AVEVA™

InNnTouch HMI
formerly Wonderware

Supplementary Components Guide

AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

© 2020 AVEVA Group plc and its subsidiaries. All rights reserved.

No part of this documentation shall be reproduced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of AVEVA. No liability is assumed with respect to the use of the information contained herein.

Although precaution has been taken in the preparation of this documentation, AVEVA assumes no
responsibility for errors or omissions. The information in this documentation is subject to change without
notice and does not represent a commitment on the part of AVEVA. The software described in this
documentation is furnished under a license agreement. This software may be used or copied only in
accordance with the terms of such license agreement.

ArchestrA, Aquis, Avantis, Citect, DYNSIM, eDNA, EYESIM, InBatch, InduSoft, InStep, IntelaTrac,
InTouch, OASyYS, PIPEPHASE, PRiSM, PRO/Il, PROVISION, ROMeo, SIMAME, SimCentral, SimSci,
Skelta, SmartGlance, Spiral Software, Termis, WindowM aker, WindowViewer, and Wonderware are
trademarks of AVEVA and/or its subsidiaries. An extensiwe listing of AVEVA trademarks can be found at:
https://sw.aveva.com/legal. All other brands may be trademarks of their respective owners.

Publication date: Tuesday, November 17, 2020
Contact Information

AVEVA Group plc
High Cross
Madingley Road
Cambridge

CB3 OHB. UK

https://sw.aveva.com/

For information on how to contact sales and customer training, see https://sw.aveva.com/contact.

For information on how to contact technical support, see https://sw.aveva.com/support.

AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Contents

Chapter 1 About Supplementary COMPONENLScccueviereeieriese e eee e 7
Chapter 2 Using RECIPE MANAJGETeiiieiieeitie ettt st sre e e 9
ADOUL USING RECIPE MABNAGELeuiiiiiiitiii et e et e e e e et e e e e e e et e eaeanes 9
OVEIrVIEW Of RECIPE MANAQGET ... cui it ettt e e e e e e e e e e e e e e e e et e et e aaaeaaes 9
Recipe Manager ULIITYccuueiiie ettt et 10
Recipe TemPIate FlES i ettt 10
Template DefiNitiONi e 10

L 0T 7= 1 1 o o PP 10

RECIPE DETINILION ...etiee ettt et 11

Editing Recipe Data in RECIPE MANAGETc.uuiiiiiiiiiiei et 11
Configuring the Recipe Manager Editing Gridcoouiiiiiiiiiiiic e e 11
Working with the Editing Gridovuiiii e e e e e ees 12
Defining Ingredient Names and Data TYPES ...vvuiuneiiiiiiiiiei e e e e e e e e eanes 16
Mapping INTouch Tags tO INGredIENTSuuiie e e e e 17
Defining Values for Ingredients in Different RECIPESc.vveiiiiiiiiii e, 18
Editing Recipe Data in Other APPICALIONSiiuuiiie e 19
Using Excel with a Recipe Template Fileoiiiiiiiii e 19
Using Notepad with a Recipe Template Fil€.........ccouiiiiiiiii e, 20
Nesting Recipes to Create COmMPIEX STIUCTUINESoviiiiii e e 20
UsiNg RECIPES IN INTOUCK ...t e e e e e e ens 21
Loading and Saving Recipe Data From/to a Recipe File.............coovvviiiiiiiiiiii e 22
ReCipeLoad () FUNCLION........iiiiiiii e e e e 22
ReCIPESAVE() FUNCTION ...t 23
Deleting Recipes From a ReCIPE Fileiiriiiii e 23
RecipeDelete() FUNCLIONui e e e e e e e e e e e e e anas 23
Selecting Units (Tag Ingredient MappingsS)ccuueieiieieeiee e 24
RecipeSelectUnit() FUNCHIONoiiii e 24
Selecting Individual Recipes from a ReCipe Filecco.iiiiiiiii e 24
RecipeSelectReCipe() FUNCLIONiie e e e 24
RecipeSelectNextRecCipe() FUNCHIONcouii e e 25
RecipeSelectPreviousRecipe() FUNCLIONoviiiiiiiiiiii e 26
Understanding Error Messages Returned by Recipe Script FUNCHONSccviviiiiiiiieinnens. 26
Displaying Error Code MESSAQGESuiiineiieiiiei ettt e e e e et e e aaes 26
RecipeGetMessage () FUNCLION ... e e e 28
APPIYING SECUTLY 10 RECIPES .. ettt ettt e e e 29
Chapter 3 Working with SQL Databases from INTOUCh..........ccccoeoivieiieie e, 31
About Working with SQL Databases from INTOUCHoiiiiiiii e 31
SEtting UP @ Data SOUICEivuiiieiiie ettt e e e e et e e e et e et e et e et e e e et e et e aneeanes 31
Mapping InTouch Tags to Database COIUMNScoiuiiiiiiic e 32
Configuring the SQL Server String Delimiter in Bind LiStS............ccooviiiiiiiiniiceceieee, 34

