

ABB industrial drives

Programming manual

Drive application programming (IEC 61131-3)

List of related manuals
Drive application and firmware manuals and
guides

Code (English)

Drive (IEC 61131-3) application programming manual 3AUA0000127808

ACS880 primary control program firmware manual

Drive composer start-up and maintenance PC tool
user’s manual

AC500 Control Builder PS501 Complete English
documentation

3AUA0000085967

3AUA0000094606

3ADR025078M02xx

You can find manuals and other product documents in PDF format on the Internet. See

section Document library on the Internet on the inside of the back cover. For manuals not

available in the Document library, contact your local ABB representative.

Programming manual

Drive application programming (IEC 61131-3)

3AUA0000127808 Rev C

EN

EFFECTIVE: 2015-04-03

© 2015 ABB Oy. All Rights Reserved

5

Table of contents

List of related manuals .. 2

Introduction to the manual .. 13

Contents of this chapter ... 13

Compatibility ... 13

Target audience ... 13

Safety instructions .. 14

Purpose of the manual ... 14

Contents of the manual .. 14

Related documents .. 14

Terms and abbreviations .. 15

Getting started .. 17

Contents of this chapter ... 17

Setting up the programming environment .. 17

Overview of drive programming ... 21

Contents of this chapter ... 21

Drive application programming ... 21

System diagram ... 22

Programming work cycle .. 23

Special tasks .. 23

Programming languages and modules ... 24

Libraries.. 24

Program execution ... 24

DriveInterface ... 24

ApplicationParametersandEvents .. 25

Creating application program ... 26

Contents of this chapter ... 26

Creating a new project ... 27

Updating project information .. 29

Appending a new POU ... 32

Writing a program code .. 34

Continuous function chart (CFC) program ... 35

6

Preparing a project for download .. 43

Establishing online connection to the drive ... 43

Downloading the program to the drive .. 50

Executing the program .. 52

Creating a boot project ... 54

Features ... 56

Contents of this chapter .. 56

Device handling .. 56

Program organization units (POU) .. 63

Data types ... 64

Drive application programming license ... 64

Application download options ... 65

Removing the application from the target ... 66

Retain variables .. 67

Task configuration .. 67

Uploading and downloading source code ... 73

Adding symbol configuration ... 75

Debugging and online changes .. 77

Reset options .. 78

Memory limits .. 79

CPU limitation ... 80

Application loading package ... 81

DriveInterface .. 87

Contents of this chapter .. 87

Implementing DriveInterface ... 87

Selecting the parameter set .. 89

Viewing parameter mapping report ... 90

Viewing device information .. 57

Upgrading or adding a new device ... 59

Changing an existing device .. 60

Viewing software updates .. 61

Adding tasks ... 68

Monitoring tasks ... 71

Safe debugging .. 77

Downloading loading package to a drive ... 83

7

Updating drive parameters from installed device ... 94

Updating drive parameters from parameters file .. 96

Setting parameter view ... 98

Application parameter and events .. 100

Contents of this chapter ... 100

ApplicationParametersandEvents .. 101

ParameterManager .. 103

Libraries .. 117

Contents of this chapter ... 117

Library types ... 117

Adding a library to the project ... 118

Creating a new library .. 121

Installing a new library .. 123

Managing library versions .. 125

Practical examples and tips .. 126

Contents of this chapter ... 126

Solving communication problems ... 126

Solving other problems ... 129

Mapping example .. 91

Creating parameter groups .. 103

Creating parameters .. 104

Parameter settings .. 106

Scaling ... 108

Linking parameter to application code ... 109

Parameter types .. 110

Parameter families ... 113

Selection lists ... 114

Units .. 115

Application events ... 116

Question: What to do when scan network does not find any drives? 126

Question: What to do if communication fails while establishing online connection to the
drive? ... 127

Question: What to do if communication fails between Automation Builder/Drive composer
pro and drive? .. 128

8

Appendix A: Incompatible features between ACS880 Drive and AC500 PLC IEC
programming ... 131

Contents of this chapter .. 131

Incompatible features ... 131

Appendix B: Unsupported features .. 133

Appendix C: ABB drives system library ... 134

Contents of this chapter .. 134

Introduction to ABB drives system library ... 134

Function blocks of the system library .. 135

Event function blocks .. 137

Parameter change function blocks ... 140

Parameter limit change ... 143

Parameter default value change ... 146

Parameter decimal display ... 149

Question: How to prevent unauthorized access to an application that is running in the
drive? ... 129

Question: How to fix an unknown device in a project? ... 129

Question: How to remove a boot application from the flash memory card? 129

Question: What to do when I continuously receive “The project handle 0 is invalid” error
message? ... 129

Question: What to do when stack overflow fault 6487 occurs? 130

Question: How to optimize the memory usage of the drive application? 130

Question: How to solve the problem causing error message “Creating boot application
failed: Adding Application Parameters & Groups to UFF generator :
XmlDeserializationFailed“? .. 130

EVENT ... 137

ReadEventLog ... 138

PAR_UNIT_SEL ... 140

PAR_SCALE_CHG .. 141

PAR_LIM_CHG_DINT ... 143

PAR_LIM_CHG_REAL .. 144

PAR_LIM_CHG_UDINT ... 145

PAR_DEF_CHG_DINT .. 146

PAR_DEF_CHG_REAL ... 147

PAR_DEF_CHG_UDINT .. 148

9

Parameter protection .. 151

Parameter read function blocks .. 153

Parameter write function blocks ... 157

Pointer parameter read function block ... 161

Set pointer parameter to IEC variable function blocks ... 165

Set pointer parameter to parameter function blocks .. 169

Task time level function block .. 171

Error codes ... 172

Appendix D: ABB D2D function blocks .. 173

Contents of this chapter ... 173

Introduction to ABB D2D function blocks ... 173

D2D function blocks of the system library .. 174

PAR_DISP_DEC ... 149

PAR_REFRESH .. 150

PAR_PROT ... 151

PAR_GRP_PROT ... 152

ParReadBit .. 153

ParRead_DINT .. 154

ParRead_REAL ... 155

ParRead_UDINT ... 156

ParWriteBit .. 157

ParWrite_DINT .. 158

ParWrite_REAL ... 159

ParWrite_UDINT .. 160

ParRead_BitPTR ... 161

ParRead_ValPTR_DINT .. 162

ParRead_ValPTR_REAL ... 163

ParRead_ValPTR_UDINT ... 164

ParSet_BitPTR_IEC .. 165

ParSet_ValPTR_IEC_DINT ... 166

ParSet_ValPTR_IEC_REAL .. 167

ParSet_ValPTR_IEC_UDINT .. 168

ParSet_BitPTR_Par ... 169

ParSet_ValPTR_Par .. 170

UsedTimeLevel .. 171

10

Data read/write blocks .. 175

D2D communication blocks .. 177

D2D configuration blocks .. 185

Examples: D2D blocks .. 190

Appendix E: ABB drives standard library .. 193

Contents of this chapter .. 193

Introduction to ABB drives standard library .. 193

Basic functions .. 195

Special functions ... 206

DS_ReadLocal ... 175

DS_WriteLocal ... 176

General .. 177

D2D_TRA ... 177

D2D_REC .. 179

D2D_TRA_REC ... 181

D2D_TRA_MC ... 183

D2D_Conf .. 185

D2D_Conf_Token .. 187

D2D_Master_State ... 189

Example 1: D2D_TRA / D2D_REC blocks ... 190

Example 2: Token send configuration blocks ... 191

BGET ... 195

BSET .. 196

DEMUX .. 197

DEMUXM ... 198

MUX ... 199

MUXM .. 200

PACK ... 201

SR_D .. 202

SWITCH ... 203

SWITCHC .. 204

UNPACK .. 205

11

Further information .. 225

Contact us ... 226

Drive control .. 206

Filter ... 209

Function generator .. 211

Integrator ... 213

Lead lag ... 215

Motor potentiometer .. 217

PID ... 219

Ramp ... 223

12

13

Introduction to the manual

Contents of this chapter

This chapter gives basic information on the manual.

Compatibility

This manual applies to the ABB drives equipped with the application programming functionality. For

example, ABB ACS880 and DCX880 industrial drives can be ordered with the application

programming functionality. The drive must be equipped with N8010 Application programming license

on ZMU-02.

This manual is compatible with the following product releases:

 ABB Automation Builder 1.1

 Drive composer pro 1.5 or later

For more details of compatibility information, refer the corresponding ACS880 or DCX880 drive

software release notes or contact your ABB representative.

Target audience

This manual is intended for a personnel performing drive application programming or for

understanding the programming environment capabilities. The reader of the manual is expected to

have basic knowledge of the drive technology and programmable devices (PLC, drive and PC) and

programming methods.

1

14

Safety instructions

Follow all safety instructions delivered with the drive.

 Read the complete safety instructions before you load and execute the application program

on the drive or modify the drive parameters. The complete safety instructions are delivered

with the drive as either part of the hardware manual, or, in the case of ACS880 multidrives,

as a separate document.

 Read the firmware function-specific warnings and notes before changing parameter values.

These warnings and notes are included in the parameter descriptions presented in chapter

Parameters of the firmware manual.

WARNING! Ignoring the following instruction can cause physical injury or damage to

the equipment.

Do not make changes to drive in the online mode or download programs while the

drive is running to avoid damages to the drive.

Purpose of the manual

This manual gives basic instructions on the drive-based application programming using ABB

Automation Builder programming tool. The programming tool is the international IEC 61131-3

programming standard. The online help of Automation Builder contains more detailed information of

the IEC languages, programming methods, editors and tool commands.

Contents of the manual

The manual consists of the following chapters:

 Getting started

 Overview of drive programming

 Creating application program

 Features

 DriveInterface

 Application parameter and event creation

 Libraries

 Practical examples and tips

 Appendix A: Incompatible features between ACS880 Drive and AC500 PLC IEC

programming

 Appendix B: Unsupported features

 Appendix C: ABB drives system library

 Appendix D: ABB D2D function blocks

 Appendix E: ABB drives standard library

Related documents

A list of related manuals is printed on the inside of the front cover.

15

Terms and abbreviations

Term/

Abbreviation
Description

ACS-AP-x ACS-AP-I or ACS-AP-S control panel used with ACS880 and DCX880 drives.
The control panel has an USB connector enabling a PC tool connection for
common architecture drives.

BCU Type of control unit used in ACS880 and DCX880 drives

AB ABB Automation Builder programming tool

CFC Continuous function chart programming language

DI Digital input

Drive composer pro ABB Drive composer is a 32-bit Windows application for commissioning and
maintaining ABB common architecture drives.

The full version is called Drive composer pro.

DUT Data type unit

FB Function block, type of POU

FBD Function block diagram programming language

FUN Function, type of POU

IEC 61131-3
programming

Standardized programming language for industrial automation. Established by the
International Electro-technical Commission (IEC)

IL Instruction list programming language

LD Ladder diagram programming language

OPC server OPC DA server interface for Drive composer pro that allows other programs, such
as Automation Builder, to communicate with the drive.

PIN IEC variable of the block, which can be connected to other blocks.

PLC Programmable logic controller

POU Program organization unit. POU unit is a unit, object or area where you can write
the program code. Also called as Block.

PRG Program, type of POU

RTS Run-time system

SFC Sequential function chart programming language

ST Structured text programming language

ZCU Type of control unit used in ACS880 and DCX880 drives that consists of a ZCON
board built into a plastic housing.

The control unit may be fitted onto the drive/inverter module, or installed
separately.

16

For more detailed descriptions, see Automation Builder online help.

17

Getting started

Contents of this chapter

This chapter includes the following information required for programming ACS880 and DCX880

drives using ABB Automation Builder tool:

 Quick steps for Setting up the programming environment.

 Procedure for Upgrading a new device, Changing an existing device and Viewing device

information.

Setting up the programming environment

The following software installations are required for programming ACS880 and DCX880 drives. For

details of version, refer the corresponding ACS880 or DCX880 drive software release notes or

contact your ABB representative.

 ACS880 drive or DCX880 converter with Drive application programming license (N8010)

 ABB Automation Builder 1.1

 ACS-AP-x control panel and micro USB cable

 Drive composer pro 1.5 or later

The Drive composer pro enables setting and monitoring of the drive parameters and signals. The

control panel acts as a USB/RS485 converter between Automation Builder, Drive composer pro and

the drive.

2

18

To setup ACS880 or DCX880 drive programming environment follow the pre-requisites and

installation steps listed below.

Pre-requisites:

 The ABB Automation Builder supports Windows XP and Windows 7 (32-bit and 64-bit

versions) operating systems.

 You must have Administrator user rights to install Automation Builder.

Installation steps:

1. Install Drive composer pro to enable communication with the target drive. For more details, see

Drive composer user’s manual (3AUA0000094606 [English]).

2. In the Drive composer pro System info -> Products/Licenses, check that the ACS880 or

DCX880 drive has an active IEC programming license and the drive firmware version is correct.

For details of version, refer the corresponding ACS880 or DCX880 drive software release notes

or contact your ABB representative.

Install ABB Automation Builder version 1.1 according to the instruction guide included in the

installation media of Automation Builder. All drive application programming related components are

automatically installed as well.

In Automation Builder, select Install Software Packages for -> Programmable Drive.

Figure 1: Automation Builder – Selecting software packages for installation

19

To allow parallel communication with Automation Builder and Drive composer pro, follow these

steps:

1. In the main menu of Drive composer pro, click View and then click Settings.

2. In the Settings window, select Share connection with Control Builder Plus check box and

click Save.

Figure 2: Drive Composer Pro settings

After configuring the settings, restart Drive composer pro.

Drive composer now connects to the drive and allows opening the Automation Builder.

Now you can create an application program. See section, Creating application program.

20

21

Overview of drive programming

Contents of this chapter

This chapter provides an overview of ACS880 and DCX880 drive programming environment and a

typical work cycle of drive application programming.

Drive application programming

ABB ACS880 and DCX880 industrial drives can be ordered with the application programming

functionality. It allows you to add your own program code to the drive using the ABB Automation

Builder programming tool (version 1.1). The programming method and languages are based on the

IEC 61131-3 programming standard. ABB Automation Builder is also used for configuring and

programming the ABB AC500 PLC family devices.

With the drive application programming, you can create application specific features on top of the

drive firmware functionality. You can utilize the standard and extension I/O and communication

interfaces of the drive along with the appropriate firmware signals. Your program is executed in

parallel with the drive control tasks using the same hardware resources.

In addition, you can create your own parameters and events (faults and warnings) that are visible on

the ACS-AP-x control panel and in the Drive composer pro/entry commissioning tools.

Note: For using ABB Automation Builder online with the drive, enable the drive application
programming license in the target drive. See section, Establishing online connection to the
drive.

3

22

System diagram

The following simplified system diagram shows the application programming environment in the

same control unit as the drive firmware.

Figure 3: Application programming environment – System diagram

The following list describes the main components for application programming.

Drive control unit:

 Run-time system (RTS) executes the application program.

 DriveInterface allows input/output mapping between the application program and drive

firmware parameters.

 System function library enables access to the drive system services (parameters/ events/

drive-to-drive communication, extension I/O).

 User made parameters.

 User made events (fault, warnings).

 Drive System info includes version information of the application program.

 Drive firmware parameters with I/O controls.

 D2D function blocks enable drive to drive communication, I/O extension modules, and so on

for application programming.

Drive memory unit:

 Creates a permanent version of the application program (Boot application).

 Retains values of the application program variables .

 Consists of application source code (Note that the size of the memory is limited).

23

 Includes symbol and address information of the application program variables for monitoring

purposes.

PC tool programs:

 ABB Automation Builder for application program development and online operations.

 ABB Drive composer pro for drive parameter, signal, event log monitoring and settings.

 Application program function libraries (for example, ABB standard library).

 The USB/ACS-AP-x control panel enables communication between the Automation Builder,

Drive composer pro and the drive.

Programming work cycle

The following steps describes a typical work cycle of the drive application programming tasks of

performing the module:

1. Creating a new project, adding objects, defining the target and first program module in the

Devices tree.

2. Defining the interface to drive firmware parameters (I/O access, drive control) in the

DriveInterface object.

3. Defining user parameters and events (ApplicationParametersandEvents) module in the Devices

tree.

4. Developing the program structure and coding program units.

5. Defining the program execution task configuration editor.

6. Compiling and loading the code using Build menu.

7. Creating boot applications if new parameters, mappings, events or task configuration are added

in the Online menu.

8. Debugging the program code (stepping, forcing variables and breakpoints) in the Online menu.

9. Monitoring program variables in Automation Builder and Drive composer pro from the watch

windows of the View menu.

10. Repeating the cycle from step 2 to 8 for testing the program.

Special tasks

The following special tasks are part of the drive application programming tasks:

1. Saving or restoring the source code to the permanent memory of the drive using the Online

menu.

2. Saving the drive IEC symbol data to permanent memory of the drive from the Devices tree using

the option Add Symbol configuration object to the tree.

3. Naming and versioning the application from the Application properties window or Project

information.

4. Removing the application from the target using Reset origin window on the Online menu.

24

Programming languages and modules

The programming environment supports programming languages as specified in the IEC 61131-3

standard with some useful extensions. The following programming languages are supported:

 Ladder diagram (LD)

 Function block diagram (FBD)

 Structured text (ST)

 Instruction list (IL)

 Sequential function chart (SFC)

 Continuous function chart (CFC), normal and page-oriented CFC editor

A program can be composed of multiple modules like functions, function blocks and programs. Each

module can be implemented independently with the above mentioned languages. Each language

has its own dedicated editors. For more information of the programming languages, see

Automation Builder online help and chapter Features.

Libraries

Program modules can be implemented in projects or imported into libraries. A library manager is

used to install and access the libraries.

The two main types of libraries are:

 Local libraries (IEC language source code, for example, AS1LB_Standard_ACS880_V3_5)

 External libraries (external implementation and source code, for example,

AY1LB_System_ACS880_V3_5)

Local libraries include source code or can be compiled. If the library is compiled, source code is not

included in the library.

External libraries include AC500 PLC libraries used with the drive target by opening the library

project in Windows as Automation Builder project files (before V3.0).

For more information on compatibility, see chapter Libraries.

Program execution

The program is executed on the same central processing unit (CPU) as the other drive control tasks.

In real time applications, programs are typically executed periodically as cyclic tasks. The

programmer can define the cyclic task interval. For more information, see chapter Features.

DriveInterface

The DriveInterface object enables input and output mapping between the application program and

the drive firmware using the drive firmware parameters used in the application program. This list of

parameters may be different for each drive firmware versions. For more details on implementing the

DriveInterface and updating parameter list, see section DriveInterface.

25

ApplicationParametersandEvents

The ApplicationParameterandEvents Manager (APEM) object allows creating application parameter

groups, parameters, parameter types, parameter families, units and application events for the drive

in Automation Builder environment. For more details on how to create parameter related tasks and

application events, see section ApplicationParametersandEvents.

26

Creating application program

Contents of this chapter

This chapter describes the procedure to create application program.

For details of instructions and further development steps see chapters DriveInterface, Application

parameter and event creation, Features and Libraries. For more detailed descriptions, see also the

Automation Builder online help.

4

27

Creating a new project

After starting ABB Automation Builder programming environment, you can create a new project.

1. In the Start Page, click New Project or in the main menu, click File and then click New Project.

Figure 4: Automation Builder – Create a new project

2. In the New Project dialog box, select ACS880 or DCX880 project and click OK.

Figure 5: Select a project

Note: If required, rename the project in Name field and select the desired Location in the file

system.

28

3. In the Standard Project dialog box, select the type of control unit in Device drop-down list.

 ACS880_AINF_ZCU12_M_V3_5 for ZCU-xx control unit

 ACS880_AINF_BCU12_M_V3_5 for BCU-xx control units

Check the control unit type of the target drive either from the unit itself, from the hardware
manual of drives or contact your local ABB representative.

4. In the PLC_PRG in drop-down list, select a programming language and click OK.

 You can later add program modules made with other languages to the project.

Figure 6: Select a programming language

A simple project for an ACS880 target drive is created in the Devices tree.

Figure 7: New project created in the Devices tree

29

The Devices tree includes:

 PLC Logic

 DriveInterface for firmware signal and parameter mapping

 Application (for example, you can add the following objects under Application)

o Library Manager for installing function libraries

o ApplicationParametersandEvents for creating user parameters and events

o Program organization units (POUs)

o Task Configuration module for defining in which task the POUs are executed

o Text list

o Symbol configuration

o Global variable list

o Data type units (DUT)

For changing the device type, see section Changing an existing device.

Updating project information

You can update a Company name and Version number for the application program in the Project

Information window. This information is visible in Drive composer tool and ACS-AP-x control panel in

the System info display. It also helps to identify the loaded application without the Automation

Builder tool. You can also name the application from the application tool.

To update project information in Automation Builder, follow these steps:

1. In the main menu, click Project and then click Project Information.

Figure 8 Updating project information

30

2. In the Project Information window, select Summary tab, update the desired information and click

OK.

Figure 9: Project information

The updated project information is not loaded to the target application. Further steps explain how
to copy this information to the application information fields.

3. In the Devices tree, right click Applications and select Properties.

Figure 10 Application properties

31

4. In Properties window, click Information tab and then click Reset to values from project

information and click OK.

Figure 11: Copy information to application information fields

The Automation Builder tool version and project identification code are registered automatically.

32

Appending a new POU

To append a new POU, follow these steps:

1. In the Devices tree, right-click Application and select Add object.

Figure 12 Application add object

2. Select POU and click Add object.

Figure 13 Add POU object

33

3. In the Add POU window, Name the POU, select the Type of the POU and the used

implementation language and then click Add.

