Tips for Troubleshooting AppEngine Redundancy-Related Issues

Tech Note 816
Tips for Troubleshooting AppEngine Redundancy-Related Issues

All Tech Notes, Tech Alerts and KBCD documents and software are provided "as is" without warranty of any kind. See the Terms of Use for more information.

Topic#: 002606
Created: January 2012

Introduction

AppEngine Redundancy is designed to provide high availability of an Engine and its hosted application objects in Runtime, against either a single engine failure or any type of system failure. When failure occurs, high
availability is only possible if the runtime redundancy pair (Active and Standby) are in a prepared/ready state, and the failover process completes successfully.

This Tech Note provides some tips for troubleshooting AppEngine failover-related issues.

Application Versions

« Application Server 3.1 and later.

AppEngine Automatically Fails Over on Reboot of One of the Redundant Pair

Issue

One of the redundant pair Platform/computers is shut down for some reason. All redundant AppEngines fail over and run as Active on its partner platform/computer.
After rebooting the shutdown Platform/computer, all redundant AppEngines on that platform should start up and run as Standby if there is no failover command from either scripts or from an operator's manual entry.
However, sometimes a redundant AppEngine on the newly-rebooted Platform/computer starts up, goes to run as Active, and relegates its partner AppEngine (which is already running as Active) to Standby, even when

there is no failover command.

Resolution

The Maximum time to discover partner AppEngine Redundancy configuration setting (Figure 1 below) or the PartnerConnectTimeout setting for the AppEngine's Redundancy Primitive (Figure 2 below) are configuration
settings used to determine how long to wait before the AppEngine attempts to connect to the failover partner before setting the failover partner state to Unknown. The default setting is 15,000 ms. When this setting is too
short, the Automatic Failover on Reboot issue is likely to occur.

To resolve this issue, increase this setting. The following explains the relationship between this setting and the issue.

Cause

After the Bootstrap (service) initiates a start of an AppEngine with redundancy enabled, before deciding its own redundancy role (Active or Standby) to assume, the AppEngine's Redundancy Primitive immediately starts to
contact its partner Platform and its partner AppEngine through both primary and RMC network channels to get its partner' current status. At the same time, a timer is started to count down with an interval value set
according to "Maximum time to discover partner” (aka "PartnerConnectTimeout" in runtime attribute).

Within this time period

« If the Redundancy Primitive of the AppEngine receives a response (through either channel) from its partner Platform and AppEngine, it calculates to derive its partner AppEngine status, and begins to adjust its own
role as either Active or Standby based on the derived partner's current status.

¢ If the Redundancy Primitive fails to receive any response from its partner platform or AppEngine within this time period, the AppEngine assigns its partner AppEngine status as Unknown and elevates its own role to
Active.

The length of time to take from start of an AppEngine to receiving a response from its partner AppEngine can vary, and depends on many different factors. One of the most important factors is the load of the AppEngine
itself and load of its hosting platform (too many other AppEngines on the same platform). The higher the load, the longer it takes to establish communication between the AppEngine and its partner platform.

Therefore, it is completely possible that even when its partner platform and AppEngine are up and running, the AppEngine's Redundancy Primitive fails to receive a response from its partner AppEngine within the time period
set by the timer. When this happens, the redundancy pair status ends up in the condition Active-Active. After an extended time period, when the pair eventually reaches each other, one of pair has to relegate itself from
Active role to Standby. By design, in this situation the Primary AppEngine will remain as Active, the Backup AppEngine must back down and switch to Standby.

Because of many runtime factors, your appropriate setting for this redundancy parameter should be decided by trial-and-error in a testing environment. *

*Note: If Maximum time to discover partner (PartnerConnectTimeout in the runtime attribute) is modified, ensure that WatchdogStartupTimeout and WatchdogShutdownTimeout are adjusted accordingly.

