the block should be
assigned to Pre_Task. However, the block can be assigned to any task and in cyclic tasks, the
Enable input controls the execution, including run time configuration.

The configured data is effective on the master drive after enabling the D2D_Conf block. The Enable
input enables/disables the configuration data on the master drive. The rising edge of Enable input
triggers the configuration setup. The next rising edge overwrites the Enable input of
D2D_Conf_Token block, even if it is set to FALSE.

The input TokenTxmCycle is the base transmission cycle of token. The node related transmission
cycle is attained by multiplying this value set in the D2D_Conf_Token block.

Error blocks input values and operation status if there is an error in the configuration data. If
configuration is successful, Error returns a 0.

Master use

The master drive has a message queue to handle cyclic transmission of the token messages to
follower drive. This queue can hold maximum 64 token messages. The standard multicast group of
master drive (address) is defined by the input MCastGrp.

186

Follower use

In the follower drive, only the multicast group (MCastGrp) can be defined and TokenTxmCycle is not
used. The master drive transmits the token messages to follower drives. After receiving a token the
follower is able to transmit a message from the D2D message queue.

For example of token configuration, see Example 2: Token send configuration using
D2D_Conf_Token and D2D_Conf blocks.

187

D2D_Conf_Token

Summary

D2D_Conf_Token block configures the
follower drive related token message send . D2D_Conf_Token Errorl_
cycle. In follower mode, the output Error is set. __{rzmotenode

— TemCycMultiplier

Connections

Inputs:

Name Type Value Description

Enable BOOL Enables/disables the master drive from sending the token to
follower drive.

RemoteNode UINT 1...62 Defines the node address of the follower drive where the
token is transmitted.

TxmCycMultiplier | UINT Token send cycle. Multiplies the input input TokenTxmCycle
in block D2D_Conf. If value is 0, node is removed from
configuration.

Outputs:
Name Type Value Description
Error UDINT | Any Error output
Description

The D2D_Conf_Token block is used to configure the node related transmission cycle of token on
master drive. This block is intended to execute only once from the Pre_Task. However, the block
can be assigned to any task and in cyclic tasks, the Enable input controls the execution, including
run time configuration. The settings are effective in the master only after executing the D2D_Conf
block.

All node related D2D_Conf_Token blocks must be executed before D2D_Conf by setting the input
Enable to TRUE. On run time in the Master drive, the Enable input enables/disables the use of
follower node. However this selection is overwritten at the next rising edge of Enable in the
D2D_Conf block.

The RemoteNode and TxmCycMultiplier are set on the rising edge of Enable. The configuration is
effective after the next rising edge of Enable in the block D2D_Conf. This configuration can be done
on run time also.

By setting the TxmCycMultiplier = 0, the node related token send can be removed permanently. At
the next rising edge of Enable in D2D_Conf_Token and D2D_Conf blocks, the node is removed from
token configuration.

188

Error blocks input values and operation status. The error messages are listed below:

Bit | Error code Meaning

0 D2D_MODE_ERR D2D mode is not Master

5 TOO_SHORT_CYCLE Token interval(s) are short or communication is overloaded
6 INVALID_INPUT_VAL Input value (target node and/or cycle time) are out of range
7 GENERAL_D2D ERR D2D driver failed to initialize message

For example of token configuration, see Example 2: Token send configuration using
D2D_Conf_Token and D2D_Conf blocks.

189

D2D_Master_State

Summary D2D_Master_State

. —Enable Errorf—
D2D_Mastgr_State block rgads bit relate_d Master state —|Reset MstStatell—
of all the drives connected into the D2D link. From the —INode MstState2l—
master drive, this block broadcasts the master state to

other drives using node number. This block works without token management configuration.

Connections

Inputs:
Name Type Value Description
Enable BOOL | T/F Enables/disables block execution
Reset BOOL |01 Resets all master state bits on rising edge
Node UINT 1...62 Node address
Outputs:
Name Type Value Description
Error UDINT | ANY Error output
MstStatel | UDINT | 0...31 Drive/node related master bits 0...31. Bit 0 == Node1
MstState2 | UDINT | 32...63 | Drive/node related master bits 32...63.

Description

The D2D_Master_State block is used when there is a risk to have multiple masters in same D2D
link. This enables creating systems with redundant masters. The block returns status of all Master
drives connected into the D2D link, except its own state, which can be set and read using parameter
60.3 (M/F mode). As the Master drive broadcasts its state to other drives based on Node address,
the panel port communication port parameter 49.1 (Node ID number) should also be using the same
value.

The master drive state bits are updated when the input Reset is set FALSE. The reset function can
be used whenever there is state change from Master to Slave.

The input Node is same as parameter 60.2 (M/F node address).

Error blocks input values and operation status. In the follower drive, the output Error returns the
D2D_MODE_ERR code to notify that the drive is not able to broadcast master state; however the
block is able to read other drive states.

The output MstStatel includes drive/node related master bits 0 to 31. If this output is set, the drive is
Master.

The output MstState2 includes drive/note related master bits 32 to 63.

190

Examples: D2D blocks

Example 1: D2D_TRA / D2D_REC blocks
This example describes how the D2D_TRA and D2D_REC blocks are used for sending and
receiving data.

The D2D_TRA block is used for sending data in WORD and REAL data format to remote drive
address 1 and dataset 128. The DS_ReadLocal block is used for reading the dataset in remote

drive.
=
DZ0_TRA =
Enable Error
Pragrify SendbsgCni
: 1 Femaobedddr
FesmoteDshr
r.d_word Diatsind_ 168
7] Datain2_32bit
[Varl real }—
I
D%_Readlocal —

&} (LocalDSH Evrer |-
Dwavat_ti

DuataOut?_32bat |- =
DataOut2_I2LitREAL _|_IWC]

Figure 144: Sending data using D2D_TRA block

The DS_WriteLocal block is used for writing WORD and UDINT value to remote drive dataset 129.
The D2D_REC block is used to receive data to master drive.

1§ }
| D5 Witelocal 2
LocalDSNr Error
i3 word t Datmlnd_16bit
| :
— Dataing_32bit
Vard oot ekl
(7]
OZ0_HEC =
tue |} Erable Ervor
1 Pricaty SendMsgCrt - (7]
1 Ramobadddr Daitm{0ut1_16bit | mﬂ
Fi] RemacteIShir DataQutz_32bet) ___Fem vard ucint =
SuspendMaode DDt I2btREAL

Figure 145: Receiving data using D2D_REC block

191

Example 2: Token send configuration blocks

This example describes how the D2D_Conf_Token and D2D_Conf blocks are used for sending
tokens.

In token send configuration, the master drive configures the token. After the follower receives a
token from the mater, the follower node sends follower to follower (point to point) or multicast
message.

Using the D2D_Conf_Token block you can add a node into the token send configuration with own
instance or common instance. The below examples is a common instance configuration using the
ConfToken. When all the nodes are included the D2D_Conf is executed.