Figure 14: Add POU

The appended POU, xxx (PRG) is added to the Devices tree under application and the POU
window is displayed with the declaration part and the program code.

Figure 15 POU page

34

Writing a program code

A program organization unit (POU) is a unit, object or area where you can write the program code.

The units can be created either directly under the Applications in the Devices tree or in a separate

POUs window (View ->POUs or click POUs in the lower left corner).

The POU includes a declaration part (the upper window) and a program code part (the lower

window).

Figure 16: POU window

There are two different types of views for declaration part: a textual view and tabular view . You

can switch between these views by clicking the buttons.

Figure 17 POU view type

35

Continuous function chart (CFC) program

This example shows how to create a new project in the CFC implementation language.

Adding elements

1. In the Devices tree, select the xxx (PRG) under the Application.

Figure 18 PLC PRG

2. In the View menu, select ToolBox.

Figure 19 ToolBox

36

ToolBox components are displayed and are used to add a CFC scheme.

Figure 20: CFC scheme

If an empty ToolBox list is already displayed on the right side of the window, double-click the xxx
(PRG) to display the Toolbox and the POU window. You can add, for example, SEL and AND
elements (logic operators, functions), use the Box element in the ToolBox list.

3. In the ToolBox list, drag the Box and drop in the program code area.

Figure 21: ToolBox: Box element

37

4. Enter the name of the function or operand in the ??? field.

 You can also use Input Assistant to find the function, keyword, and operator. To start
Input Assistant, click or press F2.

Figure 22: Input assistant

Note: The number in the upper right corner of the white box indicates the execution order
of the function.

5. Right-click on input or output element and select Negate to invert.

Figure 23: Invert input/ouput

38

Setting the execution order of the elements

Each element has its own execution order. The number in the upper right corner of the element

indicates the sequence in which the elements in a CFC network are executed in the online mode.

Processing starts from the element with the lowest number, that is 0. Note that the sequence

influences the result and are changed in certain cases.

To set execution order of the elements, follow these steps:

1. Right-click on element and then click Execution Order and select Set Execution Order.

Figure 24: Execution order

2. In the Set Execution Order window, type New Execution Order number and click OK.

Figure 25 Set execution order

 The block execution order is changed.

39

Adding comments to a CFC program

In the ToolBox, select Comment and drag to desired point in the program code area and enter the

comment text.

Figure 26: Add comment to a CFC program

Declaring variables

To create a new variable, you can either declare it in the declaration part of the editor window or use

Auto declaration.

Depending on the type of the declaration view (textual or tabular) add a new variable by writing its

properties to a new text row (textual view) or use the TAB button (tabular view). For changing

between the views, see section Writing a program code.

1. In the program code area, select the required object.

2. In the main menu, click Edit and then click Browse and select Auto Declare.

Figure 27 Auto declare option

40

The Auto Declare window is displayed.

Figure 28 Auto declare variables

If you enable the option to declare unknown variables automatically (Tools -> Options ->
SmartCoding), the Auto Declare window opens every time you use an unknown variable in your
program and you can declare the variable instantly.

3. Define the Scope, Name and Type of the variable (mandatory).

 Scope defines the type of variable (global, input, output, etc.).

 Name is a unique identifier of the variable and represents the purpose of the variable.

 Type is the IEC data type of the variable.

Optionally, you can also define the Initialization value, Address, Comment or Flags for the
variable.

Flags have the following meaning:

 CONSTANT means that the variable value cannot be changed and the variable maintains

its initial value all the time.

 RETAIN keeps its value over reboot and warm reset.

 PERSISTENT is not supported.

41

Adding inputs and outputs

You can add inputs and outputs by selecting ToolBox elements. See section Adding elements.

Figure 29: ToolBox for adding inputs and outputs

Another way to add inputs and outputs straight to a block is to select a pin of a block and start typing

the name of a variable.

1. In the program code area, select the pin of the block.

Figure 30 Naming inputs and outputs

2. Name the input or output by writing the variable name to the block or use input assistant as

described in Declaring variables.

3. To connect the input or output block to a pin, left-click the line connected to the block and drag it

to a pin of another block.

42

Creating a block scheme

Example:

Create the following CFC program:

Figure 31: Example of CFC program

The following local variables are required in the block scheme.

Figure 32 Local variables

During block scheme programming, the already created variables are displayed in the Input

Assistant and new declarations are added to the variable declaration area.

For using the Input Assistant, see section Adding elements in Continuous function chart (CFC)

program.

43

Preparing a project for download

To prepare a project for download, follow these steps:

1. In the main menu, click Build and select Build.

Figure 33 Build

2. In the View menu, select Messages. A Messages window is displayed.

 Check that there are no errors or warnings. Otherwise, check and fix the application.

Figure 34: Build project message window

In the example, the process is successfully completed without any errors or warnings and the

project is ready for download.

Establishing online connection to the drive

The Automation Builder communication gateway handles communication between Automation

Builder and the drive. The gateway is a software component that starts automatically at the power-

up of the PC after installing Automation Builder.

Before starting with the communication setup, follow the pre-requisites listed below.

Pre-requisites:

44

1. Connect PC to a drive through USB port of the ACS-AP-x control panel using a standard USB

data cable (USB Type A <-> USB Type Mini-B). For information on making the control panel to

PC USB connection, see ACS-AP-x control panel user’s manual (3AUA0000085685 [English]).

2. Make sure the ACS-AP-x USB driver is installed. For installation procedure, refer Drive

composer user’s manual (3AUA0000094606 [English]).

3. Make sure the drive has application programming license N8010. To check license information in

Drive composer pro and in ACS-AP-x control panel, go to System info -> Licenses.

To establish online connection to the target drive after defining the device type, follow these steps:

1. In the Devices tree, double-click ACS880_AINF_ZCU12_M_V3_5 and then click

Communication Settings.

 Gateway-1 is displayed by default.

Figure 35: Communication settings

45

Note: If the gateway displays red , the CODESYS Gateway V3 is disabled in local
control panel settings.

Figure 36 Gateway disabled

2. Open Control panel -> Administrative Tools -> Services in the user PC.

3. In the Services window, double-click CODESYS Gateway V3.

Figure 37 Gateway services

A Properties window is displayed.

46

4. In the Properties window, select the desired Startup type from the available drop-down list and

click OK.

Figure 38 Startup type

CODESYS Gateway V3 is enabled and turned to green .

Figure 39 Gateway enabled

47

5. Ensure that the following default communication settings are correct.

 Node Name: Gateway-1

 Driver: TCP/IP

 IP- Address: localhost (Remote gateways are not scanned)

 Port: 1217

6. If Gateway-1 is not available, click Add gateway.

Figure 40 Add new gateway

7. In the Gateway window, select the appropriate settings and click OK.

Figure 41 Gateway settings

48

8. Check that the USB cable is connected to the USB connector of the ACS-AP-x control panel and

the drive is powered.

For communication related problems, see practical examples and tips for Solving communication

problems.

9. Double-click Gateway-1 or click Scan network to search the target device.

 Filter Target ID displays only devices that are of the same type as the device selected in
the Devices window.

 The gateway device is added under Gateway-1.

Figure 42: Adding devices under Gateway

10. Under Gateway-1, double-click or right-click the device and select Set active path.

Figure 43: Activating devices under gateway

 If the drive has appropriate license code, the selected device is set as active path and is

ready for downloading a program to the drive. See section Downloading the program to the

drive.

49

 If the drive does not have the required license code, the selected device is displayed with no
license.

Figure 44: No license notification

Note: To see which port and node is used by each device, see the information in the
device name in brackets [GGGG.PPNN] where:

 GGGG is the gateway number

 PP is the OPC channel number

 NN is the OPC node number

50

Downloading the program to the drive

After the project is ready for online communication with the drive, you can download and execute the

written program to the drive. Check that the active path to the target device is defined in the

communication settings. For more information, see section Establishing online connection to the

drive.

1. In the main menu, click Online and select Login.

Figure 45 Login

The following dialog is displayed if the program is not downloaded before. Click Yes.

Figure 46: Perform a download

51

After the download is complete, the background color of the device name and the application
name in the Devices tree changes. The program is in stop mode and the status is shown in the
brackets [stop]. You can start the program by selecting Start in the Debug menu.

Figure 47 Program in stop mode

For more information on downloading program, see section Application download options in
chapter Features.

52

Executing the program

To execute a program, follow these steps:

1. In the main menu, click Debug and select Start.

Figure 48: Debug menu

The application status changes to [run] and notifies that the program is executed successfully.

Figure 49 Executing a program

2. To set or change a value of an existing variable, double-click the cell in the Prepared value

column, type a new value and press Enter.

3. In the Debug menu select Write values to apply the prepared value to the variable.

4. In the Debug menu, select Force values to force the prepared value to the variable.

5. In the Debug menu, select Unforce values to unforce a forced value.

The variable value is changed. The current variable values are displayed in the Value column

and in the source code near the variable.

53

6. In the Debug menu, click Stop and then in the Online menu, click Logout to logout.

WARNING! Ignoring the following instruction can cause physical injury or damage to

the equipment.

Do not debug or make changes to drive in the online mode or while the drive is

running to avoid damage to the drive.

54

Creating a boot project

The regular downloading moves the application program to the RAM memory of the drive. Creating a

boot project copies the application to the non-volatile memory of the drive memory card and thus

retains the application after power cycle or reboot. For more details, see section Application

download options.

To create a boot project, follow these steps:

1. In the main menu, click Online and select Create boot application.

Figure 50: Create boot application

The following message is displayed. Click Yes to reboot the drive.

Figure 51: Reboot drive after boot project

The reset to default values is optional. If you select Reset application parameters to defaults
option, the next boot resets all the application parameters to their default values. The previously
set values are not restored from the permanent memory.

55

Select this option when a new application is loaded to drive or a reset origin has been performed
or when application parameters of the new application are different from the previously loaded
application.

Note: It is recommended to select the Reset application parameters to defaults

option whenever you load a new application to the drive or whenever you change

the parameter definitions of the existing application (APEM).

After creating the boot application, the status changes from STOP to RUN.

2. System prompts to save the boot application, click Save.

56

Features

Contents of this chapter

This chapter describes the device handling information and features supported by Automation

Builder.

Device handling

In the application programming environment, devices represent hardware. The device description file

contains information about the target device (drive) from the programming point of view like the

device identifier, compiler type and memory size. The ABB Automation Builder installation package

installs the device description files automatically.

The device description may be updated later and a new file can be installed. The system monitors

that a project with an incompatible device description file is not loaded to the drive.

The following topics describe device handling:

 Viewing device information

 Upgrading or adding a new device

 Changing an existing device

 Viewing software updates

5

57

Viewing device information

To view the detailed device information, follow these steps:

 In Devices tree, double-click device and click Information tab.

Figure 52: Device information

The Device ID (1612 0010), Drive FW name (AINFX) and application interface version (3.0.0.1) must

be identical in the project and drive target. In Drive composer pro, use the System info option to

check that the drive target has the corresponding application interface version and device type and

drive firmware name (displayed in parameter 7.04).

58

You can also check if the drive target has the corresponding application interface version and device

ID.

 In Drive composer pro, click System info -> Products -> More.

Figure 53: Checking drive compatible application and device

The name and version of the available system library is displayed. Make sure this information

matches with the installed system library of the Automation Builder project.

For more information, see parameter 7.23 for Application name and parameter 7.24 for version in

ACS880 FW.

For details of available functions, see chapter Libraries.

59

Upgrading or adding a new device

You can upgrade or add a new device to the programming environment.

1. In the main menu of Automation Builder, click Tools and select Device Repository.

Figure 54 Automation Builder device repository

Device repository window is displayed.

2. Click Install to select device description file.

Figure 55: Device Repository window

60

3. In the Install Device Description window, browse and select the device description file

(.devdesc.xml) in the file system.

Now you can add a new device to projects or upgrade currently existing devices in the project.

Changing an existing device

You can change an existing device in Automation Builder project.

1. In the Devices tree, right-click on Device and select Update object or in the main menu, click

Project and select Update project.

Figure 56: Update an object

The Update object window displays the available device types.

2. Select the required drive device and click Update object.

61

Figure 57 Update object device

Viewing software updates

 In the Automation Builder start page, click Automation Builder to download Automation Builder

update packages.

Figure 58: Automation Builder start page

http://new.abb.com/plc/automationbuilder

62

This link is the download center for low voltage products and systems (India). For example, you

can find Automation Builder Service Release 1 – Release note, Automation Builder update

packages, and so on.

63

Program organization units (POU)

The POU types are:

 A program (PRG) may have one or several inputs/outputs. A program may be called by another

POU but cannot be called in a function (FUN). It is not possible to create program instances.

 A function (FUN) has always a return value and may have one or several inputs/outputs. The

functions contain no internal state information.

 A function block (FB) has no return value but may have one or several outputs as declared in the

variable declaration area. A function block is always called using its instance and the instance

must be declared in a local or global scope.

A created project may have POUs with a specified implementation language. Each added POU

has its own implementation language.

For more detailed description of the POU types, see the IEC programming environment user manual

and the IEC 61131-3 open international standard.

64

Data types

The ABB drives application programming does not support some of the standard IEC data types like

BYTE, SINT, USINT and STRING. The following list gives the standard IEC data types, sizes and

ranges.

Data type Size
(bits)

Range Supported
by BCU-xx

Supported
by ZCU-xx

Notes

BOOL 8/16* 0, 1 (FALSE, TRUE) Yes Yes 8 bit BCU-xx

16 bit ZCU-xx

SINT 8 -128...127 Yes No

INT 16 -215...215-1 Yes Yes

DINT 32 -231...231-1 Yes Yes

LINT 64 -263...263-1 No Yes

USINT 8 0...255 Yes No

UINT 16 0...65535 Yes Yes

UDINT 32 0...232 Yes Yes

ULINT 64 0...264 No Yes

BYTE 8 0…255 Yes No

WORD 16 0...65535 Yes Yes

DWORD 32 0...232-1 Yes Yes

LWORD 64 0...264-1 No Yes

REAL 32 -1.2*10-38...3.4*1038 Yes Yes

LREAL 64 -2.3*10-308...1.7*10308 Yes Yes Slow. Do not use.

TIME 32 0 ms... 1193h2m47s295ms Yes Yes

LTIME 64 0 ns...~213503d Yes Yes

TOD 32 00:00:00...23:59:59 Yes Yes

DATE 32 01.01.1970...~06.02.2106 Yes Yes

DT 64 01.01.1970 00:00...
~06.02.2106 00:00

Yes Yes

STRING[xx] 0...255 characters Yes No

WSTRING[xx] 0...32767 characters Yes Yes

Drive application programming license

The drive application programming license N8010 is required for downloading and executing the

program code on the ACS880 or DCX880 drives. To check license information in Drive composer

pro or in ACS-AP-x control panel, go to System info -> Licenses. If the required license code is not

available, contact your local ABB representative.

65

Application download options

Before executing an application in the drive, download the application to the drive memory. After

downloading, the application software is embedded in the firmware of the drive and has access to

system resources.

Note: It is not recommended to download a program to the RAM memory when the drive

is in RUN mode. The drive must be in STOP mode and Start inhibits must be possible to

set.

Before download, ensure that there is no fieldbus device, M/F-link or D2D-link connected to the drive

and Drive composer is not running data monitoring or back-up/restore at same time.

There are two different download options:

 Download – This is a regular download method that copies the compiled application to the

drive RAM memory. As a result, it is possible to execute the application, but after a power

cycle or reboot the memory is erased. This download method does not alter an application

that is located in the drive boot memory (ZMU) and the original application is available for

use after a reboot.

 Create boot application – This download method copies the application to the non-volatile

memory of the drive memory card. This way the application remains intact after a power

cycle or reboot. You should be logged into the drive to perform this operation. Features that

can work only after restarting the drive should be downloaded with this method.

Create boot application command (Online -> Create boot application) also includes booting
the drive. Rebooting stops the execution of the complete drive firmware for some time. For
this reason, it is allowed only when the drive is stopped and start inhibition is granted to the
Automation Builder.

Note:

 Firmware parameter mapping, task configuration, application parameters

and event configuration are activated only after the boot application is

loaded and the drive is booted.

 Start inhibition is not granted if the drive is running, disabled (DIL, Safety

function active) or faulted. Make sure that these conditions do not exist

before downloading the program.

66

Removing the application from the target

Use the Reset option if the application includes many changes like application parameter changes or

the application is replaced by another application. If the target already includes an application, use

the Reset origin selection in the Online tab before downloading a new application.

This command removes (clears all) old applications from the target and all the application related

references. Use this command at least once before the final version of application is loaded. The

command can be used only in the online mode. See also Reset options.

When you are prompted with the following message, click Yes.

Figure 59: Initiate reset origin

After you initiate the Reset origin option, the following message is displayed. Click Yes. The

command is executed only if Automation Builder receives the permission from the drive.

Figure 60: Confirm reset origin

67

Retain variables

Retain variables includes the RETAIN flag used to retain values throughout the drive reboot and

warm reset. A cold reset sets the retain variable to its initial value. The values of retain variables are

cyclically stored in the flash memory of the drive and restored to the stored value after the restart of

the program. The retain variables are stored in a separate 256-byte memory area which defines the

limits of their amount.

WARNING! In a function block, do not declare a local variable as RETAIN because the

complete instance of the function block is saved in the retain memory area and this large

function block instance may lead to running out of memory space.

In firmware version 1.7 and later, the power control board works with the parameter settings:

 If parameter 95.04 = Internal 24V, retain values are saved immediately at the time the drive

loses power, meaning it is not cyclical.

 If parameter 95.04 = External 24V, retain values are saved at periodic intervals of 3 minutes.

So the recovered variable may not be the recent value.

Note: Declaring a local variable in a function as RETAIN has no effect and the variable

is not saved in the retain memory area.

The existing retain variables cannot be linked to application parameters.

Task configuration

The task configuration object handles call configuration of programs. A task is a project unit that

defines which program is called in the project and when it is called. The project can have more than

one task with different time levels.

There are two types of tasks:

 Cyclic task (Task_1, Task_2 and Task_3) – These tasks are processed cyclically according

to the task cycle time interval. The following table lists the time intervals available for cyclic

application programs. The highest priority is given to the task with the shortest execution

interval.

Task Time interval

Task_1 1 … 100 ms

Task_2 10 … 100 ms

Task_3 100 … 1000 ms

 Pre_task – This task is executed only once at start-up of the application program. This

feature is useful for one time initialization. POUs (blocks) assigned into this task are executed

before the start of cyclic tasks.

Note: The application program consists of its own quota of CPU resources. If the limit

exceeds, the drive tips to task overflow fault. For details, see ACS880 Firmware

manual.

68

Adding tasks

To add tasks to Task Configuration, follow these steps:

1. In the Devices tree, right-click Task Configuration and select Add Object.

Figure 61 Task configuration

2. Select Task and click Add object.

Figure 62 Task

69

3. In the Task drop-down list, select a task and click Add.

Figure 63: Add tasks

The selected tasks are added in the Task Configuration object.

Figure 64: Tasks added

4. Click Add POU in the newly added Task_2 screen.

70

5. In the Input Assistant window, click Categories and then select PLC_PRG and click OK.

Figure 65 Add POU input assistant

6. PLC_PRG is added to Task_2. Drag PLC_PRG to Task Configuration object.

Figure 66 New PLC PRG

71

Monitoring tasks

Before adding the tasks for monitoring in Automation Builder, check parameter 7.21 Application

environment status in Drive composer pro.

Figure 67: Drive composer pro, parameter 7.21

The parameter bits 7.21.0, 7.21.1, 7.21.2, and 7.21.3 are used to monitor the application task related

execution. To check the continuous execution of tasks, write the specific task bit to 0. The executing

task bits are updated to 1, except the Pre task, which executes only once.

The calculation of tasks execution cycle (duration) is disabled by default. To view the tasks

execution monitoring in Automation Builder, change Bit 15 = Task monitoring to high.

72

To add task monitoring view in Automation Builder, follow these steps:

1. In the Devices tree, double click Task Configuration.

2. Click Monitor tab to check the status report of available tasks.

The status report of available tasks appears.

Figure 68: Task monitoring view

Note: The values in the task monitoring view are updated only setting the parameter

7.21.15 to high in Drive composer pro. This setting is configured again after the power

cycle or boot or control board.

73

Uploading and downloading source code

Optionally, the source code of the project can be saved in the drive. This feature is located in

Automation Builder main menu Online -> Source download to connected device and it ensures

that the files are easy to obtain if needed.

To retrieve the saved source code from the drive to a new project, follow these steps:

1. In the Devices tree, right-click Device and select Source upload.

Figure 69 Source upload

2. Select the drive and click OK.

Figure 70 Source upload device

74

The size of the source code is limited to 500 KB. Check the archiving option to minimize the source

code size (File -> Project Archive -> Save/Send Archive…). Note that referenced devices and

libraries are needed, the rest is optional.

Note: If the source code is saved on the ZMU memory unit, you can retrieve the program

with another PC without the authors consent unless the project is password protected.

75

Adding symbol configuration

To add symbol configuration in Automation Builder project, follow these steps:

1. In the Devices tree, right-click Application and select Add object.

Figure 71 Add object for symbol configuration

2. Select Symbol configuration and click Add object.

Figure 72 Symbol configuration

76

3. In the Add Symbol configuration window, click Add.

Figure 73 Add symbol configuration

Symbol configuration object is added to the project.