WatchdogStartupTimeout and WatchdogShutdownTimeout should be greater than the PartnerConnectTimeout setting. In this context it is recommended that WatchdogStartupTimeout and
WatchdogShutdownTimeout values should be more than double the PartnerConnectTimeout value.

file:///Cl/inetpub/wwwroot/t002606/t002606.htm[1/16/2012 8:03:48 AM]

file:///C|/inetpub/wwwroot/t002606/T000792.htm

Tips for Troubleshooting AppEngine Redundancy-Related Issues
%! AppEngine_001 *
General Redundancy |Rjw Interrupts | Alarms | Scheduler History | Engine History | Object Information | Scri

[V Enable redundancy

Forced Failover timeout: 90000 ms [

Maxcimum checkpoint deltas buffered: ||:| {]
Maximurm alarm state changes buffered: ||:l)

Standby engine heartbeat period: 1000 ms Y

Active engine heartbeat period: 1000 ms ¥ J

Maximumn consecutive heartbeats missed from Active engine: |5)
Maximum consecutive heartbeats missed From Standby engine: |5 Y)

Maximum time ko maintain good quality after Failure: 15000 ms Y J
Maximum time to discover partner: |m s)
Force failover command: ;

[V Restart engine process when transitioning from Active to Standby

FiGURe 1: ""MAXIMUM TIME TO DISCOVER PARTNER'' IN APPENGINE'S REDUNDANCY ConFiGuraTION (WAS 3.1)

Redundancy.ForceFailoverCmd false C0:Good Ok Operate Writea... UnlLocked Boolean 103
Redundancy.Identity Primary C0:Good Ok ReadOnly Writea... UnlLocked CustomEnum 110
Redundancy.PartnerConnectTimeout 15000 C0:Good 3 C

Redundancy.PartnerPlatform WinPlatform_001 C0:Good Ok ReadOnly Calcula... UnlLocked String 139
Redundancy.PartnerStatus Unknown 1/6/2012 10:42... C0:Good Ok ReadOnly Calaula... UnlLocked CustomEnum 100

Ficure 2: ""PARTNERCONNECTTIMEOUT"" ATTRIBUTE IN REDUNDANT APPENGINE REDUNDANCY PRIMITIVE

AppEngine Ends in "Startup Failed" or "Shutdown Failed" State After Failover Initiated

Issue
After a failover command is initiated (either from an automatic failover condition or manually triggered), one or both of the AppEngine pair can end up in the Startup Failed or Shutdown Failed state.
Resolution

When an AppEngine is called to start or shut down by the Bootstrap (service), the startup or shutdown process is constantly monitored by the Bootstrap attribute called Watchdog Timer. If the startup or shutdown is not
completed within a time period, the AppEngine is prematurely killed. Restart or Shutdown is then called.

If startup and shutdown fails again, the AppEngine is marked as Startup Failed and Shutdown Failed, and stays suspended in that state. By default, the startup and shutdown timeout period is 30 seconds for Application
Server 3.1 or prior. In ASP 2012 (WAS 3.5), the default setting is increased to 5 minutes for both operations.

The length of time it takes to complete an AppEngine startup and shutdown varies, and depends on many factors. The most important factors include the load of the AppEngine and overall CPU usage condition on that
platform. It is often found that the default startup and shutdown timeout setting is not adequate as the load of platform or the AppEngine is growing.

The timeout settings for startup and shutdown can be adjusted by adding the following registry keys:
For 32-bit Operating Systems:

[‘T/KEY LOCAL_MACHINE\SOFTWARE\ArchestrA\Framework\Platform]
atchdogStartupTimeout'=dword:000493e0
"WatchdogShutdownTimeout'=dword:000493e0

file:///Cl/inetpub/wwwroot/t002606/t002606.htm[1/16/2012 8:03:48 AM]

Tips for Troubleshooting AppEngine Redundancy-Related Issues
For 64-bit Operating Systems:

[‘rliKEY LOCAL_MACHINE\SOFTWARE\Wow6432Node\ArchestrA\Framework\Platform]
NatchdogStartupTimeout =dword:000493e0
"WatchdogShutdownTimeout=dword:000493e0

Notes

¢ The maximum value for both settings is 300,000 ms (5 minutes).

