ABB machinery drives

Supplement CAM control program for ACSM1 drives



Power and productivity for a better world™

# Related manuals

| Drive hardware manuals and guides                                        | Code (English) |     |
|--------------------------------------------------------------------------|----------------|-----|
| ACSM1-04 (0.75 to 45 kW) drive modules hardware manual                   | 3AFE68797543   | _1) |
| ACSM1-04 (55 to 110 kW) drive modules hardware manual                    | 3AFE68912130   | 2)  |
| ACSM1-04Lx (55 to 132 kW) liquid-cooled drive modules<br>hardware manual | 3AUA0000022083 | 1)  |
| ACSM1-04 drive modules system engineering manual                         | 3AFE68978297   | 2)  |
| ACSM1 control panel user's guide                                         | 3AUA0000020131 | 2)  |
| Drive firmware manuals and guides                                        |                |     |
| ACSM1 Motion Control Program firmware manual                             | 3AFE68848270   | 1)  |
| Drive PC tool manuals                                                    |                |     |
| DriveStudio user manual                                                  | 3AFE68749026   | _1) |
| Solution program composer user manual                                    | 3AFE68836590   | 1)  |
| DriveCam user guide                                                      | 3AUA0000024806 | 1)  |
| Option manuals and guides                                                |                |     |
| FIO-01 digital I/O extension user's manual                               | 3AFE68784921   | 4)  |
| FIO-11 analog I/O extension user's manual                                | 3AFE68784930   | 4)  |
| FEN-01 TTL encoder interface user's manual                               | 3AFE68784603   | 4)  |
| FEN-11 absolute encoder interface user's manual                          | 3AFE68784841   | 4)  |
| FEN-21 resolver interface user's manual                                  | 3AFE68784859   | 4)  |

<sup>1)</sup> Delivered as a printed copy with the drive or optional equipment.

 $^{2)}\,$  Delivered as a printed copy with the drive if the order includes printed manuals.

<sup>3)</sup> Delivered as a printed copy with the control program.

<sup>4)</sup> Delivered as a printed copy with the control program if the order includes printed manuals.

All manuals are available in PDF format on the Internet. See section *Document library on the Internet* on the inside of the back cover.

# CAM control program for ACSM1 drives

Supplement

3AUA0000036661 Rev A EN EFFECTIVE: 2011-02-01

© 2011 ABB Oy. All Rights Reserved.

# **Table of contents**

| Related manuals |      |      |      |      |      |      |      |      |      |      |      |  |      |      |  |  |      |      | 2     | , |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|--|------|------|--|--|------|------|-------|---|
|                 | <br> |  | <br> | <br> |  |  | <br> | <br> | <br>_ |   |

#### Table of contents

## Introduction to this supplement

| Vhat this chapter contains               | , |
|------------------------------------------|---|
| Compatibility                            | , |
| Safety instructions                      | , |
| ntended audience                         | • |
|                                          | 5 |
| Product and service inquiries            | 5 |
| Product training                         | ; |
| Providing feedback on ABB Drives manuals | ; |
| Document library on the Internet         | 5 |

## Application overview

| What this chapter contains                         |
|----------------------------------------------------|
| CAM overview                                       |
| CAM disk files                                     |
| CAM features                                       |
| CAM control                                        |
| CAM enable                                         |
| CAM start                                          |
| CAM preset                                         |
| CAM selector                                       |
| Online scaling adjustment                          |
| Operation modes                                    |
| Relative and absolute mode                         |
| Single shot and continuous                         |
| Auto-increment                                     |
| CAM application examples 12                        |
| Rotary axis flying cutter                          |
| Traverse control                                   |
| Cyclic load compensation in an amusement park ride |
| CAM control diagram (synchron reference chain) 16  |

#### Start-up

| What this chapter contains        | 1 | 7 |
|-----------------------------------|---|---|
| How to commission the application | 1 | 7 |

#### Default control connections

| What this chapter contains |  |  |  |
|----------------------------|--|--|--|
|----------------------------|--|--|--|

## Actual signals and parameters

| What this chapter contains | 21 |
|----------------------------|----|
| Terms and abbreviations    | 21 |
| 05 CAM STATUS              | 22 |
| 80 CAM_DISK                | 23 |

## CAM technology function block

| What this chapter contains                         | 25 |
|----------------------------------------------------|----|
| General                                            | 25 |
| Actual signals                                     | 26 |
| Parameters                                         | 26 |
| Terms in the parameter/signal tables               | 27 |
| Fieldbus equivalent                                | 28 |
| Fieldbus addresses                                 | 28 |
| Pointer parameter format in fieldbus communication | 28 |
| 32-bit integer value pointers                      | 28 |
| 32-bit integer bit pointers                        | 29 |
| CAM                                                | 30 |
| Description                                        | 30 |
| Inputs                                             | 31 |
| Outputs                                            | 31 |

## Fault tracing

| What this chapter contains  | 33 |
|-----------------------------|----|
| Safety                      | 33 |
| Alarm and fault indications | 33 |
| How to reset                | 33 |
| Fault history               | 34 |
| Fault messages              | 35 |

## Control block diagrams

| What this chapter contains    Synchron reference chain | 37<br>38 |
|--------------------------------------------------------|----------|
| Cyclic load compensation chain                         | 39       |
| Product and service inquiries                          | 41       |
| Product training                                       | 41       |
| Providing feedback on ABB Drives manuals               | 41       |
| Document library on the Internet                       | 41       |

6

# Introduction to this supplement

This document is a supplement to *ACSM1 Motion Control Program Firmware Manual* (3AFE68848270 [English]). The supplement covers actual signals, parameters, the technology function block, and fault and alarm messages related to the CAM control program. For other information, refer to the *Firmware Manual*.

### What this chapter contains

The chapter includes a description of the contents of the supplement. In addition, it contains information about the compatibility, safety and intended audience.

### Compatibility

The supplement is compatible with the CAM control program for ACSM1 drives (UTCA1100 and UACA1100 and later).

#### Safety instructions

Follow all safety instructions delivered with the drive.

- Read the **complete safety instructions** before you install, commission, or use the drive. The complete safety instructions are given at the beginning of the drive *Hardware Manual* (see the list of related manuals on the inside cover, page 2).
- Read the **CAM control program specific warnings and notes** before changing the default settings of the parameters and functions. For each parameter, the warnings and notes are given in chapter *Actual signals and parameters*.
- Read the **firmware function block specific warnings and notes** before changing the default settings of the function. For each firmware function block, the warnings and notes are given in the drive *Firmware Manual* in the section describing the related user-adjustable parameters.