Contents

AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Defining the Structure of a NeW Table ... e 35
Working with Database APPICAtIONSiiiii e e e s 36
SQL Server Database APPIICALIONScuuuiiiiiii e 36
Microsoft Access Database APPlICAtIONSuiiiiiiii e 37
Oracle Database APPIICALIONSiiuiiiiiii et 38
Performing Common SQL Operations in INTOUCHcoiiiiiiiii e 39
Connecting and Disconnecting the Databasec.cooviiiiiiiicii e 42
SQLCONNEC() FUNCLION ...uiiieii et e e e e e e e et e e e e eeanes 42
SQLDISCONNECE() FUNCLION ...uiiiiiei et e e e e e e e e e e e e e e anneanneanes 43
Creating @ NEW Table et 43
SQLCreateTable() FUNCLIONiiii e e e s 43
Deleting @ TabIeo 44
SQLDropTable() FUNCHION ...ttt 44
Retrieving Data from @ Table ... 45
SQLSEIECT() FUNCION L. eeit it e e e e e e e et e et e e eaaes 45
SQLGEtRECOrd() FUNCLION......ceuii i e e e e e e e e e a7
SQLNUMROWS() FUNCLION L..ieiii e et e e e e e e e e e e e e 47

Y@]I TS5 I ¥ 1] 1o T 48
SQLNEXL() FUNCHION ...t et et e e e e e e e e et e et e e e e aees 48

Y@]I o (=3 TN T Vo 1 o] o I 49

Y@ I 13) I ¥ o3 T o 49
Y@] = o TN ¥ o3 4 o 49
Writing New Records t0 @ Tablecoouiiiiii e 50
SQLINSEM() FUNCLION . .euiiiiii et e e e e e e e e e e et e et e e eanes 50
SQLINsertPrepare() FUNCHION..... ... e e e e e e e e 51
SQLINSenEXeCULe() FUNCLION ...t e e e e e e 51
SQLINSEMENA() FUNCLION ..ottt e e e e e 52
Updating Existing Records in @ Table ... 52
SQLUPAALE() FUNCTION ..ottt ettt e r e e 52
SQLUPdAteCurrent() FUNCLIONuieieiii ettt e e 53
Deleting Records from @ Tableoouiiiii e 54
SQLClearTable() FUNCLION ...t e e e e e e e e e 54
SQLDEIEte() FUNCLION ...uiiiie ettt e e e e e e e e e e e e ea e anaaane 54
Executing Parameterized StatemMENSoveuiiiiiii e 55
SQLSetStatement() FUNCHIONccu i e 55
SQLAppendStatement() FUNCHIONiiiiiiii et 56
Creating a Statement or Loading an Existing Statement from a Filecc.ccoeiiiiiiennnnnn. 56
SQLLoadStatement() FUNCLIONvuiii e e e e e e e e e e e e e e eanes 56
PrEPariNg @ STAlEMENT ... e 57
SQLPrepareStatement() FUNCTION..... ..o e 58
Setting Statement PArameters oo 58
SQLSetParamChar() FUNCHIONuiiiieii et 58
SQLSetParambDate () FUNCLIONccuuiiiieiii et e e 59
SQLSetParamDateTime() FUNCLIONiiiiiieii e 59
SQLSetParambDecimal() FUNCHIONiiiiiiiieii et 60
SQLSetParamFIoat() FUNCLION..........iiiiiii et 60
SQLSetParamInt() FUNCTIONiiiiii et e e 61
SQLSetParamLong() FUNCLION..........iiiiiiiii et e e 61
SQLSetParamNUll() FUNCLIONiieiiiei et e e 62
SQLSetParamTime() FUNCLIONiiiiiiii et e e 63
Clearing Statement ParamMeEterSiie i e e et e e e e e et ean e eanns 63
SQLClearParam() FUNCLIONt e e e e e e e s e e e s e eeanes 63

Contents AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

EXECULING & STAEMENT. ... ittt ettt e et e e e et e e e e aaeees 64
SQLEXECULE() FUNCHION ... ettt et e e e 64
Releasing OCCUPIEA RESOUICEScuuiiiieiieiiee et ettt e e e e et e e et e e e et e anaeanns 65
SQLClearStatement() FUNCHION.......c.iiii e e e 66
Working With TranSacCtiON SEtSuiiiiiiiiii e e 66
SQLTransact() FUNCHIONiiiiiiie ettt e e e 66
SQLCOMMIL() FUNCLION ...uiiiiiiii ettt r e aa e 67
SQLROIBACK() FUNCHION ...ttt e e e e e e e e ans 67
Opening the ODBC Administrator Dialog Box at RUN TiMec.ovvuiiiiiiiieiiieeeieeeeeeeae e 68
SQLManNageDSN() FUNCLIONiuiiii e e e e e e e e e eanes 68
Understanding SQL ErrOr MESSATESvuuiiuuiieieiieiiei e e e e e e e e et e e e e e e e e e e e aneenneees 68
SQLEMOrMS () FUNCHION ...ttt et e e e e e e e e e aaes 68
SQL Access Manager Result Codes and MESSAJEScvvueiiieiiieiiieiiieieiee e ee e 69

R EEIY =T oY = To IV o] o B] PP 72
Chapter 4 Using the 16-Pen Trend WIzZard ... 75
ADOUL USING @ 16-PEN TIENG....cuueiiieiiiiee et ettt ettt e e e e e e eens 75
Creating @ 16-PeN TrENMieiiiii ettt et ettt e e e e e e 75
Configuring Which Tags to Display on the Trend Graph.........cccooiiiiiiiiin e 76
Configuring the Trend Time Span and Update Ratecocoviiiiiiiiiiiii e 78
Configuring the Trend Display OPLIONSiiiiiiiiie e 78
Changing the Trend Configuration at RUN TIME.........ooiiiiiiiiii e 79
Controlling a 16-Pen Trend Wizard USING SCIPLScoouiiiriiiiiieiiie e 80
PtGetTrendTY PE() FUNCLIONeui e e e e e e e e e e e e e anas 80
PtLoad TrendCfg() FUNCLION e e e e e e e e e anas 80
PtPaNCUrrentPen() FUNCLION ... e e e e e e e e e e e eenns 81