In this example, a previous configuration with the following nodes existed: remoteNodel and
remoteNode2. A new configuration is set that includes only remoteNodel for which remoteNode2
must be removed from the existing configuration.

D2D_Conf
D2D_Conf_Token

Master
Drive

Token send

remoteNodel remoteNode2

Each testStep represents a separately executed run cycle.
testStep(1) - remoteNodel is added into new configuration
testStep(3) - remoteNode?2 is removed from configuration

testStep(4) - D2D_Conf is invoked and starts sending token to remoteNodel

192

VAR
ConfToken: D2D Conf Token;
ConfD2D: D2D Conf;

VAR END

CASE testStep OF

0: // Initialize configuration blocks
ConfToken (Enable:= FALSE) ;
ConfD2D (Enable:= FALSE) ;

testStep:= testStep + 1;

1: // Add remoteNodel into configuration set-up (on rising edge of
Enable)

ConfToken (Enable:= TRUE, TxmCycMultiplier:= 2, RemoteNode :=
remoteNodel) ;

testStep:= testStep + 1;

2: // Reset Enable pin
ConfToken (Enable:= FALSE) ;
testStep:= testStep + 1;

3: // Remove remoteNode?2 from configuration set-up, by setting
TxmCycMultiplier:= 0

ConfToken (Enable:= TRUE, TxmCycMultiplier:= 0, RemoteNode :=
remoteNode?) ;

testStep:= testStep + 1;

4: // Launch new D2D configuration on rising edge of Enable (start
of communication with remoteNodel)

ConfD2D (Enable:= TRUE, TokenTxmCycle:= 1000);

testStep:= testStep + 1;

10: // Stop sending tokens (end of the communication)
ConfD2D (Enable:= FALSE) ;
testStep:= testStep + 1;

193

Appendix E: ABB drives standard
library

Contents of this chapter

This appendix contains detailed information of the basic and special functions of the ABB drives
standard library (AS1LB_Standard ACS880 V3 5)

Introduction to ABB drives standard library

The ABB drives standard library is intended to be used with the ACS880 drives and the AC500 PLC.
It provides frequently used control elements for application programming in automation builder.
Unlike the standard libraries provided by 3S-Smart Software Solutions, most of the function blocks in
the library use floating point numbers. This provides a more flexible development environment as the
programmer does not need to worry about handling wide numerical ranges and scaling.

The drive version of the library is generated from the PLC version to ensure that the code is not
altered in any way. For compatibility, some functions are implemented as function blocks because
the PLC does not support multiple outputs for functions. The functions do not have a state and thus
require less memory. This is also why the drive version of the library has these blocks as functions
(that is, there are 2 versions available in the drive version).

194

Input values are checked to be within the defined limits. If for some reason the block detects that a
value is out of range, it can:

1. Limit the value to the maximum or minimum value. For example, if the time constant is set to a
very large value or a negative value, it is limited inside the block to ensure the correct execution.

2. Produce an error signal. For example, if the low limit for the output is greater than the high limit,
the block cannot operate and produces an error.

The function blocks with a state have a balance reference and balance mode. This feature provides
the means to force the control system to a new state. By enabling the balance mode, the blocks
operate as if the balance reference is the calculated output of the block. Internal variables are also
adjusted so that once the balance mode is disabled the process continues from the balance
reference value.

195

Basic functions

BGET

BGET_WORD
Summary BT NR BGET WORDL
The BGET function reads one selected bit from a WORD or a —{IN

DWORD (includes size check).

Connections

Inputs:
Name Type Value Description
BIT_NR UINT 0...31 Bit number
IN DWORD, ANY Data input

WORD

Outputs:
Name Type Value Description
BGET BOOL TRUE, Bit value

FALSE
Function

The output (BGET) is the selected bit (BIT_NR) of the input word (IN).
If BIT_NR is 0, the bitis 0. If BIT_NR is 31, the bit is 31.
If the bit number is not within the range of 0...31 (for DWORD) or 0...15 (for WORD), the output is 0.

196

BSET

BSET_WORD
Summary —EN BSET_WORD |
The BSET function changes the state of one selected bit of a —|BIT_NR
WORD or a DWORD (includes size check). :mT—V’*LUE

Connections

Inputs:
Name Type Value Description
EN BOOL TRUE, Enable block
FALSE
BIT_NR UINT 0...31 Bit number
BIT_VALUE | BOOL TRUE, New value for bit
FALSE
IN DWORD, ANY Data input
WORD
Outputs:
Name Type Value Description
BSET DWORD, ANY Changed word
WORD
Function

The value of a selected bit (BIT_NR) of the input (IN) is set as defined by the bit value input
(BIT_VALUE).

If BIT_NR is O, the bitis 0. If BIT_NR is 31, the bitis 31. The function must be enabled by the
enable input (EN).

If the function is disabled or the bit number is not within the range of 0...31 (for DWORD) or 0...15
(for WORD), the input value is stored to the output as it is (that is, no bit setting occurs).

Example:
EN=1,BIT_NR=3,BIT_VALUE=0
IN = 0000 0000 1111 1111

BSET = 0000 0000 1111 0111

197

DEMUX

Summary

The demultiplexer function block is available with 2, 4 and 8 inputs for DEMUX_E_INT
—IN ouT1
the BOOL, DINT, INT, REAL and UDINT data types. - i
Since the block does not need internal memory, it also comes as a ouT3
function (automation builder for PLC does not support multiple outputs gﬂ%
for functions). OUTE
: ouT?
Connections ouTE
Inputs:
Name Type Value Description
IN BOOL, ANY Input
DINT, INT,
REAL,
UDINT
ADDR UINT 1...8 Address
Outputs:
Name Type Value Description
OuUT1...8 BOOL, ANY Output 1...8
DINT, INT,
REAL,
UDINT
Function

The input value (IN) is stored to the output (OUT1...8) selected by the address input (ADDR). All

other outputs are set to O.

If the address input is not from 1 to 8, all outputs are set to O.

198

DEMUXM
DEMUXM_E INT
Summary —SET OUT1E
The demultiplexer function block with an internal memory to store —LOAD OUT2¢
output values is available with 2, 4 and 8 inputs for the BOOL, DINT, _E{ESE'- OUT3r
—ADDR OUT4E
INT, REAL and UDINT data types. | ouTsL
OUTEE
OUT/F
Connections OUTEF
Inputs:
Name Type Value Description
SET BOOL TRUE, Set
FALSE
LOAD BOOL TRUE, Load (Set only once)
FALSE
RESET BOOL TRUE, Reset
FALSE
ADDR UINT 1...8 Address
IN BOOL, ANY Input
DINT, INT,
REAL,
UDINT
Outputs:
Name Type Value Description
OuUT1...8 BOOL, ANY Output 1...8
DINT, INT,
REAL,
UDINT
Function

DEMUXM is used as a demultiplexer with memory. It remembers the assigned values to outputs and
continues sending them until changed or reset.

