DCS800

Firmware manual
DCS800 Drives (20 to 5200 A)

DCS800 Drive Manuals
All the documents available for the drive system DCS800 are listed below:

		Language							
	Public. number	E	D	I	ES	F	CN	RU	PL
DCS800 Quick Guide	3ADW000191	X	X	X	X	X			
DCS800 Tools \& Documentation CD	3ADW000211	X							
DCS800 Converter module									
Flyer DCS800	3ADW000190	x	x		X	x			
Technical Catalogue DCS800	3ADW000192	X	x	x	X	x	X	x	
Hardware Manual DCS800	3ADW000194	X	X	x	x	X	X	X	x
Hardware Manual DCS800 update DCF503B/DCF504B	3ADW000194Z0301	x							
Firmware Manual DCS800	3ADW000193	x	x	p	x	x	X	x	x
Installation according to EMC	3ADW000032	X							
Technical Guide	3ADW000163	x							
Service Manual DCS800	3ADW000195	X	X						
12-Pulse Manual	3ADW000196	x							
CMA-2 Board	3ADW000136	p							
Flyer Hard - Parallel	3ADW000213	X							
Drive Tools									
DriveWindow 2.x - User's Manual	3BFE64560981	x							
DriveOPC 2.x - User's Manual	3BFE00073846	x							
Optical DDCS Communication Link	3AFE63988235	X							
DDCS Branching Units - User's Manual	3BFE64285513	X							
DCS800 Applications									
PLC Programming with CoDeSys	CoDeSys_V23	X	X			X			
61131 DCS800 target +tool description - Application Program	3ADW000199	x							
DCS800 Crane Drive									
DCS800 Crane Drive Manual suppl.	3AST004143	x							
DCS800 Crane Drive Product note	PDC5 EN REVA	p							
DCS800 Winder ITC									
DCS800 Winder Product note	PDC2 EN	x							
DCS800 Winder description ITC	3ADW000308	x							
Winder Questionnaire	3ADW000253z	X							
DCS800-E Panel Solution									
Flyer DCS800-E Panel solution	3ADW000210	x							
Hardware Manual DCS800-E	3ADW000224	x							
DCS800-A Enclosed Converters									
Flyer DCS800-A	3ADW000213	X							
Technical Catalogue DCS800-A	3ADW000198	X							
Installation of DCS800-A	3ADW000091	x	x						
DCS800-R Rebuild System									
Flyer DCS800-R	3ADW000007	X	x						
DCS800-R Manual	3ADW000197	X							
DCS500/DCS600 Size A5...A7, C2b, C3 and C4 Upgrade Kits	3ADW000256	X							
Extension Modules									
RAIO-01 Analog IO Extension	3AFE64484567	X							
RDIO-01 Digital IO Extension	3AFE64485733	X							
RRIA-01 Resolver Interface Module	3AFE68570760	x							
RTAC-01 Pulse Encoder Interface	3AFE64486853	x							
RTAC-03 TTL Pulse Encoder Interface	3AFE68650500	X							
AIMA R-slot extension	3AFE64661442	x							
Serial Communication									
Drive specific serial communication									
NETA Remote diagnostic interface	3AFE64605062	x							
Fieldbus Adapter with DC Drives RPBA- (PROFIBUS)	3AFE64504215	X							
Fieldbus Adapter with DC Drives RCAN-02 (CANopen)									
Fieldbus Adapter with DC Drives RCNA-01 (ControlNet)	3AFE64506005	x							
Fieldbus Adapter with DC Drives RDNA- (DeviceNet)	3AFE64504223	x							
Fieldbus Adapter with DC Drives RMBA (MODBUS)	3AFE64498851	X							
Fieldbus Adapter with DC Drives RETA (Ethernet)	3AFE64539736	X							
x -> existing p -> planned									
Status 04.2010									

Safety instructions

What this chapter contains

This chapter contains the safety instructions you must follow when installing, operating and servicing the drive. If ignored, physical injury or death may follow, or damage may occur to the drive, the motor or driven equipment. Read the safety instructions before you work on the unit.

To which products this chapter applies

The information is valid for the whole range of the product DCS800, the converter modules DCS800-S0x size D1 to D7, field exciter units DCF80x, etc. like the Rebuild Kit DCS800-R00-9xxx.

Usage of warnings and notes

There are two types of safety instructions throughout this manual: warnings and notes. Warnings caution you about conditions which can result in serious injury or death and/or damage to the equipment, and advise on how to avoid the danger. Notes draw attention to a particular condition or fact, or give information on a subject. The warning symbols are used as follows:

Dangerous voltage warning warns of high voltage which can cause physical injury or death and/or damage to the equipment.

General danger warning warns about conditions, other than those caused by electricity, which can result in physical injury or death and/or damage to the equipment.
Electrostatic sensitive devices warning warns of electrostatic discharge which can damage the equipment.

Installation and maintenance work

These warnings are intended for all who work on the drive, motor cable or motor. Ignoring the instructions can cause physical injury or death and/or damage to the equipment.

WARNING!

- Only qualified electricians are allowed to install and maintain the drive!
- Never work on the drive, motor cable or motor when main power is applied.
Always ensure by measuring with a multimeter (impedance at least 1 Mohm) that:

1. Voltage between drive input phases $\mathrm{U} 1, \mathrm{~V} 1$ and W 1 and the frame is close to 0 V .
2. Voltage between terminals C+ and D- and the frame is close to 0 V .

- Do not work on the control cables when power is applied to the drive or to the external control circuits. Externally supplied control circuits may cause dangerous voltages inside the drive even when the main power on the drive is switched off.
- Do not make any insulation resistance or voltage withstand tests on the drive or drive modules.
- Isolate the motor cables from the drive when testing the insulation resistance or voltage withstand of the cables or the motor.
- When reconnecting the motor cable, always check that the C+ and D- cables are connected with the proper terminal.

Note:

- The motor cable terminals on the drive are at a dangerously high voltage when the main power is on, regardless of whether the motor is running or not.
- Depending on the external wiring, dangerous voltages (115 V, 220 V or 230 V) may be present on the relay outputs of the drive system (e.g. SDCS-IOB-2 and RDIO).
- DCS800 with enclosure extension: Before working on the drive, isolate the whole drive system from the supply.

Grounding

These instructions are intended for all who are responsible for the grounding of the drive. Incorrect grounding can cause physical injury, death and/or equipment malfunction and increase electromagnetic interference.

WARNING!

- Ground the drive, motor and adjoining equipment to ensure personnel safety in all circumstances, and to reduce electromagnetic emission and pick-up.
- Make sure that grounding conductors are adequately sized and marked as required by safety regulations.
- In a multiple-drive installation, connect each drive separately to protective earth (PE ©II).
- Minimize EMC emission and make a 360° high frequency grounding (e.g. conductive sleeves) of screened cable entries at the cabinet lead-through plate.
- Do not install a drive equipped with an EMC filter to an ungrounded power system or a high resistance-grounded (over 30 ohms) power system.

Note:

- Power cable shields are suitable as equipment grounding conductors only when adequately sized to meet safety regulations.
- As the normal leakage current of the drive is higher than 3.5 mA AC or 10 mA DC (stated by EN 50178, 5.2.11.1), a fixed protective earth connection is required.

Printed circuit boards and fiber optic cables

These instructions are intended for all who handle the circuit boards and fiber optic cables. Ignoring the following instructions can cause damage to the equipment.

WARNING! The printed circuit boards contain components sensitive to electrostatic discharge. Wear a grounding wrist band when handling the boards. Do not touch the boards unnecessarily.

Use grounding strip:

> ABB order no.: 3ADV050035P0001

WARNING! Handle the fiber optic cables with care. When unplugging optic cables, always grab the connector, not the cable itself. Do not touch the ends of the fibers with bare hands as the fiber is extremely sensitive to dirt. The minimum allowed bend radius is 35 mm (1.38 in .).

Mechanical installation

These notes are intended for all who install the drive. Handle the unit carefully to avoid damage and injury.

WARNING!

- DCS800 sizes D4 ... D7: The drive is heavy. Do not lift it alone. Do not lift the unit by the front cover. Place units D4 and D5 only on its back.
DCS800 sizes D5 ... D7: The drive is heavy. Lift the drive by the lifting lugs only. Do not tilt the unit. The unit will overturn from a tilt of about 6 degrees.
- Make sure that dust from drilling does not enter the drive when installing. Electrically conductive dust inside the unit may cause damage or lead to malfunction.
- Ensure sufficient cooling.
- Do not fasten the drive by riveting or welding.

Operation

These warnings are intended for all who plan the operation of the drive or operate the drive. Ignoring the instructions can cause physical injury or death and/or damage to the equipment.

WARNING!

- Before adjusting the drive and putting it into service, make sure that the motor and all driven equipment are suitable for operation throughout the speed range provided by the drive. The drive can be adjusted to operate the motor at speeds above and below the base speed.
- Do not control the motor with the disconnecting device
(disconnecting mains); instead, use the control panel keys and (1) , or commands via the I/O board of the drive.
- Mains connection

You can use a disconnect switch (with fuses) to disconnect the electrical components of the drive from the mains for installation and maintenance work. The type of disconnect switch used must be as per EN 60947-3, Class B, so as to comply with EU regulations, or a circuit-breaker type which switches off the load circuit by means of an auxiliary contact causing the breaker's main contacts to open. The mains disconnect must be locked in its "OPEN" position during any installation and maintenance work.

- EMERGENCY STOP buttons must be installed at each control desk and at all other control panels requiring an emergency stop function. Pressing the STOP button on the control panel of the drive will neither cause an emergency stop of the motor, nor will the drive be disconnected from any dangerous potential.
To avoid unintentional operating states, or to shut the unit down in case of any imminent danger according to the standards in the safety instructions it is not sufficient to merely shut down the drive via signals "RUN", "drive OFF" or "Emergency Stop" respectively "control panel" or "PC tool".
- Intended use

The operating instructions cannot take into consideration every possible case of configuration, operation or maintenance. Thus, they mainly give such advice only, which is required by qualified personnel for normal operation of the machines and devices in industrial installations.
If in special cases the electrical machines and devices are intended for use in non-industrial installations - which may require stricter safety regulations (e.g. protection against contact by children or similar) - these additional safety measures for the installation must be provided by the customer during assembly.

Safety instructions

Note:

- When the control location is not set to Local (L not shown in the status row of the display), the stop key on the control panel will not stop the drive. To stop the drive using the control panel, press the LOC/REM key and then the stop key

Table of contents

Safety instructions 3
What this chapter contains 3
To which products this chapter applies 3
Usage of warnings and notes 3
Installation and maintenance work 4
Grounding 5
Mechanical installation 7
Operation 8
Table of contents 10
Introduction 23
Chapter overview 23
Before You Start 23
What this manual contains 23
Start-up 24
Chapter overview 24
General 24
Start-up procedure 25
Tools 25
Checking with the power switched off 25
Checking with the power switched on 27
Commissioning a DCS800 28
Connect DCS800 to PC with DriveWindow Light 28
Commissioning a DCS800 with the wizard 29
Commissioning a DCS800 with DriveWindow 30
Requirements 30
01, 02 Macro assistant / Name plate data 30
03 Autotuning field current controller 31
04 Autotuning armature current controller 31
05 Speed feedback assistant 32
Analog tacho fine tune procedure 32
06 Autotuning speed controller 32
07 Field weakening assistant 33
Manual tuning 34
I/O configuration 34
Field current controller 34
Armature current controller 35
Control principle 35
Manual tuning 36
Analog tacho 41
Manual tuning 42
Speed controller 42
Basics 42
Manual tuning 43
EMF controller 45
Basics 45
Manual tuning 45
Flux linearization 47
Basics 47
Manual tuning 48
Thyristor diagnosis 50
Basics 50
Check all thyristors 50
Check individual firing pulses 50
Firmware description 52
Chapter overview 52
Identification of the firmware versions 52
Start / stop sequences 53
General 53
Switch on sequence 53
Start the drive 54
Stop the drive 55
Field excitation 58
General 58
Field Reversal 58
Field contro 58
Field reference hysteresis 59
Force field current direction 59
Reversal time 59
Bumpless transition 59
Optitorque 59
Field current reference gain 59
Field current monitoring 60
Field minimum trip 60
Flux reversal 60
Field reversal hysteresis 60
Field reversal active 60
Field Heating 60
Overview 60
Modes of operation 61
E-stop 62
Field exciter mode 63
General 63
Large field exciter controlled by a DCS800 armature converter 63
Parameters to be set in the DCS800 armature converter: 64
Parameters to be set in large field exciters: 64
Field current autotuning for large field exciters: 65
Stand alone field exciter 66
Parameters to be set in the stand alone field exciter: 66
Field current autotuning for stand alone field exciter: 67
DC-breaker, DC-contactor 68
General 68
HVCB controlled externally, DC-breaker controlled by the drive 68
DC-contactor US version 69
AC- and DC-breaker controlled by the drive 71
No AC-breaker, DC-breaker controlled by the drive 72
AC-breaker controlled by the drive, DC-breaker controlled externally 73
No AC-breaker, DC-breaker controlled externally 74
Command Trip DC-breaker 74
Dynamic braking 75
General 75
Operation 75
Activation 75
Function 75
Deactivation 76
Position counter 78
General 78
Counting procedure 78
Synchronization 78
I/O configuration 81
Chapter overview 81
Digital inputs (Dl's) 81
SDCS-CON-4 / SDCS-IOB-2 81
$1^{\text {st }}$ and $2^{\text {nd }}$ RDIO-01 81
Configuration 82
Digital outputs (DO's) 84
SDCS-CON-4 / SDCS-IOB-2 84
$1^{\text {st }}$ and $2^{\text {nd }}$ RDIO-01 84
Configuration 85
Analog inputs (Al's) 87
SDCS-CON-4 87
SDCS-IOB-3 87
$1^{\text {st }}$ RAIO-01 88
$2^{\text {nd }}$ RAIO-01 88
Configuration 89
Scaling 89
Analog outputs (AO's) 91
SDCS-CON-4 / SDCS-IOB-3 91
$1^{\text {st }}$ RAIO-01 91
$2^{\text {nd }}$ RAIO-01 92
Configuration 92
Scaling 93
Communication 94
Chapter overview 94
DCSLink with SDCS-DSL-4 94
General 94
Excitation, commissioning a FEX-4 94
Layout FEX-4 94
Layout SDCS-DSL-4 94
Set the FEX-4 type 95
Set the node numbers, transmission speed and the communication supervision 95
Set the DCSLink 96

Table of contents
Set the supply of the FEX-4 97
Checking the FEX-4 97
Master-follower, commissioning 98
Set the DCSLink hardware 98
Set the node ID numbers and transmission speed 99
Activate the mailboxes 99
Activate the communication supervision 99
Send and receive values 100
Firmware structure 101
Additional settings 102
Drive-to-drive communication 103
Set the DCSLink hardware 103
Set the node ID numbers and transmission speed 104
Activate the mailboxes 104
Activate the communication supervision 104
Send and receive values 105
12-pulse 106
Set the DCSLink hardware 106
Set the node numbers, transmission speed and the communication supervision 107
DDCS channels with SDCS-COM-8 108
General 108
Integer scaling on the DDCS link 108
Ch0 communication to overriding control 109
ABB overriding control 109
Parameter setting example. 109
Received data set table 110
Transmitted data set table 111
Fieldbus communication (N-type) 11
Ch1 I/O devices 112
Ch2 Master-follower link 112
General 112
Link configuration 112
Master 112
Followers 113
Firmware structure 113
Toggle between speed- and torque control 115
Follower diagnostics 115
Master-follower link specification 115
Ch3 commissioning and maintenance tools 116
DriveWindow 116
Ethernet communication for monitoring with Ethernet adapter NETA-01 117
General 117
NETA-01 - DCS800 117
Related documentation 117
NETA-01 configuration 117
Mechanical and electrical installation 118
Drive configuration 118
CANopen communication with fieldbus adapter RCAN-01 119
General. 119
RCAN-01 - DCS800 119
Related documentation 119
Overriding control configuration 119
EDS file 119
Mechanical and electrical installation 119
Drive configuration 119
Parameter setting example 1 using group 51 119
Further information 121
Parameter setting example 2 using groups 90 and 92 122
Switch on sequence 124
ControlNet communication with fieldbus adapter RCNA-01 125
General 125
RCNA-01 - DCS800 125
Related documentation 125
Overriding control configuration. 125
EDS file 125
Mechanical and electrical installation 125
Drive configuration 125
Parameter setting example 1 using ABB Drives assembly 125
Parameter setting example 2 using Vendor specific assembly 127
Setting of parameter groups 51, 90 and 92 128
Further information 128
Switch on sequence 128
DeviceNet communication with fieldbus adapter RDNA-01 129
Genera 129
RDNA-01 - DCS800 129
Related documentation 129
Overriding control configuration. 129
EDS file 129
Mechanical and electrical installation 129
Drive configuration 129
Parameter setting example 1 using ABB Drives assembly 129
Parameter setting example 2 using User specific assembly 131
Setting of parameter groups 51, 90 and 92 132
Further information 132
Switch on sequence 132
Ethernet/IP communication with fieldbus adapter RETA-01 133
General 133
RETA-01 - DCS800 133
Related documentation 133
EDS file 133
Mechanical and electrical installation 133
Drive configuration 133
Parameter setting example using Ethernet/IP ABB Drives communication profile 133
Up to 4 data words 135
Up to 12 data words 135
Switch on sequence 138
Modbus (RTU) communication with fieldbus adapter RMBA-01 139
General 139
RMBA-01 - DCS800 139
Related documentation 139
Mechanical and electrical installation 139
Drive configuration 139
Parameter setting example 139
... when controlling a drive 139
when used for monitoring only 141
Setting of PLC, parameter groups 90 and 92 143
Switch on sequence 143
Modbus/TCP communication with fieldbus adapter RETA-01 144
General 144
RETA-01-DCS800 144
Related documentation 144
Mechanical and electrical installation 144
Drive configuration. 144
Parameter setting example using Modbus/TCP 144
Switch on sequence 146
Profibus communication with fieldbus adapter RPBA-01 147
General 147
RPBA-01 - DCS800 147
Related documentation 147
Overriding control configuration 147
Mechanical and electrical installation 147
Drive configuration. 147
Parameter setting example 1 using PPO Type 1 147
Parameter setting example 2 using PPO types 2, 4 and 5 148
Communication via group 51 149
Communication via group 90 and group 92 150
Switch on sequence 151
Data set table 152
Adaptive Program (AP) 153
Chapter overview 153
What is the Adaptive Program 153
Features 153
How to build the program 154
How to connect the Application Program with the firmware 154
Block Parameter Set for block 1 155
How to control the execution of the program 156
DWL AP 157
General 157
Important keys and buttons 157
Program modes 157
Change to Edit mode 157
Insert function blocks 158
Connect function blocks 159
Set the Time level 161
Saving AP applications 161
Function blocks 162
General rules 162
Block inputs 162
Block input attributes 163
Parameter value as an integer input 164
How the block handles the input 164
How to select the input 164
Constant as an integer input 165
How to set and connect the input 165
Parameter value as a boolean input 166
How the block handles the input 166
Constant as a boolean input 167
How to set and connect the input 167
String input 167
How to select the input 167
Function blocks 168
ABS 168
ADD 169
AND 169
Bitwise 170
Bset 171
Compare 171
Count 172
D-Pot 172
Event 173
Filter 173
Limit 174
MaskSet 174
Max 175
Min 175
MulDiv 175
NotUsed 176
OR 176
ParRead 176
ParWrite 177
PI 177
PI-Bal 178
Ramp 178
Sqrt 179
SqWav 179
SR 180
Switch-B 180
Switch-I 181
TOFF 181
TON 182
Trigg 182
XOR 183
Diagram 184
Signal and parameter list 185
Signals and parameters 185
Signal groups list 185
Parameter groups list 187
Signal and parameter list 190

Table of contents
Group 1 190
Physical actual values 190
Group 2. 194
Speed controller signals 194
Group 3 198
Reference actual values 198
Group 4 201
Information 201
Group 5 209
Analog I/O 209
Group 6 210
Drive logic signals 210
Group 7 216
Control words 216
Group 8 222
Status / limit words 222
Group 9 228
Fault / alarm words 228
Group 10 244
Start / stop select 244
Group 11 257
Speed reference inputs 257
Group 12 264
Constant speeds 264
Group 13 265
Analog inputs 265
Group 14 269
Digital outputs 269
Group 15 271
Analog outputs 271
Group 16 273
System control inputs 273
Group 19 276
Data storage 276
Group 20 278
Limits 278
Group 21 282
Start / stop 282
Group 22 286
Speed ramp 286
Group 23. 289
Speed reference 289
Group 24 294
Speed control 294
Group 25 299
Torque reference 299
Group 26 300
Torque reference handling 300
Group 30 304
Fault functions 304
Group 31 315
Motor 1 temperature 315
Group 34 317
DCS800 Control Panel display 317
Group 40 318
PID control 318
Group 42 321
Brake control 321
Group 43 327
Current control 327
Group 44 333
Field excitation 333
Group 45 340
Field converter settings 340
Group 47 347
12-pulse operation 347
Group 49 348
Shared motion 348
Group 50 360
Speed measurement 360
Group 51 367
Fieldbus 367
Group 52 368
Modbus 368
Group 60, ..., 69 369
Application program parameters 369
Group 70 370
DDCS control 370
Group 71 375
Drivebus 375
Group 83 375
Adaptive Program control 375
Group 84 377
Adaptive Program 377
Group 85 380
User constants 380
Group 86 382
Adaptive Program outputs 382
Group 88 383
Internal 383
Group 90 385
Receiving data sets addresses 1 385
Group 91 387
Receiving data sets addresses 2 387
Group 92 388
Transmit data sets addresses 1 388
Group 93 390
Transmit data sets addresses 2 390
Group 94 391
DCSLink control 391

Table of contents
Group 97 399
Measurement 399
Group 98 407
Option modules 407
Group 99 415
Start-up data 415
DCS800 Control Panel operation 420
Chapter overview. 420
Start-up 420
DCS800 Control Panel 420
Display overview 421
General display features. 421
Output mode 422
Other modes 423
Maintenance 428
Fault tracing 429
Chapter overview. 429
General. 429
Fault modes 429
Converter protection 429
Auxiliary undervoltage 429
Armature overcurrent. 429
Converter overtemperature 429
Auto-reclosing (mains undervoltage) 430
Mains synchronism 431
Mains overvoltage 431
Communication loss 431
Fan, field and mains contactor acknowledge 432
External fault 432
Bridge reversal 433
Analog input monitor 433
Motor protection 435
Armature overvoltage 435
Residual current detection 435
Measured motor temperature 435
Klixon 438
Motor thermal model 438
Field overcurrent 441
Armature current ripple 441
Speed feedback monitor 442
Stall protection. 443
Overspeed protection 443
Current rise 444
Field undercurrent 444
Tacho / pulse encoder polarity 444
Tacho range 444
Status messages 445
Display of status, fault and alarm signals 445
Categories of signals and display options 445
General messages 446
Power-up errors (E) 446
Fault signals (F) 447
SDCS-COM-8 messages 464
Alarm signals (A) 465
Disappearing system alarm 475
User defined alarm by Adaptive Program 475
Notices. 477
Appendix A: Firmware structure diagrams 479
Appendix B: SDCS-CON-4 Terminal Allocation 484
Appendix C: Index of signals and parameters 485

Introduction

Chapter overview

This chapter describes the purpose, contents and the intended use of this manual.

Before You Start

The purpose of this manual is to provide you with the information necessary to control and program the drive.

Study carefully the Safety instructions at the beginning of this manual before attempting any work on or with the drive. Read through this manual before startingup the drive. The installation and commissioning instructions given in the DCS800 Hardware Manual and DCS800 Quick Guide must also be read before proceeding.

This manual describes the standard DCS800 firmware.

What this manual contains

The Safety instructions can be found at the beginning of this manual.
Introduction to this manual, the chapter you are currently reading, introduces you to this manual.

Start-up, this chapter describes the basic start-up procedure of the drive.
Firmware description, this chapter describes how to control the drive with standard firmware.

I/O configuration, this chapter describes the I/O configuration of digital and analog inputs and outputs with different hardware possibilities.

Communication, this chapter describes the communication capabilities of the drive.
Adaptive Program (AP), this chapter describes the basics of the Adaptive Program and instructs how to build a program.

Signal and parameter list, this chapter contains all signals and parameters.
DCS800 Control Panel operation, this chapter describes the handling of the DCS800 Control Panel.

Fault Tracing, this chapter describes the protections and fault tracing of the drive.
Appendix A: Firmware structure diagram
Appendix B: SDCS-CON-4 Terminal Allocation
Appendix C: Index of signal and parameters

Start-up

Chapter overview

This chapter describes the basic start-up procedure of the drive. A more detailed description of the signals and parameters involved in the procedure can be found in section Signal and parameter list.

General

The drive can be operated:

- locally from DriveWindow, DriveWindow Light or DCS800 Control Panel
- respectively remote from local I/O or overriding control.

The following start-up procedure uses DriveWindow (for further information about DriveWindow, consult its online help). However, parameters can also be changed with DriveWindow Light or the DCS800 Control Panel.

The start-up procedure includes actions that need only be taken when powering up the drive for the first time in a new installation (e.g. entering the motor data). After the start-up, the drive can be powered up without using these start-up functions again. The start-up procedure can be repeated later if the start-up data needs to be altered.

Refer to section Fault tracing in case problems should arise. In case of a major problem, disconnect mains and wait for 5 minutes before attempting any work on the drive, the motor, or the motor cables.

Start-up procedure

The Safety Instructions at the beginning of this manual have to be observed with extreme care during the start-up procedure!
The start-up procedure should only be carried out by a qualified electrician.
Check the mechanical and electrical installation the drive according to the DCS800 Hardware Manual.

Tools

For drive commissioning following software tools are mandatory:

- DriveWindow Light including commissioning wizard and DWL AP for Adaptive Program and
- DriveWindow for fast drive monitoring using SDCS-COM-8.

For drive commissioning following tools are mandatory in addition to standard tools:

- An oscilloscope including memory function with either galvanically isolating transformer or isolating amplifier for safe measurements.
- A clamp on current probe. In case the scaling of the DC load current needs to be checked it must be a DC clamp on current probe.
- A voltmeter.

Make sure that all equipment in use is suitable for the voltage level applied to the power part!

Checking with the power switched off

Check the settings of:

- the main breaker (e.g. overcurrent $=1.6 * I_{n}$, short circuit current $=10 * I_{n}$, time for thermal tripping = 10 s),
- time, overcurrent, thermal and voltage relays,
- the earth fault protection (e.g. Bender relay)

Check the insulation of the mains voltage cables or busbars between the secondary side of the dedicated transformer and the drive:

- disconnect the dedicated transformer from its incoming voltage,
- check that all circuits between the mains and the drive (e.g. control / auxiliary voltage) are disconnected,
- measure the insulation resistance between L1-L2, L1-L3, L2-L3, L1 PE, L2 - PE, L3 - PE,
_ the result should be $M \Omega$ s
Check the installation:
- crosscheck the wiring with the drawings,
- check the mechanical mounting of the motor and pulse encoder or analog tacho,
- make sure that the motor is connected in a correct way (armature, field, serial windings, cable shields),
- check the connections of the motor fan if existing,
- make sure that the converter fan is connected correctly especially in modules size D6 and D7 were star or delta connection is possible,
- if a pulse encoder is used make sure that pulse encoder's auxiliary voltage connection corresponds to its voltage and that the channel connection corresponds to correct direction of rotation,
- check that the shielding of the pulse encoder's cable is connected to the TE bar of the DCS800,
- if an analog tacho is used make sure that it is connected to the proper voltage input at the SDCS-CON-4:
X3:1-X3:4 (90-270 V)
X3:2 - X3:4 (30-90 V)
X3:3-X3:4 (8-30V)
- for all other cables make sure that both ends of the cables are connected and they do not cause any damage or danger when power is being switched on

Measuring the insulation resistance of the motor cables and the motor:

- isolate the motor cables from the drive before testing the insulation resistance or voltage withstand of the cables or the motor,

Instructions how to measure the insulation resistance

- measure the insulation resistance between:

1. + cables and PE,
2. - cables and PE,
3. armature cables and field cables,
4. field - cable and PE,
5. field + cable and PE,

- the result should be M M

Setting of Jumpers:
The boards of the DCS800 include jumpers to adapt the boards to different applications. The position of the jumpers must be checked before connecting voltage. For specific jumper settings consult the DCS800 Hardware Manual.

Drive data
Check following items for each drive and mark the differences in the delivery documents:

- motor, analog tacho or pulse encoder and cooling fan rating plates data,
- direction of motor rotation,
- maximum and minimum speed and if fixed speeds are used,
- speed scaling factors:
e.g. gear ratio, roll diameter,
- acceleration and deceleration times,
- operating modes:
e.g. stop mode, E-stop mode,
- the amount of motors connected

Checking with the power switched on

There is dangerous voltage inside the cabinet!
Switching the power on:

- prior to connecting the voltage proceed as follows:

1. ensure that all the cable connections are checked and that the connections can't cause any danger,
2. close all doors of enclosed converter before switching power on,
3. be ready to trip the supply transformer if anything abnormal occurs,
4. switch the power on

Measurements made with power on:

- check the operation of the auxiliary equipment,
- check the circuits for external interfaces on site:

1. E-stop circuit,
2. remote control of the main breaker,
3. signals connected to the control system,
4. other signals which remain to be checked

Connecting voltage to the drive:

- check from the delivery diagrams the type of boards and converters which are used in the system,
- check all time relay and breaker settings,
- close the supply disconnecting device (check the connection from the delivery diagrams),
- close all protection switches one at a time and measure for proper voltage

Commissioning a DCS800

Nominal values of the converter can be found in group 4, check following signals:

- ConvNomVolt (4.04), nominal AC converter voltage in V read from TypeCode (97.01) or S ConvScaleVolt (97.03),
- ConvNomCur (4.05), nominal converter DC current in A read from TypeCode (97.01) or S ConvScaleCur (97.02),
- ConvType (4.14), recognized converter type read from TypeCode (97.01),
- QuadrantType (4.15), recognized converter quadrant type read from TypeCode (97.01) or S BlockBrdg2 (97.07),
- MaxBridgeTemp (4.17), maximum bridge temperature in degree centigrade read from TypeCode (97.01) or S MaxBrdgTemp (97.04)
If signals are not correct adapt them, see group 97 in this manual.

Connect DCS800 to PC with DriveWindow Light

- Connect a normal serial cable from the PC COM port to X34 on the drive:

Remove the DCS800 Control Panel if present. Depress the locks to remove the cover

Connect drive (X34) to your PC COM port

- Start DriveWindow Light and check the communication settings:

Comm settings	
\bigcirc Automode	c. User Define
Automode Seting:-	
Port COM1 \square	
Uset Defined Settings Г ACS 800 series identitying	
Port $00 \mathrm{M} 1 \rightarrow$	
Baud Rate: 3	
Data 8 bit	
Parity: 0	
Stop. $2 \square$	
Timeout (ms) 75	
-Modbus Address From 247 囩 10247 园	
OK	Cancel

Example with COM1.

Commissioning a DCS800 with the wizard

To launch the commissioning wizard start DriveWindow Light and press the Wizard button:

For basic commissioning press the Start buttoh or select a specific assistant:

For more information about the wizard, parameters faults and alarms press the Help button!

Commissioning a DCS800 with DriveWindow

Requirements

1. Before starting with the commissioning, connect the drive (via Ch3 on SDCS-COM-8) with DriveWindow (via e.g. NDPA-02 and NDPC-12). All workspaces are 'online' workspaces, thus use Ch3 NodeAddr (70.22) $=1$.
2. The preconfigured workspaces are available from Your local ABB agent or can be found - after the DCS800 CD (tools CD) is installed - under:

Location of workspaces

01, 02 Macro assistant / Name plate data

1. Open the workspace 01,02 DCS800 Name plate data \& macro assistant. $d w w^{1}$.
2. Set all parameters to default by means of AppIMacro (99.08) = Factory and AppIRestore (99.07) = Yes. Check with MacroSel (8.10).
3. Enter the motor data, the mains (supply) data and the most important protections [M1SpeedMin (20.01), M1SpeedMax (20.02), ArmOvrCurLev (30.09), M1OvrSpeed (30.16), Language (99.01), M1NomVolt (99.02), M1NomCur (99.03), M1BaseSpeed (99.04), NomMainsVolt (99.10) and M1NomFldCur (99.11)].
4. After filling out the parameters it is - in most cases - possible to turn the motor for the first time.
5. Select an application macro by means of AppIMacro (99.08) = < macro> and ApplRestore (99.07) $=$ Yes. Check with MacroSel (8.10).

03 Autotuning field current controller

1. Open the workspace 03 DCS800 Autotuning field current controller.dww'.
2. Enter the field circuit data [F/dCtrIMode (44.01), M1NomF/dCur (99.11) and M1UsedFexType (99.12)].
3. Switch the drive to local mode (DriveWindow, DCS800 Control Panel or local I/O).
4. Start the autotuning by means of ServiceMode (99.06) = FieldCurAuto and set On within 20 s.
5. During the autotuning the main respectively field contactor will be closed, the field circuit is measured by means of increasing the field current to nominal field current and the field current control parameters are set. The armature current is not released while the autotuning is active and thus the motor should not turn.
6. When the autotuning is finished successfully, check M1KpFex (44.02), M1TiFex (44.03) and M1PosLimCtrl (45.02) - parameters set by the autotuning - for confirmation.
7. If the autotuning fails A121 AutotuneFail is set. For more details check Diagnosis (9.11) and repeat the autotuning.

04 Autotuning armature current controller

1. Open the workspace 04 DCS800 Autotuning armature current controller. $d w{ }^{1}$.
2. Enter the basic current limitations and the motor nominal current [TorqMax (20.05), TorqMin (20.06), M1CurLimBrdg1 (20.12), M1CurLimBrdg2 (20.13) and M1NomCur (99.03)].

Attention:

Do not change the default values of M1ArmL (43.09) and M1ArmR (43.10)!
Changing them will falsify the results of the autotuning.
3. Switch the drive to local mode (DriveWindow, DCS800 Control Panel or local I/O).
4. Start the autotuning by means of ServiceMode (99.06) = ArmCurAuto and set On and Run within 20 s.
5. During the autotuning the main contactor will be closed, the armature circuit is measured by means of armature current bursts and the armature current control parameters are set. The field current is not released while the autotuning is active and thus the motor should not turn, but due to remanence in the field circuit about 40% of all motors will turn (create torque). These motors have to be locked.
6. When the autotuning is finished successfully, check M1KpArmCur (43.06), M1TiArmCur (43.07), M1DiscontCurLim (43.08), M1ArmL (43.09) and M1ArmR (43.10) - parameters set by the autotuning - for confirmation.
7. If the autotuning fails A121 AutotuneFail is set. For more details check Diagnosis (9.11) and repeat the autotuning.

05 Speed feedback assistant

1. Open the workspace 05 DCS800 Speed feedback assistant.dww.
2. Enter the EMF speed feedback parameters and - if applicable - the parameters for pulse encoder 1, pulse encoder 2 or the analog tacho [M1SpeedMin (20.01), M1SpeedMax (20.02), M1EncMeasMode (50.02), M1SpeedFbSel (50.03), M1EncPulseNo (50.04), M1TachoVolt1000 (50.13), M1NomVolt (99.02) and M1BaseSpeed (99.04)].
3. Switch the drive to local mode (DriveWindow, DCS800 Control Panel or local I/O).
4. Start the autotuning by means of ServiceMode (99.06) = SpdFbAssist and set On and Run within 20 s.
5. The speed feedback assistant detects the kind of speed feedback - EMF, pulse encoder 1, pulse encoder 2 or analog tacho - the drive is using.
6. During the autotuning the main contactor and the field contactor - if existing - will be closed and the motor will run up to base speed [M1BaseSpeed (99.04)]. During the whole procedure the drive will be in EMF speed control despite the setting of M1SpeedFbSel (50.03).
7. When the autotuning is finished successfully, check M1SpeedFbSel (50.03) - parameter set by the autotuning - for confirmation.
8. If the autotuning fails A121 AutotuneFail is set. For more details check Diagnosis (9.11) and repeat the autotuning.

Analog tacho fine tune procedure

1. In case an analog tacho is detected [M1SpeedFbSel (50.03) = Tacho] it is recommended to fine tune the analog tacho.
2. Switch the drive to local mode (DriveWindow, DCS800 Control Panel or local I/O).
3. Start the autotuning by means of ServiceMode (99.06) $=$ TachFineTune and set On and Run within 20 s.
4. Measure the motor speed with a hand held tacho and write the value into M1TachoAdjust (50.12).
5. Check SpeedActTach (1.05) against SpeedRef4 (2.18).
6. Stop the autotuning by removing Run and On via the DriveWindow control panel.

06 Autotuning speed controller

1. Open the workspace 06 DCS800 Autotuning speed controller.dww ${ }^{1}$.
2. Enter the basic speed, torque and current limits, the speed filter times and the motor base speed [M1SpeedMin (20.01), M1SpeedMax (20.02), TorqMax (20.05), TorqMin (20.06), M1CurLimBrdg1 (20.12), M1CurLimBrdg2 (20.13), SpeedErrFilt (23.06), SpeedErrFilt2 (23.11), SpeedFiltTime (50.06) and M1BaseSpeed (99.04)].

Attention:

For better results set the filters, especially when using EMF speed feedback.
3. Switch the drive to local mode (DriveWindow, DCS800 Control Panel or local I/O).
4. Start the autotuning by means of ServiceMode (99.06) = SpdCtrIAuto and set On and Run within 20 s .
5. During the autotuning the main contactor and the field contactor - if existing - will be closed, the ramp is bypassed and torque respectively current limits

Start-up

are valid. The speed controller is tuned by means of speed bursts up to base speed [M1BaseSpeed (99.04)] and the speed controller parameters are set.
Attention:
During the autotuning the torque and/or current limits will be reached.
6. When the autotuning is finished successfully, check KpS (24.03) and TiS (24.09) - parameters set by the autotuning - for confirmation.
7. If the autotuning fails A121 AutotuneFail is set. For more details check Diagnosis (9.11) and repeat the autotuning.

Attention:

The assistant is using the setting of M1SpeedFbSel (50.03). If using setting Encoder, Encoder2 or Tacho make sure the speed feedback is working properly!

07 Field weakening assistant

1. Open the workspace 07 DCS800 Field weakening assistant. $d w w^{1}$.
2. Enter the motor data and the field circuit data [M1SpeedMin (20.01), M1SpeedMax (20.02), M1FldMinTrip (30.12), FldCtrIMode (44.01), M1NomVolt (99.02), M1BaseSpeed (99.04) and M1NomFldCur (99.11)].
3. Switch the drive to local mode (DriveWindow, DCS800 Control Panel or local I/O).
4. Start the autotuning by means of ServiceMode (99.06) = EMF FluxAuto and set On and Run via within 20 s.
5. During the autotuning the main contactor and the field contactor - if existing - will be closed and the motor will run up to base speed [M1BaseSpeed (99.04)]. The EMF controller data are calculated, the flux linearization is tuned by means of a constant speed while decreasing the field current and the EMF controller respectively flux linearization parameters are set.
6. When the autotuning is finished successfully, check KpEMF (44.09), TiEMF (44.10), FldCurFlux40 (44.12), FldCurFlux70 (44.13) and FldCurFlux90 (44.14) - parameters set by the autotuning - for confirmation.
7. If the autotuning fails A121 AutotuneFail is set. For more details check Diagnosis (9.11) and repeat the autotuning.
${ }^{1}$: before opening the workspaces, the drive has to be connected to DriveWindow

Manual tuning

I/O configuration

To set the in- and outputs see chapter I/O configuration.

Field current controller

Manual tuning of the field current controller:

- connect DriveWindow to the drive and choose local mode,
- monitor Mot1FldCurRef (1.29) and FldCurRefM1 (3.30),
- set M1FldMinTrip (30.12) $=0 \%$,
- set M1FIdRefMode (45.05) = M1FIdRefExt,
- give On via DriveWindow,
- use M1FldRefExt (45.06) to step the field current controller,
- tune the field current controller by means of M1KpFex (44.02) and M1TiFex (44.03),
o steps size: about $2 \%-5 \%$ of nominal field current (do not hit any limits during the step and the step response, e.g. max. field current, or supply voltage),
o step response time: $50 \mathrm{~ms}-60 \mathrm{~ms}$ (count only from 10% to 90%),
o where to step: $30 \%, 60 \%$ and 80% of nominal field current,

Field current controller step responses

DriveWindow manual tuning field current controller

- set M1FIdRefExt (45.06) $=0 \%$,
- remove On via DriveWindow,
- set M1FldMinTrip (30.12) and M1FIdRefMode (45.05) back to their original settings

Armature current controller

Control
principle
To keep a PI-controller as fast as possible idealistically the integral part should stay at zero. The worst case is that the integral part is running into the limits and thus needs a long time to recover. To prevent this and to achieve an integral part as small as possible two feed forwards are used for the current controller:

1. During discontinuous current the signal from the current controller is boosted by means of the discontinuous current adaptation, depending on discontinuous current limit, current reference and EMF. The discontinuous current limit has to be determent during the commissioning.
2. Additionally the EMF itself is used as feed forward. Unfortunately it is not possible to measure the EMF directly. It has to be calculated by means of following formula:

$$
E M F=U_{A}-\left(R_{A} * I_{A}+L_{A} * \frac{d I_{A}}{d t}\right)
$$

The values for the resistance $\left(R_{A}\right)$ and the inductance $\left(L_{A}\right)$ of the motor have to be determent during the commissioning.

Control principle armature current controller

Manual tuning

Thus the manual tuning of the armature current controller has to be splitted into three parts:

1. determine resistance and inductance of the motor,
2. determine discontinuous current limit of the motor,
3. manual tuning of the armature current controller (p - and i -part)

DriveWindow information:

DriveWindow information

Part 1, determine resistance and inductance of the motor:

- connect DriveWindow to the drive and choose local mode,
- monitor EMF VoltActRel (1.17) and CurRefUsed (3.12),
- set CurSel (43.02) = CurRefExt,
- set M1KpArmCur (43.06), M1TiArmCur (46.07), M1DiscontCurLim (46.08), M1ArmL (43.09) and M1ArmR (46.10) to default,
- set M1UsedFexType (99.12) = NotUsed,
- give On and Run via DriveWindow,
- use DriveWindow to step the armature current controller and watch the EMF,
- make sure the motor is not turning (Attention: let the drive run only for a short time),

Before tuning of M1ArmL (43.09) and M1ArmR (46.10)

- tune M1ArmR (46.10) until the EMF is as close as possible to zero and dose not change it's value during the current step,

After tuning of M1ArmR (46.10)

- It is not possible to tune M1ArmL (43.09) manually. Thus set M1ArmL (43.09) $=0$!
- remove On and Run via DriveWindow,
- set CurSel (43.02) and M1UsedFexType (99.12) back to their original settings
Part 2, determine discontinuous current limit of the motor:
- connect an oscilloscope to the fixed AO I-act (X4:9 / 10 on the SDCS-CON4 or X4:5 / 6 on the SDCS-IOB-3),
- connect DriveWindow to the drive and choose local mode,
- set CurSel (43.02) = CurRefExt,
- set M1DiscontCurLim (46.08) to default,
- set M1UsedFexType (99.12) = NotUsed,
- give On and Run via DriveWindow,
- use DriveWindow to increase the armature current reference,
- make sure the motor is not turning (Attention: let the drive run only for a short time),
- watch the current bubbles and increase the current reference until the current is continuous,

Discontinuous current

Continuous current

- remove On and Run via DriveWindow,
- set CurSel (43.02) and M1UsedFexType (99.12) back to their original settings,
- copy the current reference used in DriveWindow and paste it into M1DiscontCurLim (46.08)

Part 3, manual tuning of the armature current controller:
_ connect an oscilloscope to the fixed AO I-act (X4:9 / 10 on the SDCS-CON4 or X4:5 / 6 on the SDCS-IOB-3),

- connect DriveWindow to the drive and choose local mode,
- set CurSel (43.02) = CurRefExt,
- set M1UsedFexType (99.12) = NotUsed,
- give On and Run via DriveWindow,
- use DriveWindow to step the armature current controller,
- make sure the motor is not turning (Attention: let the drive run only for a short time),
- tune the armature current controller by means of M1KpArmCur (43.06) and M1TiArmCur (46.07),

\rightarrow anmmm

p-part too high

i-part too short

i-part too long

p-part too low and i-part too long

Armature current controller step responses

- remove On and Run via DriveWindow,
- set CurSel (43.02) and M1UsedFexType (99.12) back to their original settings

Analog tacho

In case an analog tacho is used for speed feedback it has to be tuned.

DriveWindow information:

DriveWindow information

Manual tuning

Manual tuning of the analog tacho:

- set speed and analog tacho parameters,
o M1SpeedMin (20.01),
o M1SpeedMax (20.02),
o M1OvrSpeed (30.16),
o M1BaseSpeed (99.04) and
o tacho voltage at 1000 rpm with M1TachoVolt1000 (50.13),
- the maximum tacho speed is calculated automatically and shown in M1TachoMaxSpeed (88.25),
- the needed tacho connection is calculated automatically and shown in TachoTerminal (4.25),
| 04.25: TachoTerminal
X3-1 90-270V

Analog tacho inputs

Analog tacho connections

- check the tacho connections and change them accordingly,
- set M1TachoTune (88.27) = 1.000 (default),
- make sure that the drive is in EMF control - M1SpeedFbSel (50.03) = EMF,
- give On and Run via DriveWindow,
- use DriveWindow to set a constant speed reference,
- measure speed actual at the motor shaft using a hand held tacho,
- rescale M1TachoTune (88.27) in small steps, e.g. +/- 0.005 until the speed actual measured at the shaft and the speed actual measured with the analog tacho match, see SpeedActTach (1.05),
- remove On and Run via DriveWindow

Speed controller

Basics
When tuning the drive, change one parameter at a time, then monitor the effect on the step response and possible oscillations. The effect of each parameter change must be checked over a wide speed range and not just at one point. The set speed controller values mainly depend on:

- the relationship between the motor power and the attached masses,
- backlashes and natural frequencies of the attached mechanics (filtering)

The step response tests must be carried out at different speeds, from minimum up to maximum speed, at several different points. The whole speed range must also be tested carefully, e.g. at $25 \%-30 \%$ of maximum speed (step has to be in base

Start-up

area) in order to find any oscillation points.

speed range) and 80% of maximum speed (step has to be in field weakening
A suitable speed step is about 2% of maximum speed. A too large step reference or incorrect values of the speed controller might force the drives into torque / current limits, damage the mechanical parts (e.g. gear boxes) or cause tripping of the drive.

DriveWindow information:

DriveWindow information

Manual tuning of the speed controller:

- connect DriveWindow to the drive and choose local mode,
- monitor MotSpeed (1.04) and SpeedRef4 (2.18),
- give On and Run via DriveWindow,
- use DriveWindow to set a constant speed reference,
- use SpeedCorr (23.04) to step the speed controller,
- tune the speed controller by means of $K p S$ (24.03) and TiS (24.09),
o steps size: 2% of maximum speed (do not hit any limits during the step and the step response, e.g. torque or current limits),
o disable the i-part by setting TiS (24.09) $=0 \mathrm{~ms}$,
o increase $K p S$ (24.03) until the step response shows an overshoot,
o decrease KpS (24.03) about 30 \%,
o adjust TiS (24.09) in such a way, that there is no overshoot or only a slight overshoot, depending on the application (the function of the ipart is to reduce as quickly as possible the difference between speed reference and speed actual),
o step response time: 100 ms (count only from 10% to 90%) in cold mills and 60 ms in rod and bar mills,
o where to step: $25 \%-30 \%$ of maximum speed (step has to be in base speed range) and 80% of maximum speed (step has to be in field weakening area),
o filter time •n: e.g. $5 \mathrm{~ms}-10 \mathrm{~ms}$ [see SpeedErrFilt (23.06) and SpeedErrFilt2 (23.11)] or
o filter time speed actual: e.g. $5 \mathrm{~ms}-10 \mathrm{~ms}$ [see SpeedFiltTime (50.06)],

A: undercompensated, p-part too small and i-part too short
B: undercompensated, p-part too small
C: normal
D: normal, when a low impact speed drop is required
E: overcompensated, p-part too large and i-part too short
Speed controller step responses

DriveWindow manual tuning speed controller

- set SpeedCorr (23.04) = 0%,
- remove On and Run via DriveWindow

EMF controller

Basics
In case the motor needs to be used in the field weakening area the EMF controller has to be tuned. The EMF controller needs to have a quick response. Usually 2 to 3 times slower than the field current controller.
The tuning has to be done in the field weakening area, because the EMF controller is blocked in the base speed range.

EMF reference for manual tuning EMF controller
DriveWindow information:

DriveWindow information

Manual tuning

Manual tuning of the EMF controller:

- connect DriveWindow to the drive and choose local mode,
- monitor EMF VoltActRel (1.17) and VoltRef2 (3.26),
- set FldCtrIMode (44.01) = EMF,
- set EMF CtrIPosLim (44.07) $=100 \%$,
- set EMF CtrINegLim (44.08) = -100 \%,
- give On and Run via DriveWindow,
- use DriveWindow to set a constant speed reference in the field weakening area,
- use VoltCorr (44.25) to step the EMF controller,
- tune the EMF controller by means of KpEMF (44.09) and TiEMF (44.10),
o steps size: $2 \%-5 \%$ (do not hit any limits during the step and the step response),
o step response time: 2-3 times slower than the field current controller,
o where to step: in the field weakening area,

EMF controller step responses

DriveWindow manual tuning EMF controller

- set VoltCorr (44.25) = 0%,
- remove On and Run via DriveWindow.
- set FldCtrIMode (44.01), EMF CtrIPosLim (44.07) and EMF CtrINegLim (44.08) back to their original settings

Flux linearization

Basics
In case the motor needs to be used in the field weakening area the flux linearization has to be set. The flux linearization is needed because of the nonlinear relation of flux and field current due to saturation effects of the field winding.

Flux of DC-motor versus field current

The magnetization of the motor starts to saturate at a certain field current and thus the flux does not increase linearly. For this reason the field current cannot be directly used to calculate the flux inside the motor.
In base speed area EMF and speed are directly proportional because the flux is kept constant:

$$
\mathrm{n}=\frac{\mathrm{k}^{*} \mathrm{EMF}}{\Phi} \quad \begin{aligned}
& \mathrm{k}=\text { constant } \\
& \Phi=\text { Flux }
\end{aligned}
$$

Example:
If the nominal armature voltage is 440 V and the motor is running at half speed with full flux, then the armature voltage is about 220 V . Now the flux is reduced to 50% at constant speed, then the armature voltage drops to about 110 V . Since the EMF is directly proportional to the flux it is possible to define a relationship between the field current and the flux by means of measuring the armature voltage without load (= EMF).

Thus the main idea of the flux linearization is to find field currents which produces desired EMF-voltage at a certain speed. The flux linearization is done by means of a function block defined by 3 values:

- field current at 40 \% flux, FldCurFlux40 (44.12),
- field current at 70 \% flux, FldCurFlux70 (44.13),
- field current at 90 \% flux, FldCurFlux90 (44.14)

The intermediate values are interpolated. During commissioning all 3 parameters must be set, if the flux linearization is needed.

DriveWindow information:

DriveWindow information

Manual tuning

Manual tuning of the flux linearization:

- connect DriveWindow to the drive and choose local mode,
- make sure the speed feedback device is either encoder or analog tacho M1SpeedFbSel (50.03) = Encoder or Tacho - and not EMF!
- monitor MotSpeed (1.04), ArmVoltAct (1.14) and Mot1FldCurRel (1.29),
- set M1FldMinTrip (30.12) = 10%,
- set FldCtrIMode (44.01) = EMF,
- set EMF CtrIPosLim (44.07) $=0$ \%,
- set EMF CtrINegLim (44.08) $=0 \%$,
- set FldCurFlux40 (44.12), FldCurFlux70 (44.13) and FldCurFlux90 (44.14) to default,
- give On and Run via DriveWindow,
- use DriveWindow to run the motor at e.g. half base speed,
- make sure, that the motor is running without load,
- read ArmVoltAct (1.14), e.g. the measured value is 220 V ,
- reduce the flux with FluxCorr (44.27) until ArmVoltAct (1.14) reaches 90% of the $1^{\text {st }}$ measurement,
- read the value of Mot1FldCurRel (1.29), keep it in mind and write it into FldCurFlux90 (44.14) after this procedure is finished,
- reduce the flux with FluxCorr (44.27) until ArmVoltAct (1.14) reaches 70 \% of the $1^{\text {st }}$ measurement,
- read the value of Mot1FldCurRel (1.29), keep it in mind and write it into FldCurFlux70 (44.13) after this procedure is finished,
- reduce the flux with FluxCorr (44.27) until ArmVoltAct (1.14) reaches 40 \% of the $1^{\text {st }}$ measurement,
- read the value of Mot1FldCurRel (1.29), keep it in mind and write it into FldCurFlux40 (44.12) after this procedure is finished,

DriveWindow manual tuning flux linearization

- set FluxCorr (44.27) = 0 \%,
- remove On and Run via DriveWindow,
- set FldCurFlux90 (44.14), FldCurFlux70 (44.13) and FldCurFlux40 (44.12) to the determined values,
- set M1FldMinTrip (30.12), FldCtrIMode (44.01), EMF CtrIPosLim (44.07) and EMF CtrINegLim (44.08) back to their original settings

Thyristor diagnosis

Basics
Thyristor diagnosis basically provides two possibilities:

1. check all thyristors of the drive for proper function or
2. check individual firing pulses

DriveWindow information:

DriveWindow information

Check all thyristors

Check individual firing pulses

Thyristor diagnosis for all thyristors:

- connect DriveWindow to the drive and choose local mode,
- set ServiceMode (99.06) = ThyDiagnosis,
- set TestFire (97.28) = Off,
- give On and Run via DriveWindow,

The main contactor is closed and the thyristor diagnosis is started. After the thyristor diagnosis is finished:

- the result is written into Diagnosis (9.11),
- the ServiceMode (99.06) is automatically set back to NormalMode and
- the drive is automatically switched off.

Check individual firing pulses:

- make sure, that the main contactor cannot close (e.g. disconnect the digital output controlling the main contactor) or that the mains voltage is off (e.g. high voltage breaker is open),
- connect a current clamp to one of the firing pulse cables,
- connect DriveWindow to the drive and choose local mode,
- set ServiceMode (99.06) = ThyDiagnosis,
- set TestFire (97.28) = V11, ..., V26 depending individual firing pulse to be checked,

Start-up

- give On and Run via DriveWindow, the main contactor should not pick up,
- make sure, that the mains voltage is zero,
- check the firing pulse with the current clamp,
- remove On and Run via DriveWindow,
- set ServiceMode (99.06) back to NormalMode,

TestFire (97.28) is automatically set back to Off.

Firmware description

Chapter overview

This chapter describes how to control the drive with standard firmware.
Identification of the firmware versions
The DCS800 is controlled by the SCDS-CON-4. The firmware version and type can be checked from:

- FirmwareVer (4.01) and
- FirmwareType (4.02)

The DDCS communication is handled by the SDCS-COM-8. The firmware revision can be checked from:

- Com8SwVersion (4.11)

The firmware revisions of the field exciters can be checked from:

- Mot1FexSwVer (4.08) and
- Mot2FexSwVer (4.09)

Start / stop sequences

General

The drive is controlled by control words [MainCtrlWord (7.01) or UsedMCW (7.04)]. The MainStatWord (8.01) provides the hand shake and interlocking for the overriding control.
The overriding control uses the MainCtrIWord (7.01) or hardware signals to command the drive. The actual status of the drive is displayed in the MainStatWord (8.01).

The marks (e.g. ©) describe the order of the commands according to Profibus standard. The overriding control can be:

- AC 800M via DDCS communication,
- serial communication (e.g. Profibus),
- hardware signals - see CommandSel (10.01) = Local I/O,
- master-follower communication,
- Adaptive Program or
- application program.

Switch on sequence

Bit	$15 . .11$				$\left\lvert\, \begin{aligned} & \underset{\Psi}{\mathscr{U}} \\ & \mathscr{0} \\ & \widetilde{\sim} \\ & 07 \end{aligned}\right.$				$$	$\begin{gathered} \underset{2}{2} \\ \underset{y}{2} \\ 02 \end{gathered}$	$\begin{gathered} \underset{\sim}{2} \\ \underset{i}{2} \\ 01 \end{gathered}$	乞	Dec.	Hex.
Reset		1	x	x	1	x	x	x	x	x	x	x	1270	04F6
Off (before On)		1	0	0	0	x	x	x	0	1	1	0	1142	0476
On (main cont. On)		1	0	0	0	x	x	x	0	1	1	1	1143	0477
Run (with reference)		1	0	0	0	1	1	1	1	1	1	1	1151	047F
E-Stop		1	x	x	x	1	1	1	1	0	1	1	1147	047B
Start inhibit		1	x	x	x	x	x	x	x	x	0	x	1140	0474

Examples for the MainCtrIWord (7.01)

Start the drive

The start sequence given below is only valid for MainContCtrIMode (21.16) = On.

Attention:

All signals have to be maintained. On- and Run [MainCtrIWord (7.01) bit 0 and 1] commands are only taken over with their rising edges.

Overriding Control
MainCtrIWord (7.01)

Drive
MainStatWord (8.01)
When the drive is ready to close the main contactor RdyOn state is set
(1) \langle RdyOn = 1; (bit 0)

The overriding control commands
On
On = 1; (bit 0) \Rightarrow
(2)

The drive closes the main contactor, the field contactor and the contactors for converter and motor fans. After the mains voltage and all acknowledges are checked and the field current is established, the drive sets state RdyRun.
(3) RdyRun = 1; (bit 1)

4
The drive releases the ramp, all references, all controllers and sets state RdyRef
(5) $\boldsymbol{\rightharpoonup}$ RdyRef $=1$; (bit 2)

Now the drive follows the speed or torque references

Note:

To give On and Run at the same time set OnOff1 (10.15) = StartStop (10.16).

Stop the drive

The drive can be stopped in two ways, either by taking away the On command directly which opens all contactors as fast as possible after stopping the drive according to Off1Mode (21.02) or by means of the following sequence:

Overriding Control
MainCtrlWord (7.01)

Drive
MainStatWord (8.01)
The overriding control removes Run
Run = 0; (bit 3)
(1)

The overriding control can keep the On command if the drive has to be started up again
The overriding control removes On

$$
\text { On = 0; (bit 0) } \Rightarrow
$$

In speed control mode, the drive stops according to StopMode (21.03). In torque control mode, the torque reference is reduced to zero according to TorqRefA FTC (25.02) respectively TorqRampDown (25.06), depending on the used torque reference channel (A or B). When zero speed or zero torque is reached the state RdyRef is removed.
(2) RdyRef = 0; (bit 2)

- RdyRef = 0; (bit 2)

All contactors are opened - the fan contactors stay in according to FanDly (21.14) - and the state RdyRun is removed
4 $\boldsymbol{\square}$ RdyRun $=0$; (bit 1)
Besides in MainStatWord (8.01), the drive's state is shown in DriveStat (8.08).

START (On, Run) STOP (Run is taken away)

5 Behaviour depends on Off1Mode (21.02) and StopMode (21.03)
6 Behaviour depends on FldHeatSel (21.18) and M1FldMinTrip (30.12)
7 Behaviour depends on FanDly (21.14)
8 Behaviour depends on M1BrakeCtrl (42.01)

START (On, Run) ESTOP (E-Stop (7.01, Bit:2) wurde gedrückt)

5 Verhalten abhängig von Off1Mode (21.02) und StopMode (21.03)
6 Verhalten abhängig von FldHeatSel (21.18) und M1FldMinTrip (30.12)
(Verhalten abhängig von FanDly (21.14)
8 Verhalten abhängig von BrakeEStopMode (42.09)
9 Verhalten abhängig von EStopMode (21.04)
Nicht relevant

Field excitation

General

Depending on the application the DCS800 has the capability to use several different kinds of field exciters or combinations of them. The differences of the field exciters and their functions are explained here.

Field Reversa

Changing the field current direction is needed when the armature converter has only one bridge (2-quadrant). Field reversal is changing the direction of the field current. Thus the direction of the speed is changing and it is possible to regenerate energy back into the mains. For example to decelerate a large inertia.
To initiate the field reversal the sign of TorqRefUsed (2.13) is taken and defines the desired direction of the field current. Armature converters with two anti-parallel bridges (4-quadrant) do not require field reversal.

Overview field reversal and optitorque

Field control
Field reversal is activated by means of FldCtrIMode (44.01):

Mode	Functionality	Armature converter
Fix	constant field (no field weakening), EMF controller blocked, field reversal blocked, optitorque blocked, default	$2-\mathrm{Q}$ or 4-Q
EMF	field weakening active, EMF controller released, field reversal blocked, optitorque blocked	$2-\mathrm{Q}$ or 4-Q
Fix/Rev	constant field (no field weakening), EMF controller blocked, field reversal active, optitorque blocked	$2-\mathrm{Q}$
EMF/Rev	field weakening active, EMF controller released, field reversal active, optitorque blocked	$2-\mathrm{Q}$
Fix/Opti	constant field (no field weakening), EMF controller blocked, field reversal blocked, optitorque active	$2-\mathrm{Q}$ or 4-Q
EMF/Opti	field weakening active, EMF controller released, field reversal blocked, optitorque active	$2-\mathrm{Q}$ or 4-Q
Fix/Rev/Opti	constant field (no field weakening), EMF controller	$2-\mathrm{Q}$

Field

reference
hysteresis

Force field current direction

Reversal time
less
transition

Optitorque

Field current reference gain

	blocked, field reversal active, optitorque active	
EMF/Rev/Opti	field weakening active, EMF controller released, field reversal active, optitorque active	$2-\mathrm{Q}$

To prevent field reversal from continuous toggling due to a too small torque reference, a torque reference hysteresis is available. The hysteresis is symmetrical and is set by FldRefHyst (45.10):

Field reference hysteresis

With ForceFldDir (45.07) it is possible to force and clamp the field current direction. This gives the user the possibility to control the field current direction or change it in case of need. Thus unnecessary field current changes at low torque are prevented and it is also possible to release field reversal for certain occasions, e.g. jogging or E-stop.

The physical reversal time can be reduced by increasing the input voltage of the field exciter and using Optitorque.
Please note that the output voltage of the field exciter is limited by means of M1PosLimCtrl (45.02) or M2PosLimCtrl (45.16). This can also increase the physical reversal time.

The output of the speed ramp is updated by means of the actual speed to ensure a bumpless transition, if RevDly (43.14) is greater than 25 ms and RevMode (43.16) = Soft.

Due to high inductances of motors, the field reversal takes a relatively long time. In certain cases this time can be reduced by means of optitorque - see FldCtrIMode (44.01). In case the process requires only a small torque during field reversal, the field current is decreased and the armature current is increased prior to the field current change. This speeds up the field reversal. The rate of the field current reduction depends on the process. E.g. if the speed direction is changed rather slowly, the required torque may also be quite small. This allows the reduction of the field current. Thus by means of optitorque it is possible to shorten the field reversal time.

In optitorque mode the field current will be reduced proportionally to TorqRefUsed (2.13). The relation between TorqRefUsed (2.13) and field current is defined by FldRefGain (45.11):

Field current reference gain
For example with FldRefGain (45.11) = $20 \%, 100 \%$ field current is generated at TorqRefUsed (2.13) $=20$ \%.

Field current monitoring

Field minimum trip

Flux reversal

Field reversal hysteresis

Field reversal active

During normal operation the field current is compared with M1FIdMinTrip (30.12). The drive trips with F541 M1FexLowCur [FaultWord3 (9.03) bit 8] if the field current drops below this limit and is still undershot when FldMinTripDly (45.18) is elapsed.
During field reversal the situation is different. M1FldMinTrip (30.12) is disabled for FldCtrIMode (44.01) = Fix/Opti, EMF/Opti, Fix/Rev/Opti or EMF/Rev/Opti. In this case the trip level is automatically set to 50% of FldCurRefM1 (3.30). The drive trips with F541 M1FexLowCur [FaultWord3 (9.03) bit 8] if 50 \% of FldCurRefM1 (3.30) is still undershot when FldMinTripDly (45.18) is elapsed.

If actual flux and armature voltage of the motor cannot follow the field current during field reversal it is necessary to delay the active field direction.
FluxRevMonDly (45.08) is the maximum allowed time within Mot1FldCurRel (1.29) and the internal motor flux doesn't correspond to each other during field reversal. During this time F522 SpeedFb [FaultWord2 (9.02) bit 5] is disabled.

The sign of Mot1FldCurRel (1.29) is used to generate the field reversal acknowledge. To avoid signal noise problems a small hysteresis - defined by means of FldRevHyst (45.09) - is needed.

While the field reversal is in progress - see CurCtrlStat2 (6.04), bit 11,

- the current controller is blocked,
- the I-part of the speed controller frozen,
- the output of the speed ramp is updated by means of the actual speed, if RevDly (43.14) is greater than 25 ms and RevMode (43.16) = Soft

Field Heating

Overview
Field heating (also referred to as "field warming and field economy") is used for a couple of reasons.

Previous generations of DC-drives used voltage-controlled field supplies, meaning that the only thing the field supply could directly control was the field voltage. For DC-motors to maintain optimal torque it is important to maintain the field current. Ohm's law $\left(\mathrm{U}=\mathrm{R}^{\star} \mathrm{I}\right)$ tells us that voltage equals resistance multiplied by current. So as long as resistance remains constant, current is proportional to voltage. But field resistance increases with temperature. Therefore, a cold motor would have a

Modes of operation
higher field current than a warm motor, even though voltage remained unchanged. To keep the resistance and thus the current constant, the field was left on to keep it warm. Then the voltage-controlled field supply works just fine.
The new generation of drives, including all field supplies used with the DCS800, are current controlled. Thus the field supply directly controls field current. This means that field heating may no longer be necessary when the DCS800 is employed.
Another reason field heating is used is to keep moisture out of the motor. Following parameters are used to turn on and control field heating:

- FldHeatSel (21.18),
- M1FldHeatRef (44.04)

There are basically two modes of operation. In both modes, the field current will be at a reduced level, determined by M1FIdHeatRef (44.04).
FldHeatSel (21.18) = On:

- Field heating is on, as long as $\mathbf{O n}=0$ [UsedMCW (7.04) bit 0], Off2N $=1$ [UsedMCW (7.04) bit 1] and Off3N = 1 [UsedMCW (7.04) bit 2]. In general, field heating will be on as long as the OnOff input is not set and no Coast Stop or E-stop is pending.

Condition	On [UsedMCW (7.04) bit 0]	Off2N [UsedMCW (7.04) bit 1]	Result
Power up	0	1	reduced field current** *
Start drive	1	1	normal field current
Normal stop	$1 \rightarrow 0$	1	normal field current, then reduced** after stop
Coast Stop while running	1	$1 \rightarrow 0$	field is turned off as motor coasts to stop and cannot turned back on again as long as Coast Stop is pending

*see Off2 (10.08)
**the field current will be at the level set by means of M1FIdHeatRef (44.04) while motor is stopped

FldHeatSel (21.18) = OnRun:

- Field heating is on as long as $\mathbf{O n}=\mathbf{1}$, Run $=0$ [UsedMCW (7.04) bit 3], Off2N = 1 and $\mathbf{O f f} 3 \mathrm{~N}=1$.
In general, field heating will be on as long as the OnOff input is set, the Start/Stop input is not set and no Coast Stop or E-stop is pending.

On [UsedMCW (7.04) bit 0]	Run [UsedMCW (7.04) bit 3]	Off2N [UsedMCW (7.04) bit 1]	Result
0	x	x	field is turned off
1	0	1	reduced field current**
1	1	1	normal field current
1	$1 \rightarrow 0$	1	normal field current, then reduced** after stop

1	x	$1 \rightarrow 0$	field is turned off as motor coasts to stop and cannot turned back on again as long as Coast Stop is pending

*see Off2 (10.08)
**the field current will be at the level set by means of M1FldHeatRef (44.04) while motor is stopped

E-stop
In both modes of operation, if the E-stop - see E Stop (10.09) - is pending the field will be turned off. It cannot be turned back on again as long as the E-stop is pending. If the E-stop is cleared while in motion, the motor will be stopped according to E StopMode (21.04) and then field and drive will be turned off.

Field exciter mode

General

The standard DCS800 module can be operated as large field exciter by simply setting parameters. It is either controlled by a DCS800 armature converter or can be configured as stand alone field exciter.
The field exciter mode uses the standard armature current controller as field current controller. Thus the current of the converter [ConvCurAct (1.16)] equals the field current of the motor. For these configurations an overvoltage protection (DCF505 or DCF506) is mandatory.

Large field exciter controlled by a DCS800 armature converter

Communication in field exciter mode
Large field exciters are fully controlled via the DCSLink:
DCSLinkNodeID (94.01) = 1, default
M1FexNode (94.08) = 21, default M2FexNode (94.09) = 30, default
Single drive with one or two large field exciters:

In the large field exciters set OperModeSel (43.01) = FieldConv and CommandSel (10.01) $=$ FexLink as source for the control word (OnOff1, StartStop and Reset). The reference is selected by CurSel (43.02) = FexCurRef. In the armature converter the field current is set by means of M1NominalFldCur (99.11) and in the large field exciter the current is set by means of M1NomCur (99.03).
To close the field contactor use CurCtrlStat1 (6.03) bit 7.

Parameters to be set in the DCS800 armature converter:

Parameter	Armature converter	Comments
M1FldMinTrip (30.12)	xxx \%	sets level for F541 M1FexLowCur
FldCtrIMode (44.01)	1 = EMF	EMF controller released, field weakening active - depending on the application
FldMinTripDly (45.18)	2000 ms (def.)	delays F541 M1FexLowCur
DCSLinkNodeID (94.01)	1	
FexTimeOut (94.07)	100 ms (def.)	causes F516 M1FexCom
M1FexNode (94.08)	21 (def.)	Use the same node number as in DCSLinkNodeID (94.01) of the field exciter
M1NomFldCur (99.11)	xxx A	$\mathrm{I}_{\mathrm{EN}}=\mathrm{xxx} \mathrm{A}$, rated field current
M1UsedFexType (99.12)	$\begin{aligned} & 8=\text { DCS800-S01, } \\ & 9=\text { DCS800-S02 } \end{aligned}$	

Parameters to be set in large field exciters:
Before starting with the commissioning set all parameters to default by means of AppIMacro (99.08) $=$ Factory and AppIRestore (99.07) $=$ Yes. Check with MacroSel (8.10).

Parameter	Field converter	Comments
CommandSel (10.01)	4 = FexLink	
MotFanAck (10.06)	$0=$ NotUsed	
OvrVoltProt (10.13)	2 = DI2	depending on hardware connection to DCF506
ArmOvrVoltLev (30.08)	500%	to suppress F503 ArmOverVolt if this does not help, increase M1NomVolt (99.02)
OperModeSel (43.01)	1 = FieldConv	
CurSel (43.02)	$8=$ FexCurRef	
M1DiscontCurLim (43.08)	0%	
RevDly (43.14)	50 ms	
FldCtrIMode (44.01)	$0=$ Fix (def.)	

DCSLinkNodeID (94.01)	21 (def.)	Use the same node number as in M1FexNode (94.08) of the armature module
DevLimPLL (97.13)	20°	to suppress blocking of current controller see CuCtrIStat2 (6.04) bit 13
		$\mathrm{U}_{\text {EN }}=\mathrm{xxx} \mathrm{V}$, rated field voltage
M1NomVolt (99.02)	xxx V	$\mathrm{I}_{\mathrm{EN}}=\mathrm{xxx} \mathrm{A}$, rated field current
M1NomCur (99.03)	xxx A	$\mathrm{U}_{\text {Nein }}=\mathrm{xxx} \mathrm{V;} \mathrm{nominal} \mathrm{supply} \mathrm{voltage} \mathrm{(AC)}$
NomMainsVolt (99.10)	xxx V	
M1UsedFexType (99.12)	$0=$ NotUsed	

Field current autotuning for large field exciters:
The field current autotuning has to be started directly in the large field exciter:

Parameter	Field converter	Comments
ServiceMode (99.06)	$2=$ FieldCurAuto	Give the On and Run command within 20 s
M1KpArmCur (43.06)	xxx	Is set by field current autotuning
M1TiArmCur (43.07)	xxx	Is set by field current autotuning
M1DiscontCurLim (43.08)	0%	Is set to zero by field current autotuning

Stand alone field exciter

Stand alone field exciter

In the stand alone field exciters set OperModeSel (43.01) = FieldConv and CommandSel (10.01) = Local I/O or MainCtrIWord as source for the control word (OnOff1, StartStop and Reset). The reference is selected by CurSel (43.02) = CurRefExt or Al1 to AI6. The field exciter mode uses the standard armature current controller as field current controller. Thus the field current is set by means of M1NomCur (99.03).
To close the field contactor use CurCtrlStat1 (6.03) bit 7.

Parameters to be set in the stand alone field exciter:
Before starting with the commissioning set all parameters to default by means of ApplMacro (99.08) $=$ Factory and AppIRestore (99.07) $=$ Yes. Check with MacroSel (8.10).

Parameter	Field converter	Comments
CommandSel (10.01)	$0=$ Local I/O (def.), 1 = MainCtrIWord	
MotFanAck (10.06)	$0=$ NotUsed	
OvrVoltProt (10.13)	2 = DI2	depending on hardware connection to DCF506
		to suppress F503 ArmOverVolt if this does not help, increase M1NomVolt (99.02)
ArmOvrVoltLev (30.08)	500%	
OperModeSel (43.01)	1 = FieldConv	

Firmware description
$\left.\begin{array}{|l|l|l|}\hline \text { CurSel (43.02) } & 1=\text { CurRefExt, } & \text { depending on the connection } \\ & 2=\text { Al1, } & \\ & 3=\text { Al2, } & \\ & 4=\text { Al3, } & \\ & 5=\text { Al4, } & \\ & 6=\text { Al5, } & \\ & 7=\text { Al6 }\end{array}\right)$

Field current autotuning for stand alone field exciter:
The field current autotuning has to be started directly in the stand alone field exciter:

Parameter	Field converter	Comments
ServiceMode (99.06)	2 = FieldCurAuto	Give the On and Run command within 20 s
M1KpArmCur (43.06)	xxx	Is set by field current autotuning
M1TiArmCur (43.07)	xxx	Is set by field current autotuning
M1DiscontCurLim (43.08)	0%	Is set to zero by field current autotuning

DC-breaker, DC-contactor

General

The DC-breaker is used to protect the DC-motor or - in case of too low mains voltage or voltage dips - the generating bridge of the drive from overcurrent. In case of an overcurrent the DC-breaker is forced open by its own tripping spring. DC-breakers have different control inputs and trip devices:

- an On / Off coil with a typical time delay of 100 to 200 ms ,
- a high speed tripping coil (e.g. Secheron = CID) to trip the DC-breaker within 2 ms from e.g. the drive,
- an internal tripping spring which is released by overcurrent and set mechanically
There are different ways how to control the DC-breaker depending on the available hardware and the customers on / off philosophy. Following are the most common examples.

Attention:

If a $D C$ breaker is used and $D C$ voltage measurement is taken inside the converter module (D1 - D4 modules and D5 - D7 in default configuration) then deselect the automatic offset compensation by setting OffsetUDC (97.24) $=0$

HVCB controlled externally, DC-breaker controlled by the drive

HVCB controlled externally, DC-breaker controlled by the drive

In the above example the High Voltage Circuit Breaker (HVCB) is controlled externally (e.g. by the operator). The result is checked by means of MainContAck (10.21). In case the main contactor acknowledge is missing F524 MainContAck [FaultWord2 (9.02) bit 7] is set. Usually HVCB are equipped with an overcurrent relay, which can trip the HVCB. To protect the drive a 50 ms to 100 ms pretriggered trip command must be connected to Off2 (Coast Stop) [MainCtrIWord (7.01) bit 1]. Additionally the trip command from the HVCB should also trip the DCbreaker.
DC-breaker is controlled by the drive. The drive closes and opens the DC-breaker with the command MainContactorOn. The result is checked by means of MainContAck (10.21). In case the main contactor acknowledge is missing F524
MainContAck [FaultWord2 (9.02) bit 7] is set.
The DC-breaker can be tripped actively by the command Trip DC-breaker.

DC-contactor US version

If using a DC contactor, you must connect an auxiliary contact to a digital input of your choice and set para. MainContAck accordingly. Set the following parameters: MainContAck (10.21) = DI1 (or any input you choose for the DC cont. auxiliary contact)
DO8BitNo (14.16) $=10$
MainContCtrIMode (21.16) = DCcontact (3)
Set these parameters AFTER macros are loaded but BEFORE the drive is commissioned.

Digital output 8 (DO8) must be used to turn the DC-contactor on and off. DC-contactor US:

DC-contactor US K1.1 is a special designed contactor with $2 \times \mathrm{NO}$ contacts for C1 and D1 connection and 1x NC contact for connection of Dynamic Brake resistor RB. The contactor should be controlled by CurCtr/Stat1 (6.03) bit 10. The acknowledae can be connected to parameter: MainContAck (10.21)

DCBreakAck (10.23)

MainContactorOn (6.03) bit 7 DynamicBrakingOn (6.03) bit 8

US DCBreakerOn (6.03) bit 10

If using Dynamic Braking, the drive allows you to select the stopping method under three different situations. Parameters 21.02, 21.03 and 21.04 select the stopping method for loss of the OnOff, run command (StartStop, Jog1, Jog2, etc.), and E-Stop input, respectively.
Each can be set to:

- RampStop - TorqueLimit
- CoastStop
- DynBraking

In order to command the drive to perform a DB stop, one or more of these parameters must be set to DynBraking. Most users will want the drive to ramp stop when OnOff or a run command (StartStop, Jog1, Jog2, etc.) input is cleared, and dynamically brake when the E-Stop input is cleared. In that case, use the following settings:

- Off1Mode (21.02) = RampStop
- StopMode (21.03) = RampStop
- EStopMode (21.04) = DynBraking

However, any case is allowed and the final decision is left to the user.
Other parameters control stops during faults.
See:
LocalLossCtrl (30.27) ComLossCtrl (30.28)
FaultStopMode (30.30) SpeedFbFItMode (30.36)
If using EMF feedback with dynamic braking, set:

- DynBrakeDly (50.11) = t

Where: $\mathrm{t}=$ the time (sec) it normally takes the motor to stop during dynamic braking

Attention:

If the motor voltage measurement is connected to the motor terminals (D5 - D7 with modified SDCS-PIN-51) then set:
MainContCtrl (21.16) = On

AC- and DC-breaker controlled by the drive

$A C$ - and DC-breaker controlled by the drive
In the above example both, the AC- and the DC-breaker are controlled by the drive. The drive closes and opens both breakers with the command
MainContactorOn. The result is checked by means of MainContAck (10.21) and DC BreakAck (10.23). In case the main contactor acknowledge is missing F524 MainContAck [FaultWord2 (9.02) bit 7] is set. In case the DC-breaker acknowledge is missing A103 DC BreakAck [AlarmWord1 (9.06) bit 2] is set, is forced to 150° and single firing pulses are given.
The DC-breaker can be tripped actively by the command Trip DC-breaker.

No AC-breaker, DC-breaker controlled by the drive

No AC-breaker, DC-breaker controlled by the drive
In the above example no AC-breaker is used and the DC-breaker is controlled by the drive. The drive closes and opens the DC-breaker with the command MainContactorOn. The result is checked by means of MainContAck (10.21). In case the main contactor acknowledge is missing F524 MainContAck [FaultWord2 (9.02) bit 7] is set.

The DC-breaker can be tripped actively by the command Trip DC-breaker.

AC-breaker controlled by the drive, DC-breaker controlled externally

AC-breaker controlled by the drive, DC-breaker controlled externally
In the above example the AC-breaker is controlled by the drive. The drive closes and opens the AC-breaker with the command MainContactorOn. The result is checked by means of MainContAck (10.21). In case the main contactor acknowledge is missing F524 MainContAck [FaultWord2 (9.02) bit 7] is set. The DC-breaker is controlled externally (e.g. by the operator). The result is checked by means of DC BreakAck (10.23). In case the DC-breaker acknowledge is missing A103 DC BreakAck [AlarmWord1 (9.06) bit 2] is set, is forced to 150° and single firing pulses are given.
The DC-breaker can be tripped actively by the command Trip DC-breaker.

No AC-breaker, DC-breaker controlled externally

No AC-breaker, DC-breaker controlled externally
In the above example no AC-breaker is used and the DC-breaker is controlled externally (e.g. by the operator). The result is checked by means of MainContAck (10.21). In case the main contactor acknowledge is missing F524 MainContAck [FaultWord2 (9.02) bit 7] is set.
The DC-breaker can be tripped actively by the command Trip DC-breaker.

Command Trip DC-breaker

Command Trip DC-breaker

The firmware sets the:

- command Trip DC-breaker (continuous signal) [CurCtrIStat1 (6.03) bit 14] and
- command Trip DC-breaker (4 s pulse signal) [CurCtrIStat1 (6.03) bit 15]
by means of
- F512 MainsLowVolt [FaultWord1 (9.01) bit 11] in regenerative mode,
- F502 ArmOverCur [FaultWord1 (9.01) bit 1] or
- F539 FastCurRise [FaultWord3 (9.03) bit 6] (see chapter Motor protection)

In case a digital output - see group 14 - is assigned to one of the two signals, it is updated immediately after detecting the fault and thus actively tripping the DCbreaker.

Dynamic braking

General

The drive can be stopped by dynamic braking. The principle is to transfer the power of the machine inertia into a braking resistor. Therefore the armature circuit has to be switched over from the drive to a braking resistor. Additionally flux and field current have to be maintained.