L8 == LT T g =T T S [T o o 81
PPAUSETIENA() FUNCLION ..ottt e e 82
ptSave TrendCIg() FUNCLION e e e e e e e e e e e e enns 82
PLSetCurrentPen () FUNCLIONoveuiiii e 83
PLSEIPEN() FUNCLION ..ttt et et eens 83
PLSEIPENEX() FUNCHIONieteii et ettt et et e e eeens 84
PLSetTIMEAXIS() FUNCTION ...ttt e 84
ptSetTimeAXISTOCUITENt() FUNCHIONcoui e et 85
PESEtTIENd() FUNCLION.ottt e e e eeas 85
PtSetTrendTYPe() FUNCLIONc.uuiiiri et e 86
PtZoomCurrentPen () FUNCHIONuiiieii e e 86
PtZOOM TIME() FUNCTION ..uniiiii ettt ettt e e e e e e e e en e ens 87
Chapter’ 5 SYMDOI FACIOIY......coiiiiiieeee e 89
Symbol Factory About SYMbDOI FaCIONYcouiieiiiiii e 89
374 10110 B Y/ ¢ 1= 89
PICTUIE WIZAIAS ... ettt e et ettt e e et et e e e e eanaaes 89
BItMaAPD WiIZaAIOS .. e e et et e e 89
TEXIUIE WIZAIAS ... e ettt et e e et et et et e et eean s 0

oI 010 Tod T @ o] =T o] 90

L0 o ISV na o1] I ¥= Vo3 o oY 2P 90
Getting Started QUICKIYe e 90
Placing a Symbol Factory Wizard in @ WINQOWoiiuiiiiiiiiiiieiece e 90

Contents

AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Configuring SYMDBOI OPLiONScvvniii e 91
ANIMALING @ WIZAIA ..o e e e e e e e e e e e e e e e e enaeans 93
Editing @ SYMDO ... 94
Breaking a Wizard for EditiNgoouiiiiiii e e 94
Sharing a Category of Symbols on a NetWorkcccoiiiiiiiiii e 94
Making a Category REaAA-ONIYcuuiiiiiie e e e e e e e e e enns 95
Viewing Category PrOPEIIES 95
Editing an EXIStING Cat@QOmY . ..uuiuuiiiiieiie et e et e e e e et e e e e an e enns 96
(DL o Lo [W O 1 (=To o] o PSP UP PPN 96
Configuring SYMDBDOI FACTONYceeiiii e et e e 96
LI (0810112 o Yoo {1 o S 97
... 99

AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

CHAPTER 1

About Supplementary Components

You can optionally install a set of four supplementary components along with InTouch HMI core
components. These supplementary components provide additional functions for your InTouch HMI

application.
InTouch Core Components
Application .] -
Manager WindowMaker WindowViewer ArchestrA IDE

InTouch Supplementary Components

O 0 ¢ ©

Recipe SQL Access 16-Pen Symbol
Manager Manager Trend Factory

e Recipe Manager includes a set of spreadsheets and script functions to create manufacturing
recipes.

e SQL Access Manager consists of a program and a set of SQL functions to store InTouch data to a
database.

e 16-Pen Trend includes a trend wizard and script functions to create real-time and historical trends.

e Symbol Factory provides a set of industrial symbols that can placed in InTouch applications to
represent process components.

AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

CHAPTER 2

Using Recipe Manager

About Using Recipe Manager

Manufacturing industries build products according to repeatable procedures that use standardized
quantities of raw materials. In essence, products are manufactured according to recipes. A recipe
describes the raw materials, their quantities, and how they are combined to produce a finished product.
In the most intuitive case, a bakery may follow a basic recipe that lists all ingredients and procedural
steps to make cookies.

Recipe Manager is a supplementary component for the InTouch HMI that you can use to simplify the
process of creating manufacturing recipes. The following figure summarizes how Recipe Manager
obtains information from recipe templates to manage a process that creates a product.

¢ DESIGN-TIME Recips 1 ™
pe L P W
()= = (0 o
o OO ®Ew
|
3~ Ingredient Template Definition] —| Recipe Definition [—| Unit Definition
P = T — pe———
obher procuction pammesers || ingredienss and recine names [that can produce tham
T T

\I:l/ y.

/— RUN TIME

InTouch
Windowiewer

Realves recipe ata from
WindowViewss and pisses i I e Loads ingredient quankies

respecthee M from a grven recipe and gheen

Uni inéo 1103 tags and passes
thoem b the 101 Server

it 1 i Unit 3
Unit Unit 2 A

Overview of Recipe Manager

Recipe Manager can be installed with InTouch as an optional component. Recipe Manager consists of
the Recipe Manager utility and a set of InTouch recipe script functions.

You can access the Recipe Manager utility from WindowMaker or from the Windows Start Menu. The
Recipe Manager utility includes an interface for you to create and edit recipe templates. Recipe Manager
sawes your templates in a recipe file.

Typically, tags associated with a manufacturing process use QuickScripts to access data within recipe
template files. Recipe Manager includes a set of QuickScript functions to select, load, modify, create,
and delete the manufacturing recipes contained in template files.