### **Intended audience**

The reader of the supplement is expected to:

- know the standard electrical wiring practices, electronic components and electrical schematic symbols
- have a firm understanding of CAM principles.

## Contents

The supplement consists of the following chapters:

- Introduction to this supplement describes the contents of this manual.
- Application overview gives a brief overview of the CAM application.
- Start-up gives instructions for commissioning the CAM application.
- *Default control connections* shows the default control connections of the JCU Control Unit.
- *Actual signals and parameters* describes the actual signals and parameters of the CAM application.
- *CAM technology function block* describes the technology function block and lists the associated input and output parameters and signals.
- *Fault tracing* lists the CAM-specific fault messages with the possible causes and remedies.
- *Control block diagrams* presents the application program page containing the CAM control program technology block.

## **Product and service inquiries**

Address any inquiries about the product to your local ABB representative, quoting the type code and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to <u>www.abb.com/drives</u> and selecting *Drives – Sales, Support and Service network*.

## **Product training**

For information on ABB product training, navigate to <u>www.abb.com/drives</u> and select *Drives – Training courses.* 

## Providing feedback on ABB Drives manuals

Your comments on our manuals are welcome. Go to <u>www.abb.com/drives</u> and select *Document Library – Manuals feedback form (LV AC drives)*.

## Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet. Go to <u>www.abb.com/drives</u> and select *Document Library*. You can browse the library or enter selection criteria, for example a document code, in the search field.

### What this chapter contains

The chapter includes a brief overview of the CAM application and related terms.

#### **CAM** overview

The CAM application usually establishes a non-linear relationship between the master drive and follower drive where the CAM input corresponds to the master drive position and the CAM output corresponds to the follower drive position. The CAM application can also perform other functions like cyclic load compensation with torque feedforward control.

The relationship between master and follower position is given by a discrete userprogrammable set of data points that is called CAM disk. Follower positions between the data points are determined through linear interpolation.

In the CAM technology block, CAM input is represented by the IN signal, and CAM output is represented by the OUT value. The technology block can be added in a synchron reference chain (for mechanical axis synchronization) or torque reference chain (cyclic load compensation), and the CAM control logic can be modified with additional function blocks and parameters.



## CAM disk files

Use DriveCam or CAMtool to create and download CAM disk data.

DriveCam is a graphical user interface based tool. See DriveCam user guide (3AUA0000024806) for more information on DriveCam.

CAMtool is a command line tool that supports .csv import and export. CAMtool has integrated user instructions.

**Note:** The CAM technology block does not evaluate the downloaded data. Make sure that you download the correct CAM disk file for the application.

## **CAM** features

#### **CAM** control

#### CAM enable

You can enable the CAM profile with CAM enable (ENA). If the CAM is not enabled, output data is unmodified input data. The command location is selected by parameter *80.01* CAM ENABLE.

#### CAM start

CAM output data calculation starts at the rising edge of CAM start (Start). The calculation ends when the maximum value of CAM input data is reached after descending edge of CAM start (the continuous mode) or after the maximum value of CAM input data is reached once (the single shot mode). The command location is selected by parameter *80.02* CAM START.

#### CAM preset

CAM preset sets the OUT value of the CAM technology function block. In the relative mode (see *Operation modes* on page *11*), the firmware presets the synchron reference chain to POS ACT during the start. Therefore, to avoid jerks and undesired error values in the controller, CAM preset may be needed in such applications.

See parameters 5.06, 80.04, 80.05, 80.06 and 80.07.

#### CAM selector

You can change the CAM data table in use with parameter 80.03 CAM SELECTOR (Sel).

#### **Online scaling adjustment**

No offset

With offset to maximum input value (MaxOffs1...4), you can change the scaling between input and output. In the example below, an offset of 0.2 is used.

Offset = 0.2



You can determine the maximum position offset values with parameters *80.08...80.11*.

#### **Operation modes**

Operation modes determine the behavior of the CAM technology block after the end position of a CAM is reached. Like position data, operation modes are programmed in DriveCam or CAMtool, and are part of the CAM disk file.

#### Relative and absolute mode

In the relative mode, the follower position is relative to the end position of the previous CAM. In other words, the CAM output value is added to the previous end position to determine the follower position.

In the absolute mode, the follower position is reset each time a CAM is started.



#### Single shot and continuous

In the single shot mode, the CAM is run once when started. The follower remains at its end position until you give a new start command.

In the continuous mode, the CAM is run repeatedly as long as CAM enable and CAM start are active.

#### Auto-increment

If the auto-increment mode is used with the continuous mode, the CAM control program automatically moves onto the next CAM in the profile when the end position is reached. If the end of the last CAM is reached, the first CAM in the profile is executed.

If the auto-increment mode is used with the single shot mode, the selected CAM is run once, but the selected CAM does not change automatically when the end position is reached. Instead, when CAM start is activated again, the next CAM is selected and run once.

If the reference is negative and the beginning of a CAM is reached, the previous CAM is executed instead, and when the beginning of the first CAM is reached, the last CAM is executed.

If the auto-increment mode is not enabled, the selected CAM does not change after the end position is reached.



## **CAM** application examples

The following examples present some typical applications where the CAM can be used. Note that the examples only demonstrate the principles of the applications, and contain no information on homing, safety considerations and other issues that depend on the specifics of the application in question.

#### Rotary axis flying cutter

Rotary cutters are used for cutting continuous feed material into a set length. In the rotary cut application it is usually necessary to synchronize the speed of the follower drive with that of the master drive. The master drive controls feeding the material (eg a conveyor belt) and the follower drive controls the rotary axis on which the cutting blade is mounted. The master speed usually remains constant, but the follower speed varies according to



but the follower speed varies according to the CAM table.

An encoder and a motion controller monitor the position and speed of the master (conveyor belt). The encoder input determines when a CAM start is given and the rotary axis begins its motion.

In the following example, the follower has the following phases:

- The rotary axis is in its initial position where the cutting blade is near the feed material.
- Once the CAM start signal is received (eg from a sensor), the follower (rotary axis) accelerates its surface speed to match the linear speed of the master (conveyor belt).
- During the cutting phase, the follower speed remains constant and equal to the master speed.