The input value (IN) is stored to the output (OUT1...8) selected by the address input (ADDR) if the
load input (LOAD) or the set input (SET) is 1.

When the load input is set to 1, the input value is stored to the output only once. When the set input
is set to 1, the input value is stored to the output every time the block is executed. The new set input
overrides the load input.

If the address input is not from 1 to 8, the outputs are not affected by the input value.

If RESET = 1, all outputs are set to 0 and the block’s memory is reset.

199

MUX
MUX_E HEAL
—{IN1
The multiplexer function for the REAL data type as the —IN2
automation builder version does not support this type. The :mi
function block is available with 2, 4 and 8 inputs. Jins
—IMNE
—IN7
. —INE
Connections
Inputs:
Name Type Value Description
ADDR UINT 1...8 Address
IN1...8 REAL ANY Inputs 1...8
Outputs:
Name Type Value Description
MUX REAL ANY Selected input value
Function

The value of an input (IN17...8) is selected by the address input (ADDR) and stored to the output
(MUX).

If the address input is not from 1 to 8, the output is set to 0.

200

MUXM
Summary i SEl"‘ UXH_E_IHELIT
The multiplexer function block with an internal memory to store the output :E‘E’;E_r
is available with 2, 4 and 8 inputs for the BOOL, DINT, INT, REAL and Janor
UDINT data types. N1
—IN2
—IN3
N4
—INE
Connections :mﬁ
. —INE
Inputs:
Name Type Value Description
SET BOOL TRUE, Set
FALSE
LOAD BOOL TRUE, Load
FALSE
RESET BOOL TRUE, Reset
FALSE
ADDR UINT 0...8 Address
IN1...8 BOOL, ANY Inputs 1...8
DINT, INT,
REAL,
UDINT
Outputs:
Name Type Value Description
ouT BOOL, ANY Output
DINT, INT,
REAL,
UDINT
Function

MUXM is used as a multiplexer with a memory. It remembers the assigned value of the output and

continues sending it until changed or reset.

The value of an input (IN17...8) is selected by the address input (ADDR) and is stored to the output

(MUX) if the LOAD input or the SET input is 1.

When the load input is set to 1, the input value is stored to the output only once. When the set input
is set to 1, the input value is stored to the output every time the block is executed. The new set input

overrides the load input.

If the address input is not from 1 to 8, the output is not affected by input value. If RESET = 1, the
output is set to 0 and the block’s memory is reset.

201

PACK

Summary

The PACK function sets the BOOL inputs into a WORD or a

DWORD.

FPACK_WORD

—IMO PACK_ WORD
—IM1
—IMZ
—IM3
—IM4
—IME
—IME
—INT
—IME
—ING
—{IM10
—IM11
—{IM12
—{IM13
; —{IM14
Connections s
Inputs:
Name Type Value Description
INO...31 BOOL TRUE, Bits
FALSE
Outputs:
Name Type Value Description
PACK WORD, ANY Resulting pack of bits
DWORD
Function

The PACK function takes an input set of bits and packs it in to a word.

202

SR D
Summary
The SR-D function block is an extension to a normal SR trigger with an SR D
additional memory input D trigger. The Reset signal overrides all other {SET T ouTE
control signals and clears the internal block state. The Set signal forces the —{DATA
—CLK
output to the TRUE state. =
Connections
Inputs:
Name Type Value Description
SET BOOL TRUE, Set Input
FALSE
DATA BOOL TRUE, Data Input
FALSE
CLK BOOL TRUE, Clock, rising edge active
FALSE
RESET BOOL TRUE, Reset
FALSE
Outputs:
Name Type Value Description
ouT BOOL TRUE, Output signal
FALSE
Function

The SR-D block implements D trigger with the SET, RESET controls. The data is stored from D input
when the clock changes from 0 to 1. The SET signal forces the output to the TRUE state. If R is
active, the output is always FALSE. The RESET signal overrides all other control signals and clears
the internal block state.

When the clock input (CLK) is set from 0 to 1, the DATA input value is stored to the output (OUT).
When RESET is set to 1, the output is set to O.

Truth table:
SET RESET DATA CLK Previous output ouT
Any 1 Any Any Any 0
1 0 Any Any Any 1
0 0 Any 0 Qn1 Qn1
0 0 0 0->1 Any 0
0 0 1 0->1 Any 1

203

SWITCH

Summary

The SWITCH function block sets the outputs the same as the input if EN equals TRUE, otherwise all

outputs are 0. SWITCH is available with 2, 4 and 8 inputs and outputs SWITCH_8_INT
for the BOOL, DINT, INT, REAL and UDINT data types. :ﬁﬁ SHE
Since the block does not need internal memory, it also comes as a —IN2 ouT3
function (automation builder for PLC does not support multiple outputs :mi gﬂ%
for funCtionS). NG ouTE
. —INg ouT?
Connections N7 ouTs
—{INE
Inputs:
Name Type Value Description
EN BOOL TRUE, Enable
FALSE
IN1...8 BOOL, ANY Input 1...8
DINT, INT,
REAL,
UDINT
Outputs:
Name Type Value Description
OUT1...8 BOOL, ANY Output 1...8
DINT, INT,
REAL,
UDINT
Function

The output (OUTT1...8) is equal to the corresponding input (IN1

Otherwise the output is 0.

...8) if the block is enabled (EN = 1).

204

SWITCHC
SWITCHC_Z INT
Summary —EN ouT1H
The SWITCHC function block has two channels. A channel can be chosen :ﬁﬁfﬂ SH%:
by using the Select signal. If Select equals FALSE, channel A is active. If inza ouUT4L
Select equals TRUE, channel B is active. If the EN signal is not active, all — —IMN2A OUTSE
outputs are 0. SWITCHC is available with 2, 4 and 8 input pairs and ‘mg’: SHE -
outputs for the BOOL, DINT, INT, REAL and UDINT data types. :lmaz DLITEZ
Since the block does not need an internal memory, it also comes as a —{IN7A
i) : : —INaA
function (automation builder for PLC does not support multiple outputs for |15
functions). —IM2B
—{IN3E
—{IN4B
—{IN5B
—{INGB
: ~INTB
Connections Nz
Inputs:
Name Type Value Description
EN BOOL TRUE, Enable
FALSE
SELECT BOOL TRUE, Select
FALSE
IN1...8A BOOL, ANY InputA1...8
DINT, INT,
REAL,
UDINT
IN1...8B BOOL, ANY InputB 1...8
DINT, INT,
REAL,
UDINT
Outputs:
Name Type Value Description
OuUT1...8 BOOL, ANY OutputA1...8
DINT, INT,
REAL,
UDINT
Function

The output (OUT1...8) is equal to the corresponding channel A input (IN7...8A) if the activate input
signal (SELECT) is 0. The output is equal to the corresponding channel B input (IN7...8B) if the
activate input signal (SELECT) is 1.