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Recipe Manager Utility

The Recipe Manager utility provides a spreadsheet-like user interface to create and maintain a recipe
template file. A file consists of three templates. You create and edit these templates by adding or
modifying data within the cells of each template’s spreadsheet.

[T Recipe Definition

Item Namel Item T'.'De|| Recipe 1| Recipe 2| Recipe 3' Recipe 4' Recipe 5| Recipe B[Recipe 7 Flecirﬂ
Frecipe Names >»»| (LG0T
" lem2 | Itern Namel Itemn Type|| Uit 3I Urit 4I ﬂ
Itern 4 Unit Mames »>> plate Definition =0 x
Item 5 Item 1 Item Mame| ltem Tupe :I
Itemn & Itern 2 Item 3 _I
Itemn 7 Item 3 Item 4
Item & Item 4 Item 5
Itern 9 Item & Item &
Itern 10 Itemn B Item 7
Itern 11 Item 7 Item 8
Itern 12 Itern 8 Item 9
Itern 13 Itemn 3 Itern 10/
Item 14 Itern 10 Itern 11 |
LI_I Itern 11 Itern 12 _'Iél
Mem12 | ltem13 Z
d Item 14 AW
Item 15 |
K1 | M

You sawe these templates to a Comma Separated Value (CSV) file. You can create and edit your recipe
template definitions with any program that supports the .csvfile format like Notepad or Excel. But, Recipe
Manager provides preformatted spreadsheets and a set of editing tools to create and maintain templates
reliably and easily.

Recipe Template Files
A Recipe Manager template file contains the following information:
o Names of ingredients and their data types used in a recipe.

e Unit names that associate InTouch tags with recipe ingredient values.

¢ Recipe names containing the quantities or values for each ingredient used in a recipe instance.

Template Definition

The Template Definition template defines all recipe ingredients. A data type is associated with each
recipe ingredient. An ingredient data type can be analog, discrete, or message. Ingredient names are not
required to be InTouch tags.

Unit Definition

The Unit Definition template associates InTouch tags with recipe ingredients. Many different loading
definitions can be created. These definitions are called units. You can use the RecipeLoad() function to
load specific instances of a recipe to associated InTouch tags. A Unit Definition can consist of all
ingredients defined in the file or just a subset of these ingredients.

Note: Unit tags can be memory types that can be viewed and edited in an InTouch window or I/O tags
that can be loaded directly to PLCs.

10

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Recipe Definition
The Recipe Definition template specifies the name of each recipe and ingredient quantities used by the
recipe. Recipe instances can be modified, created, or deleted in run time through the recipe functions.

Editing Recipe Data in Recipe Manager

You create manufacturing recipes by completing a set of sequential tasks. The following list shows the
Recipe Manager tasks to create recipes and the order in which they should be completed:

e Configuring the Recipe Manager editing grid.

e Editing data within a template.

e Assigning ingredient names and unit types to the Template Definition template.
e Mapping InTouch tags to ingredients in the Unit Definition template.

e Assigning values to recipe ingredients in the Recipe Definition template.

Configuring the Recipe Manager Editing Grid

Before you create manufacturing recipes, you should configure Recipe Manager. There are two tasks to
configure Recipe Manager editing functions:

e Set the maximum limit for template items.
e Set the ENTER key scroll function.

Before you create recipes, you need to configure the maximum number of items that can be entered in
your recipe templates. You must assign a set of maximum limits for items, units, and recipe names.

Templates can contain up to a maximum of 9999 items, units, and recipe names. However, large
maximum limits can potentially affect system performance. Also, you may see an error message if the
maximum limits you set will require more memory than the computer’'s available memory.

To configure recipe template maximum limits
1. Start Recipe Manager by one of the following methods:

o Start WindowMaker. On the Tools view, expand Applications, and then select Recipe
Manager.

The Recipe Manager dialog box appears.

2. On the Options menu, click Preferences. The Preferences dialog box appears.

Preferences [x|

b aimnurn [kems: I
b axirnunn L itz |4
M azimum Recipes: |12

Cancel |

3. Inthe Maximum Items box, enter the maximum number of item names allowed in your Template
Definition template.

4. In the Maximum Units box, enter the maximum number of units allowed in your Unit Definition
template.

5. Inthe Maximum Recipes box, enter the maximum number recipe names allowed in your Recipe
Definition template.

11

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Caution: The values you set in the Preferences dialog box are applied to all recipe template files that you
create. When you modify these values, all existing recipe template files are also modified.

6. Click OK.

Recipe Manager includes an option that simplifies entering data in recipe templates. When you select the
Auto Down on [Enter] option, you can press enter to move the cursor down to the next cell in the
column.

To set ENTER key template scrolling
1. Open Recipe Manager.

By default, Recipe Manager does not scroll automatically to the next cell in the template
spreadsheet.

2. On the Options menu, click Auto Down on [Enter] to set cell scrolling.

3. Click Auto Down on [Enter] again if you want to turn off cell scrolling.

Working with the Editing Grid

Recipe Manager includes a set of editing commands to add, modify, or delete data from the templates.
Generally, you select the data that you want to edit in the template, and then take an editing action. The
following table describes common features of recipe templates to enter and select template data.

Feature Description

Input Box Text input box used to enter data for the selected
template cell. When a template cell is selected, its
contents are shown in the text input box near the top of
the Recipe Manager dialog box.

Select All Cells Click the top left cell of the template to select all cells.

