
Tech Note 568
How Wonderware Application Server Manages DLLs and aaSLIB Imports

All Tech Notes, Tech Alerts and KBCD documents and software are provided "as is" without warranty of any kind. See the Terms of Use for more information.

Topic#: 002320
Created: January 2009

Introduction

Wonderware Application Server provides you the ability to leverage the .NET development language for custom and
advanced functionality made available through the ArchestrA Integrated Development Environment (IDE).

Custom Script Function Libraries are integrated with Wonderware Application Server by

● Importing multiple, independent DLLs, or;

● Importing multiple DLLs that have dependencies into the Galaxy.

Wonderware Application Server accommodates importing of multiple DLLs and DLLs with dependencies through the use
of aaSLIB files. aaSLIB files make managing multiple DLLs and their dependencies easier by eliminating the need to
track multiple DLLs.

Working Definitions

This Tech Note uses terms that may be familiar but which can be used in different ways. The following definitions are
applied in the context of this document:

● A Custom DLL (Shared Library) is simply compiled code that can be accessed from scripting or from a .NET control. A DLL
is a module that contains functions and data that can be used by another module (application or DLL).

It can also be described as a collection of small programs, any of which can be called when needed by a larger program
that is running in the computer. The small program that lets the larger program communicate with a specific device such as
a printer or scanner is often packaged as a DLL program (usually referred to as a DLL file). DLL files that support
specific device operation are known as device drivers.

Source Citation

In this context, the custom DLLs provide added functionality for use by Wonderware Application Server.

Note: The Custom DLL is not to be confused with a .NET Client Control. The import and management of .NET Client
Controls is different, and will be addressed in a future Tech Note.

Application Versions

● Wonderware Application Server 3.0 and later.

Summary Workflow

file:///C|/Inetpub/wwwroot/t002318/T000792.htm
http://searchwinit.techtarget.com/sDefinition/0,,sid1_gci213902,00.html#

The following steps outline best practice for ensuring all script function libraries are correctly managed in the Galaxy.

1. Document all the DLLs used in the Galaxy in a table format.

2. For each DLL, identify if it is either a top-level DLL or a dependent DLL or both in different scenarios as the
case may be.

Note: If the dependencies between DLLs is not explicitly known, the .NET Reflector tool can be used to discover them.
This free tool can be downloaded from Red Gate software.

3. For each top-level DLL, identify the dependent DLLs that are needed for the top-level DLL to function
correctly. These top-level DLLs with dependencies will determine the number of aaSLIB files that will need to
be created.

4. Create aaSLIB files for each top-level DLL. Make sure you correctly reference the dependent DLLs that
were noted during the aaSLIB creation process described in Tech Note 566 Ensuring Accurate
and Consistent Deployment of Custom Script Function Libraries.

Only the top-level DLL defined in the aaSLIB package will have all of its exposed methods available from
the Script Function Browser during script development.

Note: For details about creating and referencing dependent DLLs, see Tech Note 518 - Managing Custom Script
Function Libraries for Use in Application Server or alternatively refer to the section in this document called Working
with aaSLIB Files.

5. Import one-by-one each stand-alone DLL and each aaSLIB file into the Galaxy using the Import/
Script Function Library main menu commands in the IDE.

6. Once all the needed stand-alone DLLs or aaSLIB files have been imported, ensure to validate all objects
that contain script references to the imported script function libraries. This step allows verification that
script references to the imported script function libraries resolve correctly.

Note: If you are having trouble getting an object to validate correctly immediately after importing a script function library,
try rebooting the GR Node.

7. Deploy the objects that contain the script references to the imported script function libraries.

8. Test & debug the scripts to ensure expected behavior.

How Application Server Manages DLLs and aaSLIB Imports

When you import a script function library into a Galaxy, Wonderware Application Server completes the following operations
to track it at various stages of working with the imported DLLs.

● Database Writes: Writes to the Galaxy Repository (GR) database.

● File Copy: Creates reference files on the GR Node. When deploying objects with scripts with references to imported
script function libraries to remote platform servers, Application Server copies the DLLs to the remote platform from the

http://www.red-gate.com/products/reflector/
file:///C|/Inetpub/wwwroot/t002318/t002318.htm
file:///C|/Inetpub/wwwroot/t002318/t002318.htm
file:///C|/Inetpub/wwwroot/t002318/t002252.htm
file:///C|/Inetpub/wwwroot/t002318/t002252.htm

GR Node.

● Load into Memory: When setting objects with scripts with references to imported script function libraries on-scan on
remote Platform servers, Application Server will load the required DLLs into memory.

Let's take a look at each operation in more detail.

Database Writes

Reference Tech Tip 0810: Removing Custom .NET Libraries from Industrial Application server 3.0. This
reference courtesy of Wonderware Northeast.

File Copy

When you import a script function library, Wonderware Application Server creates two files, regardless of whether you
import a single DLL, or multiple DLLs packaged together via a aaSLIB file.