Operation

Activation

Function During dynamic braking the field current is maintained by keeping the field exciter
Dynamic braking can be activated by all stop modes, in cases of a fault or due to communication breaks:

- Off1Mode (21.02) when UsedMCW (7.04) bit 0 On is set to low,
- StopMode (21.03) when UsedMCW (7.04) bit 3 Run is set to low,
- E StopMode (21.04) when UsedMCW (7.04) bit 2 Off3N is set to low,
- FaultStopMode (30.30) in case of a trip level 4 fault,
- SpeedFbFItMode (30.36) in case of a trip level 3 fault,
- LocalLossCtrl (30.27) when local control is lost,
- ComLossCtrl (30.28) when communication is lost,
- Ch0 ComLossCtrl (70.05) when communication is lost and
- Ch2 ComLossCtrl (70.15) when communication is lost.

In addition dynamic braking can be forced by setting AuxCtr/Word (7.02) bit 5 to high. At the same time UsedMCW (7.04) bit 3 Run must be set to low.

Application example of dynamic braking

 activated. It is recommended to supply external / internal field exciters via a short time UPS to make sure that the field is maintained during mains failure. OnBoard field exciters (D1 to D4) will be supplied via the main contactor, thusCurCtrlStat1 (6.03) bit 7 stays high (MainContactorOn) until zero speed is reached.
(1) The activation of dynamic braking immediately sets CurCtrlStat1 (6.03) bit 6 to high (dynamic braking active).
(2) Dynamic braking forces the armature current to zero and opens the DC-breaker by setting CurCtrIStat1 (6.03) bit 14 to high (Trip DC-breaker).
(3) After the armature current is zero and the DC-breaker acknowledge is gone CurCtrlStat1 (6.03) bit 8 is set to high (DynamicBrakingOn). This signal is connected to a digital output (see group 14) and used to close the brake contactor. As soon as the brake contactor is closed dynamic braking starts and decreases the speed.
(4) With DynBrakeAck (10.22) it is possible to select a digital input for the brake resistor acknowledge. This input sets A105 DynBrakeAck [AlarmWord1 (9.06) bit 4] as long as the acknowledge is present. Thus the drive cannot be started or restarted while dynamic braking is active, except FlyStart (21.10) = FlyStartDyn.

Deactivation
(5) Dynamic braking is deactivated as soon as zero speed is reached and AuxStatWord (8.02) bit 11 ZeroSpeed is set to high. In case of dynamic braking with EMF feedback [M1SpeedFbSel (50.03) = EMF] there is no valid information about the motor speed and thus no zero speed information. To prevent an interlocking of the drive after dynamic braking the speed is assumed zero after DynBrakeDly (50.11) is elapsed:

Dynamic braking sequence
For usage of US style DC-breakers see MainContCtrIMode (21.16).

Position counter

General

The position counter is used for position measurements. It can be synchronized, that is preset, with an initial value. The counter output value and its initial value are 32 -bit signed values. The 32 -bit position value is sent to and received as two 16 -bit values. Thus the low word dose not possess a sign.

Counting procedure

The position counting is only possible when using an encoder, see M1SpeedFbSel (50.03). Its measurement mode is selected by means of M1EncMeasMode (50.02) and PosCountMode (50.07). Counting is increasing when the motor is rotating forward and decreasing when the motor is rotating backward. A loss free algorithm is used in order to avoid an increasing error due to rounding errors.

Synchronization

The position counter can be synchronized with an initial value. This initial value is set by means of PosCount/nitLo (50.08) and PosCountInitHi (50.09).
At the synchronization event the position counter output - PosCountLow (3.07) and PosCountHigh (3.08) - is preset with the initial value and SyncRdy [AuxStatWord (8.02), bit 5] is set:
PosCountInitLo (50.08) \Rightarrow PosCountLow (3.07)

The synchronization command is chosen by means of SyncCommand (10.04). It can either be SyncCommand [AuxCtrIWord (7.02), bit 9] or hardware. The fastest synchronization is achieved by the encoder zero pulse. Synchronization by DI7 is delayed due to its scan time and additional hardware filter times.
The synchronization can be inhibited by setting SyncDisable [AuxCtrIWord (7.02), bit 10].
SyncRdy [AuxStatWord (8.02), bit 5] can be reset by means of ResetSyncRdy [AuxCtrlWord (7.02), bit 11].
With PosSyncMode (50.15) either single or cyclic synchronization is selected. With single synchronization, the next synchronization event must be released with ResetSyncRdy [AuxCtrlWord (7.02), bit 11].

Pulse encoder 1 position counter logic

Pulse encoder 2 position counter logic

I/O configuration

Chapter overview

This chapter describes the I/O configuration of digital and analog inputs and outputs with different hardware possibilities.

Digital inputs (Dl's)

The basic I/O board is the SDCS-CON-4 with 8 standard DI's. All 8 standard DI's can be replaced with SDCS-IOB-2 and extended by means of one or two RDIO-01 digital I/O extension modules. Thus the maximum number of Dl's is 14.

The hardware source is selected by:

- DIO ExtModule1 (98.03) for DI9 to DI11
- DIO ExtModule2 (98.04) for DI12 to DI14 and
- IO BoardConfig (98.15)

Note:

The maximum amount of digital I/O extension modules is two regardless if an AIMA-01 board is used.

SDCS-CON-4 / SDCS-IOB-2

On the SDCS-CON-4 the standard DI's are filtered and not isolated. On the SDCS-IOB-2 the standard DI's are filtered and isolated. Selectable hardware filtering time (DI7 and DI8 on the SDCS-IOB-2):

- 2 ms or 10 ms (jumper S 7 and S8)

Input voltages:

- 24 VDC to 48 VDC, 115 VAC or 230 VAC depending on the hardware
- for more details see DCS800 Hardware Manual

Scan time for DI1 to DI6:

- 5 ms

Scan time for DI7 and DI8:

- $3.3 \mathrm{~ms} / 2.77 \mathrm{~ms}$ (synchronized with mains frequency)

$1^{\text {st }}$ and $2^{\text {nd }}$ RDIO-01

The extension Dl's are isolated and filtered. Selectable hardware filtering time:

- 2 ms or 5 ms to 10 ms

Input voltages:

- 24 VDC to 250 VDC, 110 VAC to 230 VAC
- for more details see RDIO-01 User's Manual

Scan time for DI9 to DI14:

- 5 ms connected at SDCS-CON-4
- 14 ms connected via SDCS-COM-8

Attention:

To ensure proper connection and communication of the RDIO-01 boards with the SDCS-CON-4 use the screws included in the scope of delivery.

Configuration

All Dl's can be read from DI StatWord (8.05):

bit	DI	configurable	default setting
0	1	yes	ConvFanAck (10.20)
1	2	yes	MotFanAck (10.06)
2	3	yes	MainContAck (10.21)
3	4	yes	Off2 (10.08)
4	5	yes	E Stop (10.09)
5	6	yes	Reset (10.03)
6	7	yes	OnOff1 (10.15)
7	8	yes	StartStop (10.16)
8	9	yes	-
9	10	yes	-
10	11	yes	-
11	12	no	not selectable
12	13	no	not selectable
13	14	no	not selectable

Configurable = yes:
The Dl's can be connected to several converter functions and it is possible to invert the Dl's - DI1Invert (10.25) to DI11Invert (10.35). In addition the Dl's can be used by Adaptive Program, application program or overriding control.

Configurable $=$ no:
The Dl's can only be used by Adaptive Program, application program or overriding control.

Configurable Dl's are defined by means of following parameters:

- Direction (10.02)
- Reset (10.03)
- SyncCommand (10.04)
- MotFanAck (10.06)
- HandAuto (10.07)
- Off2 (10.08)
- E Stop (10.09)
- ParChange (10.10)
- OvrVoltProt (10.13)
- OnOff1 (10.15)
- StartStop (10.16)
- Jog1 (10.17)
- Jog2 (10.18)
- ConvFanAck (10.20)
- MainContAck (10.21)
- DynBrakeAck (10.22)
- DC BreakAck (10.23)
- Ref1Mux (11.02)
- Ref2Mux (11.12)
- MotPotUp (11.13)
- MotPotDown (11.14)
- MotPotMin (11.15)
- Ramp2Select (22.11)
- Par2Select (24.29)
- TorqMux (26.05)
- ResCurDetectSel (30.05)
- ExtFaultSel (30.31)
- ExtAlarmSel (30.32)
- M1KlixonSel (31.08)
- M1BrakeAckSel (42.02)
- FldBoostSel (44.17)
- M2KlixonSel (49.38)
- ZeroCurDetect (97.18)
- ResetAhCounter (97.21)

Following restrictions apply:

- The position counter synchronization is fixed assigned to input DI7, if
activated via SyncCommand (10.04)
- DI12 to DI14 are only available in the DI StatWord (8.05), thus they can only be used by Adaptive Program, application program or overriding control

Structure of DI's

Digital outputs (DO's)

The basic I/O board is the SDCS-CON-4 with 7 standard DO's. Standard DO8 is located on the SDCS-PIN-4 for units size D1 - D4 or SDCS-POW-4 for units size D5-D7. All 8 standard DO's can be replaced with SDCS-IOB-2 and extended by means of one or two RDIO-01 digital I/O extension modules. Thus the maximum number of DO's is 12 .

The hardware source is selected by:

- DIO ExtModule1 (98.03) for DO9 and DO10
- DIO ExtModule2 (98.04) for DO11 and DO12
- IO BoardConfig (98.15)

Note:

The maximum amount of digital I/O extension modules is two regardless if an AIMA-01 board is used.

SDCS-CON-4 / SDCS-IOB-2

On the SDCS-CON-4 the standard DO's are relay drivers. DO8 is located on the SDCS-PIN-4 and is isolated by means of a relay. If the SDCS-IOB-2 is being used DO6 and DO7 are isolated by means of optocouplers, while the others (DO1 to DO5 and DO8) are isolated by means of relays.
Output values SDCS-CON-4:

- DO1 to DO7 max. $50 \mathrm{~mA} / 22 \mathrm{VDC}$ at no load
- for more details see DCS800 Hardware Manual

Output values SDCS-PIN-4:

- DO8 max. 3 A / 24 VDC, max. 0.3 A / 115 VDC / 230 VDC or max. 3 A / 230 VAC
- for more details see DCS800 Hardware Manual

Output values SCDS-IOB-2:

- DO6 and DO7: max. $50 \mathrm{~mA} / 24 \mathrm{VDC}$
- all others: max. 3 A / 24 VDC , max. 0.3 A / $115 \mathrm{VDC} / 230 \mathrm{VDC}$ or max. 3 A / 250 VAC
- for more details see DCS800 Hardware Manual

Cycle time for DO1 to DO8:

- 5 ms

$1^{\text {st }}$ and $2^{\text {nd }}$ RDIO-01

The extension DO's are isolated by means of relays.
Output values:

- max. 5 A / 24 VDC, max. 0.4 A / 120 VDC or max. 1250 VA / 250 VAC
- for more details see RDIO-01 User's Manual

Cycle time for DO9 to DO12:

- 5 ms connected at SDCS-CON-4
- 14 ms connected via SDCS-COM-8

Attention:

To ensure proper connection and communication of the RDIO-01 boards with the SDCS-CON-4 use the screws included in the scope of delivery.

Configuration

All DO's can be read from DO StatWord (8.06):

bit	DO	configurable	default setting	
0	1	yes	FansOn; CurCtrIStat1 (6.03)	bit0
1	2	yes	FieldOn; CurCtrlStat1 (6.03)	bit5
2	3	yes	MainContactorOn; CurCtrlStat1 (6.03)	bit7
3	4	yes	-	
4	5	yes	-	
5	6	yes	-	
6	7	yes	-	
7	8	yes	MainContactorOn; CurCtrlStat1 (6.03)	bit7
8	9	no	not selectable	
9	10	no	not selectable	
10	11	no	not selectable	
11	12	no	not selectable	

Configurable = yes:
The DO's can be connected to any integer or signed integer of the drive by means of group 14. It is possible to invert the DO's by simply negate DO1Index (14.01) to DO8Index (14.15). In addition the DO's can be used by Adaptive Program, application program or overriding control if the corresponding DOxIndex (14.xx) is set to zero - see DO CtrIWord (7.05).

Configurable = no:
The DO's can only be used by Adaptive Program, application program or overriding control - see DO CtrIWord (7.05).

Note:

DO8 is only available as relay output on the SDCS-PIN-4, if no SDCS-IOB-2 is used.

Structure of DO's

Analog inputs (Al's)

The basic I/O board is the SDCS-CON-4 with 4 standard Al's. All 4 standard Al's can be replaced with SDCS-IOB-3 and extended by means of one or two RAIO-01 analog I/O extension modules. Thus the maximum number of Al's is 8 .

The hardware source is selected by:

- AIO ExtModule (98.06) for AI5 and AI6
- AIO MotTempMeas (98.12) for AI7 and AI8
- IO BoardConfig (98.15)

Note:

The maximum amount of analog I/O extension modules is two regardless if an AIMA-01 board is used.

SDCS-CON-4

Hardware setting:

- switching from voltage input to current input by means of jumper S2 and S3
- for more details see DCS800 Hardware Manual

Input range AI1 and AI2 set by parameter:
$- \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 2 \mathrm{~V}$ to $10 \mathrm{~V}, 5 \mathrm{~V}$ offset, 6 V offset

- $\pm 20 \mathrm{~mA}, 0 \mathrm{~mA}$ to $20 \mathrm{~mA}, 4 \mathrm{~mA}$ to $20 \mathrm{~mA}, 10 \mathrm{~mA}$ offset, 12 mA offset

Input range AI 3 and AI4 set by parameter:
$- \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 2 \mathrm{~V}$ to $10 \mathrm{~V}, 5 \mathrm{~V}$ offset, 6 V offset
Resolution:

- 15 bits + sign

Scan time for Al1 and Al2:

- $3.3 \mathrm{~ms} / 2.77 \mathrm{~ms}$ (synchronized with mains frequency)

Scan time for AI3 and AI4:

- 5 ms

Additional functions:

- motor temperature measurement for a PTC connected to AI2 - see section Motor protection

SDCS-IOB-3

Hardware setting:

- switching from voltage input to current input by means of jumper S1
- the hardware gain for Al2 and Al3 can be increased by 10 with jumpers S2 and S3, thus the input range changes e.g. from $\pm 10 \mathrm{~V}$ to $\pm 1 \mathrm{~V}$
- for more details see DCS800 Hardware Manual

Input range Al1 to AI4 set by parameter:
$- \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 2 \mathrm{~V}$ to $10 \mathrm{~V}, 5 \mathrm{~V}$ offset, 6 V offset

- $\pm 20 \mathrm{~mA}, 0 \mathrm{~mA}$ to $20 \mathrm{~mA}, 4 \mathrm{~mA}$ to $20 \mathrm{~mA}, 10 \mathrm{~mA}$ offset, 12 mA offset

Resolution:

- 15 bits + sign

Scan time for Al1 and Al2:

- $3.3 \mathrm{~ms} / 2.77 \mathrm{~ms}$ (synchronized with mains frequency)

Scan time for Al3 and AI4:

- 5 ms

Additional functions:

- motor temperature measurement for PT100 or PTC connected to AI2 and AI3 - see section Motor protection
- residual current detection monitor input via AI4 - see section Motor protection

$1^{\text {st }}$ RAIO-01

Hardware setting:

- input range and switching from voltage to current by means of a DIP switch,
- for more details see RAIO-01 User's Manual

Input range AI5 and AI6 set by parameter:
$- \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 2 \mathrm{~V}$ to $10 \mathrm{~V}, 5 \mathrm{~V}$ offset, 6 V offset

- $\pm 20 \mathrm{~mA}, 0 \mathrm{~mA}$ to $20 \mathrm{~mA}, 4 \mathrm{~mA}$ to $20 \mathrm{~mA}, 10 \mathrm{~mA}$ offset, 12 mA offset

Resolution:

- 11 bits + sign

Scan time for Al5 and AI6:

- 10 ms connected at SDCS-CON-4
- 14 ms connected via SDCS-COM-8

Additional functions:

- all Al's are galvanically isolated

Attention:

To ensure proper connection and communication of the RAIO-01 board with the SDCS-CON-4 use the screws included in the scope of delivery.

$2^{\text {nd }}$ RAIO-01

Hardware setting:

- AI7 and AI8 are only used for motor temperature measurement, thus set 0 V to 2 V for 1 PT100 respectively 0 V to 10 V for 2 or 3 PT100 using the DIP switch
- for more details see RAIO-01 User's Manual

Resolution:

- 11 bits + sign

Scan time for AI7 and AI8:

- 10 ms connected at SDCS-CON-4
- 14 ms connected via SDCS-COM-8

Additional functions:

- all Al's are galvanically isolated
- motor temperature measurement for PT100 connected to AI7 and AI8 - see section Motor protection,

Attention:

To ensure proper connection and communication of the RAIO-01 board with the SDCS-CON-4 use the screws included in the scope of delivery.

Configuration

The value of Al1 to AI6 and AITacho can be read from group 5.

Al	configurable	default setting
1	yes	-
2	yes	-
3	yes	-
4	yes	-
5	yes	-
6	yes	-
7	temperature	-
8	temperature	-

Configurable = yes:
The Al's can be connected to several converter functions and it is possible to scale them by means of group 13. In addition the Al's can be read by Adaptive Program, application program or overriding control.
Configurable = temperature:
The Al's can only be used by the motor temperature measurement - see M1TempSel (31.05) and M2TempSel (49.35).
Configurable Al's are defined by means of following parameters:

- Ref1Sel (11.03)
- Ref2Sel (11.06)
- TorqUsedMaxSel (20.18)
- TorqUsedMinSel (20.19)
- TorqRefA Sel (25.10)
- TorqCorrect (26.15)
- ResCurDetectSel (30.05)
- M1TempSel (31.05)
- M1StrtTorqRefSel (42.07)
- CurSel (43.02)
- M2TempSel (49.35)
- M2StrtTorqRefSel (49.44)

Following restrictions apply:

- the residual current detection input is fixed assigned to AI4, if activated via ResCurDetectSel (30.05)
- the motor temperature measurement is fixed assigned to AI2 and AI3 respectively AI7 and AI8, if activated via M1TempSel (31.05) respectively M2TempSel (49.35)

Scaling

It is possible to scale Al1 to Al6 with 3 parameters each:

- the range of each Al is set by means of a jumper - distinguishing between current and voltage - and ConvModeAl1 (13.03) to ConvModeAl6 (13.27)
- $+100 \%$ of the input signal connected to an Al is scaled by means of Al1HighVal (13.01) to Al6HighVal (13.25)
- -100 \% of the input signal connected to an AI is scaled by means of Al1LowVal (13.02) to Al6LowVal (13.26)

Example:

In case the min. / max. voltage ($\pm 10 \mathrm{~V}$) of Al1 should equal $\pm 250 \%$ of TorqRefExt (2.24), set:
TorqRefA Sel (25.10) = Al1
ConvModeAl1 (13.03) $= \pm 10 \mathrm{~V} \mathrm{Bi}$
Al1HighVal (13.01) $=4000 \mathrm{mV}$
Al1LowVal (13.02) $=-4000 \mathrm{mV}$

SDCS-IOB-3	SDCS-CON-4		Scaling	Input value	Scaling		SpeedActTach (1.05)
	X3:1 to	AlTacho		AITacho			Use of Al's
	X3:4			Val (5.01)			Ref1Sel (11.03)
$\begin{aligned} & x 3: 3 \\ & \text { X3:4 } \end{aligned}$	$\begin{aligned} & \text { X3:5 } \\ & \text { X3:6 } \end{aligned}$	Al1	ConvMode AI1 (13.03)	Al1 Val (5.03)	Al1HighVal (13.01) Al1LowVal (13.02)		Ref2Sel (11.06)
X3:5	X3:7	AI2	ConvMode		Al2HighVal (13.05)		TorqUsedMaxSel (20.18)
X3:6	X3:8		Al2 (13.07)	AI2 Val (5.04)	Al2LowVal (13.06)		TorqUsedMinSel (20.19)
X3:7	X3:9	Al3	ConvMode		Al3HighVal (13.09)		TorqRefA Sel (25.10)
X3:8	X3:10		Al3 (13.11)	Al3 Val (5.05)	Al3LowVal (13.10)		TorqCorrect (26.15)
X3:9	X4:1	Al4	ConvMode		Al4HighVal (13.13)		ResCurDetectSel (30.05)
X3:10	X4:2		Al4 (13.15)	Al4 Val (5.06)	Al4LowVal (13.14)		M1TempSel (31.05)
X3:11							StrtTorqRefSel (42.07)
X3:12							CurSel (43.02)
10 Board	fig (98.15)						M2TempSel (49.35)

Fixed assigned Al's:
The residual current detection is fixed assigned to AI4 (X3:11 and X3:12). The motor temperature measurement is fixed assigned to Al 2 and Al 3 respectively AI7 and AI8.

Structure of Al's

Analog outputs (AO's)

The basic I/O board is the SDCS-CON-4 with 3 standard AO's. Two AO's are programmable, the third one is fixed and used to display the actual armature current taken directly from the burden resistors. All 3 standard AO's can be replaced with SDCS-IOB-3 and extended by means of one or two RAIO-01 analog I/O extension modules. Thus the maximum number of AO's is 7 .

The hardware source is selected by:

- AIO ExtModule (98.06) for AO3 and AO4
- AIO MotTempMeas (98.12) for AO5 and AO6
- 10 BoardConfig (98.15)

Note:

The maximum amount of analog I/O extension modules is two regardless if an AIMA-01 board is used.

SDCS-CON-4 / SDCS-IOB-3

Output range AO 1 and AO 2 set by parameter:
$- \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 2 \mathrm{~V}$ to $10 \mathrm{~V}, 5 \mathrm{~V}$ offset, 6 V offset
Output range fixed AO I-act:

- 8 V equals the minimum of 325% M1NomCur (99.03) or 230% ConvNomCur (4.05)
- see also lactScaling (4.26)
- for more details see DCS800 Hardware Manual

Resolution:

- 11 bits + sign

Cycle time for AO1 and AO2:

- 5 ms

Cycle time fixed AO I-act:

- directly taken from hardware

Additional functions:

- the gain of the fixed AO I-act can be adjusted by means of R110 on the SDCS-IOB-3

$1^{\text {st }}$ RAIO-01

Output range AO 3 and AO 4 set by parameter:

- 0 mA to $20 \mathrm{~mA}, 4 \mathrm{~mA}$ to $20 \mathrm{~mA}, 10 \mathrm{~mA}$ offset, 12 mA offset

Resolution:

- 12 bits

Cycle time for AO 3 and AO 4 :

- 5 ms connected at SDCS-CON-4
- 14 ms connected via SDCS-COM-8

Additional functions:

- all AO's are galvanically isolated

Attention:

To ensure proper connection and communication of the RAIO-01 board with the SDCS-CON-4 use the screws included in the scope of delivery.

$2^{\text {nd }}$ RAIO-01

Hardware settings:

- AO5 and AO6 are only used for motor temperature measurement, no additional setting needed
- for more details see RAIO-01 User's Manual

Resolution:

- 12 bits

Cycle time for AO5 and AO6:

- 5 ms connected at SDCS-CON-4
- 14 ms connected via SDCS-COM-8

Additional functions:

- all AO's are galvanically isolated
- motor temperature measurement for PT100 connected to AO5 and AO6 see section Motor protection

Attention:

To ensure proper connection and communication of the RAIO-01 board with the SDCS-CON-4 use the screws included in the scope of delivery.

Configuration

The value of AO1 and AO2 can be read from group 5.

AO	configurable	default setting
1	yes	-
2	yes	-
3	yes	-
4	yes	-
5	temperature	-
6	temperature	-
Curr	fixed	not selectable

Configurable = yes:
The AO's can be connected to any integer or signed integer of the drive by means of group 15. It is possible to invert the AO's by simply negate IndexAO1 (15.01) to IndexAO4 (15.16). In addition the AO's can be used by Adaptive Program, application program or overriding control if the corresponding IndexAOx (15.xx) is set to zero - see CtrIWordAO1 (15.02) to CtrIWordAO4 (15.17).

Configurable = temperature:
The AO's can only be used by the motor temperature measurement - see M1TempSel (31.05) and M2TempSel (49.35).

Scaling

It is possible to scale AO1 to AO4 with 2 parameters each:

- the range of each AO is set by means of ConvModeAO1 (15.03) to ConvModeAO4 (15.18)
- if the range is set to bipolar or unipolar signals with offset, $\pm 100 \%$ of the input signal connected to an AO is scaled by means of ScaleAO1 (15.06) to ScaleAO4 (15.20)
- If the range is set to unipolar signals without offset, only $+100 \%$ of the input signal connected to an AO is scaled by means of ScaleAO1 (15.06) to ScaleAO4 (15.20). The smallest value is always zero.
- It is possible to invert the AO's by simply negate IndexAO1 (15.01) to IndexAO4 (15.16) Example:

In case the min. / max. voltage ($\pm 10 \mathrm{~V}$) of AO1 should equal $\pm 250 \%$ of TorqRefUsed (2.13), set:
IndexAO1 (15.01) = 213
ConvModeAO1 (15.03) $= \pm \mathbf{1 0 V ~ B i}$
ScaleAO1 (15.05) $=4000 \mathrm{mV}$

Structure of AO's

Communication

Chapter overview

This chapter describes the communication capabilities of the drive.

DCSLink with SDCS-DSL-4

General

The DCSLink is a multi-purpose twisted pair bus for the DCS800. All functions using the same hardware and can be used at the same time. The DCSLink can be used for excitation, master-follower, drive-to-drive communication and 12-pulse.

Excitation, commissioning a FEX-4

Layout FEX-4

Layout SDCS-DSL-4

Set the FEX-4 type

The FEX-4 can be used in 4 different applications:

- FEX-425-Int (as internal field exciter of a D5 module with up to 25 A)
- DCF803-0016 (as external field exciter with up to 16 A)
- DCF803-0035 (as external field exciter with up to 35 A) and
- FEX-4 Term5A (as internal or external field exciter with max. 5 A)

Firmware (armature converter)	Hardware (FEX-4)
M1UsedFexType (99.12) = FEX-425-Int, DCF803-0016 or DCF803-0035	
M1UsedFexType (99.12) = FEX-4 Term5A	

Set the node numbers, transmission speed and the communication supervision
In all bus systems unique node ID numbers are required and have to be set in the armature converter and the FEX-4. Two stations with the same node ID number are not allowed.
For example set the armature converter node ID number to 1 and the FEX-4 node ID number to 13 .
The communication supervision is activated in the armature converter.
Also the transmission speed of all converters has to match:

Firmware (armature converter)	Hardware (FEX-4)			
DCSLinkNodeID (94.01) $=1$	-			
BaudRate (94.02) $=\mathbf{5 0 0} \mathbf{~ k B i t / s}$	S1100:4	S1100:5	S1100:6	kBit/s
	OFF	OFF	ON	500
FexTimeOut (94.07) $=100 \mathrm{~ms}$	-			
M1FexNode (94.08) $=13$	S801		S800	
	1		3	
	S801		S800	

Set the DCSLink

Cable connection:

Bus- and ground termination:
The DCSLink is a bus system using twisted pair cables. Therefore bus termination is mandatory at the two physical ends of the bus.

Hardware (SDCS-DSL-4)	Hardware (FEX-4)
jumper S1 = 1-2 if bus termination is needed	jumper S1100:1 $=$ ON if bus termination is needed
jumper S2 sets the ground termination	jumper S1100:2 and $\mathbf{S 1 1 0 0}: 3$ termination

Set the supply of the FEX-4

The FEX-4 can be either supplied by 1-phase or by 3-phases:

| Firmware (armature converter) | Hardware (FEX-4) |
| :--- | :--- | :--- |
| M1OperModeFex4 (45.22) = 3-phase | |
| M1OperModeFex4 (45.22) = 1-phase | |

Checking the FEX-4

There are several signals to check the FEX-4 installation:

Firmware (armature converter)		Hardware (FEX-4)	
Mot1FexType (4.06)	shows the FEX-4 type as chosen with M1UsedFexType (99.12)	yellow (U731) or green (U730) LED is blinking:	waiting for DCSLink communication
DCSLinkStat1 (4.18) or DCSLinkStat2 (4.19)	show the status of the field exciter node as chosen with M1FexNode (94.08)	yellow (U731) or green (U730) LED is steady:	DCSLink communication is OK

For further information consult the DCS800 Hardware Manual.

Master-follower, commissioning

Set the DCSLink hardware

Cable connection:

Bus- and ground termination:
The DCSLink is a bus system using twisted pair cables. Therefore bus termination is mandatory at the two physical ends of the bus.

In the above example termination is mandatory at the master and the $10^{\text {th }}$ follower.

SDCS-DSL-4
jumper $\mathbf{S} 1=\mathbf{1 - 2}$ sets the bus termination
jumper $\mathbf{S} 2$ sets the ground termination

Set the node ID numbers and transmission speed

In all bus systems unique node ID numbers are required and have to be set in the master and all followers. Two stations with the same node ID number are not allowed.
For example set the masters node ID number to 1 and add one for each follower. Also the transmission speed of all converters has to match:

Firmware master	Firmware first follower	Firmware 10 $^{\text {th }}$ follower
DCSLinkNodelD $(94.01)=1$	DCSLinkNodeID $(94.01)=2$	DCSLinkNodeID $(94.01)=11$
BaudRate $(94.02)=500 \mathrm{kBit} / \mathbf{s}$	BaudRate $(94.02)=\mathbf{5 0 0 k B i t} / \mathbf{s}$	BaudRate $(94.02)=500 \mathrm{kBit} / \mathbf{s}$

Activate the mailboxes

The master-follower communication utilizes 4 mailboxes for data transfer. Thus data transfer to any device / node in the system is possible.
Positive mailbox node ID numbers only transmit data, negative only receive data.
To get communication mailbox node ID pairs (e.g. 5 and -5) are needed:

Firmware master	Firmware first follower	Firmware 10 $^{\text {th }}$ follower
MailBox1 $(94.12)=5$	MailBox1 $(94.12)=-5$	MailBox1 $(94.12)=-5$

Attention:

Positive mailbox node ID numbers must be unique. Negative mailbox node ID numbers can be used by several mailboxes.
The master mailbox one for example is set to 5 and thus transmitting data. Mailbox one of the followers is set to -5 and thus receiving data.

Activate the communication supervision

The communication supervision is activated by means of MailBoxCycle1 (94.13). The function of MailBoxCycle1 (94.13) is depending on the setting of MailBox1 (94.12).

If MailBox1 (94.12) is positive:

- data will be transmitted.
- MailBoxCycle1 (94.13) sets the transmitting and receiving intervals.
- if MailBoxCycle1 (94.13) is set to 3 ms the transmit and receiving intervals are synchronized with mains frequency, either 3.3 ms or 2.77 ms .
- values from 1-2 ms are too fast and will generate a fault.
- the communication is inactive, if MailBoxCycle1 (94.13) is set to 0 ms . If MailBox1 (94.12) is negative:
- data will be received.
- MailBoxCycle1 (94.13) sets the communication timeout. This is the time delay before a drive-to-drive or master-follower communication break is declared. Depending on the setting of ComLossCtrl (30.28) either F544 P2PandMFCom [FaultWord3 (9.03) bit 11] or A112 P2PandMFCom [AlarmWord1 (9.06) bit 11] is set.
- the communication fault and alarm are inactive, if MailBoxCycle1 (94.13) is set to 0 ms .

Attention:

The communication timeout has to be set at least twice as long as the corresponding mail box cycle time parameter:

Firmware master	Firmware first follower	Firmware 10 ${ }^{\text {th }}$ follower
MailBoxCycle1 $(94.13)=100$	MailBoxCycle1 $(94.13)=200$	MailBoxCycle1 $(94.13)=200$

Send and receive values

Each mailbox can transmit / receive up to 4 values depending on the sign of the mailbox node ID number. The master-follower communication usually needs to send 3 values from the master to the followers, thus the follower is completely controlled by the master:

Master parameters (source)

TrmtRecVal1.1 $(94.14)=\mathbf{7 0 1}$ or $\mathbf{7 0 4}$	MainCtrIWord (7.01) or UsedMCW (7.04)
TrmtRecVal1.2 $(94.15)=\mathbf{2 1 7}$	SpeedRefUsed (2.17)
TrmtRecVal1.3 (94.16) $=\mathbf{2 1 0}$	TorqRef3 (2.10)
TrmtRecVal1.4 $(94.17)=0$	not used

Follower parameters (sinks)

TrmtRecVal1.1 $(94.14)=\mathbf{7 0 1}$	MainCtrIWord (7.01)
TrmtRecVal1.2 $(94.15)=\mathbf{2 3 0 1}$	SpeedRef (23.01)
TrmtRecVal1.3 $(94.16)=\mathbf{2 5 0 1}$	TorqRefA (25.01)
TrmtRecVal1.4 $(94.17)=0$	not used
CommandSel (10.01) $=$ MainCtrIWord	
TorqSel $(26.01)=$ Torque or Add	

Master signal TorqRef3 (2.10) is send via master parameter TrmtRecVal1.3 (94.16) to
follower signal TorqRefA (25.01) via follower parameter TrmtRecVal1.3 (94.16).

Firmware structure

Master:

MailBox1 $(94.12)=5$, configures the masters first mailbox to transmit data:

Master parameter TrmtRecVal1.3 (94.16) $=210$ sends the torque value to the follower

Follower:

MailBox1 (94.12) $=-5$, configures followers first mailbox to receive data
Follower parameter TrmtRecVal1.3 (94.16) = 2501
gets the torque value from the master

For further information consult the DCS800 Hardware Manual.

Additional settings

Field weakening:

In case of field weakening all followers must have a speed feedback via encoder, tacho or MotSpeed (1.04) - see M1SpeedFbSel (50.03) = External.

Note:

When connecting the output of one encoder to two drives a splitter has to be used.

Connection to overriding control:

In case followers are connected to an overriding control make sure, that the overriding control is not writing on the same signals (via group 51 and / or group 90) as the master (via the master-follower link). There is always a problem when two sources writing on one sink. Be very carefully with e.g. MainCtrIWord (7.01), SpeedRef (23.01), TorqRefA (25.01), ..

E-stop:

In case of an E-stop the master must be in control of all followers. Thus set:

- E Stop (10.09) = NotUsed and
- TorqSelMod (26.03) = Fix
in all followers.
Feedback from the followers to the master:
The feedback from the followers to the master has to be set up manually using drive-to-drive communication and Adaptive Program or application program.

Drive-to-drive communication

Set the DCSLink hardware

Cable connection:

Bus- and ground termination:
The DCSLink is a bus system using twisted pair cables. Therefore bus termination is mandatory at the two physical ends of the bus.

In the above example termination is mandatory at drive 1 and drive 2.

SDCS-DSL-4

jumper S1 = 1-2 sets the bus termination
jumper $\mathbf{S 2}$ sets the ground termination

Set the node ID numbers and transmission speed

In all bus systems unique node ID numbers are required and have to be set in the master and all followers. Two stations with the same node ID number are not allowed.
For example set the $1^{\text {st }}$ drives node ID number to 1 and the $2^{\text {nd }}$ drives node ID number to 2.
Also the transmission speed of all converters has to match:

Firmware $^{\text {st }}$ drive	Firmware $^{\text {2 }}$ nd drive
DCSLinkNodeID $(94.01)=1$	DCSLinkNodelD $(94.01)=2$
BaudRate $(94.02)=500 \mathrm{kBit} / \mathbf{s}$	BaudRate $(94.02)=500 \mathrm{kBit} / \mathbf{s}$

Activate the mailboxes

The drive-to-drive communication utilizes 4 mailboxes for data transfer. Thus data transfer to any device / node in the system is possible.
Positive mailbox node ID numbers only transmit data, negative only receive data. To get communication mailbox node ID pairs (e.g. $5 /-5$ and $6 /-6$) are needed:

Firmware 1 ${ }^{\text {st }}$ drive	Firmware 2 $^{\text {nd }}$ drive
MailBox1 $(94.12)=5$	MailBox1 $(94.12)=-5$
MailBox2 $(94.18)=-6$	MailBox2 $(94.18)=6$

Attention:

Positive mailbox node ID numbers must be unique. Negative mailbox node ID numbers can be used by several mailboxes.

Activate the communication supervision

The communication supervision is activated by means of MailBoxCycle1 (94.13). The function of MailBoxCycle1 (94.13) is depending on the setting of MailBox1 (94.12).

If MailBox1 (94.12) is positive:

- data will be transmitted.
- MailBoxCycle1 (94.13) sets the transmitting and receiving intervals.
- if MailBoxCycle1 (94.13) is set to 3 ms the transmit and receiving intervals are synchronized with mains frequency, either 3.3 ms or 2.77 ms .
- values from 1-2 ms are too fast and will generate a fault.
- the communication is inactive, if MailBoxCycle1 (94.13) is set to 0 ms .

If MailBox1 (94.12) is negative:

- data will be received.
- MailBoxCycle1 (94.13) sets the communication timeout. This is the time delay before a drive-to-drive or master-follower communication break is declared. Depending on the setting of ComLossCtrl (30.28) either F544 P2PandMFCom [FaultWord3 (9.03) bit 11] or A112 P2PandMFCom [AlarmWord1 (9.06) bit 11] is set.
- the communication fault and alarm are inactive, if MailBoxCycle1 (94.13) is set to 0 ms .

Attention:

The communication timeout has to be set at least twice as long as the corresponding mail box cycle time parameter:

Firmware 1 ${ }^{\text {st }}$ drive	Firmware 2 $^{\text {nd }}$ drive
MailBoxCycle1 $(94.13)=100$	MailBoxCycle1 $(94.13)=200$
MailBoxCycle2 $(94.19)=200$	MailBoxCycle2 $(94.19)=100$

Send and receive values

Each mailbox can transmit / receive up to 4 values depending on the sign of the mailbox node ID number.

$\mathbf{1}^{\text {st }}$ mailbox
TrmtRecVal1.1 (94.14)
TrmtRecVal1.2 (94.15)
TrmtRecVal1.3 (94.16)
TrmtRecVal1.4 (94.17)

$\mathbf{2}^{\text {nd }}$ mailbox
TrmtRecVal2.1 (94.20)
TrmtRecVal2.2 (94.21)
TrmtRecVal2.3 (94.22)
TrmtRecVal2.4 (94.23)

12-pulse

Set the DCSLink hardware

Cable connection:

Bus- and ground termination:
The DCSLink is a bus system using twisted pair cables. Therefore bus termination is mandatory at the two physical ends of the bus.

In the above example termination is mandatory at the 12-pulse master and the excitation.

SDCS-DSL-4

jumper S1 = 1-2 sets the bus termination
jumper $\mathbf{S 2}$ sets the ground termination

Set the node numbers, transmission speed and the communication supervision In all bus systems unique node ID numbers are required and have to be set in the 12-pulse master, 12-pulse slave and the excitation. Two stations with the same node ID number are not allowed.
For example set the 12-pulse master node ID number to 1, the 12-pulse slave node ID number to 31 and the excitation node ID number to 21.
The 12-pulse and excitation communication supervision is activated in the 12-pulse master.
Also the transmission speed of all converters has to match:

Firmware 12-pulse master	Firmware 12-pulse slave	Firmware excitation
DCSLinkNodeID $(94.01)=1$	DCSLinkNodeID $(94.01)=31$	DCSLinkNodeID $(94.01)=21$
BaudRate $(94.02)=500 \mathrm{kBit} / \mathbf{s}$	BaudRate $(94.02)=500 \mathrm{kBit} / \mathbf{s}$	BaudRate $(94.02)=\mathbf{5 0 0 k B i t} / \mathbf{s}$
$12 P$ TimeOut $(94.03)=100$ ms	-	-
12P SlaNode $(94.04)=31$	-	-
FexTimeOut $(94.07)=100 \mathrm{~ms}$	-	-
M1FexNode $(94.08)=21$	-	-

DDCS channels with SDCS-COM-8

General

The following table describes the usage of the DDCS channels of the SDCS-COM8 board.

Channel	Standard usage	SDCS-COM-81	SDCS-COM-82
Ch0	Overriding control or NETA-01 connection	$10 \mathrm{Mb}($ e.g. FCI, AC 800M)	5 Mb (fieldbus adapter)
Ch1	I/O extensions via AIMA board	5 Mb	5 Mb
Ch2	Master-follower link	10 Mb	10 Mb
Ch3	DriveWindow or NETA-01 connection	10 Mb	10 Mb

The communication protocol of Ch0 to Ch3 is DDCS (Distributed Drives Communication System). The Ch0 of the SDCS-COM-8 supports either DDCS or DriveBus, see Ch0 DriveBus (71.01). Both, the DDCS and DriveBus link between the overriding control and the drive, using data sets for information exchange. Each data set is a package of three words (signals or parameters). If a data set is received by the drive the corresponding data set is automatically transmitted to the overriding control as response:

Drive	Received data	Transmitted data
	$\rightarrow \rightarrow \rightarrow$ data set 10	data set $11 \rightarrow \rightarrow \rightarrow$
	$\rightarrow \rightarrow \rightarrow$ data set 12	data set $13 \rightarrow \rightarrow \rightarrow$

The data received from the overriding control affects only the RAM (not FPROM) memory in the drive.

Integer scaling on the DDCS link

Communication between the drive and the overriding control uses 16 bit integer values. The overriding control has to use the information given in integer scaling to be able to change values of parameters properly.
Example1:
If TorqMaxSPC (20.07) is written to from the overriding control an integer value of 100 corresponds to 1% torque.
Example2:
If SpeedRef (23.01) is written to from the overriding control 20.000 equals the speed (in rpm) shown in SpeedScaleAct (2.29).
1.08 MotTorq (motor torque)

Motor torque in percent of MotNomTorque (4.23):

- Filtered by means of a $6^{\text {th }}$ order FIR filter (sliding average filter), filter time is 1 mains voltage period.
Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y

ChO communication to overriding control

ABB overriding control

The communication between the overriding control and the SDCS-COM-8 via Ch0 uses data sets. The data sets are connected to the firmware by read- and write pointers - see sections Received data set table and Transmitted data set table. Received and transmitted values are set according to groups 90 to 93 . Received data sets are typically connected to MainCtrIWord (7.01) and SpeedRef (23.01), whereas transmitted data sets are connected to MainStatWord (8.01) and MotSpeed (1.04).

Parameter setting example

The following table lists the parameters which need to be defined when setting up the communication between the drive and ABB overriding control.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
Ch0 NodeAddr (70.01)	$0-254$	Ch0 node address
Ch0 LinkControl (70.02)	10	Ch0 LED light intensity
Ch0 BaudRate (70.03)	4 Mbits/s	for ABB overriding control
Ch0 TimeOut (70.04)	100	Time delay for communication loss detection
Ch0 ComLossCtrl (70.05)	RampStop	Reaction to communication loss detection
Ch0 HW Config (70.06)	Ring or Star	Ch0 topology selection
CH0 DsetBaseAddr (70.24)	10	use either data set range 1 to 16 or data set range 10 to 25
CommModule (98.02)	COM-8/AC800x	Ch0 communication mode selection
Ch0 DriveBus (71.01)	No or Yes	

DCS800 parameter setting for ABB overriding control

Note:

± 20.000 speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29). That speed is set by means of M1SpeedScale (50.01) respectively M1SpeedMin (20.01) or M1SpeedMax (20.02).

Received data set table

Send from the overriding control to the drive (typical).

Addresses for data received from the overriding control						
Data set number	Data set index	Update time	$\begin{gathered} \text { COM-8 } \\ \Rightarrow \text { CON-4 } \end{gathered}$	Selection parameter	Default value	Parameter name (default values)
$(70.24)+0$	1	2 ms	1 ms	(90.01)	701	MainCtrlWord
	2	2 ms	1 ms	(90.02)	2301	SpeedRef
	3	2 ms	1 ms	(90.03)	2501	TorqRefA
(70.24) + 2	1	2 ms	1 ms	(90.04)	702	AuxCtrIWord
	2	2 ms	1 ms	(90.05)	703	AuxCtrIWord2
	3	2 ms	1 ms	(90.06)		
(70.24) + 4	1	2 ms	1 ms	(90.07)		
	2	2 ms	1 ms	(90.08)		
	3	2 ms	1 ms	(90.09)		
$(70.24)+6$	1	2 ms	1 ms	(90.10)		
	2	2 ms	1 ms	(90.11)		
	3	2 ms	1 ms	(90.12)		
$(70.24)+8$	1	10 ms	20 ms	(90.13)		
	2	10 ms	20 ms	(90.14)		
	3	10 ms	20 ms	(90.15)		
$(70.24)+10$	1	10 ms	20 ms	(90.16)		
	2	10 ms	20 ms	(90.17)		
	3	10 ms	20 ms	(90.18)		
$(70.24)+12$	1	10 ms	20 ms	(91.01)		
	2	10 ms	20 ms	(91.02)		
	3	10 ms	20 ms	(91.03)		
$(70.24)+14$	1	10 ms	20 ms	(91.04)		
	2	10 ms	20 ms	(91.05)		
	3	10 ms	20 ms	(91.06)		

Note:

The update time is the time within the drive is reading values from the data sets. Since the drive is a communication slave, the actual cycle time depends on the cycle time of the communication master.

Transmitted data set table

Send from the drive to the overriding control (typical).

Addresses for data transmitted to the overriding control						
Data set number	Data set index	Update time	$\begin{gathered} \text { CON-4 } \\ \Rightarrow \text { COM-8 } \end{gathered}$	Selection parameter	Default value	Parameter name (default values)
(70.24) + 1	1	2 ms	1 ms	(92.01)	801	MainStatWord
	2	2 ms	1 ms	(92.02)	104	MotSpeed
	3	2 ms	1 ms	(92.03)	209	TorqRef2
(70.24) + 3	1	2 ms	1 ms	(92.04)	802	AuxStatWord
	2	2 ms	1 ms	(92.05)	101	MotSpeedFilt
	3	2 ms	1 ms	(92.06)	108	MotTorq
(70.24) + 5	1	2 ms	1 ms	(92.07)	901	FaulWord1
	2	2 ms	1 ms	(92.08)	902	FaulWord2
	3	2 ms	1 ms	(92.09)	903	FaulWord3
(70.24) + 7	1	2 ms	1 ms	(92.10)	904	FaulWord4
	2	2 ms	1 ms	(92.11)	906	AlarmWord1
	3	2 ms	1 ms	(92.12)	907	AlarmWord2
(70.24) + 9	1	10 ms	20 ms	(92.13)	908	AlarmWord3
	2	10 ms	20 ms	(92.14)	803	LimWord
	3	10 ms	20 ms	(92.15)	805	DI StatWord
$(70.24)+11$	1	10 ms	20 ms	(92.16)	806	DO StatWord
	2	10 ms	20 ms	(92.17)	124	BridgeTemp
	3	10 ms	20 ms	(92.18)	122	Mot1TempMeas
$(70.24)+13$	1	10 ms	20 ms	(93.01)		
	2	10 ms	20 ms	(93.02)		
	3	10 ms	20 ms	(93.03)		
$(70.24)+15$	1	10 ms	20 ms	(93.04)		
	2	10 ms	20 ms	(93.05)		
	3	10 ms	20 ms	(93.06)		

Note:

The update time is the time within the drive is reading values from the data sets. Since the drive is a slave, the actual communication cycle time depends on the master's cycle time.

Fieldbus communication (N-type)
The communication between the N -type fieldbus adapter and the SDCS-COM-8 uses data sets. The data set base address is set by means of CHO DsetBaseAddr $(70.24)=1$. The communication for the fieldbus adapters is activated by means of CommModule (98.02) = COM-8/Nxxx. The contents of the fieldbus data sets is set by means of the same pointers as for the ABB overriding control data sets - see sections Received data set table and Transmitted data set table. Received and transmitted values are set according to groups 90 to 93 . Also the update times are the same.

Ch1 I/O devices

All optional I/O devices are connected via AIMA-01 board to Ch1. The SDCS-COM-8 is the master in the communication link. Each device has an individual address, set with switches on the I/O device. Before use, each I/O device must be activated by means of a parameter in group 98 .
See also:
I/O Module Adapter AIMA-01; User's Manual

Ch2 Master-follower link

General

The master-follower link is designed for applications in which the system is operated by several drives and the shafts are coupled to each other via gearing, chains, belts etc. The master controls all followers via a fiber optic serial communication link. Pulse encoders are recommended for the master and all followers.

The master is typically speed controlled and the other drives follow the master's torque or speed reference. In general, torque control or window control of the followers should be used when the motor shafts of the master and the followers drives are fixed coupled to each other via gearing, chains, belts etc. and no speed differences between the drives is possible.

Link configuration

Ch2 on the SDCS-COM-8 board is used for the master-follower link between the drives. Ch2 is configurable by Ch2 MaFoMode (70.09) either to be master or follower in the communication in broadcast mode. Typically the speed controlled process master drive is configured also to be the communication master.

Master

The master mode is selected by Ch2 MaFoMode (70.09). The torque reference source address is defined in the master by Ch2 MasSig3 (70.12) to be sent via broadcast to the followers. Also two other signals can be sent through the link if required. Their addresses are defined by Ch2 MasSig1 (70.10) and Ch2 MasSig2 (70.11). Typical / default addresses are:

Signal addresses in the master		
Update time	Parameter name and index of the default values	Master drive selection parameters
2 ms	MainCtrIWord (7.01) or UsedMCW (7.04)	Ch2 MasSig1 (70.10)
2 ms	SpeedRefUsed (2.17)	Ch2 MasSig2 (70.11)
2 ms	TorqRef3 (2.10)	Ch2 MasSig3 (70.12)

Above parameters are not valid in the follower. The master cyclically sends Ch2 MasSig1 ... 3 in one DDCS message as broadcast every 2 ms .

Followers

The follower mode is selected by Ch2 MaFoMode (70.09). To control start and stop from the master set CommandSel (10.01) = MainCtrIWord. The connections are selected by Ch2 FolSig1 (70.18), Ch2 FolSig2 (70.19) and Ch2 FolSig3 (70.20) according to the following table:

Signal addresses in the follower		
Update time	Parameter name and index of the default values	Follower drive selection parameters
2 ms	MainCtrIWord (7.01)	Ch2 FolSig1 (70.18)
2 ms	SpeedRef (23.01)	Ch2 FolSig2 (70.19)
2 ms	TorqRefA (25.01)	Ch2 FolSig3 (70.20)

Above parameters are not valid in the master. The follower cyclically reads Ch2 FolSig1 ... 3 every 2 ms .

Note:

In default setting master signal TorqRef3 (2.10) is send via master parameter Ch2 MasSig3 (70.12) to follower signal TorqRefA (25.01) via follower parameter Ch2 FolSig3 (70.20).

Firmware structure

Master:

Ch2 MaFoMode (70.09) = Master, activates read pointer Ch2 MasSig1 (70.10), Ch2 MasSig2 (70.11) and Ch2 MasSig3 (70.12)

Master parameter Ch2 MasSig3 (70.12) $=210$ sends the torque value to the follower

Follower:

Ch2 MaFoMode (70.09) = Follower, activates write pointer Ch2 FolSig1 (70.18), Ch2 FolSig2 (70.19) and Ch2 FolSig3 (70.20)

Follower parameter Ch2 FolSig3 (70.20) $=2501$
gets the torque value from the master

Master-follower firmware structure

Communication

Toggle between speed- and torque control

In some application, both speed- and torque control of the followers are required, e.g. if it is necessary to accelerate all drives along the same speed ramp up to a certain speed before the torque control can be started. In those cases, a flying switch over between speed- and torque controls is required. The switch over can be done by e.g. the overriding control using TorqSel (26.01). See also TorqMux (26.05) and TorqMuxMode (26.04).

Follower diagnostics

All the followers receive the torque reference via TorqRefA (25.01). All followers are able to detect communication breaks, after the first valid message is received. The action due to a communication break is defined by Ch2 TimeOut (70.14) and Ch2 ComLossCtrl (70.15). Feedback for all alarms and faults from the followers must be handled by the overriding control through the Ch0 on the SDCS-COM-8 board.

Master-follower link specification

Size of the link: One master and maximum ten followers are allowed. If more than ten followers are required, a local ABB agent should be consulted.

Configuration: Link is configurable by the overriding control using Ch2 MaFoMode (70.09). This makes possible to change between master and follower by the overriding control without changes in the hardware.

Transmission rate: $4 \mathrm{Mbit} / \mathrm{s}$
Total performance of the link: 2 ms (between master and followers)
Protocol: Distributed Drives Communication System, DDCS

Ch3 commissioning and maintenance tools

DriveWindow

DriveWindow can be connected to Ch3 in either ring (max. 5 drives) or star connection using NDBU-xx branching units, see Ch3 HW Config (70.21). The node numbers - Ch3 NodeAddr (70.32) - must be set for each drive individually before starting the communication through the connection. This setting has to be made by a point to point connection using the DCS800 Control Panel, DriveWindow or DriveWindow Light. The new node address becomes valid after the next SDCS-COM-8 power-up. The SDCS-COM-8 Ch3 has been configured to be a slave in the communication point of view. With DeviceName (99.09) and DriveWindow it is possible to fill in a string (name) with a maximum of 12 characters for individual drive identification. See also:

Configuration Instructions NDBU-85/95; 3ADW000100, Optical DDCS Communication Link; 3BFE64285513 and DDCS Cabling and Branching; 3AFE63988235

Ethernet communication for monitoring with Ethernet adapter NETA-01

General

This chapter gives information using the Ethernet adapter NETA-01 together with the DCS800.

NETA-01 - DCS800

The Ethernet communication for monitoring with the drive requires the options NETA-01 and SDCS-COM-8.
The NETA-01 is connected to the SDCS-COM-8 usually via Ch3. Ch0 can be used as well.
Following browser based remote monitoring functions are released for DC-drives:

- Parameters Read and write parameters
- Signals Read signals
- Fault logger Show fault logger

Clear fault logger
Save faults to a file in the NETA-01
Download saved fault logger files via FTP

- Data logger Select values and set all trigger conditions Upload samples and show as values or as graphs Save samples as files in the NETA-01 Download saved data logger files via FTP
- Status word MainStatWord (8.01) is shown after clicking on the lamp Note:
Bit 11 (EXT_CTRL_LOC) and bit 12 (RUN_ENABLE) are not used for DC-drives

Note:

Data set communication and motor control (e.g. local control of the drives via NETA-01) are not released for the DCS800.

Related documentation

User's Manual Ethernet Adapter Module NETA-01.
The quoted page numbers correspond to the User's Manual.

NETA-01 configuration

The NETA-01 homepage can be called by using a browser (e.g. internet explorer).
Note:
Before connecting the NETA-01 via Ch3 with the DCS800 check, that Tool
Channel (Ch3) of the NETA-01 configuration is ticked otherwise group 51
(Fieldbus) will be overwritten.

Note:

When connecting the NETA-01 with the DCS800 make sure to use Ch3 (tool channel) on the SDCS-COM-8, otherwise group 51 (Fieldbus) will be overwritten. Ch0 can be used too, but then group 51 (Fieldbus) will be overwritten and cannot be used for other serial communication.

More details about the NETA-01 configuration see page 55 of the User's Manual.

Mechanical and electrical installation

The adapter module is mounted onto a standard mounting rail outside the drive.

Drive configuration

The DCS800 needs no special settings when using Ch3 concerning the released functions.

Firmware compatibility:
SDCS-CON-4: firmware version 1.8 or higher, see FirmwareVer (4.01) SDCS-COM-8: firmware version 1.3 or higher, see Com8SwVersion (4.11)

CANopen communication with fieldbus adapter RCAN-01

General

This chapter gives additional information using the CANopen adapter RCAN-01 together with the DCS800.

RCAN-01 - DCS800

The CANopen communication with the drive requires the option RCAN-01.

Related documentation

User's Manual CANopen Adapter Module RCAN-01.
The quoted page numbers correspond to the User's Manual.

Overriding control configuration

Supported operation mode is PDO21 (see page 43 and 44).

EDS file

The EDS file for RCAN-01 and DCS800 is available. Please ask Your local ABB agent for the newest one concerning the current DCS800 firmware.

Mechanical and electrical installation

If not already done so insert RCAN-01 into slot 1 of the drive.

Drive configuration

The CANopen adapter is activated by means of CommModule (98.02). Please note that the DCS800 works with the operation mode PDO21 (see page 43 and 44).

Parameter setting example 1 using group 51

Communication via group 51 is using 4 data words in each direction. The following table shows the parameter setting using group 51.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	

ModuleType (51.01)	CANopen *	
Node ID (51.02)	$1^{* *}$	set node address as required
Baudrate (51.03)	$8^{\star *}$	$8=1$ MBits/s
PDO21 Cfg (51.04)	1	$0=$ Configuration via CANopen objects $1=$ Configuration via RCAN-01 adapter parameters
RX-PDO21-Enable (51.05)	769	This value has to be calculated with 300 Hex $=768+$ Node ID (51.02). Here 768 + $1=769$

RX-PDO21-TxType (51.06)	255	$255=$ Asynchronous (see page 83) page 83)
RX-PDO21-1stObj (51.07)	8197	$2005 \mathrm{Hex}=8197=$ Transparent Control Word (see page 62)
RX-PDO21-1stSubj (51.08)	0	
RX-PDO21-2ndObj (51.09)	8198	$2006 \mathrm{Hex}=8198=$ Transparent Reference Speed (see page 62)
$\begin{aligned} & \text { RX-PDO21-2ndSubj } \\ & \text { (51.10) } \\ & \hline \end{aligned}$	0	
RX-PDO21-3rdObj (51.11)	16409	This value has to be calculated with $4000 \mathrm{Hex}=16384+$ parameter group number. E.g. with TorqRefA (25.01) follows $16384+25=16409$ (see page 64)
RX-PDO21-3rdSubj (51.12)	1	This value has to be taken from the parameters index. E.g. with TorqRefA (25.01) follows 1 (see page 64)
RX-PDO21-4thObj (51.13)	16391	This value has to be calculated with $4000 \mathrm{Hex}=16384+$ parameter group number. E.g. with AuxCtrIWord (7.02) follows $16384+7=16391$ (see page 64)
RX-PDO21-4thSubj (51.14)	2	This value has to be taken from the parameters index. E.g. with AuxCtrIWord (7.02) follows 2 (see page 64)
TX-PDO21-Enable (51.15)	641	This value has to be calculated with $280 \mathrm{Hex}=640+$ Node ID (51.02). Here $640+1=641$
TX-PDO21-TxType (51.16)	255	$255=$ Asynchronous (see page 83)
TX-PDO21-EvTime (51.17)	10	$10=10 \mathrm{~ms}$
TX-PDO21-1stObj (51.18)	8199	2007 Hex = $8199=$ Transparent Status Word (see page 62)
TX-PDO21-1stSubj (51.19)	0	
TX-PDO21-2ndObj (51.20)	8200	$2008 \mathrm{Hex}=8200=$ Transparent Actual Speed (see page 62)
TX-PDO21-2ndSubj (51.21)	0	

TX-PDO21-3rdObj (51.22)	16386	This value has to be calculated with 4000 Hex = 16384 + parameter group number. E.g. with TorqRef2 (2.09) follows 16384 + 2 = 16386 (see page 64)
TX-PDO21-3rdSubj (51.23)	9	This value has to be taken from the parameters index. E.g. with TorqRef2 (2.09) follows 9 (see page 64)
TX-PDO21-4thObj (51.24)	16392	This value has to be calculated with 4000 Hex = 16384 + parameter group number. E.g. with AuxStatWord (8.02) follows 16384 + 8 = 16392 (see page 64)
TX-PDO21-4thSubj (51.25)	2	This value has to be taken from the parameters index. E.g. with AuxStatWord (8.02) follows 2 (see page 64)
TransparentIProfil (51.26)	1	1= Transparent

* Read-only or automatically detected by CANopen adapter
** The values can be automatically set via the rotary switches of the RCAN-01
DCS800 parameter setting using group 51

Note:

± 20.000 speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29). That speed is set by means of M1SpeedScale (50.01) respectively M1SpeedMin (20.01) or M1SpeedMax (20.02).

Further information

RX and TX parameters $51.07, \ldots, 51.14$ and $51.18, \ldots, 51.25$ are directly connected to the desired DCS800 parameters. Take care, that the used parameters are deleted from group 90 and 92 to prevent data trouble.

Parameter setting example 2 using groups 90 and 92

Communication via groups 90 and 92 is using 4 data words in each direction. The following table shows the parameter setting using groups 90 and 92 .

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	

$\left.\begin{array}{|l|l|l|}\hline \text { DsetXVal1 (90.01) } & \text { 701, default } & \begin{array}{l}\text { MainCtrIWord (7.01); } \\ \text { output data word 1 (control } \\ \text { word) 1 }\end{array} \\ \text { overriding control to trom }\end{array}\right\}$

ModuleType (51.01)	CANopen *	
Node ID (51.02)	$1^{\star \star}$	set node address as required
Baudrate (51.03)	$8^{\star \star}$	$8=1$ MBits/s
PDO21 Cfg (51.04)	1	$0=$ Configuration via CANopen objects $1=$ Configuration via RCAN-01 adapter parameters

RX-PDO21-Enable (51.05)	769	This value has to be calculated with $300 \mathrm{Hex}=768+$ Node ID (51.02). Here $768+1=769$
RX-PDO21-TxType (51.06)	255	$\begin{aligned} & 255=\text { Asynchronous (see } \\ & \text { page 83) } \end{aligned}$
RX-PDO21-1stObj (51.07)	16384	$4000 \mathrm{Hex}=16384 \text { = Control }$ Word (see page 63); Data set 1 word 1
RX-PDO21-1stSubj (51.08)	1	1 Hex = 1 = Control Word (see page 63); Data set 1 word 1
RX-PDO21-2ndObj (51.09)	16384	$4000 \mathrm{Hex}=16384=$ Reference 1 (see page 63); Data set 1 word 2
$\begin{aligned} & \text { RX-PDO21-2ndSubj } \\ & (51.10) \end{aligned}$	2	$\begin{aligned} & 2 \text { Hex =2 = Reference } 1 \text { (see } \\ & \text { page 63); } \\ & \text { Data set } 1 \text { word } 2 \\ & \hline \end{aligned}$
RX-PDO21-3rdObj (51.11)	16384	4000 Hex = $16384=$ Reference 2 (see page 63); Data set 1 word 3
RX-PDO21-3rdSubj (51.12)	3	3 Hex = 3 Reference 2 (see page 63); Data set 1 word 3
RX-PDO21-4thObj (51.13)	16384	$4000 \mathrm{Hex}=16384=$ Reference 3 (see page 63); Data set 3 word 1
RX-PDO21-4thSubj (51.14)	7	7 Hex = 7 Reference 3 (see page 63); Data set 3 word 1
TX-PDO21-Enable (51.15)	641	This value has to be calculated with 280 Hex $=640+$ Node ID (51.02). Here $640+1=641$
TX-PDO21-TxType (51.16)	255	$\begin{aligned} & 255=\text { Asynchronous (see } \\ & \text { page 83) } \end{aligned}$
TX-PDO21-EvTime (51.17)	10	$10=10 \mathrm{~ms}$
TX-PDO21-1stObj (51.18)	16384	$4000 \mathrm{Hex}=16384$ = Status Word (see page 63); Data set 2 word 1
TX-PDO21-1stSubj (51.19)	4	4 Hex = 4 = Status Word (see page 63); Data set 2 word 1
TX-PDO21-2ndObj (51.20)	16384	4000 Hex = 16384 = Actual Value 1 (see page 63); Data set 2 word 2
TX-PDO21-2ndSubj (51.21)	5	5 Hex = 5 = Actual Value 1 (see page 63); Data set 2 word 2

TX-PDO21-3rdObj (51.22)	16384	4000 Hex = 16384 = Actual Value 2 (see page 63); Data set 2 word 3
TX-PDO21-3rdSubj (51.23)	6	6 Hex = 6 = Actual Value 2 (see page 63); Data set 2 word 3
TX-PDO21-4thObj (51.24)	16384	4000 Hex = 16384 = Actual Value 3 (see page 63); Data set 4 word 1
TX-PDO21-4thSubj (51.25)	10	A Hex = 10 = Actual Value 3 (see page 63); Data set 4 word 1
TransparentIProfil (51.26)	1	1 = Transparent
FBA PAR REFRESH (51.27)	DONE, default	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) $=$ RESET or at the next power up of the fieldbus adapter.

* Read-only or automatically detected by CANopen adapter
** The values can be automatically set via the rotary switches of the RCAN-01
DCS800 parameter setting using groups 90 and 92

Note:

± 20.000 speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29). That speed is set by means of M1SpeedScale (50.01) respectively M1SpeedMin (20.01) or M1SpeedMax (20.02).

Switch on sequence

Please see the example at the end of this chapter.

ControlNet communication with fieldbus adapter RCNA-01

General

This chapter gives additional information using the ControlNet adapter RCNA-01 together with the DCS800.

RCNA-01 - DCS800

The ControlNet communication with the drive requires the option RCNA-01.

Related documentation

User's Manual ControlNet Adapter Module RCNA-01.
The quoted page numbers correspond to the User's Manual.

Overriding control configuration

Please refer to the Scanner documentation for information how to configure the system for communication with RCNA-01.

EDS file

The EDS file for RCNA-01 and DCS800 is available. Please ask Your local ABB agent for the newest one concerning the current DCS800 firmware.

Mechanical and electrical installation

If not already done so insert RCNA-01 into slot 1 of the drive (see page 17).

Drive configuration

The ControlNet adapter is activated by means of CommModule (98.02). Please note that the DCS800 works with the instances User transparent assembly and Vendor specific assembly.
The instances Basic speed control and Extended speed control (instance 20 / 70 and 21 / 71) are supported since firmware version 2.x. With these instances it is not possible to use the full flexibility of the DCS800.
For more information see User's Manual.

Parameter setting example 1 using ABB Drives assembly

ABB Drives assembly is using 2 data words in each direction. The following table shows the parameter setting using this profile.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	

DsetXVal1 (90.01)	701, default	MainCtrIWord (7.01); output data word 1 (control word) 1 1t data word from overriding control to drive

DsetXVal2 (90.02)	2301, default	SpeedRef (23.01); output data word 2 (speed reference) 2 ove data word from overriding control to drive
DsetXplus1Val1 (92.01)	801, default	MainStatWord (8.01); input data word 1 (status word) $1^{\text {st }}$ data word from drive to overriding control
DsetXplus1Val2 (92.02)	104, default	MotSpeed (1.04); input data word 2 (speed actual) 2 2 data word from drive to overriding control

ModuleType (51.01)	CONTROLNET*	
Module macid (51.02)	$4^{* *}$	set node address as required
Module baud rate (51.03)	$2^{* *}$	$2=500 \mathrm{kBits} / \mathrm{s}$ $0=$ Hardware 1 = Software
HW/SW option (51.04)	0	not applicable when using ABB Drives assembly
Stop function (51.05)	NA	$100=$ ABB Drives assembly
Output instance (51.06)	100	$101=$ ABB Drives assembly
Input instance (51.07)	101	not applicable when using ABB Drives assembly
Output I/O par 1 (51.08) to Input I/O par 9 (51.25)	NA	not applicable when using ABB Drives assembly
VSA I/O size (51.26)	NA	DONE, default
If a fieldbus parameter is changed its new value takes effect only upon setting FBA (51.27)	RAR REFRESH (51.27) RESET or at the next power up of the fieldbus adapter.	

* Read-only or automatically detected by ControlNet adapter.
** If HW/SW option (51.04) $=0$ (Hardware), the values are automatically set via the rotary switches of the RCNA-01.

DCS800 parameter setting using ABB Drives assembly

Note:

± 20.000 speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29). That speed is set by means of M1SpeedScale (50.01) respectively M1SpeedMin (20.01) or M1SpeedMax (20.02).

Parameter setting example 2 using Vendor specific assembly

Vendor specific assembly can run with up to 9 data words in each direction. The following table shows the parameter setting using this profile.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	

ModuleType (51.01)	CONTROLNET	
Module macid (51.02)	$4^{* *}$	set node address as required
Module baud rate (51.03)	5	$5=5$ MBits/s
HW/SW option (51.04)	0	0 = Hardware = Software
Stop function (51.05)	NA	not applicable when using Vendor specific assembly 102 = Vendor specific assembly
Output instance (51.06)	102	103 = Vendor specific assembly
Input instance (51.07)	103	Set these values according table: Setting of parameter groups 51,90 and 92 depending on desired data words and according to the desired numbers of data words
Output I/O par 1 (51.08) to Input I/O par 9 (51.25)	$1-18$	Defines the length of the Vendor specific assembly in pairs of data words. E.g. a parameter value of 4 means 4 word as output and 4 words as input.
VSA I/O size (51.26)	$1-9$	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) = RESET or at the next power up of the fieldbus adapter.
FBA PAR REFRESH		
(51.27)	DONE, default	

* Read-only or automatically detected by ControlNet adapter
** If $H W / S W$ option (51.04) $=0$ (Hardware), the values are automatically set via the rotary switches of the RCNA-01

DCS800 parameter setting using Vendor specific assembly

Note:

± 20.000 speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29). That speed is set by means of M1SpeedScale (50.01) respectively M1SpeedMin (20.01) or M1SpeedMax (20.02).

Setting of parameter groups 51, 90 and 92

Parameter group 51				$$	ABB Datasets	Parameter group 90 and 92			
name		set value					name		value
51.08	Output I/O par 1	$=$			1,1	90.01	DsetXVal1	=	701
51.09	Output I/O par 2	$=$	2*	$10 \square$	1,2	90.02	DsetXVal2	=	2301
51.10	Output I/O par 3	=	3	$10 \longrightarrow$	1,3	90.03	DsetXVal3	=	2501
51.11	Output I/O par 4	$=$	7	$10 \longmapsto$	3,1	90.04	DsetXplus2Val1	=	702
51.12	Input I/O par 1	=	4*	$<0^{\circ}$	2,1	92.01	DsetXplus1Val1	=	801
51.13	Input 1/O par 2	$=$	5*	$<\sim 0$	2,2	92.02	DsetXplus1Val2	=	104
51.14	Input I/O par 3	=	6	$<\sim 0$	2,3	92.03	DsetXplus1Val3	=	209
51.15	Input I/O par 4	=	10	$<\sim 0$	4,1	92.04	DsetXplus3Val1	=	802
51.16	Output I/O par 5	=	8	$10 \longmapsto$	3,2	90.05	DsetXplus2Val2	=	703
51.17	Output I/O par 6	=	9	$10 \longmapsto$	3,3	90.06	DsetXplus2Val3	=	0
51.18	Output I/O par 7	=	13	$10 \longmapsto$	5,1	90.07	DsetXplus4Val1	=	0
51.19	Output I/O par 8	=	14	$10 \longmapsto$	5,2	90.08	DsetXplus4Val2	=	0
51.20	Output I/O par 9	=	15	$10 \longmapsto$	5,3	90.09	DsetXplus4Val3	=	0
51.21	Input I/O par 5	=	11	$<\sim 0$	4,2	92.05	DsetXplus3Val2	=	101
51.22	Input I/O par 6	=	12	$\longleftarrow \sim 0$	4,3	92.06	DsetXplus3Val3	=	108
51.23	Input I/O par 7	=	16	$\ll 0$	6,1	92.07	DsetXplus5Val1	=	901
51.24	Input I/O par 8	=	17	$\ll 0$	6,2	92.08	DsetXplus5Val2	=	902
51.25	Input I/O par 9	=	18	$\ll 0$	6,3	92.09	DsetXplus5Val3	=	903

*For proper communication shown values have to be used
Setting of parameter groups 51, 90 and 92 depending on desired data words

Further information

Output and input parameters $51.08, \ldots, 51.25$ can also be connected directly to the desired DCS800 parameters. In this case please take care that the RCNA-01 adapter gets the changed values and also take care, that the used parameters are deleted from group 90 to prevent data trouble.

Switch on sequence

Please see the example at the end of this chapter.

DeviceNet communication with fieldbus adapter RDNA-01

General

This chapter gives additional information using the DeviceNet adapter RDNA-01 together with the DCS800.

RDNA-01 - DCS800

The DeviceNet communication with the drive requires the option RDNA-01.

Related documentation

User’s Manual DeviceNet Adapter Module RDNA-01.
The quoted page numbers correspond to the User's Manual.

Overriding control configuration

Supported assemblies with DCS800 are ABB Drives assembly (Output instance: 100; Input instance: 101) and User specific assembly (Output instance: 102; Input instance: 103) (see page 35).
The assemblies Basic speed control and Extended speed control (20 / 70 and 21 / 71) are supported since DCS800 firmware version 2.x.

EDS file

The EDS file for RDNA-01 and DCS800 is available. Please ask Your local ABB agent for the newest one concerning the current DCS800 firmware.

Mechanical and electrical installation

If not already done so insert RDNA-01 into slot 1 of the drive (see page 21).

Drive configuration

The DeviceNet adapter is activated by means of CommModule (98.02).
Please note that the DCS800 works with the instances ABB Drives assembly and User specific assembly.
The instances Basic speed control and Extended speed control (20 / 70 and 21
/71) are supported since firmware version 2.x. With these instances it is not possible to use the full flexibility of the DCS800.
For more information see User's Manual.
Parameter setting example 1 using ABB Drives assembly
ABB Drives assembly is using 2 data words in each direction. The following table shows the parameter setting using this profile.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel(11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	

DsetXVal1 (90.01)	701, default	MainCtrIWord (7.01); output data word 1 (control word) $1^{\text {st }}$ data word from overriding control to drive
DsetXVal2 (90.02)	2301, default	SpeedRef (23.01); output data word 2 (speed reference) $2^{\text {nd }}$ data word from overriding control to drive
DsetXplus1 Val1 (92.01)	801, default	MainStatWord (8.01); input data word 1 (status word) $1^{\text {st }}$ data word from drive to overriding control
DsetXplus1 Val2 (92.02)	104, default	MotSpeed (1.04); input data word 2 (speed actual) $2^{\text {nd }}$ data word from drive to overriding control

ModuleType (51.01)	DEVICENET *	
Module macid (51.02)	$4^{* *}$	set node address as required
Module baud rate (51.03)	$2^{* *}$	$2=500$ kBits/s
HW/SW option (51.04)	0	$0=$ Hardware $1=$ Software
Stop function (51.05)	NA	not applicable when using ABB Drives assembly
Output instance (51.06)	100	$100=$ ABB Drives assembly
Input instance (51.07)	101	$101=$ ABB Drives assembly
Output I/O par 1 (51.08) to Input I/O par 9 (51.25)	NA	not applicable when using ABB Drives assembly
VSA I/O size (51.26)	NA	not applicable when using ABB Drives assembly
FBA PAR REFRESH (51.27)	DONE, default	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) $=$ RESET or at the next power up of the fieldbus adapter.

* Read-only or automatically detected by DeviceNet adapter
** If HW/SW option (51.04) $=0$ (Hardware), the values are automatically set via the DIP switches of the RDNA-01

DCS800 parameter setting using ABB Drives assembly

Note:

± 20.000 speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29). That speed is set by means of M1SpeedScale (50.01) respectively M1SpeedMin (20.01) or M1SpeedMax (20.02).

Parameter setting example 2 using User specific assembly

User specific assembly can run with up to 9 data words in each direction. The following table shows the parameter setting using this profile.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel(11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	

ModuleType (51.01)	DEVICENET *	
Module macid (51.02)	$4^{* *}$	set node address as required
Module baud rate (51.03)	$2^{* *}$	$2=500$ kBits/s
HW/SW option (51.04)	0	0 = Hardware 1 = Software
Stop function (51.05)	NA	not applicable when using User specific assembly $102=$ User specific assembly
Output instance (51.06)	102	$103=$ User specific assembly
Input instance (51.07)	103	Set these values according table: Setting of parameter groups 51,90 and 92 depending on desired data words and according to the desired numbers of data words
Output I/O par 1 (51.08) to Input I/O par 9 (51.25)	$1-18$	Defines the length of the User specific assembly in pairs of data words. E.g. a parameter value of 4 means 4 word as output and 4 words as input.
VSA I/O size (51.26)	$1-9$	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) = RESET or at the next power up of the fieldbus adapter.
FBA PAR REFRESH	DONE, default	

* Read-only or automatically detected by DeviceNet adapter
** If $H W / S W$ option (51.04) $=0$ (Hardware), the values are automatically set via the DIP switches of the RDNA-01

DCS800 parameter setting using User specific assembly

Note:

± 20.000 speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29). That speed is set by means of M1SpeedScale (50.01) respectively M1SpeedMin (20.01) or M1SpeedMax (20.02).

Setting of parameter groups 51, 90 and 92

Parameter group 51				$\xrightarrow[10 \longmapsto]{$ Direction PLC $<->\text { Drive }$$}$	ABB Datasets	Parameter group 90 and 92			
name		set value					name		value
51.08	Output I/O par 1	$=$			1,1	90.01	DsetXVal1	=	701
51.09	Output I/O par 2	$=$		$10 \longmapsto$	1,2	90.02	DsetXVal2	=	2301
51.10	Output I/O par 3	=	3	$10 \longmapsto$	1,3	90.03	DsetXVal3	=	2501
51.11	Output I/O par 4	=	7	$10 \longmapsto$	3,1	90.04	DsetXplus2Val1	=	702
51.12	Input I/O par 1	$=$	4*	$<\square^{\circ}$	2,1	92.01	DsetXplus1Val1	=	801
51.13	Input I/O par 2	=	5*	$<\square^{\circ}$	2,2	92.02	DsetXplus1Val2	=	104
51.14	Input I/O par 3	=	6	$<\sim 0$	2,3	92.03	DsetXplus1Val3	=	209
51.15	Input I/O par 4	=	10	$<\sim 0$	4,1	92.04	DsetXplus3Val1	=	802
51.16	Output I/O par 5	=	8	$10 \longmapsto$	3,2	90.05	DsetXplus2Val2	$=$	703
51.17	Output I/O par 6	=	9	$10 \longmapsto$	3,3	90.06	DsetXplus2Val3	$=$	0
51.18	Output I/O par 7	=	13	$10 \longmapsto$	5,1	90.07	DsetXplus4Val1	$=$	0
51.19	Output I/O par 8	=	14	$10 \longmapsto$	5,2	90.08	DsetXplus4Val2	$=$	0
51.20	Output I/O par 9	$=$	15	$10 \longmapsto$	5,3	90.09	DsetXplus4Val3	$=$	0
51.21	Input I/O par 5	$=$	11	$\ll 0$	4,2	92.05	DsetXplus3Val2	$=$	101
51.22	Input I/O par 6	$=$	12	$\longleftarrow \sim 0$	4,3	92.06	DsetXplus3Val3	$=$	108
51.23	Input I/O par 7	$=$	16	$\ll 0$	6,1	92.07	DsetXplus5Val1	$=$	901
51.24	Input I/O par 8	$=$	17	$\ll 0$	6,2	92.08	DsetXplus5Val2	$=$	902
51.25	Input I/O par 9	=	18	$\ll 0$	6,3	92.09	DsetXplus5Val3	$=$	903

*For proper communication shown values have to be used
Setting of parameter groups 51, 90 and 92 depending on desired data words

Further information

Output and input parameters $51.08, \ldots, 51.25$ can also be connected directly to the desired DCS800 parameters. In this case please take care that the RDNA-01 adapter gets the changed values and also take care, that the used parameters are deleted from group 90 to prevent data trouble.

Switch on sequence

Please see the example at the end of this chapter.

Ethernet/IP communication with fieldbus adapter RETA-01

General

This chapter gives additional information using the Ethernet adapter RETA-01 together with the DCS800.

RETA-01 - DCS800

The Ethernet/IP communication with the drive requires the option RETA-01.

Related documentation

User's Manual Ethernet Adapter Module RETA-01.
The quoted page numbers correspond to the User's Manual.

EDS file

The EDS file for RETA-01 and DCS800 is available. Please ask Your local ABB agent for the newest one concerning the current DCS800 firmware.

Mechanical and electrical installation

If not already done so insert RETA-01 into slot 1 of the drive.

Drive configuration

The Ethernet adapter is activated by means of CommModule (98.02). Please note that the DCS800 works with the instances 102 / 103, if Protocol (51.16) is set to 2 (Ethernet/IP ABB Drives communication profile).

The instances $100 / 101,20 / 70$ and 21 / 71 are supported since firmware version 2.x, if Protocol (51.16) is set to $\mathbf{1}$ (Ethernet/IP AC/DC communication profile). With these instances it is not possible to use the full flexibility of the DCS800. For more information see User's Manual.

Parameter setting example using Ethernet/IP ABB Drives communication profile Ethernet/IP ABB Drives communication profile uses up to 4 data words in each direction by default. The internal connection from and to the DCS800 has to be done by means of parameter group 51 .

Ethernet/IP ABB Drives communication profile uses up to 12 data words in each direction. The configuration has to be done via fieldbus link configuration using Vendor Specific Drive I/O Object (Class 91h).