- After the cutting phase, the follower first accelerates and then decelerates to complete the revolution to its initial position.
- The follower remains in this position until a new CAM start signal is received.

The cutting action and returning the follower to its initial position take place over a defined master distance.

Rotary axis flying cutter



#### **Traverse control**

For example, in cable manufacturing, winders are used for winding cable onto a reel. In the following example, a CAM table is used for moving the follower back and forth from left to right so that the cable is wound evenly onto the reel.

Measurement of the cable movement can be simulated by using the virtual master function which creates position information based on the given speed.



#### Traverse control



#### Cyclic load compensation in an amusement park ride

The CAM can be used in applications where a rotating eccentric mass causes variation in rotational speed. In cyclic load compensation, the CAM data table is based on measured, calculated or estimated torque of the rotating object at each stage of the rotation. The CAM data table compensates for the torsional variance by accelerating and decelerating the object according to the rotational profile of the object.

This type of torsional variance is common in amusement park rides. Although the ride may have a counterweight to offset the eccentric mass, there is always variance in the total mass because the number of people and their total mass is different each time the ride is used. Therefore, cyclic load compensation may be necessary.

The downward force *F* equals mass *m* times the Earth's gravity *g*. When the force vector is perpendicular to the shaft, the torque *M* equals *F* times *r*. At other times, the perpendicular component of the force can be calculated with  $sin(\varphi)$ , where  $\varphi$  is the angle between the shaft and the force vector. Therefore:

 $M = Fr \cdot \sin(\varphi)$ 

To offset the torsional variance, a torque equal in magnitude but opposite in direction must be applied to the shaft. Therefore, the CAM table for the application resembles the sine wave.



The component of the force that is perpendicular to the shaft determines the torque at a given moment.

The control block diagram for cyclic load compensation is presented in *Cyclic load compensation chain* on page 39.



## CAM control diagram (synchron reference chain)

The following control diagram applies to mechanical axis synchronization (eg, rotary axis flying shear or traverse control).

Application overview

## What this chapter contains

This chapter describes the basic commissioning procedure of the application. These instructions are intended for a demo case configuration with which the functionality of the CAM application can be tested.

## How to commission the application

If an alarm or a fault is generated during the commissioning, see chapter *Fault tracing* on page 33 (faults generated by the CAM control program) or chapter *Fault tracing* in the drive *Firmware Manual* (other alarms and faults) for the possible causes and remedies.

|                       | DRIVE COMMISSIONING                                                                                                                                                                                             |                 |  |  |  |  |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|
|                       | Commission the drive according to the start-up instructions in the drive <i>Firmware Manual</i> .<br>Ensure that the following parameters have appropriate values:                                              |                 |  |  |  |  |  |  |  |
|                       | Firmware limits:<br>• 20.01 MAXIMUM SPEED<br>• 20.02 MINIMUM SPEED<br>• 20.06 MAXIMUM TORQUE<br>• 20.07 MINIMUM TORQUE                                                                                          | Firmware Manual |  |  |  |  |  |  |  |
|                       | <ul><li>Firmware parameter groups for drive control:</li><li>10 DRIVE LOGIC (Start function and start/stop source)</li></ul>                                                                                    | Firmware Manual |  |  |  |  |  |  |  |
|                       | APPLICATION COMMISSIONING                                                                                                                                                                                       |                 |  |  |  |  |  |  |  |
| The f<br>used<br>Note | The following start-up data can be used to set up a speed synchronization CAM application to be used with the CAM control program.<br><b>Note:</b> A custom application is needed for cyclic load compensation. |                 |  |  |  |  |  |  |  |
|                       | Entering motor data                                                                                                                                                                                             |                 |  |  |  |  |  |  |  |
|                       | Set up motor parameters.                                                                                                                                                                                        | Firmware Manual |  |  |  |  |  |  |  |
|                       | Perform ID run.                                                                                                                                                                                                 | Firmware Manual |  |  |  |  |  |  |  |
|                       | Encoder configuration                                                                                                                                                                                           |                 |  |  |  |  |  |  |  |
|                       | Configure an encoder for speed measurement as per the start-up instructions in the <i>Firmware Manual</i> .                                                                                                     | Firmware Manual |  |  |  |  |  |  |  |
| lf a s                | If a second encoder is not used as the synchron reference, set the following two parameters:                                                                                                                    |                 |  |  |  |  |  |  |  |
|                       | Set 67.1 SYNC REF SEL to VIRT MAST.                                                                                                                                                                             |                 |  |  |  |  |  |  |  |

|       | Set 67.2 VIRT MAS REF SEL to AI1.                                |  |  |  |  |  |  |  |  |
|-------|------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|       | In DriveCam, download a profile into the drive.                  |  |  |  |  |  |  |  |  |
|       | Set I/O board DIs                                                |  |  |  |  |  |  |  |  |
|       | Set DI2 (SYNCHRON MODE) to TRUE.                                 |  |  |  |  |  |  |  |  |
|       | Set DI4 (CAM ENABLE) to TRUE.                                    |  |  |  |  |  |  |  |  |
|       | Set DI5 (CAM START) to TRUE.                                     |  |  |  |  |  |  |  |  |
|       | Test start                                                       |  |  |  |  |  |  |  |  |
|       | Start the drive with DI1.                                        |  |  |  |  |  |  |  |  |
|       | Set the speed of the synchron reference virtual master with AI1. |  |  |  |  |  |  |  |  |
| The o | The drive executes the CAM profile with speed given in AI1.      |  |  |  |  |  |  |  |  |

## What this chapter contains

This chapter shows the default control connections of the JCU Control Unit.

More information on the connectivity of the JCU is given in the *Hardware Manual* of the drive.