If the block is disabled (EN = 0), all outputs are set to O.

205

UNPACK
UNPACK_WORD
Summary I ouTO
The UNPACK function block splits a WORD or a DWORD into a set of SHE
BOOL outputs. ouT2
Since the block does not need an internal memory, it also comes as a ouT4
. . . . OuTs
function (automation builder for PLC does not support multiple outputs for oOuUTE
functions). ouT?
OuTE
ouTa
ouTIO
ouT1
ouT12
ouT13
ouT14
ouT15
Connections
Inputs:
Name Type Value Description
IN WORD, ANY Input data
DWORD
Outputs:
Name Type Value Description
OUTO...31 BOOL TRUE, Output bits
FALSE
Function

The Unpack function takes an input word and returns it as a set of bits.

206

Special functions

Drive control DRIVE_CTRL
—EN DOME
—STOP_EMCY_COAST ERNC
The drive control program offers basic controls of an —STOF_EMCY_RAMP READY
ACS880 drive for application programmers. A similar —|212F_COAST OPERATING
function block for the PLC to control the drive existis _| RESET TRIPPED
:) —EXT_CTRL_LOC ALARM
in the PS553 library. —SPEED_REF EXT_RUN_ENABLE
—REF_VALUEZ LOCAL_CTRL
EXT_CTRL_LOC_ACT
ACT_SPEED
ACT VALUEZ
ACT_Sw
USED_Cw/f
Connections MESSAGE
Inputs:
Name Type Value Description
EN BOOL | TRUE, Enable function block - TRUE. Additionally configures the
FALSE drive to use the application program.
See parameters 19.11, 20.1, 20.6, 22.11 and 26.11.
START BOOL TRUE, TRUE = start drive
FALSE FALSE = stop along currently active stop ramp.
See parameter 6.2.0.
STOP_EMCY_COAST BOOL | TRUE, Emergency coast stop to drive:
FALSE | FALSE = stop by coast
TRUE = no stop
See parameter 6.2.1.
STOP_EMCY_RAMP BOOL | TRUE, Emergency stop to drive
FALSE | FALSE = stop by ramp
TRUE = no stop
See parameter 6.2.2.
STOP_COAST BOOL | TRUE, TRUE = coast stop
FALSE | FALSE = normal operation
See parameter 6.2.3.
RESET BOOL | TRUE, Resets drive and internal parameter errors.
FALSE See parameter 6.2.7.
EXT_CTRL_LOC BOOL | TRUE, Selects external control location (EXT1/EXT2).
FALSE | see parameters 6.2.11 and 19.11.
SPEED_REF REAL ANY Speed reference value.
See parameter 22.11.
REF_VALUE2 REAL ANY Torque reference value.

See parameter 26.11.

207

Outputs:

Name Type Value Description

DONE BOOL TRUE, Execution finished when output DONE = TRUE.
FALSE

ERR BOOL TRUE, Error occurred during execution when output ERR =
FALSE TRUE

ERNO ENUM ANY Internal error code

READY BOOL TRUE, Ready to switch on
FALSE See parameter 6.11.0

OPERATING BOOL TRUE, Drive is operating.
FALSE

TRIPPED BOOL TRUE, Drive FAULT
FALSE See parameter 6.11.3.

ALARM BOOL TRUE, Drive has an alarm
FALSE See parameter 6.11.7.

EXT_RUN_ENABLE BOOL TRUE, Run enable status
FALSE See parameter 6.18.5.

LOCAL_CTRL BOOL TRUE, Drive control location: LOCAL

FALSE See parameter 6.11.9.

EXT_CTRL_LOC_ACT | BOOL TRUE, Actual external control location EXT2 selected
FALSE See parameter 6.16.11.

ACT_SPEED REAL ANY Actual speed (in rpm) read from drive
See parameter 1.01.

ACT_VALUE2 REAL ANY Actual torque (in %) read from drive
See parameter 1.10.

ACT_SW WORD | ANY Main status word read from drive
See parameter 6.11.

USED_CW WORD | ANY Application control word
See parameter 6.02.
MESSAGE ENUM ANY State of the function block
Function

The program uses drive parameters as an interface to the drive.

An application control word (06.02) is used to control the drive. It sets the EXT1 command (20.01)
and EXT2 command (20.06) parameters to Application Program. The control word is defined in the
ABB Drives control profile.

When the drive is in the operational state, the OPERATING output is set to TRUE to indicate the
current state of the state machine.

208

The program is enabled by setting the EN signal to TRUE. Once active, the block sets the
configuration parameters to the desired values once: Parameters 19.11, 20.01, 20.06, 22.11 and
26.11 are set to Application Program. The parameters are intentionally changed once enable to
change them manually while the program is running.

The drive status is obtained from the Main status word (06.11) and Status word 1 (06.16). The actual
speed (ACT_SPEED) and torque (ACT_VALUEZ2) data are obtained from parameters Motor speed
used (01.01) and Motor torque % (01.10).

When the program is disabled, Application control word is set to O once.

If the EXT1 and EXT2 parameters are not set to the correct value while the program is enabled, an
error is produced.

Error codes and the ERR outputs are internal program errors and not drive fault codes. Internal
parameter errors do not prevent the program from functioning.

Limiting

Only one instance of drive control is allowed. This is why it is implemented as a program.

209

Filter

Summary

The FILT1_1 function block provides filtering of the high frequency part | FILT1_1

of the input signal. The block acts as a single-pole low pass filter for the ‘TNF
REAL numbers. The balancing function permits the output signal to]

OuT|

track an external reference. :ﬁtpﬂz
Connections ===
Inputs:

Name Type Value Description

IN REAL ANY Input signal for the actual value

TF REAL 0...ANY Filter time constant (ms)

BAL BOOL TRUE, Balance input, activates the tracking mode.

FALSE

BALREF REAL ANY Value for the tracking mode

TIMELEVEL INT 1...ANY Task interval in milliseconds, default = 10 ms
Outputs:

Name Type Value Description

ouT REAL ANY Filtered actual value
Function

The function filters the input signal using the current input and previous output.

The transfer function for a single-pole filter with no pass band gain is:
G(s) =1/(1+sTF) 1)

To get the function for the output, in the first step cross-multiply the equation:

O(s)*(X+sTF)=1*1(s))
Resolving the parenthesis gives:

O(s) +STF*O(s) = I (s) ®3)

To get the equation to the time domain s has to be replaced by derivation:

O@t) + TE*O(t) = I (t))

Since this is a first order approximation function block, the derivation can be replaced by a

difference:

Ot)+TF™*(

_O(f — (5)
W) —1(t)
S

210

Where: Ts is the cycle time of the program in milliseconds (time difference between t and t-1).

The final filtering algorithm (6) is calculated by using the following formula that is obtained from (5)
by extracting O(t):

| +(TF/Ts)*O(t -1) ©

o) =
® TF/Ts+1

If TF = 0 or negative, the output value is set to the input value.