* The value for the WatchdogStartupTimeout and WatchdogShutdownTimeout settings should be at least greater than the value of Maximum time to discover partner (PartnerConnectTimeout) in the
AppEngine Redundancy configuration settings. It is recommended that these settings should be more than double the value of the PartnerConnectTimeout for a better performance.

AppEngine's PartnerStatus Stays in "Standby — Not Ready"

Issue

After a failover is initiated, the Standby AppEngine will elevate its status to Active. Meanwhile, the Active AppEngine will relegate its current Active status to Standby. For the new Active AppEngine, the Redundancy
Primitive's PartnerStatus attribute should go through various substates of the Standby status, eventually reaching Standby — Ready as final state of the failover process, in order to successfully complete the failover
process.

However, PartnerStatus sometimes stays in Standby — Not Ready at the end of a failover process, and stops moving forward.
Resolution

PartnerStatus is a calculated attribute of a Redundancy Primitive. Its value is derived from a calculation based on the conditions of its partner Platform and AppEngine obtained at the time. This means that it changes as
the failover process moves along.

The Standby — Not Ready status can be derived from one of the following conditions during the transition:

1. Heartbeats missed via RMC.

2. Heartbeats missed via Primary ArchestrA Network.

3. Either one of the redundant platforms cannot be reached from Active AppEngine (role after failover).
4. Either one of the redundant platforms cannot be reached from Standby AppEngine (role after failover).
5

Standby AppEngine (role after failover) is in process of synchronizing with the Active AppEngine (role after failover) for Object Information, Checkpointing Data, and Subscription Information.
Cause

The Heartbeats Missed condition is usually generated by either system performance or network-related issues. The root cause to Heartbeats Missed condition should be addressed to alleviate Standby — Not Ready
status.

Adjusting Maximum consecutive heartbeats missed (Figure 3 below) should be only considered when you are interested in temporarily relieving the Standby — Not Ready status condition. Note that this adjustment
should be done through the attribute in ObjectViewer so no redeploy is required. (Figure 4 below).

file:///Cl/inetpub/wwwroot/t002606/t002606.htm[1/16/2012 8:03:48 AM]

Tips for Troubleshooting AppEngine Redundancy-Related Issues

[V Enable redundancy

Forced failovertimeout: 50000 ms i

Maximum checkpoint deltas buffered: ID W
Maximum alarm state changes buffered: ID)

Standby engine heartbeat period:]1000 ms W

Active engine heartbeat period: 1000 ms v

Maximum consecutive heartbeats missed from Active engine: IS)
Maximum consecutive heartbeats missed from Standby engine: IS ¥

Maximum time to maintain good quality after failure: 15000 ms)
Maximum time to discover partner: 115000 ms ¥
Force failover command: (o)

FiGURE 3: "MAXIMUM CONSECUTIVE HEARTBEATS MISSED"" IN REDUNDANCY CONFIGURATION

i e A acare =
Redundancy._RedundancyldentityEnum Primary,Backup
Redundancy._StandbyPlatformDetectTimeout 3000
Redundancy._StatusEnum Determining Failover Status, Active,Active - Standby not Avaiable,Standby - Ready,Standby - Not Ready,Standby - Missed Heartbeatd
.ActiveHeartbeatPeriod
cti rtbeatsMissedConsecMax
Redundancy. AlarmStateChangesBufferedCnt 0
Redundancy. AlarmStateChangesBufferedMax 0
Redundancy. AlarmStateChangesOutOfSyncCnt 0

FIGURE 4: ""MAXIMUM CONSECUTIVE HEARTBEATS MISSED"" ATTRIBUTE IN OBJECTVIEWER

The Standby AppEngine must completely synchronize Object Information, Checkpointing Data, and Subscription Information from the Active AppEngine before it is considered Ready. It is possible for the Standby AppEngine
to be overwhelmed when catching up with information updates, particularly when there are a large number of checkpointing attributes, and system performance is a stringent condition.

