Tech Note 107
Building SQL Access WhereExpressions and Calling Stored Procedures From InTouch

All Tech Notes and KBCD documents and software are provided "as is" without warranty of any kind. See the Terms of Use for more information.
Topic#: 000706
Created: May 1998
Selecting analog and string values from a database requires special formatting in the Wonderware® SQL Access commands. This special formatting is done by using the SQL function’s WhereExpression parameter. (For fairly long WhereExpression values, we recommend that you store the value in a Memory Message tag so that it will be easier for you to read and troubleshoot the parameter value.) Once you build the WhereExpression value, you can display the value in an InTouch™ application window to evaluate it if an error occurs.

This Tech Note will show some examples of building a SQLSelect() command using the WhereExpression parameter, both with and without storing the WhereExpression value in a Memory Message tag. Then, later in this Tech Note, we will show how to select using the SQLSetStatement() and SQLAppendStatement() commands.

Our examples are based on using the following InTouch tags:

	Tagname
	Tag Type

	WhereExpr
	Memory Message tag

	OrderByExpr
	Memory Message tag

	Speed_Input
	Memory Real tag (user input analog)

	Serial_Input
	Memory Message tag (user input string)


Analog Example

Here is an example of selecting an analog value in the WhereExpression and storing it in a Memory Message tag:

WhereExpr = "Speed = " + text(Speed_Input, "#.##");

Since Speed_Input is an real value, it must be converted to text so that it can be concatenated to the WhereExpression value.

String Example

Here is an example of selecting a string value in the WhereExpression and storing it in a Memory Message tag:

WhereExpr = "Ser_No = ‘" + Serial_Input + "’";

Since Serial_Input is a string value, it must be surrounded by single quotes (‘).

Example:

WhereExpr = "Ser_No=’125gh’";

String Example Using the Like Operator

Here is the same example as the previous one, except it involves the use of the Like operator:

WhereExpr = "Ser_No like ‘" + "125%’"

Notice that the example uses the percent (%) character, which acts as a wild card.

String and Analog Example Using the And Operator

Here is an example of selecting a string and analog values in the WhereExpression by using the And operator and storing it in a Memory Message tag:

WhereExpr = "Ser_No = ‘" + Serial_Input + "’" + " AND " + "Speed = " + text(Speed_Input, "#.##");

Data and Time Example Using Microsoft Access

Here is an example of selecting the time and date values in the WhereExpression, where the values are to be selected from a Microsoft Access database:

WhereExpr = "Date_Time = # " + Date_time_string + "#"

Note that when you query the date field in an Access database, use the pound sign (#) instead of the single quotes (‘). If you use single quotes, a data type mismatch error will occur.

Calling the WhereExpression in the SQLSelect() Command

Once you’ve stored the WhereExpression value in a Memory Message tag, here’s how to access to stored WhereExpression in your SQLSelect() command. Assuming that the WhereExpression is stored under the WhereExpr tagname, you would enter the following script commands:

ResultCode = SQLSelect(Connect_Id, TableName, BindList, WhereExpr, OrderByExpr);
Error_msg = SQLErrorMsg(ResultCode);

Here is another example in which the WhereExpr tagname is built into the SQLSelect() function:

ResultCode = SQLSelect(Connect_Id, TableName, BindList, "Ser_No = ‘" + Serial_Input + "’", OrderByExpr);
Error_msg = SQLErrorMsg(ResultCode);

Note Always call the SQLEnd() function when the SQLSelect() function completes execution. If the SQLEnd() function is not called, then SQL Access will not release the memory resources and the InTouch application will eventually run out of memory!

Using the SQLSetStatement() Function

Use the SQLSetStatement() function for complex SQL queries and for string expressions that are longer than 131 characters. (If your string expression will be longer than 131 characters, then use the SQLAppend() function in your query.)

Example 1

Here is an example of a SQLSetStatement() and SQLAppendStatement commands, along with the resulting SQLExecute() command:

SQLSetStatement(Connect_Id, "Select Batch, Speed, Temp, Ser_No from tablename ");
SQLAppendStatement(Connect_Id," Where Ser_No =’" + Serial_Input + "’");
SQLExecute(Connect_Id, 0);

Notice that SQLHandle is set to zero in the SQLExecute() command so that it does not have to call SQLPrepareStatement(Connect_Id, SQLHandle) before the SQLExecute() command. But because SQLHandle was not defined by a SQLPrepareStatement() command, to end the execution of these SQL commands, use the SQLEnd() function instead of the SQLClearStatement() function.

Example 2

Here is an example where the SQLHandle parameter is defined by a SQLPrepareStatement() command and is used in the subsequent SQLExecute() command.

SQLSetStatement(Connect_Id, "Select Speed, Ser_No from tablename where Ser_No =’" + Serial_Input + "’");
SQLPrepareStatement(Connect_Id, SQLHandle);
SQLExecute(Connect_Id, SQLHandle);

Unlike the first example, to end the execution of these SQL commands in this example, use the SQLClearStatement() function to free up the memory resources and to clear the SQLHandle value.

Supporting Stored Procedures

The SQLExecute() function supports the execution of some stored procedures. For example, suppose you created a stored procedure on a database server named "LotInfoProc," which contains this Select statement:

Select LotNo, LotName from LotInfo

You would then write the following InTouch script to execute the procedure and obtain the results.

For Microsoft SQL Server

ResultCode = SQLSetStatement(ConnectionId, "EXEC LotInfoProc");
ResultCode = SQLExecute(ConnectionId, "BindList", 0);
ResultCode = SQLNext(ConnectionId);

For Oracle or Microsoft Access

ResultCode = SQLSetStatement(ConnectionId, "{CALL LotInfoProc}");
ResultCode = SQLExecute(ConnectionId, "BindList", 0);
ResultCode = SQLNext(ConnectionId);

R. Liddell
The Tech Note is published occasionally by Wonderware Technical Support. Publisher: Invensys Systems, Inc., 26561 Rancho Parkway South, Lake Forest, CA 92630.  There is also technical information on our software products at www.wonderware.com/support/mmi
[image: image1.png]


For technical support questions, send an e-mail to support@wonderware.com. 


back to top

[image: image3.png]


©2003 Invensys Systems, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, broadcasting, or by any information storage and retrieval system, without permission in writing from Invensys Systems, Inc. 