Figure 74 Symbol configuration object

77

After adding Symbol configuration object to the project, the IEC variable to symbol data is loaded

into the drive during the create boot application download. See section Application download

options. This feature provides Drive composer pro access to the application variables which is used

for graphical monitoring and debugging.

For more information on the Symbol configuration editor and adding variables, see Automation

Builder Online help.

Debugging and online changes

The following debugging features and variable forcing are supported:

 Start / stop program execution

 Setting breakpoints

 Stepping code line by line or by function

 Forcing variables (constant setting of variable values)

 Writing variables (single setting of variable values)

Note: Online changes of the program code are not supported.

WARNING! Ignoring the following instruction can cause physical injury or damage to

the equipment.

Do not set breakpoints and force variables on a running drive that is connected to

motor.

Safe debugging

When debugging the application program of a running drive connected to motor in the online mode,

avoid the following actions:

 stopping the application program

 setting breakpoints to the application program

 forcing variable values

 assigning values to outputs

 changing the values of a local variable in function blocks

 assigning invalid input values

Breakpoints stop the entire application, instead of just the task that has the currently active

breakpoint.

78

Reset options

You can reset the application, using the reset selections in the Online mode.

1. In the Devices tree, select the Application.

2. In the main menu, click Online and select the desired reset method.

Figure 75 Reset options

 Reset warm resets all variables of the currently active application to their initial values

(except retain and persistent variables). In case of specific initial values, the variables are

reset exactly to those specific values.

 Reset cold resets all variables (normal and retain) of the currently active application to their

initial values.

 Reset origin erases the application, downloaded to the drive from the RAM and the memory

unit (Boot application). In case of specific initial values, variables are reset to those specific

values. Drive firmware parameter mappings, user-defined parameters and events are also

removed. Finally the drive is restarted.

Note: The reset origin action cannot be undone. However, the parameter values of the
old application are not removed. These values can be removed only when creating the
next boot application by selecting the Reset application parameters to defaults
option. See section Creating a boot project.

If the application is stopped, press F5 to restart the application.

79

Memory limits

To see the effective size of the program, follow these steps:

 In the main menu, click Build and select Clean or Clean All to remove temporary code sections

from the program.

Figure 76 Build clean

The build report shows the actual memory allocation.

Memory area 0 is assigned for code and data. Memory area 1 is assigned for retain variables.

See the example screen below.

Figure 77: Memory limits – example

Note: To optimize the memory consumption, avoid using function blocks and

unnecessary variable definitions.

80

CPU limitation

The maximum execution load of the application is limited to a certain value of 5 to 15% depending

on the drive type. To know the actual load limit, contact your local ABB representative.

Use parameter 7.11 to check the application load which monitors the CPU load. To know the load

difference, compare the values between with and without the application. Ensure that the difference

value is not greater than the value limit. If the application exceeds the limit, the drive trips to the task

overload fault 6481. The fault is registered to the event log of the drive and the fault-specific AUX

code indicates the overloaded tasks (10 = task 1, 11 = task 2 and 12= task 3).

Perform CPU load tests to ensure that the drive is capable of adequately running the application.

Enable the required drive functions during the execution of the application. For example, motor

control, communication modules, encoders, and so on.

81

Application loading package

This feature allows the user to create loading package containing an application program for

ACS880 drive. Loading package file is built with Automation Builder command Create Boot

Application in case the tool is in online connection to the drive.

Loading package file must be placed to the corresponding project folder with the file name

<project_name>_<device>_<application>.lp. The user can load application loading package using

Drive loader 2.1 tool. Application loading package functionality supports from AINFX 2.01 firmware

version onwards.

Before loading the package, Drive loader tool checks for the correct actual drive type and firmware

version to load the package. It also checks for the correct drive application programming interface

and programming license (N8010) is active in target drive.

To include symbol data and source code to application wrap file and loading package using

Automation Builder, follow these steps:

1. In the main menu of Automation Builder, click Project and then select Project Settings.

Figure 78 Project settings

Project settings window is displayed.

82

2. In the Project Settings window, click Application loading settings and select the desired

check boxes.

Figure 79 Application loading settings

It is also possible to add more supported firmware versions to the application loading

package.

Note: Ensure that the application is working correctly with the added firmwares.

3. Click to add new firmware.

4. Enter the firmware details and click Ok.

Figure 80 Adding supported firmwares

The added firmware is displayed in the Application loading settings.

83

Downloading loading package to a drive

Drive loader tool is used to download loading package to common platform drives.

1. Start Drive loader tool.
2. Click Open to download a loading package or click Scan to scan for a connected device.

Figure 81 Drive loader tool

84

3. Select the desired loading package file (.lp) and click Open.

Figure 82 Loading package

4. Select the desired drive and click Select.

Figure 83 Drive selection

85

5. In the Software Set drop-down list, select the appropriate selection.

 1: Loads new application, set application parameters to default and removes user sets
from the drive.

 2: Loads new application.

 3: Removes the application from the drive (reset origin). Before using this option, the user
must first load application loading package using options 1 or 2.

 4: Removes user sets from the drive.

Figure 84 Software set

6. Select the desired communication Serial port and click Download.

Before starting downloading, drive loader checks for the following:

 Correct control board (ZCU/BCU).

 Same device ID in Automation Builder project and drive control board.

 Correct version of application environment.

 Programming license loaded to target (N8010).

 FW version supported in loading package.

Note: Before starting downloading, ensure Automation Builder and Drive composer are

not running at the same time.

86

A warning message is displayed. Click OK.

Figure 85 Warning message

7. In case of restrictions due to incompatible firmware version, the Drive loader stops and
displays an error message.

Figure 86 Error message

8. Click downloading.txt to view error log file.

87

DriveInterface

Contents of this chapter

This chapter describes how to implement DriveInterface and map input/output settings between the

application programs and drive firmware parameters.

Implementing DriveInterface

The interface between the drive firmware and application is implemented using DriveInterface.

Figure 87: DriveInterface

6

88

DriveInterface consists of all drive firmware parameters list that can be used in the application

program. This list is specific for each drive firmware (a new firmware may have new parameters).

You can assign a parameter to be an input for the application program and define that the parameter

is read at the beginning of the task execution. Similarly, user can assign parameters to be an output

of the application.

Figure 88: DriveInterface – Assigning parameters for outputs in the application

Note:

 The parameter to IEC variable mappings is valid only after creating a boot application.

For more details, see section Application download options.

 Drive interface is not completely covering all drive parameters. If the firmware

parameter is not available in the drive interface list, use the AY1LB library functions to

read/write firmware parameters.

 In order to fully remove drive parameter settings from drive, use Reset origin option.

Also, re-save user sets (see parameter 96.08) after removing or replacing the

application. As user set may have incorrect mapping of firmware parameter to non-

existing application.

89

Selecting the parameter set

A drive can have different parameters depending on the firmware version. Before performing

parameter modification, ensure that the correct parameter set is selected in DriveInterface. The

changes to parameter set in DriveInterface removes all parameter mapping data.

To change the currently selected parameter set, follow these steps:

1. In the Devices tree, right-click DriveInterface and select Update object.

Figure 89 DriveInterface update object

2. In the Update object window, select the correct parameter set for the current target and click

Update object.

Figure 90 DriveInterface parameter set

90

Viewing parameter mapping report

When you download the application program, a report of unresolved parameter mappings between

the project parameters and actual parameters in the drive is written in the PLC log.

Figure 91: Parameter mapping report

For more details on downloading, see sections Downloading the program to the drive and

Application download options.

91

Mapping example

To read digital input DI1 of the ACS880 control unit to the previous CFC example (Creating a block

scheme), open group 10 and select index 1.

1. In the Devices tree, double-click DriveInterface.

Figure 92: Parameter mapping window

2. In the Driveinterface window, right-click on the required Assignment cell and select Input or you

can also select the desired Assignment from the available drop-down list.

Figure 93: Selecting input for parameter mapping

92

3. Double-click default IEC variable name Device_DI1_10_1. A button is displayed to the right of

the selected name to change the name.

Figure 94: Default IEC variable name

4. Click to change the name. Input Assistant window is displayed.

5. Click Categories and then expand DriveInterface tree to select the Device and click OK.

Figure 95: DriveInterface Input assistant

93

IEC variable name is changed.

Figure 96 DriveInterface variable name

Note: If you want to select existing variable DI1 from the POU variable list, expand

Application and under POU, select DI1. DI1 is connected to drive parameter 10.1. DI

status bit 0.

Figure 97 Existing variable

The mapped parameters are available as IEC variables in the program editors (press F2).

Note: Bit and value pointer parameters can be used as outputs and then the pointer is

linked directly to the application memory.

94

Updating drive parameters from installed device

You can update the parameter list from the installed device or you can take the actual drive

parameter set used in DriveInterface from Drive composer pro. See section Updating drive

parameters from parameters file.

To update the parameters from the installed device, follow these steps:

1. In the Devices tree, right click DriveInterface and select Update Drive Parameter Set.

Figure 98: Update drive parameter set

95

2. In From installed device option, expand Miscellaneous and select the device and then click

Update.

Figure 99: Update parameter from installed device

The parameter list from the selected device is displayed.

96

Updating drive parameters from parameters file

Optionally, you can update the actual drive parameter set using the Drive composer pro backup file.

To update the parameters backup file, follow these steps:

1. In the Devices tree, right click DriveInterface and select Update Drive Parameter Set.

Figure 100 Update drive parameter set

97

2. In the Update parameter set window, select From parameter file option and browse to select

dcparams (.xml) backup file and then click Update.

Figure 101: Select parameter file

The changes/deleted parameters are displayed. Click OK.

98

Setting parameter view

In Automation Builder, you can select the required parameter details to view in the ACS-AP-x control

panel and the Drive composer pro display:

1. In the Devices tree, double-click DriveInterface.

Figure 102 DriveInterface parameter view

2. In the upper-left corner of the DriveInterface window, select Settings.

Figure 103: DriveInterface settings

99

3. Select the required view option for the corresponding parameter and click OK.

Figure 104: Hide options

The selected options in the view list are displayed in the DriveInterface parameter window.

100

Application parameter and events

Contents of this chapter

This chapter describes how to use the Parameter Manager and provides detailed information on

parameter settings.

7

101

ApplicationParametersandEvents

You can create your own application parameters and events visible in the panel and Drive

Composer pro tools.

1. In the Devices tree, right-click Applications and then click Add Object.

Figure 105: ApplicationParameterandEvents tool

2. In the Add object window, select Application Parameters and click Add object. Add Application

Parameters window is displayed.

Figure 106 Application parameters

102

Note: You can create only one ApplicationParametersandEvents object at the time.

3. Click Add to add the Application Parameters to Devices tree.

Figure 107 Add application parameters

ApplicationsParametersandEvents object is added under Applications in the Devices tree.

103

ParameterManager

In the ParameterManager window, you can create new groups of parameters, parameter families,

selection lists, units, events and language translations for the names of all the previous items.

 In the Devices tree/Application, double-click the ApplicationParametersandEvents object. The

ParameterManager window is displayed.

Figure 108: Parameter manager window

Creating parameter groups

All the drive parameters belong to a specific parameter group. Before creating any new parameters

create a new parameter group. Ensure that all the groups have unique name and number. You can

change the group number and name. You can also add translations into other languages in addition

to the default language which is English.

 In the ParameterManager window, click to add group.

Figure 109 Adding parameter group

ParameterManager automatically selects the first free parameter group number that is not used
in the drive firmware or ParameterManager.

104

Creating parameters

1. In the ParameterManager window, select a parameter group.

2. Click to create a new parameter.

Figure 110 Adding new parameter

The Parameter Settings window is displayed. You can set the properties of the parameter. See
section Parameter Settings. The Parameter Settings window is identical for all the parameters
but there are also custom settings available depending on the parameter type. For more
information on the type-specific windows, see section Parameter types.

105

3. In the Parameter Settings window, enter the Name of a parameter and click Add.

Figure 111 Naming parameter

The new parameter added to the selected group.

Figure 112 New parameter

106

Parameter settings

In the Parameter Settings window, you can set parameter properties.

Figure 113: Parameter settings window

Parameter name is the name shown in the parameter list when using Drive composer or ACS-AP-x

control panel.

Parameter type defines the kind of parameter created. There are following parameter types:

 Decimal number

 Formatted number

 Bit pointer

 Value pointer

 Plain value list and

 Bit list (16 bit)

For more information, see section Parameter types.

107

IEC variable name is used to define an IEC variable for the parameter.

 The New option maps the parameter to a new IEC variable. If you do not give a name for the

new IEC variable, the parameter name is used as the IEC variable name.

When you create a new IEC variable, you must select the variable type, for example, REAL.
For more information on the variable types, see section Data types in chapter Features. The
selected parameter type restricts the variable type selection and only the allowed types are
shown in the IEC variable/Type list.

 The Existing option maps the parameter to an already existing IEC variable by finding the

parameter from the list of the Input Assistant or writing the name to the field.

Parameter family includes a parameter as part of the parameter family and inherits the settings

defined for the family. For more information, see section Parameter families.

Function types are flag configurations for parameters which determine the parameter behavior with

the ACS-AP-x control panel and PC tool displays. There are five different configurations:

 Setting (adjustable) – This function type is a generic configuration parameter. When a

parameter with this function type is changed by ACS-AP-x control panel or Drive composer,

the changed value is saved. If the value is written cyclically, the saving type for the parameter

must be no (for example, motor speed limits).

 Setting (reverts to default) – This function type is used for requesting a function. When this

request is processed, the parameter returns to its default value.

 Signal (read only) – This function type displays the application parameter value in the ACS-

AP-x control panel or Drive composer. A parameter of this function type does not have any

meaningful default value.

 Signal (resettable) – This function type is identical to the read-only signal and also allows

resetting parameters to their default values.

 Custom – This function type enables you to change values in the application.

Saving types define the method of storing the parameter value to the non-volatile memory. There

are three different saving types:

 No – This type does not store the parameter values changes done in the ACS-AP-x control

panel or Drive composer pro.

 Powerfail – If the parameter 95.04 is set as Internal 24V, the powerfail type parameters are

saved immediately at the time of power failure in the drive. If parameter 95.04 = External

24V, the values are saved at periodic intervals of 1 minute. The power fail saved parameters

are limited to < 10.

 Immediate – If the parameter value is changed using keypad or PC tool, this type saves the

value immediately within 10 seconds. This saving type is used for controls, but not for

signals.

Protection, hiding and excluding from backup allows you to set the following protections for

parameters or set them on the parameter group level by selecting a parameter group in

ParameterManager.

 Human WP/Human Hide write-protects/hides the parameter from a human user

manipulation. This setting can be bypassed using configuration tools, fieldbus controllers,

and so on.

 Total WP/Total Hide write protects/hides the parameter from any kind of manipulation

outside firmware. These parameters are used only by the application.

108

The following settings are for parameters only:

 WP Run protects the parameter from writing when the drive is running.

 Include in user set includes parameter as part of the process where all parameters become

a user set.

 Exclude from Backup leaves the parameter out of parameter backup, but restores the

default parameter values. This setting applies only for parameters.

Minimum, Maximum and Default value are set for decimal and formatted numbers.

 Minimum and Maximum define the limits for the value of the parameter. These values

should not exceed the limits of the data type defined for the parameter.

 Default value is the value of the parameter at the start-up of the program and it must be

within the limits defined by the minimum and maximum values. The default value returns if

you restore defaults or clear all with parameter 96.06 (see the drive firmware manual).

Scaling

Figure 114: Scaling

Base value is the internal firmware value. The scaling values in Base value, 32-bit scaler and 16-bit

scaler should match each other and define how a value of the parameter is represented in other

contexts. Scaling for all the other values of the parameter is calculated on the basis of the scaling

values defined.

If the scaling factor is 1, meaning direct transform from one representation to another, use the same

number for all of the scaling values.

Example:

The firmware uses values 0…1 for motor rotation speed measurement. The maximum speed is
1500 rpm, and therefore the ACS-AP-x control panel displays 1500 rpm when the internal value
is 1 (the maximum speed). The 16-bit fieldbus device shows 100%.

In this example the values are:
Base value = 1
Value (32-bit int) = 1500
Value (16-bit int) = 100

109

Tool/Fieldbus 32-bit interface

 32-bit scaler - 32-bit external value (for example, Drive composer or ACS-AP-x control

panel)

 Decimal display - Decimal display defines the number of decimal digits displayed on the

Drive composer or ACS-AP-x control panel. This setting applies only for external value, but

has no effect on the internal value.

Fieldbus 16-bit interface

 16-bit interface support - This field defines if the 16-bit external format is allowed, for

example, in fieldbus devices and how it is scaled to the 32-bit external format:

No – 16-bit external format is not allowed.

Direct – 32-bit scaling is used but the value is displayed as a 16-bit value. Therefore, value
(16-bit int) is considered meaningless.

Scaled – separate 16-bit scaling is used. Value (16-bit int) must be defined.

 16-bit scaler - 16-bit external value (for example, fieldbus devices)

Testing for scaling

Figure 115: Testing for scaling

Internal value - Calculates the scaling of 32 and 16 bit fieldbus interface with the corresponding IEC

variable. For description of formula, see PAR_SCALE_CHG function block.

Linking parameter to application code

The IEC variable field in the Parameter settings window enables to link a parameter to an

application program code. There are two options to link a parameter with an application program

code.

 The New option adds a new IEC variable to programs and is visible in the input assistant

under ApplicationParametersandEvent object.

 The Existing option allows linking a parameter to the existing IEC program variable using

browser. Make sure to select the correct data type. If you change the link to the existing IEC

variable, a build error occurs. See the message box for information on incorrect linked

parameters. Check the full path to correct the missing linked parameters according to the

program.

Note: The existing retain variables cannot be linked to application parameters.

110

Parameter types

In the Parameter Settings window, you can select the Parameter Type for the newly created

parameter.

Figure 116: Parameter type

Decimal number creates a parameter with actual numeric contents, either decimal or non-decimal

numbers. The available IEC types are REAL, UDINT, UINT, DINT and INT.

Formatted number parameter type is used to make special purpose parameters like date displays,

version texts, passcodes, and so on. The available IEC types are UDINT, UINT, DINT and INT. In

the Display format for Data Parameter, you can define the format in which the value should be

displayed in the Drive composer or ACS-AP-x control panel.

Figure 117: Display format for data parameter

111

Bit pointer creates a pointer parameter which can be assigned to point to a bit of another
parameter. You must associate the bit pointer parameter to a selection list (a bit pointer list) that
must be created beforehand. For more information, see section Selection lists. The only available
IEC type for bit pointer is BOOL. You can define the default selection from the list.

Figure 118: Selection list

Value pointer creates a pointer parameter which can be assigned to point to another parameter.

You must associate the value pointer parameter to a selection list (a value pointer list). For more

information, see section Selection lists. The only available IEC type for the value pointer is UDINT.

You can define the default selection from the list.

Plain value list must be associated to a selection list (a plain value list) and it allows only values of

the list as its own value. The available IEC types are UDINT, UINT, DINT and INT. You can define

the default selection from the list.

112

Bit list (16 bit) consists of maximum 16 Boolean values (bits). You can add new rows (bits) to the

list using the Bitlist row button. You can change the names of the bits and their values to represent

their purpose. The default value is the bit value at the start-up of the program. The only available IEC

type is UINT.

Figure 119: Bitlist rows in Add Parameter window

113

Parameter families

If a parameter shares some of its attributes (scaling, minimum/maximum, and so on) with another

parameter, it can belong to a family that describes these common attributes. This way, when the

attribute is changed in one parameter, it is also changed in all parameters belonging to the same

family. The system library includes a function block to modify parameter attributes like

PAR_UNIT_SEL functions. See AY1LB_System_ACS880_V3_5 library in Appendix C: ABB drives

system library.

If you select a parameter family Version style, make sure the family has a unique Name. The

parameter families can define limit or scaling properties or both of them.

Figure 120: Parameter families

114

Selection lists

Selection lists are always associated to a parameter of the same type as in the list and they can be

accessed only through the parameters.

Figure 121 Selection lists

Selection list name – The text visible to the user. Note that the name is not the official text since the

language translator just uses this text as a source when creating the official language texts.

Value/Source par – The value of the list row. For the bit and value pointers, it is the index of the row

in the list. For the value lists, it is an actual selectable value.

List type – There are three different types of selection lists:

 Bit pointer list – By default, it has the const_false and const_true values. You can add to

the bit pointer list single bits of any parameter of the appropriate type.

 Value pointer list – By default, it has the const_null value. You can add to the value pointer

list any parameter which has the same data type as the pointer associated to the list.

 Plain value list – You can add to the plain value list any values of types INT, DINT, UINT or

UDINT. The type has to be the same as the type of the pointer associated to the list.

Inverted – When a bit /value is read from a source parameter, it is inverted /negated for output when

the inverted flag is set.

115

Units

You can create own units for the application parameters. A unit has a unique number and a name.

The allowed unit codes for the application program are 128…255.

You can add translations of the name into other languages.

1. In the ParameterManager view, click Units tab.

Figure 122 Unit

2. Click New Unit to add unit and click Add to add Language Id.

Figure 123 Units and translations

The units are attached to parameters in the Add Parameter options in Parameter Settings window.

116

Application events

You can configure your own application events (faults or warnings). The application program then

triggers the event and the event registers in the drive event logger with a time stamp. This tool

defines the event ID code, type and event name (with translation).

 In the ParameterManager view, click Events tab and then click Event to add Event.