Because of the REAL data type limitation, the TF/Ts ration is limited to 8000000, to ensure that it is
always possible to add 1 to the real value.

211

Function generator

Summary

The FUNG_1V function block is used for generation of an optional
function of one variable, y = f(x). The function is described by a number
of coordinates. Linear interpolation is used for values between these
coordinates. An array of 8, 16 or 32 coordinates can be specified. The
balancing function permits the output signal to track an external
reference and gives a smooth return to the normal operation.

FUNG_1v_32 REAL

BAL
BALREF
IN_XTAB
XTAB
YTAB

ouT|
BALREFO
ERROR

Since the block does not need an internal memory, it also comes as a function (automation builder

for PLC does not support multiple outputs for functions).

Connections

Inputs:
Name Type Value Description
BAL BOOL TRUE, Input for activation of the balancing mode
FALSE
BALREF REAL ANY Balance reference
Input for the reference value in the balancing mode
IN_XTAB REAL ANY Input signal for the function
XTAB REAL[N] ANY Table of X coordinates for the function
YTAB REAL[N] ANY Table of Y coordinates for the function
Outputs:
Name Type Value Description
ouT REAL ANY Value of the function
BALREFO REAL ANY TRUE if the high limit is reached.
ERROR BOOL TRUE, TRUE when the input is outside the table range or when the
FALSE table contains unsorted (low to high) data for the input
coordinates.
Function

The function generator FUNG_1V calculates output signal Y for a value at input X. Calculation is
performed in accordance with a piece-by-piece linear function which is determined by vectors XTAB
and YTAB. For each X value in XTAB, there is a corresponding Y value in YTAB. The Y value at the
output is calculated by means of linear interpolation of the XTAB values, between which lies the
value of input X. The values in XTAB must increase from low to high in the table.

The output of the block depends only on the current input values, in other words, it does not have

any state.

212

Interpolation
The generated function is performed as follows:

Yk+l
Y=2?
Y
X« X Xis1
X—X1)Yis1—-Y
Y=Yk+(k) Yi+1—Yk)
(Xk+1—Xk)
Balancing

If BAL is set to TRUE, the value at Y is set to the value of the BALREF input. The X value which
corresponds to this Y value is obtained at the BALREFO output. On balancing, the X value is
calculated by interpolation in the same way the Y value is calculated during the normal operation. To
permit balancing, the values in YTAB must increase from low to high in the table.

Limiting
If input signal X is outside the range defined by XTAB, the Y value is set to the highest or lowest

value in YTAB. If BALREF is outside the YTAB value range in the BAL mode, the value at Y is set to
the value at the BALREF input and BALREFO is set to the highest or lowest value in XTAB.

213

Integrator
Summary
The INT_REAL function block integrates the input. The output signal INT REAL
can be limited within limit values. The balancing function permits the -{IN B ouT
output signal to track an external reference and gives a smooth —%MN DDLIUTTT_l-El:!
return to the normal operation. reser =
—HOLD
—BAL
—BALREF
—COHL
—OLL
—TIMELEVEL

Connections

Inputs:

Name Type Value Description

IN REAL ANY Input signal for the actual value

GAIN REAL ANY Gain input

TI REAL 0...ANY Integration time (ms)

RESET BOOL TRUE, Clear integrated value
FALSE

HOLD BOOL TRUE, Stops integration when set to TRUE
FALSE

BAL BOOL TRUE, Balance input, activates the tracking mode
FALSE

BALREF REAL ANY Value for the tracking mode

OHL REAL ANY High input limit

OLL REAL ANY Low input limit

TIMELEVEL INT 1...ANY Task interval in milliseconds, default = 10 ms

Outputs:

Name Type Value Description

ouT REAL ANY Output value

OUT_HI BOOL TRUE, TRUE if the high limit is reached.
FALSE

OUT_LO BOOL TRUE, TRUE if the low limit is reached.

FALSE

214

Function

The INT function can be written in the time plane as:

O(t) = K /T,(j I (t)dt)
The main controlled property is that the output signal retains its value when the input signal I(t) = 0.

Clearing
The integrated value is cleared when RESET = TRUE (all internal variables are cleared).

Tracking

If BAL is set to TRUE, the integrator immediately goes into the tracking mode and the output value is
set to the value of the BALREF input. If the value at BALREF exceeds the output signal limits, the
output is set to the applicable limit value. On return to the normal operation from the tracking mode,
integration continues from the tracking reference.

Limiting
The output value is limited between OHL and OLL. If the actual value exceeds the upper limit, the

OUT_HI output is set to TRUE. If it falls below the lower limit, the OUT_LO output is set to TRUE. If
the limits have incorrect values, both OUT_HI and OUT_LO are set to TRUE.

215

Lead lag
LEADLAG_REAL
Summary i -
The LEADLAG_REAL function block is used to filter the input signal and ~ —COEF
provide a phase shifted output. This block acts as a lead/lag filter based :EESEF
on the COEF input value. BaL
—BALREF
—TIMELEVEL

Connections
Inputs:

Name Type Value Description

IN REAL ANY Input signal for the function block

COEF REAL ANY Constant that determines the filter type

TC REAL 0...ANY Time constant (Ms)

RESET BOOL TRUE, Resets the function block

FALSE
BAL BOOL TRUE, Activates the balance mode
FALSE
BALREF REAL ANY Balance reference
Input for the reference value in the balancing mode.

TIMELEVEL INT 1...ANY Task interval in milliseconds, default = 10 ms
Outputs:

Name Type Value Description

ouT REAL ANY Output signal
Function

The transfer function for the lead/lag filter is:

1+aTl,s
1+T.s

The lead/lag filter has two input parameters TC and a (COEF):
If a > 1, the filter acts as a lead filter.
If a < 1, the filter acts as a lag filter.

If a =1, no filtering is applied.

216

The filter algorithm is calculated using the following formula:
dn = X - B1*dnMem

Y = AO*dn + Al*dnMem

dnMem =dn

Where,

A0 =(1+a*Tc)/ (1 + Tc),

Al=(1-a*Tc)/ (1 + Tc),

B1=(1-Tc)/(1+Tc)

X is the input signal.

Y is the output signal.

The initial value of dnMem is set to zero.

" Note: If a or TC input to the block is negative, the corresponding negative input is
assigned to zero before the filter algorithm is calculated.

Because of the REAL data type limitation, the TC/Ts ration is limited to 8000000, to ensure that it is
always possible to add 1 to the real value

Balancing

If BAL is set to TRUE, the value at Y is set to the value of the BALREF input. The block operates
normally during this time which means that the internal variable is always calculated.

Reset

If RESET is set to TRUE, the internal variable dnMem is set to zero and input value X is returned.