B Template Definition

Select All Rows Click on a template’s row name to select all cells within

the row.
Select All Click on a template’s column heading to select all cells
Columns within the column.
Auto-Size All Double-click on a template to auto-size all columns in
Columns the template to the width of the longest entry.
Auto-Size a Double-click on the heading to auto-size the column to
Column the width of its longest entry.

Note: The Iltem Type column in the Template Definition
template cannot be auto-sized.

When you edit a template, you can do the following:

12

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

e Clear data from a range of cells.

Copy data from a range of cells to an adjacent range of selected cells.

Insert a row within the Template Definition template.

Insert a column within a template.

Delete a row from the Template Definition template.

Delete a column from a template.
To clear data from arange of cells

1. Select a range of cells from the template.

|tern Mame|| [tem Typef| Uit 1 dnit 2 | Unit 3 Lﬂ
Unit Marmes > Feview | Mizerl |Mixer2

[tem 1

[tem 2 Ihgl Analog Ihgl I1Ingl | M2Ingl

Iterm 3 Ihg2 Analog Ihg2 t1Inge | M2Ing2

[tem 4 Ihg3 Analog Ihg3 t1ng3 | M2Ing3

[tem 5 Ihgd Analog Ihgd t1Ingd | M2Ingd

[tem B =1 Analog SF1 M1SPT [M25P1

[tem 7 SpP2 Analog Sp2 M15P2 |M25P2

[tem 8 SP3 Analog SP3 M15SP3 | M25P3

[tern 3 SP4 Analog SP4 M15P4 |M25P4

Item 10 SP5 Analog SP5 M15P5 |M25P5

Item 11 RevDate |Meszage |[Date

Item 12 Comment | Mezzage | Comment ﬂ
< oy

2. Onthe Edit menu, click Clear. A message appears requesting confirmation that the selected range of
cells should be cleared.

3. Click Yes. The template clears data from the selected range of cells.
To copy arange of cells to an adjacent selected range

1. Select the cell or the range of cells to be copied.

13

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

2. Select the adjacent range of cells that you want to copy the data.

Itern Mame| [tem Type|| Recipe 1 I Recipe 2| Recipe 3
Recipe Names >>> Recipe 1

Itern 1

Itermn 2 Ingl Analog

Itern 3 g2 Analog

Itern 4 Ing3 Analog

Item 5 Ingd Analog

Item & SP1 Analog 21

Item 7 SP2 Analog 22

Item 8 SP3 Analog 23

Iterm 3 SP4 Analog 24

Itemn 10 SP5 Analog 25

Item 11 RewDate |Meszage || 7/6/97 2:36:29 P

ltem 12 Comment | Meszage || Comment for Becipe 2 ﬂ
KIS 0%

The selected ranges must be the same size and can be above, below, to the right, or to the left of the
original range of selected cells.

3. On the Edit menu, select the appropriate fill command. The data is copied to the selected range of
cells.

Note: If the new column that the data is copied to is not big enough to accommodate the largest entry,
double-click on the column heading to change the width to the longest entry.

To insert arow in the Template Definition template
1. Select the Template Definition template.
2. Click the Item # to select the row in the Template Definition template to insert a new row above it.

You cannot directly insert rows in either the Recipe Definition or Unit Definition templates. Instead,
all modifications to the Template Definition are automatically inherited by the Recipe Definition
and Unit Definition templates.

14

Using Recipe Manager

AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

3. On the Edit menu, click Insert. A new row is inserted immediately above the row you selected and all
subsequent rows are automatically renumbered.

| | Template Definition !EE

Ingl

Item 3 |ff Ing2 Analog
Itern 4 ff Ing3 Analog
Item 5 |ff Ing4 Analog
Item B f[SF1 Analog
Item 7 Jf SP2 Analog
ltem 8 Jf SP3 Analog
Item 9 | SP4 Analog
Item 10} SP5 Analog
Item 11)|| RevDate |Meszzage
Item 12| Comment | Meszage
Itern 13 _I

I

Note: If the maximum values configured for the Recipe Manager Preferences have been reached, the
Insert command is inactive. You must increase the numbers specified to add Items/Units/ Recipes to
your recipe templates.
When you modify the Preferences, the changes are applied to all existing recipe template files.

To insert a column

1. Click Unit # or Recipe # to select the column that will be to the right of the inserted column.

You can insert columns in the Recipe Definition or Unit Definition templates.

2. On the Edit menu, click Insert. A new column is inserted to the left of the selected column.

Itern Mame| Item Topelfl Unit 1 I Unit 2 I Irit 3

Unit Mames »»» Review

Iteri 1

Ibem 2 Ingl Analog Ingl

Item 3 Ing2 Analog Ing2

Itemn 4 Ing3 Analog Ihig3

Item 5 Ing4 Analog Ing4

Item B SP1 Analog 5P

Item 7 SP2 Analog 5P2

Item 8 SP3 Analog SP3

Itern 9 SP4 Analog SP4

[bem 10 SF5 Analog SP5

[tem 11 RevDate |Meszzage (|Date

Item 12 Comment | Meszage (| Comment

In this example, Mixer2 data is moved to the Unit 3 column and a new column inserted as Unit 2.

15

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

To delete a column

1.

3.

Click the Unit # or Recipe # column heading to select the column that you want to delete.
You can delete columns from the Recipe Definition or Unit Definition templates.

On the Edit menu, click Delete. A confirmation message dialog box appears asking you to confirm
the deletion.