When you import a single DLL called <Name>.dll:

● Application Server creates a set of reference files in the following location:

<drive>:\Program Files\ArchestrA\Framework\FileRepository\<GalaxyName>\AddOns\ QScript2Lib

● Application Server creates an aaSLIB file with the same name, such as <Name>.aaSLIB

● Application Server creates an XML file with the same name, such as <Name>.xml

● Application Server copies the DLL to the following directory on the GR. This makes the DLL available for copy to
deployed platforms in the galaxy (with script references to the DLL):

<drive>:\Program Files\ArchestrA\Framework\FileRepository\<GalaxyName>\Vendors\ArchestrA

When you import an aaSLIB package called <Name>.aaSLIB:

● Application Server creates a set of reference files in the following location:

<drive>:\Program Files\ArchestrA\Framework\FileRepository\<GalaxyName>\AddOns\QScript2Lib

● Application Server creates an aaSLIB file of the same name, such as <Name>.aaSLIB

● Application Server creates an XML file of the same name, such as <Name>.xml

● Application Server copies the extracted contents of the aaSLIB file (containing all the DLLs) to the following directory on
the GR to be made available for copy to deployed platforms in the galaxy (with script references to the top level dll in
the aaslib file).

<drive>:\Program Files\ArchestrA\Framework\FileRepository\<GalaxyName>\Vendors\ArchestrA

http://www.wonderwarene.com/support/tips/TechTip0810_RemovingCustomdlls.pdf

Figure 1: Files Delivered to QScript2Lib

What is the difference between the two cases?

The key difference lies in the formation of the XML file that Application Server auto-generates when importing the stand-
alone DLL or the aaSLIB package.

The XML file contains the structure that identifies any dependent DLLs. If dependent DLLs are listed, their relationship to
the top level DLLs is defined there.

Here is an example XML file of a single imported DLL called My.Custom.dll.

In this example, this DLL has dependencies, but they are not shown, since we only import the single DLL.
Wonderware Application Server sees it as the only top-level, and only DLL. This means that when you export this DLL,
its dependencies will not be included, and the DLL will not function correctly on the target platform.

Figure 2: My.Custom.xml File Content

Here is an example XML file of an aaSLIB imported package of the same name, which has dependencies. The
dependencies are shown here since we are importing an aaSLIB file, in which these dependencies have been identified.

Figure 3: My.Custom.dll with Dependent DLLs

How the aaSLIB File Works

To better and further understand how the aaSLIB file works, we can open it. aaSLIB is a custom extension, but the file is
a compressed Microsoft Cabinet (cab) file.

1. Make a copy of the aaSLIB file and rename the aaSLIB file extension to .cab.

2. Use any cabinet compression program to open and extract the contents (such as WinRar).

Once extracted we should see the following generalized structure:

• A "__wwCabinetFileList.xml" file.
• One or more files with a *.tmp file extension.

Figure 4 (below) shows a copy of My.Custom.aaSLIB file renamed to .cab and then extracted using WinRar.

http://www.rarlab.com/

Figure 4: aaSLIB File Contents

Figure 5 (below) shows the contents of the extracted cab file for the My.Custom.aaSLIB file (without any dependencies).

Figure 5: Cab File Contents

Figure 6 (below) shows the contents of the __wwCabinetFileList.xml file.

Figure 6: Contents of the XML File

Figure 7 (below) shows the the contents of the extracted cab file for My.Custom.aaSLIB file (with dependencies).

Figure 7: Cab File Contents with Dependencies

Figure 8 (below) shows the contents of the __wwCabinetFileList.xml file.

Figure 8: XML File with Dependencies

Loading Script Function Libraries into Memory

Application Server loads into memory the required Script Function Libraries when the object's hosting engine is on-scan.

This means that even if a modified version of the custom DLL were to be imported into the Galaxy, and even if the
objects that reference the script function library were undeployed and redeployed, the existing DLL already loaded
into memory and associated to the aaEngine.exe process is still the one referenced by object scripts.

You must unload the existing DLL from memory in order to ensure the most recent version of the DLL is being used.

Do this by Shutting Down the engine. Use the SMC Platform Manager and then set the engine On-scan again.

Undeploying and redeploying the entire hosting Platform achieves the same effect.

References

● Tech Note 566 Ensuring Accurate and Consistent Deployment of Custom Script Function Libraries

● Tech Note 569 Using Merge Modules

● FAQ 38 Importing Custom DLLs

S. Kermani

Tech Notes are published occasionally by Wonderware Technical Support. Publisher: Invensys Systems, Inc., 26561 Rancho Parkway South, Lake Forest,
CA 92630. There is also technical information on our software products at Wonderware Technical Support.

For technical support questions, send an e-mail to support@wonderware.com.

 Back to top

©2009 Invensys Systems, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying, recording, broadcasting, or by anyinformation storage and retrieval system, without
permission in writing from Invensys Systems, Inc. Terms of Use.

file:///C|/Inetpub/wwwroot/t002318/t002318.htm
file:///C|/Inetpub/wwwroot/t002318/t002321.htm
file:///C|/Inetpub/wwwroot/t002318/t002322.htm
https://wdn.wonderware.com/sites/WDN/Pages/Tech_Support/TechSupport.aspx
mailto:support@wonderware.com
file:///C|/Inetpub/wwwroot/t002318/T000792.htm