To alleviate this condition, you should consider one or more of the following measures:

* Increase the AppEngine Checkpoint period value - a Redeploy needed (Figure 5 below).

file:///Cl/inetpub/wwwroot/t002606/t002606.htm[1/16/2012 8:03:48 AM]

Tips for Troubleshooting AppEngine Redundancy-Related Issues

Scripts STy

Maximum time for scripts to execute: IlODCI ms S (9
Maximum asynchronous thread count: |5 threads _-f]‘

Checkpoint period: |zooo ms Y
Checkpoint directory location: I =}
Alarm throttle limit: rZOOO— alarms/s g Y
Statistics averageperiod: W ms 2
Maximum input queue size: [3;5— MB =3

Engine failure timeout: IIOOOO ms =B

Maximum number of consecutive data Io— 5 9
notification failures allowed:

FiGURe 5: ""CHeckPoINT PeRIOD" IN APPENGINE CONFIGURATION

Reduce the CheckpointDeltaBufferedMax value if it is non-zero (Figure 6 below).

Integer

Redundancy.CheckpointDeltasBufferedCnt 1/5/2012 1:19:...
Redundanc ckp eltasBufferedMax q ; Tune W .. UnlLocked Integer
Redundancy.CheckpointDeltasSentToStandby 1/5/2012 1:19:...
Redundancy.CheckpointOutOfSyncCnt 0 1/5/2012 1:19:...

FiGURe 6: ""CHECHPOINTDELTABUFFEREDMAX'" ATTRIBUTE IN OBJECTVIEWER

Inteqger

« Before a failover starts, increase the AppEngine's Scheduler.ScanPeriod value using ObjectViewer (Figure 7 below). This can also help the Standby AppEngine catch up with Active AppEngine in synchronization to
achieve Standby — Ready state for its PartnerStatus.

U TCUOICT s ST T VT TN LT et x LUOUOU A=) e DAL == O CTICOURC ATTUEgeT
Scheduler.ScanOverrunsCnt 5 C0:Good Ok ReadOnly Caleula... Unlocked Integer
Scheduler.ScanOverrunsConsecCnt 0 C0:Good Ok ReadOnly Calaula... Uri.odced Integer
Scheduler.ScanPeriod 1000 C0:Good ; Configure Writea. .. Integer
Scheduler.ScanTime 1/5/2012 3:23:... 1/5/2012 3:23:... (C0:Good Ok ReadOnly Calcula... Time

Scheduler. StatsAngenod 10000 C0:Good Ok Tune Writea... UnlLocked Integer
Codead d e ™ y - | Fad o Tl o il s o I TS 1 bl - | | n 1

FiGURE 7: APPENGINE's "'ScANPERIOD" ATTRIBUTE IN OBJECTVIEWER

AppEngine's PartnerStatus is "Unknown"

Issue
Active AppEngine's redundancy attribute PartnerStatus remains Unknown.
Resolution

This redundancy status is invoked when its partner platform cannot be reached. This could be the result of platform shutdown/not deployed, or completely interrupted Primary and RMC networks.

AppEngine's PartnerStatus is "Active — Not Available™

Issue

Active AppEngine’s redundancy attribute PartnerStatus remains Active — Not Available.
Resolution

If both platforms are deployed and running On Scan, verify the following:

file:///Cl/inetpub/wwwroot/t002606/t002606.htm[1/16/2012 8:03:48 AM]

Tips for Troubleshooting AppEngine Redundancy-Related Issues
* The network IP resolution to both the platforms’ Network Address
¢ Check the ArchestrA Network configuration to ensure its NIC is in first position in the Network Binding Order.

e Check if redundancy message channel is correctly configured on the platform.

Cause

This redundancy status is invoked when the Standby AppEngine (vis-a-vis to the current Active AppEngine)
¢ Can only communicate (but is missing heartbeats) via the RMC network,
* Fails to reach the Active AppEngine via the Primary network, and

* No other Platform can communicate with the Platform that hosts the Active AppEngine.

cy Improvements in ASP 2012 (WAS 3.5) over Application Server 3.1 or Prior

The following design changes are implemented in WAS 3.5. The changes should improve the overall performance of AppEngine Redundancy.