The figure below shows the default external control connections for the CAM control.

|                                  |                                                                                                                                                                                               |                                              | X1                                                      |                                         |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|-----------------------------------------|
| Notes:                           | External power input                                                                                                                                                                          | +24VI                                        | 1                                                       |                                         |
| *Total maximum current: 200      | 24 V DC, 1.6 A                                                                                                                                                                                | GND                                          | 2                                                       |                                         |
|                                  |                                                                                                                                                                                               |                                              | X2                                                      |                                         |
|                                  | Relay output: Brake close/open                                                                                                                                                                | NO                                           | 1                                                       |                                         |
|                                  | 250 V AC / 30 V DC                                                                                                                                                                            | COM                                          | 2                                                       |                                         |
| 1) Selected by parameter         | 2 A                                                                                                                                                                                           | NC                                           | 3                                                       |                                         |
| 12.01 DIO1 CONF.                 |                                                                                                                                                                                               |                                              | X3                                                      |                                         |
| 2) Selected by parameter         | +24 V DC*                                                                                                                                                                                     | +24VD                                        | 1                                                       |                                         |
| 12.02 DIO2 CONF.                 | Digital I/O ground                                                                                                                                                                            | DGND                                         | 2                                                       |                                         |
| 3) Selected by parameter         | Digital input 1: Stop/start (par. 10.02 and 10.05)                                                                                                                                            | DI1                                          | 3                                                       |                                         |
| 12.03 DIO3 CONE                  | Digital input 2: EXT1/EXT2 (par. 34.01) <sup>6)</sup>                                                                                                                                         | DI2                                          | 4                                                       |                                         |
| 1) Sologtad by jumpar 11         | +24 V DC*                                                                                                                                                                                     | +24VD                                        | 5                                                       |                                         |
| 4) Selected by Jumper 51.        | Digital I/O ground                                                                                                                                                                            | DGND                                         | 6                                                       |                                         |
| 5) See the drive <i>Firmware</i> | Digital input 3: Fault reset (par. 10.08) <sup>6)</sup>                                                                                                                                       | DI3                                          | 7                                                       |                                         |
| Manual.                          | Digital input 4: CAM enable (par 80.01)                                                                                                                                                       | DI4                                          | 8                                                       |                                         |
|                                  | +24 V DC*                                                                                                                                                                                     | +24VD                                        | 9                                                       |                                         |
|                                  | Digital I/O ground                                                                                                                                                                            | DGND                                         | 10                                                      |                                         |
|                                  | Digital input 5: CAM start (par 80.02)                                                                                                                                                        | DI5                                          | 11                                                      |                                         |
| Current:                         | Digital input 6: Not connected                                                                                                                                                                | DI6                                          | 12                                                      |                                         |
|                                  | +24 V DC*                                                                                                                                                                                     | +24VD                                        | 13                                                      |                                         |
| J1/2 <b>00</b> 00                | Digital I/O ground                                                                                                                                                                            | DGND                                         | 14                                                      |                                         |
| Voltage:                         | Digital input/output 1 <sup>1)</sup> : <b>Ready</b>                                                                                                                                           | DIO1                                         | 15                                                      |                                         |
| voltago.                         | Digital input/output 2 <sup>2)</sup> : Running                                                                                                                                                | DIO2                                         | 16                                                      |                                         |
| J1/2 00 <b>0</b>                 | +24 V DC*                                                                                                                                                                                     | +24VD                                        | 17                                                      |                                         |
|                                  | Digital I/O ground                                                                                                                                                                            | DGND                                         | 18                                                      |                                         |
|                                  | Digital input/output 3 3): Fault                                                                                                                                                              | DIO3                                         | 19                                                      |                                         |
|                                  | · _ · _ ·                                                                                                                                                                                     |                                              | X4                                                      |                                         |
|                                  | Reference voltage (+)                                                                                                                                                                         | +VREF                                        | 1                                                       |                                         |
|                                  | Reference voltage (–)                                                                                                                                                                         | -VREF                                        | 2                                                       |                                         |
|                                  | Ground                                                                                                                                                                                        | AGND                                         | 3                                                       | Î                                       |
|                                  | Analogue input 1 (mA or V) <sup>4</sup> ): Speed reference                                                                                                                                    | Al1+                                         | 4                                                       |                                         |
|                                  | (par. 24.01) <sup>5)</sup>                                                                                                                                                                    | Al1–                                         | 5                                                       |                                         |
|                                  |                                                                                                                                                                                               | Al2+                                         | 6                                                       |                                         |
|                                  | Analogue input 2 (mA or V): Not connected                                                                                                                                                     | Al2–                                         | 7                                                       |                                         |
|                                  | Al1 current/voltage selection                                                                                                                                                                 |                                              | J1                                                      |                                         |
|                                  | Al2 current/voltage selection                                                                                                                                                                 |                                              | J2                                                      |                                         |
|                                  | Thermistor input                                                                                                                                                                              | TH                                           | 8                                                       |                                         |
|                                  | Ground                                                                                                                                                                                        | AGND                                         | 9                                                       |                                         |
|                                  | Analogue output 1 (mA): Output current                                                                                                                                                        | AO1 (I)                                      | 10                                                      |                                         |
|                                  | Analogue output 2 (V): Actual speed                                                                                                                                                           | AO2 (U)                                      | 11                                                      |                                         |
|                                  | Ground                                                                                                                                                                                        | AGND                                         | 12                                                      | $\overline{\bigcirc} \bigcirc \bigcirc$ |
|                                  |                                                                                                                                                                                               | -                                            | X5                                                      |                                         |
|                                  |                                                                                                                                                                                               |                                              |                                                         |                                         |
|                                  | Drive-to-drive link termination                                                                                                                                                               |                                              | .J3                                                     |                                         |
|                                  | Drive-to-drive link termination                                                                                                                                                               | В                                            | J3<br>1                                                 |                                         |
|                                  | Drive-to-drive link termination                                                                                                                                                               | B                                            | J3<br>1<br>2                                            |                                         |
|                                  | Drive-to-drive link termination<br>Drive-to-drive link                                                                                                                                        | B<br>A<br>BGND                               | J3<br>1<br>2<br>3                                       |                                         |
|                                  | Drive-to-drive link termination<br>Drive-to-drive link                                                                                                                                        | B<br>A<br>BGND                               | J3<br>1<br>2<br>3<br><b>X6</b>                          |                                         |
|                                  | Drive-to-drive link termination<br>Drive-to-drive link                                                                                                                                        | B<br>A<br>BGND                               | J3<br>1<br>2<br>3<br><b>X6</b><br>1                     |                                         |
|                                  | Drive-to-drive link termination Drive-to-drive link Safe torque off. Both circuits must be closed for                                                                                         | B<br>A<br>BGND<br>OUT1<br>OUT2               | J3<br>1<br>2<br>3<br><b>X6</b><br>1<br>2                |                                         |
|                                  | Drive-to-drive link termination Drive-to-drive link Safe torque off. Both circuits must be closed for the drive to start. See the appropriate drive                                           | B<br>A<br>BGND<br>OUT1<br>OUT2<br>IN1        | J3<br>1<br>2<br>3<br><b>X6</b><br>1<br>2<br>3           |                                         |
|                                  | Drive-to-drive link termination Drive-to-drive link Safe torque off. Both circuits must be closed for the drive to start. See the appropriate drive Hardware Manual.                          | B<br>A<br>BGND<br>OUT1<br>OUT2<br>IN1<br>IN2 | J3<br>1<br>2<br>3<br><b>X6</b><br>1<br>2<br>3<br>4      |                                         |
|                                  | Drive-to-drive link termination Drive-to-drive link Safe torque off. Both circuits must be closed for the drive to start. See the appropriate drive Hardware Manual. Control panel connection | B<br>A<br>BGND<br>OUT1<br>OUT2<br>IN1<br>IN2 | J3<br>1<br>2<br>3<br><b>X6</b><br>1<br>2<br>3<br>4<br>4 |                                         |