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	

DsetXVal1 (90.01)	701, default	MainCtrIWord (7.01); output data word 1 (control word) $1^{\text {st }}$ data word from overriding control to drive

DsetXVal2 (90.02)	2301, default	SpeedRef (23.01); output data word 2 (speed reference) 2 oved data word from overiding control to drive		
DsetXplus1 Val1 (92.01)	801, default	MainStatWord (8.01); input data word 1 (status word) $1^{\text {st }}$ data word from drive to overriding control		
DsetXplus1Val2 (92.02)	104, default	MotSpeed (1.04); input data word 2 (speed actual) 2		
to overriding control				(ata word from drive
:---				

ModuleType (51.01)	ETHERNET TCP*	
Comm rate (51.02)	0	Auto-negotiate; automatic, set baud rate as required
DHCP (51.03)	0	DHCP disabled; IP address setting from following parameters
IP address 1 (51.04)	192**	e.g. IP address: 192.168.0.1
IP address 2 (51.05)	168**	
IP address 3 (51.06)	0**	
IP address 4 (51.07)	$1^{* *}$	
Subnet mask 1 (51.08)	255	$\begin{aligned} & \text { e.g. subnet mask: } \\ & 255.255 .255 .0 \end{aligned}$
Subnet mask 2 (51.09)	255	
Subnet mask 3 (51.10)	255	
Subnet mask 4 (51.11)	0	
GW address 1 (51.12)	0	e.g. gateway address: 0.0.0.0
GW address 2 (51.13)	0	
GW address 3 (51.14)	0	
GW address 4 (51.15)	0	
Protocol (51.16)	2	1 = Ethernet/IP AC/DC communication profile 2 = Ethernet/IP ABB Drives communication profile
Modbus timeout (51.17)	22	$\begin{aligned} & 0=\text { no monitoring } \\ & 1=100 \mathrm{~ms} \\ & 22=2200 \mathrm{~ms} \end{aligned}$
Stop function (51.18)	0	0 = Ramp stop
Output 1 (51.19)	1	data word 1; setting via parameter 90.01
Output 2 (51.20)	2	data word 2; setting via parameter 90.02
Output 3 (51.21)	3	data word 3; setting via parameter 90.03

Output 4 (51.22)	7	data word 4; setting via parameter 90.04
Input 1 (51.23)	4	data word 1; setting via parameter 92.01
Input 2 (51.24)	5	data word 2; setting via parameter 92.02
Input 3 (51.25)	6	data word 3; setting via parameter 92.03
Input 4 (51.26)	10	data word 4; setting via parameter 92.04
FBA PAR REFRESH (51.27)	DONE, default	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) = RESET or at the next power up of the fieldbus adapter.

* Read-only or automatically detected by Ethernet adapter
** If all DIP switches (S1) are OFF; the IP address is set according to parameters $51.04, \ldots, 51.07$. In case at least one DIP switch is on, the last byte of the IP address [IP address 4 (51.07)] is set according to the DIP switches (see page 42).

DCS800 parameter setting using Ethernet/IP ABB Drives communication profile

Note:

± 20.000 speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29). That speed is set by means of M1SpeedScale (50.01) respectively M1SpeedMin (20.01) or M1SpeedMax (20.02).

Up to 4 data words

The content of Input/Output 1 to 4 can be configured with the RETA-01 configuration parameters. Please see table RETA-01 Ethernet/IP configuration parameters, which contains all the necessary basic settings.

Up to 12 data words

The DCS800 supports up to 12 data words in each direction. The first configuration of the RETA-01 adapter has to be done according to the table RETA-01 Ethernet/IP configuration parameters, which contains all the necessary basic settings.
The additional desired data words have to be configured via the fieldbus network using Vendor Specific Drive I/O Object (Class 91h). The adapter will automatically save the configuration.
The table RETA-01 Ethernet/IP configuration parameters shows the index configuration numbers and the corresponding data words (via data sets).

Please note: The grayed index is also addressed via group 51, please set the outputs and inputs to the same configuration numbers as shown in the table RETA-01 Ethernet/IP configuration parameters.
Example:

Task: The $5^{\text {th }}$ data word of the telegram (index05) should be connected to AuxCtrlWord (7.03).
To do: AuxCtrIWord (7.03) is the default content of DsetXplus2Val2 (90.05). The corresponding index configuration number of DsetXplus2Val2 (90.05) is 8. So the configuration has to be done using the following values in the IP address (all values are in hex):

service	0×10	(write single)	class	0×91	(drive IO map function)
instance	0×01	(output)	attribute	$\mathbf{5}$	(index05)
data	0800	(2 char hex value)			

RETA-01 Ethernet/IP configuration parameters

After configuration the packed telegram is defined:
Output / in put teleqrams

Switch on sequence

Please see the example at the end of this chapter.

Modbus (RTU) communication with fieldbus adapter RMBA-01

General

This chapter gives additional information using the Modbus adapter RMBA-01 together with the DCS800.

RMBA-01 - DCS800

The Modbus communication with the drive requires the option RMBA-01. The protocol Modbus RTU (Remote Terminal Unit using serial communication) is supported.

Related documentation

User's Manual Modbus Adapter Module RMBA-01.
The quoted page numbers correspond to the User's Manual.

Mechanical and electrical installation

If not already done so insert RMBA-01 into a slot of the drive. Slot 1 has to be used, if the Modbus should control the drive.

Drive configuration

The Modbus adapter is activated by means of CommModule (98.02) and ModBusModule2 (98.08).
The serial communication parameters of the RMBA-01 adapter have to be set by means of group 52.
Up to 12 data words in each direction are possible.

Parameter setting example ..

The Modbus adapter can be either used to control the drive with the overriding control system or only for monitoring purposes together with another fieldbus which is responsible for the control. Therefore different parameter settings are necessary.
... when controlling a drive
In data set mode (cyclic communication) the drive will be controlled from the overriding control using the Modbus.
Up to 12 data words in each direction are possible. The following table shows the parameter settings.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Modbus	
ModBusModule2 (98.08)	Slot1	

StationNumber (52.01)	$1, \ldots, 247$	desired station number
BaudRate (52.02)	5	$5=9600$ Baud
Parity (52.03)	4	$4=$ Even

DsetXVal1 (90.01)	701, default	MainCtrIWord (7.01); output data word 1 (control word) $1^{\text {st }}$ data word from overriding control to drive (40001 => data word 1.1)
DsetXVal2 (90.02)	2301, default	SpeedRef (23.01); output data word 2 (speed reference) $2^{\text {nd }}$ data word from overriding control to drive (40002 => data word 1.2)
DsetXVal3 (90.03)	2501, default	TorqRefA (25.01); output data word 3 (torque reference) $3^{\text {rd }}$ data word from overriding control to drive (40003 => data word 1.3)
up to, ...,		
DsetXplus6Val3 (90.12)	0, default	not connected; output data word 12 (not connected) $12^{\text {th }}$ data word from overriding control to drive (40021 <= data word 7.3)

DsetXplus1Val1 (92.01)	801, default	MainStatWord (8.01); input data word 1 (status word) $1^{\text {st }}$ data word from drive to overriding control (40004 <= data word 2.1)	
DsetXplus1Val2 (92.02)	104, default	MotSpeed (1.04); input data word 2 (speed actual) 2 data word from drive to overriding control (40005 <= data word 2.2)	
DsetXplus1Val3 (92.03)	209, default	TorqRef2 (2.09); input data word 3 (torque reference) 3 drive data word from (40006 <= data word 2.3)	
up to, ...,	Alarmword2 (9.07);		
DsetXplus7Val3 (92.12)	907, default	Alarm word input data word 12 (alard 2) 12 $2^{\text {th }}$ data word from drive to overriding control (40024 <= data word 8.3)	

DCS800 parameter setting using a Modbus controlling the drive

Note:

New settings of group 52 take effect only after the next power up of the adapter.

Note:

± 20.000 speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29). That speed is set by means of M1SpeedScale (50.01) respectively M1SpeedMin (20.01) or M1SpeedMax (20.02).

.. when used for monitoring only

For monitoring only read commands are supported.
Up to 24 data words for monitoring are possible, because the 12 data words written to by the overriding control (see group 90) can also be read. The following table shows the parameter settings.

Drive parameters	Settings	Comments
CommModule (98.02)	FIdBusModbus	FldBusModbus means controlling the drive by means of another R-type fieldbus adapter - see description of CommModule (98.02)
ModBusModule2 (98.08)	Slot2 or Slot3	depends on the location of the adapter

StationNumber (52.01)	$1, \ldots, 247$	desired station number
BaudRate (52.02)	5	$5=9600$ Baud
Parity (52.03)	4	$4=$ Even

DsetXVal1 (90.01)	701, default	MainCtrIWord (7.01); output data word 1 (control word) $1^{\text {st }}$ data word from overriding control to drive (40001 => data word 1.1)
DsetXVal2 (90.02)	2301, default	SpeedRef (23.01); output data word 2 (speed reference) $2^{\text {nd }}$ data word from overriding control to drive (40002 => data word 1.2)
DsetXVal3 (90.03)	2501, default	TorqRefA (25.01); output data word 3 (torque reference) $3^{\text {rd }}$ data word from overriding control to drive (40003 => data word 1.3)
up to, ...,		
DsetXplus6Val3 (90.12)	0, default	not connected; output data word 12 (not connected) $12^{\text {th }}$ data word from overriding control to drive (40021 <= data word 7.3)

DsetXplus1Val1 (92.01)	801, default	MainStatWord (8.01); input data word 1 (status word) $1^{\text {st }}$ data word from drive to overriding control (40004 <= data word 2.1)
DsetXplus1Val2 (92.02)	104, default	MotSpeed (1.04); input data word 2 (speed actual) $2^{\text {nd }}$ data word from drive to overriding control (40005 <= data word 2.2)
DsetXplus1Val3 (92.03)	209, default	TorqRef2 (2.09); input data word 3 (torque reference) $3^{\text {rd }}$ data word from drive to overriding control (40006 <= data word 2.3)
up to, ...,		
DsetXplus7Val3 (92.12)	907, default	Alarmword2 (9.07); input data word 12 (alarm word 2) $12^{\text {th }}$ data word from drive to overriding control (40024 <= data word 8.3)

DCS800 parameter setting using a Modbus monitoring the drive

Note:

New settings of group 52 take effect only after the next power up of the adapter.

Note:

± 20.000 speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29). That speed is set by means of M1SpeedScale (50.01) respectively M1SpeedMin (20.01) or M1SpeedMax (20.02).

Setting of PLC，parameter groups 90 and 92

Set in PLC	Direction PLC＜－＞Drive	ABB Datasets	Parameter	$\begin{aligned} & \text { oup } 90 \text { and } 92 \\ & \text { name } \\ & \hline \end{aligned}$	def．value	
40001	$\xrightarrow{10}$	1，1	90.01	DsetXVal1	＝	701
40002	10	1，2	90.02	DsetXVal2		2301
40003	$10 \square$	1，3	90.03	DsetXVal3		2501
40004	\lessdot	2，1	92.01	DsetXplus1Val1	＝	801
40005	\lessdot	2，2	92.02	DsetXplus1Val2		104
40006	$\longleftarrow \sim$	2，3	92.03	DsetXplus1Val3	＝	209
40007	10	3，1	90.04	DsetXplus2Val1	＝	702
40008	$10 \longrightarrow$	3，2	90.05	DsetXplus2Val2	＝	703
40009	$10 \square$	3，3	90.06	DsetXplus2Val3	＝	0
40010	«ロ	4，1	92.04	DsetXplus3Val1	＝	802
40011	\lessdot	4，2	92.05	DsetXplus3Val2	＝	101
40012	\Longleftarrow	4，3	92.06	DsetXplus3Val3	＝	108
40013	$\xrightarrow{\square} \longrightarrow$	5，1	90.07	DsetXplus4Val1	＝	0
40014	$10 \longmapsto$	5，2	90.08	DsetXplus 4 Val 2	＝	0
40015	$10 \square$	5，3	90.09	DsetXplus 4 Va 3	＝	0
40016	く	6，1	92.07	DsetXplus5Val1	$=$	901
40017	く	6，2	92.08	DsetXplus5Val2	＝	902
40018	\lessdot	6，3	92.09	DsetXplus5Val3	＝	903
40019	$10 \square$	7，1	90.10	DsetXplus6Val1	＝	0
40020	$10 \square$	7，2	90.11	DsetXplus6Val2	＝	0
40021	$\xrightarrow{10}$	7，3	90.12	DsetXplus6Val3	＝	0
40022	くぃ	8，1	92.10	DsetXplus7Val1	＝	904
40023	\longleftarrow	8，2	92.11	DsetXplus7Val2	＝	906
40024	\lessdot	8，3	92.12	DsetXplus7Val3	＝	907

Setting of PLC，parameter groups 90 and 92 depending on desired data words

Switch on sequence

Please see the example at the end of this chapter．

Modbus/TCP communication with fieldbus adapter RETA-01

General

This chapter gives additional information using the Ethernet adapter RETA-01 together with the DCS800.

RETA-01 - DCS800

The Modbus/TCP communication with the drive requires the option RETA-01. The protocol Modbus TCP (Ethernet) is supported.

Related documentation

User's Manual Ethernet Adapter Module RETA-01.
The quoted page numbers correspond to the User's Manual.

Mechanical and electrical installation

If not already done so insert RETA-01 into slot 1 of the drive.

Drive configuration

The Ethernet adapter is activated by means of CommModule (98.02).
Please note that the DCS800 works with Modbus/TCP, if Protocol (51.16) is set to 0 (Modbus/TCP).

Parameter setting example using Modbus/TCP

Modbus/TCP is using 4 data words in each direction. The following table shows the parameter setting using this protocol.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrlWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)		
Fieldbus		
DsetXVal1 (90.01)	701, default	MainCtrIWord (7.01); output data word 1 (control word) $1^{\text {st }}$ data word from overriding control to drive
DsetXVal2 (90.02)	2301, default	SpeedRef (23.01); output data word 2 (speed reference) 2 2 data word from overriding control to drive
DsetXplus1Val1 (92.01)	801, default	MainStatWord (8.01); input data word 1 (status word) data word from drive to overriding control
DsetXplus1Val2 (92.02)	104, default	MotSpeed (1.04); input data word 2 (speed actual) $2^{\text {nd data word from drive to }}$ overriding control

ModuleType (51.01)	ETHERNET TCP*	

Comm rate (51.02)	0	Auto-negotiate; automatic, set baud rate as required
DHCP (51.03)	0	DHCP disabled; IP address setting from following parameters
IP address 1 (51.04)	192**	$\begin{aligned} & \text { e.g. IP address: } \\ & \text { 192.168.0.1 } \end{aligned}$
IP address 2 (51.05)	168**	
IP address 3 (51.06)	0**	
IP address 4 (51.07)	1**	
Subnet mask 1 (51.08)	255	e.g. subnet mask:$255.255 .255 .0$
Subnet mask 2 (51.09)	255	
Subnet mask 3 (51.10)	255	
Subnet mask 4 (51.11)	0	
GW address 1 (51.12)	0	e.g. gateway address: 0.0.0.0
GW address 2 (51.13)	0	
GW address 3 (51.14)	0	
GW address 4 (51.15)	0	
Protocol (51.16)	0	0 = Modbus/TCP
Modbus timeout (51.17)	22	$\begin{aligned} & 0=\text { no monitoring } \\ & 1=100 \mathrm{~ms} \\ & 22=2200 \mathrm{~ms} \\ & \hline \end{aligned}$
Stop function (51.18)	NA	not applicable when using Modbus/TCP
Output 1 (51.19)	1	data word 1; setting via parameter 90.01
Output 2 (51.20)	2	data word 2; setting via parameter 90.02
Output 3 (51.21)	3	data word 3; setting via parameter 90.03
Output 4 (51.22)	7	data word 4; setting via parameter 90.04
Input 1 (51.23)	4	data word 1; setting via parameter 92.01
Input 2 (51.24)	5	data word 2; setting via parameter 92.02
Input 3 (51.25)	6	data word 3; setting via parameter 92.03
Input 4 (51.26)	10	data word 4; setting via parameter 92.04
FBA PAR REFRESH (51.27)	DONE, default	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) = RESET or at the next power up of the fieldbus adapter.

* Read-only or automatically detected by Ethernet adapter
** If all DIP switches (S1) are OFF; the IP address is set according to parameters $51.04, \ldots, 51.07$. In case at least one DIP switch is on, the last byte of the IP address [IP address 4 (51.07)] is set according to the DIP switches (see page 42).

DCS800 parameter setting using Modbus/TCP protocol

Note:

± 20.000 speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29). That speed is set by means of M1SpeedScale (50.01) respectively M1SpeedMin (20.01) or M1SpeedMax (20.02).

Switch on sequence

Please see the example at the end of this chapter.

Profibus communication with fieldbus adapter RPBA-01

General

This chapter gives additional information using the Profibus adapter RPBA-01 together with the DCS800.

RPBA-01 - DCS800

The Profibus communication with the drive requires the option RPBA-01.

Related documentation

User’s Manual PROFIBUS DP Adapter Module RPBA-01.
The quoted page numbers correspond to the User's Manual.

Overriding control configuration

Supported operation mode is VENDOR SPECIFIC for ABB Drives (see page 19 and 20).
The RPBA-01 uses data consistent communication, meaning that the whole data frame is transmitted during a single program cycle. Some overriding controls handle this internally, but others must be programmed to transmit data consistent telegrams.

Mechanical and electrical installation

If not already done so insert RPBA-01 into slot 1 of the drive (see page 21).

Drive configuration

The Profibus adapter is activated by means of CommModule (98.02) (see page 22).

Please note that the DCS800 works only with the ABB Drives profile.

Parameter setting example 1 using PPO Type 1

ABB Drives profile (Vendor-specific) with PPO Type 1 (DP-V0) (see page 25). The first two data words (PZD1 OUT, PZD2 OUT) from the overriding control to the drive are fixed connected as control word and speed reference at the Profibus side and cannot be changed.
The first two data words (PZD1 IN, PZD2 IN) from the drive to the overriding control are fixed connected as status word and speed actual at the Profibus side and cannot be changed.

Drive parameters	Settings	Comments
CommandSel (10.01)	MainCtrIWord	
Ref1Sel (11.03)	SpeedRef2301	
CommModule (98.02)	Fieldbus	

DsetXVal1 (90.01)	701, default	MainCtrIWord (7.01); PZD1 OUT (control word) $1^{\text {st }}$ data word from overriding control to drive

DsetXVal2 (90.02)	2301, default	SpeedRef (23.01); PZD2 OUT (speed reference) $2^{\text {nd }}$ data word from overriding control to drive
DsetXplus1Val1 (92.01)	801, default	MainStatWord (8.01); PZD1 IN (status word) 1 word from drive to overriding wortrol
DsetXplus1Val2 (92.02)	104, default	MotSpeed (1.04); PZD2 IN (speed actual) 2 2 nd data word from drive to overriding control

ModuleType (51.01)	PROFIBUS DP*	
Node address (51.02)	4	set node address as required
Baud rate (51.03)	1500^{*}	
PPO-type (51.04)	PPO1* *	
\ldots	0	
DP Mode (51.21)	DONE, default	If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) $=$ RESET or at the next power (51.27)
up of the fieldbus adapter.		

* Read-only or automatically detected by Profibus adapter

DCS800 parameter setting using PPO Type 1

Note:

± 20.000 speed units (decimal) for speed reference [SpeedRef (23.01)] and speed actual [MotSpeed (1.04)] corresponds to the speed shown in SpeedScaleAct (2.29). That speed is set by means of M1SpeedScale (50.01) respectively M1SpeedMin (20.01) or M1SpeedMax (20.02).

Parameter setting example 2 using PPO types 2, 4 and 5

The first two data words (PZD1 OUT, PZD2 OUT) from the overriding control to the drive are fixed connected as control word and speed reference at the Profibus side and cannot be changed.
The first two data words (PZD1 IN, PZD2 IN) from the drive to the overriding control are fixed connected as status word and speed actual at the Profibus side and cannot be changed.
Further data words are to be connected to desired parameters respectively signals by means of parameters in group 51 :

- PZD3 OUT (51.05) means $3^{\text {rd }}$ data word from overriding control to drive,
- PZD3 IN (51.06) means $3^{\text {rd }}$ data word from Drive to overriding control to
- PZD10 OUT (51.18) means $10^{\text {th }}$ data word from overriding control to drive,
- PZD10 IN (51.19) means $10^{\text {th }}$ data word from drive to overriding control or by means of setting parameters in group 90 and group 92.

Communication via group 51

E.g. the $3^{\text {tr }}$ data word from overriding control to drive should be the torque reference and the $3^{\text {td }}$ data word from the drive to the overriding control should be the actual motor torque. Therefore following settings have to be made:

- PZD3 OUT (51.05) = 2501 [TorqRefA (25.01)] and
- PZD3 IN (51.06) = 107 [MotTorqFilt (1.07)].

After changing parameters in group 51 please don't forget to reset the RPBA-01 adapter by means of FBA PAR REFRESH (51.27) = RESET. Now the corresponding parameters in group 90 and group 92 are disabled.

Attention:

Make sure, that the used parameters, like TorqRefA (25.01) are removed from groups 90 and 91 .

Setting of data words using only group 51 or using group 90 and group 92

Communication via group 90 and group 92

The other possibility - perhaps more familiar - is to connect via group 90 and group 92.

Again the $3^{\text {td }}$ data word from overriding control to drive should be the torque reference and the $3^{\text {rd }}$ data word from the drive to the overriding control should be the actual motor torque. Therefore following settings have to be made (values see table below):

- PZD3 OUT (51.05) $=3$ and
- PZD3 IN (51.06) = 6.

After changing parameters in group 51 please don't forget to reset the RPBA-01 adapter by means of FBA PAR REFRESH (51.27) = RESET. Now the corresponding parameters in group 90 and group 92 are enabled. Following settings have to be made now:

- DsetXVal3 (90.03) = 2501 [TorqRefA (25.01)] and
- DsetXplus1Val3 (92.03) $=107$ [MotTorqFilt (1.07)].

Setting of data words using group 90 and group 92

Switch on sequence

Bit	$15 . .11$		$\begin{aligned} & \underset{\sim}{N} \\ & . \bar{t} \\ & \bar{U} \\ & \underline{O} \\ & 09 \end{aligned}$		$\begin{aligned} & \underset{\Psi}{\mathscr{U}} \\ & \mathscr{0} \\ & \underset{\sim}{\sim} \\ & 07 \end{aligned}$	$\begin{array}{\|c} \frac{0}{0} \\ N \\ N \\ \underline{O} \\ \underline{E} \\ \widetilde{\sim} \\ 0 \\ 06 \\ \hline \end{array}$			$\left\lvert\, \begin{aligned} & \stackrel{\Im}{\beth} \\ & \underset{\sim}{2} \end{aligned}\right.$		$\begin{gathered} \underset{N}{2} \\ \underset{T}{7} \\ 02 \end{gathered}$	$\begin{gathered} \underset{N}{Z} \\ \underset{\mathbf{N}}{\mathbf{T}} \\ 01 \end{gathered}$	乞	Dec.	Hex.
Reset		1	x	x	1	x	x	x	x		x	x	x	1270	04F6
Off (before On)		1	0	0	0	x	x	x	0		1	1	0	1142	0476
On (main cont. On)		1	0	0	0	x	x	x	0		1	1	1	1143	0477
Run (with reference)		1	0	0	0	1	1	1	1		1	1	1	1151	047F
E-Stop		1	x	x	x	1	1	1	1		0	1	1	1147	047B
Start inhibit		1	x	x	x	x	x	X	x		x	0	x	1140	0474

Examples for the MainCtrIWord (7.01)

Data set table

A lot of fieldbus communications use the data set table to transmit data words. The next table shows the configuration number of each data word and the corresponding pointer:

1.1	1	90.01	
1.2	2	90.02	
1.3	3	90.03	
2.1	4		92.01
2.2	5		92.02
2.3	6		92.03
3.1	7	90.04	
3.2	8	90.05	
3.3	9	90.06	
4.1	10		92.04
4.2	11		92.05
4.3	12		92.06
5.1	13	90.07	
5.2	14	90.08	
5.3	15	90.09	
6.1	16		92.07
6.2	17		92.08
6.3	18		92.09

	$\begin{aligned} & \text { ㅇ } \\ & \text { ㅇ } \\ & \text { 은 } \\ & 0 . \\ & \text { 을 } \\ & 0 \\ & \hline \end{aligned}$		
7.1	19	90.10	
7.2	20	90.11	
7.3	21	90.12	
8.1	22		92.10
8.2	23		92.11
8.3	24		92.12
9.1	25	90.13	
9.2	26	90.14	
9.3	27	90.15	
10.1	28		92.13
10.2	29		92.14
10.3	30		92.15
11.1	31	90.16	
11.2	32	90.17	
11.3	33	90.18	
12.1	34		92.16
12.2	35		92.17
12.3	36		92.18

13.1	37	91.01	
13.2	38	91.02	
13.3	39	91.03	
14.1	40		93.01
14.2	41		93.02
14.3	42		93.03
15.1	43	91.04	
15.2	44	91.05	
15.3	45	91.06	
16.1	46		93.04
16.2	47		93.05
16.3	48		93.06

Configuration numbers of each data word and its corresponding pointer

Adaptive Program (AP)

Chapter overview

This chapter describes the basics of the Application Program and instructs how to build an application. All needed parameters can be found in the groups 83 to 86 .

What is the Adaptive Program

Conventionally, the user can control the operation of the drive by parameters. Each parameter has a fixed set of choices or a setting range. The parameters make adapting of the drive easy, but the choices are limited. It is not possible to customize the drive any further. AP makes customizing possible without the need of a special programming tool or language:

- $A P$ is using function blocks,
- DWL AP is the programming and documentation tool.

The maximum size of $A P$ is 16 function blocks. The program may consist of several separate functions.

Features

The Adaptive Program of DCS800 provides the following features:

- 16 function blocks
- more than 20 block types
- password protection
- 4 different cycle times selectable
- shift functions for function blocks
- debug functions
- output forcing
- breakpoint
- single step
- single cycle
- additional output write pointer parameter for each block (group 86)
- 10 additional user constants (group 85) used as data container

How to build the program

The programmer connects a function block to other blocks through a Block Parameter Set. The sets are also used for reading values from the firmware and transferring data to the firmware. Each Block Parameter Set consists of six parameters in group 84 and a write pointer in group 86.

The programmer connects a function block to other blocks through a Block Parameter Set. The sets are also used for reading values from the firmware and transferring data to the firmware. Each Block Parameter Set consists of six parameters in group 84 and a write pointer in group 86. The figure below shows the use of Block Parameter Set 1 in the firmware (parameters 84.04 to 84.09 and 86.01):

- Block1Type (84.04) selects the function block type.
- Block1/n1 (84.05) selects the source of IN1. A negative value means that the source will be inverted.
- Block1In2 (84.06) selects the source of IN2. A negative value means that the source will be inverted.
- Block1In3 (84.07) selects the source of IN3. A negative value means that the source will be inverted.
- Block1Attrib (84.08) defines the attributes of the inputs.
- Block1Output (84.09) provides the value of the function block output, which can be used further for other input selections. The user cannot edit this parameter value.
- The output value is also available in write pointer Block1Out (86.01). Block1Out (86.01) contains the destination parameter, into which the value is written.

How to connect the Application Program with the firmware

The outputs of the Adaptive Program need to be connected to the firmware. For that purpose there are two possibilities:

- The outputs, e.g. Block1Output (84.09), can be selected for further functions.
- The output values are available in the write pointers, e.g. Block1Out (86.01). These parameters contain the destination parameters, into which the values are written.

Block Parameter Set for block 1

Example:
Add a constant value and an external additional reference to the speed reference:

1. Set $84.04=2$ (selection of ADD function)
2. Set $84.05=\mathrm{xx} . \mathrm{xx}$ (selection of the speed reference for Input 1)
3. Set $84.06=x x . x x$ (selection of an external ref for Input 2)
4. Set $84.07=1500$ (constant value for Input 3)
5. Set $84.08=4000$ h (because Input $3=$ constant \Rightarrow Bit $14=1 \Rightarrow 4000 \mathrm{~h}$)
6. Set $86.01=x x . x x$ (write processed value to destination parameter for further processing)
7. 84.09: contains the processed value

How to control the execution of the program

The Adaptive Program executes the function blocks in numerical order according to the block number $1, \ldots, 16$. All blocks use the same time level. This cannot be changed by the user. The user can:

- select the operation mode of the program (stop, start, editing, single cycling, single stepping)
- adjust the execution time level of the program and
- activate or de-activate blocks.

DWL AP

General

Another way to create applications is with DWL AP. It is a program plugged into DriveWindow Light and can be opened with Tools and DriveAP for DCS800:

Important keys and buttons

DWL AP is controlled by means of following keys and buttons:

Keys and buttons	Function
CtrI + left mouse button on a box or function block	Change / insert function blocks, connect in- and outputs in Edit mode
Shift + left mouse button on the red cross	View actual values in Start mode
Cancel	Abort the action
Help	Open the online help

Program modes

There are 5 modes for the Adaptive Program, see AdapProgCmd (83.01):

- Stop: the Adaptive Program is not running and cannot be edited,
- Start: the Adaptive Program is running and cannot be edited,
- Edit: the Adaptive Program is not running and can be edited,
- SingleCycle and SingleStep are used for testing.

Change to Edit mode

Use Ctrl + left mouse button on 83.01 Adaptive Program Control

Insert function blocks

Use Ctrl + left mouse button on one of the yellow boxes. This opens the pop-up window Insert / Change / Remove Block:

In this manner it is possible to insert up to 16 function blocks from the list to the desktop. With the button Change Block xx the selected block will be changed. The button Insert Before Block xx means that the new block will be inserted before the selected block. Button Insert After Block xx means that the new block will be inserted after the selected block.

Insert Before Block 6
Insert After Block 6
Change Block 6

Connect function blocks

Function blocks can be connected to other blocks or to firmware parameters. To connect use Ctrl + left mouse button on the red cross at the input. This opens the pop-up window Set Pointer Parameter. This window provides several connection possibilities:

- Connect a Parameter from the list and set the bit in case of connecting a packed boolean value:

- Connect a Constant value to the input:

- In Advanced mode choose the parameter with group * $100+$ index, e.g. MainCtrIWord (7.01) $==701$:

- Select Undefined if no connection is required:

- Connections of outputs to firmware parameters can be done by means of the output pointers on the right side of the desktop:

If an output of a function block should be connected with an input of a function block simply select the output's parameter at the input.

Set the Time level

Saving AP applications

It is possible to save AP applications as *.ap files :

Function blocks

General rules

The use of block input 1 (BlockxIn1) is compulsory (it must not be left unconnected). Use of input 2 (BlockxIn2) and input 3 (BlockxIn3) is voluntary for the most blocks. As a rule of thumb, an unconnected input does not affect the output of the block.
The Attribute Input (BlockxAttrib) is to set with the attributes, like declaration of constant and bits, of all three inputs. DWL AP does this automatically.
The constant attribute defines a block constant which can only be changed or modified in EDIT mode.

Block inputs

The blocks use two input formats:

- integer or
- boolean

The used format depends on the function block type. For example, the ADD block uses integer inputs and the OR block boolean inputs.

Note:

The inputs of the block are read when the execution of the block starts, not simultaneously for all blocks!

Block input attributes

Block inputs gets the parameter of signal source or user constants (e.g. 85.01). Depending on the used block function and depending on the desired function the attributes of all three inputs are to be set as integer, constant or as selection of a bit of a 16-bit word source.
Therefore it is used a 16 -bit word, which is defined as following:

* this type of constant defines a Block Constant, which can only be modified in EDIT mode.

Example:

Example of attribute parameter, with
BlockxIn1 as boolean, bit 10
BlockxIn2 as constant
BlockxIn3 as integer
\rightarrow Bits converted into hex, the value 200A (H) is to be set into parameter BlockxAttrib.

Parameter value as an integer input

How the block handles the input
The block reads the selected value in as an integer.

Note:

The parameter selected as an input should be an integer value. The internal scaling for each parameter can be found in chapter Parameters.

How to select the input

- Scroll to the input selection parameter of the block and switch to edit mode (Enter).
- Set the address, from which the input value is to be read, with group * $100+$ index, e.g. AccTime1 (22.01) = 2201. A negative address (e.g. -2201) will act an inversion of the connected value.
The figure below shows the DCS800 Control Panel display when the input BlockxIn1 (with e.g. $x=1$ for 1 . block) selection parameter is in edit mode.

Display of panel

	REM U PAR EDIT-------------------	
	8405 Block1In1	
Connection to 503 as output of Al1 (group x $100+$ index)	$\longrightarrow 503$	
	CANCEL	SAVE

Example:
Al1 is supplied with a voltage source of 5.8 V . Al1 is connected to the block as follows:

- Scroll to Block1In1 (84.05) and shift to edit mode (Enter). Set to 503, because the value of Al1 is shown in group 5 with index 3-Al1 Val (05.03) $==05$ * 100 $+3=503$.
- The value at the input of the block is 5800 , since the integer scaling of Al1 Val (05.03) is $1000==1 \mathrm{~V}$ see chapter Parameters.

Constant as an integer input
How to set and connect the input

-Option 1

- Scroll to the input selection parameter of the block and switch to edit mode (Enter).
- Give the constant value to this input parameter (arrow keys).
- Accept by Enter.
- Scroll to attribute parameter, e.g. Block1Attrib (4.08).
- Set the bit for constant attribute of this input in Block1Attrib (4.08).
- Accept by Enter.

The constant may have a value from -32768 to 32767. The constant cannot be changed while the Application Program is running. The figures below shows the DCS800 Control Panel display when Block1In2 (84.06) is in edit mode and the constant field is visible:
Display of panel

Display of panel

Option 2

- User constants 85.01 to 85.10 are reserved for the Adaptive Program and can be used for custom setting. Parameters 19.01 to 19.12 can be used in the same way, but are not stored in the flash.
- Connect the user constant to a block as usual by the input selection parameter. The user constants can be changed while the Adaptive Program is running. They may have values from -32767 to 32767 .

Parameter value as a boolean input

How the block handles the input
The block:

- reads the selected value as an integer,
- uses the bit defined by the bit field as the boolean input and
- interprets bit value 1 as true and 0 as false.

Example:
The figure below shows the value of Block1In3 (84.07) when the input is connected to DI2. All digital inputs are available in DI StatWord (8.05). Bit 0 corresponds to DI1 and bit 1 to DI2.

Display of panel

Display of panel

Setting of bit 1 of block1ln3	REM U PAR EDIT \qquad 8408 Block1Attrib $\longrightarrow 0100$ hex	
	CANCEL	SAVE

Note:

The parameter selected as an input should have a packed boolean value (binary data word).

Constant as a boolean input

How to set and connect the input

- Scroll to the input selection parameter of the block and switch to edit mode (Enter).
- Give the constant. If boolean value true is needed, set the constant to 1 . If boolean value false is needed, set to 0 .
- Accept by Enter.
- Scroll to attribute parameter (BlockxAttrib).
- Set the bit for constant attribute of this input in BlockxAttrib parameter.
- Accept by Enter.

String input
How to select the input
With the EVENT block the text from fault, alarm or notice lists will be selected. To change the text DriveWindow and SDCS-COM-8 are required.

Function blocks

General Each of the 16 function blocks has three input parameters IN1 to IN3, which can be connected to the firmware, outputs of other function blocks or constants. Boolean values are interpreted like this:

- 1 as true and
- 0 as false.

A $4^{\text {th }}$ parameter is used for the attributes of the inputs. The attribute has to be edited manually, if the functions blocks are edited with the DCS800 Control Panel, DriveWindow or DriveWindow Light. The attribute is set automatically when DWL AP is used. The output OUT can connected with the inputs of function blocks. To write output values into firmware parameters connect the necessary output pointer (group 86) to the desired parameter.

<name>
IN1
IN2
- IN2 OUT
IN3 OUT
Attr.

ABS	Type	Arithmetical function
	Illustration	ABS
		-IN1
	Operation	OUT is the absolute value of IN1 multiplied by $\operatorname{IN} 2$ and divided by $\operatorname{IN} 3$. OUT $=$ IIN1\| * $\operatorname{IN} 2 / \operatorname{IN} 3$
	Connections	IN1, IN2 and IN3: 16 bit integer (15 bits + sign $)$ OUT: 16 bit integer (15 bits + sign $)$

Illustration

Bitwise
IN1
- IN2
- IN3 OUT

Operation The block compares bits of three 16 bit word inputs and forms the output bits as follows:
OUT $=(\operatorname{IN} 1$ OR IN2) AND IN3.
Example:
Single bit:

IN1	IN2	IN3	OUT
0	0	0	0
0	1	0	0
1	0	0	0
1	1	0	0
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	1

Example:
Whole word:

Input [word]	=> IN1	bits																=> OUT	
		15															0		
20518			10	1	0	0	0	0	0	0	1		0	0	1	1	0		Output [word]
4896		0	0 0	1	0	0	1	1	0	0	0		0	0	0	0	0		
17972	$=>$ IN3	0	10	0	0	1	1	0	0	0	1			0	1	0	0		
			10	0	0	0	1	0	0	0	1		0	0	1	0	0		16932

Connections IN1, IN2 and IN3: 16 bit integer (packed boolean) OUT: 16 bit integer (packed boolean)

Operation Output bits 0,1 and 2 (bits $4 \ldots 15$ are not used):

- If $\operatorname{IN} 1>\operatorname{IN} 2 \Rightarrow$ OUT $=001$ OUT bit 0 is true,
- if IN1 $=\operatorname{IN} 2 \Rightarrow$ OUT $=010$ OUT bit 1 is true and
- if IN1 $<\mathrm{IN} 2 \Rightarrow$ OUT $=100$ OUT bit 2 is true.

Output bit 3:

- If IN1 > IN2, OUT = 1ddd OUT bit 3 is true and remains true until IN1 < (IN2-IN3), after which bit 3 is false.

Output bit 4...15: not used
OUT integer value, which is shown on display, is the sum of the bits:

bit 3	bit 2	bit 1	bit 0	OUT (value on display)
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	1	0	0	4
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	1	0	0	12

Connections

IN1, IN2 and IN3:	16 bit integer values (15 bits + sign)
OUT:	16 bit integer (packed boolean)

Count	Type	Arithmetical function
	Illustration	Count
		-IN1
	Operation	The counter counts the rising edges of IN1. Rising edges at IN2 reset the counter. IN3 limits OUT. IN3 > 0: OUT increases to the set limit. IN3 <0 : OUT increases up to the absolute maximum value (32768). When the maximum value is reached the output will be set to 0 and the counter starts counting from zero.
	Connections	IN1: boolean; counts rising edges IN2: boolean; reset input (high active) IN3: 16 bit integer (15 bit + sign); limit OUT: 15 bit integer (15 bit + sign); shows the counted value
D-Pot	Type	Arithmetical function
	Illustration	D-Pot
		-IN1In IIN2 -IN3
	Operation	IN1 increases OUT. IN2 decreases OUT. The absolute value of IN3 is the ramp time in ms which is needed to increase OUT from 0 to 32767 . With positive IN3 the output range is limited from 0 to 32767 . With negative IN3 the output range is between32767 and +32767 . If both IN1 and IN2 are true, IN2 overwrites IN1.
	Connections	IN1: boolean; ramp up IN2: boolean; ramp down IN3: 16 bit integer (15 bit + sign); ramp time scale OUT: 16 bit integer (15 bit + sign); ramp value

Event Type Display function
Illustration

Event
IN1
- IN2
- IN3 OUT

Operation IN1 triggers the event. IN2 selects the fault, alarm or notice. IN3 is the event delay in ms .

IN1	Activation input (boolean)			
	$0->1$ trigger event			
	0 block deactivated			
IN2	Selection of the message to be displayed. There exist 15 different messages, which are selected by using numbers. The default message is shown in the brackets. It can be changed by means of string parameters.			
	Alarms	Faults	Notices	String parameters
	301 (APAlarm1)	601 (APFault1)	801 (..........)	String1 (85.11)
	302 (APAlarm2)	602 (APFault2)	802 (...........)	String2 (85.12)
	303 (APAlarm3)	603 (APFault3)	803 (..........)	String3 (85.13)
	304 (APAlarm4)	604 (APFault4)	804 (..........)	String4 (85.14)
	305 (APAlarm5)	605 (APFault5)	805 (..........)	String5 (85.15)

Connections IN1: boolean
IN2: \quad Text of alarm, fault or notice. Must be defined via String1 (85.11) to String5 (85.15) and connected to IN2
IN3: $\quad 16$ bit integer
OUT: not used

Filter Type Arithmetical function

Illustration

Filter
- IN1
- IN2
- IN3

Operation OUT is the filtered value of IN1. IN2 is the filter time in ms.
OUT $=\operatorname{IN} 1\left(1-e^{-t / \mathbb{N} 2}\right)$
Note:
The internal calculation uses 32 bits accuracy to avoid offset errors.
Connections IN1: $\quad 16$ bit integer (15 bits + sign); value to be filtered
IN2: $\quad 16$ bit integer (15 bits + sign); filter time in ms
IN3: not used
OUT: $\quad 16$ bit integer (15 bits + sign); filtered value
Limit Type Logical function

Illustration	Limit IN1 IN2 - IN3 OUT

Operation The value, connected to IN1 will be limited with IN2 as upper limit and IN3 as lower limit. OUT is the limited input value. OUT stays 0 , if $\operatorname{IN} 3$ is $>=\operatorname{IN} 2$.

Connections IN1: $\quad 16$ bit integer (15 bits + sign); value to be limited
IN2: $\quad 16$ bit integer (15 bits + sign); upper limit
IN3: $\quad 16$ bit integer (15 bits + sign $)$; lower limit OUT: $\quad 16$ bit integer (15 bits + sign); limited value

MaskSet

Type

Logical function
Illustration

MaskSet
IN1
-IN2
- IN3 OUT

Operation The block sets or resets the bits in IN1 and IN2.
Example:
IN3 $=$ set

IN1	IN2	IN3	OUT
0	0	True	0
1	0	True	$\mathbf{1}$
1	1	True	$\mathbf{1}$
0	1	True	$\mathbf{1}$

IN3 = reset

IN1	IN2	IN3	OUT
0	0	False	0
1	0	False	$\mathbf{1}$
1	1	False	0
0	1	False	0

Example:
Whole word with IN3 = set

Input	=> IN1	bits														$\begin{aligned} & \hline \text { Output } \\ & \text { [word] } \end{aligned}$
[word]		15														
26214		0	11	0	0	1	1	0	0	1	1	0	0			
-13108	$=>$ IN2	1	10	0	1	1	0	0	1	1	0	0	1			
			11	0	1	1	1	0	1	1	1	0	1		1	-4370

Whole word with $\operatorname{IN} 3=$ reset

Connections IN1: 16 bit integer (packed boolean); word input IN2: $\quad 16$ bit integer (packed boolean); word input IN3: boolean; set / reset IN2 in IN1 OUT: $\quad 16$ bit integer (packed boolean); result

Max	Type	Arithmetical function
	Illustration	Max
		-IN1In - IN2 - In3
	Operation	OUT is the highest input value. OUT = MAX (IN1, IN2, IN3) Note: An open input will ignored.
	Connections	IN1, IN2 and IN3: 16 bit integer $(15$ bits + sign $)$ OUT: 16 bit integer $(15$ bits + sign $)$
Min	Type	Arithmetical function
	Illustration	Min
		-IN1 -IN2 -IN3
	Operation	OUT is the lowest input value. OUT = MIN (IN1, IN2, IN3)
		Note: An open input will be set to as zero.
	Connections	Input IN1, IN2 and IN3: 16 bit integer values (15 bits + sign) Output OUT: $\quad 16$ bit integer (15 bits + sign)
MulDiv	Type	Arithmetical function
	Illustration	MulDiv
		-IN1 -IN2 -IN3
	Operation	OUT is the IN1 multiplied with IN2 and divided by IN3. OUT $=(\operatorname{IN} 1$ * $\operatorname{IN} 2) /$ IN3
	Connections	Input IN1, IN2 and IN3: 16 bit integer values (15 bits + sign) Output OUT: $\quad 16$ bit integer (15 bits + sign)

NotUsed	Type	-
	Illustration	
	Operation	Block is not enabled and not working, default
Connections	-	

OR	Type	Logical function				
	Illustration	OR				
		$\begin{aligned} & -\mathrm{IN} 1 \\ & -\mathrm{IN} 2 \\ & -\mathrm{IN} 3 \end{aligned}$	OUT-			
	Operation	OUT is true if any of the connected inputs is true. Otherwise the OUT is false. Truth table:				
		IN1	IN2	IN3	OUT (binary)	OUT (value on display)
		0	0	0	False (All bits 0)	0
		0	0	1	True (All bits 1)	-1
		0	1	0	True (All bits 1)	-1
		0	1	1	True (All bits 1)	-1
		1	0	0	True (All bits 1)	-1
		1	1	0	True (All bits 1)	-1
		1	1	1	True (All bits 1)	-1
	Connections	IN1, IN OUT:	and		boolean values 16 bit integer val	(packed boolean)
ParRead	Type	Parameter function				
	Illustration	ParRead				
		-IN1-IN2-IN3 OUT				

Operation OUT shows the value of a parameter, which is defined with IN1 as group and IN2 as index.
Example:
Reading AccTime1 (22.01):
$\mathrm{IN} 1=22$ and $\mathrm{IN} 2=01$
Connections IN1: $\quad 16$ bit integer (15 bits + sign); group
IN2: $\quad 16$ bit integer (15 bits + sign); index
IN3: not used
OUT: $\quad 16$ bit integer (15 bits + sign); parameter value

ParWrite	Type	Parameter function
	Illustration	ParWrite IN1 IIN2 IIN3 OUT
	Operation	Value of IN1 is written into a parameter defined by IN2 as group * $100+$ index, e.g. MainCtrlWord (7.01) $==701$. The block will be activated with a change of IN1. IN3 determines if the value is saved in the flash. Attention: Cyclic saving of values in the flash will damage it! Do not set IN3 constantly to true! OUT gives the error code, if parameter access is denied. Example: Set AccTime1 $(22.01)=150$, not saving into flash: IN1 = 150, desired value IN2 = 2201, this must be a defined as a constant and not as a parameter IN3 = false
	Connections	IN1: 16 bit integer (15 bits + sign); desired value IN2: 16 bit integer (15 bits + sign); group * $100+$ index IN3: boolean; true $=$ save in flash, false $=$ don't save in flash OUT: 16 bit integer (packed boolean); error code
PI	Type	Arithmetical controller
	Illustration	PI IN 1 $-\mathrm{IN2}$ $-\mathrm{IN3}$ OUT
	Operation	OUT is IN1 multiplied by (IN2 / 100) plus integrated IN1 multiplied by (IN3 / 100). $O=I 1^{*} I 2 / 100+(I 3 / 100) * \int I 1$ Note: The internal calculation uses 32 bits accuracy to avoid offset errors.
	Connections	IN1: 16 bit integer (15 bit + sign $) ;$ error (e.g. speed error $)$ IN2: 16 bit integer $(15$ bit + sign $) ; p$-part $(30==0.3,100==1)$ IN3: 16 bit integer $(15$ bit + sign $) ;$ i-part $(250==2.5,5,000==50)$ OUT: 16 bit integer $(15$ bits + sign $) ;$ the range is limited from $-20,000$ to $+20,000$

Pl-Bal	Type	Arithmetical function
	Illustration	PI-Bal
		IN1 -IN2 - IN3 In
	Operation	The PI-Bal block initializes the PI block. The PI-Bal block must follow directly behind the PI block and can only be used together with the PI block. When IN1 is true, the PI-Bal block writes the value of IN2 directly into OUT of the PI block. When IN1 is false, the PI-Bal block releases OUT of the PI block. Normal operation continues starting with the set output value - bumpless transition.
	Connections	IN1: boolean; true $=$ balance PI block, false $=$ no balancing IN2: 16 bit integer $(15$ bits + sign $) ;$ balance value IN3: not used OUT: affects PI block
Ramp	Type	Arithmetical function
	Illustration	Ramp
		-IN1 $\begin{aligned} & \text { In } \\ & \text { - } \\ & \text {-IN3 } \\ & \text { In }\end{aligned}$
	Operation	IN1 is the input. IN2 and IN3 are the times. OUT increases or decreases until the input value is reached. n
	Connections	IN1: 16 bit integer (15 bit + sign); ramp input IN2: 16 bit integer (15 bit + sign); ramp up time in ms (related to 20,000) IN3: 16 bit integer (15 bit + sign); ramp down time in ms, (related to 20,000) OUT: 16 bit integer (15 bit + sign); ramp output

Sqrt	Type	Arithmetical function
	Illustration	Sqrt
		$\begin{array}{\|ll\|} \hline \text { IN1 } & \\ - \text { IN2 } & \\ - \text { IN3 } & \text { OUT } \\ \hline \end{array}$
	Operation	OUT is the square root of $\operatorname{IN} 1$ * $\operatorname{IN} 2$. With $\operatorname{IN} 3=$ true $\operatorname{IN} 1$ and $\operatorname{IN} 2$ are read as absolute values:
		OUT $=\sqrt{\|I N 1\|^{*}\|I N 2\|}$
		With IN3 = false OUT is set to zero if IN1 * IN2 is negative:
		$\text { OUT }=\sqrt{I N 1 * I N 2} ; \quad \text { if } I N 1 * I N 2 \geq 0$
		$O U T=0 \quad$ if $I N 1 * I N 2<0$
	Connections	IN1: $\quad 16$ bit integer (15 bits + sign $)$
		IN2: $\quad 16$ bit integer (15 bits + sign $)$
		IN3: boolean
		OUT: 16 bit integer
SqWav	Type	Arithmetical function
	Illustration	SqWav
		$\begin{aligned} & - \text { IN1 } \\ & - \text { IN2 } \\ & - \text { IN3 } \\ & \hline \end{aligned}$
	Operation	OUT alternates between the value of IN3 and zero (0), if the block is enabled with IN1 = true. The period is set with IN2 in ms.
	Connections	IN1: boolean; true = enable SqWav, false = disable SqWav
		IN2: $\quad 16$ bit integer; cycle time in ms
		IN3: 16 bit integer (15 bits + sign); height of square wave
		OUT: 16 bit integer (15 bits + sign); square wave

SR Type Logical function

Illustration

SR	
IN1	
- IN2	
- IN3	OUT

Operation Set/reset block. IN1 (S) sets OUT. IN2 (R) or IN3 (R) reset OUT. If IN1, IN2 and IN3 are false, the current value remains at OUT. The SR is reset dominant. Truth table:

IN1	IN2	IN3	OUT (binary)	OUT (value on display)
0	0	0	no change	no change
0	0	1	false (all bits 0)	0
0	1	0	false (all bits 0)	0
0	1	1	false (all bits 0)	0
1	0	0	true (all bits 1)	-1
1	0	1	false (all bits 0)	0
1	1	0	false (all bits 0)	0
1	1	1	false (all bits 0)	0

Connections

IN1, IN2 and IN3:	boolean
OUT:	16 bit integer (15 bits + sign $)$

Switch-B

Type

Illustration	Switch-B
	- IN1
IN2	
	IN3 OUT

Operation OUT is equal to $\operatorname{IN} 2$ if $\operatorname{IN} 1$ is true. OUT is equal to $\operatorname{IN} 3$ if $\operatorname{IN} 1$ is false.

IN1	OUT
0	$=$ IN3
1	$=$ IN2

Connections
IN1: boolean (only bit 0 is valid)
N2 and IN3: boolean
OUT: $\quad 16$ bit integer (packed boolean)

Switch-I Type Arithmetical function

Illustration

Switch-I
IN1
IN2
IN3 OUT

Operation OUT is equal to IN2 if IN1 is true and equal to IN3 if IN1 is false.

IN1			OUT
0			$=$ IN3
1			$=$ IN2

Connections	IN1:	boolean (only bit 0 is valid)
	IN2 and IN3:	16 bit integer $(15$ bits + sign $)$
	OUT:	16 bit integer $(15$ bits + sign $)$

TOFF Type Logical function

Illustration

TOFF
IN1
- IN2
- IN3 OUT

Operation OUT is true when IN1 is true. OUT is false when IN1 has been false for a time $>=\operatorname{IN} 2$. OUT remains true as long as IN1 is true plus the time defined in IN2.

Connections IN1: boolean, input
IN2: $\quad 16$ bit integer; delay time in ms (IN3 = false) or s (IN3 = true)
IN3: boolean; determines unit of time
OUT: $\quad 16$ bit integer (packed boolean); result with values on display: True =-
1 , false $=0$

Adaptive Program

XOR Type Logical function

Illustration

XOR
IN1
- IN2
- IN3

Operation OUT is true if one input is true, otherwise OUT is false. Truth table:

IN1	IN2	IN3	OUT (binary)	OUT (value on display)
0	0	0	false (all bits 0)	0
0	0	1	true (all bits 1)	-1
0	1	0	true (all bits 1)	-1
0	1	1	false (all bits 0)	0
1	0	0	true (all bits 1)	-1
1	0	1	false (all bits 0)	0
1	1	0	false (all bits 0)	0
1	1	1	true (all bits 1)	-1

Connections
boolean OUT:

16 bit integer value (packed boolean)

Diagram

Blank block diagram sheet on which the Adaptive Program can be documented.

Signal and parameter list

Signals and parameters

This chapter contains all signals and parameters.

Signal groups list

Signals are measured and calculated actual values of the drive. This includes the control-, status-, limit-, fault- and alarm words. The drive's signals can be found in groups 1 to 9 . None of the values inside these groups is stored in the flash and thus volatile.

Note:

All signals in group 7 can be written to by means of DWL, DCS800 Control Panel, Adaptive Program, application program or overriding control.

The following table gives an overview of all signal groups:

Group	Description	Comment
1	Physical actual values	
2	Speed controller signals	
3	Reference actual values	
4	Information	self identification
5	Analog I/O	
6	Drive logic signals	
7	Control words	command words
8	Status / limit words	detection on operation and limits
9	Fault / alarm words	diagnosis information

Index	Signal / Parameter name		$\stackrel{\times}{6}$		
1.08	MotTorq (motor torque) Motor torque in percent of MotNomTorque (4.23): - Filtered by means of a $6^{\text {th }}$ order FIR filter (sliding average filter), filter time is 1 mains voltage period. Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y	'		\bigcirc	ш
2.17	SpeedRefUsed (used speed reference) Used speed reference selected with: - Ref1Mux (11.02) and Ref1Sel (11.03) or - Ref2Mux (11.12) and Ref2Sel (11.06) Int. Scaling: (2.29) Type: SI Volatile: Y	'			

All signals are read-only. However the overriding control can write to the control words, but it only affects the RAM.

Min., max., def.:

Minimum, maximum and default values are not valid for groups 1 to 9 .

Unit:

Shows the physical unit of a signal, if applicable. The unit is displayed in the DCS800 Control Panel and PC tools.

E/C:

By means of USI Sel (16.09) it is possible to change between compact (C) and extended (E) signal and parameter list. The compact list contains only signals and parameters used for a typical commissioning.

Group.Index:

Signal and parameter numbers consists of group number and its index.

Integer Scaling:

Communication between the drive and the overriding control uses 16 bit integer values. The overriding control has to use the information given in integer scaling to read the value of the signal properly.
Example1:
If MotTorq (1.08) is read from the overriding control an integer value of 100 corresponds to 1% torque.
Example2:
If SpeedRefUsed (2.17) is read from the overriding control 20.000 equals the speed (in rpm) shown in SpeedScaleAct (2.29).

Type:
The data type is given with a short code:
I $=16$-bit integer value ($0, \ldots, 65536$)
SI $=16$-bit signed integer value $(-32768, \ldots, 32767)$
C = text string (ENUM)

Volatile:

$\mathrm{Y}=$ values are NOT stored in the flash, they will be lost when the drive is deenergized
$\mathrm{N}=$ values are stored in the flash, they will remain when the drive is deenergized

Parameter groups list

This chapter explains the function and valid values or selections for all parameters. They are arranged in groups by their function. The following table gives an overview of all parameter groups:

Group	Description
10	Start / stop select
11	Speed reference inputs
12	Constant speeds
13	Analog inputs
14	Digital outputs
15	Analog outputs
16	System control inputs
19	Data storage
20	Limits
21	Start / stop
22	Speed ramp
23	Speed reference
24	Speed control
25	Torque reference
26	Torque reference handling
30	Fault functions
31	Motor 1 temperature
34	DCS800 Control Panel display
40	PID control
42	Brake control
43	Current control
44	Field excitation
45	Field converter settings
47	12-pulse operation
49	Shared motion
50	Speed measurement
51	Fieldbus
52	Modbus
60... 69	Application program parameters
70	DDCS control
71	Drivebus
83	Adaptive Program control
84	Adaptive Program
85	User constants
86	Adaptive Program outputs
88	Internal
90	Receiving data sets addresses 1
91	Receiving data sets addresses 2
92	Transmit data sets addresses 1
93	Transmit data sets addresses 2
94	DCSLink control
97	Measurement
98	Option modules
99	Start-up data

| Index | Signal / Parameter name |
| :--- | :--- | :--- | :--- | :--- | :--- |

Sample of parameters

Parameter changes by DCS800 Control Panel, DriveWindow or DriveWindow Light are stored in the flash. Changes made by the overriding control are only stored in the RAM.

Min., max., def.:
Minimum and maximum value or selection of parameter.
Default value or default selection of parameter.

Unit:

Shows the physical unit of a parameter, if applicable. The unit is displayed in the DCS800 Control Panel and PC tools.

E/C:

By means of USI Sel (16.09) it is possible to change between compact (C) and extended (E) signal and parameter list. This influences parameter display of DCS800 Control Panel. The compact list contains only signals and parameters used for a typical commissioning.

Group.Index:

Signal and parameter numbers consists of group number and its index.

Integer Scaling:

Communication between the drive and the overriding control uses 16 bit integer values. The overriding control has to use the information given in integer scaling to change the value of the parameter properly.
Example1:
If TorqMaxSPC (20.07) is written to from the overriding control an integer value of 100 corresponds to 1%.
Example2:
If SpeedRef (23.01) is written to from the overriding control 20.000 equals the speed (in rpm) shown in SpeedScaleAct (2.29).

Type:

The data type is given with a short code:
I = 16-bit integer value ($0, \ldots, 65536$)
SI $=16$-bit signed integer value $(-32768, \ldots, 32767)$
C = text string (ENUM)

Volatile:

$\mathrm{Y}=$ values are NOT stored in the flash, they will be lost when the drive is deenergized
$\mathrm{N}=$ values are stored in the flash, they will remain when the drive is deenergized

Signal and parameter list

Index	Signal / Parameter name	.		
「 을 0 O	Physical actual values			
1.01	MotSpeedFilt (filtered motor speed) Filtered actual speed feedback: - Choose motor speed feedback with M1SpeedFbSel (50.03) - Filtered with 1 s and - SpeedFiltTime (50.06) Int. Scaling: (2.29) Type: SI Volatile: \mathbf{Y}			80
1.02	SpeedActEMF (speed actual EMF) Actual speed calculated from EMF. Int. Scaling: (2.29) Type: SI Volatile: \mathbf{Y}	'		0
1.03	SpeedActEnc (speed actual encoder 1) Actual speed measured with pulse encoder 1. Int. Scaling: (2.29) Type: SI Volatile: Y			00
1.04	MotSpeed (motor speed) Actual motor speed: - Choose motor speed feedback with M1SpeedFbSel (50.03). If M1SpeedFbSel (50.03) is set to External the signal is updated by Adaptive Program, application program or overriding control. SpeedFiltTime (50.06) Int. Scaling: (2.29) Type: SI Volatile: Y			00
	Analog tacho inputs			
1.05	SpeedActTach (speed actual tacho) Actual speed measured with analog tacho. Note: This value is only valid, if an analog tacho is connected! Int. Scaling: (2.29) Type: SI Volatile: \mathbf{Y}			00
1.06	MotCur (motor current) Relative actual motor current in percent of M1NomCur (99.03). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y			$\bigcirc 0$

Index	Signal / Parameter name			=
1.07	MotTorqFilt (filtered motor torque) Relative filtered motor torque in percent of MotNomTorque (4.23): - Filtered by means of a $6^{\text {th }}$ order FIR filter (sliding average filter), filter time is 1 mains voltage period plus - TorqActFiltTime (97.20) Note: The cycle time is 20 ms Note: The value is calculated the following way: $\text { MotTorqFilt }(1.07)=\frac{\text { Flux Re } f \text { FldWeak }(3.24)^{*} \operatorname{MotCur}(1.06)}{100}$ with Flux Re f FldWeak (3.24) $=$ FluxMax* $\frac{\text { M1BaseSpeed (99.04) }}{\mid \text { MotSpeed (1.04) } \mid}$; for $n>$ M1BaseSpeed (99.04) or Flux Re fFldWeak (3.24)=FluxMax=100\%; for $n \leq$ M1BaseSpeed (99.04) or M1UsedFexType (99.12)=NotUsed Int. Scaling: $100=1 \%$ Type: SI Volatile: Y			$\bigcirc 0$
1.08	MotTorq (motor torque) Motor torque in percent of MotNomTorque (4.23): - Filtered by means of a $6^{\text {th }}$ order FIR filter (sliding average filter), filter time is 1 mains voltage period. Note: The cycle time is 20 ms Note: The value is calculated the following way: $\text { MotTorq }(1.08)=\frac{\text { Flux Re fFldWeak }(3.24) * \text { MotCur }(1.06)}{100}$ with FluxRe f FldWeak (3.24) $=$ FluxMax* $\frac{\text { M1BaseSpeed (99.04) }}{\mid \text { MotSpeed (1.04) } \mid}$; for $n>$ M1BaseSpeed (99.04) or Flux Re f FldWeak (3.24)=FluxMax=100\%; for $n \leq$ M1BaseSpeed (99.04) or M1UsedFexType (99.12)=NotUsed Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y			우 ㅃ
1.09	CurRipple (current ripple) Relative current ripple monitor output in percent of M1NomCur (99.03). Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y			
1.10	CurRippleFilt (filtered current ripple) Relative filtered current ripple monitor output in percent of M1NomCur (99.03): - Filtered with 200 ms Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{Y}			
1.11	MainsVoltActRel (relative actual mains voltage) Relative actual mains voltage in percent of NomMainsVolt (99.10). Int. Scaling: $100=1 \%$ Type: Volatile: Y			
1.12	MainsVoltAct (actual mains voltage) Actual mains voltage: - Filtered with 10 ms Int. Scaling: $1==1$ V Type: \quad Volatile: Y			$\rightarrow 0$

Index	Signal / Parameter name		-	\pm	
1.13	ArmVoltActRel (relative actual armature voltage) Relative actual armature voltage in percent of M1NomVolt (99.02). Note: the value is also influenced by AdjUDC (97.23) Int. Scaling: $100=1 \%$ Type: SI Volatile: Y				0
1.14	ArmVoltAct (actual armature voltage) Actual armature voltage: - Filtered with 10 ms Note: the value is also influenced by AdjUDC (97.23) Int. Scaling: $1==1 \mathrm{~V} \quad$ Type: \quad SI Volatile: Y				0
1.15	ConvCurActRel (relative actual converter current [DC]) Relative actual converter current in percent of ConvNomCur (4.05). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y				0
1.16	ConvCurAct (actual converter current [DC]) Actual converter current: - Filtered with 10 ms Int. Scaling: $1=1$ A Type: SI Volatile: Y				0
1.17	EMF VoltActRel (relative actual EMF) Relative actual EMF in percent of M1NomVolt (99.02): EMF VoltActRel (1.17). Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: \mathbf{Y}			\bigcirc	0
1.18	Unused				
1.19	Unused				
1.20	Mot1TempCalc (motor 1 calculated temperature) - Motor 1 calculated temperature from motor thermal model in percent - see M1AlarmLimLoad (31.03) and M1FaultLimLoad (31.04). Used for motor overtemperature protection. - M1AlarmLimLoad (31.03) - M1FaultLimLoad (31.04) Int. Scaling: $100=\mathbf{1 \%}$ Type: I Volatile: Y			\bigcirc	-
1.21	Mot2TempCalc (motor 2 calculated temperature) - Motor 2 calculated temperature from motor thermal model in percent - see M2AlarmLimLoad (49.33) and M2FaultLimLoad (49.34). Used for motor overtemperature protection. - M2AlarmLimLoad (49.33) - M2FaultLimLoad (49.34) Int. Scaling: $100=\mathbf{1 \%}$ Type: I Volatile: Y				
1.22	Mot1TempMeas (motor 1 measured temperature) Motor 1 measured temperature. Used for motor overtemperature protection: Unit depends on setting of M1TempSel (31.05): $0=$ NotUsed $1=1$ to 6 PT100 ${ }^{\circ} \mathrm{C}$ $2=$ PTC $\quad \Omega$ Int. Scaling: $1=1^{\circ} \mathrm{C} / 1 \Omega / 1$ Type: I Volatile: \mathbf{Y}				0

Signal and parameter list

Index	Signal／Parameter name			8	E	此
1.23	Mot2TempMeas（motor 2 measured temperature） Motor 2 measured temperature．Used for motor overtemperature protection： Unit depends on setting of M2TempSel（49．35）： $0=$ NotUsed $1=1$ to 6 PT100 ${ }^{\circ} \mathrm{C}$ $2=$ PTC $\quad \Omega$ Int．Scaling： $1=1^{\circ} \mathrm{C} / 1 \Omega / 1$ Type：I Volatile： \mathbf{Y}	＇			$\begin{aligned} & i \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
1.24	BridgeTemp（actual bridge temperature） Actual bridge temperature in degree centigrade． Int．Scaling： $1==1^{\circ} \mathrm{C} \quad$ Type：I Volatile： Y	＇			O	0
1.25		＇				ш
1.26	Unused					
1.27	Unused					
1.28	Unused					
1.29	Mot1FIdCurRel（motor 1 relative actual field current） Motor 1 relative field current in percent of M1NomFldCur（99．11）． Int．Scaling： $100=1 \%$ Type： SI Volatile： Y				\bigcirc	$\bigcirc 0$
1.30	Mot1FIdCur（motor 1 actual field current） Motor 1 field current： －Filtered with 500 ms Int．Scaling： $10=1$ A Type：SI Volatile：Y	＇				40
1.31	Mot2FIdCurRel（motor 2 relative actual field current） Motor 2 relative field current in percent of M2NomFldCur（49．05）． Int．Scaling： $100==1 \%$ Type： SI Volatile： \mathbf{Y}	＇			\bigcirc	이
1.32	Mot2FIdCur（motor 2 actual field current） Motor 2 field current： Filtered with 500 ms Int．Scaling： $10==1$ A Type：SI Volatile：Y	＇				『 \quad
1.33	ArmCurActSI（12－pulse slave actual armature current） Actual armature current of 12－pulse slave： －Valid in 12－pulse master only －Valid for 12－pulse parallel only Int．Scaling： $1==1$ A Type：SI Volatile：Y					« \quad
1.34	Unused					ш
1.35	ArmCurAll（12－pulse parallel master and slave actual armature current） Sum of actual armature current for 12－pulse master and 12－pulse slave： －Filtered with 10 ms －Valid in 12－pulse master only －Valid for 12－pulse parallel only Int．Scaling： $1==1$ A Type：SI Volatile：Y					\varangle 山
1.36	Unused					

Index	Signal / Parameter name		$\stackrel{\times}{6}$	0
1.37	DC VoltSerAll (12-pulse serial master and slave actual DC voltage) Sum of actual armature voltage for 12-pulse master and 12-pulse slave: - Valid in 12-pulse master only - Valid for 12-pulse serial/sequential only Int. Scaling: $1==1 \mathrm{~V}$ Type: SI Volatile: Y			$>w$
1.38	MainsFreqAct (internal mains frequency) Calculated and internally controlled mains frequency. Output of PLL controller. See also: - DevLimPLL (97.13) - KpPLL (97.14) - TfPLL (97.15) Int. Scaling: $100==1 \mathrm{~Hz}$ Type: I Volatile: Y			
1.39	AhCounter (ampere-hour counter) Ampere hour counter. Int. Scaling: $100=\mathbf{1 k A h}$ Type: I Volatile: Y			
1.40	Unused			
1.41	ProcSpeed (process speed) Calculated process/line speed: - Scaled with WinderScale (50.17) Int. Scaling: $10=1 \mathrm{~m} / \mathrm{min}$ Type: SI Volatile: Y			
1.42	SpeedActEnc2 (speed actual encoder 2) Actual speed measured with pulse encoder 2. Int. Scaling: (2.29) Type: SI Volatile: \mathbf{Y}			00
	Speed controller signals			
2.01	SpeedRef2 (speed reference 2) Speed reference after limiter: - M1SpeedMin (20.01) - M1SpeedMax (20.02) Int. Scaling: (2.29) Type: si Volatile: \mathbf{Y}			80
2.02	SpeedRef3 (speed reference 3) Speed reference after speed ramp and jog input. Int. Scaling: (2.29) Type: SI Volatile: Y			00
2.03	SpeedErrNeg ($\Delta \mathrm{n}$) $\Delta n=$ speed actual - speed reference. Int. Scaling: (2.29) Type: SI Volatile: Y			80
2.04	TorqPropRef (proportional part of torque reference) P-part of the speed controller's output in percent of MotNomTorque (4.23). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y			$\bigcirc{ }^{\circ} \mathrm{m}$
2.05	TorqIntegRef (integral part of torque reference) I-part of the speed controller's output in percent of MotNomTorque (4.23). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y			
2.06	TorqDerRef (derivation part of torque reference) D-part of the speed controller's output in percent of MotNomTorque (4.23). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y			\bigcirc

Signal and parameter list

Index	Signal / Parameter name	浣	$\stackrel{\times}{6}$	S	
2.07	TorqAccCompRef (torque reference for acceleration compensation) Acceleration compensation output in percent of MotNomTorque (4.23). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y		-	- ${ }^{\circ}$	0
2.08	TorqRef1 (torque reference 1) Relative torque reference value in percent of MotNomTorque (4.23) after limiter for the external torque reference: - TorqMaxTref (20.09) - TorqMinTref (20.10) Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y	'	' '	\bigcirc	0
2.09	TorqRef2 (torque reference 2) Output value of the speed controller in percent of MotNomTorque (4.23) after limiter: - TorqMaxSPC (20.07) - TorqMinSPC (20.08) Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y	'	'	\bigcirc	0
2.10	TorqRef3 (torque reference 3) Relative torque reference value in percent of MotNomTorque (4.23) after torque selector: - TorqSel (26.01) Int. Scaling: $100=1 \%$ Type: SI Volatile: Y	'	'	\bigcirc	0
2.11	TorqRef4 (torque reference 4) = TorqRef3 (2.10) + LoadComp (26.02) in percent of MotNomTorque (4.23). Int. Scaling: $100==1 \%$ Type: SI Volatile: Y	'	'	\bigcirc	0
2.12	Unused				
2.13	TorqRefUsed (used torque reference) Relative final torque reference value in percent of MotNomTorque (4.23) after torque limiter: - TorqMax (20.05) - TorqMin (20.06) Int. Scaling: $100=1 \%$ Type: SI Volatile: Y	'	'	\bigcirc	0
2.14	TorqCorr (torque correction) Relative additional torque reference in percent of MotNomTorque (4.23): - TorqCorrect (26.15) Int. Scaling: $100=1 \%$ Type: SI Volatile: Y	'		\bigcirc	0
2.16	dv_dt (dv/dt) Acceleration/deceleration (speed reference change) at the output of the speed reference ramp. Int. Scaling: (2.29)/s Type: SI Volatile: Y		'		
2.17	SpeedRefUsed (used speed reference) Used speed reference selected with: - Ref1Mux (11.02) and Ref1Sel (11.03) or - Ref2Mux (11.12) and Ref2Sel (11.06) Int. Scaling: (2.29) Type: SI Volatile: \mathbf{Y}		'		
2.18	$\begin{aligned} & \text { SpeedRef4 (speed reference 4) } \\ & \begin{array}{\|cccl} \hline & \\ \text { SpeedRef3 (2.02) }+ \text { SpeedCorr } & \text { (23.04). } \\ \text { Int. Scaling: } & \text { (2.29) } & \text { Type: } & \text { SI } \end{array} \text { Volatile: Y } \\ & \hline \end{aligned}$				
2.19	TorqMaxAll (torque maximum all) Relative calculated positive torque limit in percent of MotNomTorque (4.23). Calculated from the smallest maximum torque limit, field weakening and armature current limits: - TorqUsedMax (2.22) - FluxRefFIdWeak (3.24) and - M1CurLimBrdg1 (20.12) Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y				

Index	Signal / Parameter name					
2.20	TorqMinAll (torque minimum all) Relative calculated negative torque limit in percent of MotNomTorque (4.23). Calculated from the largest minimum torque limit, field weakening and armature current limits: - TorqUsedMax (2.22) - FluxRefFldWeak (3.24) and - M1CurLimBrdg2 (20.13) Int. Scaling: $100=\mathbf{= 1 \%}$ Type: SI Volatile: Y				- 0	0
2.21	Unused					
2.22	TorqUsedMax (used torque maximum) Relative positive torque limit in percent of MotNomTorque (4.23). Selected with: - TorqUsedMaxSel (20.18) Connected to torque limiter after TorqRef4 (2.11). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y				\bigcirc	0
2.23	TorqUsedMin (used torque minimum) Relative negative torque limit in percent of MotNomTorque (4.23). Selected with: - TorqUsedMinSel (20.19) Connected to torque limiter after TorqRef4 (2.11). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y				- ${ }^{\circ}$	0
2.24	TorqRefExt (external torque reference) Relative external torque reference value in percent of MotNomTorque (4.23) after torque reference A selector: - TorqRefA (25.01) and - TorqRefA Sel (25.10) Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: \mathbf{Y}					0
2.25	Unused					
2.26	TorqLimAct (actual used torque limit) Shows parameter number of the actual active torque limit: $0=0 \quad$ no limitation active $1=\mathbf{2 . 1 9}$ TorqMaxAII (2.19) is active, includes current limits and field weakening $2=\mathbf{2 . 2 0}$ TorqMinAll (2.20) is active, includes current limits and field weakening $3=\mathbf{2 . 2 2}$ TorqUsedMax (2.22) selected torque limit is active $4=\mathbf{2 . 2 3}$ TorqUsedMin (2.23) selected torque limit is active $5=\mathbf{2 0 . 0 7}$ TorqMaxSPC (20.07) speed controller limit is active $6=\mathbf{2 0 . 0 8}$ TorqMinSPC (20.08) speed controller limit is active $7=\mathbf{2 0 . 0 9}$ TorqMaxTref (20.09) external reference limit is active $8=\mathbf{2 0 . 1 0}$ TorqMinTref (20.10) external reference limit is active $9=\mathbf{2 0 . 2 2}$ TorqGenMax (20.22) regenerating limit is active $10=$ 2.08 TorqRef1 (2.08) limits TorqRef2 (2.09), see also TorqSel (26.01) Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: \mathbf{Y}					0
2.27	Unused					
2.28	Unused					

Signal and parameter list

Index	Signal / Parameter name		$\stackrel{\substack{6 \\ ¢}}{\square}$		0
3.08	PosCountHigh (position counter high value encoder 1) Position counter high word pulse encoder 1: - PosCountInitHi (50.09) - Unit depends on setting of PosCountMode (50.07): $0=$ PulseEdges $1==65536$ pulse edges $1=$ Scaled $\quad 1==1$ revolution 2 = Rollover always 0 Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: Y		' '		ш
3.09	PID Out (output PID controller) PID controller output value in percent of the used PID controller input (see group 40). Int. Scaling: $100==1$ \% Type: SI Volatile: \mathbf{Y}	'			ш
3.10	Unused				
3.11	CurRef (current reference) Relative current reference in percent of M1NomCur (99.03) after adaption to field weakening. Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y	'	'	\bigcirc	0
3.12	CurRefUsed (used current reference) Relative current reference in percent of M1NomCur (99.03) after current limitation: - M1CurLimBrdg1 (20.12) - M1CurLimBrdg2 (20.13) - MaxCurLimSpeed (43.17) to (43.22) Int. Scaling: $100=1 \%$ Type: SI Volatile: Y	'	'	\bigcirc	0
3.13	ArmAlpha (armature α, firing angle) Firing angle (α). Int. Scaling: $1=1$ Type: I Volatile: Y			。	0
3.14	Unused				
3.15	ReactCur (reactive current) Relative actual reactive motor current in percent of M1NomCur (99.03). Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y		'	-	ш
3.16	Unused				
3.17	ArmAlphaSI (12-pulse slave armature α, firing angle) Firing angle (α) of 12-pulse slave converter: - Valid in 12-pulse master only Int. Scaling: $1==1^{\circ} \quad$ Type: \quad Volatile: Y			' ${ }^{\circ}$	ш
3.18	Unused				
3.19	Unused				
3.20	PLL In (phase locked loop input) Actual measured mains voltage cycle (period) time. Is used as input of the PLL controller. The value should be: $\begin{aligned} & -\quad 1 / 50 \mathrm{~Hz}=20 \mathrm{~ms}=20,000 \\ & -\quad 1 / 60 \mathrm{~Hz}=16.7 \mathrm{~ms}=16,667 \end{aligned}$ See also: - DevLimPLL (97.13) - KpPLL (97.14) - TfPLL (97.15) Int. Scaling: $1==1 \quad$ Type: \quad I Volatile: \mathbf{Y}				ш
3.21	Unused				

Index	Signal / Parameter name			$\stackrel{0}{0}$	5	
3.22	CurCtrilntegOut (integral part of current controller output) I-part of the current controller's output in percent of M1NomCur (99.03). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y					ш
3.23	CurActPeak (relative actual armature peak current) Relative actual armature peak current in percent of M1NomCur (99.03). Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{Y}					0
3.24	FluxRefFIdWeak (flux reference for field weakening) Relative flux reference for speeds above the field weakening point (base speed) in percent of nominal flux. For proper scaling, setting of CtrIModeSel (43.05) = PowerSupply1 divides the value of FluxRefFIdWeak (3.24) by 2. Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{Y}					ш
3.25	VoltRef1 (EMF voltage reference 1) Selected relative EMF voltage reference in percent of M1NomVolt (99.02): - EMF RefSel (46.03) Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{Y}					0
3.26	VoltRef2 (EMF voltage reference 2) Relative EMF voltage reference in percent of M1NomVolt (99.02) after ramp and limitation (input to EMF controller): - VoltRefSlope (46.06) - VoltPosLim (46.07) - VoltNegLim (46.08) Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{Y}					ㅇ
3.27	FluxRefEMF (flux reference after EMF controller) Relative EMF flux reference in percent of nominal flux after EMF controller. Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{Y}					ш
3.28	FluxRefSum (sum of flux reference) FluxRefSum (3.28) = FluxRefEMF (3.27) + FluxRefFldWeak (3.24) in percent of nominal flux. Int. Scaling: $100=1 \%$ Type: SI Volatile: Y					w
3.29	Unused					
3.30	FIdCurRefM1 (motor 1 field current reference) Relative motor 1 field current reference in percent of M1NomFldCur (99.11). Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{Y}					ш
3.31	FIdCurRefM2 (motor 2 field current reference) Relative motor 2 field current reference in percent of M2NomFldCur (49.05). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y					ш

Index	Signal / Parameter name				
	Information				
4.01	FirmwareVer (firmware version) Name of the loaded firmware version. The format is: yyy or -yyy with: yyy = consecutively numbered version and -yyy = single phase firmware for demo units. Int. Scaling: Type: C Volatile: \mathbf{Y}				0
4.02	FirmwareType (firmware type) Type of the loaded firmware version. The format is:				
4.03	```ApplicName (name of application program) Name of the running application program: \(0=\) NoMemCard no Memory Card plugged in \(1=\) Inactive \(\quad\) A Memory Card is plugged in, but the application program is inactive. Use ParAppISave (16.06) = EableAppl to activate the application program. \(2=\) NoApplic the Memory Card is empty (no application program available) 3 = <application name> name of the running application program Int. Scaling: Type: C Volatile: \(\mathbf{Y}\)```	'			0
4.04	ConvNomVolt (converter nominal AC voltage measurement circuit) Adjustment of AC voltage measuring channels (SDCS-PIN-4 or SDCS-PIN-51). Read from TypeCode (97.01) or set with S ConvScaleVolt (97.03): - \quad Read from TypeCode (97.01) if S ConvScaleVolt (97.03) $=0$ - Read from S ConvScaleVolt (97.03) if S ConvScaleVolt (97.03) $\neq 0$ Int. Scaling: $1==1$ V Type: I Volatile: Y	'		$>$	O
4.05	ConvNomCur (converter nominal DC current measurement circuit) Adjustment of DC current measuring channels (SDCS-PIN-4 or SDCS-PIN-51). Read from TypeCode (97.01) or set with S ConvScaleCur (97.02): - \quad Read from TypeCode (97.01) if S ConvScaleCur (97.02) $=0$ - Read from S ConvScaleCur (97.02) if S ConvScaleCur (97.02) $\neq 0$ Int. Scaling: $1=1$ A Type: I Volatile: Y	'			

Index	Signal / Parameter name	-		=0
4.06	Mot1FexType (motor 1 type of field exciter) Motor 1 field exciter type. Read from M1UsedFexType (99.12): $0=$ NotUsed no or third party field exciter connected 1 = OnBoard integrated 1-Q field exciter (for sizes D1 - D4 only), default $2=$ FEX-425-Int from 0.3 A to 25 A (terminals X100.1 and X100.3) 3 = DCF803-0035 external 1-Q 35 A field exciter used for field currents from 0.3 A to 35 A (terminals X100.1 and X100.3) 4 = DCF803-0050 external 1-Q 50 A field exciter (DCF803-0050 or DCF503B-0050) 5 = DCF804-0050 external 4-Q 50 A field exciter (DCF804-0050 or DCF504B-0050) 6 = DCF803-0060 external 1-Q 60 A field exciter; not implemented yet 7 = DCF804-0060 external 4-Q 60 A field exciter; not implemented yet 8 = DCS800-S01 external 2-Q 3-phase field exciter 9 = DCS800-S02 external 4-Q 3-phase field exciter $10=$ DCF803-0016 external 1-Q 16 A field exciter used for field currents from 0.3 A to 16 A (terminals X100.1 and X100.3) $11=$ reserved to 14 = reserved 15 = ExFex AITAC third party field exciter, acknowledge via AITAC 16 = ExFex Al1 third party field exciter, acknowledge via Al1 17 = ExFex A12 third party field exciter, acknowledge via AI2 $18=$ ExFex Al3 third party field exciter, acknowledge via Al3 19 = ExFex AI4 third party field exciter, acknowledge via AI4 20 = FEX-4-Term5A internal 2-Q 25 A field exciter (FEX-425-Int), external 2-Q 16 A field exciter (DCF803-0016) or external 2-Q 35 A field exciter (DCF8030035) used for field currents from 0.3 A to 5 A (terminals X100.2 and X100.3) 21 = VariFexType see DCS800 MultiFex motor control (3ADW000309) 22 = Exc-Appl-1 nt. Scaling: $1=1 \quad$ Type: \quad C Volatile: \mathbf{Y}			0