Figure 124 Events

Events dialog box gives the following information:

 Name, in this example Event_1. The Event name is displayed on the ACS-AP-x control panel

and in the Drive composer tools when the event is activated / deactivated.

 Event Type, in this example fault.

The following event types are supported:

1 = Fault (Trips the drive.)

2 = Warning (Is registered to the event logger.)

3 = Pure event (Is registered to another logger.)

 Event ID, in this example E100. Each type of event has its numerical range (ID code). You can

select the ID code within the range.

The event is activated by using the EVENT function block in the program code (library

AY1LB_System_ACS880_V3_5, see chapter Libraries). Every event must have its own instance of

the EVENT block. The EVENT function block must have the same ID code and type as defined in

the previous dialog box.

117

Libraries

Contents of this chapter

This chapter contains general information of libraries and description of the ABB drives system and

standard libraries. You can find more detailed information in Appendix C: ABB drives system library

and Appendix E: ABB drives standard library.

Library types

The following libraries are installed by default in Automation Builder for drive programming.

Default libraries:

 ABB drives system library (AY1LB_System_ACS880_V3_5)

 ABB drives standard library (AS1LB_Standard_ACS880_V3_5).

Optional libraries:

 All generic Automation Builder IEC libraries (standard and util) can be installed, but ABB

does not guarantee their correct functioning. Note the data type limitations described in Data

types).

8

118

The Library Manager controls and manages the library usage in the project. Each project has its own

Library Manager which is added by default when you create a new project.

Figure 125: Library Manager

ABB drives standard library contains the most common and useful functions and function blocks

for drive control. All the functions are implemented locally using structured text language. The

automation builder and standard libraries include additional general purpose functions.

ABB drives system library includes all the drive-specific functions to interface the application with

the drive firmware and I/O interface. This library has external implementation in the drive system

software.

Note: Make sure the drive has the corresponding system library installed:

1. In the Drive composer pro System info, select More in Products.

2. Check that the Application System Library displayed in the Drive composer pro has the

same library version as the Automation Builder project. If the versions are not

matching, part of the library may be incompatible.

Adding a library to the project

To add a Library Manager (library container) to the project:

1. In the Devices tree, right-click Application and select Add object.

2. In the Add object window, select Library Manager and click Add object.

3. Double-click Library Manager. Library Manager window is displayed.

Figure 126: Library manager

119

4. Click Add library to add library.

5. In the Add Library window, click Advanced.

Figure 127 Advanced option

6. Select the required library and click OK.

Figure 128: Add library

120

The selected library is added successfully.

Figure 129: New library added in Library Manager

Note: To make SFC language programs or functions, the IeCSfc system library must be

available in the project.

121

Creating a new library

The application programming environment allows you to create your own libraries to be used in the

projects. After starting the programming environment, a new library can be created with the New

Project dialog.

1. In the New Project dialog box, click Empty project, type the library Name and Location, then

click OK.

Figure 130: Creating a new library

The new library is added into the POUs tree.

2. To add a new POU into the created library, select POUs in the View menu.

3. Right-click on project name, select Add Object -> POU.

4. Give the new POU a name, for example, POU1.

5. Select the type of the POU, for example, Function Block and the implementation language, for

example, Structured Text (ST) and then click Add.

6. Open the created POU and add the following code into the variables declaration window:

Figure 131: Variables declaration window

122

Add the following code into the code area:

Figure 132: Code area

7. After the code is added all library objects must be checked before the library export. On the

Build menu, select Check all Pool Objects.

8. To use the created library in the future, select Project -> Project Information and fill in the

following information on the created project: company, title and version.

Figure 133: Project information

9. After the information is added, it is possible to install this library directly to the Library Repository.

On the File menu, select Save Project and Install into Library Repository.

Or

10. To save the library as a usual file, select Save Project as… on the File menu.

Or

11. To save the library as a compiled library file, select Save Project as Compiled Library on the

File menu.

Note: To protect the library source code, you must use a compiled library file. The non-

compiled library format does not protect the source code.

123

Installing a new library

If the needed library is not in the repository, it must be installed before use.

To install a new library, follow these steps:

1. Open Library Manager and click Add library.

2. In the Add Library window, click Advanced.

3. Click Library Repository.

Figure 134 Library repository

124

4. In the Library Repository window, click Install.

Figure 135 Installing library

5. Browse/select the required compiled library and click Open.

A new library is installed into the Library Repository and is ready for use in the project.

125

Managing library versions

Automation Builder allows you to use different versions of the selected library according to project

requirements.

To change the current effective library version:

1. Open Library Manager.

2. Select the required library and click the Properties.

Figure 136 Library manager properties

3. Select the Specific version in the drop-down list and click OK.

Figure 137: System library version

The library version is changed and can be used in the project.

If you want to add a new library version that is not in the Specific version list, install the

version first. See section Installing a new library.

126

Practical examples and tips

Contents of this chapter

This chapter gives practical examples and tips on working with Automation Builder.

Solving communication problems

Question: What to do when scan network does not find any drives?

Answer

a. Check the communication settings.

b. In Windows Computer Management -> Device Manager, check that your communication

port is correctly installed.

c. If the USB Serial Port (COMX) is not displayed under Device Manager, check that the

corresponding USB/communication port driver is installed.

Figure 138: Checking communication port installation

9

127

d. To check that the OPC server (DriveDA.exe) has started in Windows Task Manager, select

Ctrl + shift + esc -> Processes.

Figure 139: Checking OPC server in Windows task manager

e. Check that Drive composer pro (Drive OPC) finds the connection to the drive.

Note: You must allow Automation Builder to share communication with Drive composer pro.

To work in parallel with Drive composer pro, you must do the register setting of DriveDA OPC
server. This register setting is not included in the installation setup of Automation builder
version 1.0.

For details on how to allow Automation Builder to share communication with Drive composer
pro, see chapter Setting up the programming environment.

The reinstallation of the Drive composer pro adds a new InprocServer object to the registry.

Figure 140: Registry

Question: What to do if communication fails while establishing online
connection to the drive?

Answer

a. Check the Firewall settings in your PC that may block connections to devices. ABB

Automation Builder needs port 1217 for connecting to the gateway.

b. If multiple nodes are displayed, it can mean that ProxyRTS is started twice or that the IP
address is not set as localhost (should not be possible to change).

To resolve this proxy issue, follow these steps:
i. In Windows task manager, close DriveDA.exe.
ii. From the Online menu in Automation Builder, select Restart ProxyRTS.

128

Figure 141: Restart ProxyRTS

Question: What to do if communication fails between Automation Builder/Drive
composer pro and drive?

Answer

 Check the control panel version to be newer than the version in the below screen.

Figure 142: Control panel driver details

 Check the Driver date.

Note: The next panel driver version is not known. For version details, refer the

corresponding ACS880 drive software release notes or contact your ABB representative.

129

Solving other problems

Question: How to prevent unauthorized access to an application that is
running in the drive?

Answer

A compiled project as well as the downloaded source code can be password protected. You can
make a backup copy of the protected application. The backup copy is encrypted and you need a
password for downloading or executing the copied application. The IEC function libraries and
projects can be protected as well by means of automation builder.

Question: How to fix an unknown device in a project?

Answer

Install the desired device description to the device repository if you do not have it already. Then
upgrade the device in the project to the newly installed one, by right-clicking the device in the
project and selecting Update Device….

Question: How to remove a boot application from the flash memory card?

Answer

Select Online -> Reset origin. Note that this removes the application permanently from the
drive. Ensure that you have the source project available.

Question: What to do when I continuously receive “The project handle 0 is
invalid” error message?

Answer

There are two ways to get rid of the error:

 Select Window -> Close All Editors and then restart automation builder.

 Save the project into a new empty folder.

Figure 143: Error message “The project handle 0 is invalid”

130

Question: What to do when stack overflow fault 6487 occurs?

 If stack overflow fault 6487 occurs, the number of the local variables inside a function is

too large. Unfortunately the limit of the local variables is relatively small. The stack usage

is high especially if there are, for example, division operands inside the EXPT function.

 Also if the division function’s divider is zero (an exceptional case), the stack usage is

high.

Answer

Do not make big functions. Try to make a compact function with a limited number of the variables
(40 REAL). If the function is too large, change some of the local variables to global variables
(use, for example, multiple global variable lists GVL to group variables by functions). Consider to
use function blocks or program modules instead of functions.

Question: How to optimize the memory usage of the drive application?

The code memory of the application is running out. How to optimize the program?

Answer

The drive application programming environment has relatively limited memory and execution
capacity. There are a couple of tips to minimize the program code:

 Use functions as much as possible.

Note: If there are many variables inside the function, the risk of stack overflow

increases.

 Try to design the application so that you do not need to create many instances of big

function blocks. Instead of function blocks use programs or functions.

 Use DriveInterface to access drive parameters instead of the parameter read / write

functions

Question: How to solve the problem causing error message “Creating boot
application failed: Adding Application Parameters & Groups to UFF generator:
XmlDeserializationFailed”?

Answer

This problem is related to Application parameters and events module

 Check that all Value pointer, Bit pointer and Plain value list type of parameters have the

correct Selection List.

 Check that the Bit list (16 bit) parameters do not have same Bit names (English) multiple

times (for example, text Bit_Handle_0 occurs twice).

 Check the tool message box for details.

131

Appendix A: Incompatible features
between ACS880 Drive and AC500
PLC IEC programming

Contents of this chapter

This chapter lists the features that are not compatible between ACS880 Drive and AC500 PLC IEC

programming V3 and V2.3.

Incompatible features

 Unlike the newer V3, V2.3 does not allow functions to have multiple outputs, thus the

VAR_OUTPUT or VAR_IN_OUT tags cannot be included in the description part of functions.

Converting the function into a function block solves this issue and provides an identical

interface on both platforms at the cost of additional memory usage.

 Single-line comments “//” are not supported in V2.3. Use block comments instead “(*…*)”.

 Array initialization has different syntax. For this reason, it is not possible to have code that

initializes an array to non-default values at declaration that is suitable for both versions. This

can be solved by writing values to the array once right after the code is called.

 Boolean operations are not allowed for integer types other than BYTE, WORD and DWORD in

V2.3.

 Namespaces are not supported in V2.3.

 At least one statement is required for IF, ELSEIF and ELSE instructions in V2.3.

10

132

 References are not supported in V2.3. Assigning a value directly instead of a reference can

eliminate this limitation.

 Unions are not available in V2.3.

 Indexed access to variable pointers is not allowed in V2.3. For this reason, a pointer to the

first element of an array cannot be used to access elements. Instead, the pointer needs to be

declared as a pointer to an array of elements. For example:

 ptr: POINTER TO ARRAY[0..10] OF REAL

 instead of ptr: POINTER TO REAL; to access ptr[5]

 In the newer V3, {attribute ‘hide_all_locals’} is used to hide local variables, whereas V2.3

{library private} is used. These pragmas can be combined to produce code that works in both

programming environments (only a warning is produced).

133

Appendix B: Unsupported features

The ACS880 and DCX880 drives do not support the following standard IEC programming V3

features:

 Persistent variable type is not supported. In case the variable is saved over power cycle,

retain variable is used. Also, user defined drive parameter can be created to save value of

the variable.

 Target-based tracing. You can use the Monitor feature in Drive composer pro. See Drive

composer user’s manual (3AUA0000094606 [English]).

 Some data types are not supported.

 The number of program execution tasks are limited to 4. One of the task is a pre task which

is executed only once after power up. Other tasks are cyclically executed.

 Program code simulation is not supported.

 Target based visualization is not supported.

11

134

Appendix C: ABB drives system
library

Contents of this chapter

This appendix contains detailed information of the function blocks of the ABB drives system library

(AS1LB_Standard_ACS880_.V3_5)

Introduction to ABB drives system library

The ABB drives system library is intended to be used with the ACS880 drives. It provides event,

parameter read/write and program time level function blocks for application programming in the

automation builder environment. The description of the features in this document is based on the

ABB drives system library version 1.9.0.3.

Note: Using the Drive composer pro System info, check that the drive has the corresponding system

library installed. In the System info, the system library version is located under the Products/ More

view. The system library versions must be the same in the drive and the application program project.

12

135

Function blocks of the system library

Function block name Description

Event function blocks

EVENT Send the application event.

ReadEventLog Read the drive’s faults and warnings.

Parameter change function blocks

PAR_UNIT_SEL Changes the unit of a parameter.

PAR_SCALE_CHG Changes the parameter scaling attributes.

PAR_LIM_CHG_DINT Changes the limits of a parameter in DINT data format.

PAR_LIM_CHG_REAL Changes the limits of a parameter in REAL data format.

PAR_LIM_CHG_UDINT Changes the limits of a parameter in UDINT data format.

PAR_DEF_CHG_DINT Changes the default values of a parameter in DINT data format.

PAR_DEF_CHG_REAL Changes the default values of a parameter in REAL data format.

PAR_DEF_CHG_UDINT Changes the default values of a parameter in UDINT data format.

PAR_DISP_DEC Changes the decimal display of a parameter.

PAR_REFRESH Notifies PC tools and panel of any parameter attribute changes.

Parameter protection

PAR_PROT Protects individual parameters.

PAR_GRP_PROT Protects a parameter group.

Parameter read function blocks

ParReadBit Read the value of a bit in a packed-Boolean-type parameter.

ParRead_DINT Read the value of a DINT/INT type parameter.

ParRead_REAL Read the value of a REAL type parameter.

ParRead_UDINT Read the value of a UDINT/UINT type parameter.

Parameter write function blocks

ParWriteBit Write the value to a bit of a packed-Boolean-type parameter.

ParWrite_DINT Write the value to a DINT/INT type parameter.

ParWrite_REAL Write the value to a REAL type parameter.

ParWrite_UDINT Write the value to an UDINT/UINT type parameter.

136

Function block name Description

Pointer parameter read function blocks

ParRead_BitPTR Read the pointed bit value from a bit pointer type parameter.

ParRead_ValPTR_DINT Read the pointed DINT/INT value from a value pointer type parameter.

ParRead_ValPTR_REAL Read the pointed REAL value from a value pointer type parameter.

ParRead_ValPTR_UDINT Read the pointed UDINT/UINT value from a value pointer type parameter.

Set pointer parameter function blocks

ParSet_BitPTR_IEC Set a bit pointer parameter to point to a bit type IEC variable.

ParSet_ValPTR_IEC_DINT Set a value pointer parameter to point to a DINT type IEC variable.

ParSet_ValPTR_IEC_REAL Set a value pointer parameter to point to a REAL type IEC variable.

ParSet_ValPTR_IEC_UDINT Set a value pointer parameter to point to an UDINT type IEC variable.

ParSet_BitPTR_Par Set a bit pointer parameter to point to a bit of a packed Boolean
parameter.

ParSet_ValPTR_Par Set a value pointer parameter to point to a value parameter.

Task time level function block

UsedTimeLevel Show time level (ms) of the program where the function block is located.

137

Event function blocks

EVENT

Summary

The application event function block is used to trigger a predefined event

(fault/warning/pure) from the IEC code. The event is registered to drive

event logger.

Connections

Inputs:

Name Type Value Description

ID WORD 0xE100.. 0xE2FF Identification of the event (constant, cannot be changed on run
time). This is a unique value of the event. You can find the
supported values in the ApplicationParametersAndEvent tool. A
certain range is reserved for each application event type.

Faults:

0xE100…E1FF

Warnings:

0xE200.. 0xE2FF

AuxCode DWORD ANY The auxiliary code that you can set freely (constant).

EventType WORD 1,2 Type of the event (constant, cannot be changed on run time).
Supported event types: Fault = 1, Warning = 2, Pure = 8 (Notice
is not supported).

Trig BOOL T/F The high level (TRUE) of this pin sends/activates the event, if
Enable is set to TRUE. Warning is deactivated automatically,
when Trig falls down. To clear the fault, give the reset command.

Enable BOOL T/F Enable/disable event sending.

Outputs:

Name Type Value Description

Err WORD ANY The value is typically 0x0000.

0x0001 = Not used
0x0002 = Event is not user-defined event
0x0003 = Event type error
0x0004 = Event ID type error
0x0005 = Not used
0x0006 = Unknown event type

Description

You can configure an application event with the ApplicationParametersandEvents in Automation

Builder tool. (See Application parameter and event creation). This tool defines the ID and the event

text (description).

138

Automation Builder supports the following event types: Fault, Warning and Pure.

The event ID, text, auxiliary code, time and operation data is registered into the drive event logger.

The application events can be shown using the ACS-AP-x control panel and Drive composer tools,

or using the ReadEventLog block on the application level. A fault can be reset, for example, using

the control panel or Drive composer pro tool.

Note: The current firmware supports execution of three event functions in the same task
cycle. If there are more event functions, do not enable all of them at the same time.

ReadEventLog

Summary

ReadEventLog is a special block for reading faults and warnings

from the drive event system. The block does not read events or

use the drive event or fault loggers. Instead it gets the events

straight from the event system itself.

The purpose of the block is to forward drive events, for example,

to external systems, like automation user interfaces.

Inputs:

Name Type Value Description

EventType UINT 0 Not used. The block returns the drive’s faults and
warnings. Can be set to 0.

Index UINT 0 Not used. Can be set to 0.

Cnt UINT 0…6 Number of the wanted events at a time. (0…6)

Enable BOOL T/F Enable / disable the block execution. The falling edge
of this pin clears all the output vectors.

Outputs:

Name Type Value Description

Err UINT N/A Not used.

Code Array of
UINT[10]

Any of
allowed
events
codes

Event code (ID). The block supports maximum 6
events at a time.

AuxCode Array of
UINT[10]

ANY Auxiliary code of the event.

Status Array of
UINT[10]

ANY Status of the event.

1 = The event has been activated.
2 = The event has been deactivated.
3 = Acknowledgement requested.
4 = The event is reactivated (warnings).
5 = All faults have been deactivated.

139

RdCnt UINT 0…6 The number of the get/read events at a time.

Maximum 6

RdCnt value = 0 indicates that there are no new
events.

EventLostCnt UINT ANY The number of the lost events (for monitoring).

Note: The current firmware supports execution of three event functions in the same task
cycle. If there are more event functions, do not enable all of them at the same time.

It is recommend to use event blocks only on the tasks which cycle time setting is higher
than 50ms.

Description

The block packs the event Code, AuxCode and Status to vectors that the user can read. The block

does not sort faults and warnings from each other. The 1st event in the vector is the oldest one.

The block returns the maximum Cnt number of events in each execution cycle depending on how

many events exist at this time on the drive. RdCnt indicates how many events are got in each

execution cycle. The vectors and RdCnt are updated in every execution cycle if new events exist.

For this reason, only the value of RdCnt matters when reading the event data from vectors. The

older events are overwritten by the newer ones.

Example:

In the 1st execution cycle, the user reads 2 events, for example, events 11, 12 (RdCnt = 2). Both are

valid. 12 is the last one.

In the 2nd execution cycle, the user reads 1 event, for example, 21 (RdCnt = 1).

Now values 21, 12 can be seen in the Code vector, but because RdCnt is 1, only the first value is

valid (21). (12 read in the previous cycle.)

Vectors are cleared only on the falling edge of the Enable pin.

EventLostCnt indicates the number of the lost events. The value should be 0. In the opposite case,

the reason can be too slow execution cycle of this block.

Note: The execution cycle of this block is slow. To optimize the application resources, it is
recommended to use only one instance of this block.

140

Parameter change function blocks

PAR_UNIT_SEL

Summary

PAR_UNIT_SEL block enables changing the unit of a

parameter from the IEC application. If one parameter of the

family parameter is changed using this block, the change

applies to all other parameters of that parameter family.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables unit change at the rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Unit UNIT 128…255 Unit selection

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the unit change of a parameter. Group and Index define the

parameter to be changed and Unit defines the unit of the parameter. The unit strings and

corresponding codes are defined in the Automation Builder, ApplicationparameterandEvents

manager (APEM). The units in the range of 128 to 255 only can be changed using this function

block.

Note: Use only the units defined in APEM. Selecting undefined units are not notified by the
Err output.

Err returns an error code if there is an error during a unit change, for example, the unit for change is

beyond the selection range. If the unit selection and change operation is successful, Err returns a 0.

141

PAR_SCALE_CHG

Summary

PAR_SCALE_CHG block enables changing the

parameter scaling attributes from the IEC

application. Initial scaling values are defined in the

Parameter family settings.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables scale change at the rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Basevalue DINT 128…255 Scales internal value to external 32 or 16 bit interface.
Used as divider.

BIT32_scaler DINT ANY Scaling factor for external 32 bit interface in panel
(ACS-AP-I), DriveComposer and fieldbus interface. The
value is used as a multiplayer.

BIT16_scaler INT ANY Scaling factor for external 16 bit interface for fieldbus
interface. The value is used as a multiplayer.

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

This function block enables changing the parameter scaling factor that scales the internal value for

DriveComposer-tool, ACS-AP-I panel and fieldbus interface. The initial values of the scaling factors

are defined in ApplicationparameterandEvents manager (APEM) for all user parameters. The

changed parameter scaling applies to all parameters of a specific family (scaling) defined in APEM.

The rising edge of Enable input implies the parameter scaling change. Group and Index define the

parameter to be changed. The Basevalue scales the internal value to external 32 or 16 bit interface.

The BIT32_scaler and BIT16_scaler are used as scaling interfaces.

The Err output returns an error code if there is an error during the scaling change operation. If the

scaling changes are successful, Err returns a 0.

External 32-bit scaling

This is used by (ACS-AP-I), Drive Composer and PLC over fieldbus adapter. If the parameter type is

REAL, the number of decimals influence the scaling defined in ApplicationparametersandEvents

manager or the PAR_DISP_DEC block.