## What this chapter contains

The chapter describes the actual signals and parameters related to the CAM control program. For other actual signals and parameters, refer to the drive *Firmware Manual*.

The range and default value, when applicable, as well as a page number for more detailed information are given for each signal and parameter. The page number refers to the related technology function block in chapter *CAM technology function block* on page *25*.

#### Terms and abbreviations

The table defines the terms and abbreviations used in the parameter and actual signal tables.

| Term            | Definition                                                                                                                                                                                                                                                      |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Actual signal   | Signal measured or calculated by the drive. Can be monitored by the user. No user setting possible.                                                                                                                                                             |
| Parameter       | A user-adjustable operation instruction of the drive.                                                                                                                                                                                                           |
| Val./Def.       | On a parameter row: Parameter default value.<br>On rows under the parameter row: Parameter alternative values (for<br>parameters with value names).                                                                                                             |
| Page            | Page in chapter <i>CAM technology function block</i> where the signal or parameter is listed as an input or output to a technology function block. More information on the signal or parameter, for example type, unit and fieldbus equivalent are shown there. |
| C.False, C.True | When adjusting a bit pointer parameter on the control panel, value 0 (FALSE) is displayed as "C.FALSE" and value 1 (TRUE) as "C.TRUE". See also <i>Bit ptr</i> on page 27.                                                                                      |
| P.xx.yy         | A value pointer points to the value of another parameter/signal. The source parameter is given in format <b>P.xx.yy</b> , where $xx =$ parameter group, $yy =$ parameter index. See also <i>Val ptr</i> on page 27.                                             |

| Index | Name/Value               | Descrip            | otion                                                           |             |                                                                      | Val./Def. | Page |
|-------|--------------------------|--------------------|-----------------------------------------------------------------|-------------|----------------------------------------------------------------------|-----------|------|
| 05 C  | AM STATUS                | Signals            | for monitoring the                                              | CAM         | l (read-only)                                                        |           |      |
| 5.01  | CAM OUTPUT               | CAM ou             | itput value.                                                    |             |                                                                      |           | 31   |
|       | -3276832768              | Range.             | The unit varies.                                                |             |                                                                      |           |      |
| 5.02  | CAM X AXIS VAL           | CAM m              | aster axis value.                                               |             |                                                                      |           | -    |
|       | -3276832768              |                    |                                                                 |             |                                                                      |           |      |
| 5.03  | CAM USED DISK            | CAM di             | sk number currentl                                              | v in u      | use. The value is zero when no disk                                  |           | -    |
|       |                          | has bee            | en run.                                                         |             |                                                                      |           |      |
|       | 032                      | CAM di             | sk number in use.                                               |             |                                                                      |           |      |
| 5.04  | CAM STATUS               | The sta            | he status of CAM.                                               |             |                                                                      |           | 31   |
|       |                          |                    |                                                                 |             |                                                                      |           |      |
|       |                          | Bit                | Name                                                            | Val.        | Description                                                          |           |      |
|       |                          | 0                  | Enable                                                          | 0           | CAM is not enabled.                                                  |           |      |
|       |                          |                    |                                                                 | 1           | CAM is enabled.                                                      |           |      |
|       |                          | 1                  | Start                                                           | 0           | CAM is not started.                                                  |           |      |
|       |                          |                    |                                                                 | 1           | CAM is started.                                                      |           |      |
|       |                          | 2                  | Running                                                         | 0           | CAM is not running.                                                  |           |      |
|       |                          |                    |                                                                 | 1           | CAM is running.                                                      |           |      |
|       |                          | 3                  | SingleShotDone                                                  | 0           | CAM not stopped.                                                     |           |      |
|       |                          |                    |                                                                 | 1           | Single shot done or CAM stopped.                                     |           |      |
|       |                          | 4                  | StartPending                                                    | 0           | CAM start not pending.                                               |           |      |
|       |                          |                    |                                                                 | 1           | New CAM start is pending.                                            |           |      |
|       |                          | 5                  | OffsetsReady                                                    | 0           | Not ready to run.                                                    |           |      |
|       |                          |                    |                                                                 | 1           | CAM is ready to run after changed offsets.                           |           |      |
|       |                          | 6                  | PresetDone                                                      | 0           | CAM preset is not done.                                              |           |      |
|       |                          |                    |                                                                 | 1           | CAM preset is done.                                                  |           |      |
|       |                          | 715                | Not used                                                        |             |                                                                      |           |      |
|       |                          |                    |                                                                 |             |                                                                      |           |      |
|       |                          |                    |                                                                 |             |                                                                      |           |      |
| 5.05  | CAMERROR                 | Shows              | system errors in C                                              | AM.         |                                                                      | 0         | 31   |
|       | no error                 | No erro            | rs.                                                             |             |                                                                      | 0         |      |
|       | ERROR_FILE_<br>NOT_FOUND | CAM da             | ata file not found.                                             |             |                                                                      | 1         |      |
|       | ERROR_FILE_<br>LOAD_FAIL | CAM da             | ata file loading faile                                          | d.          |                                                                      | 2         |      |
|       | ERROR_OUT_<br>OF_MEMORY  | Not end            | Not enough memory. The CAM data file size is too large to load. |             |                                                                      |           |      |
| 5.06  | CAM SP STAT              | The Ne<br>the rela | edToPreset bit is T<br>tive mode is used                        | RUE<br>Bv d | if the synchron mode is not used and efault, NeedToPreset is the CAM |           | -    |
|       |                          | preset o           | command bit.                                                    | , .         |                                                                      |           |      |
|       |                          | Bit                | Name                                                            | Val.        | Description                                                          |           |      |
|       |                          | 0                  | NeedToPreset                                                    | 0           | CAM preset is not used.                                              |           |      |
|       |                          |                    |                                                                 | 1           | Enable CAM preset.                                                   |           |      |
|       |                          |                    |                                                                 | •           | •                                                                    |           |      |