Index	Signal / Parameter name	约	0		
4.07	Mot2FexType (motor 2 type of field exciter) Motor 2 field exciter type. Read from M2UsedFexType (49.07): $0=$ NotUsed 1 = OnBoard 2 = FEX-425-Int 3 = DCF803-0035 4 = DCF803-0050 5 = DCF804-0050 6 = DCF803-0060 7 = DCF804-0060 8 = DCS800-S01 9 = DCS800-S02 10 = DCF803-0016 11 = reserved to 14 = reserved 15 = ExFex AITAC $16=$ ExFex Al1 17 = ExFex Al2 18 = ExFex Al3 19 = ExFex Al4 20 = FEX-4-Term5A $21=$ reserved 22 = Exc-Appl-1 see DCS800 Series wound motor control (3ADW000311) Int. Scaling: $1=1 \quad$ Type: \quad C Volatile: Y				ш
4.08	Mot1FexSwVer (motor 1 firmware version of field exciter) Motor 1 field exciter firmware version. The format is: yyy with: $\mathbf{y y y}=$ consecutively numbered version. This signal is set during initialization of the drive. New values are shown after the next power-up. Int. Scaling: Type: C Volatile: \mathbf{Y}				0
4.09	Mot2FexSwVer (motor 2 firmware version of field exciter) Motor 2 field exciter firmware version. The format is: yyy with: $\mathbf{y y} \mathbf{y}=$ consecutively numbered version. This signal is set during initialization of the drive. New values are shown after the next power-up. Int. Scaling: Type: C Volatile: Y				ш
4.10	Unused				
4.11	Com8SwVersion (firmware version of SDCS-COM-8) SDCS-COM-8 firmware version. The format is: yyy with: yyy = consecutively numbered version. This signal is set during initialization of the drive. New values are shown after the next power-up. Int. Scaling: Type: C Volatile: \mathbf{Y}				ш

Index	Signal / Parameter name		水	+		-
4.12	ApplicVer (application version) Version of the loaded application program. The format is: yyy with: yyy = consecutively numbered version. Int. Scaling: - Type: C Volatile: Y					0
4.13	DriveLibVer (drive library version) Version of the loaded function block library. The format is: yyy with: $\mathbf{y y y}=$ consecutively numbered version. Int. Scaling: - Type: C Volatile: Y					0
4.14	ConvType (converter type) Recognized converter type. Read from TypeCode (97.01): $0=$ None when TypeCode (97.01) = None = D1 D1 converter $2=$ D2 D2 converter 3 = D3 D3 converter 4 = D4 D4 converter $5=$ D5 D5 converter $6=$ D6 D6 converter $7=$ D7 D7 converter $8=$ ManualSet set by user, if S ConvScaleCur (97.02) and / or S ConvScaleVolt (97.03) have been changed for e.g. rebuild kits Int. Scaling: $\mathbf{1 = = 1}$ Type: \quad Colatile: \mathbf{Y}					0
4.15	QuadrantType (quadrant type of converter; 1 or 2 bridges) Recognized converter quadrant type. Read from TypeCode (97.01) or set with S BlockBrdg2 (97.07): - Read from TypeCode (97.01) if S BlockBrdg2 (97.07) = 0 - Read from S BlockBrdg2 (97.07) if S BlockBrdg2 (97.07) $\neq 0$ $0=$ BlockBridge2 bridge 2 blocked (== 2-Q operation) $1=$ RelBridge2 bridge 2 released ($==4-Q$ operation), default Int. Scaling: $1=1 \quad$ Type: \quad C Volatile: \mathbf{Y}					0
4.16	ConvOvrCur (converter overcurrent [DC] level) Converter current tripping level. This signal is set during initialization of the drive. New values are shown after the next power-up. Int. Scaling: 1==1A Type: I Volatile: Y					0
4.17	MaxBridgeTemp (maximum bridge temperature) Maximum bridge temperature in degree centigrade. Read from TypeCode (97.01) or set with S MaxBrdgTemp (97.04): - \quad Read from TypeCode (97.01) if S MaxBrdgTemp (97.04) $=0$ - Read from S MaxBrdgTemp (97.04) if S MaxBrdgTemp (97.04) $=0$ The drive trips with F504 ConvOverTemp [FaultWord1 (9.01) bit 3], when MaxBridgeTemp (4.17) is reached. A104 ConvOverTemp [AlarmWord1 (9.06) bit 3] is set, when the actual converter temperature is approximately $5^{\circ} \mathrm{C}$ below MaxBridgeTemp (4.17). Int. Scaling: $1==1^{\circ} \mathrm{C} \quad$ Type: \quad Volatile: Y				0	0

Index	Signal / Parameter name				0
4.20					
4.21	CPU Load (load of processor) The calculating power of the processor is divided into two parts: - CPU Load (4.21) shows the load of the firmware and - App/Load (4.22) shows the load of the application. Neither should reach 100%. Int. Scaling: $10=\mathbf{1 \%}$ Type: I Volatile: Y				
4.22	AppILoad (load of application) The calculating power of the processor is divided into two parts: - CPU Load (4.21) shows the load of the firmware and - AppiLoad (4.22) shows the load of the application. Neither should reach 100%. Int. Scaling: $10==1 \%$ Type: \quad Volatile: Y				

| Index | \quad Signal / Parameter name |
| :--- | :--- | :--- | :--- | :--- |

Index	Signal / Parameter name		$\stackrel{\times}{0}$	¢
10 0 0 0 0 0	Analog $/ / 0$			
5.01	AITacho Val (analog input for tacho) Measured actual voltage at analog tacho input. The integer scaling may differ, depending on the connected hardware and jumper setting. Note: A value of 11 V equals 1.25 * M1OvrSpeed (30.16) Int. Scaling: $1000=1$ V Type: SI Volatile: Y			>0
5.02	Unused			
5.03	Al1 Val (analog input 1 value) Measured actual voltage at analog input 1. The integer scaling may differ, depending on the connected hardware and jumper settings. Int. Scaling: $1000=1$ V Type: SI Volatile: Y			>0
5.04	Al2 Val (analog input 2 value) Measured actual voltage at analog input 2. The integer scaling may differ, depending on the connected hardware and jumper settings. Int. Scaling: $1000=1$ V Type: SI Volatile: Y			>0
5.05	Al3 Val (analog input 3 value) Measured actual voltage at analog input 3 . The integer scaling may differ, depending on the connected hardware and jumper settings. Int. Scaling: $1000=1$ V Type: SI Volatile: Y			$>$ w
5.06	Al4 Val (analog input 4 value) Measured actual voltage at analog input 4. The integer scaling may differ, depending on the connected hardware and jumper settings. Int. Scaling: $1000=1$ V Type: SI Volatile: Y			$>$ w
5.07	Al5 Val (analog input 5 value) Measured actual voltage at analog input 5 . The integer scaling may differ, depending on the connected hardware and DIP-switch settings. Available only with RAIO extension module see AIO ExtModule (98.06). Int. Scaling: $1000=1$ V Type: SI Volatile: \mathbf{Y}			$>\omega$
5.08	Al6 Val (analog input 6 value) Measured actual voltage at analog input 6 . The integer scaling may differ, depending on the connected hardware and DIP-switch settings. Available only with RAIO extension module see AIO ExtModule (98.06). Int. Scaling: $1000=1$ V Type: SI Volatile: \mathbf{Y}			$>\omega$
5.09	Unused			
5.10	Unused			
5.11	AO1 Val (analog output 1 value) Measured actual voltage at analog output 1. Int. Scaling: $1000==1$ V Type:			>0
5.12	AO2 Val (analog output 2 value) Measured actual voltage at analog output 2. Int. Scaling: $1000==1$ V Type: SI Volatile: Y		'	>0

Index	Signal / Parameter name		0
$\begin{aligned} & 0 \\ & \text { O} \\ & \text { O} \\ & \text { OU } \end{aligned}$	Drive logic signals		
6.01	SystemTime (converter system time) Shows the time of the converter in minutes. The system time can be either set by means of SetSystemTime (16.11) or via the DCS800 Control Panel. Int. Scaling: $1=1 \mathrm{~min}$ Type: \quad I Volatile: Y		80
6.02	Unused		

Index	Signal / Parameter name		¢ 0
6.04	CurCtriStat2 ($2^{\text {nd }}$ current controller status) $2^{\text {nd }}$ current controller status word. The current controller will be blocked, CurRefUsed (3.12) is forced to zero and ArmAlpha (3.13) is forced to the value of ArmAlphaMax (20.14) if any of the bits is set $(0==\mathrm{OK})$: Note: A set bit does not necessarily lead to a fault message it depends also on the status of the drive.		0

Index	Signal / Parameter name	的			
6.10	CtrIStatSla (12-pulse slave control status) 12-pulse slave control status:				ш
6.11	Unused				
6.12	Mot1FexStatus (motor 1 field exciter status) Motor 1 field exciter status: $0=$ NotUsed 1 = OK 2 = ComFault 3 = FexFaulty 4 = FexNotReady 5 = FexUnderCur 6 = FexOverCur 7 = WrongSetting Int. Scaling: $1=1$ no field exciter connected field exciter and communication OK F516 M1FexCom [FaultWord1 (9.01) bit 15], communication faulty F529 M1FexNotOK [FaultWord2 (9.02) bit 12], field exciter selftest faulty F537 M1FexRdyLost [FaultWord3 (9.03) bit 4], field exciter not ready F541 M1FexLowCur [FaultWord3 (9.03) bit 8], field exciter undercurrent F515 M1FexOverCur [FaultWord1 (9.01) bit 14], field exciter overcurrent check setting of M1UsedFexType (99.12) and M2UsedFexType (49.07) Type: C Volatile: Y				0

Signal and parameter list

Index	Signal / Parameter name	-	4	5
6.13	Mot2FexStatus (motor 2 field exciter status) Motor 1 field exciter status: 0 = NotUsed 1 = OK 2 = ComFault 3 = FexFaulty 4 = FexNotReady 5 = FexUnderCur 6 = FexOverCur 7 = WrongSetting Int. Scaling: $1==1$ no field exciter connected field exciter and communication OK F519 M2FexCom [FaultWord2 (9.02) bit 2], communication faulty F530 M2FexNotOK [FaultWord2 (9.02) bit 13], field exciter selftest faulty F538 M2FexRdyLost [FaultWord3 (9.03) bit 5], field exciter not ready F542 M2FexLowCur [FaultWord3 (9.03) bit 9], field exciter undercurrent F518 M2FexOverCur [FaultWord2 (9.02) bit 1], field exciter overcurrent check setting of M1UsedFexType (99.12) and M2UsedFexType (49.07) Type: C Volatile: \mathbf{Y}			山

Index	Signal / Parameter name		
7.03	AuxCtrIWord2 (auxiliary control word 2, ACW2) The auxiliary control word 2 can be written to by Adaptive Program, application program or overriding control: Note1: Changes of DriveDirection become active only in drive state RdyRun. Changing the speed direction of a running drive (RdyRef state) by means of DriveDirection is not possible.		0

Index	Signal / Parameter name	-	¢	
	Note2: If ForceBrake is set the brake remains closed (applied). If the Run [MainCtrIWord (7.01) bit 3] command is given to a drive in state RdyOn or RdyRef [MainStatWord (8.01) bit 0 and 1], the brake logic will be started up to the point of the brake open command. A drive in state Running [MainStatWord (8.01) bit 2] will be stopped by ramp, the brake will be closed (applied), but the drive will remain in state Running. Int. Scaling: 1== 1 Type: Volatile: Y			
7.04	UsedMCW (used main control word, UMCW) Internal used (selected) main control word is read only and contains all drive depending commands. The selection is depending on the drives local/remote control setting, CommandSel (10.01) and HandAuto (10.07). The bit functionality of bit 0 to bit 10 is the same as the in the MainCtrIWord (7.01). Not all functions are controllable from local control or local I/O mode. Attention: The UsedMCW (7.04) is write protected, thus it is not possible to write on the used main control word by means of Master-follower, Adaptive Program, application program or overriding control. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: Y			0

Index	Signal / Parameter name	-	=0
8.03			ш
8.04	Unused		

Signal and parameter list

Signal and parameter list

Index	Signal / Parameter name	.	水	\#	4
8.09	MotSel (selected motor) Select motor and field exciter: $0=$ Motor $1 \quad$ motor 1 and field exciter 1 are selected 1 = Motor2 motor 2 and field exciter 2 are selected See ParChange (10.10) Int. Scaling: $1=1 \quad$ Type: \quad C Volatile: Y	'			ш
8.10	MacroSel (selected macro) Currently selected macro: 0 = None 1 = Factory 2 = User1 3 = User2 4 = Standard 5 = Man/Const 6 = Hand/Auto 7 = Hand/MotPot 8 = reserved 9 = MotPot 10 = TorqCtrl 11 = TorqLimit $12=$ DemoStandard default factory (default) parameter set User1 parameter set User2 parameter set standard parameter set manual / constant speed hand (manual) / automatic hand (manual) / motor potentiometer reserved motor potentiometer torque control torque limit demo standard 3 wire standard Type: C Volatile: \mathbf{Y} 13 = 2WreDCcontUS 2 wire with US style DC-breaker $14=3 W r e D C c o n t U S ~ 3$ wire with US style DC-breaker $15=3$ WreStandard See AppIMacro (99.08) Int. Scaling: $1==1$	'			0
8.11	RFE StatWord (status word resonance frequency eliminator) Resonance Frequency Eliminator control word				ш

Signal and parameter list

Index	Signal / Parameter name		=
9.11	```Diagnosis (diagnosis) Attention: Diagnosis (9.11) is set to zero by means of Reset. Displays diagnostics messages: \(0=\) no message Firmware: \(1=\quad\) default setting of parameters wrong \(2=\quad\) parameter flash image too small for all parameters \(3=\quad\) reserved \(4=\quad\) illegal write attempt on a signal or write-protected parameter, e.g. writing on UsedMCW (7.04) with master-follower. reserved wrong type code an un-initialized interrupted has occurred reserved wrong parameter value Autotuning: \(11=\quad\) autotuning aborted by fault or removing the Run command [UsedMCW (7.04) bit 3] \(12=\quad\) autotuning timeout, Run command [UsedMCW (7.04) bit 3] is not set in time \(13=\quad\) motor is still turning, no speed zero indication \(14=\) field current not zero \(15=\quad\) armature current not zero \(16=\quad\) armature voltage measurement circuit open (e.g. not connected) or interrupted, check also current and torque limits armature circuit and/or armature voltage measurement circuit wrongly connected no load connected to armature circuit invalid nominal armature current setting; armature current M1MotNomCur (99.03) is set to zero field current does not decrease when the excitation is switched off field current actual doesn't reach field current reference; no detection of field resistance; field circuit open (e.g. not connected) respectively interrupted no writing of control parameters of speed controller tacho adjustment faulty or not OK or the tacho voltage is too high during autotuning tuning of speed controller, speed feedback assistant or tacho fine tuning not possible due to speed limitation - see e.g. M1SpeedMin (20.01) and M1SpeedMax (20.02) Tuning of speed controller, speed feedback assistant or tacho fine tuning not possible due to voltage limitation. During the tuning of the speed controller, the speed feedback assistant or the tacho fine tuning base speed [M1BaseSpeed (99.04)] might be reached. Thus full armature voltage [M1NomVolt (99.02)] is necessary. In case the mains voltage is too low to provide for the needed armature voltage the autotuning procedure is canceled. Check and adapt if needed: Mains voltage M1NomVolt (99.02) M1BaseSpeed (99.04) field weakening not allowed, see M1SpeedFbSel (50.03) and FldCtrIMode (44.01) discontinuous current limit could not be determined due to low current limitation in M1CurLimBrdg1 (20.12) or M1CurLimBrdg2 (20.13) filed current autotuning wrongly started in armature converter, please use the field exciter no field exciter selected, see M1UsedFexType (99.12) reserved DCS800 Control Panel up- or download not started DCS800 Control Panel data not up- or downloaded in time reserved DCS800 Control Panel up -or download checksum faulty DCS800 Control Panel up- or download software faulty DCS800 Control Panel up- or download verification failed reserved The flash is written to cyclic by Adaptive Program (e.g. block ParWrite) or application program. Cyclic saving of values in the flash will damage it! Do not write cyclic on the flash! reserved```	$\left\|\begin{array}{c\|c} 10 \\ 0 \\ \\ 0 \\ 0 \end{array}\right\|$	- 0

Index	Signal / Parameter name	-	-	=0
	Hardware: $50=$ parameter flash faulty (erase) $51=\quad$ parameter flash faulty (program) $52=\quad$ check connector X12 on SDCS-CON-4 and connector X12 and X22 on SDCS-PIN-4/51 53-69 reserved A132 ParConflict (alarm parameter setting conflict): $70=\quad$ no field reversal possible due to ForceFldDir (45.07) = ExtReverse $71=$ flux linearization parameters not consistent $72=\quad$ reserved $73=\quad$ armature data not consistent. Check if: - M1NomCur (99.03) is set to zero, - M1NomVolt (99.02) and M1NomCur (99.03) are fitting with the drive. In case they are much smaller than the drive the internal calculation of M1ArmL (43.09) and M1ArmR (43.10) can cause an internal overflow. Set M1ArmL (43.09) and M1ArmR (43.10) to zero. For M1ArmL (43.09) following limitation is valid: $\frac{(43.09) * 4096 *(99.03)}{1000 *(99.02)} \leq 32767$ For M1ArmR (43.10) following limitation is valid: $\frac{(43.10) * 4096 *(99.03)}{1000 *(99.02)} \leq 32767$			

Index	Signal / Parameter name	E	$\stackrel{4}{8}$	5
	$77=\quad$ Encoder 1 parameters for motor 1 not consistent. Check: SpeedScaleAct (2.29) M1EncMeasMode (50.02) M1EncPulseNo (50.04) At scaling speed - see SpeedScaleAct (2.29) - the pulse frequency must be greater than 600 Hz according to following formula: $\begin{aligned} & f \geq 600 \mathrm{~Hz}=\frac{\text { ppr*evaluation* speed scaling }}{60 \mathrm{~s}} \\ & f \geq 600 \mathrm{~Hz}=\frac{(50.04) *(50.02) *(2.29)}{60 \mathrm{~s}} \end{aligned}$ E.g. the speed scaling must be $\geq 9 \mathrm{rpm}$ for a pulse encoder with 1024 pulses and $A+-/ B+-$ evaluation. M2EncPulseNo (49.25) At scaling speed - see SpeedScaleAct (2.29) - the pulse frequency must be greater than 600 Hz according to following formula: $\begin{aligned} & f \geq 600 \mathrm{~Hz}=\frac{\text { ppr*evaluation*speed scaling }}{60 \mathrm{~s}} \\ & f \geq 600 \mathrm{~Hz}=\frac{(49.25) *(49.23) *(2.29)}{60 \mathrm{~s}} \end{aligned}$ E.g. the speed scaling must be $\geq 9 \mathrm{rpm}$ for a pulse encoder with 1024 pulses and $A+-/ B+-$ evaluation. Encoder 2 parameters not consistent. Check: Enc2PulseNo (50.19) At scaling speed - see SpeedScaleAct (2.29) - the pulse frequency must be greater than 600 Hz according to following formula: $\begin{aligned} & f \geq 600 \mathrm{~Hz}=\frac{\text { ppr }^{*} \text { evaluation*speed scaling }}{60 s} \\ & f \geq 600 \mathrm{~Hz}=\frac{(50.19) *(50.18) *(2.29)}{60 s} \end{aligned}$ E.g. the speed scaling must be $\geq 9 \mathrm{rpm}$ for a pulse encoder with 1024 pulses and $A+-/ B+-$ evaluation.			

Index	Signal / Parameter name	-	

Index	Signal / Parameter name			
	Thyristor diagnosis: $30000=$ possibly trigger pulse channels are mixed up $31 \mathrm{xdd}=\mathrm{V} 1$ or V11 not conducting $32 x d d=$ V2 or V12 not conducting $33 x d d=V 3$ or V13 not conducting $34 x d d=V 4$ or V14 not conducting $35 x \mathrm{xd}=\mathrm{V} 5$ or V15 not conducting $36 x d d=$ V6 or V16 not conducting $\mathrm{x}=0$: only a single thyristor in bridge 1 is not conducting (e.g. 320dd means V2 respectively V12 is not conducting) $x=1 \ldots 6$: additionally a second thyristor in bridge 1 is no conducting (e.g. 325dd means V2 and V5 respectively V12 and V15 are not conducting) $\mathrm{dd}=$ don't care, the numbers of this digits do not carry any information about the thyristors of the first bridge. Example: - 36030: means V16 in bridge 1 and V23 in bridge 2 are not conducting 3dd1y = V21 not conducting 3dd2y $=$ V22 not conducting $3 \mathrm{dd} 3 \mathrm{y}=\mathrm{V} 23$ not conducting 3dd4y = V24 not conducting 3dd5y $=\mathrm{V} 25$ not conducting 3dd6y $=$ V26 not conducting $y=0$: only a single thyristor in bridge 2 is not conducting (e.g. 3dd20 means V22 is not conducting) $\mathrm{y}=1 \ldots 6$: additionally a second thyristor in bridge 2 is no conducting (e.g. 3dd25 means V22 and V25 are not conducting) dd = don't care, the numbers of this digits do not carry any information about the thyristors of the second bridge. Example: 36030: means V16 in bridge 1 and V23 in bridge 2 are not conducting A124 SpeedScale (alarm speed scaling): $40000 \ldots 49999=$ the parameter with the speed scaling conflict can be identified by means of the last 4 digits F549 ParComp (fault parameter compatibility conflict): 50000 ... 59999= the parameter with the compatibility conflict can be identified by means of the last 4 digits F545 AppILoadFail (ControlBuilder DCS800 application programming): $64110=$ task not configured $64112=$ attempt to run an illegal copy of a program $64113=$ retain data invalid caused by SDCS-CON-4 hardware problem $64125=5 \mathrm{~ms}$ task halted (e.g. task contains an endless loop) $64126=10 \mathrm{~ms}$ task halted (e.g. task contains an endless loop) $64127=20 \mathrm{~ms}$ task halted (e.g. task contains an endless loop) $64128=50 \mathrm{~ms}$ task halted (e.g. task contains an endless loop) $64129=100 \mathrm{~ms}$ task halted (e.g. task contains an endless loop) $64130=200 \mathrm{~ms}$ task halted (e.g. task contains an endless loop) $64131=500 \mathrm{~ms}$ task halted (e.g. task contains an endless loop) $64132=1000 \mathrm{~ms}$ task halted (e.g. task contains an endless loop) $64133=$ application program is using an unsupported DCS800 Drive library version Int. Scaling: $1=1 \quad$ Type: \quad Volatile: Y			
9.12	LastFault (last fault) Displays the last fault: F<Fault code> <FaultName> (e.g. F2 ArmOverCur) Int. Scaling: $1==1 \quad$ Type: C Volatile: Y			
9.13	$2^{\text {nd }}$ LastFault ($\mathbf{2}^{\text {nd }}$ last fault) Displays the $2^{\text {nd }}$ last fault: F<Fault code> <FaultName> (e.g. F2 ArmOverCur) Int. Scaling: $1==1 \quad$ Type: \quad C Volatile:			

Index	Signal / Parameter name	-	S	
9.19	M2FexAlarmWord (motor 2 field exciter alarm word) Motor 2 field exciter alarm word :			ш
9.20	M2FexFaultWord (motor 2 field exciter fault word) Motor 2 field exciter fault word :			ш

Signal and parameter list

Index	Signal / Parameter name		
10.03			
10.04	SyncCommand (synchronization command for position counter encoder 1) Activation of synchronization for pulse encoder 1 and setting of the binary input signal. At the synchronization event [AuxCtrIWord (7.02) bit 9 SyncCommand] the position counter is initialized with following values: - PosCountInitLo (50.08) is written into PosCountLow (3.07) and - PosCount/nithi (50.09) is written into PosCountHigh (3.08). At the same time AuxStatWord (8.02) bit 5 SyncRdy is set to 1 . The synchronization can be inhibited by setting AuxCtrlWord (7.02) bit 10 SyncDisable to 1 . The synchronization event is selected by:		

Index	Signal / Parameter name			\pm	O
10.05	SyncCommand2 (synchronization command for position counter encoder 2) Activation of synchronization for pulse encoder 2 and setting of the binary input signal. At the synchronization event [AuxCtrlWord (7.02) bit 9 SyncCommand] the position counter is initialized with following values: - PosCount2InitLo (50.21) is written into PosCount2Low (3.05) and - PosCount2InitHi (50.22) is written into PosCount2High (3.06). At the same time AuxStatWord (8.02) bit 5 SyncRdy is set to 1. The synchronization can be inhibited by setting AuxCtrIWord (7.02) bit 10 SyncDisable to 1. The synchronization event is selected by: $0=$ NotUsed default 1 = DI7+ \quad rising edge $(0 \rightarrow 1)$ taken from DI7 $2=$ DI7Hi\&Z \quad DI7 $=1$ and rising edge $(0 \rightarrow 1)$ taken from zero channel pulse encoder 3 = DI7Hi\&Z Fwd DI7 $=1$ and rising edge $(0 \rightarrow 1)$ taken from zero channel pulse encoder, motor rotating forward $4=$ DI7Hi\&Z Rev \quad DI7 $=1$ and rising edge $(0 \rightarrow 1)$ taken from zero channel pulse encoder, $6=$ DI7Lo\&Z $7=$ DI7Lo\&Z Fwd DI7 $=0$ and rising edge $(0 \rightarrow 1)$ taken from zero channel pulse encoder motor rotating forward $8=$ DI7Lo\&Z Rev DI7 $=0$ and rising edge $(0 \rightarrow 1)$ taken from zero channel pulse encoder, motor rotating reverse $9=\mathbf{Z}$ rising edge $(0 \rightarrow 1)$ taken from zero channel pulse encoder $10=$ SyncCommand rising edge $(0 \rightarrow 1)$ taken from AuxCtrIWord (7.02) bit 9 Note: Forward rotation means that encoder channel A pulses lead channel B pulses by 90° (electrical). Reverse rotation means that encoder channel B pulses lead channel A pulses by 90° (electrical). Int. Scaling: $\quad 1==1$ Type: C Volatile: N				ш
10.06	MotFanAck (motor fan acknowledge) The drive trips with F523 ExtFanAck [FaultWord2 (9.02) bit 6] if a digital input for an external fan is selected and the acknowledge is missing for 10 seconds: 0 = NotUsed no reaction 1 = DI1 $1=$ acknowledge $\mathrm{OK}, 0=$ no acknowledge 2 = DI2 $1=$ acknowledge $O K, 0=$ no acknowledge, default 3 = DI3 $\quad 1=$ acknowledge OK, $0=$ no acknowledge 4 = DI4 $\quad 1=$ acknowledge $O K, 0=$ no acknowledge 5 = DI5 $\quad 1=$ acknowledge OK, $0=$ no acknowledge 6 = DI6 $\quad 1=$ acknowledge $O K, 0=$ no acknowledge 7 = DI7 $\quad 1=$ acknowledge OK, $0=$ no acknowledge $8=$ DI8 $\quad 1=$ acknowledge $O K, 0=$ no acknowledge 9 = DI9 $\quad 1=$ acknowledge $\mathrm{OK}, 0=$ no acknowledge, only available with digital extension board $10=$ DI10 $\quad 1=$ acknowledge $\mathrm{OK}, 0=$ no acknowledge, only available with digital extension board 11 = DI11 $1=$ acknowledge $\mathrm{OK}, 0=$ no acknowledge, only available with digital extension board Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}	O			0

Index	Signal / Parameter name		=0
10.07	HandAuto (Hand/Auto command) Binary signal to switch between Hand (Local I/O) and Auto (MainCtrIWord) control. Thus the selection made by CommandSel (10.01) is overwritten:		0
10.08	Off2 (Off2 command, electrical disconnect) Binary signal for Off2 (Emergency Off / Coast Stop), UsedMCW (7.04) bit 1. For fastest reaction use fast digital inputs DI7 or DI8: $0=\text { NotUsed }$ 1 = DI1 1= no Off2, $0=\mathbf{O f f} 2$ active 2 = DI2 $1=$ no $\mathbf{O f f} 2,0=\mathbf{O f f 2}$ active 3 = DI3 $1=$ no Off2, $0=\mathbf{O f f 2}$ active 4 = DI4 $1=$ no Off2, $0=\mathbf{O f f 2}$ active, default 5 = DI5 $1=$ no Off2, $0=\mathbf{O f f 2}$ active 6 = DI6 $1=$ no Off2, $0=\mathbf{O f f 2}$ active 7 = DI7 $1=$ no Off2, $0=\mathbf{O f f 2}$ active 8 = DI8 $1=$ no Off2, $0=\mathbf{O f f 2}$ active 9 = DI9 $1=$ no Off2, $0=\mathbf{O f f} 2$ active, only available with digital extension board 10 = DI10 $1=$ no Off2, $0=\mathbf{O f f 2}$ active, only available with digital extension board $11 \text { = DI11 }$ $1=$ no Off2, $0=\mathbf{O f f 2}$ active, only available with digital extension board $12=$ MCW Bit11 13 = MCW Bit12 14 = MCW Bit13 $15=$ MCW Bit14 16 = MCW Bit15 17 = ACW Bit12 18 = ACW Bit13 19 = ACW Bit14 20 = ACW Bit15 Int. Scaling: $1==1$ $1=$ no Off2, $0=0$ Off2 active, MainCtrIWord (7.01) bit 11 $1=$ no Off2, $0=0$ Off2 active, MainCtrIWord (7.01) bit 12 $1=$ no Off2, $0=0$ Off2 active, MainCtrIWord (7.01) bit 13 $1=$ no Off2, $0=\mathbf{O f f} 2$ active, MainCtrIWord (7.01) bit 14 $1=$ no Off2, $0=\mathbf{O f f} 2$ active, MainCtrlWord (7.01) bit 15 $1=$ no Off2, $0=\mathbf{O f f 2}$ active, AuxCtrIWord (7.02) bit 12 $1=$ no Off2, $0=\mathbf{O f f 2}$ active, AuxCtrIWord (7.02) bit 13 $1=$ no Off2, $0=0$ Off2 active, AuxCtrIWord (7.02) bit 14 $1=$ no Off2, $0=\mathbf{O f f} 2$ active, AuxCtrIWord (7.02) bit 15 Volatile: N		0

Index	Signal / Parameter name	-	=
10.09	E Stop (emergency stop command) Binary signal for Off3 (E-Stop), UsedMCW (7.04) bit 2. For fastest reaction use fast digital inputs DI7 or DI8:		0

Index	Signal / Parameter name	E		
10.10	ParChange (parameter change) Binary signal to release either Motor1/User1 or Motor2/User2. The choice to release Motor1/2 (shared motion) or macros User1/2 is defined by means of MacroChangeMode (16.05): default switch to Motor2/User2 by rising edge ($0 \rightarrow 1$), switch to Motor1/User1 by falling edge ($1 \rightarrow 0$) switch to Motor2/User2 by rising edge ($0 \rightarrow 1$), switch to Motor1/User1 by falling edge ($1 \rightarrow 0$) switch to Motor2/User2 by rising edge ($0 \rightarrow 1$), switch to Motor1/User1 by falling edge ($1 \rightarrow 0$) switch to Motor2/User2 by rising edge ($0 \rightarrow 1$), switch to Motor1/User1 by falling edge ($1 \rightarrow 0$) switch to Motor2/User2 by rising edge ($0 \rightarrow 1$), switch to Motor1/User1 by falling edge ($1 \rightarrow 0$) switch to Motor2/User2 by rising edge ($0 \rightarrow 1$), switch to Motor1/User1 by falling edge ($1 \rightarrow 0$) switch to Motor2/User2 by rising edge ($0 \rightarrow 1$), switch to Motor1/User1 by falling edge ($1 \rightarrow 0$) switch to Motor2/User2 by rising edge ($0 \rightarrow 1$), switch to Motor1/User1 by falling edge ($1 \rightarrow 0$) switch to Motor2/User2 by rising edge ($0 \rightarrow 1$), switch to Motor1/User1 by falling edge ($1 \rightarrow 0$), only available with digital extension board switch to Motor2/User2 by rising edge ($0 \rightarrow 1$), switch to Motor $1 /$ User1 by falling edge ($1 \rightarrow 0$), only available with digital extension board switch to Motor2/User2 by rising edge ($0 \rightarrow 1$), switch to Motor1/User1 by falling edge ($1 \rightarrow 0$), only available with digital extension board 12 = MCW Bit11 13 = MCW Bit12 14 = MCW Bit13 $15=$ MCW Bit14 16 = MCW Bit15 17 = ACW Bit12 18 = ACW Bit13 19 = ACW Bit14 $20=$ ACW Bit15 Note: The macro (User1/User2) selection made by ParChange (10.10) overrides the selection made with App/Macro (99.08). It takes about 2 s , until the new parameter values are active. Note: If User1 is active AuxStatWord (8.02) bit 3 is set. If User2 is active AuxStatWord (8.02) bit 4 is set. Note: In case macro User1 or User2 is loaded by means of ParChange (10.10) it is not saved into the flash and thus not valid after the next power on.			0

Index	Signal / Parameter name			:	
	Note: When changing parameters in a user macro first call the macro with AppIMacro (99.08), then change the parameters and save them with App/Macro (99.08). Note: The motor (Motor1/Motor2) selection can be made in drive state RdyOn and RdyRun. It takes about 20 ms , to switch between values. Note: ParChange (10.10) itself is not overwritten. Int. Scaling: $1==1 \quad$ Type: C Volatile: \mathbf{N}				
10.11	Unused				
10.12	Unused				
10.13	OvrVoltProt (over voltage protection triggered) As soon as the overvoltage protection unit is triggered A120 OverVoltProt [AlarmWord2 (9.07) bit $3]$ is set: $\begin{array}{ll} 0=\text { NotUsed } & \text { default } \\ 1=\text { DI1 } & 1 \text { = triggered, } 0=\text { not triggered } \\ 2=\text { DI2 } & 1 \text { = triggered, } 0=\text { not triggered } \\ 3=\text { DI3 } & 1 \text { = triggered, } 0=\text { not triggered } \\ 4=\text { DI4 } & 1 \text { = triggered, } 0=\text { not triggered } \\ 5=\text { DI5 } & 1 \text { = triggered, } 0=\text { not triggered } \\ 6=\text { DI6 } & 1 \text { = triggered, } 0=\text { not triggered } \\ 7=\text { DI7 } & 1 \text { = triggered, } 0=\text { not triggered } \\ 8=\text { DI8 } & 1 \text { = triggered, } 0=\text { not triggered } \\ 9=\text { DI9 } & 1 \text { = triggered, } 0=\text { not triggered } \\ 10=\text { DI10 } & 1=\text { triggered, } 0=\text { not triggered } \\ 11=\text { DI11 } & 1=\text { triggered, } 0=\text { not triggered } \end{array}$ Note: OvrVoltProt (10.13) is only released when drive is in field exciter mode. - OperModeSel (43.01) = FieldConv Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: \mathbf{N}	0 0 0 0 0 2	$\stackrel{\infty}{\circ}$		ш
10.14	Unused				

Index	Signal / Parameter name			
10.16	StartStop (Start/Stop command) Binary signal for StartStop, UsedMCW (7.04) bit 3: Note: To give On and Run at the same time set OnOff1 (10.15) = StartStop (10.16). Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}			0

Index	Signal / Parameter name		$\stackrel{\times}{\text { a }}$		
10.18	Jog2 (jogging 2 command) Binary signal for Jog2. Selects speed reference set in FixedSpeed2 (23.03): Selection see Jog1 (10.17). Note: Jog2 (10.18) overrides Jog1 (10.17) Note: CommandSel (10.01) = Local I/O: - The drive has to be in state RdyRun (RdyRef is still zero). When Jog2 command is given the drives sets automatically RampOutZero = RampHold = RampInZero = 0 [see MainCtrIWord (7.01)] and goes into state Running and turns with speed set in FixedSpeed2 (23.03). CommandSel (10.01) = MainCtrIWord: - The drive has to be in state RdyRun (RdyRef is still zero). RampOutZero, RampHold and RampInZero have to be set to zero [see MainCtrIWord (7.01)]. When Jog2 command is given the drive goes into state Running and turns with speed set in FixedSpeed2 (23.03) alternatively Inching2 [see MainCtrlWord (7.01)] can be used. Note: Acceleration and deceleration time for jogging is selected by JogAccTime (22.12) and JogDecTime (22.13). Int. Scaling: $1=1$ Type: C Volatile: \mathbf{N}		10 \vdots 0 3 3 0 4		0
10.19	Unused				
10.20	ConvFanAck (converter fan acknowledge) The drive trips with F527 ConvFanAck [FaultWord2 (9.02) bit 10] if a digital input for the converter fan is selected and the acknowledge is missing for 10 seconds. As soon as the acknowledge is missing A104 ConvOverTemp [AlarmWord1 (9.06) bit 3] is set. The alarm is reset automatically if the converter fan acknowledge is coming back before the 10 seconds are elapsed: ```\(0=\) NotUsed no reaction 1 = DI1 \(\quad 1=\) acknowledge OK, \(0=\) no acknowledge, default 2 = DI2 \(\quad 1=\) acknowledge OK, \(0=\) no acknowledge 3 = DI3 \(\quad 1\) acknowledge OK, \(0=\) no acknowledge 4 = DI4 \(\quad 1=\) acknowledge OK, \(0=\) no acknowledge 5 = DI5 \(\quad 1=\) acknowledge OK, \(0=\) no acknowledge 6 = DI6 \(\quad 1=\) acknowledge OK, \(0=\) no acknowledge 7 = DI7 \(\quad 1=\) acknowledge OK, \(0=\) no acknowledge 8 = DI8 \(\quad 1=\) acknowledge OK, \(0=\) no acknowledge \(9=\) DI9 \(\quad 1=\) acknowledge \(\mathrm{OK}, 0=\) no acknowledge, only available with digital extension board \(1=\) acknowledge \(\mathrm{OK}, 0=\) no acknowledge, only available with digital extension board \(1=\) acknowledge OK, \(0=\) no acknowledge, only available with digital extension board Int. Scaling: \(1==1\) Type: C Volatile: N```		$\bar{\square}$		0
10.21	MainContAck (main contactor acknowledge) The drive trips with F524 MainContAck [FaultWord2 (9.02) bit 7] if a digital input for the main contactor is selected and the acknowledge is missing for 10 seconds: Selection see ConvFanAck (10.20). Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{N}				0

Index	Signal / Parameter name		$\stackrel{\times}{6}$	莗
10.22	DynBrakeAck (dynamic braking acknowledge) The drive sets A105 DynBrakeAck [AlarmWord1 (9.06) bit 4] if a digital input for dynamic braking is selected and the acknowledge (dynamic braking active) is still present when On [UsedMCW (7.04) bit 3] is set: Selection see ConvFanAck (10.20). A105 DynBrakeAck [AlarmWord1 (9.06) bit 4] should prevent the drive to be started while dynamic braking is active. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}			0
10.23	DC BreakAck (DC breaker acknowledge) The drive sets A103 DC BreakAck [AlarmWord1 (9.06) bit 2] if a digital input for the DC-breaker is selected and the acknowledge is missing: Selection see ConvFanAck (10.20). The motor will coast if A103 DC BreakAck [AlarmWord1 (9.06) bit 2] is set. Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: \mathbf{N}			山
10.24	Unused			
10.25	DIIInvert (invert digital input 1) Inversion selection for digital input 1: $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Inverted } \end{aligned}$ Int. Scaling: $1==1 \quad$ Type: C Volatile: N			0
10.26	DI2Invert (invert digital input 2) Inversion selection for digital input 2: $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Inverted } \end{aligned}$ Int. Scaling: $1==1 \quad$ Type: C Volatile: N		움	0
10.27	DI3Invert (invert digital input 3) Inversion selection for digital input 3: $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Inverted } \end{aligned}$ Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: \mathbf{N}			0
10.28	DI4Invert (invert digital input 4) Inversion selection for digital input 4: $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Inverted } \end{aligned}$ Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: N		$\begin{array}{ll} 0 \\ \stackrel{0}{0} \\ \stackrel{0}{0} \\ \stackrel{0}{0} \\ =0 \end{array}$	0
10.29	DI5Invert (invert digital input 5) Inversion selection for digital input 5: $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Inverted } \end{aligned}$ Int. Scaling: $1==1 \quad$ Type: C Volatile: \mathbf{N}			0
10.30	DIGInvert (invert digital input 6) Inversion selection for digital input 6: $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Inverted } \end{aligned}$ Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: N			0
10.31	DI7Invert (invert digital input 7) Inversion selection for digital input 7: $\begin{aligned} & 0=\text { Direct } \\ & 1=\text { Inverted } \end{aligned}$ Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad C Volatile: \mathbf{N}		$\stackrel{8}{0}$	O

Index	Signal / Parameter name	\cdots	
$\begin{aligned} & \text { ㄷ } \\ & \text { 을 } \\ & \text { 은 } \end{aligned}$	Speed reference inputs		
11.01	Unused		
11.02	Ref1Mux (speed reference 1 selector/multiplexer) Speed reference 1 selector: 0 = Open switch for speed ref. 1 is fixed open 1 = Close switch for speed ref 1 is fixed closed, default 2 = DI1 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ 3 = DI2 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ 4 = DI3 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ 5 = DI4 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ $6=$ DI5 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ 7 = DI6 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ 8 = DI7 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ 9 = DI8 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=0$ $10=$ DI9 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0 ; only available with digital extension board 11= DI10 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0 ; only available with digital extension board $12=$ DI11 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0 ; only available with digital extension board 13 = MCW Bit11 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0; MainCtrIWord (7.01) bit 11 14 = MCW Bit12 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0; MainCtrIWord (7.01) bit 12 $15=$ MCW Bit13 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0; MainCtrIWord (7.01) bit 13 $16=$ MCW Bit14 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0; MainCtrIWord (7.01) bit 14 $17=$ MCW Bit15 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0; MainCtrIWord (7.01) bit 15 $18=$ ACW Bit12 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0; AuxCtrIWord (7.02) bit 12 19 = ACW Bit13 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0; AuxCtrIWord (7.02) bit 13 $20=$ ACW Bit14 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0 ; AuxCtrlWord (7.02) bit 14 21 = ACW Bit15 $1=$ switch is closed, speed ref 1 is active; $0=$ switch is open, speed ref $=$ 0; AuxCtrIWord (7.02) bit 15		0

Index	Signal / Parameter name				
11.03	```Ref1Sel (speed reference 1 select) Speed reference 1 value: 0 = SpeedRef2301 SpeedRef (23.01), default 1 = AuxSpeedRef AuxSpeedRef (23.13) 2 = Al1 analog input Al1 3 = Al2 analog input AI2 4 = Al3 5 = Al4 analog input AI4 \(6=\) Al5 analog input AI5 7 = AI6 analog input AI6 8 = FixedSpeed1 FixedSpeed1 (23.02) 9 = FixedSpeed2 FixedSpeed2 (23.03) \(10=\) MotPot motor pot controlled by MotPotUp (11.13), MotPotDown (11.14) and MotPotMin (11.15) 11 = AuxRef-Al1 \(\quad\) AuxSpeedRef (23.13) minus value of Al1 \(12=\) reserved reserved \(13=\) MinAI2AI4 minimum of AI2 and AI4 \(14=\) MaxAl2AI4 \(\quad\) maximum of AI2 and AI4 \(15=\) Al1Direct \(+\quad\) Fast speed reference input using analog input Al1. SpeedRefExt1 (2.30) is written directly onto the speed error summation. Thus the speed ramp is bypassed. The signal is forced to zero if RampOutZero \(=0\) or RampInZero \(=0\) [see MainCtrlWord (70.1)]. \(16=\) Al2Direct+ \(\quad\) Fast speed reference input using analog input AI2. SpeedRefExt1 (2.30) is written directly onto the speed error summation point. Thus the speed ramp is bypassed. The signal is forced to zero if RampOutZero \(=0\) or RampInZero \(=0\) [see MainCtrlWord (70.1)]. 17 = Enc2Direct+ Fast speed reference input using pulse encoder 2. SpeedRefExt1 (2.30) is written directly onto the speed error summation point. Thus the speed ramp is bypassed. The signal is forced to zero if RampOutZero \(=0\) or RampInZero \(=0\) [see MainCtrlWord (70.1)]. \(18=\) SpeedRef2315 Fast speed reference input using DirectSpeedRef (23.15). SpeedRefExt1 (2.30) is written directly onto the speed error summation point. Thus the speed ramp is bypassed. The signal is forced to zero if RampOutZero = 0 or RampInZero \(=0\) [see MainCtrIWord (70.1)].None```				0
11.04	Unused				
11.05	Unused				

Index	Signal / Parameter name					
11.06		-		-		ш
11.07	Unused					
11.08	Unused					
11.09	Unused					
11.10	Unused					
11.11	Unused					

Index	Signal / Parameter name		$\stackrel{4}{0}$	
11.13	MotPotUp (motor pot up) With the motor pot up function the motor speed is increased by means of the selected binary input. The acceleration is limited by AccTime1 (22.01). MotPotDown (11.14) overrides MotPotUp (11.13): Note: The speed reference is selected by means of Ref1Sel (11.03) = MotPot respectively Ref2Sel (11.06) = MotPot. Int. Scaling: 1 == 1			0

Index	Signal / Parameter name			
11.15	MotPotMin (motor pot minimum) The motor pot minimum function releases the minimum speed level. The minimum speed level is defined by FixedSpeed1 (23.02). When the drive is started the motor accelerates to FixedSpeed1 (23.02). It is not possible to set the speed below FixedSpeed1 (23.02) by means of the motor pot function: ```\(0=\) NotUsed default 1 = DI1 \(1=\) released, \(0=\) blocked \(2=\) DI2 \(1=\) released, \(0=\) blocked 3 = DI3 \(1=\) released, \(0=\) blocked 4 = DI4 \(1=\) released, \(0=\) blocked 5 = DI5 \(1=\) released, \(0=\) blocked 6 = DI6 \(1=\) released, \(0=\) blocked 7 = DI7 \(1=\) released, \(0=\) blocked 8 = DI8 \(1=\) released, \(0=\) blocked 9 = DI9 \(1=\) released, \(0=\) blocked, only available with digital extension board \(10=\) Dl10 \(1=\) released, \(0=\) blocked, only available with digital extension board 11 = DI11 \(1=\) released, \(0=\) blocked, only available with digital extension board \(12=\) MCW Bit11 \(1=\) released, \(0=\) blocked, MainCtrlWord (7.01) bit 11 13 = MCW Bit12 \(1=\) released, \(0=\) blocked, MainCtrlWord (7.01) bit 12 14 = MCW Bit13 \(1=\) released, \(0=\) blocked, MainCtrlWord (7.01) bit 13 15 = MCW Bit14 \(1=\) released, \(0=\) blocked, MainCtrlWord (7.01) bit 14 \(16=\) MCW Bit15 \(1=\) released, \(0=\) blocked, MainCtrlWord (7.01) bit 15 17 = ACW Bit12 \(1=\) released, \(0=\) blocked, AuxCtrIWord (7.02) bit 12 18 = ACW Bit13 \(1=\) released, \(0=\) blocked, AuxCtrIWord (7.02) bit 13 19 = ACW Bit14 \(1=\) released, \(0=\) blocked, AuxCtrIWord (7.02) bit 14 20 = ACW Bit15 \(1=\) released, \(0=\) blocked, AuxCtrIWord (7.02) bit 15 Int. Scaling: 1 == 1 Type: C Volatile: N```			0

Index	Signal / Parameter name				
$\begin{aligned} & \mathbf{N} \\ & \text { 을 } \\ & \text { O} \\ & \mathbf{O} \end{aligned}$	Constant speeds				
12.01	unused				
12.02	ConstSpeed1 (constant speed 1) Defines constant speed 1 in rpm . The constant speed can be connected by Adaptive Program or application program. $\begin{array}{lccc}\text { Internally limited from: } & -(2.29) * & \frac{32767}{20000} r \text { rpm to }(2.29) * \frac{32767}{20000} r p m \\ \text { Int. Scaling: (2.29) } & \text { Type: } & \text { SI } \quad \text { Volatile: } \mathbf{N}\end{array}$				E
12.03	ConstSpeed2 (constant speed 2) Defines constant speed 2 in rpm. The constant speed can be connected by Adaptive Program or application program. Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: SI Volatile: N				
12.04	ConstSpeed3 (constant speed 3) Defines constant speed 3 in rpm . The constant speed can be connected by Adaptive Program or application program. Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: SI Volatile: N				E
12.05	ConstSpeed4 (constant speed 4) Defines constant speed 4 in rpm. The constant speed can be connected by Adaptive Program or application program. Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: Volatile: N				ㅂ

Index	Signal / Parameter name		:
	Analog inputs		
13.01	Al1HighVal (analog input 1 high value) $+100 \%$ of the input signal connected to analog input 1 is scaled to the voltage in Al1HighVal (13.01). Example: - In case the min. / max. voltage ($\pm 10 \mathrm{~V}$) of analog input 1 should equal $\pm 250 \%$ of TorqRefExt (2.24), set: TorqRefA Sel (25.10) = Al1 ConvModeAl1 (13.03) $= \pm 10 \mathrm{~V} \mathrm{Bi}$, Al1HighVal (13.01) $=4000 \mathrm{mV}$ and Al1LowVal (13.02) $=-4000 \mathrm{mV}$ Note: To use current please set the jumper (SDCS-CON-4 or SDCS-IOB-3) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1=\mathbf{1 m V}$ Type: I Volatile: N		≥ 0
13.02	Al1LowVal (analog input 1 low value) -100% of the input signal connected to analog input 1 is scaled to the voltage in Al1LowVal (13.02). Note: Al1LowVal (13.02) is only valid if ConvModeAl1 (13.03) $= \pm 10 \mathrm{~V} \mathrm{Bi}$. Note: To use current please set the jumper (SDCS-CON-4 or SDCS-IOB-3) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1=\mathbf{1 m V}$ Type: \quad SI Volatile: \mathbf{N}		≥ 0
13.03	ConvModeAl1 (conversion mode analog input 1) The distinction between voltage and current is done via jumpers on the SDCS-CON-4 or SDCS-IOB-3 board: $0= \pm \mathbf{1 0 V ~ B i} \quad-10 \mathrm{~V}$ to $10 \mathrm{~V} /-20 \mathrm{~mA}$ to 20 mA bipolar input, default $1=0 \mathrm{~V}-10 \mathrm{~V}$ Uni $\quad 0 \mathrm{~V}$ to $10 \mathrm{~V} / 0 \mathrm{~mA}$ to 20 mA unipolar input $2=\mathbf{2 V}-10 \mathrm{~V}$ Uni 2 V to $10 \mathrm{~V} / 4 \mathrm{~mA}$ to 20 mA unipolar input $3=5 \mathrm{~V}$ Offset $\quad 5 \mathrm{~V} / 10 \mathrm{~mA}$ offset in the range 0 V to $10 \mathrm{~V} / 0 \mathrm{~mA}$ to 20 mA for testing or indication of bipolar signals (e.g. torque, speed, etc.) $4=6 \mathrm{~V}$ Offset $\quad 6 \mathrm{~V} / 12 \mathrm{~mA}$ offset in the range 2 V to $10 \mathrm{~V} / 4 \mathrm{~mA}$ to 20 mA for testing or indication of bipolar signals (e.g. torque, speed, etc.) Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: N		0
13.04	FilterAl1 (filter time analog input 1) Analog input 1 filter time. The hardware filter time is $\leq 2 \mathrm{~ms}$. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}	000	00
13.05	Al2HighVal (analog input 2 high value) $+100 \%$ of the input signal connected to analog input 2 is scaled to the voltage in Al2HighVal (13.05). Note: To use current please set the jumper (SDCS-CON-4 or SDCS-IOB-3) accordingly and calculate 20 mA to 10 V . Int. Scaling: 1 == 1 mV Type: \quad I Volatile: N	$\begin{array}{\|lll\|} \hline 8 & 8 & 0 \\ 0 & 8 & 8 \\ 1 & 0 & 0 \end{array}$	>

Index	Signal / Parameter name		$\stackrel{\times}{\square} \stackrel{\square}{0}$	=	
13.06	Al2LowVal (analog input 2 low value) -100% of the input signal connected to analog input 2 is scaled to the voltage in Al2LowVal (13.06). Note: Al2LowVal (13.06) is only valid if ConvModeAl2 (13.07) $= \pm \mathbf{1 0 V ~ B i}$. Note: To use current please set the jumper (SDCS-CON-4 or SDCS-IOB-3) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1=\mathbf{1 m V}$ Type: SI Volatile: \mathbf{N}		8	,	0
13.07	ConvModeAl2 (conversion mode analog input 2) The distinction between voltage and current is done via jumpers on the SDCS-CON-4 or SDCS-IOB-3 board:		$\begin{array}{l\|l} \stackrel{\rightharpoonup}{0} & 0 \\ 0 \\ 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$		0
13.08	FilterAl2 (filter time analog input 2) Analog input 2 filter time. The hardware filter time is $\leq 2 \mathrm{~ms}$. Int. Scaling: $1=\mathbf{= 1 m s}$ Type: I Volatile: \mathbf{N}		응	$\stackrel{\square}{8}$	0
13.09	Al3HighVal (analog input 3 high value) $+100 \%$ of the input signal connected to analog input 3 is scaled to the voltage in Al3HighVal (13.09). Note: To use current please set the jumper (SDCS-IOB-3) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1==1 \mathrm{mV}$ Type: I Volatile: \mathbf{N}		$\begin{array}{ll} 8 \\ 0 \\ 0 \\ 0 \end{array}$		
13.10	Al3LowVal (analog input 3 low value) -100% of the input signal connected to analog input 3 is scaled to the voltage in AI3LowVal (13.10). Note: Al3LowVal (13.10) is only valid if ConvModeAl3 (13.11) $= \pm \mathbf{1 0 V}$ Bi. Note: To use current please set the jumper (SDCS-IOB-3) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1==1 \mathrm{mV}$ Type: SI Volatile: N		$\begin{array}{ll} 8 \\ 0 & 8 \\ 0 & 0 \\ 1 \end{array}$		
13.11	ConvModeAl3 (conversion mode analog input 3) Analog input 3 on the SDCS-CON-4 is only working with voltage. The distinction between voltage and current is done via jumpers on the SDCS-IOB-3 board:		$\begin{array}{l\|l} \stackrel{4}{0} & \ddot{0} \\ \stackrel{0}{4} & - \\ 0 \\ 0 & 0 \\ \hline \end{array}$		ш
13.12	FilterAl3 (filter time analog input 3) Analog input 3 filter time. The hardware filter time is $\leq 2 \mathrm{~ms}$. Int. Scaling: $1=\mathbf{= 1 m s}$ Type: \quad Volatile: \mathbf{N}		${ }^{8} 0$		

Signal and parameter list

Index	Signal / Parameter name			-	0		
13.23	ConvModeAl5 (conver The distinction between switches on the RAIO-0 $\begin{aligned} & 0= \pm 10 \mathrm{~V} \mathrm{Bi} \\ & 1=0 \mathrm{~V}-10 \mathrm{~V} \text { Uni } \\ & 2=2 \mathrm{~V}-10 \mathrm{~V} \text { Uni } \\ & 3=5 \mathrm{~V} \text { Offset } \\ & 4=6 \mathrm{~V} \text { Offset } \end{aligned}$ Bipolar and unipolar: Voltage and current: Int. Scaling: $1==1$	on mode analog inpu polar and unipolar res board: V to $10 \mathrm{~V} /-20 \mathrm{~mA}$ to to $10 \mathrm{~V} / 0 \mathrm{~mA}$ to 20 to $10 \mathrm{~V} / 4 \mathrm{~mA}$ to 20 / 10 mA offset in the ication of bipolar signa / 12 mA offset in the ication of bipolar signa setting Analogue input Al2 DIP switch ON [180] 123456 Type: C	5) ctively voltage and current is done via DIP- 0 mA bipolar input, default A unipolar input A unipolar input nge 0 V to $10 \mathrm{~V} / 0 \mathrm{~mA}$ to 20 mA for testing or (e.g. torque, speed, etc.) nge 2 V to $10 \mathrm{~V} / 4 \mathrm{~mA}$ to 20 mA for testing or (e.g. torque, speed, etc.) ttings alogue input 2 tile: N		$\begin{array}{l\|l} \stackrel{\rightharpoonup}{0} & \stackrel{0}{0} \\ \stackrel{4}{0} & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$		ш
13.24	Unused						
13.25	Al6HighVal (analog inp $+100 \%$ of the input sign (13.25). Note: To use current please se Int. Scaling: $1=\mathbf{1 m V}$	6 high value) connected to analog the DIP-switches (RA Type:	ut 6 is scaled to the voltage in Al6HighVal -01) accordingly and calculate 20 mA to 10 V . N		88		

Signal and parameter list

Index	Signal / Parameter name		$\stackrel{\times}{6}$	\%	0
13.26	AI6LowVal (analog input 6 low value) -100% of the input signal connected to analog input 6 is scaled to the voltage in AIO6LowVal (13.26). Note: Al6LowVal (13.26) is only valid if ConvModeAl6 (13.27) $= \pm \mathbf{1 0 V}$ Bi. Note: To use current please set the DIP-switches (RAIO-01) accordingly and calculate 20 mA to 10 V . Int. Scaling: $1=\mathbf{1 m V}$ Type: \quad SI Volatile: N		8	ㄹ	-
13.27	ConvModeAI6 (conversion mode analog input 6) The distinction between bipolar and unipolar respectively voltage and current is done via DIPswitches on the RAIO-01 board:		¢	-	山
	Digital outputs				
14.01	DO1Index (digital output 1 index) Digital output 1 is controlled by a selectable bit - see DO1BitNo (14.02) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Examples: - If DO1Index (14.01) $=801$ (main status word) and DO1BitNo (14.02) $=1$ (RdyRun) digital output 1 is high when the drive is RdyRun. - If DO1Index (14.01) $=-801$ (main status word) and DO1BitNo (14.02) $=3$ (Tripped) digital output 1 is high when the drive is not faulty. Digital output 1 default setting is: command FansOn CurCtrlStat1 (6.03) bit 0. Int. Scaling: $1==1 \quad$ Type: SI Volatile: N	$\begin{array}{\|c\|} \hline \text { 앙 } \\ \hline 0 \\ \hline \end{array}$	9		0
14.02	DO1BitNo (digital output 1 bit number) Bit number of the signal/parameter selected with DO1Index (14.02). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}		$\stackrel{10}{ } 0$	0	0
14.03	DO2Index (digital output 2 index) Digital output 2 is controlled by a selectable bit - see DO2BitNo (14.04) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert digital output, $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Digital output 2 default setting is: command FieIdOn CurCtrIStat1 (6.03) bit 5. Int. Scaling: $1==1 \quad$ Type: SI Volatile: \mathbf{N}		$8{ }^{\circ} 8$		0
14.04	DO2BitNo (digital output 2 bit number) Bit number of the signal/parameter selected with DO2/ndex (14.03). Int. Scaling: 1 == 1 Type: Volatile: N		$\stackrel{10}{\sim}$		0

Signal and parameter list

Index	Signal / Parameter name	. $\stackrel{\substack{\text { E }}}{\times} \times$	
$\begin{aligned} & \text { م } \\ & \text { 윽 } \\ & 0 \\ & \frac{0}{\top} \end{aligned}$	Analog outputs		
15.01	IndexAO1 (analog output 1 index) Analog output 1 is controlled by a source (signal/parameter) selected with IndexAO1 (15.01). The format is -xxyy, with: - = negate analog output, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index. Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad SI Volatile: N		0
15.02	CtrIWordAO1 (control word analog output 1) Analog output 1 can be written to via CtrIWordAO1 (15.02) using Adaptive Program, application program or overriding control if IndexAO1 (15.01) is set to zero. Further description see group 19 Data Storage. Int. Scaling: $1==1$ Type: SI Volatile: \mathbf{Y}		0
15.03	ConvModeAO1 (convert mode analog output 1) Analog output 1 signal offset:		0
15.04	FilterAO1 (filter analog output 1) Analog output 1 filter time. Int. Scaling: $1=\mathbf{= 1} \mathrm{ms}$ Type: I Volatile: \mathbf{N}	$\bigcirc 0$	0
15.05	ScaleAO1 (scaling analog output 1) 100% of the signal/parameter selected with IndexAO1 (15.01) is scaled to the voltage in ScaleAO1 (15.05). Example: - In case the min. / max. voltage ($\pm 10 \mathrm{~V}$) of analog output 1 should equal $\pm 250 \%$ of TorqRefUsed (2.13), set: IndexAO1 (15.01) = 213, ConvModeAO1 (15.03) $= \pm \mathbf{1 0 V ~ B i}$ and ScaleAO1 (15.05) $=4000 \mathrm{mV}$ Int. Scaling: $1=\mathbf{= 1 m V}$ Type: I Volatile: \mathbf{N}		0
15.06	IndexAO2 (analog output 2 index) Analog output 2 is controlled by a source (signal/parameter) selected with IndexAO2 (15.06). The format is -xxyy, with: $-=$ negate analog output, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index. Int. Scaling: $1=1 \quad$ Type: \quad SI Volatile: N	(\%)	0
15.07	CtrIWordAO2 (control word analog output 2) Analog output 2 can be written to via CtrIWordAO2 (15.07) using Adaptive Program, application program or overriding control if IndexAO2 (15.06) is set to zero. Further description see group 19 Data Storage. Int. Scaling: $1==1 \quad$ Type: \quad SI Volatile: Y		0

Index	Signal / Parameter name				-
15.08	ConvModeAO2 (convert mode analog output 2) Analog output 2 signal offset:				0
15.09	FilterAO2 (filter analog output 2) Analog output 2 filter time. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N		응	0	0
15.10	ScaleAO2 (scaling analog output 2) 100% of the signal/parameter selected with IndexAO2 (15.06) is scaled to the voltage in ScaleAO2 (15.10). Int. Scaling: $1=\mathbf{= 1 m V}$ Type: I Volatile: \mathbf{N}		응		0
15.11	IndexAO3 (analog output 3 index) Analog output 3 is controlled by a source (signal/parameter) selected with IndexAO3 (15.11). The format is -xxyy, with: - = negate analog output, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index. Int. Scaling: $1=\mathbf{= 1} \quad$ Type: SI Volatile: N		\%		ш
15.12	CtrIWordAO3 (control word analog output 3) Analog output 3 can be written to via Ctr/WordAO3 (15.12) using Adaptive Program, application program or overriding control if IndexAO3 (15.11) is set to zero. Further description see group 19 Data Storage. Int. Scaling: $1==1$ Type: SI Volatile: \mathbf{Y}		N00		ш
15.13					ш
15.14	FilterAO3 (filter analog output 3) Analog output 3 filter time. Int. Scaling: $1=\mathbf{1 m s}$ Type: I Volatile: \mathbf{N}		응	$\stackrel{\square}{\square}$	
15.15	ScaleAO3 (scaling analog output 3) 100 \% of the signal/parameter selected with IndexAO3 (15.11) is scaled to the current in ScaleAO3 (15.15). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}		\cdots		-
15.16	IndexAO4 (analog output 4 index) Analog output 4 is controlled by a source (signal/parameter) selected with IndexAO4 (15.16). The format is -xxyy, with: - = negate analog output, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index. Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad SI Volatile: \mathbf{N}		앙		ш

Signal and parameter list

Index	Signal / Parameter name		$\stackrel{\substack{6 \\ 8}}{\square}$	0	
15.17	CtriWordAO4 (control word analog output 4) Analog output 4 can be written to via CtrIWordAO4 (15.17) using Adaptive Program, application program or overriding control if IndexAO4 (15.17) is set to zero. Further description see group 19 Data Storage. Int. Scaling: $1==1 \quad$ Type: \quad SI Volatile: Y		No		ш
15.18					ш
15.19	FilterAO4 (filter analog output 4) Analog output 4 filter time. Int. Scaling: $1=\mathbf{1 m s}$ Type: I Volatile: \mathbf{N}		응	- \%	ш
15.20	ScaleAO4 (scaling analog output 4) 100 \% of the signal/parameter selected with IndexAO4 (15.16) is scaled to the current in ScaleAO4 (15.20). Int. Scaling: $1=\mathbf{1}$ Type: I Volatile: \mathbf{N}		$\stackrel{\sim}{\sim} \overbrace{}^{\circ}$	N	ш
$\begin{aligned} & \circ \\ & \text { O} \\ & \text { O} \\ & \text { O } \\ & \text { OU } \end{aligned}$	System control inputs				
16.01	Unused				
16.02	ParLock (parameter lock) The user can lock all parameters by means of ParLock (16.02) and SysPassCode (16.03): - To lock parameters set SysPassCode (16.03) to the desired value and change ParLock (16.02) from Open to Locked. - Unlocking of parameters is only possible if the proper pass code (the value which was present during locking) is used. To open parameters set SysPassCode (16.03) to the proper value and change ParLock (16.02) from Locked to Open. After the parameters are locked or opened the value in SysPassCode (16.03) is automatically changed to 0 : $\begin{array}{rlrl} \text { 0 }=\text { Open } & & \text { parameter change possible, default } \\ \text { 1 }=\text { Locked } & & \text { parameter change not possible } \\ \text { Int. Scaling: } \mathbf{1}=\mathbf{1} & \text { Type: } \quad \text { C } \quad \text { Volatile: } \mathbf{N} \end{array}$				ш
16.03	SysPassCode (system pass code) The SysPassCode (16.03) is a number between 1 and 30,000 to lock all parameters by means of ParLock (16.02). After using Open or Locked SysPassCode (16.03) is automatically set back to zero. Attention: Do not forget the pass code! Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{Y}		O		ш

Index	Signal / Parameter name				
16.04	LocLock (local lock) Local control can be disabled by setting LocLock (16.04) to True. If LocLock (16.04) is released in local control, it becomes valid after the next changeover to remote control. No pass code is required to change LocLock (16.04):	$\frac{80}{\sqrt[4]{10}}$			0
16.05	MacroChangeMode (macro change mode) The choice to release Motor1/2 (shared motion) or macros User1/2 is defined by means of MacroChangeMode (16.05): $0=$ User1/2 change between parameter sets User1 and User2, default 1 = Motor1/2 change between Motor1 and Motor2, shared motion (parameters for motor 2 see group 49) ParChange (10.10) selects the binary signal to release either Motor1/User1 or Motor2/User2. Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{N}				ш
16.06	ParAppISave (save/load parameters and enable/disable application programs) If parameters are written to cyclic, e.g. from an overriding control, they are only stored in the RAM and not in the flash. By means of ParAppISave (16.06), all parameter values are saved from the RAM into the flash. ParApplSave (16.06) is also used to save/load a parameter set on/from the memory card and to enable/disable application programs: 0 = Done 1 = Save 3 = SaveToMemC 4 = LoadFromMemC 4 = EableAppl 5 = DisableAppl 6 = DeleteAppI parameters are saved or all other actions are finished, default saves the actual used parameters into the flash saves a complete parameter set - actual used parameters, User1 and User2 - from control board to memory card loads a complete parameter set - actual used parameters, User1 and User2 - from memory card to control board enables the application program disables the application program To un-protect DeleteAppl set ServiceMode (99.06) = DeleteAppl. Deletes the application and the complete parameter set - actual used parameters, User1 and User2 - stored on the memory card. Also all user defined parameters will be erased from the actual parameter set. Parameter sets User1 or User2 stored in the drive itself will not be influenced. In case an application will be loaded anew all user defined parameters are set to default. This procedure can also be used to repair a memory card. After an action (e.g. save, load, ...) is finished ParApplSave (16.06) is changed back to Done. This will take max. 1 second. Note: Do not use the parameter save function unnecessarily Note: Parameters changed by DCS800 Control Panel or commissioning tools are immediately saved into the flash. Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{Y}	0			ш
16.07	Unused				
16.08	Unused				

Index	Signal / Parameter name		$=\stackrel{y}{c}$
16.09	USI Sel (selector for user interface) The user interface for the DCS800 Control Panel (Compact/Extended parameter list) can be selected by USI Sel (16.09): 0 = Compact short parameter list (C), default 1 = Extended long parameter list (E) Note: USI Sel (16.09) works only for the DCS800 Control Panel. DriveWindow and DriveWindow Light always show the extended parameter list. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}		0
16.10	Unused		
16.11	SetSystemTime (set the drive's system time) Sets the time of the converter in minutes. The system time can be either set by means of SetSystemTime (16.11) or via the DCS800 Control Panel. Int. Scaling: $1=\mathbf{= 1} \mathbf{m i n}$ Type: I Volatile: Y	$\begin{array}{lll} 0 & 0 \\ 0 & 0 \\ \vdots \\ \hline \end{array}$	¢ ${ }^{\text {¢ }}$
16.12	Unused		
16.13	Unused		
16.14	ToolLinkConfig (tool link configuration) The communication speed of the serial communication for the commissioning tool and the application program tool can be selected with ToolLinkConfig (16.14): $\begin{array}{ll} 0=\mathbf{9 6 0 0} & 9600 \text { Baud } \\ 1=\mathbf{1 9 2 0 0} & 19200 \text { Baud } \\ 2=\mathbf{3 8 4 0 0} & 38400 \text { Baud, default } \\ 3=57600 & 57600 \text { Baud } \\ 4=\mathbf{1 1 5 2 0 0} & 115200 \text { Baud } \end{array}$ If ToolLinkConfig (16.14) is changed its new value is taken over after the next power up. Int. Scaling: $1==1$ Type: C Volatile: N		-

Index	Signal / Parameter name		$=0$
19.01	Data1 (data container 1) Data container 1 (see group description above). This data container is of is of the type retain. Its value will only be saved when the drive is de-energized. Thus it will not lose its value. Int. Scaling: $1==1$ Type: SI Volatile: \mathbf{N}		ш
19.02	Data2 (data container 2) Data container 2 (see group description above). This data container is of is of the type retain. Its value will only be saved when the drive is de-energized. Thus it will not lose its value. Int. Scaling: $1==1$ Type: SI Volatile: \mathbf{N}		ш
19.03	Data3 (data container 3) Data container 3 (see group description above). This data container is of is of the type retain. Its value will only be saved when the drive is de-energized. Thus it will not lose its value. Int. Scaling: $1==1$ Type: SI Volatile: \mathbf{N}		ш
19.04	Data4 (data container 4) Data container 4 (see group description above). This data container is of is of the type retain. Its value will only be saved when the drive is de-energized. Thus it will not lose its value. Int. Scaling: 1 == 1 Type: SI Volatile: \mathbf{N}		ш
19.05	Data5 (data container 5) Data container 5 (see group description above) Int. Scaling: 1 == 1 Type: SI Volatile: \mathbf{N}		ш
19.06	Data6 (data container 6) Data container 6 (see group description above) Int. Scaling: $1==1$ Type: SI Volatile: \mathbf{N}		ш
19.07	Data7 (data container 7) Data container 7 (see group description above) Int. Scaling: $1=\mathbf{1}$ Type: SI Volatile: \mathbf{N}		ш
19.08	Data8 (data container 8) Data container 8 (see group description above) Int. Scaling: $1==1$ Type: SI Volatile: N		ш
19.09	Data9 (data container 9) Data container 9 (see group description above) Int. Scaling: $1==1$ Type: SI Volatile: N		ш
19.10	Data10 (data container 10) Data container 10 (see group description above) Int. Scaling: $1==1 \quad$ Type: \quad SI Volatile: \mathbf{N}		ш
19.11	Data11 (data container 11) Data container 11 (see group description above) Int. Scaling: $1==1 \quad$ Type: \quad SI Volatile: N		ш
19.12	Data12 (data container 12) Data container 12 (see group description above) Int. Scaling: $1=\mathbf{= 1} \quad$ Type: \quad SI Volatile: \mathbf{N}	$\begin{array}{\|l\|l\|l} 0 & N & 0 \\ \stackrel{0}{0} & 0 \\ \underset{\sim}{n} & \underset{\sim}{n} & \\ \hline \end{array}$	ш

Signal and parameter list

Index	Signal / Parameter name	$\stackrel{i}{8} \times$			
20.02	M1SpeedMax (motor 1 maximum speed) Motor 1 positive speed reference limit in rpm for: - SpeedRef2 (2.01) - SpeedRefUsed (2.17) Internally limited from: $-(2.29) * \frac{32767}{20000} \mathrm{rpm}$ to $(2.29) * \frac{32767}{20000} \mathrm{rpm}$ Note: M1SpeedMax (20.02) is must be set in the range of: 0.625 to 5 times of M1BaseSpeed (99.04). If the scaling is out of range A124 SpeedScale [AlarmWord2 (9.07) bit 7] is generated. Note: M1SpeedMax (20.02) is also applied to SpeedRef4 (2.18) to avoid exceeding the speed limits by means of SpeedCorr (23.04). To be able to overspeed the drive (e.g. for winder) it is possible to switch off the speed limit for SpeedRef4 (2.18) by means of AuxCtrIWord (7.02) bit 4. Int. Scaling: (2.29) Type: SI Volatile: N				
20.03	M1ZeroSpeedLim (motor 1 zero speed limit) When the Run command is removed [set UsedMCW (7.04) bit 3 to zero], the drive will stop as chosen by StopMode (21.03). As soon as the actual speed reaches the limit set by M1ZeroSpeedLim (20.03) the motor will coast independent of the setting of StopMode (21.03). Existing brakes are closed (applied). While the actual speed is in the limit ZeroSpeed [AuxStatWord (8.02) bit 11] is high. Note: In case FlyStart (21.10) = StartFrom0 and if the restart command comes before zero speed is reached A137 SpeedNotZero [AlarmWord3 (9.08) bit 4] is generated. Internally limited from: $0 r p m$ to (2.29)rpm Int. Scaling: (2.29) Type: I Volatile: N				
20.04	Unused				
20.05	TorqMax (maximum torque) Maximum torque limit - in percent of MotNomTorque (4.23) - for selector TorqUsedMaxSel (20.18). Note: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: N		$\stackrel{\sim}{0}$		
20.06	TorqMin (minimum torque) Minimum torque limit - in percent of MotNomTorque (4.23) - for selector TorqUsedMinSel (20.19). Note: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the largest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: N				
20.07	TorqMaxSPC (maximum torque speed controller) Maximum torque limit - in percent of MotNomTorque (4.23) - at the output of the speed controller: TorqRef2 (2.09) Note: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: N				

Index	Signal / Parameter name	觡	$\stackrel{\substack{* \\ \text { a }}}{\text { c }}$	0	=	
20.08	TorqMinSPC (minimum torque speed controller) Minimum torque limit - in percent of MotNomTorque (4.23) - at the output of the speed controller. - TorqRef2 (2.09) Note: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the largest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: N	$\stackrel{\sim}{N}$		-		ш
20.09	TorqMaxTref (maximum torque of torque reference A/B) Maximum torque limit - in percent of MotNomTorque (4.23) - for external references: - TorqRefA (25.01) - TorqRefB (25.04) Note: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{N}			$\stackrel{\sim}{\sim}$		ш
20.10	TorqMinTref (minimum torque of torque reference A / B) Minimum torque limit - in percent of MotNomTorque (4.23) - for external references: - TorqRefA (25.01) - TorqRefB (25.04) Note: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). The limit with the largest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{N}	$\stackrel{\sim}{\sim}$				ш
20.11	Unused					
20.12	M1CurLimBrdg1 (motor 1 current limit of bridge 1) Current limit bridge 1 in percent of M1NomCur (99.03). Setting M1CurLimBrdg1 (20.12) to 0 \% disables bridge 1. Note: The used current limit depends also on the converter's actual limitation situation (e.g. torque limits, other current limits, field weakening). The limit with the largest value is valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{N}			8		0
20.13	M1CurLimBrdg2 (motor 1 current limit of bridge 2) Current limit bridge 2 in percent of M1NomCur (99.03). Setting M1CurLimBrdg2 (20.13) to 0 \% disables bridge 2. Note: The used current limit depends also on the converter's actual limitation situation (e.g. torque limits, other current limits, field weakening). The limit with the smallest value is valid. Note: M1CurLimBrdg2 (20.13) is internally set to 0% if QuadrantType (4.15) = 2-Q (2-Q drive). Thus do not change the default setting for 2-Q drives. Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{N}					0
20.14	ArmAlphaMax (maximum firing angle) Maximum firing angle (α) in degrees. The maximum firing angel can be forced using AuxCtrlWord2 (7.03) bit 7. Int. Scaling: $1==1 \mathrm{deg}$ Type: SI Volatile: \mathbf{N}					
20.15	ArmAlphaMin (minimum firing angle) Minimum firing angle (α) in degrees. Int. Scaling: $1==1$ deg Type: SI Volatile:					
20.16	Unused					
20.17	Unused					

Signal and parameter list

Index	Signal / Parameter name				
20.18		20		\bigcirc	0
20.19	```TorqUsedMinSel (minimum used torque selector) TorqUsedMin (2.23) selector: 0 = TorqMin2006 TorqMin (20.06), default 1 = Al1 analog input 1 \[2 \text { = Al2 } \] \[\text { analog input } 2 \] \[3=\mathbf{A l} \mathbf{3} \] \[\text { analog input } 3 \] \[4 \text { = AI4 } \] \[5=\mathbf{A l} 5 \] \[\text { analog input } 4 \] \[\text { analog input } 5 \] \[6=\text { AI6 } \] \[\text { analog input } 6 \] \[7 \text { = Negate2018 } \] negated output of TorqUsedMaxSel (20.18) is usedNone```	O			0
20.20	Unused				
20.21	Unused				
20.22	TorqGenMax (maximum and minimum torque limit during regenerating) Maximum and minimum torque limit - in percent of MotNomTorque (4.23) - only during regenerating. Note: The used torque limit depends also on the converter's actual limitation situation (e.g. other torque limits, current limits, field weakening). Int. Scaling: $100=1 \%$ Type: SI Volatile: N	0			- 1

Index	Signal / Parameter name		츠의 ㅇ
21.03	StopMode (stop mode) Conditions for motor deceleration when UsedMCW (7.04) bit 3 Run is set to low: $0=$ RampStop \quad The input of the drives ramp is set to zero. Thus the drive stops according to DecTime1 (22.02) or DecTime2 (22.10). When reaching M1ZeroSpeedLim (20.03) the firing pulses are set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked. In case TorqSelMod (26.03) = Auto and Run is set to low the torque selector is bypassed and the drive is forced to speed control, default. $1=$ TorqueLimit \quad The output of the drives ramp is set to zero. Thus the drive stops at the active torque limit. When reaching M1ZeroSpeedLim (20.03) the firing pulses are set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked. In case TorqSelMod (26.03) = Auto and Run is set to low the torque selector is bypassed and the drive is forced to speed control. 2 = CoastStop \quad The firing pulses are immediately set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked. 3 = DynBraking dynamic braking Note: In case UsedMCW (7.04) bit 0 On and UsedMCW (7.04) bit 3 Run are set to low (run and on commands are taken away) at the same time or nearly contemporary Off1Mode (21.02) and StopMode (21.03) must have the same setting. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}		0
21.04	E StopMode (emergency stop mode) Conditions for motor deceleration when UsedMCW (7.04) bit 2 Off3N (respectively E-stop) is set low: $0=$ RampStop 1 = TorqueLimit 2 = CoastStop $3 \text { = DynBraking }$ Note: The input of the drives ramp is set to zero. Thus the drive stops according to E StopRamp (22.04). When reaching M1ZeroSpeedLim (20.03) the firing pulses are set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked, the contactors are opened, field exciter and fans are stopped. In case TorqSelMod (26.03) = Auto and Off3N is set to low the torque selector is bypassed and the drive is forced to speed control. The output of the drives ramp is set to zero. Thus the drive stops at the active torque limit. When reaching M1ZeroSpeedLim (20.03) the firing pulses are set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked, the contactors are opened, field exciter and fans are stopped. In case TorqSelMod (26.03) = Auto and Off3N is set to low the torque selector is bypassed and the drive is forced to speed control. The firing pulses are immediately set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked, the contactors are opened, field exciter and fans are stopped, default. dynamic braking E StopMode (21.04) overrides Off1Mode (21.02) and StopMode (21.03). Int. Scaling: $1=1$		0

| Index | \quad Signal / Parameter name |
| :--- | :--- | :--- | :--- | :--- |,

Signal and parameter list

Index	Signal / Parameter name			
21.16	MainContCtrIMode (main contactor control mode) MainContCtrlMode (21.16) determines the reaction to On and Run commands [UsedMCW (7.04) bits 0 and 3]: $0=\mathbf{O n} \quad$ main contactor closes with $\mathbf{O n}=1$, default $1=$ On\&Run main contactor closes with $\mathbf{O n}=\mathbf{R u n}=1$ $2=$ OnHVCB for high voltage AC circuit breaker configuration (for more information see chapter XXXX); not implemented yet $3=$ DCcontact If a DC-breaker is used as a main contactor, it will be closed with $\mathbf{O n}=1$. Additionally the armature voltage measurements are adapted to an open DCbreaker by clamping SpeedActEMF (1.02), ArmVoltActRel (1.13), ArmVoltAct (1.14) and EMF VoltActRel (1.17) to zero when the drive is Off. The clamping is released: either 100 ms after an On command (MCW bit 0) is given in case DCBreakAck (10.23) $=$ NotUsed or when using the DC-breaker acknowledge with DCBreakAck (10.23) = DIx until the acknowledge signal indicates that the DC-breaker closed. Note: If the DC volt measurement is located at the motor terminals use $0=\mathbf{O n}$ (Modified D5 - D7 converters) Note: The DC-breaker (US style) K1.1 is a special designed DC-breaker with one normally closed contact for the dynamic braking resistor R_{B} and two normally open contacts for C1 and D1. The DC-breaker should be controlled by CurCtrlStart1 (6.03) bit 10. The acknowledge signal can be connected to either MainContAck (10.21) or DCBreakAck (10.23):	0 O		ш
21.17	Unused			