Eliminated "Restart the Engine When it Fails" Option

This option is eliminated in both the Platform (Engine tab) and the AppEngine (General tab) Configuration.

AppEngine is now always restarted when crash/hang condition is detected. In WAS 3.1 or before, if the Restart the engine when it fails option is left unchecked, when an AppEngine crashes, its redundant partner will
detect the condition and fail over. But it can never fail back because of an orphaned partner due to the AppEngine crash.

5] winPlatform_001

General ié:_@ Alarms [Platform I-f:turyl Schettzzteam. Lre
i} AppEngine_D01

5 aaPlatforms_001
General [ENGIE | Alarms | Plstform Hstery | Scheckler History | Engine History
{3} AppEngine_0D1

Encine startup type: |Mm [___'Jﬂ I R | al Engine startup type: Im :] {M Redundancy l RJW Interrupts l Alarmes I Scheduler History
4 : e Sc ind: 1000

[Restart the engine when it Fais o per | | [T e - = 9
o Engine stattup type: [Auto Hstery &5

Ay perioc [~ Enable sterage to Historian Scan poriod: 1000 me & 4

L g [™ Restart the engine when I fails o
Histery S 7 Enable Tag Herarchy Hstory 2}
™ Enable storage o Hstorien Scan period: ng [Enable sterage to histarian
Higtory Y ¥ Enadle Tag Herarchy

™ Enable storage ta hisorian

FIGURE 8: "RESTART THE ENGINE WHEN IT FAILS" OPTION ELIMINATED IN WAS 3.5

Eliminated "Restart Engine Process When Transitioning from Active to Standby"

This option is eliminated in the AppEngine's Redundancy Configuration (Figure 9 below). In WAS 3.5, the AppEngine is always restarted when it switches from Active to Standby. In WAS 3.1 or before, many failover stability

issues were linked to having this option unchecked.
Maximum consecutive heartbeats missed from Active engine:

Maximum consecutive heartbeats missed from Active engine:

Maximum consecutive heartbeats missed from Standby engine: Maximum consecutive heartbeats missed from Standby engine:

Maximum time to maintain good quality after faiure:
Maximum time to discover partner:

Force Fadover command:

Maximum time to maintain good quality after Failure:
Maximum time to discover partner:

Force Failover command:

[V Restart engine process when transitioning from Active t@

file:///Cl/inetpub/wwwroot/t002606/t002606.htm[1/16/2012 8:03:48 AM]

Tips for Troubleshooting AppEngine Redundancy-Related Issues

FIGURE 9: "RESTART ENGINE PROCESS WHEN TRANSITIONING FROM ACTIVE TO STANDBY"" OPTION Is ELIMINATED

Increased "WatchdogStartupTimeout" and "WatchdogShutdownTimeout" Threshold Settings

This setting value is increased from 30,000 ms (30 seconds) to 300,000 ms (5 minutes).

Many redundancy performance issues found in WAS 3.1 (or before) were related to the AppEngine being prematurely killed, because the startup or shutdown timeout values were too short. As a result, the AppEngine was
allowed to reach and stay in illegal transitional states (Failed to Start, Failed to Shudown) etc..

Using the higher settings can prevent this issue from occurring.

C. He

Tech Notes are published occasionally by Wonderware Technical Support. Publisher: Invensys Systems, Inc., 26561 Rancho Parkway South, Lake Forest, CA 92630. There is also technical information on our software products at Wonderware Technical Support.

For technical support questions, send an e-mail to wwsupport@invensys.com.

E Back to top
©2012 Invensys Systems, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, broadcasting, or by anyinformation storage and retrieval system,

without permission in writing from Invensys Systems, Inc. Terms of Use.

file:///Cl/inetpub/wwwroot/t002606/t002606.htm[1/16/2012 8:03:48 AM]

https://wdn.wonderware.com/sites/WDN/Pages/Tech_Support/TechSupport.aspx
mailto:wwsupport@invensys.com
file:///C|/inetpub/wwwroot/t002606/T000792.htm

	Local Disk
	Tips for Troubleshooting AppEngine Redundancy-Related Issues