217

Motor potentiometer

S MOTPOT_REAL
ummary —EN ouT
The MOTPOT_REAL (motor potentiometer) function block is used to :Hﬁ
generate the reference based on the activation of the Boolean (UP and Jls10pPE
DN) inputs. The rate of change of a reference signal is controlled by the —{BAL
slope time and limits. The current value is retained after a power cycle. -gilLLHEF

—~OLL

—~TIMELEVEL

Connections

Inputs:
Name Type Value Description
EN BOOL TRUE, FALSE | Enables operations.
uUpP BOOL TRUE, FALSE | Enables count up
DN BOOL TRUE, FALSE Enables count down.
SLOPE UINT 0..65535 Delay time to count from OLL to OHL and vice versa
BAL BOOL TRUE, FALSE | Sets the output to BALREF or limit if it exceeds the limit.
BALREF REAL ANY Sets the output value when he BAL input is active.
OHL REAL ANY High input limit
OLL REAL ANY Low input limit
TIMELEVEL INT 1...ANY Task interval in milliseconds, default = 10 ms
Outputs:
Name Type Value Description
ouT REAL ANY Output value
Function

The MOTPOT functional block is used to control the rate of change of an output reference signal.
Digital inputs are normally used as the UP and DOWN inputs.

The rate of change of a reference signal is controlled by the slope time parameter. If the enable pin
(EN) is set to TRUE, the reference value rises from minimum to maximum during the slope time.

EN turns on the MOTPOT function. If EN is set to FALSE, the output is zero. Based on the UP or DN
inputs getting activated, the output reference increases or decreases to the maximum or minimum
value based on the slope. If both UP/DN inputs are activated / deactivated, the output is neither

incremented nor decremented and is in a steady state.

Clearing

When EN is set to FALSE, the output and internal values are set to zero.

218

Tracking

If BAL is set to TRUE, the output is set to the value of the BALREF input. If the value at BALREF
exceeds the output signal limits, the output is set to the applicable limit value.

Limiting

The output value is limited between OHL and OLL. If the actual value exceeds the upper limit, the

output is set to the OHL input value. If it falls below the lower limit, the output is set to the OLL input
value.

219

PID
PID_REAL

Summary —IN_FE ouT
The PID_REAL (Proportional-Integral-Derivative) element can be e DEV
used as a generic PID regulator in feedback systems. The main :%’*'N DDLIUTTTE
extension of the element is that a derivative correction term with a 1D -
filter is included. Another major extension is the antiwindup —TC
protection. The output signal can be limited with limit values specified —TF
at special inputs (OHL and OLL). The balancing function permits the :'EIELST
output signal to track a gradual return to the normal operation. After _|ga rer
any parameter change or error condition, the integral term of the —OHL
correction is readjusted so that the output does not change abruptly =~ —OLL
(“bumpless transfer”). —([IMELEVEL
Connections
Inputs:

Name Type Value Description

IN_FB REAL ANY Actual input value

IN_REF REAL ANY Reference input value

GAIN REAL ANY Proportional gain

TI REAL 0.. ANY Integration time (ms)

TD REAL 0.. ANY Derivation time (ms)

TC REAL 0.. ANY Anti-windup correction time (ms)

TF REAL 0.. ANY Filter time (ms)

|_RST BOOL TRUE, FALSE | Clear integrator

BAL BOOL TRUE, FALSE | Balance input, activates the tracking mode.

BALREF REAL ANY Value for the tracking mode

OHL REAL ANY High input limit

OLL REAL ANY Low input limit

TIMELEVEL INT 1...ANY Task interval in milliseconds, default = 10 ms

220

Outputs:
Name Type Value Description
ouT REAL ANY Output signal
DEV REAL ANY Deviation (IN_FB - IN_REF)
OUT_HI BOOL TRUE, FALSE | TRUE if the high limit is reached.
OuUT_LO BOOL TRUE, FALSE | TRUE if the low limit is reached.
Function

The differential equation describing the PID controller before saturation/limitation that is implemented
in this block is:

OUTpresar(t) = Up(t) + Ui(t) + Ud(t)

Where:

OUT,resat 1S the PID output before saturation

Up is the proportional term

Ui is the integral term with saturation correction
Ud is the derivative term

tis time.

The proportional term is:

Up(t) = Kp x DEV(t)

Where:

Kp = Pis the proportional gain of the PID controller
DEV(t) is the control deviation (see below).
The integral correction term is:

t
vi(t) = I;—f \ f DEV(2)dr + Kc * (OUT() — OUTy o5t (8))
0
Where:
Kc = integral antiwindup correction gain of the PID controller
OUT(t) = saturated/limited output signal of the controller
The antiwindup correction

K, * (OUT(t) - OUTpresat(t)) is thus taken to be part of the integral correction term.

221

Windup is a phenomenon that is caused by the interaction of an error integral action and saturations.
All actuators have limitations: a motor has limited speed, a valve cannot be more than fully opened
or fully closed, and so on. For a control system with a wide range of operating conditions, it is
possible that the control variable reaches the actuator limits. When this happens, the feedback loop
is broken and the system runs as an open loop because the actuator remains at its limit
independently of the process output. If a controller with the integrating action is used, the error
continues to be integrated. This means that the integral term may become very large or, in other
words, it “winds up”. It is then required that the error has the opposite sign for a long period before
things return to normal. The consequence is that any controller with the integral action may give
large transients when the actuator saturates.

The derivative term is:
d(DEV(t))

d(t) = Kp * Td
ud(t) p*Td * It

Where:
7d is the derivative time constant.

The differential equations above are transformed into difference equations by backward
approximation.

This term is also filtered to make it resistant to high frequency noise.

G(s) =1/(1+s*TF)

Smooth transfer

The controller guarantees a smooth transfer in many special situations where, for example, control
parameters are abruptly changed. This means that in such a bumpless cycle the output retains its
previous value. This is performed by resetting the integrator term Ui to:

Ui(t) =OUT (t) —Up(t) —Ud(t).

Smooth functionality is not triggered in the first cycle by change in Ti, Tc, Td and Tf.

Gain, time constants

The proportional gain Kp is directly an input parameter. The integrator, derivative and antiwindup
gains Ki, Kd and Kc must be calculated from the corresponding time constants Ti, Td and Tc which
are input parameters. The derivative gain is:

Kd = Td/T

Where:

T'is the time level (execution cycle) of the block (in milliseconds as the time constants).
The integral gain is determined from Ti as follows:

Ki=0,ifTi=0

Ki=T/p if T<Ti

Ki=1,ifT>Ti >0

222

The anti-windup gain is determined similarly by 7c
Kc=0,ifTc=0

Ke=T/p T <Tc

Kc=1,ifT =0

Thus the values of Kiand Kcare limited to the range 0 < K7, 7i< 1.
If Tc= 0, Kc= 0 and anti-windup correction is disabled.

If 7i= 0, Ki= 0. The module does not update the integral term Ui, not even by the anti-windup
correction. Thus the integrator term retains its original value as long as K7 remains zero.