Index	Signal / Parameter name		$\stackrel{\substack{6 \\ ¢}}{\text { ¢ }}$		-
21.18	FIdHeatSel (field heat selector) FldHeatSel (21.18) releases the field heating for motor 1 and motor 2: $0=$ NotUsed field heating is off, default $1=\mathbf{O n} \quad$ field heating is on, as long as: $\quad \mathbf{O n}=0[U s e d M C W$ (7.04) bit 0], Off2N = 1 $2=$ OnRun \quad field heating is on as long as: $\quad O n=1, R u n=0$ [UsedMCW (7.04) bit 3], Off2N = 1 and Off3N = 1 3 = ACW Bit12 field heating is on as long as: ACW Bit12 $=1$ [AuxCtrIWord (7.02) bit 12] and Run = 0 4 = ACW Bit13 field heating is on as long as: ACW Bit13 = 1 [AuxCtrIWord (7.02) bit 13] and Run = 0 5 = ACW Bit14 field heating is on as long as: ACW Bit14 $=1$ [AuxCtr/Word (7.02) bit 14] and Run = 0 $6=$ ACW Bit15 field heating is on as long as: ACW Bit15 $=1$ [AuxCtrIWord (7.02) bit 15] and Run $=0$ Note: The field heating references are set with M1FldHeatRef (44.04) and M2FIdHeatRef (49.06). Field heating for the individual motor can be disabled when the belonging reference is set to zero. Field nominal currents are set with M1NomFldCur (99.11) and M2NomFldCur (49.05). Note: In case the field exciter is not connected via a separate field contactor following settings apply for field heating: - MainContCtrIMode (21.16) = On - FldHeatSel (21.18) = OnRun Note: When two motors in shared motion are used and field economy is needed for the dormant set FldHeatSel (21.18) = NotUsed. Int. Scaling: $1==1 \quad$ Type: C Volatile: \mathbf{N}		$\begin{array}{\|l\|l\|} \hline 10 & 0 \\ \vdots=1 & 0 \\ 0 & 0 \\ 3 & 0 \\ 0 & 0 \\ \hline 4 & 0 \end{array}$		0
$\begin{aligned} & \mathbb{N} \\ & \text { 을 } \\ & \mathbf{0} \\ & \mathbf{U} \end{aligned}$	Speed ramp				
22.01	AccTime1 (acceleration time 1) The time within the drive will accelerate from zero speed to SpeedScaleAct (2.29): - To expand the ramp time use RampTimeScale (22.03) - AccTime1 (22.01) can be released with Ramp2Sel (22.11) Int. Scaling: $100=1$ s Type: Volatile: \mathbf{N}		O-p		0
22.02	DecTime1 (deceleration time 1) The time within the drive will decelerate from SpeedScaleAct (2.29) to zero speed: - To expand the ramp time use RampTimeScale (22.03) - DecTime1 (22.02) can be released with Ramp2Sel (22.11) Int. Scaling: $100=1 \mathrm{~s}$ Type: Volatile: N	\bigcirc	잉ㅇN		0
22.03	RampTimeScale (ramp time scaling) Multiplier for AccTime1 (22.01) / AccTime2 (22.09) and DecTime1 (22.02) / DecTime2 (22.10) to expand the ramp time. Int. Scaling: $100=1 \quad$ Type: \quad Volatile: N		8 -		ш
22.04	E StopRamp (emergency stop ramp) The time within the drive will decelerate from SpeedScaleAct (2.29) to zero speed. Either when emergency stop is released and E StopMode (21.04) = RampStop or as reaction to a fault of trip level 4 and FaultStopMode (30.30) = RampStop. Int. Scaling: $10=1 \mathrm{~s}$ Type: I Volatile: N		웅잉		0

Signal and parameter list

Index	Signal / Parameter name		=
22.05	ShapeTime (shape time) Speed reference softening time. This function is bypassed during an emergency stop:	$\bigcirc \mathrm{O} 0$	
22.06	Unused		
22.07	VarSlopeRate (variable slope rate) Variable slope is used to control the slope of the speed ramp during a speed reference change. It is active only with VarSlopeRate (22.07) $\neq 0$. Variable slope rate and the drive's internal ramp are connected in series. Thus follows that the ramp times - AccTime1 (22.01) and DecTime1 (22.02) have to be faster than the complete variable slope rate time. VarSlopeRate (22.07) defines the speed ramp time \mathbf{t} for the speed reference change \mathbf{A} : $\mathbf{t}=$ cycle time of the overriding control (e.g. speed reference generation) $\mathbf{A}=$ speed reference change during cycle time \mathbf{t} Note: In case the overriding control systems cycle time of the speed reference and VarSlopeRate (22.07) are equal the shape of SpeedRef3 (2.02) is a strait line. Int. Scaling: $1==1 \mathrm{~ms}$ Type: \quad Volatile: N	$\begin{array}{lc} 0 \\ 0 \\ 0 \\ 0 \end{array}$	(6)
22.08	BaIRampRef (balance ramp reference) The output of the speed ramp can be forced to the value defined by BalRampRef (22.08). The function is released by setting AuxCtrIWord (7.02) bit $3=1$. Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: Volatile: N	8080	팅

Index	Signal / Parameter name	=				
22.12	JogAccTime (acceleration time jogging) The time within the drive will accelerate from zero speed to SpeedScaleAct (2.29) in case of jogging: - When using jog command Jog1 (10.17) or MainCtrlWord (7.01) bit 8 speed is set by FixedSpeed1 (23.02) - When using jog command Jog2 (10.18)) or MainCtrIWord (7.01) bit 9 speed is set by FixedSpeed2 (23.03) - To expand the ramp time use RampTimeScale (22.03) Int. Scaling: $100=1 \mathrm{~s}$ Type: I Volatile: N					- 4
22.13	JogDecTime (deceleration time jogging) The time within the drive will decelerate from SpeedScaleAct (2.29) to zero speed in case of jogging: When using jog command Jog1 (10.17) or MainCtrIWord (7.01) bit 8 speed is set by FixedSpeed1 (23.02) - When using jog command Jog2 (10.18)) or MainCtrIWord (7.01) bit 9 speed is set by FixedSpeed2 (23.03) - To expand the ramp time use RampTimeScale (22.03) Int. Scaling: $100=\mathbf{1 s}$ sype: I Volatile: N			$\stackrel{\sim}{\circ}$		00 \%
$\begin{aligned} & \underset{N}{N} \\ & \text { 을 } \\ & \mathbf{0} \\ & \mathbf{U} \end{aligned}$	Speed reference					
23.01	SpeedRef (speed reference) Main speed reference input for the speed control of the drive. Can be connected to SpeedRefUsed (2.17) via: - Ref1Mux (11.02) and Ref1Sel (11.03) or - Ref2Mux (11.12) and Ref2Sel (11.06) Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: SI Volatile: \mathbf{Y}					진
23.02	FixedSpeed1 (fixed speed 1) FixedSpeed1 (23.02) is specifying a constant speed reference and overrides SpeedRef2 (2.01) at the speed ramp's input. It can be released by Jog1 (10.17) or MainCtrlWord (7.01) bit 8. The ramp times are set with JogAccTime (22.12) and JogDecTime (22.13). Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: Volatile: N	응				
23.03	FixedSpeed2 (fixed speed 2) FixedSpeed2 (23.03) is specifying a constant speed reference and overrides SpeedRef2 (2.01) at the speed ramp's input. It can be released by Jog2 (10.18) or MainCtrlWord (7.01) bit 9. The ramp times are set with JogAccTime (22.12) and JogDecTime (22.13). Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: Volatile: N	응		응		ㅌ

Index	Signal / Parameter name				
23.04	SpeedCorr (speed correction) The SpeedCorr (23.04) is added to the ramped reference SpeedRef3 (2.02). Internally limited from: $-(2.29) * \frac{32767}{20000}$ rpm to $(2.29) * \frac{32767}{20000} r p m$ Note: Since this speed offset is added after the speed ramp, it must be set to zero prior to stopping the drive. Int. Scaling: (2.29) Type: SI Volatile: Y		$0^{\circ} \mathrm{O}$	-	
23.05	SpeedShare (speed sharing) Scaling factor SpeedRefUsed (2.17). Before speed ramp. Int. Scaling: $10=1 \% \quad$ Type: \quad SI Volatile: \mathbf{N}		악앙		ш
23.06	SpeedErrFilt (filter for $\Delta \mathrm{n}$) Speed error $(\Delta \mathrm{n})$ filter time 1. There are three different filters for actual speed and speed error $(\Delta \mathrm{n})$: - SpeedFiltTime (50.06) is filtering the actual speed and should be used for filter times smaller than 30 ms . - SpeedErrFilt (23.06) and SpeedErrFilt2 (23.11) are filtering the speed error ($\Delta \mathrm{n}$) and should be used for filter times greater than 30 ms . It is recommended to set SpeedErrFilt (23.06) = SpeedErrFilt2 (23.11). Int. Scaling: $1=\mathbf{= 1} \mathrm{ms}$ Type: Volatile: \mathbf{N}		O 0	-	

Index	Signal / Parameter name		=
	Idea of Window Control: The idea of the Window Control is to block the speed controller as long as the speed error (Δn) or speed actual remains within the window set by WinWidthPos (23.08) and WinWidthNeg (23.09). This allows the external torque reference - TorqRef1 (2.08) - to affect the process directly. If the speed error $(\Delta \mathrm{n})$ or actual speed exceeds the programmed window, the speed controller becomes active and influences the process by means of TorqRef2 (2.09). To release window control set TorqSel (26.01) = Add and AuxCtrIWord (7.02) bit $7=1$. This function could be called over/underspeed protection in torque control mode: Note:		
23.07	WinIntegOn (window control integrator on) Enables the integrator of the speed controller when window control is released: $0=\mathbf{O f f} \quad$ Integrator of the speed controller is blocked when window control is released $1=$ On Integrator of the speed controller is enabled when window control is released To release window control set TorqSel (26.01) = Add and AuxCtrIWord (7.02) bit $7=1$. Int. Scaling: $1==1$ Type: C Volatile: N	O\% ¢ \%	ш
23.08	WinWidthPos (positive window width) Positive speed limit for the window control, when the speed error ($\left.\Delta \mathrm{n}=\mathrm{n}_{\mathrm{ref}}-\mathrm{n}_{\mathrm{act}}\right)$ is positive. Internally limited from: $-(2.29) * \frac{32767}{20000}$ rpm to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: Volatile: N	8880	ㄹ

Index	Signal / Parameter name				
23.09	WinWidthNeg (negative window width) Negative speed limit for the window control, when the speed error $\left(\Delta n=n_{r e t}-n_{a c t}\right)$ is negative. Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: Volatile: \mathbf{N}				
23.10	SpeedStep (speed step) SpeedStep (23.10) is added to the speed error $(\Delta \mathrm{n})$ at the speed controller's input. The given min./max. values are limited by M1SpeedMin (20.02) and M1SpeedMax (20.02). Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Note: Since this speed offset is added after the speed ramp, it must be set to zero prior to stopping the drive. Int. Scaling: (2.29) Type: SI Volatile: \mathbf{Y}				
23.11	SpeedErrFilt2 (2 ${ }^{\text {nd }}$ filter for $\Delta \mathbf{n}$) Speed error ($\Delta \mathrm{n}$) filter time 2. There are three different filters for actual speed and speed error ($\Delta \mathrm{n})$. SpeedFiltTime (50.06) is filtering the actual speed and should be used for filter times smaller than 30 ms . SpeedErrFilt (23.06) and SpeedErrFilt2 (23.11) are filtering the speed error ($\Delta \mathrm{n}$) and should be used for filter times greater than 30 ms . It is recommended to set SpeedErrFilt (23.06) = SpeedErrFilt2 (23.11). Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}		응		
23.12	WinCtrIMode (window control mode) Window control mode: $0=$ SpeedErrWin Standard window control, Speed error ($\Delta \mathrm{n}$) has to be in a window defined by WinWidthPos (23.08) and WinWidthNeg (23.09). Typically used for torque followers to limit differential speed, default. 1 = SpeedActWin Speed actual has to be in a window defined by WinWidthPos (23.08) and WinWidthNeg (23.09). Typically used for torque controlled test rigs to limit the no load speed. Example1: To get a window of 10 rpm width around the speed error $(\Delta \mathrm{n})$ set: - WinCtrIMode (23.12) = SpeedErrWin - WinWidthPos (23.08) $=5 \mathrm{rpm}$ and - WinWidthNeg (23.09) $=-5 \mathrm{rpm}$ Example2: To get a window (e.g. 500 rpm to 1000 rpm) around speed actual set: - WinCtrIMode (23.12) = SpeedActWin - WinWidthPos (23.08) = 1000 rpm and - WinWidthNeg (23.09) = 500 rpm To get a window (e.g. -50 rpm to 100 rpm) around speed actual set: - WinCtrIMode (23.12) = SpeedActWin - WinWidthPos (23.08) = 100 rpm and - WinWidthNeg (23.09) = -50 rpm Int. Scaling: $1=\mathbf{=}$ Type: Volatile: \mathbf{N}				ш

Index	Signal / Parameter name				
23.13	AuxSpeedRef (auxiliary speed reference) Auxiliary speed reference input for the speed control of the drive. Can be connected to SpeedRefUsed (2.17) via: - Ref1Mux (11.02) and Ref1Sel (11.03) or - Ref2Mux (11.12) and Ref2Sel (11.06) Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Int. Scaling: (2.29) Type: SI Volatile: \mathbf{Y}	응			팅
23.14	Unused				
23.15	DirectSpeedRef (direct speed reference) Direct speed input is connected to SpeedRef3 (2.02) by means of AuxCtrIWord2 (7.03) bit $10=1$ and replaces the speed ramp output. Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Note: Since this speed offset is added after the speed ramp, it must be set to zero prior to stopping the drive. Int. Scaling: (2.29) Type: SI Volatile: Y	8			
23.16	SpeedRefScale (speed reference scaling) Speed reference scaling. After SpeedRef3 (2.02) and before SpeedRef4 (2.18). Int. Scaling: $100=1 \quad$ Type: \quad I Volatile: \mathbf{N}	안			ш

Index	Signal / Parameter name				
$\underset{\sim}{*}$ O O OU	Speed control				
	The Speed controller is based on a PID algorithm and is presented as follows: $T_{\text {ref }(s)}=K p S *\left[\left(n_{\text {ref }(s)}-n_{\operatorname{act}(s)}\right) *\left(1+\frac{1}{s T i S}+\frac{s T D}{s T F+1}\right)\right] * \frac{100 \% * T_{n}}{(2.29)}$ with: $\mathrm{T}_{\text {ref }}=$ torque reference $\mathrm{KpS}=$ proportional gain [KpS (24.03)] $\mathrm{N}_{\text {ref }}=$ speed reference $\mathrm{N}_{\text {att }}=$ speed actual TiS = Integration time [TiS (24.09)] TD = Derivation time [DerivTime (24.12)] TF = Derivation filter time [DerivFiltTime (24.13)] $\mathrm{T}_{\mathrm{n}}=$ nominal motor torque (2.29) $=$ actual used speed scaling [SpeedScaleAct (2.29)]				
24.01	Unused				
24.02	DroopRate (droop rate) Droop is used in certain applications to archive a speed drop depending on the load. This function may become necessary for proper load sharing between drives which are linked via material (e.g. paper, steel, foil) and running with a common speed reference. The amount of speed drop caused by the load is determined by DroopRate (24.02). The result is a load dependent speed decrease in percent of SpeedScaleAct (2.29). Example: With DroopRate (24.02) $=3 \%$ and TorqIntegRef (2.05) $=100 \%$ (nominal motor torque) the actual speed decreases 3% of SpeedScaleAct (2.29). Int. Scaling: $10=\mathbf{1 \%}$ Type: I Volatile: N				

Signal and parameter list

Index	Signal / Parameter name	\times		
24.03	KpS (p-part speed controller) Proportional gain of the speed controller can be released by means of Par2Select (24.29). Example: The controller generates 15% of motor nominal torque with $K p S(24.03)=3$, if the speed error $(\Delta \mathrm{n})$ is 5% of SpeedScaleAct (2.29). Int. Scaling: $100=\mathbf{1}$ Type: I Volatile: N	$\stackrel{1}{\sim}$		0
	Load adaptive proportional gain: The adaptive proportional gain of the speed controller is used to smooth out disturbances which are caused by low loads and backlash. Moderate filtering of the speed error $(\Delta \mathrm{n})$ is typically not enough to tune the drive. The load adaptation is valid for positive and negative torque.			
24.04	KpSMin (minimum p-part speed controller) KpSMin (24.04) determines the proportional gain when the speed controller output [TorqRef2 (2.09)] is zero. KpSMin (24.04) cannot be greater than $K p S$ (24.03). Int. Scaling: $100=1$ Type: I Volatile: N	¢		ш
24.05	KpSWeakp (weakening point of p-part speed controller) The speed controller output value [TorqRef2 (2.09)], in percent of MotNomTorque (4.23), where the gain equals $K p S(24.03)$. Int. Scaling: $100=1 \%$ Type: I Volatile: N	N0N0		
24.06	KpSWeakpFiltTime (filter time for weakening point of p-part speed controller) Filter time to soften the proportional gains rate of change. Int. Scaling: $1=\mathbf{1 m s}$ Type: \quad Volatile: \mathbf{N}			
24.07	Unused			
24.08	Unused			
24.09	TiS (i-part speed controller) Integral time of the speed controller can be released by means of Par2Select (24.29). TiS (24.09) defines the time within the integral part of the controller achieves the same value as the proportional part. Example: The controller generates 15% of motor nominal torque with $K p S(24.03)=3$, if the speed error $(\Delta \mathrm{n})$ is 5% of SpeedScaleAct (2.29). On that condition and with TiS (24.09) $=300 \mathrm{~ms}$ follows: - the controller generates 30% of motor nominal torque, if the speed error $(\Delta \mathrm{n})$ is constant, after 300 ms are elapsed (15% from proportional part and 15% from integral part). Setting TIS (24.09) to 0 ms disables the integral part of the speed controller and resets its integrator. Int. Scaling: $1=1 \mathrm{~ms}$ Type: I Volatile: N			
24.10	TiSInitValue (initial value for i-part speed controller) Initial value of the speed controller integrator, in percent of MotNomTorque (4.23). The integrator is set as soon as RdyRef [MainStatWord (8.01)] becomes valid. Int. Scaling: $100=1 \%$ Type: SI Volatile: N	Nへへ్ల		

Index	Signal / Parameter name	-		=	
24.11	BalRef (balance speed reference) External value in percent of MotNomTorque (4.23). Both, i-part and output of the speed controller are forced to BalRef (24.11) when AuxCtrIWord (7.02) bit $8=1$. Int. Scaling: $100=1 \%$ Type: SI Volatile: N				
24.12	DerivTime (d-part speed controller) Speed controller derivation time. DerivTime (24.12) defines the time within the speed controller derives the error value. The speed controller works as PI controller, if DerivTime (24.12) is set to zero. Int. Scaling: $1=\mathbf{1 m s}$ Type: \quad Volatile: N				
24.13	DerivFiltTime (filter time for d-part speed controller) Derivation filter time. Int. Scaling: $1=\mathbf{1 m s}$ Type: I Volatile: N				
24.14	AccCompDerTime (acceleration compensation derivation time) AccCompDerTime (24.14) compensates the inertia by adding the derived and weighted SpeedRef4 (2.18) to the speed controller output. The acceleration compensation is inactive, if AccCompDerTime (24.14) is set to zero. Example: AccCompDerTime (24.14) equals the time required to accelerate the drive to SpeedScaleAct (2.29) with motor nominal torque. Int. Scaling: $10=1$ s Type: I Volatile: N				
24.15	AccCompFiltTime (filter time acceleration compensation) Acceleration compensation filter time. $\text { Int. Scaling: } 1==1 \mathrm{~ms} \quad \text { Type: } \quad \text { I } \quad \text { Volatile: } \mathrm{N}$				
24.16	Unused				
	Speed adaptive proportional gain and integral time: or In certain applications it is useful to increase / decrease the proportional gain [KpS (24.03)] and decrease / increase the integral time [TiS (24.09)] at low speeds to improve the performance of the speed control. The linear increase and decrease of these parameters starts at KpSTiSMaxSpeed (24.18) and ends at KpSTiSMinSpeed (24.17) by means of KpSValMinSpeed (24.19) and TiSValMinSpeed (24.20). The speed adaptation is valid for positive and negative speeds.				

Index	Signal / Parameter name			=				
24.29	Par2Select (selector for $\mathbf{2}^{\text {nd }}$ set of speed controller parameters) Select active speed controller parameters: 0 = ParSet1 1 = ParSet2 2 = SpeedLevel 3 = SpeedError 4 = DI1 5 = DI2 6 = DI3 7 = DI4 8 = DI5 9 = DI6 10 = DI7 11 = DI8 $12=$ DI9 $13=$ DI10 14 = DI11 $15=$ MCW Bit11 16 = MCW Bit12 17 = MCW Bit13 18 = MCW Bit14 19 = MCW Bit15 $20=$ ACW Bit12 21 = ACW Bit13 22 = ACW Bit14 23 = ACW Bit15 parameter set 1 [KpS (24.03) and TiS (24.09)] is active, default parameter set 2 [KpS2 (24.27) and TiS2 (24.28)] is active If \mid MotSpeed (1.04)\| $\leq \operatorname{ISpeedLev}(50.10) \mid$, then parameter set1 is active. If \mid MotSpeed (1.04)\| > ISpeedLev (50.10)	, then parameter set 2 is active. If	SpeedErrNeg (2.03)	\leq ISpeedLev (50.10)\|, then parameter set1 is active. If \| SpeedErrNeg (2.03)	> ISpeedLev (50.10)I, then parameter set 2 is active. $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active $0=$ parameter set 1 is active, $1=$ parameter set 2 is active, only available with digital extension board $0=$ parameter set 1 is active, $1=$ parameter set 2 is active, only available with digital extension board $0=$ parameter set 1 is active, $1=$ parameter set 2 is active, only available with digital extension board $0=$ parameter set 1 is active, $1=$ parameter set 2 is active, MainCtrIWord (7.01) bit 11 (7.01) bit 12 $0=$ parameter set 1 is active, $1=$ parameter set 2 is active, MainCtrIWord (7.01) bit 13 (7.01) bit 14 $0=$ paramete (7.01) bit 15 $0=$ parameter set 1 is active, $1=$ parameter set 2 is active, AuxCtrIWord (7.02) bit 12 $0=$ parameter set 1 is active, 1 = parameter set 2 is active, AuxCtrIWord (7.02) bit 13 $0=$ parameter set 1 is active, $1=$ parameter set 2 is active, AuxCtrIWord (7.02) bit 14 (7.02) bit 15 Note: Load and speed dependent adaptation parameters are valid regardless of the selected parameter set. Int. Scaling: $1=\mathbf{=}$ Type: C Volatile: \mathbf{N}			ш

Index	Signal / Parameter name		EO
	Torque reference		
25.01	TorqRefA (torque reference A) External torque reference in percent of MotNomTorque (4.23). TorqRefA (25.01) can be scaled by LoadShare (25.03). Note: TorqRefA (25.01) is only valid, if TorqRefA Sel (25.10) = TorqRefA2501. Int. Scaling: $100=1 \%$ Type: SI Volatile: Y	N్న్న్ల	\% 0
25.02	TorqRefA FTC (torque reference A filter time) TorqRefA (25.01) filter time. Int. Scaling: 1 == 1 ms Type: SI Volatile: N	$\begin{array}{lll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 7 \end{array}$	\%
25.03	LoadShare (load share) Scaling factor TorqRefA (25.01). Int. Scaling: $10=1 \%$ Type: SI Volatile: N	운	ㅇํ ш
25.04	TorqRefB (torque reference B) External torque reference in percent of MotNomTorque (4.23). TorqRefB (25.04) is ramped by TorqRampUp (25.05) and TorqRampDown (25.06). Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{Y}		- ${ }^{\circ}$
25.05	TorqRampUp (torque ramp up) Ramp time from 0 \% to 100 \%, of MotNomTorque (4.23), for. TorqRefB (25.04). Int. Scaling: $100=1 \mathrm{~s}$ Type: I Volatile: N	0 어	08
25.06	TorqRampDown (torque ramp down) Ramp time from 100% to 0%, of MotNomTorque (4.23), for. TorqRefB (25.04). Int. Scaling: $100=1$ s Type: I Volatile: N	$\bigcirc \bigcirc$	∞
25.07	Unused		
25.08	Unused		
25.09	Unused		
25.10	TorqRefA Sel (torque reference A selector) Selector for TorqRefExt (2.24): $0=$ TorqRefA2501 TorqRefA (25.01), default $1=$ Al1 analog input Al1 $2=$ Al2 analog input Al2 $3=$ Al3 analog input AI3 $4=$ Al4 analog input Al4 $5=$ Al5 analog input Al5 $6=$ Al6 analog input Al6 Int. Scaling: $\mathbf{1 = 3}$ Type: C		ш

Index	Signal / Parameter name		
$\begin{aligned} & \text { No } \\ & \text { 을 } \\ & \text { O} \\ & \text { OU } \end{aligned}$	Torque reference handling		
26.01	TorqSel (torque selector) Torque reference selector: $0=$ Zero \quad zero control, torque reference $=0$ 1 = Speed speed control, default 2 = Torque torque control 3 = Minimum minimum control: min [TorqRef1 (2.08), TorqRef2 (2.09)] 4 = Maximum maximum control: max [TorqRef1 (2.08), TorqRef2 (2.09)] $5=$ Add \quad add control: TorqRef1 (2.08) +TorqRef2 (2.09), used for window control $6=$ Limitation limitation control: TorqRef1 (2.08) limits TorqRef2 (2.09). If TorqRef1 (2.08) = 50%, then TorqRef2 (2.09) is limited to $\pm 50 \%$. The output of the torque reference selector is TorqRef3 (2.10). The currently used control mode is displayed in CtriMode (1.25). If the drive is in torque control AuxStatWord (8.02) bit 10 is set. Note: TorqSel (26.01) is only valid, if TorqMuxMode (26.04) $=$ TorqSel2601. Int. Scaling: $1=1$ Type: C Volatile: \mathbf{N}		ш
26.02	LoadComp (load compensation) Load compensation - in percent of MotNomTorque (4.23) -added to TorqRef3 (2.10). The sum of TorqRef3 (2.10) and the LoadComp (26.02) results in TorqRef4 (2.11). Note: Since this torque offset is added, it must be set to zero prior to stopping the drive. Int. Scaling: $100=1 \%$ Type: SI Volatile: N	$\stackrel{\sim}{\sim}$	ш
26.03	TorqSeIMod (torque selector mode) Mode setting for the torque selector: $\begin{aligned} & 0=\text { Auto } \quad \text { the torque selector is bypassed and the drive is forced to speed control in } \\ & \text { case the mode described in: } \\ & \text { - Off1Mode (21.02), } \\ & \text { - StopMode (21.03), } \\ & \text { - E StopMode (21.04), } \\ & \text { - LocalLossCtrl (30.27), } \\ & \text { - ComLossCtrl (30.28), } \\ & \text { - MaultStopMode (30.30), } \\ & \text { - M2TorqProvTime (42.10), } \\ & \text { - Fix CorovTime (49.40), } \\ & \text { - Ch2 ComLossCtrl (70.05) or } \\ & \text { is active and the parameter is set to RampStop or TorqueLimit, default } \\ & \text { the torque selector is fixed to the value set by TorqSel (26.01), } \end{aligned}$ Note: The setting of TorqSelMod (26.03) is especially affecting drives using torque control (e.g. masterfollower). Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{N}		ш

Index	Signal / Parameter name		0
	Torque selector:		
26.04	TorqMuxMode (torque multiplexer mode) TorqMuxMode (26.04) selects a pair of operation modes. The change between operation modes is done by means of TorqMux (26.05). Torque reference multiplexer:		${ }^{-1}$

Index	Signal / Parameter name				
26.05	TorqMux (torque multiplexer) TorqMux (26.05) selects a binary input to change between operation modes. The choice of the operation modes is provided by means of TorqMuxMode (26.04). Torque reference multiplexer binary input:				ш
26.06	Unused				
26.07	Unused				

Index	Signal / Parameter name				
26.08	GearStartTorq (gearbox starting torque) Gear backlash compensation: - GearStartTorq (26.08) is the reduced torque limit - in percent of MotNomTorque (4.23) used after a torque direction change. The torque limit is reduced for the time defined by GearTorqTime (26.09).				- \quad
26.09	GearTorqTime (gearbox torque time) Gear backlash compensation: - When the torque is changing its direction, the torque limit is reduced for the time defined by GearTorqTime (26.09). Int. Scaling: $1=1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}		8		©
26.10	GearTorqRamp (gearbox torque ramp) Gear backlash compensation: - When the torque is changing its direction, the torque limit is reduced for the time defined by GearTorqTime (26.09). After the time has elapsed, the torque limit is increased to its normal value according to the ramp time defined by GearTorqRamp (26.10). GearTorqRamp (26.10) defines the time within the torque increases from zero- to MotNomTorque (4.23). Int. Scaling: $1=1 \mathrm{~ms}$ Type: Volatile: N		O		$\stackrel{\infty}{8}$
26.11	Unused				
26.12	Unused				

Index	Signal / Parameter name		$\stackrel{\times}{\text { ax }}$		
26.13	TorqScale (torque scaling) Scaling of TorqRefUsed (2.13) and MotTorq (1.08): Int. Scaling: $100=\mathbf{= 1}$ Type: I Volatile: Y	$\overline{0}$	-		ш
26.14	Unused				
26.15	TorqCorrect (torque correction) Torque correction value in percent of MotNomTorque (4.23): $0=$ NotUsed no torque correction used, default 1 = Al1 torque correction via Al1 (fast AI) $2=$ Al2 torque correction via Al2 (fast AI) $3=$ AI3 \quad torque correction via AI3 4 = AI4 \quad torque correction via AI4 $5=$ Al5 \quad torque correction via Al5 6 = AI6 \quad torque correction via AI6 Note: If TorqCorrect (26.15) = AI3 then AI3 is connected to TorqCorr (2.14) and thus added to TorqRefUsed (2.13). Note: Since this torque offset is added, it must be set to zero prior to stopping the drive. Int. Scaling: $1=1 \quad$ Type: \quad C Volatile: N	0 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & \hline \end{aligned}$		ш
$\begin{aligned} & \text { O} \\ & \text { M } \\ & \text { 을 } \\ & \text { O } \\ & \text { O } \end{aligned}$	Fault functions				
30.01	StallTime (stall time) The time allowed for the drive to undershoot StallSpeed (30.02) and exceed StallTorq (30.03). A triggered stall protection leads to F531 MotorStalled [FaultWord2 (9.02) bit 14]. The stall protection is inactive, if StallTime (30.01) is set to zero. Int. Scaling: $1==1 \mathrm{~s} \quad$ Type: \quad Volatile: N		응		0
30.02	StallSpeed (stall speed) Actual speed limit used for stall protection. Internally limited from: 0 rpm to (2.29) rpm Int. Scaling: (2.29) Type: I Volatile: N		응		

Signal and parameter list

Index	Signal / Parameter name					
30.03	StallTorq (stall torque) Actual torque limit - in percent of MotNomTorque (4.23) - used for stall protection. Int. Scaling: $100=1 \%$ Type: \quad Volatile: N				\bigcirc	0
30.04	Unused					
30.05	ResCurDetectSel (residual current detection selector) The drive trips with F505 ResCurDetect [FaultWord1 (9.01) bit 4] if the earth current exceeds ResCurDetectLim (30.06) for ResCurDetectDel (30.07): $0=$ NotUsed residual current detection is blocked, default $1=$ AI4 \quad The earth current is measured by means of a current difference sensor in combination with AI4 (X3:11 and X3:12) on the SDCS-IOB-3 board. 2 = DI1 \quad The earth current is measured by means of an external device (e.g. Bender 3 = DI2 The earth current is measured by means of an external device (e.g. Bender $4=$ DI3 \quad The earth current is measured by means of an external device (e.g. Bender $5=$ DI4 \quad The earth current is measured by means of an external device (e.g. Bender $6=$ DI5 \quad The earth current is measured by means of an external device (e.g. Bender $7=$ DI6 \quad relays). \quad The earth current is measured by means of an external device (e.g. Bender 8 = DI7 \quad The earth current is measured by means of an external device (e.g. Bender $9=$ D18 relays). $9=$ DI8 \quad The earth current is measured by means of an external device (e.g. Bender $10=$ DI9 \quad The earth current is measured by means of an external device (e.g. Bender 11 = D110 relays). Only available with digital extension board $11=$ DI10 The earth current is measured by means of an external device (e.g. Bender 12 = DI11 The earth current is measured by means of an external device (e.g. Bender relays). Only available with digital extension board Note: If ResCurDetectSel (30.05) is connected to a digital input only ResCurDetectDel (30.07) remains valid. The trip limit ResCurDetectLim (30.06) is adjusted at the external device. Int. Scaling: $1==1 \quad$ Type: \mathbf{C} Volatile: \mathbf{N}					ш
30.06	ResCurDetectLim (residual current detection limit) Residual current detection tripping level in amperes at the primary side of the current transformer (ratio is $400: 1$). If ResCurDetectSel (30.05) is connected to a digital input ResCurDetectLim (30.06) is deactivated, because the limit is adjusted at the external device. Int. Scaling: $10=1$ A Type: I Volatile: N			-		¢
30.07	ResCurDetectDel (residual current detection delay) Time delay for F505 ResCurDetect [FaultWord1 (9.01)]. Int. Scaling: 1 == 1 ms Type: I Volatile: N					
30.08	ArmOvrVoltLev (armature overvoltage level) The drive trips with F503 ArmOverVolt [FaultWord1 (9.01) bit 2] if ArmOvrVoltLev (30.08) - in percent of M1NomVolt (99.02) - is exceeded. It is recommended to set ArmOvrVoltLev (30.08) at least 20 \% higher than M1NomVolt (99.02). Example: With M1NomVolt (99.02) $=525 \mathrm{~V}$ and ArmOvrVoltLev (30.08) $=120 \%$ the drive trips with armature voltages > 630 V . The overvoltage supervision is inactive, if ArmOvrVoltLev (30.08) is set to 328% or higher. Int. Scaling: $10=1 \%$ Type: \quad Volatile: \mathbf{N}					$\bigcirc 0$

| Index | \quad Signal / Parameter name |
| :--- | :--- | :--- | :--- | :--- |,

Signal and parameter list

Index	Signal / Parameter name	E	$\stackrel{\stackrel{x}{6}}{\stackrel{1}{8}}$	0	O
30.16	M1OvrSpeed (motor 1 overspeed) The drive trips with F532 MotOverSpeed [FaultWord2 (9.02) bit 15] if M1OvrSpeed (30.16) is exceeded. It is recommended to set M1OvrSpeed (30.16) at least 20% higher than the maximum motor speed. Internally limited from: 0rpm to $(2.29) * \frac{32767}{20000} r p m$ The overspeed fault for motor 1 is inactive, if M1OvrSpeed (30.16) is set to zero. Int. Scaling: (2.29) Type: I Volatile: N	\bigcirc	응	웅	0

Signal and parameter list

Index	Signal / Parameter name		知			-
30.18	CurRippleSel (current ripple selector) CurRippleSel (30.18) determines the reaction when CurRippleLim (30.19) is reached: $0=$ NotUsed no reaction 1 = Fault the drive trips with F517 ArmCurRipple [FaultWord2 (9.02) bit 0], default 2 = Alarm A117 ArmCurRipple [AlarmWord2 (9.07) bit 0] is set Note: The current ripple function detects: - a broken fuse, thyristor or current transformer (T51, T52) - too high gain of the current controller Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{N}					ш
30.19	CurRippleLim (current ripple limit) Threshold for CurRippleSel (30.18), in percent of M1NomCur (99.03). Typical values when a thyristor is missing: - armature about 300 \% - high inductive loads (e.g. excitation) about 90% Int. Scaling: $100=1 \%$ Type: \quad Volatile: N					ш
30.20	Unused					
30.21	PwrLossTrip (power loss trip) The action taken, when the mains voltage undershoots UNetMin2 (30.23): 0 = Immediately the drive trips immediately with F512 MainsLowVolt [FaultWord1 (9.01) bit 11], default $1=$ Delayed \quad A111 MainsLowVolt [AlarmWord1 (9.06) bit 10] is set as long as the mains voltage recovers before PowrDownTime (30.24) is elapsed, otherwise F512 MainsLowVolt [FaultWord1 (9.01) bit 11] is generated Int. Scaling: $1==1$ Type: C Volatile: N					ш
30.22	UNetMin1 (mains voltage minimum 1) First (upper) limit for mains undervoltage monitoring in percent of NomMainsVolt (99.10). If the mains voltage undershoots UNetMin1 (30.22) following actions take place: - the firing angle is set to ArmAlphaMax (20.14), - single firing pulses are applied in order to extinguish the current as fast as possible, - the controllers are frozen, - the speed ramp output is updated from the measured speed and - A111 MainsLowVolt [AlarmWord1 (9.06) bit 10] is set as long as the mains voltage recovers before PowrDownTime (30.24) is elapsed, otherwise F512 MainsLowVolt [FaultWord1 (9.01) bit 11] is generated. Note: UNetMin2 (30.23) isn't monitored, unless the mains voltage drops below UNetMin1 (30.22) first. Thus for a proper function of the mains undervoltage monitoring UNetMin1 (30.22) has to be larger than UNetMin2 (30.23). Int. Scaling: $100=1 \%$ Type: I Volatile: N					0

Index	Signal / Parameter name				
30.23	UNetMin2 (mains voltage minimum 2) Second (lower) limit for mains undervoltage monitoring in percent of NomMainsVolt (99.10). If the mains voltage undershoots UnetMin2 (30.23) following actions take place: - if PwrLossTrip (30.21) = Immediately: o the drive trips immediately with F512 MainsLowVolt [FaultWord1 (9.01) bit 11] - if PwrLossTrip (30.21) = Delayed: o field acknowledge signals are ignored, o the firing angle is set to ArmA/phaMax (20.14), o single firing pulses are applied in order to extinguish the current as fast as possible, o the controllers are frozen o the speed ramp output is updated from the measured speed and o A111 MainsLowVolt [AlarmWord1 (9.06) bit 10] is set as long as the mains voltage recovers before PowrDownTime (30.24) is elapsed, otherwise F512 MainsLowVolt [FaultWord1 (9.01) bit 11] is generated. Note: UNetMin2 (30.23) isn't monitored, unless the mains voltage drops below UNetMin1 (30.22) first. Thus for a proper function of the mains undervoltage monitoring UNetMin1 (30.22) has to be larger than UNetMin2 (30.23). Int. Scaling: $100=1 \%$ Type: Volatile: \mathbf{N}	\bigcirc	$\stackrel{1}{6}$	O	0
30.24	PowrDownTime (power down time) The mains voltage must recover (over both limits) within PowrDownTime (30.24). Otherwise F512 MainsLowVolt [FaultWord1 (9.01) bit 11] will be generated. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}		-		0
30.25	Unused				
30.26	Unused				

Index	Signal / Parameter name				
30.28	ComLossCtrl (communication loss control) ComLossCtrl (30.28) determines the reaction to a communication control loss (fieldbusses - Rtype, DCSLink - drive-to-drive respectively master-follower) see also CommandSel (10.01). Depending on the type of communication loss either F528 FieldBusCom [FaultWord2 (9.02) bit 11] or F544 P2PandMFCom [FaultWord3 (9.03) bit 11] is set with: $0=$ RampStop \quad The input of the drives ramp is set to zero. Thus the drive stops according to E StopRamp (22.04). When reaching M1ZeroSpeedLim (20.03) the firing pulses are set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked, the contactors are opened, field exciter and fans are stopped. In case TorqSelMod (26.03) = Auto and communication loss is active the torque selector is bypassed and the drive is forced to speed control, default. $1=$ TorqueLimit \quad The output of the drives ramp is set to zero. Thus the drive stops at the active torque limit. When reaching M1ZeroSpeedLim (20.03) the firing pulses are set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked, the contactors are opened, field exciter and fans are stopped. In case TorqSelMod (26.03) = Auto and communication loss is active the torque selector is bypassed and the drive is forced to speed control. $2=$ CoastStop The firing pulses are immediately set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked, the contactors are opened, field exciter and fans are stopped. 3 = DynBraking dynamic braking Depending on the type of communication loss either A128 FieldBusCom [AlarmWord2 (9.02) bit 11] or A112 P2PandMFCom [AlarmWord1 (9.01) bit 11] is set with: 4 = LastSpeed the drive continues to run at the last speed before the warning 5 = FixedSpeed1 the drive continuous to run with FixedSpeed1 (23.02) Note: The time out for ComLossCtrl (30.28) is set by: - FB TimeOut (30.35) for all R-type fieldbusses and - MailBoxCycle1 (94.13) to MailBoxCycle4 (94.31) for the DCSLink (drive-to-drive respectively master-follower communication). Int. Scaling: $1==1 \quad$ Type: C Volatile: \mathbf{N}				ш
30.29	AI Mon4mA (analog input 4 mA fault selector) AI Mon $4 m$ A (30.29) determines the reaction to an undershoot of one of the analog inputs under 4 $\mathrm{mA} / 2 \mathrm{~V}$ - if it is configured to this mode: $0=$ NotUsed no reaction 1 = Fault \quad the drive stops according to FaultStopMode (30.30) and trips with F551 AIRange [FaultWord4 (9.04) bit 2], default 2 = LastSpeed the drive continues to run at the last speed and sets A127 AIRange [AlarmWord2 (9.07) bit 10] 3 = FixedSpeed1 the drive continues to run with FixedSpeed1 (23.02) and sets A127 AlRange [AlarmWord2 (9.07) bit 10]		-		ш

Index	Signal / Parameter name		츤
30.30	FaultStopMode (fault stop mode) FaultStopMode (30.30) determines the reaction to a fault of trip level 4: 0 = RampStop 1 = TorqueLimit $2 \text { = CoastStop }$ $3 \text { = DynBraking }$ Note: FaultStopMode (30.30) doesn't apply to communication faults. Int. Scaling: $1==1 \quad$ Type: C Volatile: \mathbf{N}		0
30.31	ExtFaultSel (external fault selector) The drive trips with F526 ExternalDI [FaultWord2 (9.02) bit 9] if a binary input for an external fault is selected and 1 : $0=$ NotUsed 1 = DI1 2 = DI2 3 = DI3 4 = DI4 $5=$ DI5 6 = DI6 7 = DI7 8 = DI8 9 = DI9 $10=$ Dl10 11 = Dl11 $12=$ MCW Bit11 13 = MCW Bit12 14 = MCW Bit13 15 = MCW Bit14 16 = MCW Bit15 17 = ACW Bit12 18 = ACW Bit13 19 = ACW Bit14 20 = ACW Bit15 Int. Scaling: $1==1$ no reaction, default $1=$ fault, $0=$ no fault $1=$ fault, $0=$ no fault, Only available with digital extension board $1=$ fault, $0=$ no fault, Only available with digital extension board $1=$ fault, $0=$ no fault, Only available with digital extension board $1=$ fault, $0=$ no fault, MainCtrIWord (7.01) bit 11 $1=$ fault, $0=$ no fault, MainCtrIWord (7.01) bit 12 $1=$ fault, $0=$ no fault, MainCtrIWord (7.01) bit 13 $1=$ fault, $0=$ no fault, MainCtrIWord (7.01) bit 14 $1=$ fault, $0=$ no fault, MainCtrIWord (7.01) bit 15 $1=$ fault, $0=$ no fault, AuxCtrIWord (7.02) bit 12 $1=$ fault, $0=$ no fault; AuxCtrIWord (7.02) bit 13 $1=$ fault, $0=$ no fault, AuxCtrIWord (7.02) bit 14 $1=$ fault, $0=$ no fault, AuxCtrIWord (7.02) bit 15 Volatile: \mathbf{N}	$\begin{array}{\|l\|l\|l\|} \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \\ \vdots & 3 & 0 \\ 0 & 0 & 2 \end{array}$	0

Index	Signal / Parameter name					-
30.32	ExtAlarmSel (external alarm selector) The drive sets A126 ExternalDI [AlarmWord2 (9.07) bit 9] if a binary input for an external alarm is selected and 1: Int. Scaling: $1==1 \quad$ Type: C Volatile: \mathbf{N} N AuxCtra (7.02) bit 15					0
30.33	```ExtFaultOnSel (external fault on selector) ExtFaultOnSel (30.33) determines the reaction to an external fault: \(0=\) Fault \(\quad\) external fault is always valid independent from drive state, default 1 = Fault\&RdyRun external fault is only valid when drive state is RdyRun [MainStatWord (8.01) bit 1] for at least 6 s Int. Scaling: \(1==1 \quad\) Type: \(\quad\) C Volatile: \(\mathbf{N}\)```					ш
30.34	```ExtAlarmOnSel (external alarm on selector) ExtAlarmOnSel (30.34) determines the reaction to an external alarm: \(0=\) Alarm \(\quad\) external alarm is always valid independent from drive state, default 1 = Alarm\&RdyRun external alarm is only valid when drive state is RdyRun [MainStatWord (8.01) bit 1] for at least 6 s Int. Scaling: \(1=\mathbf{= 1} \quad\) Type: C Volatile: \(\mathbf{N}\)```					ш
30.35	FB TimeOut (fieldbus time out) Time delay before a communication break with a fieldbus is declared. Depending on the setting of ComLossCtrl (30.28) either F528 FieldBusCom [FaultWord2 (9.02) bit 11] or A128 FieldBusCom [AlarmWord2 (9.07) bit 11] is set. The communication fault and alarm are inactive, if FB TimeOut (30.35) is set to 0 ms . Int. Scaling: $1=\mathbf{1 m s}$ Type: \quad Volatile: \mathbf{N}				$\stackrel{\square}{6}$	0
30.36	SpeedFbFItMode (speed feedback fault mode) SpeedFbFItMode (30.36) determines the reaction to a fault of trip level 3: $0=$ CoastStop \quad The firing pulses are immediately set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked, the contactors are opened, field exciter and fans are stopped. $1 \text { = DynBraking }$ dynamic braking Note: SpeedFbFItMode (30.36) doesn't apply to communication faults. Int. Scaling: $1==1 \quad$ Type: \quad C \quad Volatile: \mathbf{N}					ш

Signal and parameter list

Index	Signal / Parameter name		$\stackrel{\stackrel{\star}{6}}{\stackrel{\circ}{¢}}$	0	
$\begin{aligned} & \text { ふ } \\ & \text { 을 } \\ & 0 \\ & \text { O} \end{aligned}$					
31.01	M1ModelTime (motor 1 model time constant) Thermal time constant for motor 1 with fan/forced cooling. The time within the temperature rises to 63% of its nominal value. The motor thermal model is blocked, if M1ModelTime (31.01) is set to zero. The value of Mot1TempCalc (1.20) is saved at power down of the drives electronics. With the very first energizing of the drives electronics the motor's ambient temperature is set to $30^{\circ} \mathrm{C}$. \triangle WARNING! The model does not protect the motor if it is not properly cooled e.g. due to dust and dirt. Int. Scaling: $10=1 \mathrm{~s} \quad$ Type: \quad Volatile: N	\bigcirc	엉		4
31.02	M1ModelTime2 (motor 1 model time 2 constant) Thermal time constant for motor 1 with fan/forced cooling if motor fan is switched off. Attention: For motors without fan set M1ModelTime (31.01) = M1ModelTime2 (31.02). Int. Scaling: $10=1 \%$ Type: Volatile: N		웅	-	ш
31.03	M1AlarmLimLoad (motor 1 alarm limit load) The drive sets A107 M1OverLoad [AlarmWord1 (9.06) bit 6] if M1AlarmLimLoad (31.03) - in percent of M1NomCur (99.03) - is exceeded. Output value for motor 1 thermal model is Mot1TempCalc (1.20). Int. Scaling: $10=1 \%$ Type: I Volatile: N		$\stackrel{\text { ¢ }}{\text { ¢ }}$	O ${ }^{\circ}$	
31.04	M1FaultLimLoad (motor 1 fault limit load) The drive trips with F507 M1OverLoad [FaultWord1 (9.01) bit 6] if M1FaultLimLoad (31.04) - in percent of M1NomCur (99.03) - is exceeded. Output value for motor 1 thermal model is Mot1TempCalc (1.20). Int. Scaling: $10=1 \%$ Type: \quad Volatile: \mathbf{N}			80°	ш

Index	Signal / Parameter name		$\stackrel{\times}{\text { ¢ }}$		
31.05	M1TempSel (motor 1 temperature selector) M1TempSel (31.05) selects motor 1 measured temperature input. The result can be seen in Mot1TemopMeas (1.22). Connection possibilities for PT100: - max. 3 PT100 for motor 1 and max. 3 PT100 for motor 2 or - up to 6 PT100 for motor 1 only. Connection possibilities PTC: - max. 1 PTC for motor 1 and max. 1 PTC for motor 2 or up to 2 PTC for motor 1 only: $0=$ NotUsed \quad motor 1 temperature measurement is blocked, default $1=1$ PT100 Al2 one PT100 connected to AI2 on SDCS-IOB-3 $2=2$ PT100 Al2 two PT100 connected to AI2 on SDCS-IOB-3 3 = 3PT100 Al2 three PT100 connected to AI2 on SDCS-IOB-3 $4=4$ PT100 AI2/3 four PT100, 3 connected to AI2 and 1 connected to AI3 on SDCS-IOB-3 $5=5$ PT100 AI2/3 five PT100, 3 connected to AI2 and 2 connected to AI3 on SDCS-IOB-3 $6=6$ PT100 Al2/3 six PT100, 3 connected to AI2 and 3 connected to AI3 on SDCS-IOB-3 $7=1 \mathrm{PT} 100$ AI7 one PT100 connected to AI7 on second RAIO $8=2$ PT100 AI7 two PT100 connected to AI7 on second RAIO $9=3$ PT100 Al7 three PT100 connected to AI7 on second RAIO $10=4 \mathrm{PT} 100$ AI7/8 four PT100, 3 connected to AI7 and 1 connected to AI8 on second RAIO $11=$ 5PT100 AI7/8 five PT100, 3 connected to AI7 and 2 connected to AI8 on second RAIO $12=6$ PT100 AI7/8 six PT100, 3 connected to AI7 and 3 connected to AI8 on second RAIO $13=1$ PTC AI2 one PTC connected to AI2 on SDCS-IOB-3 $14=2$ PTC AI2 $2 / 3$ two PTC, 1 connected to AI2 and 1 connected to AI3 on SDCS-IOB-3 $15=1$ PTC AI2/Con one PTC connected to AI2 on SDCS-CON-4 For more information see section Motor protection. Note: AI7 and AI8 have to be activated by means of AIO ExtModule (98.06). Note: In case only one PT100 is connected to an AI of the SDCS-IOB-3 the input range must be configured by jumpers to a gain of 10 . Jumper settings for input range and constant current source see DCS800 Hardware Manual. Int. Scaling: $1=1 \quad$ Type: C Volatile: \mathbf{N}		c\|cc		0
31.06	M1AlarmLimTemp (motor 1 alarm limit temperature) The drive sets A106 M1OverTemp [AlarmWord1 (9.06) bit 5] if M1AlarmLimTemp (31.06) is exceeded. Output value for motor 1 measured temperature is Mot1TempMeas (1.22). Note: The unit depends on M1TempSel (31.05). Int. Scaling: $1==1^{\circ} \mathrm{C} / 1 \Omega / 1 \quad$ Type: SI Volatile: N		-		
31.07	M1FaultLimTemp (motor 1 fault limit temperature) The drive trips with F506 M1OverTemp [FaultWord1 (9.01) bit 5] if M1FaultLimTemp (31.07) is exceeded. Output value for motor 1 measured temperature is Mot1TempMeas (1.22). Note: The unit depends on M1TempSel (31.05). Int. Scaling: $1==1^{\circ} \mathrm{C} / 1 \Omega / 1 \quad$ Type: SI Volatile: N		¢		20

Index	Signal / Parameter name				
31.08	M1KlixonSel (motor 1 klixon selector) The drive trips with F506 M1OverTemp [FaultWord1 (9.01) bit 5] if a digital input selected and the klixon is open:	?	\cdots		0
$\begin{aligned} & \text { M } \\ & \stackrel{0}{3} \\ & \mathbf{0} \\ & \text { U } \end{aligned}$	DCS800 Control Panel display				
	Signal and parameter visualization on the DCS800 Control Panel: Setting a display parameter to 0 results in no signal or parameter displayed. Setting a display parameter from 101 to 9999 displays the belonging signal or parameter. If a signal or parameter does not exist, the display shows "n.a.".				
34.01	DispParam1Sel (select signal / parameter to be displayed in the DCS800 Control Panel row 1) Index pointer to the source of the DCS800 Control Panel first display row [e.g. 101 equals MotSpeedFilt (1.01)]. Int. Scaling: 1 == 1 Type: I Volatile: N		응ㅇㅇ웅		0
34.02	Unused				
34.03	Unused				
34.04	Unused				
34.05	Unused				
34.06	Unused				
34.07	Unused				

Signal and parameter list

Index	Signal / Parameter name		=
40.01	KpPID (p-part PID controller) Proportional gain of the PID controller. Example: The controller generates 15% output with $K p P I D(40.01)=3$, if the input is 5%. Int. Scaling: $100=1 \quad$ Type: \quad Volatile: N	\bigcirc -	ш
40.02	TiPID (i-part PID controller) Integral time of the PID controller. TiPID (40.02) defines the time within the integral part of the controller achieves the same value as the proportional part. Example: The controller generates 15% output with $K p P I D(40.01)=3$, if the input is 5%. On that condition and with TiPID (40.02) $=300 \mathrm{~ms}$ follows: - the controller generates 30% output, if the input is constant, after 300 ms are elapsed (15 \% from proportional part and 15% from integral part). Int. Scaling: $1=1 \mathrm{~ms}$ Type: Volatile: N		¢ -
40.03	TdPID (d-part PID controller) PID controller derivation time. TdPID (40.03) defines the time within the PID controller derives the error value. The PID controller works as PI controller, if TdPID (40.03) is set to zero. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}	$\left\lvert\, \begin{array}{ll} 0 & 0 \\ 0 \\ 0 \end{array}\right.$	¢ ш
40.04	TdFiltPID (filter time for d-part PID controller) Derivation filter time. Int. Scaling: $1=\mathbf{= 1} \mathrm{ms}$ Type: \quad Volatile: \mathbf{N}		$\stackrel{6}{8}$ -
40.05	Unused		
40.06	PID Act1 (PID controller actual input value 1 index) Index pointer to the source of the PID controller actual input value 1. The format is -xxyy, with: $-=$ negate actual input value 1, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index [e.g. 101 equals MotSpeedFilt (1.01)]. Int. Scaling: $1=1 \quad$ Type: \quad SI Volatile: \mathbf{N}		ш
40.07	PID Act2 (PID controller actual input value 2 index) Index pointer to the source of the PID controller actual input value 2. The format is -xxyy, with: - = negate actual input value 2, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index [e.g. 101 equals MotSpeedFilt (1.01)]. Int. Scaling: $1=\mathbf{1}$ Type: SI Volatile: N		' ш
40.08	PID Ref1Min (PID controller minimum limit reference input value 1) Minimum limit of the PID controller reference input value 1 in percent of the source of PID Ref1 (40.13). Int. Scaling: $\quad 100==1 \% \quad$ Type: SI Volatile: N	$\stackrel{\sim}{\sim} 0$	- ${ }^{\circ}$ -
40.09	PID Ref1Max (PID controller maximum limit reference input value 1) Maximum limit of the PID controller reference input value 1 in percent of the source of PID Ref1 (40.13). Int. Scaling: $\quad 100==1 \% \quad$ Type: SI Volatile: N	-	- ${ }^{\circ}$
40.10	PID Ref2Min (PID controller minimum limit reference input value 2) Minimum limit of the PID controller reference input value 2 in percent of the source of PID Ref2 (40.14). Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{N}	$\stackrel{\sim}{\sim}$	ㅇํ m
40.11	PID Ref2Max (PID controller maximum limit reference input value 2) Maximum limit of the PID controller reference input value 2 in percent of the source of PID Ref2 (40.14). Int. Scaling: $100=\mathbf{= 1 \%}$ Type: SI Volatile: \mathbf{N}	$\bigcirc \stackrel{\sim}{\sim}$	$\mathrm{O}^{\circ} \mathrm{O}$

Index	Signal / Parameter name		$\stackrel{\times}{\text { ® }}$	\%	
40.12	PID Mux (PID controller reference input selector/multiplexer) PID controller reference input selector: 0 = PID1 reference input 1 is selected, default 1 = PID2 reference input 2 is selected 2 = DI1 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected 3 = DI2 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected 4 = DI3 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected 5 = DI4 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected 6 = DI5 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected 7 = DI6 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected 8 = DI7 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected 9 = DI8 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected 10 = DI9 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected; only available with digital extension board 11= DI10 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected; only available with digital extension board $12=$ DI11 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected; only available with digital extension board 13 = MCW Bit11 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected; MainCtrIWord (7.01) bit 11 14 = MCW Bit12 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected; MainCtrIWord (7.01) bit 12 $15=$ MCW Bit13 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected; MainCtrIWord (7.01) bit 13 $16=$ MCW Bit14 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected; MainCtrIWord (7.01) bit 14 $17=$ MCW Bit15 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected; MainCtrIWord (7.01) bit 15 18 = ACW Bit12 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected; AuxCtrIWord (7.02) bit 12 19 = ACW Bit13 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected; AuxCtrlWord (7.02) bit 13 $20=$ ACW Bit14 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected; AuxCtrlWord (7.02) bit 14 21 = ACW Bit15 $1=$ reference input 2 is selected; $0=$ reference input 1 is selected; AuxCtrlWord (7.02) bit 15 Type: Volatile: N		$\begin{array}{\|c\|} \hline 0 \\ \\ 0 \\ 3 \\ 0 \\ 0 \\ 4 \end{array}$	$\stackrel{-}{\square}$	ш
40.13	PID Ref1 (PID controller reference input value 1 index) Index pointer to the source of the PID controller reference input value 1. The format is -xxyy, with: - = negate reference input value 1, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index [e.g. 201 equals SpeedRef2 (2.01)]. Int. Scaling: $1==1 \quad$ Type: SI Volatile: \mathbf{N}		\%		ш
40.14	PID Ref2 (PID controller reference input value 2 index) Index pointer to the source of the PID controller reference input value 2. The format is -xxyy, with: - = negate reference input value 2, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index [e.g. 201 equals SpeedRef2 (2.01)]. Int. Scaling: $1==1 \quad$ Type: SI Volatile: N		\%		ш
40.15	Unused				
40.16	PID OutMin (PID controller minimum limit output value) Minimum limit of the PID controller output value in percent of the used PID controller input. Int. Scaling: $100=1 \%$ Type: SI Volatile: \mathbf{N}			악	แ
40.17	PID OutMax (PID controller maximum limit output value) Maximum limit of the PID controller output value in percent of the used PID controller input. Int. Scaling: $100=1 \%$ Type: SI Volatile: N			8	แ

Index	Signal / Parameter name			家	=
40.18	PID OutDest (PID controller output value index) Index pointer to the sink of the PID controller output value. The format is -xxyy, with: - = negate output value, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index [e.g. 2301 equals SpeedRef (23.01)]. Int. Scaling: $1=\mathbf{1}$ Type: SI Volatile: N				ш
40.19	PID ResetIndex (PID controller reset index) The PID controller reset is controlled by a selectable bit - see PID ResetBitNo (40.20) - of the source (signal/parameter) selected with this parameter. The format is -xxyy, with: - = invert reset signal, $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index. Examples: - If PID ResetIndex (40.19) = 701 (main control word) and PID ResetBitNo (40.20) $=12$ then the PID controller reset is active when bit 12 is high. - If PID ResetIndex (40.19) $=-701$ (main control word) and PID ResetBitNo (40.20) $=12$ then the PID controller reset is active when bit 12 is low. Int. Scaling: $1=\mathbf{1} \quad$ Type: \quad SI Volatile: \mathbf{N}				' \quad -
40.20	PID ResetBitNo (PID controller reset bit number) Bit number of the signal/parameter selected with PID ResetIndex (40.19). Int. Scaling: $1==1$ Type: Volatile: N			0100	ш
40.21	PID Reserved (PID reserved) reserved Int. Scaling: $1==1 \quad$ Type:				ш
Y O O O U	Brake control				
	Brake Control is activated by means of M1BrakeCtrl (42.01) and controls a mechanical brake automatically with the Run [MainCtrIWord (7.01) bit 3] command. The internal logic is designed to meet the requirements of holding brakes, e.g. carriage drives or coilers, as well as the requirements for hanging load, e.g. cranes.				
Overview brake control					

Signal and parameter list

Index	Signal / Parameter name				
42.02	M1BrakeAckSel (motor 1 brake acknowledge selector) The drive sets either A122 MechBrake [AlarmWord2 (9.07) bit 5], F552 MechBrake [FaultWord4 (9.04) bit 3] or A116 BrakeLongFalling [AlarmWord1 (9.06) bit 15] depending on BrakeFaultFunc (42.06) if a digital input is selected and the brake acknowledge fails: $0=$ NotUsed brake acknowledge is blocked, default 1 = DI1 2 = DI2 $3=$ DI3 4 = DI4 5 = DI5 6 = DI6 7 = DI7 8 = DI8 $9=$ DI9 $10=$ DI10 $11=$ DI11 $12=$ MCW Bit11 13 = MCW Bit12 14 = MCW Bit13 $15=$ MCW Bit14 $16=$ MCW Bit15 17 = ACW Bit12 18 = ACW Bit13 19 = ACW Bit14 $20=$ ACW Bit15 Int. Scaling: $1==1$ $0=$ brake is closed (applied), $1=$ brake is open (lifted) $0=$ brake is closed (applied), $1=$ brake is open (lifted) $0=$ brake is closed (applied), $1=$ brake is open (lifted) $0=$ brake is closed (applied), $1=$ brake is open (lifted) $0=$ brake is closed (applied), $1=$ brake is open (lifted) $0=$ brake is closed (applied), $1=$ brake is open (lifted) $0=$ brake is closed (applied), $1=$ brake is open (lifted) $0=$ brake is closed (applied), $1=$ brake is open (lifted) $0=$ brake is closed (applied), $1=$ brake is open (lifted), only available with digital extension board $0=$ brake is closed (applied), $1=$ brake is open (lifted), only available with digital extension board $0=$ brake is closed (applied), $1=$ brake is open (lifted), only available with digital extension board $0=$ brake is closed (applied), $1=$ brake is open (lifted), MainCtrlWord (7.01) bit 11 $0=$ brake is closed (applied), $1=$ brake is open (lifted), MainCtrIWord (7.01) bit 12 $0=$ brake is closed (applied), $1=$ brake is open (lifted), MainCtrIWord (7.01) bit 13 $0=$ brake is closed (applied), $1=$ brake is open (lifted), MainCtrlWord (7.01) bit 14 $0=$ brake is closed (applied), $1=$ brake is open (lifted), MainCtrlWord (7.01) bit 15 $0=$ brake is closed (applied), $1=$ brake is open (lifted), AuxCtrIWord (7.02) bit 12 $0=$ brake is closed (applied), $1=$ brake is open (lifted), AuxCtrIWord (7.02) bit 13 $0=$ brake is closed (applied), $1=$ brake is open (lifted), AuxCtrIWord (7.02) bit 14 $0=$ brake is closed (applied), $1=$ brake is open (lifted), AuxCtrIWord (7.02) bit 15 Type: $\quad \mathbf{C} \quad$ Volatile: N				ш
42.03	M1BrakeRefDly (motor 1 brake speed reference delay) Speed reference delay. This function compensates for the mechanical open (lift) delay of the brake. During the start - Run [MainCtrIWord (7.01) bit 3] = 1 - of the drive the speed reference is clamped (ramp output is set to zero) and the speed controller output is set to start torque [see M1StrtTorqRefSel (42.07)] until M1BrakeRefDly (42.03) is elapsed. Int. Scaling: $10=1 \mathrm{~s} \quad$ Type: \quad Volatile: N				
42.04	M1ZeroSpeedDly (motor 1 zero speed delay) This function compensates for the time the drive needs to decelerate from M1ZeroSpeedLim (20.03) to actual speed $=0$. Until M1ZeroSpeedDly (42.04) is elapsed the brake is kept open (lifted). Int. Scaling: $10=\mathbf{1 s}$ Type: I Volatile: N		8		
42.05	M1BrakeFItTime (motor 1 brake fault time) Brake open (lift) acknowledge monitor. During this time the brake open (lift) command BrakeCmd [AuxStatWord (8.02) bit 8] and the brake acknowledge signal [M1BrakeAckSel (42.02)] can be different without causing A122 MechBrake [AlarmWord2 (9.07) bit 5] or F552 MechBrake [FaultWord4 (9.04) bit 3] depending on BrakeFaultFunc (42.06). Int. Scaling: $10=\mathbf{1 s}$ Type: Volatile: N		8		

Signal and parameter list

Index	Signal / Parameter name	我			
42.06	BrakeFaultFunc (brake fault function) Selected motor, BrakeFaultFunc (42.06) determines the reaction to an invalid brake acknowledge: 0 = Alarm the drive sets A122 MechBrake [AlarmWord2 (9.07) bit 5] as reaction to an invalid brake open (lift) or brake close (apply) acknowledge 1 = Fault the drive trips with F552 MechBrake [FaultWord4 (9.04) bit 3] as reaction to an invalid brake open (lift) or brake close (apply) acknowledge, default 3 = Crane The drive trips with F552 MechBrake [FaultWord4 (9.04) bit 3] as reaction to an invalid brake open (lift) acknowledge. A116 BrakeLongFalling [AlarmWord1 (9.06) bit 15] is set as reaction to an invalid brake close (apply) acknowledge. In case of A116 BrakeLongFalling [AlarmWord1 (9.06) bit 15] the speed reference is set to zero and the speed controller is kept active until the drive is stopped by either $\mathbf{O n}=0$ [UsedMCW (7.04) bit 0$]$ or $\mathbf{O f f} 2 \mathrm{~N}=0$ [UsedMCW (7.04) bit 1, Emergency Off / Coast Stop]. Note: If the brake open (lift) command BrakeCmd [AuxStatWord (8.02) bit 8] and the brake acknowledge signal [M1BrakeAckSel (42.02)] are different for a longer time than set in M1BrakeFItTime (42.05) either A122 MechBrake [AlarmWord2 (9.07) bit 5] or F552 MechBrake [FaultWord4 (9.04) bit 3] is set depending on BrakeFaultFunc (42.06). Note: If the brake close (apply) command BrakeCmd [AuxStatWord (8.02) bit 8] and the brake acknowledge signal [M1BrakeAckSel (42.02)] are different for a longer time than set in M1BrakeLongTime (42.12) either A122 MechBrake [AlarmWord2 (9.07) bit 5], F552 MechBrake [FaultWord4 (9.04) bit 3] or A116 BrakeLongFalling [AlarmWord1 (9.06) bit 15] is set depending on BrakeFaultFunc (42.06). Int. Scaling: $1=1 \quad$ Type: \quad C Volatile: \mathbf{N}				ш
42.07	M1StrtTorqRefSel (motor 1 start torque reference selector) Motor 1, start torque selector: $0=$ NotUsed \quad start torque function is blocked and the start torque reference is fixed zero, $1=$ Memory \quad Torque memory released. The minimum value equals the absolute value of StrtTorqRef (42.08). The torque memory can be reset by means of AuxCtrIWord2 (7.03) bit 13. 2 = StrtTorqRef StrtTorqRef (42.08) 3 = Al1 analog input Al1 4 = Al2 \quad analog input Al2 $5=$ Al3 \quad analog input Al3 $6=$ AI4 \quad analog input AI4 7 = Al5 \quad analog input AI5 8 = AI6 \quad analog input AI6 Note: Torque memory is the presetting of the torque when starting with e.g. suspended load. The preset torque equals the actual torque stored when the brake open (lift) command is removed, if the stored torque is greater than the value in StrtTorqRef (42.08). Otherwise the value in StrtTorqRef (42.08) is taken. After energizing the drive the value of StrtTorqRef (42.08) is set as torque memory. Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: \mathbf{N}	8 0 0 $?$ 0 Z			ш
42.08	StrtTorqRef (start torque reference) Selected motor, start torque reference in percent of MotNomTorque (4.23). Int. Scaling: $100=1 \%$ Type: Volatile: N				

| Index | \quad Signal / Parameter name |
| :--- | :--- | :--- | :--- | :--- |

Index	Signal / Parameter name				-	0
43.05	CtrIModeSel (control mode selector) Current controller mode selection: 0 = Standard \quad PI-controller with RL compensation of EMF based on current actual plus feed forward, default $1=$ FeedFwdRef PI-controller with RL compensation of EMF based on current reference plus feed forward $2=$ NoFeedFwd PI-controller without RL compensation of EMF. No feed forward takes place, should not be used for motoric applications. 3 = PowerSupply1 for more information see DCS800 Power Supply Control Manual (3ADW000375) 4 = PowerSupply2 for more information see DCS800 Power Supply Control Manual (3ADW000375) Int. Scaling: $1==1$ Type: C Volatile: N					ш
43.06	M1KpArmCur (motor 1 p-part armature current controller) Proportional gain of the current controller. Example: The controller generates 15% of motor nominal current [M1NomCur (99.03)] with M1KpArmCur (43.06) $=3$, if the current error is 5% of M1NomCur (99.03). Int. Scaling: $100=1$ Type: Volatile: N					0
43.07	M1TiArmCur (motor 1 i-part armature current controller) Integral time of the current controller. M1TiArmCur (43.07) defines the time within the integral part of the controller achieves the same value as the proportional part. Example: The controller generates 15% of motor nominal current [M1NomCur (99.03)] with M1KpArmCur $(43.06)=3$, if the current error is 5% of M1NomCur (99.03). On that condition and with M1TiArmCur (43.07) $=50 \mathrm{~ms}$ follows: - the controller generates 30% of motor nominal current, if the current error is constant, after 50 ms are elapsed (15% from proportional part and 15% from integral part). Setting M1TiArmCur (43.07) to 0 ms disables the integral part of the current controller and resets its integrator. Int. Scaling: $1==1 \mathrm{~ms}$ Type: Volatile: N				$\stackrel{6}{8}$	080
43.08	M1DiscontCurLim (motor 1 discontinuous current limit) Threshold continuous / discontinuous current in percent of M1NomCur (99.03). The actual continuous / discontinuous current state can be read from CurCtrlStat1 (6.03) bit 12. Int. Scaling: $100=1 \%$ Type: I Volatile: N					0
43.09	M1ArmL (motor 1 armature inductance) Inductance of the armature circuit in mH . Used for the EMF compensation: $E M F=U_{A}-R_{A} * I_{A}-L_{A} * \frac{d I_{A}}{d t}$ Attention: Do not change the default values of M1ArmL (43.09) and M1ArmR (43.10)! Changing them will falsify the results of the autotuning. Int. Scaling: $100=\mathbf{= 1 ~ m H}$ Type:		¢			
43.10	M1ArmR (motor 1 armature resistance) Resistance of the armature circuit in $\mathrm{m} \Omega$. Used for the EMF compensation: $E M F=U_{A}-R_{A} * I_{A}-L_{A} * \frac{d I_{A}}{d t}$ Attention: Do not change the default values of M1ArmL (43.09) and M1ArmR (43.10)! Changing them will falsify the results of the autotuning. Int. Scaling: $1=1 \mathrm{~m} \Omega \quad$ Type:					

Signal and parameter list

Index	Signal / Parameter name	家	=
43.11	PropFbSel (p-part current feedback selection) PropFbSel (43.11) chooses the armature current feedback type for the p-part of the armature current controller:		'
43.12	Uk (relative short circuit impedance) For more information contact Your ABB representative. Int. Scaling: $10==1 \%$ Type: \quad Volatile: N	$0 \stackrel{10}{2}$	- ${ }^{\circ}$ 山
43.13	FiringLimMode (firing limit mode) FiringLimMode (43.13) selects the strategy for ArmAlphaMax (20.14): $0=$ Fix 1 = FixSingle 2 = Calculated 3 = CalcSingle the firing angle limit is defined by ArmAlphaMax (20.14) The firing angle limit is defined by ArmAlphaMax (20.14). When ArmAlphaMax (20.14) is reached single firing pulses are fired, default the firing limit is reduced from 165° to ArmAlphaMax (20.14) depending on the actual motor current and M1DiscontCurLim (43.08) function same as in Calculated, but single pulses are fired when the limit is reached		ш

Index	Signal / Parameter name				
43.14	RevDly (reversal delay) RevDly (43.14) defines the delay time in ms for the bridge reversal after zero current has been detected - see CurCtrIStat1 (6.03) bit 13. The reversal delay starts when zero current has been detected - see CurCtrlStat1 (6.03) bit 13 after a command to change current direction - see CurRefUsed (3.12) - has been given. After a command to change the current direction the opposite current has to be reached before ZeroCurTimeOut (97.19) has been elapsed otherwise the drive trips with F557 ReversalTime [FaultWord4 (9.04) bit 8]. RevDly (43.14) must have the same setting for 12-pulse master and 12-pulse slave with one exception only: - If there is no current measurement in the 12-pulse serial slave, set RevDly (43.14) in the 12 -pulse serial slave to minimum (0 ms). Thus the 12 -pulse serial slave uses the reversal command of the 12-pulse master for its own bridge changeover - see CtrIStatMas (6.09) bit 12. No additional reversal delay is added, since the master delays bit 12 according to its own RevDly (43.14). Note: 12P RevTimeOut (47.05) must be longer than ZeroCurTimeOut (97.19) and ZeroCurTimeOut (97.19) must be longer than RevDly (43.14). Int. Scaling: $1=1 \mathrm{~ms}$ Type: Volatile: N				
43.15	Unused				
43.16	RevMode (reversal mode) RevMode (43.16) defines the behavior of the speed ramp and speed controller during bridge and field reversal (torque reversal): $0=$ Soft \quad the speed ramp and speed controller are frozen during reversal --> bumpless reversal $1=$ Hard the speed ramp and speed controller are released during reversal --> the drive follows the ramp, default Note: RevMode (43.16) is automatically set to Hard when RevDly (43.14) is equal or less than 25 ms . Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{N}				ш

Index	Signal / Parameter name		¢			
43.21	ArmCurLimSpeed4 (armature current at speed limit 4) Armature current limit - in percent of M1NomCur (99.03) - at speed: $(43.17)+\frac{3}{4} *\left[n_{\max }-(43.17)\right]$ with: $\mathrm{n}_{\max }=\operatorname{Max}[\|(20.01)\|,\|(20.02)\|]$ Note: The used current limit depends also on the converter's actual limitation situation (e.g. torque limits, other current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: Volatile: N		N/	$\stackrel{\sim}{\sim}$	\bigcirc	ш
43.22	ArmCurLimSpeed5 (armature current at speed limit 5) Armature current limit - in percent of M1NomCur (99.03) - at $\mathrm{n}_{\max }=\operatorname{Max}[1(20.01)\|,\|(20.02)\|]$. Note: The used current limit depends also on the converter's actual limitation situation (e.g. torque limits, other current limits, field weakening). The limit with the smallest value is valid. Int. Scaling: $100=1 \%$ Type: I Volatile: N		N/		- ${ }^{\circ}$	ш
43.23	PwrConfig (power part configuration) PwrConfig (43.23) defines the configuration of the connected power part: $0=6$-pulse the connected power part is a B6 bridge, default 1 = reserved 2 = reserved 3 = reserved 4 = reserved Int. Scaling: $1=1 \quad$ Type: \quad C Volatile: \mathbf{N}					ш
43.24	PwrSupplyRefExt (external voltage reference power supply mode) External voltage reference for power supply mode in percent of M1NomVolt (99.02). For more information see DCS800 Power Supply Control Manual (3ADW000375). Note: PwrSupplyRefExt (43.24) is only valid, if ControlModeSel (43.05) = PowerSupply1 or PowerSupply2. Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: N				\bigcirc	ш

Index	Signal / Parameter name		
	Field excitation		
44.01			0
44.02	M1KpFex (motor 1 p-part field current controller) Proportional gain of the field current controller. Example: The controller generates 15% of motor nominal field current [M1NomFldCur (99.11)] with M1KpFex (44.02) = 3, if the field current error is 5% of M1NomFldCur (99.11). Int. Scaling: $100=1$ Type: Volatile: N	$\bigcirc \stackrel{\sim}{\sim}$	0
44.03	M1TiFex (motor 1 i-part field current controller) Integral time of the field current controller. M1TiFex (44.03) defines the time within the integral part of the controller achieves the same value as the proportional part. Example: The controller generates 15% of motor nominal field current [M1NomFldCur (99.11)] with M1KpFex (44.02) = 3, if the field current error is 5% of M1NomFldCur (99.11). On that condition and with M1TiFex (44.03) $=200 \mathrm{~ms}$ follows: - the controller generates 30% of motor nominal field current, if the current error is constant, after 200 ms are elapsed (15% from proportional part and 15% from integral part). Setting M1TiFex (44.03) to 0 ms disables the integral part of the field current controller and resets its integrator. Int. Scaling: $1=\mathbf{1 m s}$ Type: I Volatile: \mathbf{N}	\bigcirc	

Index	Signal / Parameter name	-				合
44.04	M1FIdHeatRef (motor 1 field heating reference) Field current reference - in percent of M1NomFieldCur (99.11) - for field heating and field economy. Field heating: Field heating is released according to FldHeatSel (21.18). Field economy: Field economy is only available when 2 motors with 2 independent field exciters are connected to the drive. Field economy for motor 1 is released by means of M1FldHeatRef (44.04) < 100% and activated, if: - On=1[UsedMCW (7.04) bit 0] for longer than 10 s , - the other motor is selected via ParChange (10.10), - the other motor can be seen in MotSel (8.09) and - M1FIdRefMode (45.05) = M2FIdRefMode (45.13) $=$ Internal. Int. Scaling: $1==1 \%$ Type: I Volatile: \mathbf{N}	\bigcirc				ш
44.05	Unused					
44.06	Unused					
44.07	EMF CtrIPosLim (positive limit EMF controller) Positive limit for EMF controller in percent of nominal flux. Int. Scaling: $1==1 \% \quad$ Type: Volatile: N	\bigcirc				ш
44.08	EMF CtrINegLim (negative limit EMF controller) Negative limit for EMF controller in percent of nominal flux. Int. Scaling: $1==1 \% \quad$ Type: Volatile: N	앙		안		ш
44.09	KpEMF (p-part EMF controller) Proportional gain of the EMF controller. Example: The controller generates 15 \% of motor nominal EMF with KpEMF (44.09) = 3, if the EMF error is 5% of M1NomVolt (99.02). Int. Scaling: $100=\mathbf{1}$ Type: I Volatile: \mathbf{N}	0				ш
44.10	TiEMF (i-part EMF controller) Integral time of the EMF controller. TiEMF (44.10) defines the time within the integral part of the controller achieves the same value as the proportional part. Example: The controller generates 15 \% of motor nominal EMF with KpEMF (44.09) $=3$, if the EMF error is 5% of M1NomVolt (99.02). On that condition and with TiEMF (44.10) $=20 \mathrm{~ms}$ follows: the controller generates 30 \% of motor nominal EMF, if the EMF error is constant, after 20 ms are elapsed (15% from proportional part and 15% from integral part). Setting TiEMF (44.10) to 0 ms disables the integral part of the EMF controller and resets its integrator. Int. Scaling: $1=\mathbf{= 1} \mathrm{ms}$ Type: I Volatile: \mathbf{N}					
44.11	Unused					
44.12	FldCurFlux40 (field current at 40\% flux) Field current at 40 \% flux in percent of M1NomFldCur (99.11). Int. Scaling: 1==1\% Type: I Volatile: N	0			O°	\bigcirc -
44.13	FldCurFlux70 (field current at 70\% flux) Field current at 70 \% flux in percent of M1NomFldCur (99.11). Int. Scaling: $1==1 \% \quad$ Type: \quad I Volatile: \mathbf{N}				-	ш
44.14	FldCurFlux90 (field current at 90\% flux) Field current at 90% flux in percent of M1NomFldCur (99.11). Int. Scaling: $1==1 \% \quad$ Type: \quad Volatile: \mathbf{N}					\bigcirc

Signal and parameter list

Index	Signal／Parameter name	家			戋景
44.18	FIdBoostFact（field boost factor） Field boost factor in percent of M1NomFldCur（99．11）．The resulting field boost current must be lower than the nominal current of the used field exciter．If the field boost current is out of range A132 ParConflict［AlarmWord2（9．07）bit 15］is generated． Note： If FldBoostFact（44．18）＞ 100 \％and M1UsedFexType（99．12）＝OnBoard to DCF804－0060 or FEX－4－Term5A S M1FldSacle（45．20）has to be set accordingly． Example： M1NomFldCur（99．11）$=20 \mathrm{~A}$ and FldBoostFact（44．18）$=150 \%$ then S M1FldSacle（45．20）$=30$ A Note： If FldBoostFact（44．18）＞ 100% and M2UsedFexType（49．07）＝OnBoard to DCF804－0060 or FEX－4－Term5A S M2FldSacle（45．21）has to be set accordingly． Int．Scaling： $1==1 \% \quad$ Type：\quad Volatile：N	응	응		
44.19	FldBoostTime（field boost time） Time the field boost should last． Int．Scaling： $1==1 \mathrm{~s} \quad$ Type： I Volatile： \mathbf{N}	0	8		¢ ω
44.20	Unused				