142

If external value is requested as 32-bit integer, the internal float is scaled to external float with the

same scaling factor and then converted to 32 bit integer with extra numbers for decimal values,

depending on the display format of decimals. For example: The value 1.23456 is displayed as 1.235

if the display format is 3 decimals.

Scaling formula:

 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙_𝑣𝑎𝑙𝑢𝑒(32 𝑏𝑖𝑡) =
𝐵𝐼𝑇32_𝑠𝑐𝑎𝑙𝑒𝑟×10(𝐷𝑒𝑐𝑖𝑚𝑎𝑙𝑠)

𝐵𝑎𝑠𝑒𝑣𝑎𝑙𝑢𝑒
× 𝐼𝐸𝐶_𝑝𝑟𝑜𝑔𝑟𝑎𝑚_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)

External 16-bit scaling

This scaling is used only for fieldbus interface to fit internal value with higher number of bits to the 16

bit scale. The 16 bit external value uses its own scaling factor with no display format for decimals.

Scaling formula:

𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙_𝑣𝑎𝑙𝑢𝑒(16 𝑏𝑖𝑡) =
𝐵𝐼𝑇16_𝑠𝑐𝑎𝑙𝑒𝑟

𝐵𝑎𝑠𝑒𝑣𝑎𝑙𝑢𝑒
× 𝐼𝐸𝐶_𝑝𝑟𝑜𝑔𝑟𝑎𝑚_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒(𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)

143

Parameter limit change

PAR_LIM_CHG_DINT

Summary

The PAR_LIM_CHG_DINT block enables changing the

minimum and maximum values (in DINT data format) of a

parameter from the IEC application. The changes in the limit

values apply to all parameters belonging to same parameter

family defined in APEM.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables changing parameter limits at the rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Min_Val DINT ANY New minimum value in DINT data format

Max_Val DINT ANY New maximum value in DINT data format

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the changed parameter limit values. Group and Index define

the parameter to be changed. The Min_Val and Max_Val are used to set the new minimum and

maximum values of the parameter respectively.

Note: Ensure the following conditions while defining the minimum and maximum values:

 The Min_Val must be greater than Max_Val.

 The Max_Val must be lesser than Min_Val.

 Min_Val should not be equal to Max_Val.

Err returns an error code if there is an error during the limits changes operation, for example, the

new limits are beyond the range. If the change operation is successful, Err returns a 0.

144

PAR_LIM_CHG_REAL

Summary

The PAR_LIM_CHG_REAL block enables changing the

minimum and maximum values (in REAL data format) of the

parameter from the IEC application. The changes in the limit

values apply to all parameters belonging to same parameter

family defined in APEM.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables changing parameter limits at the rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Min_Val REAL ANY New minimum value in REAL data format

Max_Val REAL ANY New maximum value in REAL data format

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the changed parameter limit values. Group and Index define

the parameter to be changed. The Min_Val and Max_Val are used to set the new minimum and

maximum values of the parameter respectively.

Note: Ensure the following conditions while defining the minimum and maximum values:

 The Min_Val must be greater than Max_Val.

 The Max_Val must be lesser than Min_Val.

 Min_Val should not be equal to Max_Val.

Err returns an error code if there is an error during the limits changes operation, for example, the

new limits are beyond the range. If the change operation is successful, Err returns a 0.

145

PAR_LIM_CHG_UDINT

Summary

The PAR_LIM_CHG_UDINT block enables changing the

minimum and maximum values (in UDINT data format) of a

parameter from the IEC application. The changes in the limit

values apply to all parameters belonging to same parameter

family defined in APEM.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables changing parameter limits at the rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Min_Val UDINT ANY New minimum value in UDINT data format

Max_Val UDINT ANY New maximum value in UDINT data format

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the changed parameter limit values. Group and Index define

the parameter to be changed. The Min_Val and Max_Val are used to set the new minimum and

maximum values of the parameter respectively.

Note: Ensure the following conditions while defining the minimum and maximum values:

 The Min_Val must be greater than Max_Val.

 The Max_Val must be lesser than Min_Val.

 Min_Val should not be equal to Max_Val.

Err returns an error code if there is an error during the limits changes operation, for example, the

new limits are beyond the range. If the change operation is successful, Err returns a 0.

146

Parameter default value change

PAR_DEF_CHG_DINT

Summary

The PAR_DEF_CHG_DINT block enables changing the default

values (in DINT data format) of a parameter from the IEC

application. The value changes apply to all parameters of that

specific parameter family defined in APEM.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables changing the default value of a parameter at the
rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Default DINT ANY New default value in DINT data format

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the changed parameter default values. Group and Index

define the parameter to be changed. The input Default is used to set the new default value of the

parameter.

Note: Define a default value within the minimum and maximum value.

Err returns an error code if there is an error during the change operation. If the default value change

operation is successful, Err returns a 0.

147

PAR_DEF_CHG_REAL

Summary

The PAR_DEF_CHG_REAL block enables changing the default

values (in REAL data format) of a parameter from the IEC

application. The value changes apply to all parameters of that

specific parameter family defined in APEM.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables changing the default value of a parameter at the
rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Default REAL ANY New default value in REAL data format

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the changed parameter default values. Group and Index

define the parameter to be changed. The input Default is used to set the new default value of the

parameter.

Note: Define a default value within the minimum and maximum value.

Err returns an error code if there is an error during the change operation. If the default value change

operation is successful, Err returns a 0.

148

PAR_DEF_CHG_UDINT

Summary

The PAR_DEF_CHG_UDINT block enables changing the

default values (in UDINT data format) of a parameter from the

IEC application. The value changes apply to all parameters of

that specific parameter family defined in APEM.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables changing the default value of a parameter at the
rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Default UDINT ANY New default value in UDINT data format

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the changed parameter default values. Group and Index

define the parameter to be changed. The input Default is used to set the new default value of the

parameter.

Note: Define a default value within the minimum and maximum value.

Err returns an error code if there is an error during the change operation. If the default value change

operation is successful, Err returns a 0.

149

Parameter decimal display

PAR_DISP_DEC

Summary

PAR_DISP_DEC block enables changing the number of

displayed decimals of a parameter from the IEC

application. If one parameter of the family parameter is

changed using this block, the change applies to all other

parameters of that parameter family.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables decimal display change at the rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Decimals UNIT 128…255 Number of decimals to display

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the decimal display change of a parameter. Group and Index
define the parameter to be changed and the input Decimals defines the number of decimal values to
display. If the parameter is in REAL data format, the value is scaled for fieldbus interface by scaling
factor 10(decimals).

Err returns an error code if there is an error during a unit change, for example, the unit for change is

beyond the selection range. If the unit selection and change operation is successful, Err returns a 0.

150

PAR_REFRESH

Summary

PAR_REFRESH block notifies PC tools and panel of any

parameter attribute changes.

Connections

Input:

Name Type Value Description

Refresh BOOL T/F Enables refresh at the rising edge

Outputs:

Name Type Value Description

Err INT ANY Error output

Cnt UINT ANY Counts the number of refresh activation

Description

The rising edge of Refresh input notifies any parameter changes to PC tools and panel.

WARNING! Every time you activate the Refresh input in Automation Builder, a

notification appears in Drive Composer prompting to refresh the parameters. Click

OK to apply the parameter changes.

Err returns an error code if the parameter protection is applied successfully, Err returns a 0. The

output Cnt increments at every activation of the input Refresh.

151

Parameter protection

PAR_PROT

Summary

PAR_PROT block is used for protecting individual

parameters. This block enables write protection and hides

flags dynamically from the IEC application. The changes do

not apply to any other parameter of the specific family.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables protection change at the rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

WR_Prot UNIT ANY Applies write protection

0 = No protection

1 = Human WP [Drive Composer (Pro/Entry) and ACS-AP-I/
ACS-AP-S control panel]

Hide UINT ANY Hides flags

0 = No protection

1 = Human WP [Drive Composer (Pro/Entry) and ACS-AP-I/
ACS-AP-S control panel]

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the protection change of a parameter. Group and Index

define the parameter to be changed. The inputs WR_Prot and Hide define the parameter for write

protection and parameter to hide respectively.

Err returns an error code if there is an error during a parameter protection change. If the parameter

protection is applied successfully, Err returns a 0.

152

PAR_GRP_PROT

Summary

PAR_GRP_PROT block is used to protect a parameter

group. This block enables write protection and hides flags

dynamically from the IEC application.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables protection at the rising edge

Group INT ANY Parameter group

WR_Prot UNIT ANY Applies write protection

0 = No protection

1 = Human WP [Drive Composer (Pro/Entry) and ACS-AP-
I/ ACS-AP-S control panel]

Hide UINT ANY Hides flags

0 = No protection

1 = Human WP [Drive Composer (Pro/Entry) and ACS-AP-
I/ ACS-AP-S control panel]

Output:

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the protection change of a parameter group. Group defines

the group to be changed. The inputs WR_Prot and Hide define the parameter group to be write

protected and hidden.

Err returns an error code if there is an error during a protection change. If the parameter group

protection is applied successfully, Err returns a 0.

153

Parameter read function blocks

ParReadBit

Summary

ParReadBit reads the value of a bit in a packed Boolean type

parameter.

Connections

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

BitNro INT ANY Bit number

Outputs:

Name Type Value Description

Output BOOL T/F Output value

Err INT ANY Error output

Description

The function block reads the value of a bit in a packed Boolean type parameter. Group and Index

define the parameter to be read and BitNro defines the number of the bit. The value of the bit read is

returned from Output.

Err returns an error code if there is an error during the read operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

154

ParRead_DINT

Summary

ParRead_DINT reads the value of a DINT/INT type parameter.

Connections

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Outputs:

Name Type Value Description

Output DINT ANY Output value

Err INT ANY Error output

Description

The function block reads the value of a DINT or INT type parameter. Group and Index define the

parameter to be read. The value of the parameter is returned from Output. The type of Output is

DINT even if the parameter to be read is of the INT type.

Err returns an error code if there is an error during the read operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

155

ParRead_REAL

Summary

ParRead_REAL reads the value of a REAL type parameter.

Connections

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Outputs:

Name Type Value Description

Output REAL ANY Output value

Err INT ANY Error output

Description

The function block reads the value of a REAL type parameter. Group and Index define the

parameter to be read. The value of the parameter is returned from Output.

Err returns an error code if there is an error during the read operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

156

ParRead_UDINT

Summary

ParRead_UDINT reads the value of a UDINT/UINT type

parameter.

Connections

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Outputs:

Name Type Value Description

Output UDINT ANY Output value

Err INT ANY Error output

Description

The function block reads the value of a UDINT or UINT type parameter. Group and Index define the

parameter to be read. The value of the parameter is returned from Output. The type of the output is

UDINT even if the parameter to be read is of the UINT type.

Err returns an error code if there is an error during the read operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

157

Parameter write function blocks

ParWriteBit

Summary

ParWriteBit writes a value to a bit of a packed Boolean type

parameter.

Connections

Inputs:

Name Type Value Description

Input BOOL T/F Input value

Group INT ANY Parameter group

Index INT ANY Parameter index

BitNro INT ANY Bit number

Store BOOL T/F Store input

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The function block writes the value of Input into a selected bit of a packed Boolean type parameter.

Group and Index define the parameter to be written and BitNro define the number of the bit. Store

defines if the current written value of the parameter is stored to the flash memory. During the power-

up of the drive, the value of the parameter is set to the latest stored value.

Err returns an error code if there is an error during the write operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the write operation is successful, Err returns a 0.

158

ParWrite_DINT

Summary

ParWrite_DINT writes a value to a DINT/INT type parameter.

Connections

Inputs:

Name Type Value Description

Input DINT ANY Input value

Group INT ANY Parameter group

Index INT ANY Parameter index

Store BOOL T/F Store input

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The function block writes the value of Input into a selected DINT or INT type parameter. The type of

the Input is DINT even if the parameter to be written is of the INT type. Group and Index define the

parameter to be written. Store defines if the current written value of the parameter is stored to the

flash memory. During the power-up of the drive, the value of the parameter is set to the latest stored

value.

Err returns an error code if there is an error during the write operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the write operation is successful, Err returns a 0.

159

ParWrite_REAL

Summary

ParWrite_REAL writes a value to a REAL type parameter.

Connections

Inputs:

Name Type Value Description

Input REAL ANY Input value

Group INT ANY Parameter group

Index INT ANY Parameter index

Store BOOL T/F Store input

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The function block writes the value of Input into a selected REAL type parameter. Group and Index

define the parameter to be written. Store defines if the current written value of the parameter is

stored to the flash memory. During the power-up of the drive, the value of the parameter is set to the

latest stored value.

Err returns an error code if there is an error during the write operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the write operation is successful, Err returns a 0.

160

ParWrite_UDINT

Summary

ParWrite_UDINT writes a value to a UDINT/UINT type

parameter.

Connections

Inputs:

Name Type Value Description

Input UDINT ANY Input value

Group INT ANY Parameter group

Index INT ANY Parameter index

Store BOOL T/F Store input

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The function block writes the value of Input into a selected UDINT or UINT type parameter. The type

of Input is UDINT even if the parameter to be written is of the UINT type. Group and Index define the

parameter to be written. Store defines if the current written value of the parameter is stored to the

flash memory. During the power-up of the drive, the value of the parameter is set to the latest stored

value.

Err returns an error code if there is an error during the write operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the write operation is successful, Err returns a 0.

161

Pointer parameter read function block

ParRead_BitPTR

Summary

ParRead_BitPTR reads the pointed bit value from a bit pointer type

parameter.

Connections

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Outputs:

Name Type Value Description

Output BOOL ANY Output value

Err WORD ANY Error output

Description

The function block reads the pointed value of a bit pointer type parameter. Group and Index define

the pointed parameter to be read. The pointed value of the parameter is returned from Output.

Err returns an error code if there is an error during the read operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

162

ParRead_ValPTR_DINT

Summary

ParRead_ValPTR_DINT reads a pointed DINT/INT value from a

value pointer type parameter.

Connections

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Outputs:

Name Type Value Description

Output DINT ANY Output value

Err INT ANY Error output

Description

The function block reads the pointed value of a DINT or INT pointer type parameter. Group and

Index define the pointed parameter to be read. The pointed value of the parameter is returned from

Output. The type of Output is DINT even if the parameter type is INT.

Err returns an error code if there is an error during the read operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

163

ParRead_ValPTR_REAL

Summary

ParRead_ValPTR_REAL reads a pointed REAL value from a value

pointer type parameter.

Connections

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Outputs:

Name Type Value Description

Output REAL ANY Output value

Err INT ANY Error output

Description

The function block reads the pointed value of a REAL pointer type parameter. Group and Index

define the pointed parameter to be read. The pointed value of the parameter is returned from Output.

Err returns an error code if there is an error during the read operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

164

ParRead_ValPTR_UDINT

Summary

ParRead_ValPTR_UDINT reads a pointed UDINT/UINT value from

a value pointer type parameter.

Connections

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Outputs:

Name Type Value Description

Output UDINT ANY Output value

Err INT ANY Error output

Description

The function block reads the pointed value of a UDINT or UINT pointer type parameter. Group and

Index define the pointed parameter to be read. The pointed value of the parameter is returned from

Output. The type of Output is UDINT even if the parameter type is UINT.

Err returns an error code if there is an error during the read operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the read operation is successful, Err returns a 0.

165

Set pointer parameter to IEC variable function blocks

ParSet_BitPTR_IEC

Summary

ParSet_BitPTR_IEC sets a bit pointer parameter to point to a bit type

IEC variable.

Connections

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

BitNro INT 0 Bit setting is not supported.

IEC_Var BOOL T/F IEC variable

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The function block sets a bit pointer type parameter to point to an IEC variable of the Boolean type,

that is, the IEC variable overwrites the value of the bit pointer. The parameter to point must be of the

bit pointer type. Group and Index define the parameter. The BitNro input must be set to zero since

(at least in this library version) the type of IEC_Var must be Boolean and type of the parameter to be

set must be bit pointer. Therefore the bit number cannot be chosen. The IEC_Var input is the IEC

variable to be pointed.

Err returns an error code if there is an error during the set operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the set operation is successful, Err returns a 0.

166

ParSet_ValPTR_IEC_DINT

Summary

ParSet_ValPTR_IEC_DINT sets a value pointer parameter to

point to a DINT type IEC variable.

Connections

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

IEC_Var DINT ANY IEC variable

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The function block sets a value pointer type parameter to point to an IEC variable of the DINT type,

that is, the IEC variable value overwrites the value of the value pointer. The parameter to point must

be a value pointer to the DINT or INT type. Group and Index define the parameter. The IEC_Var

input is the IEC variable to be pointed.

Err returns an error code if there is an error during the set operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the set operation is successful, Err returns a 0.

167

ParSet_ValPTR_IEC_REAL

Summary

ParSet_ValPTR_IEC_REAL sets a value pointer parameter to

point to a REAL type IEC variable.

Connections

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

IEC_Var REAL ANY IEC variable

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The function block sets a value pointer type parameter to point to an IEC variable of the REAL type,

that is, the IEC variable value overwrites the value of the value pointer. The parameter to point must

be a value pointer to the REAL type. Group and Index define the parameter. The IEC_Var input is

the IEC variable to be pointed.

Err returns an error code if there is an error during the set operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the set operation is successful, Err returns a 0.

168

ParSet_ValPTR_IEC_UDINT

Summary

ParSet_ValPTR_IEC_UDINT sets a value pointer parameter to

point to a UDINT type IEC variable.

Connections

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

IEC_Var UDINT ANY IEC variable

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The function block sets a value pointer type parameter to point to an IEC variable of the UDINT type,

that is, the IEC variable value overwrites the value of the value pointer. The parameter to point must

be a value pointer to the UDINT or UINT type. Group and Index define the parameter. The IEC_Var

input is the IEC variable to be pointed.

Err returns an error code if there is an error during the set operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the set operation is successful, Err returns a 0.

169

Set pointer parameter to parameter function blocks

ParSet_BitPTR_Par

Summary

ParSet_BitPTR_Par sets a bit pointer parameter to point to a bit of a

packed Boolean parameter.

Connections

Inputs:

Name Type Value Description

S_Group INT ANY Source parameter group

S_Index INT ANY Source parameter index

S_BitNro INT ANY Source bit number

T_Group INT ANY Target parameter group

T_Index INT ANY Target parameter index

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The function block sets a bit pointer parameter to point to a bit of a packed Boolean type parameter.

S_Group and S_Index define the parameter to be pointed (the source) and S_BitNro defines the

number of the bit. T_Group and T_Index define the pointer parameter (the target) which points to the

source parameter. The target parameter must be a Bit Pointer type and the source parameter must

be a packed Boolean type.

Err returns an error code if there is an error during the set operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the set operation is successful, Err returns a 0.

170

ParSet_ValPTR_Par

Summary

ParSet_ValPTR_Par sets a value pointer parameter to point to a value

parameter.

Connections

Inputs:

Name Type Value Description

S_Group INT ANY Source parameter group

S_Index INT ANY Source parameter index

T_Group INT ANY Target parameter group

T_Index INT ANY Target parameter index

Outputs:

Name Type Value Description

Err INT ANY Error output

Description

The function block sets a value pointer parameter to point to a value parameter. S_Group and

S_Index define the parameter to be pointed (the source). T_Group and T_Index define the pointer

parameter (the target) which points to the source parameter. The target parameter must be a pointer

parameter of the same type as the source parameter which must be a value parameter.

Err returns an error code if there is an error during the set operation, for example, the parameter is

not found or it is a parameter of a wrong type. If the set operation is successful, Err returns a 0.

171

Task time level function block

UsedTimeLevel

Summary

UsedTimeLevel shows the time level (ms) of the program (task execution

cycle) where the function block is located.

Connections

Inputs:

Name Type Value Description

NONE

Outputs:

Name Type Value Description

Output INT ANY Used time level in ms

Description

The function block shows the time level of the program (task cycle) in which the particular function

block is located. Output gives the time level in milliseconds.

172

Error codes

The following list gives the most common error codes related to the function blocks of the ABB

drives system library. The error codes are received from the Err output and they indicate if there is

an error during the performance of the function block.

Error code Error code number Description

e_success 0 (hex 0) Success, no error

e_WriteProtected 4 (hex 4) The parameter is write-protected.

e_Hidden 5 (hex 5) The parameter is hidden.

e_illegalOperation 6 (hex 6) Illegal operation, for example, the parameter type
is incorrect.

e_lowLimit 9 (hex 9) Parameter minimum value is exceeded.

e_highLimit 10 (hex A) Parameter maximum value is exceeded

e_noValueInList 11 (hex B) No value in the list

e_parNotFound 13 (hex D) The parameter is not found.

e_OutsideIndexArea 774 (hex 306) Outside index area

e_OverLappingGroup 775 (hex 307) Overlapping group

e_UffError 777 (hex 309) UFF error

173

Appendix D: ABB D2D function
blocks

Contents of this chapter

This appendix contains detailed information of the drive to drive (D2D) communication function

blocks of the ABB drives system library (AY2LB_System_ACS880_V3_5)

Introduction to ABB D2D function blocks

The ABB D2D function blocks are intended to be used with the ACS880 drives. It provides drive to

drive communication and drive to drive configuration function blocks for application programming in

the automation builder environment. The description of the features in this document is based on the

ABB drives system library version 1.9.0.3.