Click Yes. The column is deleted from the template and the remaining columns are renumbered.

To delete arow

1.

4.

Select the Template Definition template.

You can delete rows from the Template Definition template, but not the Recipe Definition or Unit
Definition templates.

Click the ltem # row header to select the row that you want to delete.

On the Edit menu, click Delete. A confirmation message dialog box appears asking you to confirm
the deletion.

Click Yes. The row is deleted from the template.

Defining Ingredient Names and Data Types

The Template Definition template lists recipe ingredients and the item type associated with each
ingredient. You must complete the Template Definition template first before adding data to the other
recipe templates.

To define aTemplate Definition template

1.

2
3.
4

Start Recipe Manager.

On the File menu, click New. The three Recipe Manager templates appear.

Click the Template Definition title bar to select the template window.

In the Item Name column cells, type the names you selected for recipe ingredients.
You can only type one ingredient per cell.

In the Item Type column cells, type a valid item type for the respective recipe ingredient.

plate Definition

Item Mame| Itemn Type ﬂ
Itern 1 | H2504 Analog

Item 2 | Benzene | Analog

Item 3 | DistilateB | Analog

Iterm 4 Jf Mapthelens Analog

Itern &

Item &

Item 7

Itern 8

Item 3

Item 10

Itemn 11

Item 12

Item 13 ~|
KT nw)

Valid item types are; analog, discrete, or message. Type A for analog, D for discrete, or M for
message. Recipe Manager automatically completes the remainder of the item type when you press
ENTER.

16

Using Recipe Manager

AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Mapping InTouch Tags to Ingredients

The Unit Definition template associates InTouch tags with recipe ingredients for given units. As shown
in the following figure, the first two columns of the Unit Definition template list the Item Names and Iltem
Types from the Template Definition template.

I Unit Definition

Item Marne| Item Typef| Unit 1| Unit 2 Unit 3f Unit 4 ﬂ

Unit Hames »>>>

Item 1 H2504 Analog

Item 2 Benzene |Analog

Item 3 DistillateE | Analog

Item 4 Maptheleng Analag

[tem

Item G

Itern 7

[tem &

[tem 9

Itern 10

Itern 11

ltem 12 |
! M

The tags defined for a unit can be memory tags or remote tags that obtain PLC data from an /O Server.

When you use the RecipelLoad() function in an InTouch QuickScript, you must specify a Unit Name. The
values contained in that Recipe Name definition are then loaded into the tags specified in the Unit Name
when the QuickScript runs.

To define a Unit Definition template

1. Click the Unit Definition template's title bar to select the template window.

|

Itemn Mame| ltem Typefl Unit1 | Unit2 | Unit3
Unit Hames =3> Review | Mizer 1| Miser 2
Iterm 1 Ingl Analog Ingl t1Ingl | M2lngl
Item 2 Inge Analog Ing2 t1Ing2| M2lng2
Iterm 3 Inga Analog Ing3 t1Ing3| M2lng3
Itern 4 Ing4 Analog Ingd t1ngd | MZ2ingd
Itern 5 51 Analog SP1 M15P1 | MZ25F1
Itern B Sp2 Analog SpP2 M15P2 | M25P2
Itern 7 5P3 Analog SP3 M15P3| MZ25P3
Itern 8 5P4 Analog SP4 M15P4 | MZ25P4
Itern 9 SP& Analog SP5 M15P5| MZ25P5
Itemn 10 RevDate |Meszage [|[Date
Item 11 Comment | Meszage || Comment
<

»

2. Inthe Unit Names row, type the name of each unit that you want to define.

3. Inthe Unit # column cells, use one of the following methods to enter the name of the InTouch tag for
each respective recipe ingredient:

O

O

4. Repeat this procedure for each Unit/Recipe combination.

Type the tag name.

If WindowMaker is running, double-click the cell to display the Select Tag dialog box. Then,
double-click the desired tag to insert it into the cell or select it, and then click OK.

17

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Defining Values for Ingredients in Different Recipes

The Recipe Definition template specifies the name of each recipe and ingredient quantities used by the
recipe. The Recipe Definition template displays the Item Name and ltem Type information from the
previously defined Template Definition template.

Ingredient values are loaded into the InTouch tags when the RecipeLoad() function is executed in an
InTouch QuickScript.

To define a Recipe Definition template
1. Click the Recipe Definition template’s title bar to select the template window.

2. Inthe Recipe Names row, type the name of each recipe that you want to define.

J | Recipe Definition
Item Mame| ltem Type Recipe 1 Recipe 2 ﬂ
Fecipe Mames >3 Recipe 1 Recipe 2

Item 1 Ingl Analog 11 21

Item 2 Ing2 Analog 12 2

Item 3 Ihg3 Analog 13 23

Item 4 Ingd Analog 14 24

Item & SP1 Analog 11 21

Item B Sp2 Analog 12 2

Item 7 SP3 Analog 13 23

Item 8 SP4 Analog 14 24

Item 3 SPs Analog 158 28

Item 10 RevDate |Message [7A15/97 31956 PM | 7/6/97 2:36:39 PM

Item 11 Comment [Message [4 Comment Comment for Recipe 2 LI
K| o,

3. Inthe Recipe # column cells, type the values for each respective recipe ingredient in the ltem Name

column.
4. On the File menu, click Save to save your recipe template file.
To open an existing recipe template file
1. Open Recipe Manager.