Signal and parameter list

Index	Signal / Parameter name	-	4	三¢
44.21	RevVoltMargin (reversal voltage margin) RevVoltMargin (44.21) - in percent of NomMainsVolt (99.10) - is a safety margin for the motor voltage during regenerative mode. Setting RevVoltMargin (44.21) to 0 provides no protection against commutation faults (shooting through). The function of RevVoltMargin (44.21) is the following: To prevent the drive from blowing fuses when going from motoring (using forward bridge) to generating (using reverse bridge) the armature voltage has to be lower than the corresponding mains voltage. This is automatically checked by the DCS800 and the reverse bridge is blocked as long as the armature voltage is too high. To lower the armature voltage two ways are possible: - lowering the motor speed by idling or - adapting the flux by lowering the field current - e.g. set FldCtrIMode (44.01) = EMF Both options take time and thus delaying the current / torque reversal. For faster adapting of the motor voltage activate the field weakening function. This can be supervised with CurCtrIStat2 (604) bit 3 For regenerative mode is valid: follows: $U_{\text {genMotor }}=\left\|1.35 * \cos (20.14) * U_{\text {Mains_act }}\right\|-(44.21) * U_{\text {Mains_act }}$ Example: With ArmAlphaMax (20.14) $=150^{\circ}$, RevVoltMargin (44.21) $=10 \%$ and $\mathrm{U}_{\text {Mans_act }}=$ NomMainsVolt (99.10) follows: $\begin{aligned} & U_{\text {genMotor }}=\left\|1.35 * \cos 150^{\circ} * U_{\text {Mains_act }}\right\|-0.1 * U_{\text {Mains_act }} \\ & U_{\text {genMotor }}=\left\|-1.16 * U_{\text {Mains_act }}\right\|-0.1 * U_{\text {Mains_act }} \end{aligned}$ follows: $U_{\text {genMotor }}=1.06 * U_{\text {Mains_act }}$ Int. Scaling: $100==1 \%$ Type:	\bigcirc		- ${ }^{\circ}$

Index	Signal / Parameter name				
44.22	VoltRefExt (external EMF voltage reference) External EMF voltage reference in percent of M1NomVolt (99.02). Note: VoltRefExt (44.22) is only valid, if EMF RefSel (44.23) = VoltRefExt. Int. Scaling: $100=\mathbf{1 \%}$ Type: SI Volatile: Y				ш
44.23			$\stackrel{\circ}{4}$		ш
44.24	Unused				
44.25	VoltCorr (EMF voltage correction) EMF voltage correction in percent of M1NomVolt (99.02). Added to VoltRef1 (3.25). Int. Scaling: $100=1 \%$ Type: SI Volatile: Y				ш
44.26	VoltRefSlope (EMF voltage reference slope) EMF voltage reference slope in percent M1NomVolt (99.02) per 1 ms . The dv/dt limitation is located at the input of the EMF controller. Int. Scaling: $100=1 \% / \mathrm{ms}$ Type: I Volatile: \mathbf{N}	\bigcirc	앙	¢	0_{0}^{0} -
44.27	FluxCorr (flux correction) FluxCorr (44.27) in percent of nominal flux is added to the sum of the flux reference FluxRefSum (3.28). Int. Scaling: $100=1 \%$ Type: SI Volatile: N	악		\bigcirc	\bigcirc U

Index	Signal / Parameter name	-	0
44.28	MG ConfigWord (MG-set configuration word) MG-set configuration word. For more information see DCS800 MG-set motor control (3ADW000310).		ш

Index	Signal / Parameter name				
	Field converter settings				
45.01	M1FreewhILev (motor 1 freewheeling level) Motor 1 field exciter free wheeling level [only when M1UsedFexType (99.12) = DCF804-0050 or DCF804-0060] in percent / ms of the actual field exciter supply voltage. If 2 successive AC-voltage measurements differ more than M1FreewhiLev (45.01), the free-wheeling function is activated. Int. Scaling: $1==1 \% / \mathrm{ms}$ Type: Volatile: N	-	응	¢	
45.02	M1PosLimCtrl (motor 1 positive voltage limit for field exciter) Positive voltage limit for motor 1 field exciter in percent of the maximum field exciter output voltage. Example: With a 3-phase supply voltage of 400 VAC the field current controller can generate a maximum output voltage of 521 VDC. In case the rated field supply voltage is 200 VDC, then it is possible to limit the controllers' output voltage to 46%. That means the firing angle of the field current controller is limited in such a way that the average output voltage is limited to a maximum of 240VDC. Note: 4-Q field exciters which can reverse the field current will used M1PosLimCtrl (45.02) also as negative limit. Int. Scaling: $100=1 \%$ Type: Volatile: \mathbf{N}	0	응우	8	ш
45.03	Unused				
45.04	Unused				

Index	Signal / Parameter name				
45.08	FluxRevMonDly (flux reversal monitoring delay) Maximum allowed time within Mot1FldCurRel (1.29) and the internal motor flux doesn't correspond to each other during field reversal. During this time F522 SpeedFb [FaultWord2 (9.02) bit 5] is disabled. Note: FluxRevMonDly (45.08) is only effective for FldCtrIMode (44.01) = Fix/Rev, EMF/Rev, Fix/Rev/Opti or EMF/Rev/Opti. Int. Scaling: $1=\mathbf{1 m s}$ Type: \quad Volatile: \mathbf{N}	0	-		
45.09	FIdRevHyst (field current reversal hysteresis) The sign of Mot1FldCurRel (1.29) is used to generate the field reversal acknowledge. To avoid signal noise problems a small hysteresis - in percent of M1NomFldCur (99.11) - is needed. Note: FldRevHyst (45.09) is only effective for FldCtrIMode (44.01) = Fix/Rev, EMF/Rev, Fix/Rev/Opti or EMF/Rev/Opti. Int. Scaling: $100=1 \%$ Type: I Volatile: N				ш
45.10	FIdRefHyst (field torque reference hysteresis) To prevent the field reversal from continuous toggling due to a too small torque reference a TorqRefUsed (2.13) hysteresis - in percent of MotNomTorque (4.23) - is available. The hysteresis is symmetrical and is set by FldRefHyst (45.10). The field reversal is controlled by the sign of TorqRefUsed (2.13): Note: FldRefHyst (45.10) is only effective for FldCtrIMode (44.01) = Fix/Rev or EMF/Rev. Int. Scaling: $100=1 \%$ Type: I Volatile: N		앙		ш

Index	Signal / Parameter name				
45.11	FIdRefGain (field current reference gain) Optitorque calculates the field current reference depending on TorqRefUsed (2.13). Thus, the field current is reduced to a smaller value, if TorqRefUsed (2.13) is accordingly low. This speeds up the field reversal, assuming TorqRefUsed (2.13) is low during field reversal. Optitorque is activated by means of FldCtrlMode (44.01) and like field reversal only available for motor 1 field exciter. The relation between TorqRefUsed (2.13) and FldCurRefM1 (3.30) is linear and without offset. It is defined by means of the FldRefGain (45.11). The gain is related to M1NomFldCur (99.11) as well as to MotNomTorque (4.23). Example: With FldRefGain $(45.11)=20 \%, 100 \%$ field current is generated at TorqRefUsed $(2.13)=20 \%$. Note: FldRefGain (45.11) is only effective for FldCtrlMode (44.01) = Fix/Opti, EMF/Opti, Fix/Rev/Opti or EMF/Rev/Opti. Int. Scaling: $100=1 \%$ Type: Volatile: N		은	\bigcirc	ш
45.12	Unused				

Index	Signal / Parameter name			=
45.16	M2PosLimCtrl (motor 2 positive voltage limit for field exciter) Positive voltage limit for motor 2 field exciter in percent of the maximum field exciter output voltage. Example: With a 3-phase supply voltage of 400 VAC the field current controller can generate a maximum output voltage of 521 VDC. In case the rated field supply voltage is 200 VDC, then it is possible to limit the controllers' output voltage to 46%. That means the firing angle of the field current controller is limited in such a way that the average output voltage is limited to a maximum of 240VDC. Note: 4-Q field exciters which can reverse the field current will used M2PosLimCtrl (45.16) also as negative limit. Int. Scaling: $100=\mathbf{1 \%}$ Type: I Volatile: N	\bigcirc ㅇ		
45.17	FIdCurTrim (field current trimming) The field current of motor 1 and motor 2 can be corrected by means of FldCurTrim (45.17) in percent of M1NomFldCur (99.11) respectively M2NomFIdCur (49.05): 0% to 20% : The value is subtracted from motor 1 field current reference. The result is visible in FldCurRefM1 (3.30). - $\quad-20 \%$ to 0% : The absolute value is subtracted from motor 2 field current reference. The result is visible in FldCurRefM2 (3.31). Int. Scaling: $100=1 \%$ Type: SI Volatile: N			
45.18	FldMinTripDly (delay field current minimum trip) FldMinTripDly (45.18) delays F541 M1FexLowCur [FaultWord3 (9.03) bit 8] respectively F542 M2FexLowCur [FaultWord3 (9.03) bit 9]. If the field current recovers before the delay is elapsed F541 / F542 will be disregarded: - M1FldMinTrip (30.12) - M2FIdMinTrip (49.08) Note: FldMinTripDly (45.18) is blocked when OperModeSel (43.01) = FieldConv. Int. Scaling: $1==1 \mathrm{~ms}$ Type: \quad Volatile: \mathbf{N}			
45.19	Unused			
45.20	S M1FIdScale (set: motor 1 field current scaling factor) Motor 1 field exciter scaling factor. S M1FIdScale (45.20) is write protected, unless ServiceMode (99.06) $=$ SetTypeCode. To use S M1FldScale (45.20) following inequation has to be valid: M1NomFIdCur (99.11) \leq S M1FldScale (45.20) \leq maximum field current of the used field exciter - For S M1FIdScale (45.20) > maximum field current of the used field exciter A132 ParConflict [AlarmWord2 (9.07) bit 15] is generated. - For M1NomFldCur (99.11) > S M1FldScale (45.20) the scaling is automatically set by M1NomFldCur (99.11). - The scaling factor is released when M1NomFldCur (99.11) < S M1FldScale (45.20) and M1UsedFexType (99.12) = OnBoard to DCF804-0060 or FEX-4-Term5A. If the scaling is changed its new value is taken over immediately. Int. Scaling: $100=1$ A Type: I Volatile: N	\bigcirc		

Index	Signal / Parameter name				
45.21	S M2FIdScale (set: motor 2 field current scaling factor) Motor 2 field exciter scaling factor. S M2FIdScale (45.21) is write protected, unless ServiceMode (99.06) = SetTypeCode. To use S M2FIdScale (45.21) following inequation has to be valid: M2NomFldCur (49.05) \leq S M2FIdScale (45.21) \leq maximum field current of the used field exciter - For S M2FIdScale (45.21) > maximum field current of the used field exciter A132 ParConflict [AlarmWord2 (9.07) bit 15] is generated. - For M2NomFldCur (49.05) > S M2FIdScale (45.21) the scaling is automatically set by M2NomFldCur (49.05). - \quad The scaling factor is released when M2NomFldCur (49.05) < S M2FIdScale (45.21) and M2UsedFexType (49.07) = OnBoard to DCF804-0060 or FEX-4-Term5A. If the scaling is changed its new value is taken over immediately. Int. Scaling: $100=1$ A Type: Volatile: \mathbf{N}	\bigcirc	80		ш
45.22	M1OperModeFex4 (motor 1 fex4 operation mode selector) The FEX-425-Int, DCF803-0016 and DCF803-0035 can be connected to either a 3-phase supply or a single phase supply: $0=1$-phase single phase supply 1 = 3-phase 3 -phase supply, default Int. Scaling: 1==1 Type: C Volatile: N				ш
45.23	M2OperModeFex4 (motor 2 fex4 operation mode selector) The FEX-425-Int, DCF803-0016 and DCF803-0035 can be connected to either a 3-phase supply or a single phase supply: $0=1$-phase single phase supply 1 = 3-phase 3 -phase supply, default Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: \mathbf{N}	0 0 0 0 0 1			ш
45.24	MultiFexCount (Multi fex count) Number of connected field exciters. For more information see DCS800 MultiFex motor control (3ADW000309). Int. Scaling: $\quad 1==1$ Type: I Volatile: N	\bigcirc			ш
45.25	MultiFexOff1 (Multi fex off 1) For more information see DCS800 MultiFex motor control (3ADW000309). Int. Scaling: $\quad 1==1$ Type: \quad Volatile: N				ш
45.26	MultiFexOff2 (Multi fex off 2) For more information see DCS800 MultiFex motor control (3ADW000309). Int. Scaling: $1==1$ Type: I Volatile: N				ш

Index	Signal / Parameter name		=
$\begin{aligned} & \text { + } \\ & \text { 을 } \\ & \text { òU } \end{aligned}$	12-pulse operation		
47.01	12P Mode (12-pulse mode) The setting of OperModeSel (43.01) determines the reaction of 12P Mode (47.01). OperModeSel (43.01) = 12PParMaster respectively 12PParSlave: $0=$ Normal $\quad 12$-pulse parallel master and 12-pulse parallel slave use their own current 1 = Difference the 12-pulse parallel slave calculates the difference between the 12-pulse parallel master actual current and its own actual current and controls this difference to zero by means of its current controller, not implemented yet 2 = Sequential not used for 12-pulse parallel mode 3 = DiodeBridge not used for 12-pulse parallel mode OperModeSel (43.01) = 12PSerMaster respectively 12PSerSlave: $0=$ Normal $\quad 12$-pulse serial master and 12-pulse serial slave are controlled by the same firing angle, default 1 = Difference not used for 12-pulse serial mode $2=$ Sequential Sequential control of the firing angles. Only one unit changes its firing angle, while the other unit's firing angle is fixed at the minimum- or maximum firing angle. See diagram below. 3 = DiodeBridge the 12-pulse serial slave converter is a diode bridge 12P Mode (47.01) must have the same setting for 12-pulse master and 12-pulse slave. In case of DiodeBridge the setting is only possible in the 12-pulse master. Int. Scaling: $1==1$ Type: C Volatile: N		
47.02	DiffCurLim (current difference level) Permitted current difference between the converters in 12-pulse parallel configuration in percent of M1NomCur (99.03). The drive trips with F534 12PCurDiff [FaultWord3 (9.03) bit 1] if DiffCurLim (47.02) is still exceeded when DiffCurDly (47.03) is elapsed. DiffCurLim (47.02) is only active in the 12-pulse parallel master. Int. Scaling: $1=1 \% \quad$ Type: \quad I Volatile: N	으응	

| Index | \quad Signal / Parameter name |
| :--- | :--- | :--- | :--- | :--- |

Index	Signal / Parameter name		$\stackrel{\times}{*}$		
49.07	M2UsedFexType (motor 2 used field exciter type) Motor 2 used field exciter type: $0=$ NotUsed 1 = OnBoard $2=$ FEX-425-Int 3 = DCF803-0035 4 = DCF803-0050 5 = DCF804-0050 6 = DCF803-0060 7 = DCF804-0060 8 = DCS800-S01 9 = DCS800-S02 10 = DCF803-0016 11 = reserved to 14 = reserved 15 = ExFex AITAC 16 = ExFex Al1 17 = ExFex Al2 18 = ExFex Al3 19 = ExFex Al4 20 = FEX-4-Term5A reserved 22 = Exc-Appl-1 no or third party field exciter connected integrated 1-Q field exciter (for sizes D1 - D4 only), default internal 1-Q 25 A field exciter (for size D5 only) used for field currents from 0.3 A to 25 A (terminals X100.1 and X100.3) external 1-Q 35 A field exciter used for field currents from 0.3 A to 35 A (terminals X100.1 and X100.3) external 1-Q 50 A field exciter (DCF803-0050 or DCF503B-0050) external 4-Q 50 A field exciter (DCF804-0050 or DCF504B-0050) external 1-Q 60 A field exciter; not implemented yet external 4-Q 60 A field exciter; not implemented yet external 2-Q 3-phase field exciter external 4-Q 3-phase field exciter external 1-Q 16 A field exciter used for field currents from 0.3 A to 16 A (terminals X100.1 and X100.3) third party field exciter, acknowledge via AITAC third party field exciter, acknowledge via Al1 third party field exciter, acknowledge via AI2 third party field exciter, acknowledge via AI3 third party field exciter, acknowledge via AI4 internal 2-Q 25 A field exciter (FEX-425-Int), external 2-Q 16 A field exciter (DCF803-0016) or external 2-Q 35 A field exciter (DCF8030035) used for field currents from 0.3 A to $5 \mathbf{A}$ (terminals X100.2 and X100.3) If the fex type is changed its new value is taken over after the next power-up. Int. Scaling: $1==1$ Type: C Volatile: N				ш
49.08	M2FIdMinTrip (motor 2 minimum field trip) The drive trips with F542 M2FexLowCur [FaultWord3 (9.03) bit 9] if M2FIdMinTrip (49.08) - in percent of M2NomFldCur (49.05) - is still undershot when FldMinTripDly (45.18) is elapsed. Note: M2FIdMinTrip (49.08) is not valid during field heating and field economy. In this case the trip level is automatically set to 50% of M2FIdHeatRef (49.06). The drive trips with F542 M2FexLowCur [FaultWord3 (9.03) bit 9] if 50% of M2F/dHeatRef (49.06) is still undershot when FldMinTripDly (45.18) is elapsed. Int. Scaling: $100=1 \%$ Type: I Volatile: N				ш
49.09	M2FIdOvrCurLev (motor 2 field overcurrent level) The drive trips with F518 M2FexOverCur [FaultWord2 (9.02) bit 1] if M2FIdOvrCurLev (49.09) - in percent of M2NomFldCur (49.05) - is exceeded. It is recommended to set M2FldOvrCurtLev (49.09) at least 25 \% higher than M2NomFldCur (49.05). The field overcurrent fault is inactive, if M2FIdOvrCurLev (49.09) is set to 135%. Int. Scaling: $100=1 \%$ Type: \| Volatile: N		$\stackrel{\sim}{\sim}$		ш
49.10	M2KpFex (motor 2 p-part field current controller) Proportional gain of the field current controller. Example: The controller generates 15% of motor nominal field current [M2NomFldCur (49.05)] with M2KpFex (49.10) $=3$, if the field current error is 5% of M2NomFldCur (49.05). Int. Scaling: $100=1$ Type: Volatile: N		$\stackrel{\sim}{\sim}$		ш

Signal and parameter list

| Index | \quad Signal / Parameter name |
| :--- | :--- | :--- | :--- | :--- |,

| Index | \quad Signal / Parameter name |
| :--- | :--- | :--- | :--- | :--- |

Index	Signal / Parameter name				
49.21	M2OvrSpeed (motor 2 overspeed) The drive trips with F532 MotOverSpeed [FaultWord2 (9.02) bit 15] if M2OvrSpeed (49.21) is exceeded. It is recommended to set M2OvrSpeed (49.21) at least 20% higher than the maximum motor speed. Internally limited from: 0rpm to $(2.29) * \frac{32767}{20000} r p m$ The overspeed fault for motor 2 is inactive, if M2OvrSpeed (49.21) is set to zero. Int. Scaling: (2.29) Type: I Volatile: N				
49.22	M2SpeedScale (motor 2 speed scaling) Motor 2 speed scaling in rpm. M2SpeedScale (49.22) defines the speed - in rpm - that corresponds to 20.000 speed units. The speed scaling is released when M2SpeedScale (49.22) ≥ 10 : - 20.000 speed units $==$ M2SpeedScale (49.22), in case M2SpeedScale (49.22) ≥ 10 - 20.000 speed units $==$ maximum absolute value of M2SpeedMin (49.19) and M2SpeedMax (49.20), in case M2SpeedScale (49.22) < 10 or mathematically - If $(49.22) \geq 10$ then $20.000==(49.22)$ in rpm - If (49.22) < 10 then $20.000==\operatorname{Max}[\|(49.19)\|, I(49.20) \mid]$ in rpm The actual used speed scaling is visible in SpeedScale Act (2.29). Note: M2SpeedScale (49.22) has to be set in case the speed is read or written by means of an overriding control (e.g. fieldbus). Note: M2SpeedScale (49.22) is must be set in the range of: 0.625 to 5 times of M2BaseSpeed (49.03). If the scaling is out of range A124 SpeedScale [AlarmWord2 (9.07) bit 7] is generated. Commissioning hint: - set M2SpeedScale (49.22) to maximum speed - set M2BaseSpeed (49.03) to base speed - set M2SpeedMax (49.20) / M2SpeedMin (49.19) to \pm maximum speed Int. Scaling: $10=1 \mathrm{rpm}$ Type: Volatile: N		\%		
49.23	M2EncMeasMode (motor 2 encoder 1 measuring mode) M2EncMeasMode (49.23) selects the measurement mode for pulse encoder 1: $0=A+/ B$ Dir channel A: rising edges for speed; channel A not: not used; channel B : direction; channel B not: not used; speed evaluation factor $=1$ $1=$ A+- \quad channels A and A not: rising and falling edges for speed; channels B and B not: not used; speed evaluation factor $=2$ $2=$ A+-/B Dir channels A and A not: rising and falling edges for speed; channel B: direction; channel B not: not used; speed evaluation factor $=2$ 3 = A+-/B+- channels A, A not and B, B not: rising and falling edges for speed and direction; speed evaluation factor $=4$, default Int. Scaling: $1=1$ Type: C Volatile: \mathbf{N}				ш

Index	Signal / Parameter name				
49.24	M2SpeedFbSel (motor 2 speed feedback selector) Motor 2 speed feedback selection: $0=$ EMF speed is calculated by means of the EMF feedback with flux compensation, default 1 = Encoder speed is measured by means of pulse encoder 1 connected to either SDCS-CON-4 or SDCS-IOB-3 2 = Tacho speed is measured by means of an analog tacho 3 = External MotSpeed (1.04) is updated by Adaptive Program, application program or overriding control. 4 = Encoder2 speed is measured by means of pulse encoder 2 connected to a RTAC-xx, see Encoder2Module (98.01) 5 = EMF Volt speed is calculated by means of the EMF feedback without flux compensation Note1: It is not possible to go into field weakening range when M1SpeeFbSel (50.03) = EMF. Note2: When using EMF speed feedback together with a DC-breaker wrong voltage measurements can lead to F532 MotOverSpeed [FaultWord2 (9.02) bit 15]. In case of an open DC-breaker the voltage measurement might show high values caused by leakage currents through the snubber circuits of the thyristors, because there is no load on the DC side. To prevent these trips set MainContAck (10.21) = DCcontact. Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: \mathbf{N}		+		ш
49.25	M2EncPulseNo (motor 2 encoder 1 pulse number) Amount of pulses per revolution (ppr) for pulse encoder 1. Int. Scaling: 1 == 1 ppr Type: I Volatile: N				히응
49.26	M2TachoAdjust (motor 2 tacho adjust) Fine tuning of analog tacho. The value equals the actual speed measured by means of a hand held tacho: - M2TachoAdjust (49.26) $=$ speed actual Handelelatacho Internally limited to: $\pm(2.29) * \frac{32767}{20000} r p m$ Note: Changes of M2TachoAdjust (49.26) are only valid during tacho fine tuning [ServiceMode (99.06) = TachFineTune]. During tacho fine tuning M2SpeedFbSel (49.24) is automatically forced to EMF. Attention: The value of M2TachoAdjust (49.26) has to be the speed measured by the hand held tacho and not the delta between speed reference and measured speed. Int. Scaling: (2.29) Type: Volatile: Y				
49.27	M2TachoVolt1000 (motor 2 tacho voltage at 1000 rpm) M2TachoVolt1000 (49.27) is used to adjust the voltage the analog tacho is generating at a speed of 1000 rpm : - M2TachoVolt1000 (49.27) $\geq 1 \mathrm{~V}$, the setting is used to calculate tacho gain - M2TachoVolt1000 (49.27) $=0 \mathrm{~V}$, the tacho gain is measured by means of the speed feedback assistant - M2TachoVolt1000 (49.27) = -1 V, the tacho gain was successfully measured by means of the speed feedback assistant Note: Use ServiceMode (99.06) = TachFineTune Int. Scaling: $10=1 \mathrm{~V}$ Type: I Volatile: N		$\stackrel{\text { ㅅN }}{ }$		

Index	Signal / Parameter name				
49.30	M2BrakeRefDly (motor 2 brake reference delay) Brake open (lift) delay. This function compensates for the mechanical open (lift) delay of the brake. During the start - Run [MainCtrIWord (7.01) bit 3] = 1 - of the drive the speed reference is clamped (ramp output is set to zero) and the speed controller output is set to start torque [see M2StrtTorqRefSel (49.44)] until M2BrakeRefDly (49.30) is elapsed. Int. Scaling: $10=1 \mathrm{~s}$ Type: Volatile: N		8	os	ш
49.31	M2ZeroSpeedDly (motor 2 zero speed delay) This function compensates for the time the drive needs to decelerate from M2ZeroSpeedLim (49.04) to actual speed $=0$. Until M2ZeroSpeedDly (49.31) is elapsed the brake is kept open (lifted). Int. Scaling: $10=1 \mathrm{~s} \quad$ Type: \quad Volatile: N	\bigcirc	8	os	ш
49.32	M2ModelTime (motor 2 model time constant) Thermal time constant for motor 2 with fan/forced cooling. The time within the temperature rises to 63% of its nominal value. The motor thermal model is blocked, if M2ModelTime (49.32) is set to zero. The value of Mot2TempCalc (1.21) is saved at power down of the drives electronics. With the very first energizing of the drives electronics the motor's ambient temperature is set to $30^{\circ} \mathrm{C}$. \triangle WARNING! The model does not protect the motor if it is not properly cooled e.g. due to dust and dirt. Int. Scaling: $10=1 \mathrm{~s} \quad$ Type: \quad Volatile: N		¢		ш
49.33	M2AlarmLimLoad (motor 2 alarm limit load) The drive sets A110 M2OverLoad [AlarmWord1 (9.06) bit 9] if M2AlarmLimLoad (49.33) - in percent of M2NomCur (49.02) - is exceeded. Output value for motor 2 thermal model is Mot2TempCalc (1.21). Int. Scaling: $10=1$ \% Type: I Volatile: \mathbf{N}		$\stackrel{\sim}{\sim}$		ш
49.34	M2FaultLimLoad (motor 2 fault limit load) The drive trips with F510 M2OverLoad [FaultWord1 (9.01) bit 9] if M2FaultLimLoad (49.34) - in percent of M2NomCur (49.02) - is exceeded. Output value for motor 2 thermal model is Mot2TempCalc (1.21). Int. Scaling: $10=1 \% \quad$ Type: \quad I Volatile: \mathbf{N}		~/ल		¢

Index	Signal / Parameter name		泉		
49.35	M2TempSel (motor 2 temperature selector) M2TempSel (49.33) selects motor 2 measured temperature input. The result can be seen in Mot2TemopMeas (1.23). Connection possibilities for PT100: - max. 3 PT100 for motor 2 and max. 3 PT100 for motor 1 or - up to 6 PT100 for motor 2 only. Connection possibilities PTC: - max. 1 PTC for motor 2 and max. 1 PTC for motor 1 or - up to 2 PTC for motor 2 only: $0=$ NotUsed \quad motor 2 temperature measurement is blocked, default $1=1$ PT100 Al3 one PT100 connected to AI3 on SDCS-IOB-3 $2=2$ PT100 Al3 two PT100 connected to Al3 on SDCS-IOB-3 $3=3$ PT100 Al3 three PT100 connected to AI3 on SDCS-IOB-3 $4=4 \mathrm{PT} 100 \mathrm{Al} 3 / 2$ four PT100, 3 connected to Al3 and 1 connected to AI2 on SDCS-IOB-3 $5=5$ PT100 Al3/2 five PT100, 3 connected to AI3 and 2 connected to AI2 on SDCS-IOB-3 $6=6$ PT100 Al3/2 six PT100, 3 connected to AI3 and 3 connected to AI2 on SDCS-IOB-3 $7=1 \mathrm{PT} 100$ Al8 one PT100 connected to AI8 on RAIO2 $8=2$ PT100 Al8 two PT100 connected to AI8 on RAIO2 $9=3$ PT100 Al8 three PT100 connected to AI8 on RAIO2 $10=4$ PT100 AI8/7 four PT100, 3 connected to AI8 and 1 connected to AI7 on RAIO2 $11=5$ PT100 AI8/7 five PT100, 3 connected to AI8 and 2 connected to AI7 on RAIO2 $12=6$ PT100 Al8/7 six PT100, 3 connected to AI8 and 3 connected to AI7 on RAIO2 13 = 1PTC Al3 $14=2$ PTC AI3/2 two PTC, 1 connected to AI3 and 1 connected to AI2 on SDCS-IOB-3 $15=1$ PTC Al2/Con one PTC connected to AI2 on SDCS-CON-4 For more information see section Motor protection. Note: Al7 and AI8 have to be activated by means of AIO ExtModule (98.06). Note: In case only one PT100 is connected to an AI of the SDCS-IOB-3 the input range must be configured by jumpers to a gain of 10 . Jumper settings for input range and constant current source see DCS800 Hardware Manual. Int. Scaling: $1=1$ Type: C Volatile: \mathbf{N}		cic		ш
49.36	M2AlarmLimTemp (motor 2 alarm limit temperature) The drive sets A108 M2OverTemp [AlarmWord1 (9.06) bit 8] if M2AlarmLimTemp (49.36) is exceeded. Output value for motor 2 measured temperature is Mot2TempMeas (1.23). Note: The unit depends on M2TempSel (49.35). Int. Scaling: $1==1^{\circ} \mathrm{C} / 1 \Omega / 1 \quad$ Type: SI Volatile: N		8		ш
49.37	M2FaultLimTemp (motor 2 fault limit temperature) The drive trips with F509 M2OverTemp [FaultWord1 (9.01) bit 8] if M2FaultLimTemp (49.37) is exceeded. Output value for motor 2 measured temperature is Mot2TempMeas (1.23). Note: The unit depends on M2TempSel (49.35). Int. Scaling: $1==1^{\circ} \mathrm{C} / 1 \Omega / 1 \quad$ Type: SI Volatile: N		앙		

Index	Signal / Parameter name			$\stackrel{9}{0}$		
49.38	M2KlixonSel (motor 2 klixon selector) The drive trips with F509 M2OverTemp [FaultWord1 (9.01) bit 8] if a digital input selected and the klixon is open: $\begin{array}{ll} 0=\text { NotUsed } & \text { no reaction, default } \\ 1=\text { DI1 } & 0=\text { fault, } 1=\text { no fault } \\ 2=\text { DI2 } & 0=\text { fault, } 1=\text { no fault } \\ \text { 3 = DI3 } & 0=\text { fault, } 1=\text { no fault } \\ 4=\text { DI4 } & 0=\text { fault, } 1=\text { no fault } \\ 5 \text { = DI5 } & 0=\text { fault, } 1=\text { no fault } \\ 6 \text { = DI6 } & 0=\text { fault, } 1=\text { no fault } \\ 7 \text { = DI7 } & 0=\text { fault, } 1=\text { no fault } \\ 8=\text { DI8 } & 0=\text { fault, } 1=\text { no fault } \\ 9=\text { DI9 } & 0=\text { fault, } 1=\text { no fault. Only available with digital extension board } \\ 10=\text { DI10 } & 0=\text { fault, } 1=\text { no fault. Only available with digital extension board } \\ 11 \text { = DI11 } & 0=\text { fault, } 1=\text { no fault. Only available with digital extension board } \end{array}$ Note: It is possible to connect several klixons in series. Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: \mathbf{N}			8 0 0 0 0 0		ш
49.39	M2BrakeFItTime (motor 2 brake fault time) Brake open (lift) acknowledge monitor. During this time the brake open (lift) command BrakeCmd [AuxStatWord (8.02) bit 8] and the brake acknowledge signal [M2BrakeAckSel (49.29)] can be different without causing A122 MechBrake [AlarmWord2 (9.07) bit 5] or F552 MechBrake [FaultWord4 (9.04) bit 3] depending on BrakeFaultFunc (42.06). Int. Scaling: $10=1 \mathrm{~s}$ Type: \quad Volatile: N		8			ш
49.40	M2TorqProvTime (motor 2 torque proving time) Brake torque proving acknowledge. The drive trips with F556 TorqProv [FaultWord4 (9.04) bit 7] if the Run [MainCtrIWord (7.01) bit 3] command is set and the acknowledge TorqProvOK [AuxCtrlWord2 (7.03) bit 11] is not set before M2TorqProvTime (49.40) is elapsed. The torque proving is inactive, if M2TorqProvTime (49.40) is set to 0 . Note: The acknowledge signal TorqProvOK has to be provided by Adaptive Program, application program or overriding control and is set by means of a rising edge ($0 \rightarrow 1$). The torque reference might be set by means of BalRef (24.11) or TorqSel (26.01) and BalSpeedCtrl [AuxCtrlWord (7.02) bit 8] or TorqRefA (25.01). The reaction of the drive might be taken from MotCur (1.06). Int. Scaling: $10=\mathbf{1 s}$ Type: I Volatile: \mathbf{N}		안			ш
49.41	M2BrakeLiftDly (motor 2 brake lift delay) Brake open (lift) delay. This function delays the brake open (lift) command BrakeCmd [AuxStatWord (8.02) bit 8] until M2BrakeLiftDly (49.41) is elapsed. Int. Scaling: $10=1 \mathrm{~s} \quad$ Type: \quad Volatile: \mathbf{N}		8			ш
49.42	M2BrakeLongTime (motor 2 brake long time) Brake close (apply) acknowledge monitor. During this time the brake close (apply) command BrakeCmd [AuxStatWord (8.02) bit 8] and the brake acknowledge signal [M2BrakeAckSel (49.29)] can be different without causing either A122 MechBrake [AlarmWord2 (9.07) bit 5], F552 MechBrake [FaultWord4 (9.04) bit 3] or A116 BrakeLongFalling [AlarmWord1 (9.06) bit 15] depending on BrakeFaultFunc (42.06). Int. Scaling: $10==1 \mathrm{~s}$ Type: I Volatile: N		8			ш
49.43	M2BrakeStopDly (motor 2 brake stop delay) Brake close (apply) delay. This function starts after the brake acknowledge - if selected with M2BrakeAckSel (49.29) - is zero and compensates for the mechanical close (apply) delay of the brake. During the stop - Run [MainCtrIWord (7.01) bit 3] $=0-$ of the drive the speed reference is clamped (ramp output is set to zero) and the speed controller stays active until M2BrakeStopDly (49.43) is elapsed. Int. Scaling: $10=1$ s Type: I Volatile: N					

Signal and parameter list

Index	Signal / Parameter name	-	$\stackrel{\square}{0}$	
49.44	M2StrtTorqRefSel (motor 2 start torque reference selector) Motor 2, start torque selector: $\begin{array}{ll} 0 \text { = NotUsed } & \begin{array}{l} \text { start torque function is blocked and the start torque reference is fixed zero, } \\ \text { default } \end{array} \\ \text { 1 = Memory } & \begin{array}{l} \text { torque memory released, the minimum value equals the absolute value of } \\ \text { StrtTorqRef (42.08) } \end{array} \\ 2 \text { = StrtTorqRef } & \text { StrtTorqRef (42.08) } \\ \text { 3 = Al1 } & \text { analog input Al1 } \\ \text { 4 = Al2 } & \text { analog input Al2 } \\ 5 \text { = Al3 } & \text { analog input Al3 } \\ 6=\text { Al4 } & \text { analog input Al4 } \\ 7=\text { Al5 } & \text { analog input Al5 } \\ 8 \text { = Al6 } & \text { analog input Al6 } \end{array}$ Note: Torque memory is the presetting of the torque when starting with e.g. suspended load. The preset torque equals the actual torque stored when the brake open (lift) command is removed. After energizing the drive the value of StrtTorqRef (42.08) is set as torque memory. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}		?	ш

Index	Signal / Parameter name		$\stackrel{\substack{* \\ 0}}{\text { ¢ }}$	-	
50.02	M1EncMeasMode (motor 1 encoder 1 measuring mode) M1EncMeasMode (50.02) selects the measurement mode for pulse encoder 1: $0=A+/ B$ Dir channel A: rising edges for speed; channel A not: not used; channel B: direction; channel B not: not used; speed evaluation factor $=1$ $1=$ A+- \quad channels A and A not: rising and falling edges for speed; channels B and B not: not used; speed evaluation factor $=2$ $2=$ A+-/B Dir channels A and A not: rising and falling edges for speed; channel B: direction; channel B not: not used; speed evaluation factor $=2$ 3 = A+-/B+- channels A, A not and B, B not: rising and falling edges for speed and direction; speed evaluation factor $=4$, default Int. Scaling: $1==1$ Type: C Volatile: N				ш
50.03	M1SpeedFbSel (motor 1speed feedback selector) Motor 1 speed feedback selection: $0=$ EMF \quad speed is calculated by means of the EMF feedback with flux compensation, default 1 = Encoder speed is measured by means of pulse encoder 1 connected to either SDCS-CON-4 or SDCS-IOB-3 2 = Tacho speed is measured by means of an analog tacho 3 = External MotSpeed (1.04) is updated by Adaptive Program, application program or overriding control. 4 = Encoder2 speed is measured by means of pulse encoder 2 connected to a RTAC-xx, see Encoder2Module (98.01) 5 = EMF Volt speed is calculated by means of the EMF feedback without flux compensation Note1: It is not possible to go into field weakening range when M1SpeeFbSel (50.03) = EMF. Note2: When using EMF speed feedback together with a DC-breaker wrong voltage measurements can lead to F532 MotOverSpeed [FaultWord2 (9.02) bit 15]. In case of an open DC-breaker the voltage measurement might show high values caused by leakage currents through the snubber circuits of the thyristors, because there is no load on the DC side. To prevent these trips set MainContAck (10.21) = DCcontact. Int. Scaling: $1==1 \quad$ Type: \quad C Volatile: \mathbf{N}				0
50.04	M1EncPulseNo (motor 1 encoder 1 pulse number) Amount of pulses per revolution (ppr) for pulse encoder 1 Int. Scaling: 1 == 1 ppr Type: Volatile: N		응		

Index	Signal / Parameter name			5
50.07	PosCountMode (position counter mode) The position counter is based on the pulse count of pulse encoder 1 and / or pulse encoder 2, with all pulse edges are counted. The 32-bit position value is divided into two 16 -bit words for each pulse encoder:			ш

Signal and parameter list

Index	Signal / Parameter name		$\stackrel{\times}{6}$		S
50.09	PosCountInitHi (Position counter encoder 1 high initial value) Position counter initial high word for pulse encoder 1. Unit depends on setting of PosCountMode (50.07):		N0		ш
50.10	SpeedLev (speed level) When MotSpeed (1.04) reaches SpeedLev (50.10) the bit AboveLimit [MainStatWord (8.01) bit 10] is set. Internally limited from: $-(2.29) * \frac{32767}{20000} r p m$ to $(2.29) * \frac{32767}{20000} r p m$ Note: With SpeedLev (50.10) it is possible to automatically switch between the two p-and i-parts of the speed controller, see Par2Select (24.29) = SpeedLevel or SpeedError. Int. Scaling: (2.29) Type: I Volatile: N	\bigcirc	응		ш
50.11	DynBrakeDly (dynamic braking delay) In case of dynamic braking with EMF feedback [M1SpeedFbSel (50.03) = EMF] or a speed feedback fault there is no valid information about the motor speed and thus no zero speed information. To prevent an interlocking of the drive after dynamic braking the speed is assumed zero after DynBrakeDly (50.11) is elapsed: $-1 \mathrm{~s}=\quad$ the motor voltage is measured directly at the motor terminals and is thus valid during dynamic braking no zero speed signal for dynamic braking is generated $0 \mathrm{~s}=$ $\mathbf{1} \mathrm{s}$ to $\mathbf{3 0 0 0} \mathrm{s}=$ zero speed signal for dynamic braking is generated after the programmed time is elapsed Int. Scaling: $1==1 \mathrm{~s}$ Type: Volatile: \mathbf{N}	\checkmark	O		ш
	Analog tacho inputs				
50.12	M1TachoAdjust (motor 1 tacho adjust) Fine tuning of analog tacho. The value equals the actual speed measured by means of a hand held tacho: - M1TachoAdjust (50.12) $=$ speed actual Handerleltacho Internally limited to: $\pm(2.29) * \frac{32767}{20000} \mathrm{rpm}$ Note: Changes of M1TachoAdjust (50.12) are only valid during tacho fine tuning [ServiceMode (99.06) = TachFineTune]. During tacho fine tuning M1SpeedFbSel (50.03) is automatically forced to EMF. Attention: The value of M1TachoAdjust (50.12) has to be the speed measured by the hand held tacho and not the delta between speed reference and measured speed. Int. Scaling: (2.29) Type: Volatile: Y		$0^{8} 0$		

Index	Signal / Parameter name				
50.13	M1TachoVolt1000 (motor 1 tacho voltage at 1000 rpm) M1TachoVolt1000 (50.13) is used to adjust the voltage the analog tacho is generating at a speed of 1000 rpm : - M1TachoVolt1000 (50.13) $\geq 1 \mathrm{~V}$, the setting is used to calculate the tacho gain - M1TachoVolt1000 (50.13) = 0 V , the tacho gain is measured by means of the speed feedback assistant - M1TachoVolt1000 (50.13) = -1 V , the tacho gain was successfully measured and set by means of the speed feedback assistant Int. Scaling: $10=1 \mathrm{~V}$ Type: I Volatile: \mathbf{N}	-	$\stackrel{\sim}{N}$		0
50.14	Unused				
50.15	PosSyncMode (position counter synchronization mode) Position counter synchronization mode for pulse encoder 1 and / or pulse encoder 2 [depends on the setting of SyncCommand (10.04) and SyncCommand2 (10.05)]: $0=$ Single the next synchronization of the pulse encoders must be prepared by resetting SyncRdy [AuxStatWord (8.02) bit 5] with ResetSyncRdy [AuxCtrIWord (7.02) bit 11], default $1=$ Cyclic \quad the synchronization of the pulse encoders happens on every occurrence of the synchronization event Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{N}	-	0		ш
50.16	Unused				
50.17	WinderScale (winder scaling) Speed actual scaling. Before speed error $(\Delta \mathrm{n})$ generation. Int. Scaling: $100=1 \quad$ Type: Volatile: N	안	\%		ш
50.18	Enc2MeasMode (encoder 2 measuring mode) Enc2MeasMode (50.18) selects the measurement mode for pulse encoder 2 :		$\stackrel{i}{+}_{+}^{+}$		ш

Index	Signal / Parameter name					$\stackrel{0}{4}$
51.15	Fieldbus15 (fieldbus parameter 15) Fieldbus parameter 15 Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	\bigcirc	N			0
51.16	Fieldbus16 (fieldbus parameter 16) Fieldbus parameter 16 Int. Scaling: $1=\mathbf{= 1}$ Type: \quad Volatile: \mathbf{N}	\bigcirc				0
..						\checkmark
51.27	FBA PAR REFRESH (fieldbus parameter refreshing) If a fieldbus parameter is changed its new value takes effect only upon setting FBA PAR REFRESH (51.27) = RESET or at the next power up of the fieldbus adapter. FBA PAR REFRESH (51.27) is automatically set back to DONE after the refreshing is finished. $0=$ DONE default 1 = RESET refresh the parameters of the fieldbus adapter Note: This service is only available for R -type fieldbus adapters. Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{N}	¢				0
\ldots	\ldots					\cup
51.36	Fieldbus36 (fieldbus parameter 36) Fieldbus parameter 36 Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	\bigcirc				0
$\begin{aligned} & \text { No } \\ & \text { O} \\ & \text { O } \\ & \text { OU } \end{aligned}$	Modbus					
	This parameter group defines the communication parameters for the Modbus adapter RMBA-xx (see also Modbus adapter manual). Note: If a Modbus parameter is changed its new value takes effect only upon the next power up of the Modbus adapter.					
52.01	StationNumber (station number) Defines the address of the station. Two stations with the same station number are not allowed online. Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: \mathbf{N}		$\stackrel{\text { N }}{ }$	$\stackrel{\text { A }}{\sim}$		ш
52.02	BaudRate (baud rate) Defines the transfer rate of the Modbus link: $\begin{array}{rlrlr} 0 & =\text { reserved } & & & \\ 1 & =\mathbf{6 0 0} & & & \\ 2 & =\mathbf{1 2 0 0} & & 1200 \text { Baud } & \\ 3 & =\mathbf{2 4 0 0} & & 2400 \text { Baud } & \\ 4 & =\mathbf{4 8 0 0} & & 4800 \text { Baud } & \\ 5 & =\mathbf{9 6 0 0} & & 9600 \text { Baud, default } & \\ 6 & =\mathbf{1 9 2 0 0} & & 19200 \text { Baud } & \\ & \text { Int. } \text { Scaling: } \mathbf{1}=\mathbf{1} & & \text { Type: } & \text { C } \end{array} \quad \text { Volatile: } \mathbf{N}$	8		-		ш

Signal and parameter list

Index	Signal / Parameter name		
52.03	Parity (parity) Defines the use of parity and stop bit(s). The same setting must be used in all online stations: $0=$ reserved 1 = None1Stopbit no parity bit, one stop bit 2 = None2Stopbit no parity bit, two stop bits 3 = Odd odd parity indication bit, one stop bit $\begin{array}{ll}4 \text { = Even } & \quad \text { even parity indication bit, one stop bit, default } \\ \text { Scaling: } \quad 1=1 \quad \text { Type: } \quad \text { Volatile: }\end{array}$ $1==1$ Type: C Volatile: N		
8 0 \vdots 0 0 0 \vdots 0 $\mathbf{0}$ \mathbf{U}	Application program parameters		
	These parameter groups contain all parameters created by the application program.		

Index	Signal / Parameter name				O
70.04	Ch0 TimeOut (channel 0 timeout) Time delay before a communication loss with channel 0 is declared. Depending on the setting of Ch0 ComLossCtrl (70.05) either F543 COM8Com [FaultWord3 (9.03) bit 10] or A113 COM8Com [AlarmWord1 (9.06) bit 12] is set. The communication fault and alarm are inactive, if ChO TimeOut (70.04) is set to 0 ms . Note: The supervision is activated after the reception of the first valid message. Note: The time out starts when the link doesn't update any of the first 2 receive data sets addressed by Ch0 DsetBaseAddr (70.24). Example: When Ch0 DsetBaseAddr (70.24) $=10$ the reception of data sets 10 and 12 is supervised. Int. Scaling: $1=\mathbf{1 m s}$ Type: I Volatile: \mathbf{N}	\bigcirc	O		
70.05	Ch0 ComLossCtrl (channel 0 communication loss control) Ch0 ComLossCtrl (70.05) determines the reaction to a communication loss of channel 0 control. F543 COM8Com [FaultWord3 (9.03) bit 10] is set with: $0=$ RampStop \quad The input of the drives ramp is set to zero. Thus the drive stops according to DecTime1 (22.02) or DecTime2 (22.10). When reaching M1ZeroSpeedLim (20.03) the firing pulses are set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked, the contactors are opened, field exciter and fans are stopped, default. In case TorqSelMod (26.03) = Auto and communication loss is active the torque selector is bypassed and the drive is forced to speed control, default. $1=$ TorqueLimit \quad The output of the drives ramp is set to zero. Thus the drive stops at the active torque limit. When reaching M1ZeroSpeedLim (20.03) the firing pulses are set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked, the contactors are opened, field exciter and fans are stopped. In case TorqSelMod (26.03) = Auto and communication loss is active the torque selector is bypassed and the drive is forced to speed control, default. 2 = CoastStop \quad The firing pulses are immediately set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked, the contactors are opened, field exciter and fans are stopped. 3 = DynBraking dynamic braking A113 COM8Com [AlarmWord1 (9.06) bit 12] is set with: 4 = LastSpeed the drive continues to run at the last speed before the warning 5 = FixedSpeed1 the drive continuous to run with FixedSpeed1 (23.02) Note: The time out for Ch0 ComLossCtrl (70.05) is set by: - Ch0 TimeOut (70.04) Int. Scaling: $1==1 \quad$ Type: C Volatile: \mathbf{N}				ш
70.06	CHO HW Config (channel 0 hardware configuration) CHO HW Config (70.06) is used to enable / disable the regeneration of the Channel 0 optotransmitters in DDCS mode [Ch0 DriveBus $(71.01)=$ No]. Regeneration means that the drive echoes all messages back. DDCS mode is typically used with APC2, AC70, AC80 and module bus of $A C 800 \mathrm{M}$. $0=$ Ring \quad Regeneration is enabled. Used with ring-type bus topology. Typically when Channel 0 of all SDCS-COM-8 has been connected to a ring. 1 = Star Regeneration is disabled. Used with star-type topology. Typically with configurations using the NDBU-x5 branching units, default Note: This parameter has no effect in DriveBus mode [Ch0 DriveBus (71.01) = Yes]. Int. Scaling: $1=1$ Type: C Volatile: \mathbf{N}		\%		ш

Index	Signal / Parameter name					¢
70.07	Ch1 LinkControl (channel 1 link control) Channel 1 is used for communication with the AIMA-xx adapter. DDCS channel 1 light intensity control for transmission LEDs. When using the maximum allowed length of the fiber optic cable set the value to 15 . Int. Scaling: $1=1$ Type: I Volatile: \mathbf{N}	-				ш
70.08	Ch2 NodeAddr (channel 2 node address) Channel 2 is used for point to point communication connections between drives (e.g. masterfollower communication). Node address channel 2 : $1, \ldots, 125=\quad$ Node addresses of slave drives, not valid if Ch2 MaFoMode (70.09) = Master Int. Scaling: $1=\mathbf{1}$ Type: Volatile: \mathbf{N}	-				ш
70.09	Ch2 MaFoMode (channel 2 master-follower mode) Channel 2 can be used to send reference values (e.g. torque reference) from the master to one or several followers. Master-follower is an application in which machinery is run by several drives with all motor shafts coupled to each other by gears, chains, belts etc. 0 = reserved 1 = NotUsed channel 2 is not used for master-follower communication, default $2=$ Master the drive is the master of the master-follower link and broadcasts via channel 2 the contents of data set 41 [defined by Ch2 MasSig1 (70.10) to Ch2 MasSig3 (70.12)] 3 = Follower the drive is a follower of the master-follower link and receives via channel 2 the contents of data set 41 [defined by Ch2 FolSig1 (70.18) to Ch2 FolSig3 (70.20)] Note: The follower's node address is defined by Ch2 NodeAddr (70.08). Int. Scaling: $1==1 \quad$ Type: C Volatile: N					ш
70.10	Ch2 MasSig1 (channel 2 master signal 1) Master signal 1 broadcasts via channel 2 as $1^{\text {st }}$ value of data set 41 to all followers. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Default setting of 701 equals MainCtrlWord (7.01). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}					ш
70.11	Ch2 MasSig2 (channel 2 master signal 2) Master signal 2 broadcasts via channel 2 as $2^{\text {nd }}$ value of data set 41 to all followers. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Default setting of 2301 equals SpeedRef (23.01). Int. Scaling: $1==1 \quad$ Type: \quad I Volatile: N					ш
70.12	Ch2 MasSig3 (channel 2 master signal 3) Master signal 3 broadcasts via channel 2 as $3^{\text {rd }}$ value of data set 41 to all followers. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Default setting of 210 equals TorqRef3 (2.10). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	-				ш
70.13	Ch2 LinkControl (channel 2 link control) DDCS channel 2 light intensity control for transmission LEDs. When using the maximum allowed length of the fiber optic cable set the value to 15 . Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}					ш

Index	Signal / Parameter name			$\stackrel{\times}{8}$		
70.14	Ch2 TimeOut (channel 2 timeout) Time delay before a communication loss with channel 2 is declared. Depending on the setting of Ch2 ComLossCtrl (70.15) either F543 COM8Com [FaultWord3 (9.03) bit 10] or A113 COM8Com [AlarmWord1 (9.06) bit 12] is set. The communication fault and alarm are inactive, if Ch2 TimeOut (70.14) is set to 0 ms . Note: The supervision is activated after the reception of the first valid message. Note: The time out starts when the link doesn't update the master-follower data set. Int. Scaling: $1=\mathbf{1 m s}$ Type: Volatile: N	\bigcirc		8 8		-
70.15	Ch2 ComLossCtrl (channel 2 communication loss control) Ch2 ComLossCtrl (70.15) determines the reaction to a communication loss of channel 2. F543 COM8Com [FaultWord3 (9.03) bit 10] is set with: $0=$ RampStop \quad The input of the drives ramp is set to zero. Thus the drive stops according to DecTime1 (22.02) or DecTime2 (22.10). When reaching M1ZeroSpeedLim (20.03) the firing pulses are set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked, the contactors are opened, field exciter and fans are stopped, default. In case TorqSelMod (26.03) = Auto and communication loss is active the torque selector is bypassed and the drive is forced to speed control, default. $1=$ TorqueLimit \quad The output of the drives ramp is set to zero. Thus the drive stops at the active torque limit. When reaching M1ZeroSpeedLim (20.03) the firing pulses are set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked, the contactors are opened, field exciter and fans are stopped. In case TorqSelMod (26.03) = Auto and communication loss is active the torque selector is bypassed and the drive is forced to speed control, default. 2 = CoastStop The firing pulses are immediately set to 150 degrees to decrease the armature current. When the armature current is zero the firing pulses are blocked, the contactors are opened, field exciter and fans are stopped. 3 = DynBraking dynamic braking A113 COM8Com [AlarmWord1 (9.06) bit 12] is set with: 4 = LastSpeed the drive continues to run at the last speed before the warning 5 = FixedSpeed1 the drive continuous to run with FixedSpeed1 (23.02) Note: The time out for Ch2 ComLossCtrl (70.15) is set by: - Ch2 TimeOut (70.14) Int. Scaling: $1==1 \quad$ Type: C Volatile: \mathbf{N}					ш
70.16	Unused					
70.17	Unused					
70.18	Ch2 FolSig1 (channel 2 follower signal 1) Follower signal 1 receives via channel 2 the $1^{\text {st }}$ value of data set 41 from the master. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Default setting of 701 equals MainCtrIWord (7.01). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}			$8{ }_{8}^{8}$		ш
70.19	Ch2 FolSig2 (channel 2 follower signal 2) Follower signal 2 receives via channel 2 the $2^{\text {nd }}$ value of data set 41 from the master. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Default setting of 2301 equals SpeedRef (23.01). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}			8		ш

Index	Signal / Parameter name		$\stackrel{\text { ¢ }}{\text { ¢ }}$		=
70.20	Ch2 FolSig3 (channel 2 follower signal 3) Follower signal 3 receives via channel 2 the $3^{\text {rd }}$ value of data set 41 from the master. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Default setting of 2501 equals TorqRefA (25.01). Int. Scaling: 1==1 Type: I Volatile: N	\bigcirc	8	-	ш
70.21	Ch3 HW Config (channel 3 hardware configuration) CH3 HW Config (70.21) is used to enable / disable the regeneration of the Channel 3 optotransmitters. Regeneration means that the drive echoes all messages back. $0=$ Ring Regeneration is enabled. Used with ring-type bus topology. 1 = Star Regeneration is disabled. Used with star-type topology. Typically with configurations using the NDBU-x5 branching units, default Note: This parameter has no effect in DriveBus mode [Ch0 DriveBus (71.01) = Yes]. Int. Scaling: $1=1$ Type: C Volatile: \mathbf{N}	-			ш
70.22	Ch3 NodeAddr (channel 3 node address) Channel 3 is used for communication with start-up and maintenance tools (e.g. DriveWindow). If several drives are connected together via channel 3, each of them must be set to a unique node address. Node address channel 3: $0, \ldots, 75 \quad$ valid node address for SDCS-COM-8 $76, \ldots, 124$ reserved node address for NDBU-x5 branching units $125, \ldots, 254$ valid node address for SDCS-COM-8 Attention: A new node address becomes only valid after the next SDCS-COM-8 power-up. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	-	N		ш
70.23	Ch3 LinkControl (channel 3 link control) DDCS channel 3 light intensity control for transmission LEDs. When using the maximum allowed length of the fiber optic cable set the value to 15. Int. Scaling: $1=1$ Type: Volatile: N	-			ш
70.24	Ch0 DsetBaseAddr (channel 0 data set base address) Data set number of the $1^{\text {st }}$ data set used for the communication with the overriding control system (e.g. field bus adapters, ABB overriding control). The data set addressed by ChO DsetBaseAddr (70.24) is the $1^{\text {st }}$ data set send from the overriding control to the drive, while the next $-2^{\text {nd }}$ - data set is the first one send from the drive to the overriding control and so on. Up to 8 data sets for each direction are supported (addressing of the data sets see groups 90 to 93). Examples: $\begin{array}{lll} -\quad \text { Ch0 DsetBaseAddr(70.24) }=1 & & \text { data set range } 1, \ldots, 16 \\ - & \text { Ch0 DsetBaseAddr(70.24) }=10 & \\ \text { data set range 10, } . ., 25 \end{array}$ Note: The data sets for the APC-mailbox function (32 and 33) as well as for the master-follower communication (41) are not programmable. Int. Scaling: $1==1$ Type: Volatile: N	-			ш

Index	Signal / Parameter name		E
$\begin{aligned} & \text { ㅊ } \\ & \text { 을 } \\ & \text { O는 } \end{aligned}$	Drivebus		
71.01	Ch0 DriveBus (channel 0 drive bus) Communication mode selection for channel 0 . The DriveBus mode is used with the AC80 and AC 800M controllers. $0=$ No DDCS mode (recommended when ModuleBus is used) 1 = Yes DriveBus mode, default Note: Before changing Ch0 DriveBus (71.01) the communication from the overriding control system has to be disabled e.g. by removing the fiber optic cables. Note: A new mode becomes only valid after the next SDCS-COM-8 power-up. Int. Scaling: 1 == 1 Type:	$2 \sim \stackrel{\infty}{\infty}$	ш
	Adaptive Program control		
83.01	AdapProgCmd (Adaptive Program command) Selects the operation mode for the Adaptive Program: $0 \text { = Stop }$ stop, the Adaptive Program is not running and cannot be edited, default 1 = Start running, the Adaptive Program is running and cannot be edited 2 = Edit edit, the Adaptive Program is not running and can be edited 3 = SingleCycle The Adaptive Program runs only once. If a breakpoint is set with BreakPoint (83.06) the Adaptive Program will stop before the breakpoint. After the SingleCycle AdapProgCmd (83.01) is automatically set back to Stop. 4 = SingleStep Runs only one function block. LocationCounter (84.03) shows the function block number, which will be executed during the next SingleStep. After a SingleStep AdapProgCmd (83.01) is automatically set back to Stop. LocationCounter (84.03) shows the next function block to be executed. To reset LocationCounter (84.03) to the first function block set AdapProgCmd (83.01) to Stop again (even if it is already set to Stop). A136 NoAPTaskTime [AlarmWord3 (9.08) bit 3] is set when TimeLevSel (83.04) is not set to 5 ms, $\mathbf{2 0} \mathbf{~ m s}, \mathbf{1 0 0} \mathbf{~ m s}$ or $\mathbf{5 0 0} \mathbf{~ m s}$ but AdapProgCmd (83.01) is set to Start, SingleCycle or SingleStep Note: AdapProgCmd (83.01) = Start, SingleCycle or SingleStep is only valid, if AdapPrgStat (84.01) \neq Running. Int. Scaling: $1=1$ Type: C Volatile: \mathbf{N}		ш

Index	Signal / Parameter name		㻊		
83.02	EditCmd (edit command) Edit Adaptive Program. EditCmd (83.02) is automatically set back to Done after the chosen action is finished: $0=$ Done no action or edit of Adaptive Program completed, default 1 = Push Shifts the function block in the spot defined by EditBlock (83.03) and all subsequent function blocks one spot forward. A new function block can be placed in the now empty spot by programming its parameter set as usual. Example: A new function block needs to be placed in between the function block number four (84.22) to (84.27) and five (84.28) to (84.33). In order to do this: 1. set AdapProgCmd (83.01) = Edit 2. set EditBlock (83.03) $=5$ (selects function block 5 as the desired spot for the new function block) 3. set EditCmd (83.02) = Push (shifts function block 5 and all subsequent function blocks one spot forward) 4. Program empty spot 5 by means of (84.28) to (84.33) 2 = Delete Deletes the function block in the spot defined by EditBlock (83.03) and shifts all subsequent function blocks one spot backward. To delete all function blocks set EditBlock (83.03) $=17$. 3 = Protect Turns all parameters of the Adaptive Program into protected mode (parameters cannot be read or written to). Before using the Protect command set the pass code by means of PassCode (83.05). Attention: Do not forget the pass code! 4 = Unprotect 4 = Unprotect Reset of protected mode. Before the Unprotect command can be used, PassCode (83.05) has to be set. Attention: The proper pass code has to be used! Int. Scaling: 1 == 1 Type: C Volatile: \mathbf{Y}		(100		ш
83.03	EditBlock (edit block) Defines the function block which is selected by EditCmd (83.02) = Push or Delete. After a Push or Delete EditBlock (83.03) is automatically set back to 1. Note: To delete all function blocks set EditBlock (83.03) = 17 . Int. Scaling: $1=1 \quad$ Type: \quad Volatile: Y	\bigcirc	N		ш
83.04	TimeLevSel (time level select) Selects the cycle time for the Adaptive Program. This setting is valid for all function blocks. $0=\mathbf{O f f} \quad$ no task selected $1=5 \mathrm{~ms} \quad$ Adaptive Program runs with 5 ms $2=20 \mathrm{~ms} \quad$ Adaptive Program runs with 20 ms $3=100 \mathrm{~ms} \quad$ Adaptive Program runs with 100 ms $4=500 \mathrm{~ms} \quad$ Adaptive Program runs with 500 ms A136 NoAPTaskTime [AlarmWord3 (9.08) bit 3] is set when TimeLevSel (83.04) is not set to 5 $\mathbf{m s}, \mathbf{2 0} \mathbf{~ m s}, 100 \mathbf{~ m s}$ or $\mathbf{5 0 0} \mathbf{~ m s}$ but AdapProgCmd (83.01) is set to Start, SingleCycle or SingleStep. Int. Scaling: $1==1 \quad$ Type: C Volatile: N				ш
83.05	PassCode (pass code) The pass code is a number between 1 and 65535 to write protect Adaptive Programs by means of EditCmd (83.02). After using Protect or Unprotect PassCode (83.05) is automatically set back to zero. Attention: Do not forget the pass code! Int. Scaling: $1==1 \quad$ Type: \quad Volatile: Y		適		ш

Index 84.10 to 84.99	Signal／Parameter name									＊	\％	${ }^{0}$
	The description of the parameters for function blocks 2 to 16 is basically the same as for function block 1．For Your convenience the following table shows the parameter numbers of all function blocks1：											ш
	Function block	BlockxType	Blockx｜n1 input 1	BlockxIn2 input 2	BlockxIn3 input 1	BlockxAttrib	BlockxOutput signal	BlockxOut pointer				
	1	84.04	84.05	84.06	84.07	84.08	84.09	86.01				
	2	84.10	84.11	84.12	84.13	84.14	84.15	86.02				
	3	84.16	84.17	84.18	84.19	84.20	84.21	86.03				
	4	84.22	84.23	84.24	84.25	84.26	84.27	86.04				
	5	84.28	84.29	84.30	84.31	84.32	84.33	86.05				
	6	84.34	84.35	84.36	84.37	84.38	84.39	86.06				
		84.40	84.41	84.42	84.43	84.44	84.45	86.07				
	8	84.46	84.47	84.48	84.49	84.50	84.51	86.08				
	9	84.52	84.53	84.54	84.55	84.56	84.57	86.09				
	10	84.58	84.59	84.60	84.61	84.62	84.63	86.10				
	11	84.64	84.65	84.66	84.67	84.68	84.69	86.11				
	12	84.70	84.71	84.72	84.73	84.74	84.75	86.12				
	13	84.76	84.77	84.78	84.79	84.80	84.81	86.13				
	14	84.82	84.83	84.84	84.85	84.86	84.87	86.14				
	15	84.88	84.89	84.90	84.91	84.92	84.93	86.15				
	16	84.94	84.95	84.96	84.97	84.98	84.99	86.16				
$\begin{aligned} & 10 \\ & \infty \\ & \text { 을 } \\ & 0 \\ & \hline \mathbf{0} \end{aligned}$	User constants											
85.01	Constant1（constant 1） Sets an integer constant for the Adaptive Program． Int．Scaling： $1=\mathbf{1} \quad$ Type：\quad SI Volatile： \mathbf{N}									合		ш
85.02	Constant2（constant 2） Sets an integer constant for the Adaptive Program． Int．Scaling： $1=\mathbf{1} \quad$ Type：\quad SI Volatile： \mathbf{N}									へ		ш
85.03	Constant3（constant 3） Sets an integer constant for the Adaptive Program． Int．Scaling： $1=\mathbf{1} \quad$ Type：\quad SI Volatile： \mathbf{N}									へ		ш
85.04	Constant4（constant 4） Sets an integer constant for the Adaptive Program． Int．Scaling： $1=\mathbf{1} \quad$ Type：\quad SI Volatile： N								－	N		ш
85.05	Constant5（constant 5）Sets an integer constant for the Adaptive Program．Int．Scaling： $\mathbf{1 = = 1} \quad$ Type：\quad SI \quad Volatile： \mathbf{N}								－	へ		ш
85.06	Constant6（constant 6） Sets an integer constant for the Adaptive Program． Int．Scaling： $1=\mathbf{1} \quad$ Type：\quad SI Volatile： \mathbf{N}								¢	へ		ш
85.07	Constant7（constant 7） Sets an integer constant for the Adaptive Program． Int．Scaling： $1=\mathbf{1}$ Type： SI Volatile：N								¢	へ－		ш

Signal and parameter list

Index	Signal / Parameter name		$\stackrel{\times}{6}$	$\stackrel{1}{5}$	
85.08	Constant8 (constant 8) Sets an integer constant for the Adaptive Program. Int. Scaling: $1==1$ Type: SI Volatile: N	¢	$\begin{array}{ll} \stackrel{y}{0} \\ \stackrel{y}{c} \\ \stackrel{y}{c} \end{array}$		ш
85.09	Constant9 (constant 9) Sets an integer constant for the Adaptive Program. Int. Scaling: $1==1 \quad$ Type: \quad SI Volatile: \mathbf{N}	¢			ш
85.10	Constant10 (constant 10) Sets an integer constant for the Adaptive Program. Int. Scaling: $1=\mathbf{= 1} \quad$ Type: \quad SI Volatile: \mathbf{N}	¢	$\begin{array}{ll} N & 0 \\ \stackrel{N}{0} & \end{array}$		ш
85.11	String1 (string 1) Sets a string for the Adaptive Program. With DriveWindow it is possible to fill in a string (e.g. name of an event) with a maximum of 12 characters. This string is shown in the DCS800 Control Panel and in DriveWindow. Int. Scaling: $1==1 \quad$ Type: \quad SI/C Volatile: \mathbf{N}		\%		ш
85.12	String2 (string 2) Sets a string for the Adaptive Program. With DriveWindow it is possible to fill in a string (e.g. name of an event) with a maximum of 12 characters. This string is shown in the DCS800 Control Panel and in DriveWindow. Int. Scaling: $1==1 \quad$ Type: \quad SI/C Volatile: \mathbf{N}		第:		ш
85.13	String3 (string 3) Sets a string for the Adaptive Program. With DriveWindow it is possible to fill in a string (e.g. name of an event) with a maximum of 12 characters. This string is shown in the DCS800 Control Panel and in DriveWindow. Int. Scaling: $1=1 \quad$ Type: \quad SI/C Volatile: \mathbf{N}		\%		ш
85.14	String4 (string 4) Sets a string for the Adaptive Program. With DriveWindow it is possible to fill in a string (e.g. name of an event) with a maximum of 12 characters. This string is shown in the DCS800 Control Panel and in DriveWindow. Int. Scaling: $1=1 \quad$ Type: \quad SI/C Volatile: \mathbf{N}		\%		ш
85.15	String5 (string 5) Sets a string for the Adaptive Program. With DriveWindow it is possible to fill in a string (e.g. name of an event) with a maximum of 12 characters. This string is shown in the DCS800 Control Panel and in DriveWindow. Int. Scaling: $1==1 \quad$ Type: \quad SI/C Volatile: \mathbf{N}		年:		ш

Signal and parameter list

Index	Signal / Parameter name					O
88.25	M1TachMaxSpeed (motor 1 tacho maximum speed) Internally used tacho maximum speed for motor 1 . This value is depending on the analog tacho output voltage - e.g. 60 V at 1000 rpm - and the maximum speed of the drive system - which is the maximum of SpeedScaleAct (2.29), M1OvrSpeed (30.16) and M1BaseSpeed (99.04). This value should only be written to by: - tacho fine tuning via ServiceMode (99.06) = TachFineTune, - via M1TachVolt1000 (50.13), - TachoAdjust block in Adaptive Program, - TachoAdjust block in application program and - parameter download Internally limited from: $-(2.29) * \frac{32767}{20000}$ rpm to $(2.29) * \frac{32767}{20000} r$ rpm Int. Scaling: (2.29) Type: sı	-				
88.26	M2TachMaxSpeed (motor 2 tacho maximum speed) Internally used tacho maximum speed for motor 2 . This value is depending on the analog tacho output voltage - e.g. 60 V at 1000 rpm - and the maximum speed of the drive system - which is the maximum of SpeedScaleAct (2.29), M2OvrSpeed (49.21) and M2BaseSpeed (49.03). This value should only be written to by: - tacho fine tuning via ServiceMode (99.06) = TachFineTune, - via M2TachVolt1000 (49.27), - TachoAdjust block in Adaptive Program, - TachoAdjust block in application program and - parameter download Internally limited from: $-(2.29) * \frac{32767}{20000}$ rpm to $(2.29) * \frac{32767}{20000} r$ rpm Int. Scaling: (2.29) Type: SI Volatile: N	\bigcirc			ε	
88.27	M1TachoTune (motor 1 tacho tuning factor) Internally used tacho fine tuning factor for motor 1 . This value should only be written to by: - tacho fine tuning via ServiceMode (99.06) = TachFineTune, - TachoAdjust block in Adaptive Program, - TachoAdjust block in application program and - parameter download Int. Scaling: $1000=1 \quad$ Type: \quad Volatile: N	\bigcirc				ш
88.28	M2TachoTune (motor 2 tacho tuning factor) Internally used tacho fine tuning factor for motor 2 . This value should only be written to by: - tacho fine tuning via ServiceMode (99.06) = TachFineTune, - TachoAdjust block in Adaptive Program, - TachoAdjust block in application program and - parameter download Int. Scaling: $1000==1 \quad$ Type: \quad Volatile: N	\bigcirc				ш
88.29	M1TachoGain (motor 1 tacho tuning gain) Internally used tacho gain tuning for motor 1 . This value should only be written to by: - tacho gain tuning via ServiceMode (99.06) = SpdFbAssist, - M1TachoVolt1000 (50.13) and - parameter download Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	\bigcirc				ш

Index	Signal / Parameter name								$\stackrel{\times}{6}$		気	
88.30	M2TachoGain (motor 2 tacho tuning gain) Internally used tacho gain tuning for motor 2. This value should only be written to by: - tacho gain tuning via ServiceMode (99.06) = SpdFbAssist, - M2TachoVolt1000 (49.27) and - parameter download Int. Scaling: $1==1 \quad$ Type: \quad I Volatile: \mathbf{N}											ш
88.31	AnybusModType (last connected serial communication module) Internally used memory for the last attached serial communication module. This value should only be written to by: - the DCS800 firmware and - parameter download Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}									0		ш
$\begin{aligned} & \text { 응 } \\ & \text { 을 } \\ & \frac{0}{0} \end{aligned}$	Receiving data sets addresses 1											
	Addresses for the received data transmitted from the overriding control to the drive. The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. The data set base address is set in Ch0 DsetBaseAddr (70.24).											
90.01	DsetXVal1 (data set X value 1) Data set X value 1 (interval: 3 ms). Data set address = Ch0 DsetBaseAddr (70.24). Default setting of 701 equals MainCtrIWord (7.01). Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: \mathbf{N}							\bigcirc				ш
90.02	DsetXVal2 (data set X value 2) Data set X value 2 (interval: 3 ms). Data set address = Ch0 DsetBaseAddr (70.24). Default setting of 2301 equals SpeedRef (23.01). Int. Scaling: $1=1 \quad$ Type: \quad Volatile: \mathbf{N}							\bigcirc		${ }^{3}$		ш
90.03	DsetXVal3 (data set X value 3) Data set X value 3 (interval: 3 ms). Data set address = Ch0 DsetBaseAddr (70.24). Default setting of 2501 equals TorqRefA (25.01). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}							\bigcirc		\% ${ }^{\circ}$		ш

Index	Signal / Parameter name	.		¢	
90.04	DsetXplus2Val1 (data set $\mathrm{X}+2$ value 1) Data set $\mathrm{X}+2$ value 1 (interval: 3 ms). Data set address $=$ Ch0 DsetBaseAddr (70.24) +2 . Default setting of 702 equals AuxCtrIWord (7.02). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N	-			ш
90.05	DsetXplus2Val2 (data set $\mathrm{X}+2$ value 2) Data set $\mathrm{X}+2$ value 2 (interval: 3 ms). Data set address $=$ Ch0 DsetBaseAddr (70.24) +2 . Default setting of 703 equals AuxCtrIWord2 (7.03). Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: N	-	\% 8		ш
90.06	DsetXplus2Val3 (data set X+2 value 3) Data set $\mathrm{X}+2$ value 3 (interval: 3 ms). Data set address = Ch0 DsetBaseAddr (70.24) +2. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	-	\% 8		ш
90.07	DsetXplus4Val1 (data set $\mathrm{X}+4$ value 1) Data set $\mathrm{X}+4$ value 1 (interval: 3 ms). Data set address = Ch0 DsetBaseAddr (70.24) + 4 . Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N	-	\%		ш
90.08	DsetXplus4Val2 (data set X+4 value 2) Data set $\mathrm{X}+4$ value 2 (interval: 3 ms). Data set address = Ch0 DsetBaseAddr (70.24) +4 . Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N	\bigcirc	\%		ш
90.09	DsetXplus4Val3 (data set $\mathrm{X}+4$ value 3) Data set $\mathrm{X}+4$ value 3 (interval: 3 ms). Data set address $=$ Ch0 DsetBaseAddr(70.24) + 4 . Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	\bigcirc	O		ш
90.10	DsetXplus6Val1 (data set X+6 value 1) Data set $\mathrm{X}+6$ value 1 (interval: 3 ms). Data set address = Ch0 DsetBaseAddr (70.24) +6. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N	\bigcirc	\%		ш
90.11	DsetXplus6Val2 (data set X+6 value 2) Data set $\mathrm{X}+6$ value 2 (interval: 3 ms). Data set address = Ch0 DsetBaseAddr (70.24) + 6. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	\bigcirc	\%		ш
90.12	DsetXplus6Val3 (data set X+6 value 3) Data set $\mathrm{X}+6$ value 3 (interval: 3 ms). Data set address = Ch0 DsetBaseAddr (70.24) +6. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	\bigcirc	\%		ш
90.13	DsetXplus8Val1 (data set $\mathrm{X}+8$ value 1) Data set $\mathrm{X}+8$ value 1 (interval: 30 ms). Data set address = Ch0 DsetBaseAddr (70.24) + 8 . Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	-	\%		ш
90.14	DsetXplus8Val2 (data set X+8 value 2) Data set $x+8$ value 2 (interval: 30 ms). Data set address = Ch0 DsetBaseAddr (70.24) + 8. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N	-	\%		ш
90.15	DsetXplus8Val3 (data set X+8 value 3) Data set $\mathrm{X}+8$ value 3 (interval: 30 ms). Data set address $=$ Ch0 DsetBaseAddr (70.24) +8 . Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	\bigcirc	\%		ш

Signal and parameter list

Signal and parameter list

Index	Signal / Parameter name	E		${ }_{0}^{0}$	4	W
92.07	DsetXplus5Val1 (data set X+5 value 1) Data set $\mathrm{X}+5$ value 1 (interval: 3 ms). Data set address = Ch0 DsetBaseAddr (70.24) + 5 . Default setting of 901 equals FaultWord1 (9.01). Int. Scaling: $1==1 \quad$ Type: \quad I Volatile: \mathbf{N}	\bigcirc		${ }^{\circ}{ }^{\circ} \mathrm{O}$		ш
92.08	DsetXplus5Val2 (data set $X+5$ value 2) Data set $\mathrm{X}+5$ value 2 (interval: 3 ms). Data set address $=$ Ch0 DsetBaseAddr (70.24) +5 . Default setting of 902 equals FaultWord2 (9.02). Int. Scaling: $1==1 \quad$ Type: \quad I Volatile: \mathbf{N}	\bigcirc		$\begin{gathered} 80 \\ \hline 0 \\ \hline 10 \\ \hline 0 \end{gathered}$		ш
92.09	DsetXplus5Val3 (data set X+5 value 3) Data set $\mathrm{X}+5$ value 3 (interval: 3 ms). Data set address $=$ Ch0 DsetBaseAddr (70.24) +5 . Default setting of 903 equals FaultWord3 (9.03). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	\bigcirc		$\begin{gathered} 80 \\ \hline 080 \\ \hline 0 \\ \hline 1 \end{gathered}$		ш
92.10	DsetXplus7Val1 (data set X+7 value 1) Data set $\mathrm{X}+7$ value 1 (interval: 3 ms). Data set address $=$ Ch0 DsetBaseAddr (70.24) +7 . Default setting of 904 equals FaultWord4 (9.04). Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: N	\bigcirc				ш
92.11	DsetXplus7Val2 (data set X+7 value 2) Data set $\mathrm{X}+7$ value 2 (interval: 3 ms). Data set address $=$ Ch0 DsetBaseAddr (70.24) +7 . Default setting of 906 equals AlarmWord1 (9.06). Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: \mathbf{N}	0		$\begin{gathered} 80 \\ \hline 080 \\ \hline 8 \end{gathered}$		ш
92.12	DsetXplus7Val3 (data set X+7 value 3) Data set $\mathrm{X}+7$ value 3 (interval: 3 ms). Data set address $=$ Ch0 DsetBaseAddr (70.24) +7 . Default setting of 907 equals AlarmWord2 (9.07). Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: \mathbf{N}	0		$\left.\begin{array}{l} 0 \\ \hline 0 \\ \hline 0 \end{array}\right)$		ш
92.13	DsetXplus9Val1 (data set X+9 value 1) Data set $\mathrm{X}+9$ value 1 (interval: 30 ms). Data set address $=$ Ch0 DsetBaseAddr (70.24) + 9 . Default setting of 908 equals AlarmWord3 (9.08). Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: N	-		$\begin{aligned} & 80 \\ & \hline 080 \\ & \hline 080 \\ & \hline 0 \mid \end{aligned}$		ш
92.14	DsetXplus9Val2 (data set X+9 value 2) Data set $\mathrm{X}+9$ value 2 (interval: 30 ms). Data set address $=$ Ch0 DsetBaseAddr (70.24) + 9 . Default setting of 803 equals LimWord (8.03). Int. Scaling: $1=1 \quad$ Type: $\quad 1 \quad$ Volatile: \mathbf{N}	-		$\begin{array}{c\|c} 80 \\ \hline 0 & 0 \\ \hline 0 \\ \hline 0 \end{array}$		ш
92.15	DsetXplus9Val3 (data set X+9 value 3) Data set $\mathrm{X}+9$ value 3 (interval: 30 ms). Data set address $=$ Ch0 DsetBaseAddr (70.24) + 9 . Default setting of 805 equals DI StatWord (8.05). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	-				ш
92.16	DsetXplus11Val1 (data set $\mathrm{X}+11$ value 1) Data set $\mathrm{X}+11$ value 1 (interval: 30 ms). Data set address $=$ Ch0 DsetBaseAddr (70.24) + 11 . Default setting of 806 equals DO StatWord (8.06). Int. Scaling: $1==1 \quad$ Type: \quad I Volatile: \mathbf{N}	-				ш
92.17	DsetXplus11Val2 (data set $x+11$ value 2) Data set $\mathrm{X}+11$ value 2 (interval: 30 ms). Data set address $=$ Ch0 DsetBaseAddr (70.24) + 11 . Default setting of 124 equals BridgeTemp (1.24). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N	-		$3 \underset{3}{3}$		ш
92.18	DsetXplus11Val3 (data set $X+11$ value 3) Data set $\mathrm{X}+11$ value 3 (interval: 30 ms). Data set address $=$ Ch0 DsetBaseAddr (70.24) + 11 . Default setting of 112 equals Mot1TempMeas (1.22). Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	\bigcirc		$3 \underset{3}{3} \underset{\sim}{0}$		ш

Signal and parameter list

| Index | \quad Signal / Parameter name |
| :--- | :--- | :--- | :--- | :--- |,

Index	Signal / Parameter name		*		
94.09	M2FexNode (motor 2 field exciter node ID) Defines the DCSLink node ID of motor 2 field exciter in the drive. See also example 1 above. The field exciter node ID is inactive, if M2FexNode (94.09) is set to 0 . Note: M2FexNode (94.09) is void, when M2UsedFexType (49.07) = NotUsed or OnBoard. Int. Scaling: $\mathbf{1 = =} \quad$ Type: \quad Volatile: \mathbf{N}	-	$\stackrel{\sim}{0}$		ш
94.10	Unused				
94.11	Unused				
	The drive-to-drive and master-follower communication utilizes 4 mailboxes to transfer data. Thus data transfer to any station in the system is possible. Each mailbox can transmit / receive up to 4 values. Positive mailbox node ID numbers only transmit data, negative only receive data. To get communication mailbox node ID pairs are needed.				
	Example 6: Drive-to-drive configuration, sending signals from drive 2 using MailBox3 (94.24) to drive 3 using MailBox3 (94.24) by means of 5 to transmit data and -5 to receive data.				
	Example 7: Master-follower configuration; send TorqRef3 (2.10) from the master drive via MailBox1 (94.12) to TorqRefA (25.01) of the followers via MailBox2 (94.18).				