Note: In the Drive Composer Pro system information, make sure the drive has the

corresponding system library installed. In System info, the system library version is

located under the Products/ More view. The system library versions must be the same in

the drive and the application program project.

13

174

D2D function blocks of the system library

Function block name Description

Data read/write

DS_ReadLocal Reads data from the local dataset.

DS_WriteLocal Writes data to local dataset.

Drive to drive communication

D2D_TRA Transmits data to a remote drive.

D2D_REC Receives data from the remote drive.

D2D_TRA_REC Transmits and receives data from the remote drive.

D2D_TRA_MC Transmits multicast messages to group of drives.

Drive to drive configuration

D2D_Conf Configures token management on master drive.

D2D_Conf_Token Configures the node related transmission cycle of token on master drive.

D2D_Master_State Returns status of master drive connected with D2D link, except its own
status.

175

Data read/write blocks

DS_ReadLocal

Summary

DS_ReadLocal block reads the dataset value from the

local dataset table. The 48 bit dataset composes of 16 bit

and 32 bit parts. The 32 bit part is available both in

DWORD or REAL data formats in the function block output. Inputs are pointer to actual data.

Dataset composes of three words in the output:

 16 bit (WORD)

 32 bit (DWORD or REAL)

Connections

Inputs:

Name Type Value Description

LocalDsNr UINT 1…255 Local dataset number

Outputs:

Name Type Value Description

Error UDINT ANY Error output

Out1_16bit WORD ANY 16-bit part of the dataset in WORD format

Out2_32bit DWORD ANY 32-bit part of the dataset as DWORD format

Out2_32bitReal REAL ANY 32-bit part of the dataset as REAL format

Description

The function block reads the local dataset value from the local dataset table. LocalDsNr defines the

local dataset number.

Output Out1_16bit returns the first 16 bit of dataset as WORD data.

Output Out2_32bit returns 32 bit part of dataset as DWORD data.

Output Out2_32bitReal returns 32 bit part of dataset as REAL data.

Error returns an error code if there is an error during the read operation, for example, the dataset is

not found or if the dataset is beyond the dataset number range of 1…255. If the read operation is

successful, Error returns a 0.

176

DS_WriteLocal

Summary

DS_WriteLocal block writes data to local

dataset. The 48 bit dataset composes of 16

bit and 32 bit parts. Inputs are pointers to

actual data.

Connections

Inputs:

Name Type Value Description

LocalDsNr UINT 128…255 Local dataset number

pDataIn1_16bit WORD
POINTER

- Pointer to 16 bit value

pDataIn2_32bit DWORD
POINTER

- Pointer to 32 bit data (REAL, DWORD)

Outputs:

Name Type Value Description

Error UDINT ANY Error output

Description

The DS_WriteLocal function writes data to the local dataset. LocalDsNr defines the local dataset

number from 128 to 255. The input data of 16 bit and 32 bit is connected to the pointer inputs

pDataIn1_16bit and pDataIn2_32bit respectively using the ADR operand.

Note: The data set numbers 128 to 255 are reserved for application programming.

However, you can set the data set numbers 1 to 127. There is risk of conflict with firmware

dataset.

Error returns an error code if there is an error during the write operation, for example, the dataset is

not found or if the dataset is beyond the dataset number range of 128…255. If the write operation is

successful, Error returns a 0.

177

D2D communication blocks

General

The D2D_TRA, D2D_REC and D2D_TRA_REC blocks can be used only in a master drive. These

blocks can work independently without token configuration. The D2D_TRA_MC block can be used in

both master and follower drives. When used in a follower drive, the token send configuration must be

done using D2D_Conf_Token and D2D_Conf blocks.

The D2D_Master_State block can be used without token configuration in both the master and

follower drives as well as the local dataset blocks DS_ReadLocal and DS_WriteLocal.

D2D_TRA

Summary

D2D_TRA block sends data from a Master

drive to a remote Follower drive. The 48 bit

data composes of 16 bit and 32 bit parts.

The input data is given directly to the

function block inputs and so local datasets

are not required.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables/disables sending data.

Pri UINT 1/2 Defines the priority of sending data; Standard (1) or Low
priority (2).

RemoteNode UINT 1…62 Defines the remote drive node address.

RemoteDsNr UINT 128….255 Defines the remote drive dataset number.

pDataIn1_16bit WORD
POINTER

- Pointer to 16 bit value

pDataIn2_32bit DWORD
POINTER

- Pointer to 32 bit data (REAL, DWORD)

Outputs:

Name Type Value Description

Error UDINT ANY Error output

SendMsgCnt UDINT ANY Counts successfully transmitted messages

178

Description

The D2D_TRA function sends application variables data from the master drive to a remote follower

drive. The Enable input enables or disables sending data. At the rising edge of Enable input Pri,

RemoteNode and RemoteDsNr are used. The input Pri defines the priority of data transmission.

 Standard (1): The priority is set to Standard if fast response (2 ms) is required. However,

maximum of 2 blocks can be executed in the same cycle.

 Low priority (2): The priority is set to Low priority if slow response is required. It is possible to

execute up to 64 blocks in the same cycle.

o 10 ms cycle time - 10 blocks are executed

o 100 ms cycle time - 64 blocks are executed

The inputs RemoteNode and RemoteDsNr define the remote drive node address and dataset

number respectively, where the data is sent and stored. The input data of 16 bit and 32 bit is

connected to the pointer inputs pDataIn1_16bit and pDataIn2_32bit respectively using ADR

operand.

Error blocks input values and operation status if there is an error while sending data. If data is sent

successfully, Error returns a 0. The SendMsgCount tracks the number of successfully sent

messages.

For details of how data is sent in WORD and REAL data format to remote drive, see Example 1:

D2D_TRA / D2D_REC blocks.

179

D2D_REC

Summary

D2D_REC block enables the master drive to

receive data from a remote follower drive. The

block receives one 48 bit dataset from follower

dataset table. The response is available at the

output signals in 16 bit and 32 bit parts. An

additional 32 bit data is available in REAL format as own output.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables/disables receiving data.

Pri UINT 1/2 Defines the priority of receiving data; Standard (1) or Low
priority (2).

RemoteNode UINT 1…62 Defines the remote drive node address.

RemoteDsNr UINT 128…255 Defines the remote drive dataset number.

SuspendMode UINT 0/1 Defines the behaviour of the application task whether the
D2D message is sent.

0 = message not sent

1 = message sent

Outputs:

Name Type Value Description

Error UDINT ANY Error output

RcvMsgCnt UDINT ANY Counts successfully received messages

Out1_16bit WORD ANY 16-bit dataset output value

Out2_32bit DWORD ANY 32-bit dataset output value

Out2_32bitReal REAL ANY 32-bit dataset output value in Real format.

Description

The D2D_REC block receives data from remote drive. The Enable input enables or disables

receiving data. At the rising edge of Enable input the inputs Pri, RemoteNode, RemoteDsNr and

SuspendMode are used. The input Pri defines the priority of receiving data.

 Standard (1): The priority is set to Standard if fast response (2 ms) is required. However,

maximum of 2 blocks can be executed in the same cycle.

 Low priority (2): The priority is set to Low priority if slow response is required. It is possible to

execute up to 64 blocks in the same cycle.

o 10 ms cycle time - 10 blocks are executed

o 100 ms cycle time - 64 blocks are executed

180

The inputs RemoteNode and RemoteDsNr define the remote drive node address and dataset

number respectively. The remote node number is set using parameter 60.02 in the ACS880 Primary

Control Program. The input SuspendMode defines the behavior of the application task whether the

intended message is sent.

0 = continues actual application task execution

1 = indicates that actual application task execution is pending to send messages and to receive

response of messages sent.

Error blocks input values and operation status if there is an error while receiving data. If receiving

data is successful, Error returns a 0. The RcvMsgCount tracks the number of successfully received

messages.

The 16 bit and 32 bit data at the output returns from Out1_16bit and Out2_32bit respectively. The 32

bit data of real data format returns from Out2_32bitReal.

For details of receiving data to master drive, see Example 1: D2D_TRA / D2D_REC blocks.

181

D2D_TRA_REC

Summary

D2D_TRA_REC block enables the

master drive to send and receive data

from the remote drive. The 16-bit and 32-

bit parts of the dataset are defined in the

corresponding pointer type inputs. The

response is available at the output signal in 16-bit and 32-bit parts. An additional 32-bit data is

available in REAL format as own output.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables/disables receiving data.

Pri UINT 1/2 Defines the priority of receiving data; Standard (1) or Low
priority (2).

RemoteNode UINT 1…62 Defines the remote drive node address.

RemoteDsNr UINT 128…255 Defines the remote drive dataset number.

pDataIn1_16bit WORD
POINTER

ANY 16 bit value connecting through ADR block

pDataIn2_32bit DWORD
POINTER

ANY 32 bit integer or real value connecting through ADR block

Outputs:

Name Type Value Description

Error UDINT ANY Error output

SendMsgCnt UDINT ANY Counts successfully transmitted messages

Out1_16bit WORD ANY 16-bit dataset output value

Out2_32bit DWORD ANY 32-bit dataset output value

Out2_32bitReal REAL ANY 32-bit dataset output value in Real format.

Description

The D2D_TRA_REC block sends data from master drive and receives data from the remote drive.

The Enable input enables/disables sending or receiving data. At the rising edge of Enable input the

inputs Pri, RemoteNode and RemoteDsNr are used. The input Pri defines the priority of receiving

data.

 Standard (1): The priority is set to Standard if fast response (2 ms) is required. However,

maximum of 2 blocks can be executed in the same cycle.

 Low priority (2): The priority is set to Low priority if slow response is required. It is possible to

execute up to 64 blocks in the same cycle.

182

o 10 ms cycle time - 10 blocks are executed

o 100 ms cycle time - 64 blocks are executed

The inputs RemoteNode and RemoteDsNr define the remote drive node address and dataset

number respectively. The response data is read from the dataset number RemoteDsNr+1 of the

remote drive. The data is selected using pointer inputs pDataIn1_16bit and pDataIn2_32bit.

Error blocks input values and operation status if there is an error while sending or receiving data. If

sending or receiving data is successful, Error returns a 0. The SendMsgCount tracks the number of

successfully sent messages.

The 16-bit and 32-bit data at the output returns from Out1_16bit and Out2_32bit respectively. The

additional output Out2_32bitReal returns 32-bit data in REAL data format.

183

D2D_TRA_MC

Summary

D2D_TRA_MC block enables the drive (Master

or Follower) to send multicast messages to a

group of drives. This block also allows sending

follower to follower point to point messages.

The multicast address is defined in the

D2D_Conf block.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables/disables receiving data.

Pri UINT 1/2 Defines the priority of receiving data; Standard (1) or Low
priority (2).

MultiCastType UINT 0/1 Allows sending multicast message types.

RemoteNode UINT 1…62 Defines the remote drive node address.

RemoteDsNr UINT 128…255 Defines the remote drive dataset number.

pDataIn1_16bit WORD
POINTER

ANY 16 bit value connecting through ADR block

pDataIn2_32bit DWORD
POINTER

ANY 32 bit integer or real value connecting through ADR block

Outputs:

Name Type Value Description

Error UDINT ANY Error output

SendMsgCnt UDINT ANY Counts successfully transmitted messages

Description

The D2D_TRA_MC block sends multicast messages to a group of drives. It is possible for the

Master drive to receive messages from the Follower driver. For sending point to point messages or

standard multicast messages, the Follower drives need token messages from the Master drive.

The Enable input enables/disables sending data. At the rising edge of Enable input the inputs Pri,

MultiCastType, RemoteNode and RemoteDsNr are used.

184

The input Pri defines the priority of receiving data.

 Standard (1): The priority is set to Standard if fast response (2 ms) is required. However,

maximum of 2 blocks can be executed in the same cycle.

 Low priority (2): The priority is set to Low priority if slower response is sufficient. Up to 64
blocks can be executed in the same cycle.

o 10 ms cycle time - 10 blocks are executed

o 100 ms cycle time - 64 blocks are executed

The input MultiCastType enables sending multicast messages of 3 different types:

 Follower point to point transmit (3)

 Standard Multicast (4): This message type requires all Follower/Master drives to have a

corresponding multicast address equal to the RemoteNode.

 Broadcast (5): In this message type all drives in the drive to drive link receive the message

including the Master drive. In this mode, the input RemoteNode must be set to 255.

The inputs RemoteNode and RemoteDsNr define the remote drive node address and dataset

number respectively. The data is selected using pointer inputs pDataIn1_16bit and pDataIn2_32bit.

Error blocks input values and operation status if there is an error while sending or receiving data. If

sending or receiving data is successful, Error returns a 0. The SendMsgCount tracks the number of

successfully sent messages.

185

D2D configuration blocks

D2D_Conf

Summary

D2D_Conf block configures token management on the

master drive. The D2D_Conf_Token block must be

executed before the D2D_Conf block because

configuration data is built based on the node data in

D2D_Conf_Token block.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables/disables configuration data in Master drive.

Value FALSE stops sending token from master to
follower(s).

MCastGrp UINT - Defines multicast group address.

TokenTxmCycle UINT 1000…10000 Sends the interval of token message.

0 = indicates that current configuration is removed

Outputs:

Name Type Value Description

Error UDINT Any Error output

Description

The D2D_Conf block is intended to execute only once, and for this reason, the block should be

assigned to Pre_Task. However, the block can be assigned to any task and in cyclic tasks, the

Enable input controls the execution, including run time configuration.

The configured data is effective on the master drive after enabling the D2D_Conf block. The Enable

input enables/disables the configuration data on the master drive. The rising edge of Enable input

triggers the configuration setup. The next rising edge overwrites the Enable input of

D2D_Conf_Token block, even if it is set to FALSE.

The input TokenTxmCycle is the base transmission cycle of token. The node related transmission

cycle is attained by multiplying this value set in the D2D_Conf_Token block.

Error blocks input values and operation status if there is an error in the configuration data. If

configuration is successful, Error returns a 0.

Master use

The master drive has a message queue to handle cyclic transmission of the token messages to

follower drive. This queue can hold maximum 64 token messages. The standard multicast group of

master drive (address) is defined by the input MCastGrp.

186

Follower use

In the follower drive, only the multicast group (MCastGrp) can be defined and TokenTxmCycle is not

used. The master drive transmits the token messages to follower drives. After receiving a token the

follower is able to transmit a message from the D2D message queue.

For example of token configuration, see Example 2: Token send configuration using

D2D_Conf_Token and D2D_Conf blocks.

187

D2D_Conf_Token

Summary

D2D_Conf_Token block configures the

follower drive related token message send

cycle. In follower mode, the output Error is set.

Connections

Inputs:

Name Type Value Description

Enable BOOL Enables/disables the master drive from sending the token to
follower drive.

RemoteNode UINT 1…62 Defines the node address of the follower drive where the
token is transmitted.

TxmCycMultiplier UINT Token send cycle. Multiplies the input input TokenTxmCycle
in block D2D_Conf. If value is 0, node is removed from
configuration.

Outputs:

Name Type Value Description

Error UDINT Any Error output

Description

The D2D_Conf_Token block is used to configure the node related transmission cycle of token on

master drive. This block is intended to execute only once from the Pre_Task. However, the block

can be assigned to any task and in cyclic tasks, the Enable input controls the execution, including

run time configuration. The settings are effective in the master only after executing the D2D_Conf

block.

All node related D2D_Conf_Token blocks must be executed before D2D_Conf by setting the input

Enable to TRUE. On run time in the Master drive, the Enable input enables/disables the use of

follower node. However this selection is overwritten at the next rising edge of Enable in the

D2D_Conf block.

The RemoteNode and TxmCycMultiplier are set on the rising edge of Enable. The configuration is

effective after the next rising edge of Enable in the block D2D_Conf. This configuration can be done

on run time also.

By setting the TxmCycMultiplier = 0, the node related token send can be removed permanently. At

the next rising edge of Enable in D2D_Conf_Token and D2D_Conf blocks, the node is removed from

token configuration.

188

Error blocks input values and operation status. The error messages are listed below:

Bit Error code Meaning

0 D2D_MODE_ERR D2D mode is not Master

5 TOO_SHORT_CYCLE Token interval(s) are short or communication is overloaded

6 INVALID_INPUT_VAL Input value (target node and/or cycle time) are out of range

7 GENERAL_D2D_ERR D2D driver failed to initialize message

 For example of token configuration, see Example 2: Token send configuration using

D2D_Conf_Token and D2D_Conf blocks.

189

D2D_Master_State

Summary

D2D_Master_State block reads bit related Master state

of all the drives connected into the D2D link. From the

master drive, this block broadcasts the master state to

other drives using node number. This block works without token management configuration.

Connections

Inputs:

Name Type Value Description

Enable BOOL T/F Enables/disables block execution

Reset BOOL 0/1 Resets all master state bits on rising edge

Node UINT 1…62 Node address

Outputs:

Name Type Value Description

Error UDINT ANY Error output

MstState1 UDINT 0…31 Drive/node related master bits 0…31. Bit 0 == Node1

MstState2 UDINT 32…63 Drive/node related master bits 32…63.

Description

The D2D_Master_State block is used when there is a risk to have multiple masters in same D2D

link. This enables creating systems with redundant masters. The block returns status of all Master

drives connected into the D2D link, except its own state, which can be set and read using parameter

60.3 (M/F mode). As the Master drive broadcasts its state to other drives based on Node address,

the panel port communication port parameter 49.1 (Node ID number) should also be using the same

value.

The master drive state bits are updated when the input Reset is set FALSE. The reset function can

be used whenever there is state change from Master to Slave.

The input Node is same as parameter 60.2 (M/F node address).

Error blocks input values and operation status. In the follower drive, the output Error returns the

D2D_MODE_ERR code to notify that the drive is not able to broadcast master state; however the

block is able to read other drive states.

The output MstState1 includes drive/node related master bits 0 to 31. If this output is set, the drive is

Master.

The output MstState2 includes drive/note related master bits 32 to 63.

190

Examples: D2D blocks

Example 1: D2D_TRA / D2D_REC blocks

This example describes how the D2D_TRA and D2D_REC blocks are used for sending and

receiving data.

The D2D_TRA block is used for sending data in WORD and REAL data format to remote drive

address 1 and dataset 128. The DS_ReadLocal block is used for reading the dataset in remote

drive.

Figure 144: Sending data using D2D_TRA block

The DS_WriteLocal block is used for writing WORD and UDINT value to remote drive dataset 129.

The D2D_REC block is used to receive data to master drive.

Figure 145: Receiving data using D2D_REC block

191

Example 2: Token send configuration blocks

This example describes how the D2D_Conf_Token and D2D_Conf blocks are used for sending

tokens.

In token send configuration, the master drive configures the token. After the follower receives a

token from the mater, the follower node sends follower to follower (point to point) or multicast

message.

Using the D2D_Conf_Token block you can add a node into the token send configuration with own

instance or common instance. The below examples is a common instance configuration using the

ConfToken. When all the nodes are included the D2D_Conf is executed.

In this example, a previous configuration with the following nodes existed: remoteNode1 and

remoteNode2. A new configuration is set that includes only remoteNode1 for which remoteNode2

must be removed from the existing configuration.

Each testStep represents a separately executed run cycle.

testStep(1) - remoteNode1 is added into new configuration

testStep(3) - remoteNode2 is removed from configuration

testStep(4) - D2D_Conf is invoked and starts sending token to remoteNode1

Master

Drive

remoteNode1 remoteNode2

D2D_Conf

D2D_Conf_Token

Token send

192

VAR

 ConfToken: D2D_Conf_Token;

 ConfD2D: D2D_Conf;

VAR_END

CASE testStep OF

0: // Initialize configuration blocks

 ConfToken(Enable:= FALSE);

 ConfD2D(Enable:= FALSE);

 testStep:= testStep + 1;

1: // Add remoteNode1 into configuration set-up (on rising edge of

Enable)

 ConfToken(Enable:= TRUE, TxmCycMultiplier:= 2, RemoteNode :=

remoteNode1);

 testStep:= testStep + 1;

2: // Reset Enable pin

 ConfToken(Enable:= FALSE);

 testStep:= testStep + 1;

3: // Remove remoteNode2 from configuration set-up, by setting

TxmCycMultiplier:= 0

 ConfToken(Enable:= TRUE, TxmCycMultiplier:= 0, RemoteNode :=

remoteNode2);

 testStep:= testStep + 1;

4: // Launch new D2D configuration on rising edge of Enable (start

of communication with remoteNode1)

 ConfD2D(Enable:= TRUE, TokenTxmCycle:= 1000);

 testStep:= testStep + 1;

10: // Stop sending tokens (end of the communication)

 ConfD2D(Enable:= FALSE);

 testStep:= testStep + 1;

193

Appendix E: ABB drives standard
library

Contents of this chapter

This appendix contains detailed information of the basic and special functions of the ABB drives

standard library (AS1LB_Standard_ACS880_V3_5)

Introduction to ABB drives standard library

The ABB drives standard library is intended to be used with the ACS880 drives and the AC500 PLC.

It provides frequently used control elements for application programming in automation builder.

Unlike the standard libraries provided by 3S-Smart Software Solutions, most of the function blocks in

the library use floating point numbers. This provides a more flexible development environment as the

programmer does not need to worry about handling wide numerical ranges and scaling.

The drive version of the library is generated from the PLC version to ensure that the code is not

altered in any way. For compatibility, some functions are implemented as function blocks because

the PLC does not support multiple outputs for functions. The functions do not have a state and thus

require less memory. This is also why the drive version of the library has these blocks as functions

(that is, there are 2 versions available in the drive version).