2. On the File menu, click Open. The Open a Recipe Template dialog box appears.

Open a Recipe Template 7| %]

Look i IaNEWADD j gl IE_“

% Recpl.cav

File name: || Open

Files of twpe: ITempIates [*C54) j Cancel |

™ Open a: read-only

3. Locate and select the Recipe file, then click Open. The three recipe templates in the file appear
within Recipe Manager for editing.

18

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

To delete arecipe template file

1. On the File menu, click Delete. The Delete a Recipe Template dialog box appears.
Delete a Recipe Template 2] x|

Look jn: Ia Mewdpp j gl IEE_

-{ﬂ Recpl.cav

File name: || Open I
Filez of lpe: ITempIates [*.C5Y) ﬂ Cancel |

2. Locate and select the recipe file, then click Open or double -click the file name. A message box
appears asking you to confirm the deletion.

Note: Open recipe template files cannot be deleted.

3. Click Yes to delete the file.

Editing Recipe Data in Other Applications

You can create and edit your recipe template definitions with any program that supports comma

delimited data. You can use Microsoft Excel or Notepad to create and edit the Recipe Manager template
file.

Using Excel with a Recipe Template File

You can use Excel to create or edit a recipe template if you do not want to use the Recipe Manager utility.

You must save the Recipe Manager template created or edited with Excel to a file with a .csv file name
extension.

To open an existing recipe template file in Microsoft Excel
1. Start Excel.
2. On the File menu, click Open. The Open dialog box appear.

3. Locate and select the .csv file then, click Open or, double-click the file name. Excel shows the
contents of the file.

& Recpl.csy o =] B3
A B o D E F G

1 [in redient!lngredienﬂUnit Unit Unit Recipe Recipe

| 2 [:Names Review Mixerl Mixer2 |Recipe 1 Recipe 1

&

Ilng1 Analog Ingl Mllngl MZing1 i 21

| 5 |Ing2 Analog Ing2 Milng2 M2Ing2 22 2

| 6 |Ing3 Analog Ing3 Milngs M2Ing3 23 23

| 7 |Ingd Analog Ingd Milngd M2Ingd 24 24

| 8 |5P1 Analog SP1 MISP1 M2SP1 21

|9 |SP2 Analog SP2 MISPZ M25P2 pri

110 [SP3 Analog 8P3 MISP3 M25P3 23 fm

(11 |5P4 Analog SP4 MI1SP4 MISP4 24

|12 |SP5 Analog SP5 MISPS MZSPS %

(13 [RevDate Message Date 7/6/97 16:36

| 14 |Comment Message Comment Comment for Recipe 2|

113 R/ 1« |

4. Edit the contents of the recipe file and save your changes.

19

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

To create anew recipe template file in Excel
1. Start Excel.
2. Create a new workbook.

3. Enter recipe data in the spreadsheet, as shown in the following figure.

-~ Book3 x|
A B C D E F G -
1 [IngredientMame | IngredientType Unit Unit Unit Unit Recipe FJ

2 [Names Review Mixer! Mixer2 Mixerd Recipe 1 FJ
3 |Ihgt Analog Ing1 WM1lngl M2ing1 M3hgl 1

-

4] 4| » | i\ Sheet! (Shesiz 7 Shead Sheetd { Shees 7| 4| I H

The entries must be made in the order shown in the figure. Unit Names must be defined in columns
to the left of columns containing Recipe Names.

4. Sawe the spreadsheet with a .csv file name extension.

Using Notepad with a Recipe Template File

You can use Notepad to create or edit a recipe template if you do not want to use the Recipe Manager
utility. You must save the Recipe Manager template created or edited with Notepad to a file with a .csv
file name extension.

To open an existing recipe template file in Notepad

1. Start Notepad.

2. On the File menu, click Open. The Open dialog box appear.

3. Locate and select the recipe file, then click Open or double -click the file name.
4. Edit the contents of the recipe file and save your changes.

To create a new recipe template file in Notepad

1. Start up Notepad.

2. On the File menu click New.

3. Enter following data in this format:

:IngredientName, IngredientType[,Unit]...[,Recipe]...
:Names,, [,UnitName]...[,RecipeName]...
IngredientName, {Analog,Discrete,Message}, [,tag]l...[,value]

Note: All Unit Names must be defined in the file before any Recipe Names are defined.

4. Sawe the file with a .csv file name extension.

Nesting Recipes to Create Complex Structures

Multiple recipe template files can be linked to each other with InTouch QuickScripts to create complex
applications. You link recipe template files by defining an ingredient name that is associated with a
message tag in the Unit Name template. Then, you load the message tag with the name of a recipe.

Linking recipe template files allows you to create master recipe template files that define machine
configuration parameters used by various recipes in different recipe files. Keeping this type of
information in one central file greatly reduces the time it takes to maintain and update data whenever it
changes.

20

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

In the following figure, the ltem Name Setup tag is defined as a message type and the units contain the
Setup message tag for this item. Each recipe contains a second recipe name defined in a different recipe
file that is loaded into the Setup tag when the recipe is selected.