Signal and parameter list

Index	Signal / Parameter name					
94.12	MailBox1 (mailbox 1 node ID) Mailbox 1 can transmit / receive up to 4 values [TrmtRecVal1.1 (94.13), TrmtRecVal1.2 (94.14), TrmtRecVal1.3 (94.15) and TrmtRecVal1.4 (94.16)]. Positive mailbox node ID numbers transmit data, negative receive data. To get communication, mailbox node ID pairs are needed. See also examples 6 and 7 above. The mailbox is inactive, if MailBox1 (94.12) is set to 0. Int. Scaling: $1==1$ Type: Volatile: N					ш
94.13	MailBoxCycle1 (cycle time mailbox 1) The function of MailBoxCycle1 (94.13) is depending on the setting of MailBox1 (94.12). If MailBox1 (94.12) is positive: - data will be transmitted - MailBoxCycle1 (94.13) sets the transmitting and receiving intervals - if MailBoxCycle1 (94.13) is set to 3 ms the transmit and receiving intervals are synchronized with mains frequency, either 3.3 ms or 2.77 ms - values from 1-2 ms are too fast and will generate a fault - the communication is inactive, if MailBoxCycle1 (94.13) is set to 0 ms If MailBox1 (94.12) is negative: - data will be received - MailBoxCycle1 (94.13) sets the communication timeout. This is the time delay before a drive-to-drive or master-follower communication break is declared. Depending on the setting of ComLossCtrl (30.28) either F544 P2PandMFCom [FaultWord3 (9.03) bit 11] or A112 P2PandMFCom [AlarmWord1 (9.06) bit 11] is set. - the communication fault and alarm are inactive, if MailBoxCycle1 (94.13) is set to 0 ms Attention: The communication timeout has to be set at least twice as long as the corresponding mail box cycle time parameter. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: N				${ }_{8}^{8}$	
94.14	TrmtRecVal1.1 (mailbox 1 transmit / receive value 1) Mailbox 1 transmit / receive value 1 . The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad I Volatile: \mathbf{N}					ш
94.15	TrmtRecVal1.2 (mailbox 1 transmit/receive value 2) Mailbox 1 transmit / receive value 2 . The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}					ш
94.16	TrmtRecVal1.3 (mailbox 1 transmit / receive value 3) Mailbox 1 transmit / receive value 3. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}					ш
94.17	TrmtRecVal1.4 (mailbox 1 transmit / receive value 4) Mailbox 1 transmit / receive value 4. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: I Volatile: \mathbf{N}					ш
94.18	MailBox2 (mailbox 2 node ID) Mailbox 2 can transmit / receive up to 4 values [TrmtRecVal2.1 (94.20), TrmtRecVal2.2 (94.21), TrmtRecVal2.3 (94.22) and TrmtRecVal2.4 (94.23)]. Positive mailbox node ID numbers transmit data, negative receive data. To get communication, mailbox node ID pairs are needed. See also examples 6 and 7 above. The mailbox is inactive, if MailBox2 (94.18) is set to 0. Int. Scaling: $1=\mathbf{1}$ Type: Volatile: N					ш

Index	Signal / Parameter name					
94.19	MailBoxCycle2 (cycle time mailbox 2) The function of MailBoxCycle2 (94.19) is depending on the setting of MailBox2 (94.18). If MailBox2 (94.18) is positive: - data will be transmitted - MailBoxCycle2 (94.19) sets the transmitting and receiving intervals - if MailBoxCycle2 (94.19) is set to 3 ms the transmit and receiving intervals are synchronized with mains frequency, either 3.3 ms or 2.77 ms - values from 1-2 ms are too fast and will generate a fault - the communication is inactive, if MailBoxCycle2 (94.19) is set to 0 ms If MailBox2 (94.18) is negative: - data will be received - MailBoxCycle2 (94.19) sets the communication timeout. This is the time delay before a drive-to-drive or master-follower communication break is declared. Depending on the setting of ComLossCtrl (30.28) either F544 P2PandMFCom [FaultWord3 (9.03) bit 11] or A112 P2PandMFCom [AlarmWord1 (9.06) bit 11] is set. - the communication fault and alarm are inactive, if MailBoxCycle2 (94.19) is set to 0 ms Attention: The communication timeout has to be set at least twice as long as the corresponding mail box cycle time parameter. Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}	-			$\stackrel{\square}{6}$	ш
94.20	TrmtRecVal2.1 (mailbox 2 transmit / receive value 1) Mailbox 2 transmit / receive value 1. The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: N	-				ш
94.21	TrmtRecVal2.2 (mailbox 2 transmit / receive value 2) Mailbox 2 transmit / receive value 2. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	0				ш
94.22	TrmtRecVal2.3 (mailbox 2 transmit / receive value 3) Mailbox 2 transmit / receive value 3 . The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: I Volatile: N	\bigcirc				ш
94.23	TrmtRecVal2.4 (mailbox 2 transmit / receive value 4) Mailbox 2 transmit / receive value 4. The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	\bigcirc				ш
94.24	MailBox3 (mailbox 3 node ID) Mailbox 3 can transmit / receive up to 4 values [TrmtRecVal3.1 (94.26), TrmtRecVal3.2 (94.27), TrmtRecVal3.3 (94.28) and TrmtRecVal3.4 (94.29)]. Positive mailbox node ID numbers transmit data, negative receive data. To get communication, mailbox node ID pairs are needed. See also examples 6 and 7 above. The mailbox is inactive, if MailBox3 (94.24) is set to 0. Int. Scaling: $1=1 \quad$ Type: \quad I Volatile: \mathbf{N}	$\stackrel{\text { ¢ }}{+}$				ш

Index	Signal / Parameter name			-		
94.25	MailBoxCycle3 (cycle time mailbox 3) The function of MailBoxCycle3 (94.25) is depending on the setting of MailBox3 (94.24). If MailBox3 (94.24) is positive: - data will be transmitted - MailBoxCycle3 (94.25) sets the transmitting and receiving intervals - values from 1-4 ms are too fast and will generate a fault - the communication is inactive, if MailBoxCycle3 (94.25) is set to 0 ms If MailBox3 (94.24) is negative: - data will be received - MailBoxCycle3 (94.25) sets the communication timeout. This is the time delay before a drive-to-drive or master-follower communication break is declared. Depending on the setting of ComLossCtrl (30.28) either F544 P2PandMFCom [FaultWord3 (9.03) bit 11] or A112 P2PandMFCom [AlarmWord1 (9.06) bit 11] is set. - the communication fault and alarm are inactive, if MailBoxCycle3 (94.25) is set to 0 ms Attention: The communication timeout has to be set at least twice as long as the corresponding mail box cycle time parameter. Int. Scaling: $1=1 \mathrm{~ms}$ Type: I Volatile: N	\bigcirc			0	
94.26	TrmtRecVal3.1 (mailbox 3 transmit / receive value 1) Mailbox 3 transmit / receive value 1. The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	\bigcirc				ш
94.27	TrmtRecVal3.2 (mailbox 3 transmit / receive value 2) Mailbox 3 transmit / receive value 2. The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y} \mathbf{y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N	-				ш
94.28	TrmtRecVal3.3 (mailbox 3 transmit / receive value 3) Mailbox 3 transmit / receive value 3 . The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: \mathbf{N}	\bigcirc				ш
94.29	TrmtRecVal3.4 (mailbox 3 transmit / receive value 4) Mailbox 3 transmit / receive value 4. The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad I Volatile: N	\bigcirc		$8{ }_{8} 8$		ш
94.30	MailBox4 (mailbox 4 node ID) Mailbox 4 can transmit / receive up to 4 values [TrmtRecVal4.1 (94.32), TrmtRecVal4.2 (94.33), TrmtRecVal4.3 (94.34) and TrmtRecVal4.4 (94.35)]. Positive mailbox node ID numbers transmit data, negative receive data. To get communication, mailbox node ID pairs are needed. See also examples 6 and 7 above. The mailbox is inactive, if MailBox4 (94.30) is set to 0. Int. Scaling: $1=\mathbf{1}$ Type: Volatile: N					ш

Index	Signal / Parameter name		$\stackrel{\times}{6}$	\%	
94.31	MailBoxCycle4 (cycle time mailbox 4) The function of MailBoxCycle4 (94.31) is depending on the setting of MailBox4 (94.30). If MailBox4 (94.30) is positive: - data will be transmitted - MailBoxCycle4 (94.31) sets the transmitting and receiving intervals - values from 1-4 ms are too fast and will generate a fault - the communication is inactive, if MailBoxCycle4 (94.31) is set to 0 ms If MailBox4 (94.30) is negative: - data will be receive - MailBoxCycle4 (94.31) sets the communication timeout. This is the time delay before a drive-to-drive or master-follower communication break is declared. Depending on the setting of ComLossCtrl (30.28) either F544 P2PandMFCom [FaultWord3 (9.03) bit 11] or A112 P2PandMFCom [AlarmWord1 (9.06) bit 11] is set. - the communication fault and alarm are inactive, if MailBoxCycle4 (94.31) is set to 0 ms Attention: The communication timeout has to be set at least twice as long as the corresponding mail box cycle time parameter. Int. Scaling: 1 == 1 ms Type: I Volatile: N	\bigcirc	$\begin{array}{ll} 8 \\ 8 \\ 8 \\ 8 \end{array}$	${ }_{6}$	-
94.32	TrmtRecVal4.1 (mailbox 4 transmit / receive value 1) Mailbox 4 transmit / receive value 1 . The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad I Volatile: N	\bigcirc	\% ${ }^{\circ}$		ш
94.33	TrmtRecVal4.2 (mailbox 4 transmit / receive value 2) Mailbox 4 transmit / receive value 2 . The format is $\mathbf{x x y y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N	\bigcirc	8 ${ }^{\circ}$		ш
94.34	TrmtRecVal4.3 (mailbox 4 transmit / receive value 3) Mailbox 4 transmit / receive value 3 . The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad I Volatile: N	\bigcirc	8-8		ш
94.35	TrmtRecVal4.4 (mailbox 4 transmit / receive value 4) Mailbox 4 transmit / receive value 4 . The format is $\mathbf{x x y} \mathbf{y}$, with: $\mathbf{x x}=$ group and $\mathbf{y y}=$ index. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: N	\bigcirc	\% ${ }_{\text {\% }}$ O		ш

Index	Signal / Parameter name		E戈
$\begin{aligned} & \text { N } \\ & \text { 을 } \\ & \text { 은 } \end{aligned}$	Measurement		
97.01	TypeCode (type code) TypeCode (97.01) is preset in the factory and is write protected. It identifies the drives current-, voltage-, temperature measurement and its quadrant type. To un-protect the type code set ServiceMode (99.06) = SetTypeCode. The change of the type code is immediately taken over and ServiceMode (99.06) is automatically set back to NormalMode: The drive's basic type code: DCS800-AAX-YYYY-ZZB Attention: When using D1, D2, D3 or D4 modules the current and voltage range of the type code setting is limited to max 1000 ADC and max 600 VAC. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{Y}		(1)

Signal and parameter list

| Index | \quad Signal / Parameter name |
| :--- | :--- | :--- | :--- | :--- |,

Signal and parameter list

Index	Signal / Parameter name		$\stackrel{\substack{6 \\ 80}}{\text { d }}$		${ }^{\circ}$
97.17	OffsetIDC (offset DC current measurement) Offset value - in percent of M1NomCur (99.03) - added to the armature current measurement. OffsetIDC (97.17) adjusts ConvCurAct (1.16) and the real armature current. Setting OffsetIDC (97.17) to 0 disables the manual offset. Commissioning hint: In case a 2-Q converter module is used and the motor turns with speed reference equals zero increase OffsetIDC (97.17) until the motor is not turning anymore. Int. Scaling: $100=1 \%$ Type: Volatile: N	$\stackrel{\square}{\square}$			ш
97.18	ZeroCurDetect (zero current detection) Selects the zero current detection method. Use a binary signal, if the zero current detection is done by another converter: $0=$ Current 1 = Voltage 2 = CurAndVolt 3 = DI1 4 = DI2 5 = DI3 6 = DI4 7 = DI5 8 = DI6 9 = DI7 10 = DI8 11 = DI9 $12=$ DI10 13 = DI11 14 = MCW Bit11 15 = MCW Bit12 16 = MCW Bit13 17 = MCW Bit14 18 = MCW Bit15 19 = ACW Bit12 20 = ACW Bit13 21 = ACW Bit14 22 = ACW Bit15 based on the converter's own zero current detection resistors, default based on the converter's own thyristor voltages, not valid when galvanic isolation is used based on discontinuous current and thyristor voltages, not valid when galvanic isolation is used $1=$ zero current detected, $0=$ current not zero $1=$ zero current detected, $0=$ current not zero $1=$ zero current detected, $0=$ current not zero $1=$ zero current detected, $0=$ current not zero $1=$ zero current detected, $0=$ current not zero $1=$ zero current detected, $0=$ current not zero $1=$ zero current detected, $0=$ current not zero $1=$ zero current detected, $0=$ current not zero $1=$ zero current detected, $0=$ current not zero, only available with digital extension board $1=$ zero current detected, $0=$ current not zero, only available with digital extension board $1=$ zero current detected, $0=$ current not zero, only available with digital extension board $1=$ zero current detected, $0=$ current not zero, MainCtrIWord (7.01) bit 11 $1=$ zero current detected, $0=$ current not zero, MainCtrIWord (7.01) bit 12 $1=$ zero current detected, $0=$ current not zero, MainCtrIWord (7.01) bit 13 $1=$ zero current detected, $0=$ current not zero, MainCtrIWord (7.01) bit 14 $1=$ zero current detected, $0=$ current not zero, MainCtrIWord (7.01) bit 15 $1=$ zero current detected, $0=$ current not zero, AuxCtrlWord (7.02) bit 12 1 = zero current detected, $0=$ current not zero, AuxCtrIWord (7.02) bit 13 $1=$ zero current detected, $0=$ current not zero, AuxCtrlWord (7.02) bit 14 $1=$ zero current detected, $0=$ current not zero, AuxCtrlWord (7.02) bit 15 Note: If zero current is detected by means of the thyristor voltages either 10% of MainsVoltAct (1.11) or 10 V is undershot. Int. Scaling: $1==1$ C Volatile: \mathbf{N}				ш

Index	Signal / Parameter name				O
97.19	ZeroCurTimeOut (zero current timeout) After a command to change current direction - see CurRefUsed (3.12) - the opposite current has to be reached before ZeroCurTimeOut (97.19) has been elapsed otherwise the drive trips with F557 ReversalTime [FaultWord4 (9.04) bit 8]. The reversal delay starts when zero current has been detected - see CurCtrIStat1 (6.03) bit 13 after a command to change current direction - see CurRefUsed (3.12) - has been given. The time needed to change the current direction can be longer when changing from motoring mode to regenerative mode at high motor voltages, because the motor voltage must be reduced before switching to regenerative mode - see also RevVoltMargin (44.21). ZeroCurTimeOut (97.19) must have the same setting for 12-pulse master and 12-pulse slave with one exception only: If there is no current measurement in the 12-pulse serial slave, set ZeroCurTimeOut (97.19) in the 12-pulse serial slave to maximum (12000 ms). Note: 12P RevTimeOut (47.05) must be longer than ZeroCurTimeOut (97.19) and ZeroCurTimeOut (97.19) must be longer than RevDly (43.14). Int. Scaling: $1==1 \mathrm{~ms}$ Type: I Volatile: \mathbf{N}	\bigcirc	응수		ш
97.20	TorqActFiltTime (actual torque filter time) Torque actual filter time constant for MotTorqFilt (1.07). Is used for the EMF controller and the EMF feed forward. Int. Scaling: $1=\mathbf{1 m s}$ Type: \quad Volatile: \mathbf{N}		8		

Index	Signal / Parameter name		$\stackrel{\times}{¢}$	븡
97.21	ResetAhCounter (reset ampere hour counter) Binary signal to reset AhCounter (1.39): $0=$ NotUsed default 1 = DI1 Reset by rising edge ($0 \rightarrow 1$) 2 = DI2 Reset by rising edge $(0 \rightarrow 1)$ 3 = DI3 Reset by rising edge ($0 \rightarrow 1$) 4 = DI4 Reset by rising edge ($0 \rightarrow 1$) 5 = DI5 Reset by rising edge ($0 \rightarrow 1$) 6 = DI6 Reset by rising edge $(0 \rightarrow 1)$ 7 = DI7 Reset by rising edge ($0 \rightarrow 1$) 8 = DI8 Reset by rising edge ($0 \rightarrow 1$) 9 = DI9 Reset by rising edge ($0 \rightarrow 1$), only available with digital extension board $10=$ DI10 Reset by rising edge ($0 \rightarrow 1$), only available with digital extension board 11 = DI11 Reset by rising edge ($0 \rightarrow 1$), only available with digital extension board $12=$ MCW Bit11 Reset by rising edge ($0 \rightarrow 1$), MainCtrlWord (7.01) bit 11 13 = MCW Bit12 Reset by rising edge ($0 \rightarrow 1$), MainCtrlWord (7.01) bit 12 14 = MCW Bit13 Reset by rising edge $(0 \rightarrow 1)$, MainCtrlWord (7.01) bit 13 15 = MCW Bit14 Reset by rising edge ($0 \rightarrow 1$), MainCtrlWord (7.01) bit 14 16 = MCW Bit15 Reset by rising edge $(0 \rightarrow 1)$, MainCtrlWord (7.01) bit 15 17 = ACW Bit12 Reset by rising edge ($0 \rightarrow 1$), AuxCtrIWord (7.02) bit 12 18 = ACW Bit13 Reset by rising edge ($0 \rightarrow 1$), AuxCtrIWord (7.02) bit 13 19 = ACW Bit14 Reset by rising edge ($0 \rightarrow 1$), AuxCtrIWord (7.02) bit 14 $20=$ ACW Bit15 Reset by rising edge $(0 \rightarrow 1)$, AuxCtrIWord (7.02) bit 15 Type: C Volatile: \mathbf{N}	¢ $\substack{0 \\ 0 \\ 0 \\ 0 \\ 0}$	$\begin{array}{l\|l} 10 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 3 & 0 \\ 0 & 0 \\ 0 & 2 \end{array}$	ш
97.22	Unused			
97.23	AdjUDC (adjust DC voltage) AdjUDC (97.23) is used to cover drives with different voltage measuring circuits for armature and mains voltage. It rescales the armature voltage measurement. Int. Scaling: $10=1 \%$ Type: \quad Volatile: N		응응	- ${ }^{\circ}$
97.24	OffsetUDC (offset DC voltage measurement) Offset value - in percent of M1NomVolt (99.02) - added to the armature voltage measurement. OffsetUDC (97.24) adjusts ArmVoltAct (1.14) and the real armature voltage. Setting OffsetUDC (97.24) to 5.1 \% disables the manual offset. If a DC-breaker is used set OffsetUDC (97.24) $=0$ Int. Scaling: $100=1 \%$ Type: I Volatile: N		is is	- ${ }^{\circ}$
97.25	EMF ActFiltTime (actual EMF filter time) EMF actual filter time constant for EMF VoltActRel (1.17). Is used for the EMF controller and the EMF feed forward. Int. Scaling: $1=\mathbf{1 m s}$ Type: I Volatile: N			$\stackrel{\sim}{8}$
97.26	HW FiltUDC (hardware filter DC voltage measurement) Hardware filter for the UDC measuring circuit: $0=$ FilterOff the filter time is set to $200 \mu \mathrm{~s}$ 1 = FilterOn the filter time is set to 10 ms , default Int. Scaling: $1==1 \quad$ Type: C Volatile: N			ш
97.27	Measurement (measurement) reserved Int. Scaling: $1=\mathbf{= 1} \quad$ Type: \quad Volatile: \mathbf{N}		응ㅇ	ш

Index	Signal / Parameter name		$\stackrel{0}{5}$
$\begin{aligned} & \infty \\ & \infty \\ & \text { 을 } \\ & \mathbf{0} \\ & \text { 는 } \end{aligned}$	Option modules		
98.01	Encoder2Module (encoder 2 extension module) This parameter is used to activate an extension module for either a second encoder (RTAC-xx) or a resolver (RRIA-xx). RTAC-xx / RRIA-xx extension module interface selection. Encoder2Module (98.01) releases pulse encoder 2 or a resolver. The modules can be connected in option slot 1, 2, 3 or alternatively onto the external I/O module adapter (AIMA) connected via SDCS-COM-8. The node ID 0 (see Node ID selector S1) is only required for connection via AIMA: $0=$ NotUsed no RTAC-xx / RRIA-xx is used, default 1 = Slot1 RTAC-xx / RRIA-xx is connected in option slot 1 2 = Slot2 RTAC-xx / RRIA-xx is connected in option slot 2 3 = Slot3 RTAC $-x x /$ RRIA $-x x$ is connected in option slot 3 $4=$ AIMA \quad RTAC $-x x /$ RRIA-xx is connected onto the external I/O module adapter (AIMA), node ID = 0 The drive trips with F508 I/OBoardLoss [FaultWord1 (9.01) bit 7], if the RTAC-xx / RRIA-xx extension module is chosen, but not connected or faulty. Attention: To ensure proper connection and communication of the RTAC-xx / RRIA-xx board with the SDCS-CON-4 use the screws included in the scope of delivery. Switches on RTAC-xx or RRIA-xx: Node ID selector (S1) is only valid when plugged in an AIMA board ADDRESS Int. Scaling: $\quad 1==1 \quad$ Type: $\quad C \quad$ Volatile: N		ш

Signal and parameter list

					.	(\%	O

Signal and parameter list

Index			Signal / Para	E		$\stackrel{0}{0}$	O
	Input signal ty Each input can Int. Scaling:	e selection: be used with a cur DIP switc Analogue input 1	urrent or voltage settings Analogue input ON \square 123456 \square 123456 \square \square 123456 C Vol				
98.07	Unused						
98.08	ModBusModule2 (Modbus module 2) The Modbus module (RMBA-xx) can be connected in option slot 1, 2 or 3 [see also CommModule (98.02)]: $0=$ NotUsed no RMBA-xx is used, default $1=$ Slot $1 \quad$ RMBA-xx is connected in option slot 1 2 = Slot2 RMBA-xx is connected in option slot 2 3 = Slot3 \quad RMBA-xx is connected in option slot 3 4 = DSL reserved Int. Scaling: $1==1 \quad$ Type: C Volatile: \mathbf{N}			$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \stackrel{0}{2} \end{aligned}$	$\begin{gathered} \frac{9}{0} \\ \frac{0}{c} \end{gathered}$		ш
98.09	Unused						
98.10	Unused						
98.11	Unused						

					$\stackrel{\times}{0}$	0	O

Signal and parameter list

Index	Signal / Parameter name	E	$\stackrel{\text { ® }}{\text { ® }}$		
99.06	ServiceMode (service mode) ServiceMode (99.06) contains several test modes, auto- and manual tuning procedures. The drive mode is automatically set to NormalMode after an autotuning procedure or after the thyristor diagnosis is finished or failed. In case errors occur during the selected procedure A121 AutotuneFail [AlarmWord2 (9.07) bit 4] is generated. The reason of the error can be seen in Diagnosis (9.11). SetTypeCode is automatically set to NormalMode after the next power up. $0=$ NormalMode 1 = ArmCurAuto 2 = FieldCurAuto 3 = EMF FluxAuto 4 = SpdCtrIAuto 5 = SpdFbAssist 6 = ArmCurMan 7 = FieldCurMan $8=$ ThyDiagnosis 9 = FIdRevAssist 10 = SetTypeCode 11 = SpdCtrIMan 12 = EMF Man 13 = Simulation 14 = TachFineTune 15 = LD FB Config 16 = DeleteAppl 17 = FindDiscCur normal operating mode depending on OperModeSel (43.01), default autotuning armature current controller autotuning field current controller autotuning EMF controller and flux linearization autotuning speed controller test speed feedback, see M1EncMeasMode (50.02), M1SpeedFbSel (50.03), M1EncPulseNo (50.04) and M1TachoVolt1000 (50.13) manual tuning of armature current controller manual tuning of field current controller the thyristor diagnosis mode is set with TestFire (97.28), the result is shown in Diagnosis (9.11) test field reversal set type code, releases following parameters: TypeCode (97.01) S ConvScaleCur (97.02) S ConvScaleVolt (97.03) S M1FldScale (45.20) S M2FldScale (45.21) manual tuning of speed controller manual tuning of EMF controller reserved tacho fine tuning, see M1TachoAdjust (50.12) reserved for future use (load fieldbus configuration file) releases ParAppISave (16.06) $=$ DeleteAppl find discontinuous current limit Note: The reference chain is blocked while ServiceMode (99.06) $=$ NormalMode. Note: Depending on MotSel (8.09) the field current of motor 1 or motor 2 is tuned. Note: A standard DCS800 converter used as field exciter cannot be tuned by means of its armature converter. Tune it by setting ServiceMode (99.06) = FieldCurAuto in the field exciter itself. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{Y}				0
99.07	AppIRestore (application restore) Setting ApplRestore (99.07) = Yes starts the loading / storing of the macro (preset parameter set) selected by means of ApplMacro (99.08). AppIRestore (99.07) is automatically set back to Done after the chosen action is finished: $0=$ Done no action or macro change completed, default $1=$ Yes macro selected with App/Macro (99.08) will be loaded into the drive Note: Macro changes are only accepted in Off state [MainStatWord (8.01) bit $1=0$]. Note: It takes about 2 s , until the new parameter values are active. Int. Scaling: $1==1$ Type: C Volatile: Y	$\stackrel{0}{0}$			0

Index	Signal / Parameter name	-	$\stackrel{\times}{6} \stackrel{4}{0}$	S	ㄴ
99.11	M1NomFldCur (motor 1 nominal field current) Motor 1 nominal field current from the motor rating plate. Note: In case the converter is used as a 3-phase field exciter use M1NomCur (99.03) to set the nominal field current. Int. Scaling: $100=1$ A Type: I Volatile: N	\bigcirc	$\stackrel{1}{6}$	<	0
99.12	M1UsedFexType (motor 1 used field exciter type) Motor 1 used field exciter type: $0=$ NotUsed 1 = OnBoard 2 = FEX-425-Int 3 = DCF803-0035 4 = DCF803-0050 5 = DCF804-0050 6 = DCF803-0060 7 = DCF804-0060 8 = DCS800-S01 9 = DCS800-S02 10 = DCF803-0016 11 = reserved to 14 = reserved 15 = ExFex AITAC 16 = ExFex Al1 17 = ExFex Al2 18 = ExFex Al3 19 = ExFex Al4 $20=$ FEX-4-Term5A 21 = VariFexType $22=$ Exc-Appl-1 no or third party field exciter connected integrated 1-Q field exciter (for sizes D1 - D4 only), default internal 1-Q 25 A field exciter (for size D5 only) used for field currents from 0.3 A to 25 A (terminals X100.1 and X100.3) external 1-Q 35 A field exciter used for field currents from 0.3 A to 35 A (terminals X100.1 and X100.3) external 1-Q 50 A field exciter (DCF803-0050 or DCF503B-0050) external 4-Q 50 A field exciter (DCF804-0050 or DCF504B-0050) external 1-Q 60 A field exciter; not implemented yet external 4-Q 60 A field exciter; not implemented yet external 2-Q 3-phase field exciter external 4-Q 3-phase field exciter external 1-Q 16 A field exciter used for field currents from 0.3 A to 16 A (terminals X100.1 and X100.3) third party field exciter, acknowledge via AITAC third party field exciter, acknowledge via Al1 third party field exciter, acknowledge via AI2 third party field exciter, acknowledge via Al3 third party field exciter, acknowledge via AI4 internal 2-Q 25 A field exciter (FEX-425-Int), external 2-Q 16 A field exciter (DCF803-0016) or external 2-Q 35 A field exciter (DCF8030035) used for field currents from 0.3 A to $\mathbf{5} \mathbf{A}$ (terminals X100.2 and X100.3) see DCS800 MultiFex motor control (3ADW000309) see DCS800 Series wound motor control (3ADW000311) If the fex type is changed its new value is taken over after the next power-up. Int. Scaling: $1==1$ Type: C Volatile: \mathbf{N}	0 0 0 $?$ $?$ 0 2	¢10		0
99.13	Unused				
99.14	Unused				
	Square wave generator				

Signal and parameter list

Index	Signal / Parameter name				¢	代
99.15	Pot1 (potentiometer 1) Constant test reference 1 for the manual tuning functions - see App/Macro (99.08) - and the square wave generator. Note: The value is depending on the chosen destination of the square wave [e.g. SqrWaveIndex (99.18) $=2301$ relates to SpeedScaleAct (2.29)]: - 100% voltage $==10,000$ - $\quad 100 \%$ current $==10,000$ - 100% torque $==10,000$ - $\quad 100 \%$ speed $==$ SpeedScaleAct (2.29) $==20,000$ Int. Scaling: $1==1 \quad$ Type: SI Volatile: \mathbf{N}					ш
99.16	Pot2 (potentiometer 2) Constant test reference 2 for the manual tuning functions - see App/Macro (99.08) - and the square wave generator. Note: The value is depending on the chosen destination of the square wave [e.g. SqrWaveIndex (99.18) $=2301$ relates to SpeedScaleAct (2.29)]: - 100% voltage $==10,000$ - $\quad 100 \%$ current $==10,000$ - 100% torque $==10,000$ - $\quad 100 \%$ speed $==$ SpeedScaleAct (2.29) $==20,000$ Int. Scaling: $1==1 \quad$ Type: \quad SI Volatile: \mathbf{N}					ш
99.17	SqrWavePeriod (square wave period) The time period for the manual tuning functions - see AppIMacro (99.08) - and the square wave generator. Int. Scaling: $100=1 \mathrm{~s}$ Type: \quad Volatile: N				∞	-
99.18	SqrWaveIndex (square wave index) Index pointer to the source (signal/parameter) for the square wave generator. E.g. signal [e.g. 2301 equals SpeedRef (23.01)]. Note: SqrWaveIndex (99.18) must not be used for the manual tuning functions - see AppIMacro (99.08). Note: After a power-up SqrWaveIndex (99.18) is set back to 0 and thus disables the square wave generator. Int. Scaling: $1==1 \quad$ Type: \quad Volatile: Y					ш
99.19	TestSignal (square wave signal form) Signal forms for the manual tuning functions - see ApplMacro (99.08) - and the square wave generator: $0=$ SquareWave a square wave is used, default $1=$ Triangle a triangle wave is used 2 = SineWave a sine wave is used 3 = Pot1 a constant value set with Pot1 (99.15) is used Int. Scaling: $1=\mathbf{1}$ Type: C Volatile: \mathbf{Y}					ш

DCS800 Control Panel operation

Chapter overview

This chapter describes the handling of the DCS800 Control Panel.

Start-up

The commissioning configures the drive and sets parameters that define how the drive operates and communicates. Depending on the control and communication requirements, the commissioning requires any or all of the following:

- The Start-up Assistant (via DCS800 Control Panel or DriveWindow Light) steps you through the default configuration. The DCS800 Control Panel Start-up Assistant runs automatically at the first power up, or can be accessed at any time using the main menu.
- Application macros can be selected to define common, system configurations.
- Additional adjustments can be made using the DCS800 Control Panel to manually select and set individual parameters. See chapter Signal and parameter list.

DCS800 Control Panel

Use the DCS800 Control Panel to control the drive, to read status data, to adjust parameters and to use the pre-programmed assistants.

Features:

The DCS800 Control Panel features:

- Alphanumeric LCD display
- Language selection for the display by means of Language (99.01)
- Panel can be connected or detached at any time
- Start-up Assistant for ease drive commissioning
- Copy function, parameters can be copied into the DCS800 Control Panel memory to be downloaded to other drives or as backup
- Context sensitive help

Fault- and alarm messages including fault history

Display overview

The following table summarizes the button functions and displays of the DCS800 Control Panel.

Status LED: - Green for normal operation - Flashing green for alarms - Red for faults
Soft key 1 - Function varies, and is defined by the text in the lower-left corner of the LCD display.
Up - Scrolls up through a menu or list displayed in the middle of the LCD display. - Increments a value if a parameter is selected. - Increments the reference if the upper-right corner is highlighted (in reverse video).
LOC/REM - Changes between local and remote control of the drive.
STOP - Stops the drive in local control from DCS800 panel and when the Start-up Assistant is used.

DCS800 FW pan sum.dsf

General display features

Soft key functions:

The soft key functions are defined by the text displayed just above each key.

Display contrast:

To adjust display contrast, simultaneously press the MENU key and UP or DOWN, as appropriate.

Output mode

Use the output mode to read information on the drive's status and to operate the drive. To reach the output mode, press EXIT until the LCD display shows status information as described below.

Status information:

Top: The top line of the LCD display shows the basic status information of the drive:

- LOC indicates that the drive control is local from the DCS800 Control Panel.
- REM indicates that the drive control is remote, via local I/O or overriding control.
- \quad indicates the drive and motor rotation status as follows:

DCS800 Control Panel display	Significance
Rotating arrow (clockwise or counter clockwise)	$-\quad$ Drive is running and at setpoint
Rotating dotted blinking arrow	$-\quad$ Shaft direction is forward or reverse
Dtationary dotted arrow running but not at setpoint	

- Upper right position shows the active reference, when in local from DCS800 Control Panel.

Middle: Using parameter Group 34, the middle of the LCD display can be configured to display up to three parameter values:

- By default, the display shows three signals.
- Use DispParam1Sel (34.01), DispParam2Sel (34.08) and DispParam3Sel (34.15) to select signals or parameters to display. Entering value 0 results in no value displayed. For example, if $34.01=0$ and $34.15=0$, then only the signal or parameter specified by 34.08 appears on the DCS800 Control Panel display.

Bottom: The bottom of the LCD display shows:

- Lower corners show the functions currently assigned to the two soft keys.
- Lower middle displays the current time (if configured to do so).

Operating the Drive:

LOC/REM: Each time the drive is powered up, it is in remote control (REM) and is controlled as specified in CommandSel (10.01).
To switch to local control (LOC) and control the drive using the DCS800 Control Panel, press the (RGM) button.

- When switching from local control (LOC) to remote control (REM) the drive's status (e.g. On, Run) and the speed reference of the remote control are taken.
To switch back to remote control (REM) press the REM) button.
Start/Stop: To start and stop the drive press the START and STOP buttons.
Shaft direction: To change the shaft direction press DIR.
Speed reference: To modify the speed reference (only possible if the display in the upper right corner is highlighted) press the UP or DOWN button (the reference changes immediately).
The speed reference can be modified via the DCS800 Control Panel when in local control (LOC).

Note:

The START / STOP buttons, shaft direction (DIR) and reference functions are only valid in local control (LOC).

Other modes

Below the output mode, the DCS800 Control Panel has:

- Other operating modes are available through the MAIN MENU.
- A fault mode that is triggered by faults. The fault mode includes a diagnostic assistant mode.
- An alarm mode that is triggered by drive alarms.

Access to the MAIN MENU and other modes:

To reach the MAIN MENU:

1. Press EXIT, as necessary, to step back through the menus or lists associated with a particular mode. Continue until you are back to the output mode.
2. Press MENU from the output mode. At this point, the middle of the display is a listing of the other modes, and the top-right text says "MAIN MENU".
3. Press UP/DOWN to scroll to the desired mode.
4. Press ENTER to enter the mode that is highlighted.

Following modes are available in the MAIN MENU:

1. Parameters mode
2. Start-up assistants mode
3. Macros mode (currently not used)
4. Changed parameters mode
5. Fault logger mode
6. Clock set mode
7. Parameter backup mode
8. I/O settings mode (currently not used)

The following sections describe each of the other modes.

Parameters mode:

Use the parameters mode to view and edit parameter values:

1. Press UP/DOWN to highlight PARAMETERS in the MAIN MENU, then press ENTER.

LOC U MAIN MENU------------1
PARAMETERS
ASSISTANTS
MACROS
EXIT $\quad \square$

2. Press UP/DOWN to highlight the appropriate parameter group, then press SEL.

LOC U PAR GROUPS-----------01	
99 Start-up data	
01 Phys Act Values	
02 SPC Signals	
03 Ref/Act Values	
04 Information	
EXIT	SEL

3. Press UP/DOWN to highlight the appropriate parameter in a group, then press EDIT to enter PAR EDIT mode.

Note:

The current parameter value appears below the highlighted parameter.
4. Press UP/DOWN to step to the desired parameter value.

Note:

To get the parameter default value press UP/DOWN simultaneously.
5. Press SAVE to store the modified value and leave the PAR EDIT mode or press CANCEL to leave the PAR EDIT mode without modifications.
6. Press EXIT to return to the listing of parameter groups, and again to step back to the MAIN MENU.

Start-up assistants mode:

Use the start-up assistants mode for basic commissioning of the drive. When the drive is powered up the first time, the start-up assistants guides you through the setup of the basic parameters.
There are seven start-up assistants available. They can be activated one after the other, as the ASSISTANTS menu suggests, or independently. The use of the assistants is not required. It is also possible to use the parameter mode instead. The assistant list in the following table is typical:

1. Name plate data	- Enter the motor data, the mains (supply) data, the most important protections and follow the instructions of the assistant. - After filling out the parameters of this assistant it is - in most cases possible to turn the motor for the first time.
2. Macro assistant	- Selects an application macro.
3. Autotuning field current controller	- Enter the field circuit data and follow the instructions of the assistant. - During the autotuning the main respectively field contactor will be closed, the field circuit is measured by means of increasing the field current to nominal field current and the field current control parameters are set. The armature current is not released while the autotuning is active and thus the motor should not turn. - When the autotuning is finished successfully the parameters changed by the assistant are shown for confirmation. If the assistant fails it is possible to enter the fault mode for more help.
4. Autotuning armature current controller	- Enter the motor nominal current, the basic current limitations and follow the instructions of the assistant. - During the autotuning the main contactor will be closed, the armature circuit is measured by means of armature current bursts and the armature current control parameters are set. The field current is not released while the autotuning is active and thus the motor should not turn, but due to remanence in the field circuit about 40% of all motors will turn (create torque). These motors have to be locked. - When the autotuning is finished successfully the parameters changed by the assistant are shown for confirmation. If the assistant fails it is possible to enter the fault mode for more help.
5. Speed feedback assistant	- Enter the EMF speed feedback parameters, - if applicable - the parameters for the pulse encoder respectively the analog tacho and follow the instructions of the assistant. - The speed feedback assistant detects the kind of speed feedback the drive is using and provides help to set up pulse encoders or analog tachometers. - During the autotuning the main contactor and the field contactor - if existing - will be closed and the motor will run up to base speed [M1BaseSpeed (99.04)]. During the whole procedure the drive will be in EMF speed control despite the setting of M1SpeedFbSel (50.03). - When the assistant is finished successfully the speed feedback is set. If the assistant fails it is possible to enter the fault mode for more help.
6. Autotuning speed controller	- Enter the motor base speed, the basic speed limitations, the speed filter time and follow the instructions of the assistant. - During the autotuning the main contactor and the field contactor - if existing - will be closed, the ramp is bypassed and torque respectively current limits are valid. The speed controller is tuned by means of speed bursts up to base speed [M1BaseSpeed (99.04)] and the speed controller parameters are set. Attention: During the autotuning the torque limits will be reached. - When the autotuning is finished successfully the parameters changed by the assistant are shown for confirmation. If the assistant fails it is possible to enter the fault mode for more help.

	Attention: This assistant is using the setting of M1SpeedFbSel (50.03). If using setting Encoder, Encoder2 or Tacho make sure the speed feedback is working properly!
7. Field weakeningassistant (only used when maximum speed is higher than base speed)	$-\quad$Enter the motor data, the field circuit data and follow the instructions of the assistant. During the autotuning the main contactor and the field contactor - if existing - will be closed and the motor will run up to base speed [M1BaseSpeed (99.04)]. The EMF controller data are calculated, the flux linearization is tuned by means of a constant speed while decreasing the field current and the EMF controller respectively flux linearization parameters are set. When the autotuning is finished successfully the parameters changed by
the assistant are shown for confirmation. If the assistant fails it is	
possible to enter the fault mode for more help.	

1. Press UP/DOWN to highlight ASSISTANTS in the MAIN MENU, then press ENTER.
2. Press UP/DOWN to highlight the appropriate start-up assistant, then press SEL to enter PAR EDIT mode.
3. Make entries or selections as appropriate.
4. Press SAVE to save settings. Each individual parameter setting is valid immediately after pressing SAVE.
5. Press EXIT to step back to the MAIN MENU.

Macros mode:

Currently not used!

Changed parameters mode:

Use the changed parameters mode to view and edit a listing of all parameter that have been changed from their default values:

1. Press UP/DOWN to highlight CHANGED PAR in the MAIN MENU, then press ENTER.
2. Press UP/DOWN to highlight a changed parameter, then press EDIT to enter PAR EDIT mode.

Note:

The current parameter value appears below the highlighted parameter.
3. Press UP/DOWN to step to the desired parameter value.

Note:
To get the parameter default value press UP/DOWN simultaneously.
4. Press SAVE to store the modified value and leave the PAR EDIT mode or press CANCEL to leave the PAR EDIT mode without modifications.

Note:

If the new value is the default value, the parameter will no longer appear in the changed parameter list.
5. Press EXIT to step back to the MAIN MENU.

Fault logger mode:

Use the fault logger mode to see the drives fault, alarm and event history, the fault state details and help for the faults:

1. Press UP/DOWN to highlight FAULT LOGGER in the MAIN MENU, then press ENTER to see the latest faults (up to 20 faults, alarms and events are logged).
2. Press DETAIL to see details for the selected fault. Details are available for the three latest faults, independent of the location in the fault logger.
3. Press DIAG to get additional help (only for faults).
4. Press EXIT to step back to the MAIN MENU.

Clock set mode:

Use the Clock set mode to:

- Enable or disable the clock function.
- Select the display format.
- Set date and time.

1. Press UP/DOWN to highlight CLOCK SET in the MAIN MENU, then press ENTER.
2. Press UP/DOWN to highlight the desired option, then press SEL.
3. Choose the desired setting, then press SEL or OK to store the setting or press CANCEL to leave without modifications.
4. Press EXIT to step back to the MAIN MENU.

Note:

To get the clock visible on the LCD display at least one change has to be done in the clock set mode and the DCS800 Control Panel has to be de-energized and energized again.

Parameter backup mode:

The DCS800 Control Panel can store a full set of drive parameters.

- AP will be uploaded and downloaded.
- The type code of the drive is write protected and has to be set manually by means of ServiceMode (99.06) = SetTypeCode and TypeCode (97.01).
The parameter backup mode has following functions:
UPLOAD TO PANEL: Copies all parameters from the drive into the DCS800 Control Panel. This includes both user sets (User1 and User2) - if defined - and internal parameters such as those created by tacho fine tuning. The DCS800 Control Panel memory is non-volatile and does not depend on its battery. Can only be done in drive state Off and local from DCS800 Control Panel.

DOWNLOAD FULL SET: Restores the full parameter set from the DCS800 Control Panel into the drive. Use this option to restore a drive, or to configure identical drives. Can only be done in drive state Off and local from DCS800 Control Panel.

Note:

This download does not include the user sets.
DOWNLOAD APPLICATION: Currently not used!
The general procedure for parameter backup operations is:

1. Press UP/DOWN to highlight PAR BACKUP in the MAIN MENU, then press ENTER.
2. Press UP/DOWN to highlight the desired option, then press SEL.
3. Wait until the service is finished, then press OK.
4. Press EXIT to step back to the MAIN MENU.

I/O settings mode:

Currently not used!

Maintenance

Cleaning:

Use a soft damp cloth to clean the DCS800 Control Panel. Avoid harsh cleaners which could scratch the display window.

Battery:

A battery is used in the DCS800 Control Panel to keep the clock function available and enabled. The battery keeps the clock operating during power interruptions. The expected life for the battery is greater than ten years. To remove the battery, use a coin to rotate the battery holder on the back of the control panel. The type of the battery is CR2032.

Note:

The battery is not required for any DCS800 Control Panel or drive functions, except for the clock.

Fault tracing

Chapter overview

This chapter describes the protections and fault tracing of the drive.

General

Fault modes
Depending on the trip level of the fault the drive reacts differently. The drive's reaction to a fault with trip level 1 and 2 is fixed. See also paragraph Fault signals of this manual. The reaction to a fault of level 3 and 4 can be chosen by means of SpeedFbFItMode (30.36) respectively FaultStopMode (30.30).

Converter protection

Auxiliary undervoltage

If the auxiliary supply voltage fails while the drive is in RdyRun state (MSW bit 1), fault F501 AuxUnderVolt is generated.

Auxiliary supply voltage	Trip level
230 VAC	<185 VAC
115 VAC	<96 VAC

Armature overcurrent

The nominal value of the armature current is set with M1NomCur (99.02).
The overcurrent level is set by means of ArmOvrCurLev (30.09).
Additionally the actual current is monitored against the overcurrent level of the converter module. The converter's actual overcurrent level can be read from ConvOvrCur (4.16).

Exceeding one of the two levels causes F502 ArmOverCur.

Converter overtemperature

The maximum temperature of the bridge can be read from MaxBridgeTemp (4.17) and is automatically set by TypeCode (97.01) or manually set by S MaxBrdgTemp (97.04).

Note:

When setting the air entry temperature for D6 and D7 modules manually use MaxBrdgTemp (97.04) $=50^{\circ} \mathrm{C}$ as absolute maximum.

Exceeding this level causes F504 ConvOverTemp. The threshold for A104 ConvOverTemp is $5^{\circ} \mathrm{C}$ below the tripping level. The measured temperature can be read from BridgeTemp (1.24).

If the measured temperature drops below minus $10^{\circ} \mathrm{C}, ~ \mathrm{~F} 504$ ConvOverTemp is generated.

Auto-reclosing (mains undervoltage)

Auto-reclosing allows continuing drive operation immediately after a short mains undervoltage without any additional functions in the overriding control system.

In order to keep the overriding control system and the drive control electronics running through short mains undervoltage, an UPS is needed for the 115/230 VAC auxiliary voltages. Without the UPS all DI like e.g. E-stop, start inhibition, acknowledge signals etc. would have false states and trip the drive although the system itself could stay alive. Also the control circuits of the main contactor must be supplied during the mains undervoltage.

Auto-reclosing defines whether the drive trips immediately with F512 MainsLowVolt or if the drive will continue running after the mains voltage returns. To activate the auto-reclosing set PwrLossTrip (30.21) = Delayed.
Short mains undervoltage
The supervision of mains undervoltage has two levels:

1. UNetMin1 (30.22) alarm, protection and trip level
2. UNetMin2 (30.23) trip level

If the mains voltage falls below UNetMin1 (30.22) but stays above UNetMin2
(30.23), the following actions take place:

1. the firing angle is set to ArmAlphaMax (20.14),
2. single firing pulses are applied in order to extinguish the current as fast as possible,
3. the controllers are frozen,
4. the speed ramp output is updated from the measured speed and
5. A111 MainsLowVolt is set as long as the mains voltage recovers before PowrDownTime (30.24) is elapsed, otherwise F512 MainsLowVolt is generated.
If the mains voltage returns before PowrDownTime (30.24) is elapsed and the overriding control keeps the commands On (MCW bit 0) and Run (MCW bit 3) = 1, the drive will start again after 2 seconds. Otherwise the drive trips with F512 MainsLowVolt.
When the mains voltage drops below UNetMin2 (30.23), the action is selected by means of PwrLossTrip (30.21):
6. the drive is immediately tripped with F512 MainsLowVolt or
7. the drive starts up automatically, see description for UNetMin1 (30.22). Below UNetMin2 (30.23) the field acknowledge signals are ignored and blocked

Note:

UNetMin2 (30.23) isn't monitored, unless the mains voltage drops below UNetMin1 (30.22). Thus, for proper operation, UNetMin1 (30.22) must be larger than UNetMin2 (30.23).

Note:

If no UPS is available, set PwrLossTrip (30.21) to Immediately. Thus the drive will trip with F512 MainsLowVolt avoiding secondary phenomena due to missing power for Al's and Dl's.

Drive behavior during auto-reclosing

Auto-reclosing

Mains synchronism

As soon as the main contactor is closed and the firing unit is synchronized with the incoming voltage, supervising of the synchronization is activated. If the synchronization fails, F514 MainsNotSync will be generated.

The synchronization of the firing unit takes typically 300 ms before the current controller is ready.

Mains overvoltage

The overvoltage level is fixed to 1.3 * NomMainsVolt (99.10). Exceeding this level for more than 10 s and RdyRun $=1$ causes F513 MainsOvrVolt.

Communication loss

The communication to several devices is supervised. The reaction to a communication loss can be chosen by means of LocalLossCtrl (30.27) or ComLossCtrl (30.28).
The time out is set by the parameters listed in the table as well as all dependent fault- and alarm messages.

Overview local and communication loss:				
Device	Loss control	Time out	Related fault	Related alarm
$\begin{aligned} & \hline \text { DCS800 } \\ & \text { Control Panel } \end{aligned}$	LocalLossCtrl (30.27)	fixed to 5s	F546 LocalCmdLoss	A130 LocalCmdLoss
DW				
DWL				
R-type fieldbus	ComLossCtrl (30.28)	FB TimeOut (30.35)	F528 FieldBusCom	A128 FieldBusCom
DCSLink		$\begin{array}{\|l} \hline \text { MailBoxCycle1 (94.13), } \\ \text { MailBoxCycle2 (94.19), } \\ \text { MailBoxCycle3 (94.25), } \\ \text { MailBoxCycle4 (94.31) } \\ \hline \end{array}$	F544 P2PandMFCom	A112 P2PandMFCom
	-	12P TimeOut (94.03)	F535 12PulseCom	-
	-	FexTimeOut (94.07)	F516 M1FexCom F519 M2FexCom	
SDCS-COM-8	Ch0 ComLossCtrl (70.05)	Ch0 TimeOut (70.04)	F543 COM8Com	A113 COM8Com
	Ch2 ComLossCtrl (70.15)	Ch2 TimeOut (70.14)		

Overview local and communication loss

Fan, field and mains contactor acknowledge

When the drive is switched On (MCW bit 0), the firmware closes the fan contactor and waits for acknowledge. After it is received, the field contactor is closed respectively the field converter is started and the firmware waits for the field acknowledge. Finally the main contactor is closed and its acknowledge is waited for.
If the acknowledges are not received during 10 seconds after the On command (MCW bit 0) is given, the corresponding fault is generated. These are:

1. F521 FieldAck, see Mot1FexStatus (6.12)
2. F523 ExtFanAck, see MotFanAck (10.06)
3. F524 MainContAck, see MainContAck (10.21)
4. F527 ConvFanAck, see ConvFanAck (10.20)

Note:

F521 FieldAck is the sum fault for all field related faults like:

1. F515 M1FexOverCur, see M1FldOvrCurLev (30.13)
2. F516 M1FexCom, see FexTimeOut (94.07)
3. F529 M1FexNotOK, fault during self-diagnosis
4. F537 M1FexRdyLost, AC voltage is missing or not in synchronism
5. F541 M1FexLowCur, see M1FldMinTrip (30.12)

External fault

The user has the possibility to connect external faults to the drive. The source can be connected to Dl's, MainCtrIWord (7.01) or AuxCtrIWord (7.02) and is selectable by ExtFaultSel (30.31). External faults generate F526 ExternalDI.

ExtFaultOnSel (30.33) selects the reaction:

1. external fault is always valid independent from drive state
2. external fault is only valid when drive state is RdyRun (MSW bit 1) for at least 6 s

Note:

In case inverted fault inputs are needed, it is possible to invert the DI's.

Bridge reversal

With a 6-pulse converter, the bridge reversal is initiated by changing the polarity of the current reference - see CurRefUsed (3.12). Upon zero current detection - see CurCtrlStat1 (6.03) bit 13 - the bridge reversal is started. Depending on the moment, the new bridge may be "fired" either during the same or during the next current cycle.

The switchover can be delayed by RevDly (43.14). The delay starts after zero current has been detected - see CurCtrIStat1 (6.03) bit 13. Thus RevDly (43.14) is the length of the forced current gap during a bridge changeover. After the reversal delay is elapsed the system changes to the selected bridge without any further consideration.

This feature may prove useful when operating with large inductances. Also the time needed to change the current direction can be longer when changing from motoring mode to regenerative mode at high motor voltages, because the motor voltage must be reduced before switching to regenerative mode - see also RevVoltMargin (44.21).

After a command to change current direction - see CurRefUsed (3.12) - the opposite current has to be reached before ZeroCurTimeOut (97.19) has been elapsed otherwise the drive trips with F557 ReversalTime [FaultWord4 (9.04) bit 8].
Example:
Drive is tripping with F557 ReversalTime [FaultWord4 (9.04) bit 8]:

Bridge reversal

Analog input monitor

In case the analog input is set to 2 V to 10 V respectively 4 mA to 20 mA it is possible to check for wire breakage by means of AI Mon4mA (30.29).

In case the threshold is undershoot one of the following actions will take place:

1. the drive stops according to FaultStopMode (30.30) and trips with F551 AlRange
2. the drive continues to run at the last speed and sets A127 AIRange
3. the drive continues to run with FixedSpeed1 (23.02) and sets A127 AlRange

Motor protection

Armature overvoltage

The nominal value of the armature voltage is set with M1NomVolt (99.02).
The overvoltage level is set by means of ArmOrVVoltLev (30.08). Exceeding this level causes F503 ArmOverVolt.

Residual current detection

The residual current detection (earth fault) is based on:

- a sum current transformer at the AC-side of the converter or
- an external device (e.g. Bender relays).

If a current transformer (ratio is $400: 1$) is used its secondary winding is connected to AI4 (X3:11 and X3:12) on the SDCS-IOB-3 board. The sum current of all three phases has to be zero, otherwise a residual current is detected and F505 ResCurDetect is set.

ResCurDetectSel (30.05) activates the residual current detection and selects the choice of connected hardware (transformer or external device).

The residual current detection tripping level, in amperes at the primary side of the current transformer, is set with ResCurDetectLim (30.06), if a sum current transformer is used. In case an external device is used ResCurDetectLim (30.06) is deactivated.

ResCurDetectDel (30.07) delays F505 ResCurDetect.

Measured motor temperature

General
The temperatures of motor 1 and motor 2 (parameter for motor 2 see group 49) can be measured at the same time. Alarm and tripping levels are selected by means of M1AlarmLimTemp (31.06) and M1FaultLimTemp (31.07). If the levels are exceeded A106 M1OverTemp respectively F506 M1OverTemp is set. The motor fan will continue to work until the motor is cooled down to alarm limit.

The measurement is configured by means of M1TempSel (31.05) and the measured temperature is shown in Mot1TempMeas (1.22). The unit of the measurement depends on the selected measurement mode. For PT100 the unit is degree Celsius and for PTC the unit is Ω.

The motor temperature measurement uses either AI2 and AI3 of the SDCS-IOB-3 or AI7 and AI8 of the RAIO. Additionally the SDCS-IOB-3 features a selectable constant current source for PT100 (5 mA) or PTC (1.5 mA).

Measurement selection

Connection possibilities for PT100:

- max. 3 PT100 for motor 1 and max. 3 PT100 for motor 2 or
- up to 6 PT100 for a single motor.

SDCS-IOB-3:

AI2 (motor 1) and Al3 (motor 2) are used for the temperature measurement with PT100. In case only one PT100 is connected to an AI the input range must be configured by jumpers to a gain of 10. Jumper settings for input range and constant current source see DCS800 Hardware Manual. All parameters for AI2 and Al 3 in group 15 have to set to default.

PT100 and SDCS-IOB-3
For more information see section Analog Inputs.

RAIO for motor temperature measurement:

AI7 (motor 1) and AI8 (motor 2) are used for the temperature measurement with PT100. AO5 and AO6 are used as current source. Al7 / AO5 and AI8 / AO6 have to be activated by means of AIO MotTempMeas (98.12).

single motor
DCS800 FW PT0100 and sec RAIO.dsf

PT100 and second RAIO

SDCS-IOB-3:

Connection possibilities for PTC:

- max. 1 PTC for motor 1 and max. 1 PTC for motor 2 or
- up to 2 PTC for a single motor.

Al2 (motor 1) and AI3 (motor 2) are used for the temperature measurement with PTC. Jumper settings see DCS800 Hardware Manual. All parameters for AI2 and Al3 in group 15 have to set to default.

PTC and SDCS-IOB-3

SDCS-CON-4:

Connection possibilities for PTC:

- max. 1 PTC for motor 1 or max. 1 PTC for motor 2.

Only AI2 can be used for the temperature measurement with PTC. Jumper settings see DCS800 Hardware Manual. All parameters for AI2 in group 15 have to set to default.

PTC and SDCS-CON-4

Klixon

The temperature of motor 1 and motor 2 can be supervised by means of klixons. The klixon is a thermal switch, opening its contact at a defined temperature. This can be used for supervision of the temperature by means of connecting the switch to a digital input of the drive. The digital input for the klixon(s) is selected with M1KlixonSel (31.08). The drive trips with F506 M1OverTemp when the klixon opens. The motor fan will continue to work until the klixon is closed again.

Note:

It is possible to connect several klixons in series.

Motor thermal model

General
The drive includes two thermal models one for motor 1 and one for motor 2. The models can be used at the same time. Two models are needed in case one converter is shared by two motors (e.g. shared motion). During normal operation only one thermal model is needed.

It is recommended to use the thermal model of the motor if a direct motor temperature measurement isn't available and the current limits of the drive are set higher than the motor nominal current.

The thermal model is based on the actual motor current related to motor nominal current and rated ambient temperature. Thus the thermal model does not directly calculate the temperature of the motor, but it calculates the temperature rise of the motor. This is based on the fact that the motor will reach its end temperature
after the specified time when starting to run the cold motor $\left(40^{\circ} \mathrm{C}\right)$ with nominal current. This time is about four times the motor thermal time constant.

The temperature rise of the motor behaves like the time constant which is proportional with the motor current to the power of two:

$$
\begin{equation*}
\Phi=\frac{I_{\text {act }}^{2}}{I_{\text {Motn }}^{2}} *\left(1-e^{-\frac{t}{\tau}}\right) \tag{1}
\end{equation*}
$$

When the motor is cooling down, following temperature model is valid:

$$
\begin{equation*}
\Phi=\frac{I_{\text {act }}^{2}}{I_{\text {Motn }}^{2}} * e^{-\frac{t}{\tau}} \tag{2}
\end{equation*}
$$

with: $\quad \Phi_{\text {alamm }}=$ temperature rise $==[\text { M1AlarmLimLoad (31.03) }]^{2}$
$\Phi_{\text {trip }}=$ temperature rise $==[\text { M1FaultLimLoad (31.04) }]^{2}$
$\Phi=$ temperature rise $==$ Mot1TempCalc (1.20)
$\mathrm{I}_{\text {act }}=$ actual motor current (overload e.g. 170\%)
$I_{\text {Moin }}=$ nominal motor current (100%)
$\mathrm{t}=$ length of overload (e.g. 60 s)
$\tau=$ temperature time constant (in seconds) $==$ M1ModelTime (31.01)
As from the formulas (1) and (2) can be seen, the temperature model uses the same time constant when the motor is heating or cooling down.

Alarm and tripping levels
Alarm and tripping levels are selected by means of M1AlarmLimLoad (31.03) and M1FaultLimLoad (31.04). If the levels are exceeded A107 M1OverLoad respectively F507 M1OverLoad is set. The motor fan will continue to work until the motor is cooled down under the alarm limit.

The default values are selected in order to achieve quite high overload ability. Recommended value for alarming is 102% and for tripping 106% of nominal motor current. Thus the temperature rise is:
$-\Phi_{\text {alam }}==[\text { M1AlarmLimLoad }(31.03)]^{2}=(102 \%)^{2}=1.02^{2}=1.04$ and

- $\Phi_{\text {trif }}==[\text { M1FaultLimLoad }(31.04)]^{2}=(106 \%)^{2}=1.06^{2}=1.12$.

The temperature rise output of the model is shown in Mot1TempCalc (1.20).
Thermal model selection
The activation of the thermal models is made by setting M1ModelTime (31.01) greater than zero.

Thermal time constant
The time constant for the thermal model is set by means of M1ModelTime (31.01). If the thermal time constant of a motor is given by the manufacturer just write it into M1ModeITime (31.01).
In many cases the motor manufacturer provides a curve that defines how long the motor can be overloaded by a certain overload factor. In this case the proper thermal time constant must be calculated.

Example:

The drive is desired to trip if the motor current exceeds 170% of motor nominal current for more than 60 seconds.
Selected tripping base level is 106% of nominal motor current, thus M1FaultLimLoad (31.04) = 106 \%.

Motor load curve

Note:

This is an example and does not necessarily correspond to any motor!
Using formula (1) we can calculate the correct value for τ, when starting with a cold motor.
With:

$$
(31.04)^{2}=\Phi_{\text {trip }}=\frac{I_{\text {act }}^{2}}{I_{\text {Motn }}^{2}} *\left(1-e^{-\frac{t}{\tau}}\right)
$$

Follows:
$\tau=-\frac{t}{\ln \left(1-(31.04)^{2} * \frac{I_{\text {Motr }}{ }^{2}}{I_{\text {act }}{ }^{2}}\right)}=-\frac{60 \mathrm{~s}}{\ln \left(1-1.06^{2} * \frac{1.0^{2}}{1.7^{2}}\right)}=122 \mathrm{~s}$
Set M1ModeITime (31.01) = 122 s .

Field overcurrent

The nominal value of the field current is set with M1NomFldCur (99.11).
The overcurrent level is set by means of M1FldOvrCurLev (30.13). Exceeding this level causes F515 M1FexOverCur.

Armature current ripple

The current control is equipped with a current ripple monitor. This function can detect:

1. a broken fuse or thyristor
2. too high gain (e.g. wrong tuning) of the current controller
3. a broken current transformer (T51, T52)

The current ripple monitor level is set by means of CurRippleLim (30.19). Exceeding this level causes either F517 ArmCurRipple or A117 ArmCurRipple depending on CurRippleSel (30.18).

Current ripple monitor method is based on comparing positive and negative currents of each phase. The calculation is done per thyristor pair:

Current ripple monitor method
CurRipple (1.09) is calculated as abs $\left(\mathrm{I}_{1.6}-\mathrm{I}_{3.4}\right)+\mathrm{abs}\left(\mathrm{I}_{1.2}-\mathrm{I}_{5-4}\right)+\mathrm{abs}\left(\mathrm{I}_{3.2}-\mathrm{I}_{5.6}\right)$. By lowpass filtering with 200 ms CurRippleFilt (1.10) is generated and compared against CurRippleLim (30.19).

Current ripple monitor calculation

Note:

The load influences the error signal CurRippleFilt (1.10).
Current near discontinuous level will create values of about 300 \% *

ConvCurActRel (1.15) if a thyristor is not fired.
High inductive loads will create values of about 90\% * ConvCurActRel (1.15) if a thyristor is not fired.

Commissioning hint:

It is not possible to pre-calculate clear levels.
The current control reacts to unstable current feedback.
The load is continuously driving the current if a thyristor is not fired.

Speed feedback monitor

The speed feedback monitor supervises an attached analog tacho or encoder for proper function by means of measured speed and measured EMF. Above a certain EMF the measured speed feedback must be above a certain threshold. The sign of the speed measurement must be correct as well:

Speed measurement supervision

The drive reacts according to SpeedFbFItSel (30.17) when:

1. the measured EMF is greater than EMF FbMonLev (30.15) and
2. the measured speed feedback SpeedActEnc (1.03), SpeedActTach (1.05) or SpeedActEnc2 (1.42) is lower than SpeedFbMonLev (30.14).
Example:

- SpeedFbMonLev (30.14) = 15 rpm
- EMF FbMonLev (30.15) = 50 V

The drive trips when the EMF is greater than 50 V while the speed feedback is \leq 15 rpm .

SpeedFbFItSel (30.17) selects the reaction to a speed feedback problem:

1. the drive is immediately tripped with F522 SpeedFb
2. the speed feedback is switched to EMF and the drive is stopped according to E StopRamp (22.11), then F522 SpeedFb is set
3. the speed feedback is switched to EMF and A125 SpeedFb is set
4. This selection is only valid if 2 pulse encoders are connected. Depending on the setting of M1SpeeFbSel (50.03) the speed feedback is switched from pulse encoder 1 to pulse encoder 2 or vice versa in case of a problem and A125 SpeedFb [AlarmWord2 (9.07) bit 8] is set.
In case the field is weakened the drive is immediately tripped with F522 SpeedFb, except two pulse encoders are in use.

Stall protection

The stall protection trips the converter with F531 MotorStalled when the motor is in apparent danger of overheating. The rotor is either mechanically stalled or the load is continuously too high. It is possible to adjust the supervision (time, speed and torque).

The stall protection trips the drive if:

1. the actual speed is below StallSpeed (30.02) and
2. the actual torque - in percent of MotNomTorque (4.23) - exceeds StallTorq (30.03)
3. for a time longer than programmed in StallTime (30.01).

Overspeed protection

The motor is protected against overspeed e.g. in a case when the drive is in torque control mode and the load drops unexpected.
The overspeed level is set by means of M1OvrSpeed (30.16). Exceeding this level causes F532 MotOverSpeed.

Current rise

The protection against fast current rise during generating is configured by means of ArmCurRiseMax (30.10).
Exceeding this level causes F539 FastCurRise. If present the DC-breaker is tripped and the main contactor is opened.

Field undercurrent

The nominal value of the field current is set with M1NomFldCur (99.11).
The minimum field current level is set by means of M1FldMinTrip (30.12). Undershooting this level causes F541 M1FexLowCur.
FldMinTripDly (45.18) delays F541 M1FexLowCur.
Tacho / pulse encoder polarity
The polarity of the analog tacho or pulse encoder [depending on M1SpeedFbSell (50.03)] is checked against the EMF. If the polarity is wrong F553 TachPolarity is generated.

Tacho range

If an overflow of the AITacho input is imminent F554 TachoRange is generated. Check for the right connections (X3:1 to X3:4) on the SDCS-CON-4.

Status messages

Display of status, fault and alarm signals

Categories of signals and display options
A seven segment display (H 2500) is located on the control board SDCS-CON-4 and it shows the state of drive:

The seven-segment display shows the messages in code. The letters and numbers of multi-character codes are displayed one after the other for 0.7 seconds at a time. Plain text messages are available on the DCS800 Control Panel and in the fault logger of DriveWindow and DriveWindow Light.

F514 = mains not in synchronism
For evaluation via digital outputs or communication to the overriding control 16 bit words are available, containing all fault and alarm signals as binary code:

- FaultWord1 (9.01),
- FaultWord2 (9.02),
- FaultWord3 (9.03),
- FaultWord4 (9.04),
- UserFaultWord (9.05),
- AlarmWord1 (9.06),
- AlarmWord2 (9.07),
- AlarmWord3 (9.08) and

UserAlarmWord (9.09)

General messages

SDCS-CON-4
General messages will only be indicated on the seven-segment display of the SDCS-CON-4.

7- segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition	Remark
8	not available	firmware is not running	1
-	not available	firmware is running, no faults, no alarms	-
-	not available	indication while loading firmware into SDCS-CON-4	-
d	not available	indication while loading DCS800 Control Panel texts into SDCS-CON-4	-
u	not available	DCS800 Control Panel text now formatting in the flash - don't switch off	-

Power-up errors (E)

SDCS-CON-4
Power-up errors will only be indicated on the seven segment display of the SDCS-CON-4. With a power-up error active it is not possible to start the drive.

7- segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition	Remark
E01	not available	Checksum fault firmware flash	1,2
E02	not available	SDCS-CON-4 ROM memory test error	1,2
E03	not available	SDCS-CON-4 RAM memory test error (even addresses)	1,2
E04	not available	SDCS-CON-4 RAM memory test error (odd addresses)	1,2
E05	not available	SDCS-CON-4 hardware is not compatible, unknown board	1,2
E06	not available	SDCS-CON-4 watchdog timeout occurred	1,2

1. Units should be de-energized and energized. If the fault occurs again check the SDCS-CON-4, SDCS-PIN-4 respectively SDCS-POW-4 boards and change them if necessary.
2. Power-up errors are only enabled immediately after power on. If a power-up error is indicated during normal operation the reason is usually caused by EMC. In this case please check for proper grounding of cables, converter and cabinet.

Fault signals (F)

To avoid dangerous situations, damage of the motor, the drive or any other material some physical values must not exceed certain limits. Therefore limit values can be specified for these values by parameter setting which cause an alarm or a fault when the value exceeds the limits (e.g. max. armature voltage, max. converter temperature). Faults can also be caused by situations which inhibit the drive from normal operation (e.g. blown fuse).

A fault is a condition which requires an immediate stop of the drive in order to avoid danger or damage. The drive is stopped automatically and cannot be restarted before removing its cause.

All fault signals, with the exception of:

- F501 AuxUnderVolt,
- F525 TypeCode,
- F547 HwFailure and
- F548 FwFailure
are resetable in case the fault is eliminated.
To reset a fault following steps are required:
- remove the Run and On commands [UsedMCW (7.04) bit 3 and 0]
- eliminate the faults
- acknowledge the fault with Reset [UsedMCW (7.04) bit 7] via digital input, overriding control system or in Local mode with DCS800 Control Panel, DriveWindow or DriveWindow Light
- depending on the systems condition, generate Run and On commands [UsedMCW (7.04) bit 3 and 0] again

The fault signals will switch the drive off completely or partly depending on its trip level.

Trip level 1:

- main contactor is switched off immediately
- field contactor is switched off immediately
- fan contactor is switched off immediately

Trip level 2:

- main contactor is switched off immediately
- field contactor is switched off immediately
- fan contactor stays on as long as the fault is pending or as long as FanDly (21.14) is running

Trip level 3:

The drive is stopping via SpeedFbFltMode (30.36), thus the

- main contactor is switched off immediately
- field contactor is switched off immediately in case of SpeedFbFItMode (30.36) $=$ CoastStop, but it stays on in case of field heating or SpeedFbFltMode (30.36) = DynBraking
- fan contactor stays on

At standstill the

- main contactor cannot be switched on again
- field contactor stays on in case of field heating
- fan contactor stays on as long as FanDly (21.14) is running

Trip level 4:

As long as the drive is stopping via FaultStopMode (30.30) , the

- main contactor is switched off immediately in case of FaultStopMode (30.30) = CoastStop or DynBraking, but it stays on in case of FaultStopMode (30.30) = RampStop or TorqueLimit
- field contactor is switched off immediately in case of FaultStopMode (30.30) = CoastStop, but it stays on in case of field heating or FaultStopMode (30.30) = RampStop, TorqueLimit or DynBraking
- fan contactor is switched off immediately in case of FaultStopMode (30.30) = CoastStop, but stays on in case of FaultStopMode (30.30) = RampStop, TorqueLimit or DynBraking
At standstill the
- main contactor is switched off immediately
- field contactor stays on in case of field heating
- fan contactor stays on as long as FanDly (21.14) is running

Trip level 5

As long as the drive is stopping via any communication loss control [LocalLossCtrl
(30.27), ComLossCtrl (30.28), Ch0ComLossCtrl (70.05) or Ch2ComLossCtrl
(70.15)], the

- main contactor is switched off immediately or stays on depending on the selected communication loss control
- field contactor is switched off immediately or stays on depending on the selected communication loss control, but it stays on in case of field heating
- fan contactor is switched off immediately or stays on depending on the selected communication loss control
At standstill
- main contactor is switched off immediately
- field contactor stays on in case of field heating
- fan contactor stays on as long as FanDly (21.14) is running

In case a fault occurs, it stays active until the cause is eliminated and a Reset [UsedMCW (7.04) bit 7] is given.

Fault name	Fault number	Fault name	Fault number
12PulseCom	F535	M1FexNotOK	F529
12PCurDiff	F534	M1FexOverCur	F515
12PRevTime	F533	M1FexRdyLost	F537
12PSlaveFail	F536	M1OverLoad	F507
		M1OverTemp	F506
AlRange	F551	M2FexCom	F519
ApplLoadFail	F545	M2FexLowCur	F542
ArmCurRipple	F517	M2FexNotOK	F530
ArmOverCur	F502	M2FexOverCur	F518
ArmOverVolt	F503	M2FexRdyLost	F538
AuxUnderVolt	F501	M2OverLoad	F510
		M2OverTemp	F509
COM8Com	F543	MainContAck	F524
COM8Faulty	F540	MainsLowVolt	F512
ConvFanAck	F527	MainsNotSync	F514
ConvFanCur	F511	MainsOvrVolt	F513
ConvOverTemp	F504	MechBrake	F552
		MotorStalled	F531
ExternalDI	F526	MotOverSpeed	F532
ExtFanAck	F523		
		P2PandMFCom	F544
FastCurRise	F539	ParComp	F549
FieldAck	F521	ParMemRead	F550
FieldBusCom	F528		
FwFailure	F548	ResCurDetect	F505
		ReversalTime	F557
HwFailure	F547		
		SpeedFb	F522
I/OBoardLoss	F508		
		TachPolarity	F553
LocalCmdLoss	F546	TachoRange	F554
		TorqProving	F556
M1FexCom	F516	TypeCode	F525
M1FexLowCur	F541		

For additional fault messages see SysFaultWord (9.10).

7segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F501	501 AuxUnderVolt	Auxiliary undervoltage: The auxiliary voltage is too low while the drive is in operation. If resetting fails, check: - internal auxiliary voltages (SDCS-CON-4) - and change SDCS-CON-4 and / or SDCS- PIN-4 respectively SDCS-POW-4 board	$\begin{aligned} & 9.01, \\ & \text { bit } 0 \end{aligned}$	RdyRun = 1	1
F502	502 ArmOverCur	Armature overcurrent: Check: - ArmOvrCurLev (30.09) - parameter settings of group 43 (current control: armature current controller tuning) - current and torque limitation in group 20 - all connections in the armature circuit, especially the incoming voltage for synchronizing. If the synchronizing voltage is not taken from the mains (e.g. via synchronizing transformer or $230 \mathrm{~V} / 115 \mathrm{~V}$ network) check that there is no phase shift between the same phases (use an oscilloscope). - for faulty thyristors - armature cabling - in case of a rebuild kit proper connection of firing pulses and CT's - if TypeCode (97.01) = None and S ConvScaleCur (97.02) is set properly	$\begin{aligned} & 9.01, \\ & \text { bit } 1 \end{aligned}$	always	3
F503	503 ArmOverVolt	Armature overvoltage (DC): Check: - if setting of ArmOvrVoltLev (30.08) is suitable for the system - parameter settings of group 44 (field excitation: field current controller tuning, EMF controller tuning, flux linearization) - too high field current (e.g. problems with field weakening) - if the motor was accelerated by the load, - overspeed - does the speed scaling fit, see SpeedScaleAct (2.29) - proper armature voltage feedback - connector X12 and X13 on SDCS-CON-4 - connector X12 and X13 on SDCS-PIN-4/51 - cutting of resistors for voltage coding on SDCS-PIN-51	$\begin{aligned} & 9.01, \\ & \text { bit } 2 \end{aligned}$	always	1

Fault tracing

$\begin{array}{\|c\|} \hline 7- \\ \text { segment } \\ \text { display } \end{array}$	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	\%
F504	504 ConvOverTemp	Converter overtemperature: Wait until the converter is cooled down. Shutdown temperature see MaxBridgeTemp (4.17). Check: - converter door open - converter fan supply voltage - converter fan direction of rotation - converter fan components - converter cooling air inlet (e.g. filter) - converter cooling air outlet - ambient temperature - inadmissible load cycle - connector X12 on SDCS-CON-4 - connector X12 and X22 on SDCS-PIN-4/51 - if TypeCode (97.01) $=$ None and S MaxBridgeTemp (97.04) is set properly	$\begin{aligned} & 9.01, \\ & \text { bit } 3 \end{aligned}$	always	2
F505	505 ResCurDetect	Residual current detection (sum of $\mathrm{I}_{\mathrm{L} 1}, \mathrm{I}_{\mathrm{L} 2}, \mathrm{~L}_{\mathrm{L} 3} \neq$ zero): Check: ResCurDetectSel (30.05), ResCurDetectLim (30.06), ResCurDetectDel (30.07) - sum current transformer, if necessary change transformer or SDCS-IOB-3 - disconnect the mains, verify safe isolation from supply in armature and field circuits and make insulation tests for the complete installation	$\begin{aligned} & 9.01, \\ & \text { bit } 4 \end{aligned}$	always	1
F506	506 M1OverTemp	Motor 1 measured overtemperature: Wait until the motor is cooled down. The motor fan will continue to work until the motor is cooled down under the alarm level. It is not possible to reset the fault as long as the motor remains too hot. Check: - M1FaultLimTemp (31.07), M1KlixonSel (31.08) - M1AlarmLimTemp (31.08) - motor temperature - motor fan supply voltage - motor fan direction of rotation - motor fan components - motor cooling air inlet (e.g. filter) - motor cooling air outlet - motor temperature sensors and cabling - ambient temperature - inadmissible load cycle - inputs for temperature sensors on SDCS-CON-4 and SDCS-IOB-3	$\begin{aligned} & 9.01, \\ & \text { bit } 5 \end{aligned}$	always	2

$7-$ segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	包
F507	507 M1OverLoad	Motor 1 calculated overload: Wait until the motor is cooled down. The motor fan will continue to work until the motor is calculated down under the alarm level. It is not possible to reset the fault as long as the motor remains too hot. Check: - M1FaultLimLoad (31.04) - M1AlarmLimLoad (31.03)	$\begin{aligned} & 9.01, \\ & \text { bit } 6 \end{aligned}$	always	2
F508	508 I/OBoardLoss	I/O board not found or faulty: Check: - Diagnosis (9.11) - Ext IO Status (4.20) - flat cable connections between SDCS-CON-4 and SDCS-IOB-2/3 - SDCS-COM-8 - DCSLinkNodeID (94.01), Encoder2Module (98.01), CommModule (98.02), DIO ExtModule1 (98.03), DIO ExtModule2 (98.04), AIO ExtModule (98.06), AIO MotTempMeas (98.12), IO BoardConfig (98.15)	$\begin{aligned} & 9.01, \\ & \text { bit } 7 \end{aligned}$	always	1
F509	509 M2OverTemp	Motor 2 measured overtemperature: Wait until the motor is cooled down. The motor fan will continue to work until the motor is cooled down under the alarm level. It is not possible to reset the fault as long as the motor remains too hot. Check: - M2FaultLimTemp (49.37), M2KlixonSel (49.38) - M2AlarmLimTemp (49.36) - motor temperature (let motor cool down and restart) - motor fan supply voltage - motor fan direction of rotation - motor fan components - motor cooling air inlet (e.g. filter) - motor cooling air outlet - motor temperature sensors and cabling - ambient temperature - inadmissible load cycle - inputs for temperature sensors on SDCS-CON-4 and SDCS-IOB-3	$\begin{aligned} & 9.01, \\ & \text { bit } 8 \end{aligned}$	always	2

Fault tracing

	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	俍
F510	510 M2OverLoad	Motor 2 calculated overload: Wait until the motor is cooled down. The motor fan will continue to work until the motor is cooled down under the alarm level. It is not possible to reset the fault as long as the motor remains too hot. Check: - M2FaultLimLoad (49.34) - M2AlarmLimLoad (49.33)	$\begin{aligned} & \text { 9.01, } \\ & \text { bit } 9 \end{aligned}$	always	2
F511	511 ConvFanCur	Converter fan current: only with ConvTempDly (97.05) $=0$ and a PW-10002/3 board connected to SDCS-PIN-4/51. Check: - converter fan supply voltage - converter fan direction of rotation - converter fan components - converter cooling air inlet (e.g. filter) - converter cooling air outlet - connector X12 on SDCS-CON-4 - connector X12 and X22 on SDCS-PIN-4/51	$\begin{array}{\|l\|} \hline 9.01, \\ \text { bit } 10 \end{array}$	RdyRun = 1	4
F512	512 MainsLowVolt	Mains low (under-) voltage (AC): Check: - PwrLossTrip (30.21), UNetMin1 (30.22), UNetMin2 (30.23), PowrDownTime (30.24) - if all 3 phases are present: o D1 to D4: measure also the fuses F100 to F102 on the SDCS-PIN-4 (see Appendix B) o D5 to D7: check also the connections U1, V1 and W1 on the SDCS-PIN-51 - if the mains voltage is within the set tolerance - if the main contactor closes and opens - if the mains voltage scaling is correct [NomMainsVolt (99.10)] - connector X12 and X13 on SDCS-CON-4 - connector X12 and X13 on SDCS-PIN-4/51 - cutting of resistors for voltage coding on SDCS-PIN-51 - D1 to D4: check if the field circuit has no short circuit or ground fault	$\begin{aligned} & 9.01, \\ & \text { bit } 11 \end{aligned}$	RdyRun = 1	3

7segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	产
F513	513 MainsOvrVolt	Mains overvoltage (AC): Actual mains voltage is > 1.3 * NomMainsVolt (99.10) for more than 10 s and RdyRun $=1$. Check: - if the mains voltage is within the set tolerance - if the mains voltage scaling is correct [NomMainsVolt (99.10)] - connector X12 and X13 on SDCS-CON-4 - connector X12 and X13 on SDCS-PIN-4/51 - cutting of resistors for voltage coding on SDCS-PIN-51	$\begin{aligned} & 9.01, \\ & \text { bit } 12 \end{aligned}$	RdyRun = 1	1
F514	514 MainsNotSync	Mains not in synchronism (AC): The synchronization with the mains frequency has been lost. Check: - mains supply - fuses etc. - mains frequency ($50 \mathrm{~Hz} \pm 5 \mathrm{~Hz} ; 60 \mathrm{~Hz} \pm 5 \mathrm{~Hz}$) and stability ($\mathrm{dt} / \mathrm{dt}=17 \% / \mathrm{s}$) see PLLIn (3.20) at 50 Hz one period $==360^{\circ}=20 \mathrm{~ms}=$ 20,000 and at 60 Hz one period $==360^{\circ}=$ $16.7 \mathrm{~ms}=16,6667$	$\begin{aligned} & 9.01, \\ & \text { bit } 13 \end{aligned}$	RdyRun = 1	3
F515	$\begin{array}{\|l\|} \hline 515 \\ \text { M1FexOverCur } \end{array}$	Motor 1 field exciter overcurrent: Check: - in case this fault happens during field exciter autotuning deactivate the supervision by setting M1FldOvrCurLev (30.13) $=135$ - M1FldOvrCurLev (30.13) - parameter settings of group 44 (field excitation: field current controller tuning) - connections of field exciter - insulation of cables and field winding - resistance of field winding - fault message at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.01, \\ & \text { bit 14 } \end{aligned}$	RdyRun = 1	1

	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F516	516 M1FexCom	Motor 1 field exciter communication loss: Check: - M1UsedFexType (99.12) - FexTimeOut (94.07) - flat cable connections between SDCS-CON-4 and SDCS-PIN-4 - auxiliary voltage for integrated and external field exciter - DCSLink cable connections - DCSLink termination set dip switch S1100:1 = ON (DCF803-0016, DCF803-0035 and FEX-425-Int) - DCSLink node ID settings [DCSLinkNodeID (94.01), M1FexNode (94.08) respectively switches S800 and S801 on DCF803-0016, DCF803-0035 and FEX-425-Int] - fault message at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.01, \\ & \text { bit } 15 \end{aligned}$	RdyRun = 1	1
F517	517 ArmCurRipple	Armature current ripple: One or several thyristors may carry no current. Check: - CurRippleSel (30.18), CurRippleLim (30.19) - for too high gain of current controller [M1KpArmCur (43.06)] - current feedback with oscilloscope (6 pulses within one cycle visible?) - branch fuses - thyristor gate-cathode resistance - thyristor gate connection - current transformers (T51, T52)	$\begin{aligned} & 9.02, \\ & \text { bit 0, } \end{aligned}$	RdyRef = 1	3
F518	$\begin{array}{\|l\|} \hline 518 \\ \text { M2FexOverCur } \end{array}$	Motor 2 field exciter overcurrent: Check: - M2FIdOvrCurLev (49.09) - parameter settings of group 49 (field excitation: field current controller tuning) - connections of field exciter - insulation of cables and field winding - resistance of field winding - fault message at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.02, \\ & \text { bit } 1 \end{aligned}$	RdyRun = 1	1

7- segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F519	519 M2FexCom	Motor 2 field exciter communication loss: Check: - M2UsedFexType (49.07) - FexTimeOut (94.07) - flat cable connections between SDCS-CON-4 and SDCS-PIN-4 - auxiliary voltage for integrated and external field exciter - DCSLink cable connections - DCSLink termination set dip switch S1100:1 = ON (DCF803-0016, DCF803-0035 and FEX-425-Int) - DCSLink node ID settings [DCSLinkNodeID (94.01) , M2FexNode (94.09) respectively switches S800 and S801 on DCF803-0016, DCF803-0035 and FEX-425-Int] - fault message at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.02, \\ & \text { bit } 2 \end{aligned}$	RdyRun = 1	1
F521	521 FieldAck	Selected motor, field acknowledge missing: Check: - M1UsedFexType (99.12), if selection matches the field exciter type, Mot1FexStatus (6.12), Mot2FexStatus (6.13) - fault message at field exciter (7-segment display or flashing LED's) - F521 FieldAck is the sum fault for all field related faults like: 1. F515 M1FexOverCur 2. F516 M1FexCom 3. F529 M1FexNotOK 4. F537 M1FexRdyLost 5. F541 M1FexLowCur	$\begin{aligned} & 9.02, \\ & \text { bit } 4 \end{aligned}$	RdyRun = 1	1
F522	522 SpeedFb	Selected motor, speed feedback: The comparison of the speed feedback from pulse encoder or analog tacho has failed. Check: - M1SpeedFbSel (50.03), SpeedFbFltMode (30.36), SpeedFbFItSel (30.17), EMF FbMonLev (30.15), SpeedFbMonLev (30.14) - pulse encoder: encoder itself, alignment, cabling, coupling, power supply (feedback might be too low), mechanical disturbances, jumper S4 on SDCS-CON-4 - analog tacho: tacho itself, tacho polarity and voltage, alignment, cabling, coupling, mechanical disturbances, jumper S1 on SDCS-CON-4 - EMF: connection converter - armature circuit closed - SDCS-CON-4, SDCS-IOB-3, SDCS-POW-4	$\begin{aligned} & 9.02, \\ & \text { bit } 5 \end{aligned}$	always	3

Fault tracing

7segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F523	523 ExtFanAck	External fan acknowledge missing: Check: - MotFanAck (10.06) - external fan contactor - external fan circuit - external fan supply voltage - used digital inputs and outputs (group 14)	$\begin{aligned} & 9.02, \\ & \text { bit } 6 \end{aligned}$	RdyRun = 1	4
F524	524 MainContAck	Main contactor acknowledge missing: Check: - MainContAck (10.21) - switch on - off sequence - auxiliary contactor (relay) switching the main contactor after On/Off command - safety relays - used digital inputs and outputs (group 14)	$\begin{aligned} & 9.02, \\ & \text { bit } 7 \end{aligned}$	RdyRun = 1	3
F525	525 TypeCode	Type code mismatch: When using D1, D2, D3 or D4 modules the current and voltage range of the type code setting is limited to max 1000 ADC and max 600 VAC. Check: - TypeCode (97.01), S ConvScaleCur (97.02), S ConvScaleVolt (97.03)	$\begin{aligned} & 9.02, \\ & \text { bit } 8 \end{aligned}$	always	1
F526	526 ExternalDI	External fault via binary input: There is no problem with the drive itself! Check: - ExtFaultSel (30.31), ExtFaultOnSel (30.33)	$\begin{aligned} & 9.02, \\ & \text { bit } 9 \end{aligned}$	Always or RdyRun = 1	1
F527	527 ConvFanAck	Converter fan acknowledge missing: Check: - ConvFanAck (10.20) - FanDly (21.14) - converter fan contactor - converter fan circuit - converter fan klixon - converter fan components - converter fan supply voltage - converter fan direction of rotation - converter door open - converter cooling air inlet (e.g. filter) - converter cooling air outlet - D6 an D7 pressure switch (setting should be 2 mbar) - used digital inputs and outputs (group 14)	$\begin{aligned} & 9.02, \\ & \text { bit } 10 \end{aligned}$	RdyRun = 1	4

	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F528	528 FieldBusCom	Fieldbus communication loss: F528 FieldBusCom is only activated after the first data set from the overriding control is received by the drive. Before the first data set is received only A128 FieldBusCom is active. The reason is to suppress unnecessary faults (the start up of the overriding control is usually slower than the one of the drive). Check: - CommandSel (10.01), ComLossCtrl (30.28), FB TimeOut (30.35), CommModule (98.02) - parameter settings of group 51 (fieldbus) - fieldbus cable - fieldbus termination - fieldbus adapter	$\begin{aligned} & 9.02, \\ & \text { bit } 11 \end{aligned}$	$\begin{aligned} & \text { always if } F B \\ & \text { TimeOut } \\ & (30.35) \neq 0 \end{aligned}$	5
F529	529 M1FexNotOK	Motor 1 field exciter not okay: A fault was found during self-diagnosis of field exciter or power failure in field exciter 1. Check: - field exciter operation and change the field exciter, if necessary - fault message at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.02, \\ & \text { bit } 12 \end{aligned}$	always	1
F530	530 M2FexNotOK	Motor 2 field exciter not okay: A fault was found during self-diagnosis of field exciter or power failure in field exciter 2. Check: - field exciter operation and change the field exciter, if necessary - fault message at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.02, \\ & \text { bit } 13 \end{aligned}$	always	1
F531	531 MotorStalled	Selected motor, motor stalled: The motor torque exceeded StallTorq (30.03) for a time longer than StallTime (30.01) while the speed feedback was below StallSpeed (30.02). Check: - motor stalled (mechanical couplings of the motor) - proper conditions of load - correct field current - parameter settings of group 20 (limits: current and torque limits)	$\begin{aligned} & 9.02, \\ & \text { bit } 14 \end{aligned}$	RdyRef = 1	3

Fault tracing

	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F532	532 MotOverSpeed	Selected motor, motor overspeed: Check: - M1OvrSpeed (30.16) - parameter settings of group 24 (speed control: speed controller) - scaling of speed controller loop [SpeedScaleAct (2.29)] - drive speed [MotSpeed (1.04)] vs. measured motor speed (hand held tacho) - field current too low - speed feedback (encoder, tacho) - connection of speed feedback - if the motor was accelerated by the load - in case of EMF speed feedback if the DCvoltage measurement (C1, D1) might be swapped or if the armature circuit is open (e.g. DC-fuses, DC-breaker)	$\begin{aligned} & 9.02, \\ & \text { bit } 15 \end{aligned}$	always	3
F533	533 12PRevTime	12-pulse reversal timeout: Current direction not changed before 12P RevTimeOut (47.05) is elapsed. Check: - for high inductive motor - too high motor voltage compared to mains voltage	$\begin{aligned} & 9.03, \\ & \text { bit } 0 \end{aligned}$	RdyRef $=1$	3
F534	534 12PCurDiff	12-pulse current difference (only for 12-pulse parallel operation): Check: - DiffCurLim (47.02), DiffCurDly (47.03) - parameter settings of group 43 (current control: armature current controller)	$\begin{aligned} & 9.03, \\ & \text { bit } 1 \end{aligned}$	always	3
F535	535 12PulseCom	12-pulse communication: Check: - 12P TimeOut (94.03) - DCSLink cable connections - DCSLink termination - DCSLink node ID settings [DCSLinkNodeID (94.01) , 12P SlaNode (94.04)]	$\begin{aligned} & 9.03, \\ & \text { bit } 2 \end{aligned}$	RdyOn = 1	3
F536	536 12PSlaveFail	12-pulse slave failure: 12-pulse master is tripped by a fault of the 12-pulse slave. Check: - Fault logger of 12-pulse slave	$\begin{aligned} & 9.03, \\ & \text { bit 3 } \end{aligned}$	RdyOn = 1	4

$7-$ segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	㜢
F537	$\begin{array}{\|l} 537 \\ \text { M1FexRdyLost } \end{array}$	Motor 1 field exciter ready lost: Field exciter lost ready-for-operation message while working. AC-voltage missing or not in synchronism. Check: - if all phases are present - if the mains voltage is within the set tolerance - fault message at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.03, \\ & \text { bit } 4 \end{aligned}$	RdyRun = 1	1
F538	$\begin{array}{\|l\|} \hline 538 \\ \text { M2FexRdyLost } \end{array}$	Motor 2 field exciter ready lost: Field exciter lost ready-for-operation message while working. AC-voltage missing or not in synchronism. Check: - if all phases are present - if the mains voltage is within the set tolerance - fault message at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.03, \\ & \text { bit } 5 \end{aligned}$	RdyRun = 1	1
F539	539 FastCurRise	Fast current rise: Actual current di/dt too fast. Check: - ArmCurRiseMax (30.10)	$\begin{aligned} & 9.03, \\ & \text { bit } 6 \end{aligned}$	RdyRef $=1$ and generating	1
F540	540 COM8Faulty	SDCS-COM-8 faulty: Check: - Change SDCS-COM-8 and / or SDCS-CON-4	$\begin{aligned} & 9.03, \\ & \text { bit } 7 \end{aligned}$	RdyOn = 1	1
F541	541 M1FexLowCur	Motor 1 field exciter low (under-) current: Check: - M1FldMinTrip (30.12) , FldMinTripDly (45.18) - parameter settings of group 44 (field excitation: field current controller tuning, EMF controller tuning, flux linearization) - motor name plate for minimum current at maximum field weakening (maximum speed) - field circuit fuses - field contactor is not closed - if the field current oscillates - if the motor is not compensated and has a high armature reaction - fault message at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.03, \\ & \text { bit } 8 \end{aligned}$	always	1

Fault tracing

7segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F542	$\begin{array}{\|l} \hline 542 \\ \text { M2FexLowCur } \end{array}$	Motor 2 field exciter low (under-) current: Check: - M2FldMinTrip (49.08), FldMinTripDly (45.18) - parameter settings of group 44 (field excitation: field current controller tuning, EMF controller tuning, flux linearization) - motor name plate for minimum current at maximum field weakening (maximum speed) - field circuit fuses - field contactor is not closed - if the field current oscillates - if the motor is not compensated and has a high armature reaction - fault message at field exciter (7-segment display or flashing LED's)	$\begin{aligned} & 9.03, \\ & \text { bit } 9 \end{aligned}$	always	1
F543	543 COM8Com	SDCS-COM-8 communication loss (overriding control and master-follower): Check: - CommandSel (10.01), Ch0 ComLossCtrl (70.05), Ch0 TimeOut (70.04), Ch2 ComLossCtrl (70.15), Ch2 TimeOut (70.14), Ch0 DriveBus (71.01) - fiber optic cables to overriding control (channel 0) - overriding control adapters - fiber optic cables between master and followers (channel 2)	$\begin{aligned} & 9.03, \\ & \text { bit } 10 \end{aligned}$	RdyOn = 1	5
F544	$\begin{aligned} & \hline 544 \\ & \text { P2PandMFCom } \end{aligned}$	Peer to peer and master-follower communication loss: Check: - ComLossCtrl (30.28), MailBox1 (94.12), MailBox2 (94.18), MailBox3 (94.24), MailBox4 (94.30), MailBoxCycle1 (94.13), MailBoxCycle2 (94.19), MailBoxCycle3 (94.25), MailBoxCycle4 (94.31) - DCSLink cable connections - DCSLink termination - DCSLink node ID settings [DCSLinkNodeID (94.01)]	$\begin{aligned} & 9.03, \\ & \text { bit } 11 \end{aligned}$	always	5
F545	545 ApplLoadFail	Application load failure: Check: Diagnosis (9.11)	$\begin{aligned} & 9.03, \\ & \text { bit } 12 \end{aligned}$	always	1

	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F546	$\begin{aligned} & 546 \\ & \text { LocalCmdLoss } \end{aligned}$	Local command loss: Communication fault with DCS800 Control Panel, DriveWindow or DriveWindow Light during local mode. Check: - LocalLossCtrl (30.27) - if control DCS800 Control Panel is disconnected - connection adapter - cables	$\begin{aligned} & 9.03, \\ & \text { bit } 13 \end{aligned}$	local	5
F547	547 HwFailure	Hardware failure: For more details check Diagnosis (9.11).	$\begin{aligned} & 9.03, \\ & \text { bit } 14 \end{aligned}$	always	1
F548	548 FwFailure	Firmware failure: For more details check Diagnosis (9.11). Can happen after firmware download using an USB to COMx converter.	$\begin{aligned} & 9.03, \\ & \text { bit } 15 \end{aligned}$	always	1
F549	549 ParComp	Parameter compatibility: When downloading parameter sets or during power-up the firmware attempts to write their values. If the setting is not possible or not compatible the parameter is set to default. The parameters causing the fault can be identified in Diagnosis (9.11). Check: - parameter setting	$\begin{aligned} & 9.04, \\ & \text { bit } 0 \end{aligned}$	always	1
F550	550 ParMemRead	Parameter or Memory Card read: Reading the actual parameter set or a user parameter set from either flash or Memory Card failed (checksum fault) Check: - one or both parameter sets (User1 and / or User2) have not been saved properly - see AppIMacro (99.08) - Memory Card and - SDCS-CON-4	$\begin{aligned} & 9.04, \\ & \text { bit } 1 \end{aligned}$	always	1
F551	551 AIRange	Analog input range: Undershoot of one of the analog input values under $4 \mathrm{~mA} / 2 \mathrm{~V}$. Check: - Al Mon4mA (30.29) - used analog inputs connections and cables - polarity of connection	$\begin{aligned} & 9.04, \\ & \text { bit } 2 \end{aligned}$	always	4
F552	552 MechBrake	Selected motor, mechanical brake: The acknowledge signal for brake opened (lifted) or brake closed (applied) is missing. Check: - M1BrakeAckSel (42.02), M1BrakeFItTime (42.05), BrakeFaultFunc (42.06), M1BrakeLongTime (42.12) - brake - brake cabling - used digital inputs and outputs (group 14)	$\begin{aligned} & 9.04, \\ & \text { bit } 3 \end{aligned}$	always	3

Fault tracing

$7-$ segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	兂
F553	553 TachPolarity	Selected motor, tacho polarity: The polarity of the analog tacho respectively pulse encoder [depending on M1SpeedFbSell (50.03)] is checked against the EMF. Check: - EMF FbMonLev (30.15), SpeedFbMonLev (30.14) - polarity of tacho cable - polarity of pulse encoder cable (e.g. swap channels A and A not) - polarity of armature and field cables - direction of motor rotation	$\begin{aligned} & 9.04, \\ & \text { bit } 4 \end{aligned}$	always	3
F554	554 TachoRange	Selected motor, tacho range: Overflow of AITacho input Check: - for the right connections (X3:1 to X3:4) on the SDCS-CON-4	$\begin{aligned} & 9.04, \\ & \text { bit } 5 \end{aligned}$	always	3
F556	556 TorqProving	Selected motor, torque proving: The acknowledge signal for torque proving is missing. Check: - M1TorqProvTime (42.10) - the Adaptive Program, application program or overriding control providing the acknowledge signal TorqProvOK [AuxCtrIWord2 (7.03) bit 11]	$\begin{aligned} & 9.04, \\ & \text { bit } 7 \end{aligned}$	while M1TorqProvTi me (42.10) is active	3
F557	557 ReversalTime	Reversal time: Current direction not changed before ZeroCurTimeOut (97.19) is elapsed. Check: - for high inductive motor - too high motor voltage compared to mains voltage - lower RevDly (43.14) if possible and - increase ZeroCurTimeOut (97.19)	$\begin{aligned} & 9.04, \\ & \text { bit } 8 \end{aligned}$	RdyRef = 1	3
F601	601 APFault1	User defined fault by Adaptive Program	$\begin{aligned} & 9.04, \\ & \text { bit } 11 \end{aligned}$	always	1
F602	602 APFault2	User defined fault by Adaptive Program	$\begin{aligned} & \hline 9.04, \\ & \text { bit } 12 \end{aligned}$	always	1
F603	603 APFault3	User defined fault by Adaptive Program	$\begin{aligned} & \hline 9.04, \\ & \text { bit } 13 \end{aligned}$	always	1
F604	604 APFault4	User defined fault by Adaptive Program	$\begin{aligned} & 9.04, \\ & \text { bit } 14 \end{aligned}$	always	1
F605	605 APFault5	User defined fault by Adaptive Program	$\begin{aligned} & \hline 9.04, \\ & \text { bit } 15 \end{aligned}$	always	1
F610	610 UserFault1	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 0 \end{aligned}$	always	*
F611	611 UserFault2	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 1 \end{aligned}$	always	*
F612	612 UserFault3	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 2 \end{aligned}$	always	

$7-$ segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Faultword	Fault is active when	
F613	613 UserFault4	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 3 \end{aligned}$	always	*
F614	614 UserFault5	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 4 \end{aligned}$	always	*
F615	615 UserFault6	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 5 \end{aligned}$	always	*
F616	616 UserFault7	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 6 \end{aligned}$	always	*
F617	617 UserFault8	User defined fault by application program	$\begin{aligned} & \hline 9.05, \\ & \text { bit } 7 \end{aligned}$	always	*
F618	618 UserFault9	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 8 \end{aligned}$	always	*
F619	619 UserFault10	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 9 \end{aligned}$	always	*
F620	620 UserFault11	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 10 \end{aligned}$	always	*
F621	621 UserFault12	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 11 \end{aligned}$	always	*
F622	622 UserFault13	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 12 \end{aligned}$	always	*
F623	623 UserFault14	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 13 \end{aligned}$	always	*
F624	624 UserFault15	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 14 \end{aligned}$	always	*
F625	625 UserFault16	User defined fault by application program	$\begin{aligned} & 9.05, \\ & \text { bit } 15 \end{aligned}$	always	*

* Triplevel is set in the application program

SDCS-COM-8 messages

Details of the SDCS-COM-8 messages are available in SysFaultWord (9.10).

$7-$ segment display	Text on DriveWindow	Definition / Action	Faultword	Fault is active when	
-	OS_xx	Operating system message $x x$: An OS_xx message is an empty and thus not used message of the SDCS-COM-8 operating system. If an OS_xx message is indicated during normal operation the reason is usually caused by EMC. In this case please check for proper version of the SDCS-COM-8 (revision I and higher), grounding of cables, converter and cabinet.	-	-	

Alarm signals (A)

An alarm is a message, that a condition occurred, which may lead to a dangerous situation. It is displayed and written into the fault logger. However, the cause for the alarm can inhibit the drive from continuing with normal operation. If the cause of the alarm disappears the alarm will be automatically reset. The fault logger shows the appearing alarm (A1xx) with a plus sign and the disappearing alarm (A2xx) with a minus sign. An appearing user defined alarm is indicated as A3xx. A disappearing user defined alarm is indicated as A4xx.

The alarm handling must provides 4 alarm levels.

Alarm level 1:

- the drive keeps on running and the alarm is indicated
- after the drive is stopped, the main contactor cannot be switched on again (no re-start possible)

Alarm level 2:

- the drive keeps on running and the alarm is indicated
- fan contactor stays on as long as the alarm is pending
- if the alarm disappears FanDly (21.14) will start

Alarm level 3:

- AutoReclosing (auto re-start) is [AuxStatWord (8.02) bit 15] active
- RdyRun [MainStatWord (8.01) bit 1] is disabled, but the drive is automatically restarted when the alarm condition vanishes
- α is set to 150°
- single firing pulses

Alarm level 4:

- the drive keeps on running and the alarm is indicated

In case an alarm occurs, it stays active until the cause is eliminated. Then the alarm will automatically disappear, thus a Reset [UsedMCW (7.04) bit 7] is not needed and will have no effect.

Alarm name	Alarm number		Alarm name	Alarm number	
	appearing	disappearing		appearing	disappearing
AlRange	A127	A227	M2OverTemp	A109	A209
ApplDiff	A119	A219	MainsLowVolt	A111	A211
ArmCurDev	A114	A214	MechBrake	A122	A222
ArmCurRipple	A117	A217	MemCardFail	A143	A243
AutotuneFail	A121	A221	MemCardMiss	A142	A242
BrakeLongFalling	A116	A216	NoAPTaskTime	A136	A236
COM8Com	A113	A213	Off2FieldBus	A138	A238
COM8FwVer	A141	A241	Off2ViaDI	A101	A201
ConvOverTemp	A104	A204	Off3FieldBus	A139	A239
			Off3ViaDI	A102	A202
DC BreakAck	A103	A203	OverVoltProt	A120	A220
DynBrakeAck	A105	A205			
			P2PandMFCom	A112	A212
ExternalDI	A126	A226	ParAdded	A131	A231
			ParComp	A134	A234
FaultSuppres	A123	A223	ParConflict	A132	A232
FieldBusCom	A128	A228	ParRestored	A129	A229
FoundNewAppl	A118	A218	ParUpDwnLoad	A135	A235
IllgFieldBus	A140	A240	RetainInv	A133	A233
LocalCmdLoss	A130	A230	SpeedFb	A125	A225
			SpeedNotZero	A137	A237
M1OverLoad	A107	A207	SpeedScale	A124	A224
M1OverTemp	A106	A206			
M2OverLoad	A110	A210	TachoRange	A115	A215

Fault tracing

$7-$ segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	
A101	101 Off2ViaDI	Off2 (Emergency Off / Coast stop) pending via digital input - start inhibition: There is no problem with the drive itself! Check: Off2 (10.08), if necessary invert the signal (group 10)	$\begin{aligned} & \hline 9.06, \\ & \text { bit 0 } \end{aligned}$	RdyRun = 1	
A102	102 Off3ViaDI	Off3 (E-stop) pending via digital input: There is no problem with the drive itself! Check: - E Stop (10.09), if necessary invert the signal (group 10)	$\begin{aligned} & 9.06, \\ & \text { bit } 1 \end{aligned}$	RdyRun = 1	1
A103	103 DC BreakAck	Selected motor, DC-Breaker acknowledge missing: α is set to 150° and single firing pulses are given, thus the drive cannot be started or re-started while the DCbreaker acknowledge is missing. Check: DC BreakAck (10.23), if necessary invert the signal (group 10)	$\begin{aligned} & 9.06, \\ & \text { bit } 2 \end{aligned}$	RdyRun = 1	3
A104	104 ConvOverTemp	Converter overtemperature: Wait until the converter is cooled down. Shutdown temperature see MaxBridgeTemp (4.17). The converter overtemperature alarm will already appear at approximately $5^{\circ} \mathrm{C}$ below the shutdown temperature. Check: - ConvFanAck (10.20) - FanDly (21.14) - converter door open - converter fan supply voltage - converter fan direction of rotation - converter fan components - converter cooling air inlet (e.g. filter) - converter cooling air outlet - ambient temperature - inadmissible load cycle - connector X12 on SDCS-CON-4 - connector X12 and X22 on SDCS-PIN-4/51	$\begin{aligned} & \hline 9.06, \\ & \text { bit 3, } \end{aligned}$	always	2
A105	105 DynBrakeAck	Selected motor, dynamic braking is still pending: α is set to 150° and single firing pulses are given, thus the drive cannot be started or re-started while dynamic braking is active, except if FlyStart (21.10) = FlyStartDyn. Check: DynBrakeAck (10.22) FlyStart (21.10)	$\begin{aligned} & 9.06, \\ & \text { bit } 4 \end{aligned}$	RdyRun = 1	3

$7-$ segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	
A106	106 M1OverTemp	Motor 1 measured overtemperature: Check: - M1AlarmLimTemp (31.06) - motor temperature - motor fan supply voltage - motor fan direction of rotation - motor fan components - motor cooling air inlet (e.g. filter) - motor cooling air outlet - motor temperature sensors and cabling - ambient temperature - inadmissible load cycle - inputs for temperature sensors on SDCS-CON-4 and SDCS-IOB-3	$\begin{aligned} & 9.06, \\ & \text { bit } 5 \end{aligned}$	always	2
A107	107 M1OverLoad	Motor 1 calculated overload: Check: M1AlarmLimLoad (31.03)	$\begin{aligned} & 9.06, \\ & \text { bit } 6 \end{aligned}$	always	2
A109	109 M2OverTemp	Motor 2 measured overtemperature: Check: - M2AlarmLimTemp (49.36) - motor temperature - motor fan supply voltage - motor fan direction of rotation - motor fan components - motor cooling air inlet (e.g. filter) - motor cooling air outlet - motor temperature sensors and cabling - ambient temperature - inadmissible load cycle - inputs for temperature sensors on SDCS-CON-4 and SDCS-IOB-3	$\begin{aligned} & 9.06, \\ & \text { bit } 8 \end{aligned}$	always	2
A110	110 M2OverLoad	Motor 2 calculated overload: Check: - M2AlarmLimLoad (49.33)	$\begin{aligned} & 9.06, \\ & \text { bit } 9 \end{aligned}$	always	2
A111	111 MainsLowVolt	Mains low (under-) voltage (AC): α is set to 150°; single firing pulses Check: - PwrLossTrip (30.21), UNetMin1 (30.22), UNetMin2 (30.23), - If all 3 phases are present - if the mains voltage is within the set tolerance - if the main contactor closes and opens - if the mains voltage scaling is correct [NomMainsVolt (99.10)] - connector X12 and X13 on SDCS-CON-4 - connector X12 and X13 on SDCS-PIN-4/51 - cutting of resistors for voltage coding on SDCS-PIN-51	$\begin{aligned} & 9.06 \\ & \text { bit } 10 \end{aligned}$	RdyRun = 1	3

Fault tracing

	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	
A112	112 P2PandMFCom	Peer to peer and master-follower communication loss: Check: - ComLossCtrl (30.28), MailBox1 (94.12), MailBox2 (94.18), MailBox3 (94.24), MailBox4 (94.30), MailBoxCycle1 (94.13), MailBoxCycle2 (94.19), MailBoxCycle3 (94.25), MailBoxCycle4 (94.31) - DCSLink cable connections - DCSLink termination - DCSLink node ID settings [DCSLinkNodeID (94.01)]	$\begin{aligned} & 9.06, \\ & \text { bit } 11 \end{aligned}$	always	4
A113	113 COM8Com	SDCS-COM-8 communication loss (overriding control and master-follower): Check: - CommandSel (10.01), Ch0 ComLossCtrl (70.05), Ch0 TimeOut (70.04), Ch2 ComLossCtrl (70.15), Ch2 TimeOut (70.14), Ch0 DriveBus (71.01) - fiber optic cables to overriding control (channel 0) - overriding control adapters - fiber optic cables between master and followers (channel 2)	$\begin{aligned} & 9.06, \\ & \text { bit } 12 \end{aligned}$	always	4
A114	114 ArmCurDev	Armature Current Deviation: Is shown, if the current reference [CurRefUsed (3.12)] differs from current actual [MotCur (1.06)] for longer than 5 sec by more than 20% of nominal motor current. In other words if the current controller cannot match the given reference, the alarm signal is created. Normally the reason is a too small incoming voltage compared to the motor EMF. For non motoric applications it is possible to block the alarm using AuxCtrIWord2 (7.03) bit 6. Check: - DC fuses blown - ratio between mains voltage and armature voltage (either the mains voltage is too low or the motor's armature voltage is too high) - ArmAlphaMin (20.15) is set too high	$\begin{aligned} & 9.06, \\ & \text { bit } 13 \end{aligned}$	RdyRef = 1	4

Fault tracing

$7-$ segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	倍
A115	115 TachoRange	Selected motor, tacho range: If A115 TachoRange comes up for longer than 10 seconds there is an overflow of the AITacho input. Check: for the right connections (X3:1 to X3:4) on the SDCS-CON-4 If A115 TachoRange comes up for 10 seconds and vanishes again M1OvrSpeed (30.16) or M2OvrSpeed (49.21) has been changed. In this case a new tacho fine tuning has to be done [ServiceMode (99.06) = TachFineTune].	$\begin{array}{\|l\|} \hline 9.06, \\ \text { bit } 14 \end{array}$	always	${ }^{4}$
A116	116 BrakeLongFalling	Selected motor, mechanical brake: The acknowledge signal for brake closed (applied) is missing. Check: - M1BrakeAckSel (42.02), BrakeFaultFunc (42.06), M1BrakeLongTime (42.12) - brake - brake cabling - used digital inputs and outputs (group 14)	$\begin{aligned} & 9.06, \\ & \text { bit } 15 \end{aligned}$	always	4
A117	117 ArmCurRipple	Armature current ripple: One or several thyristors may carry no current. Check: - CurRippleSel (30.18), CurRippleLim (30.19) - for too high gain of current controller [M1KpArmCur (43.06)] - current feedback with oscilloscope (6 pulses within one cycle visible?) - branch fuses - thyristor gate-cathode resistance - thyristor gate connection - current transformers (T51, T52)	$\begin{aligned} & 9.07, \\ & \text { bit 0, } \end{aligned}$	RdyRef = 1	4
A118	118 FoundNewAppl	Found new application on Memory Card: Activate application on Memory Card by means of ParApp/Save (16.06) = EableAppI	$\begin{aligned} & 9.07, \\ & \text { bit } 1 \end{aligned}$	directly after energizing of auxiliary supply	1
A119	119 ApplDiff	Application on drive and Memory Card are different: Activate application on Memory Card by means of ParAppISave (16.06) = EableAppI	$\begin{aligned} & 9.07, \\ & \text { bit } 2 \end{aligned}$	directly after energizing of auxiliary supply	1
A120	120 OverVoltProt	Overvoltage protection active: Overvoltage protection DCF806 is active and converter is blocked. α is set to 150°; single firing pulses Check: - OvrVoltProt (10.13) if necessary invert the signal (group 10) - field converter cables and connections	$\begin{aligned} & 9.07, \\ & \text { bit } 3 \end{aligned}$	always	3

Fault tracing

7- segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	
A121	121 AutotuneFail	Autotuning failed: For more details check Diagnosis (9.11) To clear the alarm set ServiceMode (99.06) = NormalMode	$\begin{aligned} & 9.07, \\ & \text { bit } 4 \end{aligned}$	always	4
A122	122 MechBrake	Selected motor, mechanical brake: Acknowledge brake applied (closed) is missing or torque actual does not reach StrtTorqRef (42.08), during torque proving. Check: - BrakeFaultFunc (42.06), M1StrtTorqRefSel (42.07), M2StrtTorqRefSel (49.44) - brake - brake cabling - used digital inputs and outputs (group 14)	$\begin{aligned} & 9.07, \\ & \text { bit } 5 \end{aligned}$	always	4
A123	123 FaultSuppres	Fault suppressed: At least one fault message is currently active and suppressed.	$\begin{aligned} & 9.07, \\ & \text { bit } 6 \end{aligned}$	always	4
A124	124 SpeedScale	Speed scaling out of range: The parameters causing the alarm can be identified in Diagnosis (9.11). α is set to 150°; single firing pulses Check: - M1SpeedMin (20.01), M1SpeedMax (20.02), M2BaseSpeed (49.03), M2SpeedMin (49.19), M2SpeedMax (49.20), M2SpeedScale (49.22), M1SpeedScale (50.01), M1BaseSpeed (99.04)	$\begin{aligned} & 9.07, \\ & \text { bit } 7 \end{aligned}$	always	3
A125	125 SpeedFb	Selected motor, speed feedback: The comparison of the speed feedback from pulse encoder or analog tacho has failed. Check: - M1SpeedFbSel (50.03), SpeedFbFItMode (30.36), SpeedFbFltSel (30.17), EMF FbMonLev (30.15), SpeedFbMonLev (30.14) - pulse encoder: encoder itself, alignment, cabling, coupling, power supply (feedback might be too low), mechanical disturbances, jumper S4 on SDCS-CON-4 - analog tacho: tacho itself, tacho polarity and voltage, alignment, cabling, coupling, mechanical disturbances, jumper S1 on SDCS-CON-4 - EMF: connection converter - armature circuit closed - SDCS-CON-4, SDCS-IOB-3, SDCS-POW-4	$\begin{aligned} & 9.07, \\ & \text { bit } 8 \end{aligned}$	always	4

segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	
A126	126 ExternalDI	External alarm via binary input: There is no problem with the drive itself! Check: - ExtAlarmSel (30.32), alarm $=0$, ExtAlarmOnSel (30.34)	$\begin{aligned} & 9.07, \\ & \text { bit } 9 \end{aligned}$	always	4
A127	127 AIRange	Analog input range: Undershoot of one of the analog input values under $4 \mathrm{~mA} / 2 \mathrm{~V}$. Check: - Al Mon4mA (30.29) - used analog inputs connections and cables - polarity of connection	$\begin{aligned} & 9.07 \\ & \text { bit } 10 \end{aligned}$	always	4
A128	128 FieldBusCom	Fieldbus communication loss: F528 FieldBusCom is only activated after the first data set from the overriding control is received by the drive. Before the first data set is received only A128 FieldBusCom is active. The reason is to suppress unnecessary faults (the start up of the overriding control is usually slower than the one of the drive). Check: - ComLossCtrl (30.28), FB TimeOut (30.35), CommModule (98.02) - parameter settings of group 51 (fieldbus) - fieldbus cable - fieldbus termination - fieldbus adapter	$\begin{aligned} & 9.07, \\ & \text { bit } 11 \end{aligned}$	always if $F B$ TimeOut $(30.35) \neq 0$	4
A129	129 ParRestored	Parameter restored: The parameters found in the flash were invalid at power-up (checksum fault). All parameters were restored from the parameter backup.	$\begin{array}{\|l\|} \hline 9.07, \\ \text { bit } 12 \end{array}$	always	4
A130	$\begin{aligned} & 130 \\ & \text { LocalCmdLoss } \end{aligned}$	Local command loss: Connection fault with DCS800 Control Panel, DriveWindow or DriveWindow Light. Check: - LocalLossCtrl (30.27) - if control DCS800 Control Panel is disconnected - connection adapter - cables	$\begin{aligned} & 9.07, \\ & \text { bit } 13 \end{aligned}$	local	4
A131	131 ParAdded	Parameter added: A new firmware with a different amount of parameters was downloaded. The new parameters are set to their default values. The parameters causing the alarm can be identified in Diagnosis (9.11). Check: - new parameters and set them to the desired values	$\begin{aligned} & 9.07 \\ & \text { bit } 14 \end{aligned}$	after download of firmware for max. 10 s	4

Fault tracing

$7-$ segment display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	
A132	132 ParConflict	Parameter setting conflict: Is triggered by parameter settings conflicting with other parameters. The parameters causing the alarm can be identified in Diagnosis (9.11).	$\begin{aligned} & 9.07, \\ & \text { bit } 15 \end{aligned}$	always	4
A133	133 RetainInv	Retain data invalid: Set when the retain data in the flash are invalid during power-up. In this case the backup data are used. Note: The backup of the lost retain data reflects the status at the previous power-up. Examples for retain data are: - fault logger data, - Data1 (19.01) to Data4 (19.04), - I/O options (see group 98) and - parameters defined by means of DCS800 ControlBuilder (CoDeSys) with the box RETAIN ticked The situation of invalid retain data occurs, if the auxiliary voltage of the DCS800 is switched off about 2 seconds after power-up (while the retain data sector is being rearranged). Check: - if the flash of the SDCS-CON-4 is defective and - if the auxiliary power supply has a problem	$\begin{aligned} & 9.08, \\ & \text { bit } 0 \end{aligned}$	directly after energizing of electronics for max. 10 s	4
A134	134 ParComp	Parameter compatibility: When downloading parameter sets or during power-up the firmware attempts to write the parameters. If the setting is not possible or not compatible the parameter is set to default. The parameters causing the alarm can be identified in Diagnosis (9.11). Check: - parameter setting	$\begin{aligned} & 9.08, \\ & \text { bit } 1 \end{aligned}$	after download of a parameter set for max. 10 s	4
A135	$\begin{aligned} & 135 \\ & \text { ParUpDwnLoad } \end{aligned}$	Parameter up- or download failed: The checksum verification failed during up- or download of parameters. Please try again. Two or more parameter set actions were requested at the same time. Please try again.	$\begin{aligned} & 9.08, \\ & \text { bit } 2 \end{aligned}$	after up- or download of parameters for max. 10 s	4
A136	$\begin{array}{\|l\|} \hline 136 \\ \text { NoAPTaskTime } \end{array}$	Adaptive Program task time not set: The task time for the Adaptive Program is not set, while the Adaptive Program is started. Check: - that TimeLevSel (83.04) is set to $\mathbf{5 ~ m s}, \mathbf{2 0} \mathbf{~ m s}$, 100 ms or 500 ms when AdapProgCmd (83.01) is set to Start, SingleCycle or SingleStep	$\begin{aligned} & 9.08, \\ & \text { bit } 3 \end{aligned}$	always	4

Fault tracing

	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	
A137	$\begin{aligned} & 137 \\ & \text { SpeedNotZero } \end{aligned}$	Speed not zero: Re-start of drive is not possible. Speed zero [see M1ZeroSpeedLim (20.03) or M2ZeroSpeedLim (49.04)] has not been reached. In case of an alarm set On = Run = 0 and check if the actual speed is within the zero speed limit. This alarm is valid for: - normal stop, Off1N [UsedMCW (7.04) bit 0] in case FlyStart (21.10) = StartFrom0, - Coast Stop, Off2N [UsedMCW (7.04) bit 1], - E-stop, Off3N [UsedMCW (7.04) bit 2] and - if the drive is de-energized and then reenergized. Check: - M1ZeroSpeedLim (20.03) - FlyStart (21.10) - M1SpeedFbSel (50.03) - M2SpeedFbSel (49.24) - M2ZeroSpeedLim (49.04) - for proper function of the used speed feedback devices (analog tacho / encoder)	$\begin{aligned} & 9.08, \\ & \text { bit } 4 \end{aligned}$	Not active if RdyRef = 1	1
A138	138 Off2FieldBus	Off2 (Emergency Off / Coast Stop) pending via MainCtrlWord (7.01)/ fieldbus - start inhibition: There is no problem with the drive itself! Check: - MainCtrlWord (7.01) bit1 Off2N	$\begin{aligned} & 9.08, \\ & \text { bit 5 } \end{aligned}$	RdyRun = 1	1
A139	139 Off3FieldBus	Off3 (E-stop) pending via MainCtrIWord (7.01)/ fieldbus: There is no problem with the drive itself! Check: - MainCtrIWord (7.01) bit2 Off3N	$\begin{aligned} & 9.08, \\ & \text { bit } 6 \end{aligned}$	RdyRun = 1	1
A140	140 IllgFieldBus	Illegal fieldbus settings: The fieldbus parameters in group 51 (fieldbus) are not set according to the fieldbus adapter or the device has not been selected. Check: - group 51 (fieldbus) - configuration of fieldbus adapter	$\begin{aligned} & 9.08, \\ & \text { bit } 7 \end{aligned}$	always	4
A141	141 COM8FwVer	SDCS-COM-8 firmware version conflict: Invalid combination of SDCS-CON-4 firmware and SDCS-COM-8 firmware. Check: - for valid combination of SDCS-CON-4 [FirmwareVer (4.01)] and SDCS-COM-8 [Com8SwVersion (4.11)] firmware version according to the release notes	$\begin{aligned} & 9.08, \\ & \text { bit } 8 \end{aligned}$	always	4

Fault tracing

	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	
A142	142 MemCardMiss	Memory Card missing: There is an application loaded in the drive. The Memory Card belonging to the application is not found. Check: - if the Memory Card is properly plugged into the SDCS-CON-4 (X20) - de-energize the electronics, insert the proper Memory Card and reenergize - ParApplSave (16.06) - in case there is no Memory Card used set ParApplSave (16.06) = DisableAppl	$\begin{aligned} & 9.08, \\ & \text { bit } 9 \end{aligned}$	directly after energizing of electronics	1
A143	143 MemCardFail	Memory Card failure: Checksum failure or wrong Memory Card Check: - Memory Card - if proper ABB Memory Card is used - ParAppISave (16.06)	$\begin{aligned} & 9.08, \\ & \text { bit } 10 \end{aligned}$	directly after energizing of electronics	1
A2xx	2xx <alarm name>	Disappearing system alarm		-	
A301	301 APAlarm1	User defined alarm by Adaptive Program	$\begin{aligned} & 9.08, \\ & \text { bit } 11 \end{aligned}$	always	4
A302	302 APAlarm2	User defined alarm by Adaptive Program	$\begin{aligned} & 9.08, \\ & \text { bit } 12 \end{aligned}$	always	4
A303	303 APAlarm3	User defined alarm by Adaptive Program	$\begin{aligned} & 9.08, \\ & \text { bit } 13 \end{aligned}$	always	4
A304	304 APAlarm4	User defined alarm by Adaptive Program	$\begin{aligned} & 9.08, \\ & \text { bit } 14 \end{aligned}$	always	4
A305	305 APAlarm5	User defined alarm by Adaptive Program	$\begin{aligned} & 9.08, \\ & \text { bit } 15 \end{aligned}$	always	4
A310	310 UserAlarm1	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 0 \end{aligned}$	always	*
A311	311 UserAlarm1	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 1 \end{aligned}$	always	*
A312	312 UserAlarm2	User defined fault by application program	$\begin{array}{\|l} \hline 9.09, \\ \text { bit } 2 \end{array}$	always	*
A313	313 UserAlarm3	User defined fault by application program	$\begin{array}{\|l\|} \hline 9.09, \\ \text { bit } 3 \\ \hline \end{array}$	always	*
A314	314 UserAlarm4	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 4 \end{aligned}$	always	*
A315	315 UserAlarm5	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 5 \end{aligned}$	always	*
A316	316 UserAlarm6	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 6 \end{aligned}$	always	*
A317	317 UserAlarm7	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 7 \end{aligned}$	always	*
A318	318 UserAlarm8	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 8 \end{aligned}$	always	*
A319	319 UserAlarm9	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 9 \end{aligned}$	always	*
A320	320 UserAlarm10	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 10 \end{aligned}$	always	*

7- segmen display	Text on DCS800 Control Panel, DriveWindow and DriveWindow Light	Definition / Action	Alarmword	Alarm is active when	
A321	321 UserAlarm11	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 11 \end{aligned}$	always	*
A322	322 UserAlarm12	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 12 \end{aligned}$	always	*
A323	323 UserAlarm13	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 13 \end{aligned}$	always	*
A324	324 UserAlarm14	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 14 \end{aligned}$	always	*
A325	325 UserAlarm16	User defined fault by application program	$\begin{aligned} & 9.09, \\ & \text { bit } 15 \\ & \hline \end{aligned}$	always	*
A4xx	4xx UserAlarmxx	Disappearing user alarm	-	-	-

[^0]Notices
A notice is a message to inform the user about a specific occurrence which happened to the drive.

Text on DCS800 Control Panel	Definition / Action
718 PowerUp	Energize electronics: The auxiliary voltage for the drives electronics is switched on
719 FaultReset	Reset: Reset of all faults which can be acknowledged
801 APNotice 1	User defined notice by Adaptive Program
802 APNotice2	User defined notice by Adaptive Program
803 APNotice3	User defined notice by Adaptive Program
804 APNotice4	User defined notice by Adaptive Program
805 APNotice5	User defined notice by Adaptive Program
AccessDenied	Access to Memory Card: Access to Memory Card is denied, due to another access
ParNoCyc	Cyclic parameters: A non cyclical parameter is written to (e.g. the overriding control writes cyclical on a non cyclical parameter). The parameters causing the notice can be identified in Diagnosis (9.11).
PrgInvMode	Adaptive Program not in Edit mode: Push or Delete action while the Adaptive Program is not in Edit mode Check: - EditCmd (83.02) - AdapProgCmd (83.01)
PrgFault	Adaptive Program faulty: Adaptive Program faulty Check:
PrgProtected	Adaptive Program protected: Adaptive Program is protected by password and cannot be edited Check: PassCode (83.05)
PrgPassword	Adaptive Program wrong password: Wrong password is used to unlock the Adaptive Program Check: - PassCode (83.05)
FB found	R-type fieldbus adapter found: R-type fieldbus adapter found
Modbus found	R-type Modbus adapter found: R-type Modbus adapter found
COM8 found	SDCS-COM-8 found: Communication board SDCS-COM-8 found
AIO found	Analog extension module found: Analog extension module connected to SDCS-CON-4 or SDCS-COM-8 found
DIO found	Digital extension module found: Digital extension module connected to SDCS-CON-4 or SDCS-COM-8 found
Enc found	Encoder module found: Encoder module (RTAC-01 or RTAC-03) connected to SDCS-CON-4 or SDCS-COM-8 found
Resolv found	Resolver module found: Resolver module (RRIA-01) connected to SDCS-CON-4 or SDCS-COM-8 found

Text on DCS800 Control Panel	Definition / Action
DSL found	SDCS-DSL-4 found: DCSLink board found
Drive not responding	Drive not responding: The communication between drive and DCS800 Control Panel was not established or was interrupted. Check: - Change the DCS800 Control Panel - Change the cable / connector which is used to connect the DCS800 Control Panel to the SDCS-CON-4 - Change the SDCS-CON-4 - Change the SDCS-PIN-4

Appendix A: Firmware structure diagrams

ABB Drive profile control									
7.02)	(7.03) 7.01			(7.04			6.03)	8.01 8.02	
AuxCtriWord (ACW1)	AuxCtriword2 (ACW2)	Mainctiword (MCW)		UsedmCW (umcw)		Drive Logic	Curctristay	Mainstatword (MsW)	AuxStatWord (ASW)
Bit0 RestartDataLog Bit1 TrigDataLog Bit2 RampBypass Bit3 BalRampOut Bit4 LimSpeedRef4 Bit5 DynBrakingOn Bit6 HoldSpeedCtrl Bit7 WindowCtrl Bit8 BalSpeedCtrl Bit9 SyncCommand Bit10 SyncDisable Bit11 ResetSyncRdy Bit12 aux. control Bit13 aux. control Bit14 aux. control Bit15 aux. control	Bit0 reserved Bit1 reserved Bit2 reserved Bit3 reserved Bit4 DisableBridge1 Bit5 DisableBridge2 Bit6 SupprArmCurDev Bit7 ForceAlphaMax Bit8 DriveDirection Bit9 reserved Bit10 DirectSpeedRef Bit11 TorqProvOK Bit12 ForceBrake Bit13 ResetTorqMem Bit14 reserved Bit15 ResetPIDCtr\|	Bito On (Off1N) Bit1 Off2N (Coast Stop) Bit2 Offi3N (E-Stop) Bit3 Run Bit4 RampOutZero Bit5 RampHold Bit6 RampInZero Bit7 Reset Bit8 Inching1		Bito On (Oft1N) Bit1 Off2N (Coast Stop) Bit2 Off3N (E-Stop) Bit3 Run Bit4 RampOutZero Bit5 RampHold Bit6 RampInZero Bit7 Reset Bit8 Inching1	(1.04-	Fauts Alarms MotSpeed Off1Mode StopMode E StopMode FlyStart FanDly MainContCtrIMode FldHeatSel		Bito RdyOn Bit1 RdyRun Bit2 RdyRef Bit3 Tripped Bit4 Off2NStatus Bit5 Off3NStatus Bit6 OnInhibited Bit7 Alarm Bit8 AtSetpoint Bit9 Remote Bit10 AboveLimit Bit11 reserved Bit12 reserved Bit13 reserved Bit14 reserved Bit15 reserved	Bit0 DataLogReady Bit1 OutofWindow Bit2 E-StopCoast Bit3 User1 Bit4 User2 Bit5 SyncRdy Bit6 Fex1Act Bit7 Fex2Ack Bit8 BrakeCmd Bit9 Limiting Bit10 TorqCtrl Bit11 ZeroSpeed Bit12 EMFSpeed Bit13 FaultOrAlarm Bit14 DiveDirectionNeg Bit15 Auto Reclosing
		Bit9 Inching2 Bit10 RemoteCmd Bit11...Bit15 aux. control	0	Bit9 Inching2 Bit10 Remote Cmd					tructure_diagram_rev_

ARMATURE CURRENT CONTROL

ARMATURE CURRENT CONTROL

ADDITIONAL FUNCTIONS

Appendix B: SDCS-CON-4 Terminal Allocation

SDCS-CON-4 Connector allocation

DCS800 module
Terminal allocation

DCS800 Accessories

SDCS-CON-4: Terminal allocation

X3 Tacho and Al	X4 Al and AO	X5 Encoder	X6 DI	X7 DO

12345678910123456789101234456789101234567891012345678

 O
0
0
ω
ω
ω
ω

Appendix C: Index of signals and parameters

Index of signals and parameters (alphabetic order)

12P Mode 347
12P RevTimeOut 348, 459
12P SlaNode 107, 393, 459
12P TimeOut 107, 393, 459
$2^{\text {nd }}$ LastFault 241
3 LastFault 242
AccCompDerTime 296
AccCompFiltTime 296
AccTime1 286
AccTime2 288
AdapPrgStat 377
AdapProgCmd 157, 375, 473, 477
AdjIDC 402
AdjUDC 405
AhCounter 194
AI Mon4mA 312, 433, 462, 472
Al1 Val 209
Al1HighVal 89, 265
Al1LowVal 89, 265
Al2 Val 209
Al2HighVal 265
Al2LowVal 266
AI3 Val 209
Al3HighVal 266
AI3LowVal 266
Al4 Val 209
Al4HighVal 267
Al4LowVal 267
Al5 Val 209
Al5HighVal 267
AI5LowVal 267
Al6 Val 209
Al6HighVal 89, 268
AI6LowVal 89, 269
AIO ExtModule 87, 91, 411, 452
AIO MotTempMeas 87, 91, 413, 452
AlTacho Val 209
AlarmWord1 99, 104, 233, 445
Alarmword2 139, 141
AlarmWord2 234, 445
AlarmWord3 235, 445
AnybusModType 385
AO1 Val 209
AO2 Val 209
ApplicName 201
ApplicVer 204
ApplLoad 207
ApplMacro 30, 417, 427
ApplRestore 30, 416
ArmAlpha 199
ArmAlphaMax 280
ArmAlphaMin 280, 469
ArmAlphaSI 199
ArmCurActSI 193
ArmCurAll 193
ArmCurLimSpeed1 331
ArmCurLimSpeed2 331
ArmCurLimSpeed3 331
ArmCurLimSpeed4 332
ArmCurLimSpeed5 332
ArmCurRiseMax 306, 444, 460
ArmOvrCurLev 30, 228, 306, 429, 450
ArmOvrVoltLev 64, 66, 228, 305, 435 450
ArmVoltAct 48, 192
ArmVoltActRel 192
AuxCtrlWord 75, 119, 122, 218
AuxCtrlWord2 219, 469
AuxSpeedRef 293
AuxStatWord. 76, 119, 122, 223
BalRampRef 287
BalRef 296
Baud rate 147
Baudrate 119, 122
BaudRate $95,99,104,107,139,141,368$,
393
Block10Out 383
Block11Out 383
Block12Out 383
Block13Out 383
Block14Out 383
Block15Out 383
Block16Out 383
Block1Attrib 379
Block1ln1 378
Block1In2 379
Block1In3 379
Block1Out 382
Block1Output 379
Block1Type 378
Block2Out 382
Block3Out 382
Block4Out 382
Block5Out 382
Block6Out 382
Block7Out 382
Block8Out 382
Block9Out 382
BrakeEStopMode 326
BrakeFaultFunc 325, 462, 470, 471
BreakPoint 377
BridgeTemp 193, 429
Ch0 BaudRate 109, 370
Ch0 ComLossCtrl 75, 109, 371, 46, 469
Ch0 DriveBus 461, 469
Ch0 DriveBus 109, 375
Ch0 DsetBaseAddr 374
CH0 DsetBaseAddr 109
Ch0 HW Config 109
CHO HW Config 371
Ch0 LinkControl 109, 370
Ch0 NodeAddr 109, 370
Ch0 TimeOut 109, 371, 461, 469
Ch1 LinkControl 372
Ch2 ComLossCtrl 75, 115, 373, 469
Ch2 FolSig1 113, 373
Ch2 FolSig2 113, 373
Ch2 FolSig3 113, 374
Ch2 LinkControl 372
Ch2 MaFoMode 112, 372
Ch2 MasSig1 112, 372
Ch2 MasSig2 112, 372
Ch2 MasSig3 112, 372
Ch2 NodeAddr 372
Ch2 TimeOut 115, 373, 461, 469
Ch3 HW Config 116, 374
Ch3 LinkControl 374
Ch3 NodeAddr 30, 116, 374
Com8SwVersion 52, 118, 203, 474
ComLossCtrl. 75, 99, 104, 312, 431, 458, 461,469, 472Comm rate133, 144
CommandSel.. 53, 64, 66, 100, 109, 113, 119,$122,125,127,129,131,133,139,144,147$,244, 422, 458, 461, 469
CommModule ... 109, 119, 125, 129, 133, 139,141, 144, 147, 408, 452, 458, 472CompUkPLL402
Constant1 380
Constant10 381
Constant2. 380
Constant3. 380
Constant4 380
Constant5 380
Constant6 380
Constant7 380
Constant8 381
Constant9 381
ConstSpeed1 264
ConstSpeed2 264
ConstSpeed3 264
ConstSpeed4 264
ConvCurAct. 63, 192
ConvCurActRel 192, 441
ConvFanAck 82, 254, 432, 457, 467
ConvModeAl1 89, 265
ConvModeAl2 266
ConvModeAl3 266
ConvModeAI4 267
ConvModeAI5 268
ConvModeAI6 89, 269
ConvModeAO1 93, 271
ConvModeAO2 272
ConvModeAO3 272
ConvModeAO4 93, 273
ConvNomCur 28, 91, 201
ConvNomVolt 28, 201
ConvOvrCur 204, 429
ConvTempDly 228, 401, 429, 453
ConvType 28, 204
CPU Load 207
CtrlMode 193
CtrlModeSel 328
CtrIStatMas 213
CtrlStatSla 214
CtrlWordAO1 92, 271
CtrlWordAO2. 271
CtrlWordAO3 272
CtrlWordAO4 92, 273
CurActPeak. 200
CurCtrllntegOut 200
CurCtrlStat1 63, 66, 74, 75, 211, 433
CurCtrlStat2 60, 212
CurRef. 199
CurRefExt 66, 327
CurRefSlope 327
CurRefUsed 37, 199, 433, 469
CurRipple 191, 441
CurRippleFilt 191, 441
CurRippleLim 309, 441, 455, 470
CurRippleSel 309, 441, 455, 470
CurSel 37, 64, 66, 89, 327
Data1 277, 473
Data10 277
Data11 277
Data12 277
Data2 277
Data3 277
Data4 277, 473
Data5 277
Data6 277
Data7 277
Data8 277
Data9 277
DataLogStatus 198
DC BreakAck 82, 255, 467
DC VoltSerAll 194
DCSLinkNodel 64, 95, 99, 104, 107, 393,
452, 455, 456, 459, 461, 469
DCSLinkStat1 97, 205
DCSLinkStat2 97, 206
DecMonDly 284
DecTime1 286
DecTime2 288
DerivFiltTime 296
DerivTime 296
DeviceName 116, 417
DevLimPLL 64, 66, 402
DHCP 133, 144
DI StatWord 82, 225
DI1OInvert 256
DI11Invert 82, 256
DI1Invert 82, 255
DI2Invert 255
DI3Invert 255
DI4Invert 255
DI5Invert 255
DI6Invert 255
DI7Invert 255
DI8Invert 256
DI9Invert 256
Diagnosis 31, 237, 452, 461, 473
DiffCurDly 348, 459
DiffCurLim 347, 459
DIO ExtModule1 81, 84, 409, 452
DIO ExtModule2 81, 84, 410, 452
Direction 82, 244
DirectSpeedRef 293
DispParam1Sel 317, 422
DispParam2Sel 318, 422
DispParam3Sel 318, 422
DO CtrlWord 85, 221
DO StatWord 85, 226
DO1BitNo 269
DO1Index 85, 269
DO2BitNo 269
DO2Index 269
DO3BitNo 270
DO3Index 270
DO4BitNo 270
DO4Index 270
DO5BitNo 270
DO5Index 270
DO6BitNo 270
DO6Index 270
DO7BitNo 270
DO7Index 270
DO8BitNo 270
DO8Index 85, 270
DP Mode 147
DriveLibVer 204
DriveStat 55, 226
DroopRate 294
DsetXplus10Val1 387
DsetXplus10Val2 387
DsetXplus10Val3 387
DsetXplus11Val1 389
DsetXplus11Val2 389
DsetXplus11Val3 389
DsetXplus12Val1 387
DsetXplus12Val2 387
DsetXplus12Val3 387
DsetXplus13Val1 390
DsetXplus13Val2 390
DsetXplus13Val3 390
DsetXplus14Val1 387
DsetXplus14Val2 387
DsetXplus14Val3 387
DsetXplus15Val1 390
DsetXplus15Val2 390
DsetXplus15Val3 390
DsetXplus1Val1 122, 125, 129, 133, 139, 141
144, 147, 388
DsetXplus1Val144, 147, 388
DsetXplus1Val3 122, 139, 141, 150, 388
DsetXplus2Val1 122, 386
DsetXplus2Val2 386
DsetXplus2Val3 386
DsetXplus3Val1 122, 388
DsetXplus3Val2 388
DsetXplus3Val3 388
DsetXplus4Val1 386
DsetXplus4Val2 386
DsetXplus4Val3 386
DsetXplus5Val1 389
DsetXplus5Val2 389
DsetXplus5Val3 389
DsetXplus6Val1 386
DsetXplus6Val2 386
DsetXplus6Val3 139, 141, 386
DsetXplus7Val1 389
DsetXplus7Val2 389
DsetXplus7Val3 139, 141, 389
DsetXplus8Val1 386
DsetXplus8Val2 386
DsetXplus8Val3 386
DsetXplus9Val1 389
DsetXplus9Val2 389
DsetXplus9Val3 389
DsetXVal1 122, 125, 129, 133, 139, 141, 144,
147, 385
DsetXVal2 122, 125, 129, 133, 139, 141, 144,147, 385DsetXVal3122, 139, 141, 150, 385
dv_dt 195
DynBrakeAck 75, 82, 255, 467
DynBrakeDly 76, 365
E Stop 82, 102, 248, 467
E StopDecMax 284
E StopDecMin 284
E StopMode 75, 283
E StopRamp 286
EditBlock 376
EditCmd 376, 477
EMF ActFiltTime 405
EMF CtrINegLim 45, 48, 334
EMF CtrIPosLim 45, 48, 334
EMF FbMonLev $306,442,456,463,471$
EMF RefSel 338
EMF VoltActRel 37, 45
Enc2MeasMode 366
Enc2PulseNo 367
Encoder2Module 407, 452
Ext IO Stat 207
Ext IO Status 452
ExtAlarmOnSel 314, 472
ExtAlarmSel 82, 314, 472
ExtFaultOnSel 314, 457
ExtFaultSel 82, 313, 432, 457
FanDly 55, 284, 447, 457, 467
FaultedPar 377, 477
FaultStopMode 75, 313, 429, 447
FaultWord1 228, 445
FaultWord2 229, 445
FaultWord3 99, 104, 230, 445
FaultWord4 231, 445
FB TimeOut 314, 458, 472
FBA PAR REFRESH 119, 122, 125, 127, 129,131, 133, 144, 147, 368FbMonLev456, 463, 471
FexTimeOut 64, 95, 107, 393, 455, 456
Fieldbus1 367
Fieldbus15 368
Fieldbus16 368
Fieldbus36 368
FilterAl1 265
FilterAl2 266
FilterAl3 266
FilterAI4 267
FilterAO1 271
FilterAO2 272
FilterAO3 272
FilterAO4 273
FiringLimMode 329
FirmwareType 52, 201
FirmwareVer 474
FixedSpeed1 289
FixedSpeed2 289
FldBoostFact 336
FldBoostSel. 82, 335
FldBoostTime 336
FldCtrIMode $31,33,45,48,58,64,333$
FldCurFlux40 33, 47, 334
FIdCurFlux70 33, 47, 334
FldCurFlux90 33, 47, 334
FldCurRefM1 34, 60, 200
FldCurRefM2 200
FldCurTrim 345
FldHeatSel 60, 286
FldMinTripDly 60, 64, 345, 444, 460, 461
FldRefGain 59, 343
FldRefHyst 59, 342
FldRevHyst 60, 342
FldWeakDyn 335
FluxCorr 48, 338
FluxRefEMF 200
FluxRefFldWeak 200
FluxRefSum 200
FluxRevMonDly 60, 342
FlyStart $75,284,467,474$
ForceFldDir 59, 341
GearStartTorq 303
GearTorqRamp 303
GearTorqTime 303
GW address 1 133, 144
GW address 2 133, 144
GW address 3 133, 144
GW address 4 133, 144
HandAuto 82, 247
HW FiltUDC 405
HW/SW option 125, 127, 129, 131
I IP address 4 133, 144
lactScaling 91, 208
IndexAO1 92, 93, 271
IndexAO2 271
IndexAO3 272
IndexAO4 92, 93, 272
Input 1 133, 144
Input 2 133, 144
Input 3 133, 144
Input 4 133, 144
Input I/O par 9 125, 127, 129, 131
Input instance 125, 127, 129, 131
IO BoardConfig 81, 84, 87, 91, 414, 452
IP address 1 133, 144
IP address 2 133, 144
IP address 3 133, 144
Jog1 82, 253
Jog2 82, 254
JogAccTime 289
JogDecTime 289
KpEMF 33, 45, 334
KpPID 319
KpPLL 402
KpS 32, 43, 295
KpS2 297
KpSMin 295
KpSTiSMaxSpeed 297
KpSTiSMinSpeed 297
KpSValMinSpeed 297
KpSWeakp 295
KpSWeakpFiltTime 295
Language 30, 415, 420
LastFault 241
LimWord 224
LoadComp 300
LoadShare 299
LocalLossCtrl 75, 311, 431, 462, 472
LocationCounter 377
LocLock 274
M1AlarmLimLoad $315,439,452,468$
M1AlarmLimTemp 316, 435, 451, 468
M1ArmL 31, 37, 328
M1ArmR 31, 37, 328
M1BaseSpeed 30, 42, 415, 425, 471
M1BrakeAckSel 82, 324, 462, 470
M1BrakeCtrl 323
M1BrakeFItTime 324, 462
M1BrakeLiftDly 326
M1BrakeLongTime 326, 462, 470
M1BrakeRefDly 324
M1BrakeStopDly 326
M1CurLimBrdg1 31, 280
M1CurLimBrdg2 31, 280
M1DiscontCurLim 31, 37, 64, 66, 328
M1EncMeasMode 32, 78, 361
M1EncPulseNo 32, 361
M1FaultLimLoad 315, 439, 452
M1FaultLimTemp 316, 435, 451
M1FexAlarmWord 242
M1FexFaultWord 242
M1FexNode 64, 95, 107, 393, 455
M1FIdHeatRef 60, 334M1FIdMinTrip......33, 34, 48, 60, 64, 306, 444,460
M1FldOvrCurLev 306, 441, 454
M1FIdRefExt 34, 341
M1FldRefMode 34, 341
M1FreewhiLev 340
M1KlixonSel 82, 317, 438, 451
M1KpArmCu 37
M1KpArmCur 31, 65, 328, 455, 470
M1KpFex 31, 34, 333
M1ModelTime 315, 439
M1NomCur 30, 64, 66, 91, 415, 429
M1NomFldCur 30, 64, 418, 441, 444
M1NomVolt 30, 64, 66, 415, 435
M1OperModeFex4 97, 346
M1OvrSpeed $30,42,307,443,459,470$
M1PosLimCtr 31, 59, 340
M1SpeedFbSel ...32, 42, 48, 76, 78, 102, 361,425, 444, 456, 463, 471, 474M1SpeedMax 30, 42, 109, 119, 122, 125, 127,129, 131, 133, 139, 141, 144, 147, 279, 471M1SpeedMin. 30, 42, 109, 119, 122, 125, 127,129, 131, 133, 139, 141, 144, 147, 278, 471M1SpeedScale .109, 119, 122, 125, 127, 129,131, 133, 139, 141, 144, 147, 360, 471M1StrtTorqRefSel89, 325, 471
M1TachMaxSpeed 42, 384
M1TachoAdjust 32, 365
M1TachoGain 384
M1TachoTune 384
M1TachoVolt1000 32, 42, 366
M1TachTune 42
M1TempSel 89, 92, 316, 435
M1TiArmCur 31, 37, 65, 328
M1TiFex 31, 34, 333
M1TorqProvTime 326, 463
M1UsedFexType31, 37, 64, 95, 418, 455, 456
M1ZeroSpeedDly 324
M1ZeroSpeedLim 279, 474
M2AlarmLimLoad 356, 453, 468
M2AlarmLimTemp 357, 452, 468
M2ArmL 352
M2ArmR 352
M2BaseSpeed 349, 471
M2BrakeAckSel 355
M2BrakeCtrl 355
M2BrakeFItTime 358
M2BrakeLiftDly 358
M2BrakeLongTime 358
M2BrakeRefDly 356
M2BrakeStopDly 358
M2CurLimBrdg1 351
M2CurLimBrdg2 351
M2DiscontCurLim 351
M2EncMeasMode 353
M2EncPulseNo 354
M2FaultLimLoad 356, 453
M2FaultLimTemp 357, 452
M2FexAlarmWord 243
M2FexFaultWord 243
M2FexNode 394, 456
M2FIdHeatRef 349
M2FIdMinTrip 350, 461
M2FIdOvrCurLev 350, 455
M2FIdRefExt 344
M2FIdRefMode 344
M2FreewhiLev 344
M2KlixonSel 82, 358, 452
M2KpArmCur 351
M2KpFex 350
M2ModelTime 356
M2NomCur 349
M2NomFIdCur 349
M2NomVolt 348
M2OperModeFex4 346
M2OvrSpeed 353, 470
M2PosLimCtrl 59, 345
M2SpeedFbSel 354, 474
M2SpeedMax 352, 471
M2SpeedMin 352, 471
M2SpeedScale 353, 471
M2StrtTorqRefSel 89, 359, 471
M2TachMaxSpeed 384
M2TachoAdjust 354
M2TachoGain 385
M2TachoTune 384
M2TachoVolt1000 354
M2TempSel 89, 92, 357
M2TiArmCur 351
M2TiFex 351
M2TorqProvTime 358
M2UsedFexType 350, 456
M2ZeroSpeedDly 356
M2ZeroSpeedLim 349, 474
MacroChangeMode 274
MacroSel 30, 227
MailBox1 99, 104, 395, 461, 469
MailBox2 104, 395, 461, 469
MailBox3 396, 461, 469
MailBox4 397, 461, 469
MailBoxCycle1 99, 104, 395, 461, 469
MailBoxCycle2 396, 461, 469
MailBoxCycle3 397, 461, 469
MailBoxCycle4 398, 461, 469
MainContAck. 69, 82, 254, 432, 457
MainContCtrlMode 54, 77, 285
MainCtrlWord. $53,100,122,125,129,133$
139, 141, 144, 147, 216MainsCompTime402
MainsFreqAct 194
MainStatWord $53,117,122,125,129,133$,
139, 141, 144, 147, 222MainsVoltAct191
MainsVoltActRel 191
MaxBridgeTemp 28, 204, 429, 451 467
MaxCurLimSpeed 331
MaxEncoderTime 362
Measurement 405
MG ConfigWord 339
Modbus timeout 133, 144
ModBusModule2 139, 141, 412
Module baud rate 125, 127, 129, 131
Module macid 125, 127, 129, 131
ModuleType $119,122,125,127,129,131$
133, 144, 147Mot1FexStatus214, 432, 456
Mot1FexSwVer 203
Mot1FexSwVersion 52
Mot1FexType 97, 202
Mot1FldCur 193
Mot1FldCurRef 34
Mot1FIdCurRel 48, 60, 193
Mot1TempCalc 192, 439
Mot1TempMeas 192, 435
Mot2FexStatus 215, 456
Mot2FexSwVer 203
Mot2FexSwVersion 52
Mot2FexType 203
Mot2FIdCur 193
Mot2FIdCurRel 193
Mot2TempCalc 192
Mot2TempMeas 193
MotCur. 190, 469
MotFanAck 64, 66, 82, 246, 432, 457
MotNomTorque 443
MotPotDown 82, 262
MotPotMin 82, 263
MotPotUp 82, 261
MotSel 227
MotSpeed 43, 48, 102, 122, 125, 129, 133
139, 141, 144, 147, 190, 459
MotSpeedFilt 190
MotTorq 186, 191
MotTorqFilt 149, 191
MotTorqNom 208
MultiFexCount 346
MultiFexOff1 346
MultiFexOff2 346
Node address 147
Node ID 119, 122
Nom
468
Off1Mode 55, 75, 282
Off2 82, 247, 467
OffsetIDC 403
OffsetUDC 405
OnOff1 54, 82, 251
OperModeSel 64, 66, 327
Output 1 133, 144
Output 2 133, 144
Output 3 133, 144
Output 4 133, 144
Output I/O par 1 125, 127, 129, 131
Output instance 125, 127, 129, 131
OvrVoltProt 64, 66, 82, 250, 470
Par2Select 82, 298
ParApplSave 274, 470, 475
ParChange 82, 249
Parity 139, 141, 369
ParLock 273
PassCode 376, 477
PDO21 Cfg 119, 122
PID Act1 319
PID Act2 319
PID Mux 320
PID Out 199
PID OutDest 321
PID OutMax 320
PID OutMin 320
PID Ref1 320
PID Ref1Max 319
PID Ref1Min 319
PID Ref2 320
PID Ref2Max 319
PID Ref2Min 319
PID Reserved 321
PID ResetBitNo 321
PID ResetIndex. 321
PLL In 199
PLLIn 454
PoleDampRFE 297
PoleFreqRFE 297
PosCount2High 198
PosCount2InitHi 367
PosCount2InitLo 367
PosCount2Low 198
PosCountHigh 78, 199
PosCountInitHi 78, 365
PosCountInitLo 78, 364
PosCountLow 78, 198
PosCountMode 78, 363
PosSyncMode. 78, 366
Pot1 419
Pot2 419
PowrDownTime 310, 430, 453
PPO-type 147
ProcSpeed 194
ProgressSignal 208
PropFbSel 329
Protocol 133, 144
PwrConfig 332
PwrLossTrip 468
PwrSupplyRefExt 332
PZD10 IN 148
PZD10 OUT 148
PZD3 IN 148
PZD3 OUT 148
QuadrantType 28, 204
Ramp2Select 82, 288
RampTimeScale 286
ReactCur 199
Ref1Mux 82, 257
Ref1Sel89, 109, 119, 122, 125, 127, 129, 131,133, 139, 144, 147, 258Ref2Mux82, 260
Ref2Sel 89, 259
ResCurDetectDel 228, 305, 435, 451
ResCurDetectLim 228, 305, 435, 451
ResCurDetectSel... 82, 89, 228, 305, 435, 451
Reset 82, 245
ResetAhCounter 82, 405
RevDly $59,60,64,66,330,433,463$
RevMode 59, 60, 330
RevVoltMargin 337, 433
RFE CtrlWord 221
RFE StatWord 227
RX-PDO21-1stObj 119, 122
RX-PDO21-1stSubj 119, 122
RX-PDO21-2ndSubj 119, 122
RX-PDO21-2ndtObj 119, 122
RX-PDO21-3rdObj 119, 122
RX-PDO21-3rdSubj 119, 122
RX-PDO21-4thObj 119, 122
RX-PDO21-4thSubj 119, 122
RX-PDO21-Enable 119, 122
RX-PDO21-TxType 119, 122
S BlockBrdg2 28
S BlockBridge2 401
S ConvScaleCur 28, 401, 450, 457
S ConvScaleVolt 28, 401, 457
S M1FldScale 345
S M2FIdScale 346
S MaxBrdgTemp 401, 429
S MaxBrdgTemp 28
S MaxBridgeTemp 451
ScaleAO1 93, 271
ScaleAO2 272
ScaleAO3 272
ScaleAO4 93, 273
SelBridge 213
ServiceM470, 471SetSystemTime275
ShapeTime 287
SpeedActEMF 190
SpeedActEnc 190, 442
SpeedActEnc2 194, 442
SpeedActTach 32, 42, 190, 442
SpeedCorr 43, 290
SpeedErrFilt 32, 43, 290
SpeedErrFilt2 32, 43, 292
SpeedErrNeg 194
SpeedErrorScale. 297
SpeedFbFltMode .75, 314, 429, 447, 456, 471
SpeedFbFItSel 308, 442, 456, 471
SpeedFbMonLev. 306, 442
SpeedFiltTime 32, 43, 362
SpeedLev 365
SpeedRampOut 197
SpeedRef.. 100, 108, 122, 125, 129, 133, 139, 141, 144, 147, 189, 289
SpeedRef2 194
SpeedRef3 194
SpeedRef4 32, 43,
SpeedRefExt1 197
SpeedRefExt2 197
SpeedRefScale 293
SpeedRefUsed. 100, 186, 195
SpeedScaleAct . 108, 109, 119, 122, 125, 127,$129,131,133,139,141,144,147,186,189$,197, 450, 459SpeedShare.290
SpeedStep 292
SqrWaveIndex 419
SqrWavePeriod 419
SquareWave 198
StallSpeed. 304, 443, 458
StallTime 304, 443, 458
StallTorq 305, 443, 458
StartStop 54, 82, 252
StationNumber 139, 141, 368
Stop function .125, 127, 129, 131, 133, 144
StopMode 55, 75, 283
String1 173, 381
String2 173, 381
String3 173, 381
String4 173, 381
String5 173, 381
StrtTorqRef 325, 471
Subnet mask 1 133, 144
Subnet mask 2 133, 144
Subnet mask 3 133, 144
Subnet mask 4 133, 144
SyncCommand 78, 82, 245
SyncCommand2 246
SysFaultWord 236, 464
SysPassCode 273
SystemTime 210
TachoTerminal 42, 208
TdFiltPID 319
TdPID 319
Appendix C: Index of signals and parameters
TestFire 50, 51, 406
TestSignal 419
TfPLL 402
TiEMF 33, 45, 334
TimeLevSel 376, 473
TiPID 319
TiS 32, 43, 295
TiS2 297
TiSInitValue 295
TiSValMinSpeed 297
ToolLinkConfig 275
TorqAccCompRef 195
TorqActFiltTime 404
TorqCorr 195
TorqCorrect 89, 304
TorqDerRef 194
TorqGenMax 281
TorqIntegRef 194
TorqLimAct 196
TorqMax 31, 279
TorqMaxAll 195
TorqMaxSPC 108, 189, 279
TorqMaxTref 280
TorqMin 31, 279
TorqMinAll 196
TorqMinSPC 280
TorqMinTref 280
TorqMux 82, 115, 302
TorqMuxMode 115, 301
TorqPropRef. 194
TorqRampDown 55, 299
TorqRampUp 299
TorqRef1 195
TorqRef2 119, 122, 139, 141, 195
TorqRef3 100, 113, 195
TorqRef4 195
TorqRefA .. 100, 113, 115, 119, 122, 139, 141, 149, 299TorqRefA FTC55, 299
TorqRefA Sel. 89
TorqRefB 299
TorqRefExt 89, 196
TorqRefUsed 58, 93, 195
TorqScale 304
TorqSel 100, 115, 300
TorqSelMod 102, 300
TorqUsedMax 196
TorqUsedMaxSel 89, 281
TorqUsedMin 196
TorqUsedMinSel. 89, 281
TransparentIProfil 119, 122
TrmtRecVal1.1 100, 105, 395
TrmtRecVal1. 2 100, 105, 395
TrmtRecVal1.3 100, 105, 395
TrmtRecVal1.4 100, 105, 395
TrmtRecVal2.1 105, 396
TrmtRecVal2. 2 105, 396
TrmtRecVal2.3 105, 396
TrmtRecVal2.4 105, 396
TrmtRecVal3.1 397
TrmtRecVal3.2 397
TrmtRecVal3.3 397
TrmtRecVal3.4 397
TrmtRecVal4.1 398
TrmtRecVal4.2 398
TrmtRecVal4.3 398
TrmtRecVal4.4 398
TX-PDO21-1stObj 119, 122
TX-PDO21-1stSubj 119, 122
TX-PDO21-2ndSubj 119, 122
TX-PDO21-2ndtObj 119, 122
TX-PDO21-3rdObj 119, 122
TX-PDO21-3rdSubj 119, 122
TX-PDO21-4thObj 119, 122
TX-PDO21-4thSubj 119, 122
TX-PDO21-Enable 119, 122
TX-PDO21-EvTime 119, 122
TX-PDO21-TxType 119, 122
TypeCode28, 399, 427, 429, 450, 451, 457
Uk 329
UNetMin1 309, 430, 453, 468
UNetMin2 310, 430, 453, 468
UsedMCW 53, 75, 100, 220
UserAlarmWord 236, 445
UserFaultWord 232, 445
USI Sel. 188, 275
VarSlopeRate 287
VoltActRel 192
VoltCorr 45, 338
VoltRef1 200
VoltRef2 45, 200
VoltRefExt 338
VoltRefSlope 338
VSA I/O size 125, 127, 129, 131
WinCtrlMode 292
WinderScale 366
WinIntegOn 291
WinWidthNeg 292
WinWidthPos 291
ZeroCurDetect 82, 403
ZeroCurTimeOut 404, 433, 463
ZeroDampRFE 297ZeroFreqRFE297

DCS800 family

DCS800-E series

Pre-assembled drive-kits

20	\ldots	$2,000 \mathrm{~A}_{\mathrm{DC}}$
0	\ldots	$700 \mathrm{~V}_{\mathrm{DC}}$
230	\ldots	$600 \mathrm{~V}_{\mathrm{AC}}$
IPOO		

- DCS800 module with all necessary accessories mounted and fully cabled on a panel
- Very fast installation and commissioning
- Squeezes shut-down-times in revamp projects to a minimum
- Fits into Rittal cabinets
- Compact version up to 450 A and Vario version up to $2,000 \mathrm{~A}$

DCS800-R Rebuild Kit

- Proven long life components are re-used, such Digital control-kit for existing as power stacks, (main) contactors, cabinets and powerstacks cabling / busbars, cooling systems
- Use of up-to-date communication facilities

20 ... $20,000 \mathrm{~A}_{\mathrm{DC}}$ Increase of production and quality
$0 \quad \ldots \quad 1,160 \mathrm{~V}_{\mathrm{DC}}$
$230 \ldots \quad 1,200 \mathrm{~V}_{\mathrm{AC}}$
IPOO

- Very cost-effective solution
- Open Rebuild Kits for nearly all existing DC drives
- tailor-made solutions for...
- BBC PxD
BBC SZxD
- ASEA TYRAK
other manufacturers

ABB Automation Products
Wallstadter-Straße 59
68526 Ladenburg • Germany
Tel: $\quad+49$ (0) 6203-71-0
Fax: $\quad+49$ (0) 6203-71-76 09
www.abb.com/motors\&drives

[^0]: * Alarmlevel is set in the application program