14

194

Input values are checked to be within the defined limits. If for some reason the block detects that a

value is out of range, it can:

1. Limit the value to the maximum or minimum value. For example, if the time constant is set to a

very large value or a negative value, it is limited inside the block to ensure the correct execution.

2. Produce an error signal. For example, if the low limit for the output is greater than the high limit,

the block cannot operate and produces an error.

The function blocks with a state have a balance reference and balance mode. This feature provides

the means to force the control system to a new state. By enabling the balance mode, the blocks

operate as if the balance reference is the calculated output of the block. Internal variables are also

adjusted so that once the balance mode is disabled the process continues from the balance

reference value.

195

Basic functions

BGET

Summary

The BGET function reads one selected bit from a WORD or a

DWORD (includes size check).

Connections

Inputs:

Name Type Value Description

BIT_NR UINT 0…31 Bit number

IN DWORD,
WORD

ANY Data input

Outputs:

Name Type Value Description

BGET BOOL TRUE,
FALSE

Bit value

Function

The output (BGET) is the selected bit (BIT_NR) of the input word (IN).

If BIT_NR is 0, the bit is 0. If BIT_NR is 31, the bit is 31.

If the bit number is not within the range of 0…31 (for DWORD) or 0…15 (for WORD), the output is 0.

196

BSET

Summary

The BSET function changes the state of one selected bit of a

WORD or a DWORD (includes size check).

Connections

Inputs:

Name Type Value Description

EN BOOL TRUE,
FALSE

Enable block

BIT_NR UINT 0…31 Bit number

BIT_VALUE BOOL TRUE,
FALSE

New value for bit

IN DWORD,
WORD

ANY Data input

Outputs:

Name Type Value Description

BSET DWORD,
WORD

ANY Changed word

Function

The value of a selected bit (BIT_NR) of the input (IN) is set as defined by the bit value input

(BIT_VALUE).

If BIT_NR is 0, the bit is 0. If BIT_NR is 31, the bit is 31. The function must be enabled by the

enable input (EN).

If the function is disabled or the bit number is not within the range of 0…31 (for DWORD) or 0…15

(for WORD), the input value is stored to the output as it is (that is, no bit setting occurs).

Example:

EN = 1, BIT_NR = 3, BIT_VALUE = 0

IN = 0000 0000 1111 1111

BSET = 0000 0000 1111 0111

197

DEMUX

Summary

The demultiplexer function block is available with 2, 4 and 8 inputs for

the BOOL, DINT, INT, REAL and UDINT data types.

Since the block does not need internal memory, it also comes as a

function (automation builder for PLC does not support multiple outputs

for functions).

Connections

Inputs:

Name Type Value Description

IN BOOL,
DINT, INT,
REAL,
UDINT

ANY Input

ADDR UINT 1…8 Address

Outputs:

Name Type Value Description

OUT1…8 BOOL,
DINT, INT,
REAL,
UDINT

ANY Output 1…8

Function

The input value (IN) is stored to the output (OUT1…8) selected by the address input (ADDR). All

other outputs are set to 0.

If the address input is not from 1 to 8, all outputs are set to 0.

198

DEMUXM

Summary

The demultiplexer function block with an internal memory to store

output values is available with 2, 4 and 8 inputs for the BOOL, DINT,

INT, REAL and UDINT data types.

Connections

Inputs:

Name Type Value Description

SET BOOL TRUE,
FALSE

Set

LOAD BOOL TRUE,
FALSE

Load (Set only once)

RESET BOOL TRUE,
FALSE

Reset

ADDR UINT 1…8 Address

IN BOOL,
DINT, INT,
REAL,
UDINT

ANY Input

Outputs:

Name Type Value Description

OUT1…8 BOOL,
DINT, INT,
REAL,
UDINT

ANY Output 1…8

Function

DEMUXM is used as a demultiplexer with memory. It remembers the assigned values to outputs and

continues sending them until changed or reset.

The input value (IN) is stored to the output (OUT1…8) selected by the address input (ADDR) if the

load input (LOAD) or the set input (SET) is 1.

When the load input is set to 1, the input value is stored to the output only once. When the set input

is set to 1, the input value is stored to the output every time the block is executed. The new set input

overrides the load input.

If the address input is not from 1 to 8, the outputs are not affected by the input value.

If RESET = 1, all outputs are set to 0 and the block’s memory is reset.

199

MUX

Summary

The multiplexer function for the REAL data type as the

automation builder version does not support this type. The

function block is available with 2, 4 and 8 inputs.

Connections

Inputs:

Name Type Value Description

ADDR UINT 1…8 Address

IN1…8 REAL ANY Inputs 1…8

Outputs:

Name Type Value Description

MUX REAL ANY Selected input value

Function

The value of an input (IN1…8) is selected by the address input (ADDR) and stored to the output

(MUX).

If the address input is not from 1 to 8, the output is set to 0.

200

MUXM

Summary

The multiplexer function block with an internal memory to store the output

is available with 2, 4 and 8 inputs for the BOOL, DINT, INT, REAL and

UDINT data types.

Connections

Inputs:

Name Type Value Description

SET BOOL TRUE,
FALSE

Set

LOAD BOOL TRUE,
FALSE

Load

RESET BOOL TRUE,
FALSE

Reset

ADDR UINT 0…8 Address

IN1…8 BOOL,
DINT, INT,
REAL,
UDINT

ANY Inputs 1…8

Outputs:

Name Type Value Description

OUT BOOL,
DINT, INT,
REAL,
UDINT

ANY Output

Function

MUXM is used as a multiplexer with a memory. It remembers the assigned value of the output and

continues sending it until changed or reset.

The value of an input (IN1…8) is selected by the address input (ADDR) and is stored to the output

(MUX) if the LOAD input or the SET input is 1.

When the load input is set to 1, the input value is stored to the output only once. When the set input

is set to 1, the input value is stored to the output every time the block is executed. The new set input

overrides the load input.

If the address input is not from 1 to 8, the output is not affected by input value. If RESET = 1, the

output is set to 0 and the block’s memory is reset.

201

PACK

Summary

The PACK function sets the BOOL inputs into a WORD or a

DWORD.

Connections

Inputs:

Name Type Value Description

IN0…31 BOOL TRUE,
FALSE

Bits

Outputs:

Name Type Value Description

PACK WORD,
DWORD

ANY Resulting pack of bits

Function

The PACK function takes an input set of bits and packs it in to a word.

202

SR_D

Summary

The SR-D function block is an extension to a normal SR trigger with an

additional memory input D trigger. The Reset signal overrides all other

control signals and clears the internal block state. The Set signal forces the

output to the TRUE state.

Connections

Inputs:

Name Type Value Description

SET BOOL TRUE,
FALSE

Set Input

DATA BOOL TRUE,
FALSE

Data Input

CLK BOOL TRUE,
FALSE

Clock, rising edge active

RESET BOOL TRUE,
FALSE

Reset

Outputs:

Name Type Value Description

OUT BOOL TRUE,
FALSE

Output signal

Function

The SR-D block implements D trigger with the SET, RESET controls. The data is stored from D input

when the clock changes from 0 to 1. The SET signal forces the output to the TRUE state. If R is

active, the output is always FALSE. The RESET signal overrides all other control signals and clears

the internal block state.

When the clock input (CLK) is set from 0 to 1, the DATA input value is stored to the output (OUT).

When RESET is set to 1, the output is set to 0.

Truth table:

SET RESET DATA CLK Previous output OUT

Any 1 Any Any Any 0

1 0 Any Any Any 1

0 0 Any 0 Qn-1 Qn-1

0 0 0 0->1 Any 0

0 0 1 0->1 Any 1

203

SWITCH

Summary

The SWITCH function block sets the outputs the same as the input if EN equals TRUE, otherwise all

outputs are 0. SWITCH is available with 2, 4 and 8 inputs and outputs

for the BOOL, DINT, INT, REAL and UDINT data types.

Since the block does not need internal memory, it also comes as a

function (automation builder for PLC does not support multiple outputs

for functions).

Connections

Inputs:

Name Type Value Description

EN BOOL TRUE,
FALSE

Enable

IN1…8 BOOL,
DINT, INT,
REAL,
UDINT

ANY Input 1…8

Outputs:

Name Type Value Description

OUT1…8 BOOL,
DINT, INT,
REAL,
UDINT

ANY Output 1…8

Function

The output (OUT1…8) is equal to the corresponding input (IN1…8) if the block is enabled (EN = 1).

Otherwise the output is 0.

204

SWITCHC

Summary

The SWITCHC function block has two channels. A channel can be chosen

by using the Select signal. If Select equals FALSE, channel A is active. If

Select equals TRUE, channel B is active. If the EN signal is not active, all

outputs are 0. SWITCHC is available with 2, 4 and 8 input pairs and

outputs for the BOOL, DINT, INT, REAL and UDINT data types.

Since the block does not need an internal memory, it also comes as a

function (automation builder for PLC does not support multiple outputs for

functions).

Connections

Inputs:

Name Type Value Description

EN BOOL TRUE,
FALSE

Enable

SELECT BOOL TRUE,
FALSE

Select

IN1…8A BOOL,
DINT, INT,
REAL,
UDINT

ANY Input A 1…8

IN1…8B BOOL,
DINT, INT,
REAL,
UDINT

ANY Input B 1…8

Outputs:

Name Type Value Description

OUT1…8 BOOL,
DINT, INT,
REAL,
UDINT

ANY Output A 1…8

Function

The output (OUT1…8) is equal to the corresponding channel A input (IN1…8A) if the activate input

signal (SELECT) is 0. The output is equal to the corresponding channel B input (IN1…8B) if the

activate input signal (SELECT) is 1.

If the block is disabled (EN = 0), all outputs are set to 0.

205

UNPACK

Summary

The UNPACK function block splits a WORD or a DWORD into a set of

BOOL outputs.

Since the block does not need an internal memory, it also comes as a

function (automation builder for PLC does not support multiple outputs for

functions).

Connections

Inputs:

Name Type Value Description

IN WORD,
DWORD

ANY Input data

Outputs:

Name Type Value Description

OUT0…31 BOOL TRUE,
FALSE

Output bits

Function

The Unpack function takes an input word and returns it as a set of bits.

206

Special functions

Drive control

Summary

The drive control program offers basic controls of an

ACS880 drive for application programmers. A similar

function block for the PLC to control the drive exist is

in the PS553 library.

Connections

Inputs:

Name Type Value Description

EN BOOL TRUE,
FALSE

Enable function block - TRUE. Additionally configures the
drive to use the application program.

See parameters 19.11, 20.1, 20.6, 22.11 and 26.11.

START BOOL TRUE,
FALSE

TRUE = start drive

FALSE = stop along currently active stop ramp.

See parameter 6.2.0.

STOP_EMCY_COAST BOOL TRUE,
FALSE

Emergency coast stop to drive:

FALSE = stop by coast

TRUE = no stop

See parameter 6.2.1.

STOP_EMCY_RAMP BOOL TRUE,
FALSE

Emergency stop to drive

FALSE = stop by ramp

TRUE = no stop

See parameter 6.2.2.

STOP_COAST BOOL TRUE,
FALSE

TRUE = coast stop

FALSE = normal operation

See parameter 6.2.3.

RESET BOOL TRUE,
FALSE

Resets drive and internal parameter errors.

See parameter 6.2.7.

EXT_CTRL_LOC BOOL TRUE,
FALSE

Selects external control location (EXT1/EXT2).

See parameters 6.2.11 and 19.11.

SPEED_REF REAL ANY Speed reference value.

See parameter 22.11.

REF_VALUE2 REAL ANY Torque reference value.

See parameter 26.11.

207

Outputs:

Name Type Value Description

DONE BOOL TRUE,
FALSE

Execution finished when output DONE = TRUE.

ERR BOOL TRUE,
FALSE

Error occurred during execution when output ERR =
TRUE

ERNO ENUM ANY Internal error code

READY BOOL TRUE,
FALSE

Ready to switch on

See parameter 6.11.0

OPERATING BOOL TRUE,
FALSE

Drive is operating.

TRIPPED BOOL TRUE,
FALSE

Drive FAULT

See parameter 6.11.3.

ALARM BOOL TRUE,
FALSE

Drive has an alarm

See parameter 6.11.7.

EXT_RUN_ENABLE BOOL TRUE,
FALSE

Run enable status

See parameter 6.18.5.

LOCAL_CTRL BOOL TRUE,
FALSE

Drive control location: LOCAL

See parameter 6.11.9.

EXT_CTRL_LOC_ACT BOOL TRUE,
FALSE

Actual external control location EXT2 selected

See parameter 6.16.11.

ACT_SPEED REAL ANY Actual speed (in rpm) read from drive

See parameter 1.01.

ACT_VALUE2 REAL ANY Actual torque (in %) read from drive

See parameter 1.10.

ACT_SW WORD ANY Main status word read from drive

See parameter 6.11.

USED_CW WORD ANY Application control word

See parameter 6.02.

MESSAGE ENUM ANY State of the function block

Function

The program uses drive parameters as an interface to the drive.

An application control word (06.02) is used to control the drive. It sets the EXT1 command (20.01)

and EXT2 command (20.06) parameters to Application Program. The control word is defined in the

ABB Drives control profile.

When the drive is in the operational state, the OPERATING output is set to TRUE to indicate the

current state of the state machine.

208

The program is enabled by setting the EN signal to TRUE. Once active, the block sets the

configuration parameters to the desired values once: Parameters 19.11, 20.01, 20.06, 22.11 and

26.11 are set to Application Program. The parameters are intentionally changed once enable to

change them manually while the program is running.

The drive status is obtained from the Main status word (06.11) and Status word 1 (06.16). The actual

speed (ACT_SPEED) and torque (ACT_VALUE2) data are obtained from parameters Motor speed

used (01.01) and Motor torque % (01.10).

When the program is disabled, Application control word is set to 0 once.

If the EXT1 and EXT2 parameters are not set to the correct value while the program is enabled, an

error is produced.

Error codes and the ERR outputs are internal program errors and not drive fault codes. Internal

parameter errors do not prevent the program from functioning.

Limiting

Only one instance of drive control is allowed. This is why it is implemented as a program.

209

Filter

Summary

The FILT1_1 function block provides filtering of the high frequency part

of the input signal. The block acts as a single-pole low pass filter for the

REAL numbers. The balancing function permits the output signal to

track an external reference.

Connections

Inputs:

Name Type Value Description

IN REAL ANY Input signal for the actual value

TF REAL 0…ANY Filter time constant (ms)

BAL BOOL TRUE,
FALSE

Balance input, activates the tracking mode.

BALREF REAL ANY Value for the tracking mode

TIMELEVEL INT 1…ANY Task interval in milliseconds, default = 10 ms

Outputs:

Name Type Value Description

OUT REAL ANY Filtered actual value

Function

The function filters the input signal using the current input and previous output.

The transfer function for a single-pole filter with no pass band gain is:

 (1)

To get the function for the output, in the first step cross-multiply the equation:

 (2)

Resolving the parenthesis gives:

 (3)

To get the equation to the time domain s has to be replaced by derivation:

 (4)

Since this is a first order approximation function block, the derivation can be replaced by a

difference:

 (5)

)()
)1()(

(*)(tI
Ts

tOtO
TFtO

)1/(1)(sTFsG

)(*1)1(*)(sIsTFsO

)()(*)(sIsOsTFsO

)()(*)(tItOTFtO

210

Where: Ts is the cycle time of the program in milliseconds (time difference between t and t-1).

The final filtering algorithm (6) is calculated by using the following formula that is obtained from (5)

by extracting O(t):

 (6)

If TF = 0 or negative, the output value is set to the input value.

Because of the REAL data type limitation, the TF/Ts ration is limited to 8000000, to ensure that it is

always possible to add 1 to the real value.

1/

)1(*)/(
)(

TsTF

tOTsTFI
tO

211

Function generator

Summary

The FUNG_1V function block is used for generation of an optional

function of one variable, y = f(x). The function is described by a number

of coordinates. Linear interpolation is used for values between these

coordinates. An array of 8, 16 or 32 coordinates can be specified. The

balancing function permits the output signal to track an external

reference and gives a smooth return to the normal operation.

Since the block does not need an internal memory, it also comes as a function (automation builder

for PLC does not support multiple outputs for functions).

Connections

Inputs:

Name Type Value Description

BAL BOOL TRUE,
FALSE

Input for activation of the balancing mode

BALREF REAL ANY Balance reference

Input for the reference value in the balancing mode

IN_XTAB REAL ANY Input signal for the function

XTAB REAL[N] ANY Table of X coordinates for the function

YTAB REAL[N] ANY Table of Y coordinates for the function

Outputs:

Name Type Value Description

OUT REAL ANY Value of the function

BALREFO REAL ANY TRUE if the high limit is reached.

ERROR BOOL TRUE,
FALSE

TRUE when the input is outside the table range or when the
table contains unsorted (low to high) data for the input
coordinates.

Function

The function generator FUNG_1V calculates output signal Y for a value at input X. Calculation is

performed in accordance with a piece-by-piece linear function which is determined by vectors XTAB

and YTAB. For each X value in XTAB, there is a corresponding Y value in YTAB. The Y value at the

output is calculated by means of linear interpolation of the XTAB values, between which lies the

value of input X. The values in XTAB must increase from low to high in the table.

The output of the block depends only on the current input values, in other words, it does not have

any state.

212

Interpolation

The generated function is performed as follows:

 𝑌 = 𝑌𝑘 +
(𝑋−𝑋𝑘)(𝑌𝑘+1−𝑌𝑘)

(𝑋𝑘+1−𝑋𝑘)

Balancing

If BAL is set to TRUE, the value at Y is set to the value of the BALREF input. The X value which

corresponds to this Y value is obtained at the BALREFO output. On balancing, the X value is

calculated by interpolation in the same way the Y value is calculated during the normal operation. To

permit balancing, the values in YTAB must increase from low to high in the table.

Limiting

If input signal X is outside the range defined by XTAB, the Y value is set to the highest or lowest

value in YTAB. If BALREF is outside the YTAB value range in the BAL mode, the value at Y is set to

the value at the BALREF input and BALREFO is set to the highest or lowest value in XTAB.

Xk Xk+1

Yk

Yk+1

X

Y = ?

213

Integrator

Summary

The INT_REAL function block integrates the input. The output signal

can be limited within limit values. The balancing function permits the

output signal to track an external reference and gives a smooth

return to the normal operation.

Connections

Inputs:

Name Type Value Description

IN REAL ANY Input signal for the actual value

GAIN REAL ANY Gain input

TI REAL 0…ANY Integration time (ms)

RESET BOOL TRUE,
FALSE

Clear integrated value

HOLD BOOL TRUE,
FALSE

Stops integration when set to TRUE

BAL BOOL TRUE,
FALSE

Balance input, activates the tracking mode

BALREF REAL ANY Value for the tracking mode

OHL REAL ANY High input limit

OLL REAL ANY Low input limit

TIMELEVEL INT 1…ANY Task interval in milliseconds, default = 10 ms

Outputs:

Name Type Value Description

OUT REAL ANY Output value

OUT_HI BOOL TRUE,
FALSE

TRUE if the high limit is reached.

OUT_LO BOOL TRUE,
FALSE

TRUE if the low limit is reached.

214

Function

The INT function can be written in the time plane as:

The main controlled property is that the output signal retains its value when the input signal I(t) = 0.

Clearing

The integrated value is cleared when RESET = TRUE (all internal variables are cleared).

Tracking

If BAL is set to TRUE, the integrator immediately goes into the tracking mode and the output value is

set to the value of the BALREF input. If the value at BALREF exceeds the output signal limits, the

output is set to the applicable limit value. On return to the normal operation from the tracking mode,

integration continues from the tracking reference.

Limiting

The output value is limited between OHL and OLL. If the actual value exceeds the upper limit, the

OUT_HI output is set to TRUE. If it falls below the lower limit, the OUT_LO output is set to TRUE. If

the limits have incorrect values, both OUT_HI and OUT_LO are set to TRUE.

))((/)(dttITKtO i

215

Lead lag

Summary

The LEADLAG_REAL function block is used to filter the input signal and

provide a phase shifted output. This block acts as a lead/lag filter based

on the COEF input value.

Connections

Inputs:

Name Type Value Description

IN REAL ANY Input signal for the function block

COEF REAL ANY Constant that determines the filter type

TC REAL 0…ANY Time constant (ms)

RESET BOOL TRUE,
FALSE

Resets the function block

BAL BOOL TRUE,
FALSE

Activates the balance mode

BALREF REAL ANY Balance reference

Input for the reference value in the balancing mode.

TIMELEVEL INT 1…ANY Task interval in milliseconds, default = 10 ms

Outputs:

Name Type Value Description

OUT REAL ANY Output signal

Function

The transfer function for the lead/lag filter is:

The lead/lag filter has two input parameters TC and α (COEF):

If α > 1, the filter acts as a lead filter.

If α < 1, the filter acts as a lag filter.

If α = 1, no filtering is applied.

sT+

sαT+

c

c

1

1

216

The filter algorithm is calculated using the following formula:

dn = X - B1*dnMem

Y = A0*dn + A1*dnMem

dnMem = dn

Where,

A0 = (1 + α*Tc) / (1 + Tc),

A1 = (1 - α*Tc) / (1 + Tc),

B1 = (1 - Tc) / (1 + Tc)

X is the input signal.

Y is the output signal.

The initial value of dnMem is set to zero.

Note: If α or TC input to the block is negative, the corresponding negative input is

assigned to zero before the filter algorithm is calculated.