| Index | Name/Value     | Description                                                                                                       | Val./Def. | Page |
|-------|----------------|-------------------------------------------------------------------------------------------------------------------|-----------|------|
|       | 0              | NeedToPreset                                                                                                      | 0         |      |
| 80 C  | AM_DISK        | CAM control                                                                                                       |           |      |
| 80.01 | CAM ENABLE     | Pointer to CAM enable command bit. The default is parameter 2.01 bit 3 which corresponds to DI4.                  | 2.01.03   | 31   |
| 80.02 | CAM START      | Pointer to CAM start command bit. The default is parameter 2.01 bit 4 which corresponds to DI5.                   | 2.01.04   | 31   |
| 80.03 | CAM SELECTOR   | CAM disk selector. Up to 32 different CAMs.                                                                       | 1         | 31   |
|       | 0              | No CAM selected; input goes directly to output.                                                                   |           |      |
|       | 132            | The number of CAM selected.                                                                                       |           |      |
| 80.04 | CAM PRESET     | Pointer to CAM preset command bit. The default is parameter 5.06<br>CAM SP STAT bit 0 (NeedToPreset).             | 5.06.00   | 31   |
| 80.05 | PRESET FUNC    | Determines if OUT remains at preset after an update cycle has elapsed.                                            | 0         | -    |
|       | 0              | Normal. In this mode, OUT remains at preset as long as the preset source bit (determined by 80.04) is TRUE.       |           |      |
|       | 1              | Pulse. OUT remains at preset until an update cycle (ie, the time level of the technology block) has elapsed.      |           |      |
| 80.06 | PRESET VAL PTR | Pointer to the parameter that determines the CAM preset value. The default is parameter 4.16 SYNC REF G.          | 4.16      | -    |
| 80.07 | PRESET VALUE   | Can be used as a constant value for CAM preset if parameter 80.06 is set to 80.07, ie to point at this parameter. | 0         | 31   |
|       | -3276832767    | The unit varies.                                                                                                  |           |      |
| 80.08 | MAX OFFSET1    | Master maximum position offset 1. The offset value is added to the maximum value in CAM data file.                | 0         | 31   |
|       | -3276832767    | The unit varies.                                                                                                  |           |      |
|       |                |                                                                                                                   |           |      |
| 80.11 | MAX OFFSET4    | Master maximum position offset 4.                                                                                 | 0         | 31   |
|       | -3276832767    | The unit varies.                                                                                                  |           |      |

# **CAM technology function block**

## What this chapter contains

This chapter describes the CAM technology function block and lists the associated input and output signals and parameters.

## General

The drive control program is divided into two parts:

- firmware program
- **Firmware** Application program Speed control Function block program Firmware Torque control function Custom circuits Drive logic blocks I/O interface M (parameter Standard Technology Fieldbus interface and signal function block function block Protections interface) library library Communication
- application program.



The firmware program performs the main control functions, including speed and torque control, drive logic (start/stop), I/O, feedback, communication and protection functions. Firmware functions are configured and programmed with parameters. The functions of the firmware program can be extended with the application program. Application programs are built out of function blocks: Firmware, standard and technology function blocks.

Technology function blocks are application specific blocks. Custom circuits are application specific blocks built with standard blocks. Technology function blocks are fixed while custom circuits can be modified by the user.

Firmware function blocks and standard function blocks are described in the drive *Firmware Manual*. The CAM technology function block is described in this supplement.

The drive supports two different programming methods:

- parameter programming
- programming with function blocks based on the IEC-61131 standard.

#### **Actual signals**

Actual signals are signals measured or calculated by the drive. They are normally used for monitoring and diagnostics, and cannot be adjusted by the user. CAM-specific actual signals are in group 5.

For additional signal data, e.g. description, see chapter *Actual signals and parameters* on page 21.

#### Parameters

Parameters are user-adjustable operation instructions of the drive. CAM-specific actual signals are in group 80.

For additional parameter data, e.g. description and possible value selection list, see chapter *Actual signals and parameters* on page 21.

## Terms in the parameter/signal tables

| Term          | Definition                                                                                                                                                                                                                   |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Actual signal | Signal measured or calculated by the drive. Can be monitored by the user. No user setting is possible.                                                                                                                       |
| Data len.     | Length of data for fieldbus. May be different from the actual data length in the drive software.                                                                                                                             |
| Def           | Default value                                                                                                                                                                                                                |
| Enum          | Enumerated list, i.e. selection list                                                                                                                                                                                         |
| FbEq          | Fieldbus equivalent: The scaling between the value shown on the panel and the integer used in serial communication                                                                                                           |
| INT32         | 32-bit integer value (31 bits + sign)                                                                                                                                                                                        |
| Bit ptr       | Bit pointer. A bit pointer parameter points to the value of a bit in another signal, or can be fixed to 0 (FALSE) or 1 (TRUE).                                                                                               |
|               | When adjusting a bit pointer parameter on the optional control panel, CONST is selected in order to fix the value to 0 (displayed as "C.FALSE") or 1 ("C.TRUE"). POINTER is selected to define a source from another signal. |
|               | A pointer value is given in format <b>P.xx.yy.zz</b> , where xx = parameter group,<br>yy = parameter index, zz = bit number.                                                                                                 |
|               | Example: Digital input DI4, 2.01 DI STATUS bit 4, is used as the enable for CAM block.                                                                                                                                       |
| Val ptr       | Value pointer. A value pointer points to the value of another parameter/signal. The source parameter is given in format <b>P.xx.yy</b> , where $xx =$ parameter group, $yy =$ parameter index.                               |
|               | Example: Signal 4.16 SYNC REF G is used as the source for presetting the CAM block.                                                                                                                                          |
| Ρ.            | Page in chapter <i>Actual signals and parameters</i> where the description and possible value selection list for the signal or parameter are shown                                                                           |
| Parameter     | A user-adjustable operation instruction of the drive                                                                                                                                                                         |
| Pb            | Packed boolean                                                                                                                                                                                                               |
| PT            | Parameter protection type. See WP and WPD.                                                                                                                                                                                   |
| REAL          | 16-bit value 16-bit value (31 bits + sign)                                                                                                                                                                                   |
|               | = integer value = fractional value                                                                                                                                                                                           |
| REAL24        | 8-bit value 24-bit value (31 bits + sign)                                                                                                                                                                                    |
|               | = integer value = fractional value                                                                                                                                                                                           |
| Signal        | See Actual signal.                                                                                                                                                                                                           |
| Туре          | Data type. See Enum, INT32, Bit ptr, Val ptr, Pb, REAL, REAL24, UINT32.                                                                                                                                                      |
| UINT32        | 32-bit unsigned integer value                                                                                                                                                                                                |
| WP            | Write protected parameter (i.e. read only)                                                                                                                                                                                   |
| WPD           | Write protected parameter while the drive is running                                                                                                                                                                         |