The element stores the “current” set of gains AKp, Ki, Kcand Kd and time constants 77, Tcand 7d,
which it uses for calculating the control output(s).

Filtering

This derivative is filtered using a single-pole low pass filter. The following algorithm is used to
calculate the filtered value:

Kd = (Up(t) —Up(t — 1)) + % *y(t—1)

y() =

142
T

Where,

T'is the time level (execution time) of the block (in milliseconds as the time constants).

If the filter time constant is left unassigned, it defaults to 0 which means that the derivative is

calculated without filtering. The time constant is limited to 8000000*time level to avoid underflow.

Tracking

If BAL is set to TRUE, the regulator goes into the tracking mode and the output follows the value at
BALREF. If the value at BALREF exceeds the output signal limits (OLL and OHL), the output is set
to the applicable limit value. The return from the tracking state is bump less.

Limitation function

The limitation function limits the output signal to the value range from OLL to OHL. If the pre-
saturated output exceeds OHL, OUT is set to OHL and OUT_Hl is set to TRUE. If the pre-saturated
output falls below OLL, OUT is set to OLL and OUT_LO is set to TRUE. Bump less return from
limitation is requested if and only if the anti-windup correction is not in use, that is,. Ki = 0 orKc = 0.

IF OLL < OHL, both OUT_HI and OUT_LO are set to TRUE and OUT retains the value that it had in
the execution cycle before the error occurred. After this error, the return to the normal operation is
smooth

Limiting

The output value is limited between OHL and OLL. If the actual value exceeds the upper limit,
OUT_Hl is set to TRUE. If it falls below the lower limit, OUT_LO is set to TRUE.

223

Ramp

Summary

The RAMP is used to limit the rate of change of a signal. The output
signal can be limited with limit values specified at special inputs.
The balancing function permits the output signal to track an external

reference.

Connections

RAMP
—IM OUTE
—STEP_UP OUT_HIE
STEP_DM QUT_LO
SLOPE_UP

SLOFE_DN

BAL

BALREF

OHL

OLL

—STOFP

TIMELEVEL

Inputs:
Name Type Value Description
IN REAL ANY Input signal for the actual value
STEP_UP REAL 0.. ANY The greatest allowed positive STEP change
STEP_DN REAL 0.. ANY The greatest allowed negative STEP change
SLOPE_UP REAL 0.. ANY Positive ramp for the output
SLOPE_DN REAL 0.. ANY Negative ramp for the output
BAL BOOL TRUE, Balance input, activates the tracking mode.
FALSE
BALREF REAL ANY Balance reference
Input for the reference value in the tracking mode
OHL REAL ANY High input limit
OLL REAL ANY Low input limit
STOP BOOL TRUE, Holds the output (stops ramping)
FALSE
TIMELEVEL INT 1...ANY Task interval in milliseconds, default = 10 ms
Outputs:
Name Type Value Description
ouT REAL ANY Output value
OUT_HI BOOL TRUE, TRUE if the high limit is reached
FALSE
OUT_LO BOOL TRUE, TRUE if the low limit is reached

FALSE

224

Function

The main property of the RAMP element is that the output signal tracks the input signal, while the
input signal is not changed more than the value specified at the step inputs. If the input change is
greater than the specified step changes, the output signal is first changed by STEP_UP or
STEP_DN depending on the direction of change. After that the output signal is changed by
SLOPE_UP or SLOPE_DN per second, until the values at the input and output are equal. This
means that if STEP_DN = STEP_UP = 0, a pure ramp function, that is, SLOPE/sec is obtained at
the output. The greatest step change allowed at the output is specified by the STEP_UP and
STEP_DN inputs for the respective direction of change.

All parameters are specified as absolute values with the same unit as the input. Slopes specify the
change in units per second. Certain constants are pre-calculated to make the execution time of the
element as short as possible. The results are stored internally in the element. These constants are
recalculated if the SLOPE_UP or SLOPE_DN values are changed.

Calculation of the output
If Input (t) = Output (t-1), then Output (t) = Input (t)
If Input (t) > Output (t-1), then the change of the output O value is limited as follows:

¢ An internal auxiliary variable VPOS follows the input value with the maximum rate of change
defined by SLOPE_UP. If the input value is greater than VPOS + STEP_UP, the output value
is limited to the value VPOS +STEP_UP. If the input value is less than VPOS + STEP_UP,
the output value is set to be equal to the input.

If SLOPE_UP = 0, the output value does not rise no matter what the value of STEP_UP and IN is.
If Input (t) < Output (t-1), then the change of the Output value is limited as follows:

¢ An internal auxiliary variable VPOS follows the input value, with the maximum rate of change
defined by SLOPE_DN. If the input value is less than VPOS — STEP_DN, the output value is
limited to the value VPOS — STEP_DN. If the input value is greater than VPOS — STEP_DN,
the output value is set to be equal to the input.

If SLOPE_DN = 0, the output value does not lower no matter what the value of STEP_DN and IN is.

Tracking

If BAL is set to TRUE, the ramp immediately goes into the tracking mode and the output is set to the
value of BALREF. If the value at BALREF exceeds the output signal limits, the output is set to the
applicable limit value. During the tracking mode VPOS = Output = BALREF. The return to the normal
operation is done as if a unit step had occurred at the input.

Limiting
The limitation function limits the output signal to the values at the OHL inputs for the upper limit and
OLL for the lower limit. If the actual value exceeds the upper limit, OUT_HI is set to TRUE. If it falls

below the lower limit, OUT_LO is set to TRUE. In the limiting state VPOS(t) and OUT(t) are set to
the applicable limit value.

IF OLL < OHL, both OUT_HI and OUT_LO are set to TRUE and OUT retains the value that it had in
the execution cycle before the error occurred.

225

Further information

Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting the type
designation and serial number of the unit in question. A listing of ABB sales, support and service
contacts can be found by navigating to www.abb.com/searchchannels.

Product training

For information on ABB product training, navigate to www.abb.com/drives and select Training
courses.

Providing feedback on ABB Drives manuals

Your comments on our manuals are welcome. Go to www.abb.com/drives and select Document
Library — Manuals feedback form (LV AC drives).

Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet at
www.abb.com/drives/documents.

http://www.abb.com/searchchannels
http://www.abb.com/drives
http://www.abb.com/drives
http://www.abb.com/abblibrary/downloadcenter/?CategoryID=9AAC100211&View=Result

Contact us

www.abb.com/drives

www.abb.com/drivespartners

3AUA0000127808 Rev C (EN) 2015-04-03

viy AL IR D
Power and productivity
for a better world™ ".. l'

http://www.abb.com/drives
http://www.abb.com/drivespartners

	Introduction to the manual
	Contents of this chapter
	Compatibility
	Target audience
	Safety instructions
	Purpose of the manual
	Contents of the manual
	Related documents
	Terms and abbreviations

	Getting started
	Contents of this chapter
	Setting up the programming environment

	Overview of drive programming
	Contents of this chapter
	Drive application programming
	System diagram
	Programming work cycle
	Special tasks
	Programming languages and modules
	Libraries
	Program execution
	DriveInterface
	ApplicationParametersandEvents

	Creating application program
	Contents of this chapter
	Creating a new project
	Updating project information
	Appending a new POU
	Writing a program code
	Continuous function chart (CFC) program
	Adding elements
	Setting the execution order of the elements
	Adding comments to a CFC program
	Declaring variables
	Adding inputs and outputs
	Creating a block scheme

	Preparing a project for download
	Establishing online connection to the drive
	Downloading the program to the drive
	Executing the program
	Creating a boot project

	Features
	Contents of this chapter
	Device handling
	Viewing device information
	Upgrading or adding a new device
	Changing an existing device
	Viewing software updates

	Program organization units (POU)
	Data types
	Drive application programming license
	Application download options
	Removing the application from the target
	Retain variables
	Task configuration
	Adding tasks
	Monitoring tasks

	Uploading and downloading source code
	Adding symbol configuration
	Debugging and online changes
	Safe debugging

	Reset options
	Memory limits
	CPU limitation
	Application loading package
	Downloading loading package to a drive

	DriveInterface
	Contents of this chapter
	Implementing DriveInterface
	Selecting the parameter set
	Viewing parameter mapping report
	Mapping example

	Updating drive parameters from installed device
	Updating drive parameters from parameters file
	Setting parameter view

	Application parameter and events
	Contents of this chapter
	ApplicationParametersandEvents
	ParameterManager
	Creating parameter groups
	Creating parameters
	Parameter settings
	Scaling
	Linking parameter to application code
	Parameter types
	Parameter families
	Selection lists
	Units
	Application events

	Libraries
	Contents of this chapter
	Library types
	Adding a library to the project
	Creating a new library
	Installing a new library
	Managing library versions

	Practical examples and tips
	Contents of this chapter
	Solving communication problems
	Question: What to do when scan network does not find any drives?
	Question: What to do if communication fails while establishing online connection to the drive?
	Question: What to do if communication fails between Automation Builder/Drive composer pro and drive?

	Solving other problems
	Question: How to prevent unauthorized access to an application that is running in the drive?
	Question: How to fix an unknown device in a project?
	Question: How to remove a boot application from the flash memory card?
	Question: What to do when I continuously receive “The project handle 0 is invalid” error message?
	Question: What to do when stack overflow fault 6487 occurs?
	Question: How to optimize the memory usage of the drive application?
	Question: How to solve the problem causing error message “Creating boot application failed: Adding Application Parameters & Groups to UFF generator: XmlDeserializationFailed”?

	Appendix A: Incompatible features between ACS880 Drive and AC500 PLC IEC programming
	Contents of this chapter
	Incompatible features

	Appendix B: Unsupported features
	Appendix C: ABB drives system library
	Contents of this chapter
	Introduction to ABB drives system library
	Function blocks of the system library
	Event function blocks
	EVENT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ReadEventLog
	Summary
	Inputs:
	Outputs:
	Description

	Parameter change function blocks
	PAR_UNIT_SEL
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	PAR_SCALE_CHG
	Summary
	Connections
	Inputs:
	Outputs:
	Description
	External 32-bit scaling
	External 16-bit scaling

	Parameter limit change
	PAR_LIM_CHG_DINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	PAR_LIM_CHG_REAL
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	PAR_LIM_CHG_UDINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Parameter default value change
	PAR_DEF_CHG_DINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	PAR_DEF_CHG_REAL
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	PAR_DEF_CHG_UDINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Parameter decimal display
	PAR_DISP_DEC
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	PAR_REFRESH
	Summary
	Connections
	Input:
	Outputs:
	Description

	Parameter protection
	PAR_PROT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	PAR_GRP_PROT
	Summary
	Connections
	Inputs:
	Output:
	Description

	Parameter read function blocks
	ParReadBit
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParRead_DINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParRead_REAL
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParRead_UDINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Parameter write function blocks
	ParWriteBit
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParWrite_DINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParWrite_REAL
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParWrite_UDINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Pointer parameter read function block
	ParRead_BitPTR
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParRead_ValPTR_DINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParRead_ValPTR_REAL
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParRead_ValPTR_UDINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Set pointer parameter to IEC variable function blocks
	ParSet_BitPTR_IEC
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParSet_ValPTR_IEC_DINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParSet_ValPTR_IEC_REAL
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParSet_ValPTR_IEC_UDINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Set pointer parameter to parameter function blocks
	ParSet_BitPTR_Par
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParSet_ValPTR_Par
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Task time level function block
	UsedTimeLevel
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Error codes

	Appendix D: ABB D2D function blocks
	Contents of this chapter
	Introduction to ABB D2D function blocks
	D2D function blocks of the system library
	Data read/write blocks
	DS_ReadLocal
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	DS_WriteLocal
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	D2D communication blocks
	General
	D2D_TRA
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	D2D_REC
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	D2D_TRA_REC
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	D2D_TRA_MC
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	D2D configuration blocks
	D2D_Conf
	Summary
	Connections
	Inputs:
	Outputs:
	Description
	Master use
	Follower use

	D2D_Conf_Token
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	D2D_Master_State
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Examples: D2D blocks
	Example 1: D2D_TRA / D2D_REC blocks
	Example 2: Token send configuration blocks

	Appendix E: ABB drives standard library
	Contents of this chapter
	Introduction to ABB drives standard library
	Basic functions
	BGET
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	BSET
	Summary
	Connections
	Inputs:
	Outputs:
	Function
	Example:

	DEMUX
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	DEMUXM
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	MUX
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	MUXM
	Connections
	Inputs:
	Outputs:
	Function

	PACK
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	SR_D
	Summary
	Inputs:
	Function
	Truth table:

	SWITCH
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	SWITCHC
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	UNPACK
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	Special functions
	Drive control
	Summary
	Connections
	Inputs:
	Outputs:
	Function
	Limiting

	Filter
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	Function generator
	Summary
	Connections
	Inputs:
	Outputs:
	Function
	Interpolation
	Balancing
	Limiting

	Integrator
	Summary
	Connections
	Inputs:
	Outputs:
	Function
	Clearing
	Tracking
	Limiting

	Lead lag
	Summary
	Connections
	Inputs:
	Outputs:
	Function
	Balancing
	Reset

	Motor potentiometer
	Summary
	Connections
	Inputs:
	Outputs:
	Function
	Clearing
	Tracking
	Limiting

	PID
	Summary
	Connections
	Inputs:
	Outputs:
	Function
	Smooth transfer
	Filtering
	Tracking
	Limitation function
	Limiting

	Ramp
	Summary
	Connections
	Function
	Tracking
	Limiting
	Product and service inquiries
	Product training
	Providing feedback on ABB Drives manuals
	Document library on the Internet