Because of the REAL data type limitation, the TC/Ts ration is limited to 8000000, to ensure that it is

always possible to add 1 to the real value

Balancing

If BAL is set to TRUE, the value at Y is set to the value of the BALREF input. The block operates

normally during this time which means that the internal variable is always calculated.

Reset

If RESET is set to TRUE, the internal variable dnMem is set to zero and input value X is returned.

217

Motor potentiometer

Summary

The MOTPOT_REAL (motor potentiometer) function block is used to

generate the reference based on the activation of the Boolean (UP and

DN) inputs. The rate of change of a reference signal is controlled by the

slope time and limits. The current value is retained after a power cycle.

Connections

Inputs:

Name Type Value Description

EN BOOL TRUE, FALSE Enables operations.

UP BOOL TRUE, FALSE Enables count up

DN BOOL TRUE, FALSE Enables count down.

SLOPE UINT 0..65535 Delay time to count from OLL to OHL and vice versa

BAL BOOL TRUE, FALSE Sets the output to BALREF or limit if it exceeds the limit.

BALREF REAL ANY Sets the output value when he BAL input is active.

OHL REAL ANY High input limit

OLL REAL ANY Low input limit

TIMELEVEL INT 1…ANY Task interval in milliseconds, default = 10 ms

Outputs:

Name Type Value Description

OUT REAL ANY Output value

Function

The MOTPOT functional block is used to control the rate of change of an output reference signal.

Digital inputs are normally used as the UP and DOWN inputs.

The rate of change of a reference signal is controlled by the slope time parameter. If the enable pin

(EN) is set to TRUE, the reference value rises from minimum to maximum during the slope time.

EN turns on the MOTPOT function. If EN is set to FALSE, the output is zero. Based on the UP or DN

inputs getting activated, the output reference increases or decreases to the maximum or minimum

value based on the slope. If both UP/DN inputs are activated / deactivated, the output is neither

incremented nor decremented and is in a steady state.

Clearing

When EN is set to FALSE, the output and internal values are set to zero.

218

Tracking

If BAL is set to TRUE, the output is set to the value of the BALREF input. If the value at BALREF

exceeds the output signal limits, the output is set to the applicable limit value.

Limiting

The output value is limited between OHL and OLL. If the actual value exceeds the upper limit, the

output is set to the OHL input value. If it falls below the lower limit, the output is set to the OLL input

value.

219

PID

Summary

The PID_REAL (Proportional-Integral-Derivative) element can be

used as a generic PID regulator in feedback systems. The main

extension of the element is that a derivative correction term with a

filter is included. Another major extension is the antiwindup

protection. The output signal can be limited with limit values specified

at special inputs (OHL and OLL). The balancing function permits the

output signal to track a gradual return to the normal operation. After

any parameter change or error condition, the integral term of the

correction is readjusted so that the output does not change abruptly

(“bumpless transfer”).

Connections

Inputs:

Name Type Value Description

IN_FB REAL ANY Actual input value

IN_REF REAL ANY Reference input value

GAIN REAL ANY Proportional gain

TI REAL 0.. ANY Integration time (ms)

TD REAL 0.. ANY Derivation time (ms)

TC REAL 0.. ANY Anti-windup correction time (ms)

TF REAL 0.. ANY Filter time (ms)

I_RST BOOL TRUE, FALSE Clear integrator

BAL BOOL TRUE, FALSE Balance input, activates the tracking mode.

BALREF REAL ANY Value for the tracking mode

OHL REAL ANY High input limit

OLL REAL ANY Low input limit

TIMELEVEL INT 1…ANY Task interval in milliseconds, default = 10 ms

220

Outputs:

Name Type Value Description

OUT REAL ANY Output signal

DEV REAL ANY Deviation (IN_FB - IN_REF)

OUT_HI BOOL TRUE, FALSE TRUE if the high limit is reached.

OUT_LO BOOL TRUE, FALSE TRUE if the low limit is reached.

Function

The differential equation describing the PID controller before saturation/limitation that is implemented

in this block is:

𝑂𝑈𝑇𝑝𝑟𝑒𝑠𝑎𝑡(𝑡) = 𝑈𝑝(𝑡) + 𝑈𝑖(𝑡) + 𝑈𝑑(𝑡)

Where:

OUTpresat is the PID output before saturation

Up is the proportional term

Ui is the integral term with saturation correction

Ud is the derivative term

t is time.

The proportional term is:

𝑈𝑝(𝑡) = 𝐾𝑝 ∗ 𝐷𝐸𝑉(𝑡)

Where:

Kp = P is the proportional gain of the PID controller

DEV(t) is the control deviation (see below).

The integral correction term is:

𝑈𝑖(𝑡) =
𝐾𝑝

𝑇𝑖
∗ ∫ 𝐷𝐸𝑉(𝜏)𝑑𝜏 + 𝐾𝑐 ∗ (𝑂𝑈𝑇(𝑡) − 𝑂𝑈𝑇𝑝𝑟𝑒𝑠𝑎𝑡(𝑡))

𝑡

0

Where:

Kc = integral antiwindup correction gain of the PID controller

OUT(t) = saturated/limited output signal of the controller

The antiwindup correction

𝐾𝑐 ∗ (𝑂𝑈𝑇(𝑡) − 𝑂𝑈𝑇𝑝𝑟𝑒𝑠𝑎𝑡(𝑡)) is thus taken to be part of the integral correction term.

221

Windup is a phenomenon that is caused by the interaction of an error integral action and saturations.

All actuators have limitations: a motor has limited speed, a valve cannot be more than fully opened

or fully closed, and so on. For a control system with a wide range of operating conditions, it is

possible that the control variable reaches the actuator limits. When this happens, the feedback loop

is broken and the system runs as an open loop because the actuator remains at its limit

independently of the process output. If a controller with the integrating action is used, the error

continues to be integrated. This means that the integral term may become very large or, in other

words, it “winds up”. It is then required that the error has the opposite sign for a long period before

things return to normal. The consequence is that any controller with the integral action may give

large transients when the actuator saturates.

The derivative term is:

𝑈𝑑(𝑡) = 𝐾𝑝 ∗ 𝑇𝑑 ∗
𝑑(𝐷𝐸𝑉(𝑡))

𝑑𝑡

Where:

Td is the derivative time constant.

The differential equations above are transformed into difference equations by backward

approximation.

This term is also filtered to make it resistant to high frequency noise.

Smooth transfer

The controller guarantees a smooth transfer in many special situations where, for example, control

parameters are abruptly changed. This means that in such a bumpless cycle the output retains its

previous value. This is performed by resetting the integrator term Ui to:

() () () ().Ui t OUT t Up t Ud t

Smooth functionality is not triggered in the first cycle by change in Ti, Tc, Td and Tf.

Gain, time constants

The proportional gain Kp is directly an input parameter. The integrator, derivative and antiwindup

gains Ki, Kd and Kc must be calculated from the corresponding time constants Ti, Td and Tc which

are input parameters. The derivative gain is:

𝐾𝑑 = 𝑇𝑑
𝑇⁄

Where:

T is the time level (execution cycle) of the block (in milliseconds as the time constants).

The integral gain is determined from Ti as follows:

𝐾𝑖 = 0, if 𝑇𝑖 = 0

𝐾𝑖 = 𝑇
𝑇𝑖⁄ , if 𝑇 < 𝑇𝑖

𝐾𝑖 = 1, if 𝑇 ≥ 𝑇𝑖 > 0

)*1/(1)(TFssG

222

The anti-windup gain is determined similarly by Tc:

𝐾𝑐 = 0, if 𝑇𝑐 = 0

𝐾𝑐 = 𝑇
𝑇𝑐⁄ , if 𝑇 < 𝑇𝑐

𝐾𝑐 = 1, if 𝑇 ≥ 0

Thus the values of Ki and Kc are limited to the range 0 ≤ Ki, Ti ≤ 1.

If Tc = 0, Kc = 0 and anti-windup correction is disabled.

If Ti = 0, Ki = 0. The module does not update the integral term Ui, not even by the anti-windup

correction. Thus the integrator term retains its original value as long as Ki remains zero.

The element stores the “current” set of gains Kp, Ki, Kc and Kd and time constants Ti, Tc and Td,

which it uses for calculating the control output(s).

Filtering

This derivative is filtered using a single-pole low pass filter. The following algorithm is used to

calculate the filtered value:

𝑦(𝑡) =
𝐾𝑑 ∗ (𝑈𝑝(𝑡) − 𝑈𝑝(𝑡 − 1)) +

𝑇𝑓

𝑇
∗ 𝑦(𝑡 − 1)

1 +
𝑇𝑓

𝑇

Where,

T is the time level (execution time) of the block (in milliseconds as the time constants).

If the filter time constant is left unassigned, it defaults to 0 which means that the derivative is

calculated without filtering. The time constant is limited to 8000000*time level to avoid underflow.

Tracking

If BAL is set to TRUE, the regulator goes into the tracking mode and the output follows the value at

BALREF. If the value at BALREF exceeds the output signal limits (OLL and OHL), the output is set

to the applicable limit value. The return from the tracking state is bump less.

Limitation function

The limitation function limits the output signal to the value range from OLL to OHL. If the pre-

saturated output exceeds OHL, OUT is set to OHL and OUT_HI is set to TRUE. If the pre-saturated

output falls below OLL, OUT is set to OLL and OUT_LO is set to TRUE. Bump less return from

limitation is requested if and only if the anti-windup correction is not in use, that is,. Ki = 0 or𝐾𝑐 = 0.

IF OLL < OHL, both OUT_HI and OUT_LO are set to TRUE and OUT retains the value that it had in

the execution cycle before the error occurred. After this error, the return to the normal operation is

smooth

Limiting

The output value is limited between OHL and OLL. If the actual value exceeds the upper limit,

OUT_HI is set to TRUE. If it falls below the lower limit, OUT_LO is set to TRUE.

223

Ramp

Summary

The RAMP is used to limit the rate of change of a signal. The output

signal can be limited with limit values specified at special inputs.

The balancing function permits the output signal to track an external

reference.

Connections

Inputs:

Name Type Value Description

IN REAL ANY Input signal for the actual value

STEP_UP REAL 0.. ANY The greatest allowed positive STEP change

STEP_DN REAL 0.. ANY The greatest allowed negative STEP change

SLOPE_UP REAL 0.. ANY Positive ramp for the output

SLOPE_DN REAL 0.. ANY Negative ramp for the output

BAL BOOL TRUE,
FALSE

Balance input, activates the tracking mode.

BALREF REAL ANY Balance reference

Input for the reference value in the tracking mode

OHL REAL ANY High input limit

OLL REAL ANY Low input limit

STOP BOOL TRUE,
FALSE

Holds the output (stops ramping)

TIMELEVEL INT 1…ANY Task interval in milliseconds, default = 10 ms

Outputs:

Name Type Value Description

OUT REAL ANY Output value

OUT_HI BOOL TRUE,
FALSE

TRUE if the high limit is reached

OUT_LO BOOL TRUE,
FALSE

TRUE if the low limit is reached

224

Function

The main property of the RAMP element is that the output signal tracks the input signal, while the

input signal is not changed more than the value specified at the step inputs. If the input change is

greater than the specified step changes, the output signal is first changed by STEP_UP or

STEP_DN depending on the direction of change. After that the output signal is changed by

SLOPE_UP or SLOPE_DN per second, until the values at the input and output are equal. This

means that if STEP_DN = STEP_UP = 0, a pure ramp function, that is, SLOPE/sec is obtained at

the output. The greatest step change allowed at the output is specified by the STEP_UP and

STEP_DN inputs for the respective direction of change.

All parameters are specified as absolute values with the same unit as the input. Slopes specify the

change in units per second. Certain constants are pre-calculated to make the execution time of the

element as short as possible. The results are stored internally in the element. These constants are

recalculated if the SLOPE_UP or SLOPE_DN values are changed.

Calculation of the output

If Input (t) = Output (t-1), then Output (t) = Input (t)

If Input (t) > Output (t-1), then the change of the output O value is limited as follows:

 An internal auxiliary variable VPOS follows the input value with the maximum rate of change

defined by SLOPE_UP. If the input value is greater than VPOS + STEP_UP, the output value

is limited to the value VPOS +STEP_UP. If the input value is less than VPOS + STEP_UP,

the output value is set to be equal to the input.

If SLOPE_UP = 0, the output value does not rise no matter what the value of STEP_UP and IN is.

If Input (t) < Output (t-1), then the change of the Output value is limited as follows:

 An internal auxiliary variable VPOS follows the input value, with the maximum rate of change

defined by SLOPE_DN. If the input value is less than VPOS – STEP_DN, the output value is

limited to the value VPOS – STEP_DN. If the input value is greater than VPOS – STEP_DN,

the output value is set to be equal to the input.

If SLOPE_DN = 0, the output value does not lower no matter what the value of STEP_DN and IN is.

Tracking

If BAL is set to TRUE, the ramp immediately goes into the tracking mode and the output is set to the

value of BALREF. If the value at BALREF exceeds the output signal limits, the output is set to the

applicable limit value. During the tracking mode VPOS = Output = BALREF. The return to the normal

operation is done as if a unit step had occurred at the input.

Limiting

The limitation function limits the output signal to the values at the OHL inputs for the upper limit and

OLL for the lower limit. If the actual value exceeds the upper limit, OUT_HI is set to TRUE. If it falls

below the lower limit, OUT_LO is set to TRUE. In the limiting state VPOS(t) and OUT(t) are set to

the applicable limit value.

IF OLL < OHL, both OUT_HI and OUT_LO are set to TRUE and OUT retains the value that it had in

the execution cycle before the error occurred.

225

Further information

Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting the type

designation and serial number of the unit in question. A listing of ABB sales, support and service

contacts can be found by navigating to www.abb.com/searchchannels.

Product training

For information on ABB product training, navigate to www.abb.com/drives and select Training

courses.

Providing feedback on ABB Drives manuals

Your comments on our manuals are welcome. Go to www.abb.com/drives and select Document

Library – Manuals feedback form (LV AC drives).

Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet at

www.abb.com/drives/documents.

http://www.abb.com/searchchannels
http://www.abb.com/drives
http://www.abb.com/drives
http://www.abb.com/abblibrary/downloadcenter/?CategoryID=9AAC100211&View=Result

Contact us
www.abb.com/drives

www.abb.com/drivespartners

3AUA0000127808 Rev C (EN) 2015-04-03

http://www.abb.com/drives
http://www.abb.com/drivespartners

	Introduction to the manual
	Contents of this chapter
	Compatibility
	Target audience
	Safety instructions
	Purpose of the manual
	Contents of the manual
	Related documents
	Terms and abbreviations

	Getting started
	Contents of this chapter
	Setting up the programming environment

	Overview of drive programming
	Contents of this chapter
	Drive application programming
	System diagram
	Programming work cycle
	Special tasks
	Programming languages and modules
	Libraries
	Program execution
	DriveInterface
	ApplicationParametersandEvents

	Creating application program
	Contents of this chapter
	Creating a new project
	Updating project information
	Appending a new POU
	Writing a program code
	Continuous function chart (CFC) program
	Adding elements
	Setting the execution order of the elements
	Adding comments to a CFC program
	Declaring variables
	Adding inputs and outputs
	Creating a block scheme

	Preparing a project for download
	Establishing online connection to the drive
	Downloading the program to the drive
	Executing the program
	Creating a boot project

	Features
	Contents of this chapter
	Device handling
	Viewing device information
	Upgrading or adding a new device
	Changing an existing device
	Viewing software updates

	Program organization units (POU)
	Data types
	Drive application programming license
	Application download options
	Removing the application from the target
	Retain variables
	Task configuration
	Adding tasks
	Monitoring tasks

	Uploading and downloading source code
	Adding symbol configuration
	Debugging and online changes
	Safe debugging

	Reset options
	Memory limits
	CPU limitation
	Application loading package
	Downloading loading package to a drive

	DriveInterface
	Contents of this chapter
	Implementing DriveInterface
	Selecting the parameter set
	Viewing parameter mapping report
	Mapping example

	Updating drive parameters from installed device
	Updating drive parameters from parameters file
	Setting parameter view

	Application parameter and events
	Contents of this chapter
	ApplicationParametersandEvents
	ParameterManager
	Creating parameter groups
	Creating parameters
	Parameter settings
	Scaling
	Linking parameter to application code
	Parameter types
	Parameter families
	Selection lists
	Units
	Application events

	Libraries
	Contents of this chapter
	Library types
	Adding a library to the project
	Creating a new library
	Installing a new library
	Managing library versions

	Practical examples and tips
	Contents of this chapter
	Solving communication problems
	Question: What to do when scan network does not find any drives?
	Question: What to do if communication fails while establishing online connection to the drive?
	Question: What to do if communication fails between Automation Builder/Drive composer pro and drive?

	Solving other problems
	Question: How to prevent unauthorized access to an application that is running in the drive?
	Question: How to fix an unknown device in a project?
	Question: How to remove a boot application from the flash memory card?
	Question: What to do when I continuously receive “The project handle 0 is invalid” error message?
	Question: What to do when stack overflow fault 6487 occurs?
	Question: How to optimize the memory usage of the drive application?
	Question: How to solve the problem causing error message “Creating boot application failed: Adding Application Parameters & Groups to UFF generator: XmlDeserializationFailed”?

	Appendix A: Incompatible features between ACS880 Drive and AC500 PLC IEC programming
	Contents of this chapter
	Incompatible features

	Appendix B: Unsupported features
	Appendix C: ABB drives system library
	Contents of this chapter
	Introduction to ABB drives system library
	Function blocks of the system library
	Event function blocks
	EVENT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ReadEventLog
	Summary
	Inputs:
	Outputs:
	Description

	Parameter change function blocks
	PAR_UNIT_SEL
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	PAR_SCALE_CHG
	Summary
	Connections
	Inputs:
	Outputs:
	Description
	External 32-bit scaling
	External 16-bit scaling

	Parameter limit change
	PAR_LIM_CHG_DINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	PAR_LIM_CHG_REAL
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	PAR_LIM_CHG_UDINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Parameter default value change
	PAR_DEF_CHG_DINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	PAR_DEF_CHG_REAL
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	PAR_DEF_CHG_UDINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Parameter decimal display
	PAR_DISP_DEC
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	PAR_REFRESH
	Summary
	Connections
	Input:
	Outputs:
	Description

	Parameter protection
	PAR_PROT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	PAR_GRP_PROT
	Summary
	Connections
	Inputs:
	Output:
	Description

	Parameter read function blocks
	ParReadBit
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParRead_DINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParRead_REAL
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParRead_UDINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Parameter write function blocks
	ParWriteBit
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParWrite_DINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParWrite_REAL
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParWrite_UDINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Pointer parameter read function block
	ParRead_BitPTR
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParRead_ValPTR_DINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParRead_ValPTR_REAL
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParRead_ValPTR_UDINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Set pointer parameter to IEC variable function blocks
	ParSet_BitPTR_IEC
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParSet_ValPTR_IEC_DINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParSet_ValPTR_IEC_REAL
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParSet_ValPTR_IEC_UDINT
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Set pointer parameter to parameter function blocks
	ParSet_BitPTR_Par
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	ParSet_ValPTR_Par
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Task time level function block
	UsedTimeLevel
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Error codes

	Appendix D: ABB D2D function blocks
	Contents of this chapter
	Introduction to ABB D2D function blocks
	D2D function blocks of the system library
	Data read/write blocks
	DS_ReadLocal
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	DS_WriteLocal
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	D2D communication blocks
	General
	D2D_TRA
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	D2D_REC
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	D2D_TRA_REC
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	D2D_TRA_MC
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	D2D configuration blocks
	D2D_Conf
	Summary
	Connections
	Inputs:
	Outputs:
	Description
	Master use
	Follower use

	D2D_Conf_Token
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	D2D_Master_State
	Summary
	Connections
	Inputs:
	Outputs:
	Description

	Examples: D2D blocks
	Example 1: D2D_TRA / D2D_REC blocks
	Example 2: Token send configuration blocks

	Appendix E: ABB drives standard library
	Contents of this chapter
	Introduction to ABB drives standard library
	Basic functions
	BGET
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	BSET
	Summary
	Connections
	Inputs:
	Outputs:
	Function
	Example:

	DEMUX
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	DEMUXM
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	MUX
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	MUXM
	Connections
	Inputs:
	Outputs:
	Function

	PACK
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	SR_D
	Summary
	Inputs:
	Function
	Truth table:

	SWITCH
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	SWITCHC
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	UNPACK
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	Special functions
	Drive control
	Summary
	Connections
	Inputs:
	Outputs:
	Function
	Limiting

	Filter
	Summary
	Connections
	Inputs:
	Outputs:
	Function

	Function generator
	Summary
	Connections
	Inputs:
	Outputs:
	Function
	Interpolation
	Balancing
	Limiting

	Integrator
	Summary
	Connections
	Inputs:
	Outputs:
	Function
	Clearing
	Tracking
	Limiting

	Lead lag
	Summary
	Connections
	Inputs:
	Outputs:
	Function
	Balancing
	Reset

	Motor potentiometer
	Summary
	Connections
	Inputs:
	Outputs:
	Function
	Clearing
	Tracking
	Limiting

	PID
	Summary
	Connections
	Inputs:
	Outputs:
	Function
	Smooth transfer
	Filtering
	Tracking
	Limitation function
	Limiting

	Ramp
	Summary
	Connections
	Function
	Tracking
	Limiting
	Product and service inquiries
	Product training
	Providing feedback on ABB Drives manuals
	Document library on the Internet