## **Fieldbus equivalent**

Serial communication data between fieldbus adapter and drive is transferred in integer format. Thus the drive actual and reference signal values must be scaled to 16/32-bit integer values. Fieldbus equivalent defines the scaling between the signal value and the integer used in serial communication.

All the read and sent values are limited to 16/32 bits.

## **Fieldbus addresses**

For FPBA-01 Profibus Adapter, FDNA-01 DeviceNet Adapter and FCAN-01 CANopen Adapter, see the *User's Manual* of the fieldbus adapter module.

## Pointer parameter format in fieldbus communication

Value and bit pointer parameters are transferred between the fieldbus adapter and drive as 32-bit integer values.

#### 32-bit integer value pointers

When value pointer parameter is connected to the value of another parameter or signal, the format is as follows:

|             | Bit                                                   |            |                              |                              |  |  |  |
|-------------|-------------------------------------------------------|------------|------------------------------|------------------------------|--|--|--|
|             | 3031                                                  | 1629       | 815                          | 07                           |  |  |  |
| Name        | Source type                                           | Not in use | Group                        | Index                        |  |  |  |
| Value       | 1                                                     | -          | 1255                         | 1255                         |  |  |  |
| Description | Value pointer is<br>connected to<br>parameter/signal. | -          | Group of source<br>parameter | Index of source<br>parameter |  |  |  |

When value pointer parameter is connected to a application program, the format is as follows:

|             | Bit                                                      |            |                                                        |  |  |  |  |
|-------------|----------------------------------------------------------|------------|--------------------------------------------------------|--|--|--|--|
|             | 3031                                                     | 2429       | 023                                                    |  |  |  |  |
| Name        | Source type                                              | Not in use | Address                                                |  |  |  |  |
| Value       | 2                                                        | -          | 02 <sup>23</sup>                                       |  |  |  |  |
| Description | Value pointer is<br>connected to application<br>program. | -          | Relative address of<br>application program<br>variable |  |  |  |  |

**Note:** Value pointer parameters connected to a application program cannot be set through fieldbus (i.e. read access only).

#### 32-bit integer bit pointers

When bit pointer parameter is connected to value 0 or 1, the format is as follows:

|             | Bit                              |            |                     |  |  |  |  |  |
|-------------|----------------------------------|------------|---------------------|--|--|--|--|--|
|             | 3031                             | 1629       | 0                   |  |  |  |  |  |
| Name        | Source type                      | Not in use | Value               |  |  |  |  |  |
| Value       | 0                                | -          | 01                  |  |  |  |  |  |
| Description | Bit pointer is connected to 0/1. | -          | 0 = False, 1 = True |  |  |  |  |  |

When bit pointer is connected to a bit value of another signal, the format is as follows:

|             | Bit                                                    |            |               |                                 |                                 |  |  |  |
|-------------|--------------------------------------------------------|------------|---------------|---------------------------------|---------------------------------|--|--|--|
|             | 3031                                                   | 2429       | 1623          | 815                             | 07                              |  |  |  |
| Name        | Source type                                            | Not in use | Bit sel       | Group                           | Index                           |  |  |  |
| Value       | 1                                                      | -          | 031           | 2255                            | 1255                            |  |  |  |
| Description | Bit pointer is<br>connected to<br>signal bit<br>value. | -          | Bit selection | Group of<br>source<br>parameter | Index of<br>source<br>parameter |  |  |  |

When bit pointer parameter is connected to a application program, the format is as follows:

|             | Bit                                              |               |                                                        |  |  |  |  |
|-------------|--------------------------------------------------|---------------|--------------------------------------------------------|--|--|--|--|
|             | 3031                                             | 2429          | 023                                                    |  |  |  |  |
| Name        | Source type                                      | Bit sel       | Address                                                |  |  |  |  |
| Value       | 2                                                | 031           | 02 <sup>23</sup>                                       |  |  |  |  |
| Description | Bit pointer is connected to application program. | Bit selection | Relative address of<br>application program<br>variable |  |  |  |  |

**Note:** Bit pointer parameters connected to a application program cannot be set through fieldbus (i.e. read access only).

## CAM

Technology block



### Description

The CAM technology block establishes a non-linear relationship between the master drive and follower drive. See *CAM overview* on page 9.

30

## Inputs

| Index   | Signal/Parameter              | Туре       | Range          | Unit | FbEq   | Р. | Data<br>len. | Def | РТ |
|---------|-------------------------------|------------|----------------|------|--------|----|--------------|-----|----|
| n/a     | Data input (IN)               | Val ptr    | -3276832768    | -    | 1 = 1  | -  | 32           | -   | -  |
| 80.01   | CAM enable (ENA)              | Bit ptr    | -              | -    | 1 = 1  | 23 | 32           | -   | -  |
| 80.02   | CAM start (START)             | Bit ptr    | -              | -    | 1 = 1  | 23 | 32           | -   | -  |
| 80.03   | CAM selector (Sel)            | Val ptr    | 032            | -    | 1 = 1  | 23 | 32           | 1   | -  |
| 80.04   | CAM preset (Preset)           | Bit ptr    | -              | -    | 1 = 1  | 23 | 32           | 0   | -  |
| 80.07   | Preset value<br>(PresetValue) | Val ptr    | -3276832768    | *    | 1 = 10 | 23 | 32           | 0   | -  |
| 80.08   | Max offset 1<br>(MaxOffs1)    | Val ptr    | -3276832768    | *    | 1 = 10 | 23 | 32           | 0   | -  |
| 80.09   | Max offset 2<br>(MaxOffs2)    | Val ptr    | -3276832768    | *    | 1 = 10 | 23 | 32           | 0   | -  |
| 80.10   | Max offset 3<br>(MaxOffs3)    | Val ptr    | -3276832768    | *    | 1 = 10 | 23 | 32           | 0   | -  |
| 80.11   | Max offset 4<br>(MaxOffs4)    | Val ptr    | -3276832768    | *    | 1 = 10 | 23 | 32           | 0   | -  |
| * The u | unit depends on the valu      | e of the p | arameter 60.05 |      |        |    |              |     |    |

## Outputs

| Index   | Signal/Parameter                                       | Туре | Range       | Unit | FbEq           | P. | Data<br>len. | Def      | PT |
|---------|--------------------------------------------------------|------|-------------|------|----------------|----|--------------|----------|----|
| 5.01    | Data output (Out)                                      | REAL | -3276832768 | *    | PosScali<br>ng | 22 | -            | 0.120    | -  |
| 5.04    | CAM status (Status)                                    | Pb   | 031         | -    | 1 = 1          | 22 | 32           | 0b00000  | -  |
| 5.05    | CAM error (Error)                                      | Enum | 03          | -    |                | 22 | 16           | No error | -  |
| * The u | * The unit depends on the value of the parameter 60.05 |      |             |      |                |    |              |          |    |

## What this chapter contains

The chapter lists the alarm and fault messages generated by the CAM control program only. Messages are listed with the possible cause and corrective actions. For the listing of other alarm and fault messages, see the drive *Firmware Manual*.

## Safety



**WARNING!** Only qualified electricians are allowed to maintain the drive. Read the *Safety Instructions* on the first pages of the drive *Firmware Manual* before you start working with the drive.

## Alarm and fault indications

An alarm or a fault message indicates an abnormal drive status. You can identify and correct most alarm and fault causes using this information. If not, contact an ABB representative.

The four-digit code number in brackets after the message is for the fieldbus communication.

The alarm/fault code is displayed on the 7-segment display of the drive. The following table describes the indications given by the 7-segment display.

| Display                       | Meaning                                                           |
|-------------------------------|-------------------------------------------------------------------|
| "E" followed by<br>error code | System error. See the drive Hardware Manual.                      |
| "A" followed by<br>error code | Alarm. See the Firmware Manual. There are no CAM-specific alarms. |
| "F" followed by<br>error code | Fault. See section <i>Fault messages</i> on page 35.              |

#### How to reset

The drive can be reset either by pressing the reset key on the PC tool (•) or control panel (**RESET**) or switching the supply voltage off for a while. When the fault has been removed, the motor can be restarted.

A fault can also be reset from an external source by parameter 10.08 FAULT RESET SEL.

## Fault history

When a fault is detected, it is stored in the fault logger with a time stamp. The fault history stores information on the 16 latest faults of the drive. Three of the latest faults are stored at the beginning of a power switch off.

Signals 8.01 ACTIVE FAULT and 8.02 LAST FAULT store the fault codes of the most recent faults.

Alarms can be monitored with alarm words 8.05...8.07 ALARM WORD 1...3. Alarm information is lost at power switch off or fault reset.

## Fault messages

| ( | Code | Alarm<br>(fieldbus code)      | Cause                                                          | What to do                                                               |
|---|------|-------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------|
| 5 | 56   | TECH LIB CRITICAL<br>(0x6382) | CAM is enabled although no<br>CAM data has been<br>downloaded. | Load a profile into the drive. The drive reboots and the fault is reset. |

## What this chapter contains

This chapter presents the application program pages containing the CAM control program technology block.

### Synchron reference chain



## Cyclic load compensation chain



|                                | REFERENCE CTRL 29                       |  |  |
|--------------------------------|-----------------------------------------|--|--|
|                                | MISC_1 250 µsec (3)                     |  |  |
|                                | 3.13 TORQ REF TO TC<br>6.12 OP MODE ACK |  |  |
| (Drive value)                  | < 34.01 EXT1/EXT2 SEL                   |  |  |
| (Drive value)                  | < 34.02 EXT1 MODE 1/2SEL                |  |  |
| (Drive value)                  | 34.03 EXT1 CTRL MODE1                   |  |  |
| (Drive value)                  | 34.04 EXT1 CTRL MODE2                   |  |  |
| Synchron ]                     | 34.05 EXT2 CTRL MODE1                   |  |  |
| (Drive value)                  | 34.07 LOCAL CTRL MODE                   |  |  |
| TORQ REF SP CTRL<br>(7 / 3.08) | < 34.08 TREF SPEED SRC                  |  |  |
| TORQ REF RUSHLIM               | < 34.09 TREF TORQ SRC                   |  |  |
| OUT(108)<br>(8 / 108)          | < 34.10 TORQ REF ADD SRC                |  |  |
|                                |                                         |  |  |

## Further information

#### Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting the type designation and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to <u>www.abb.com/drives</u> and selecting *Sales, Support and Service network*.

#### Product training

For information on ABB product training, navigate to <u>www.abb.com/drives</u> and select *Training courses*.

#### Providing feedback on ABB Drives manuals

Your comments on our manuals are welcome. Go to <u>www.abb.com/drives</u> and select *Document Library – Manuals feedback form (LV AC drives)*.

#### Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet. Go to <u>www.abb.com/drives</u> and select *Document Library*. You can browse the library or enter selection criteria, for example a document code, in the search field.

## Contact us

ABB Oy

Drives P.O. Box 184 FI-00381 HELSINKI FINLAND Telephone +358 10 22 11 Fax +358 10 22 22681 www.abb.com/drives ABB Inc.

Automation Technologies Drives & Motors 16250 West Glendale Drive New Berlin, WI 53151 USA Telephone 262 785-3200 1-800-HELP-365 Fax 262 780-5135 www.abb.com/drives

#### ABB Beijing Drive Systems Co. Ltd.

No. 1, Block D, A-10 Jiuxianqiao Beilu Chaoyang District Beijing, P.R. China, 100015 Telephone +86 10 5821 7788 Fax +86 10 5821 7618 www.abb.com/drives