=] RECFILEA.CSV =1
1 2 | 3 [a5 6] 72 | 8 | 98 I%

1 [:ltem Name llitem Type | Unit | drit LIt | drit Recipe Recipe Recipe ||

2 |:Mames |Fleview |Mi:<er'| Mizer 2 | Miner 3 Recipe 1 Recipe 3|

3 J|lngl Analog Ingl t1Ingl M2lingl M3lngl 11 21 Kl

4 |lng2 Analog Ing2 t1lng2 M2lng2 M3lnge 12 22 99

5 |lng3 Analog Ing3 t1lng3 M2lng3d M3lnga 13 23 51

b |lngd Analog Ingd t1lngd M2lngd M3lngd 14 24 34

¥ [5M Analog |SP1 M15P1 [M25P1 | M35P1 11 21 il

g [5P2 Analog 5P2 M15P2 |M25P2 M3ISP2 12 22 32

9 [5P2 Analog | 5P3 M15P3 |M25P3 M3ISP3 13 23 33

10 |5P4 Analog 5P4 M15P4 |M25P4 M3ISP4 14 24 34

11 [5P5 Analog SP5 M15P5 |[M25P5 M3ISPS 15 25 35

12 [Setup__ |Message [Setup | LinkFile| LinkFile LinkFile| Setup24 Setupld

13 +

[T -+

To do so, the following script would be entered:
RecipeName="Recipe2";
RecipelLoad ("c:\recipe\recfilea.csv", "Review", RecipeName) ;

When this script runs, the value of the Setup tag becomes Setup3A and is loaded into the Review unit.
The value of the Setup tag is then used as the Recipe Name in the next recipe loading that loads the
machine setup parameters into the tags defined for the PLC1 unit by running the following script:
RecipeLoad ("c:\recipe\machine.csv", "PLC1l", Setup);

=] MACHINE.CSV [=1-]
1 2 | 3] 4] s [& | 72 | =8 +

1 [:lterm Narne litern Type | Unit Recipe Recipe Recipe =

2 [|:Mames |PLE1 | Setupld | Setup2é |Setup3Al =

3 [PARMI Analog | PARKM1 11 21 K]l

4 [PARM2 Analog PARMZ 12 22 99

5 [PARM3 Analog PARM3 13 23 [

b [PARM4 Analog PARMA4 14 24 34

¥ [PARME Analog PARMEA 11 21 kil

8 [PARME Analog PARME 12 22 32

9 [PARMY Analog PARMT 13 23 33

10 [PARME Analog PARME 14 24 34

11 |FARMI Analog PARMS 15 25]

12 +

«[+

Using Recipes in InTouch

You use InTouch QuickScripts to interact with your recipe template files. Recipe Man ager includes a set
of script functions that can be inserted into QuickScripts. Using scripts containing these functions, you
can select, modify, insert, or delete records in your recipe template file.

21

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

You add recipe functions to any type of script using the InTouch script editor. The following figure shows
the InTouch script editor's window listing recipe functions. All recipe functions are identified by the prefix
Recipe as part of the function name.

Choose function... Find; [ecipeDelete |

e SPCMoveScooter SOLClearTable SOUnsetEnd SOLSetParamD ate
RecipeGetMessage SPCSaveSample SQLCaommit SQLIngerExecute SQLSetParamD ateTime
RecipsLoad SPCSelectDataset SALConnect SALInserPrepane SALSetParamD ecimal
RecipeSave SPCSelectProduct SOLCreateT able SOLLast S0LSetParamFloat
RecipeSelectNextRecipe SPCSetContrallimits SQLDelete SQLLoadStatement SQLSetParamint
RecipeSelectPreviousRecipe SPCSetMeasurement SQLDisconnect SQLManageDSMN SALSetParamLong
RecipeSelectRecine SPCSetProductCollected SOLDropT able SOLNext SOLSetParamhul
RecipeSelectUnit SPCSetProductDisplayed SOLEnd SOLMumBows SOLSetParamTime
SPCConnect SPCSetRangeLimity SQLEnordsg SQLPrepareStatement SQLSetStatement
SPCDatasetDig SPCSetSpecLimits SOLExecute SALPrey SALTransact
SPCDisconnect SOLAppendStatement SOLFirst SOLRolback 50LUpdate
SPCDisplayData SQLClearParam SOLGetRecord SOLSelect SQLUpdateCurrent
SPCLocateScooter SOLClearStatement SOLIrsert SOLSetParamChar

InTouch recipe functions read and write directly to the recipe template file. Therefore, the Recipe
Manager program does not need to be running in order for the recipe functions to run properly in InTouch
QuickScripts.

If the recipe template file is being used by the InTouch HMI, any new recipes you create or any changes
you make to existing recipes cannot be written to the recipe template file. Recipe Manager only creates
recipe template files. After you create Recipe template files, close Recipe Manager.

To automatically insert a recipe function into a script

1.

2
3.
4

Open an InTouch script editor.
Place the cursor within the script where you want to insert a recipe function.
Under Functions, click Add-ons. The Choose function dialog box appears.

Click the recipe function that you want to insert into your QuickScript. The dialog box closes and the
function is inserted at the cursor position.

Loading and Saving Recipe Data From/to a Recipe File

Recipe Manager provides separate InTouch QuickScript functions to load and save recipe data within a
recipe file.

RecipeLoad() Function

The RecipeLoad() function loads data from a recipe to a specific unit of tags in an InTouch application.

Category

Recipe
Syntax

Recipeload ("Filename","UnitName", "RecipeName") ;

Arguments

FileName
Name of the recipe template file. The value associated with FileName can be a string constant or a
message tag containing the name of the recipe template file.

UnitName

Name of the specific unit in the designated recipe template file. The RecipeSelectUnit() function
returns a value to this parameter. The value associated with UnitName can be a string constant or a
message tag that contains the name of the unit.

22

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

RecipeName
Name of the specific recipe in the designated recipe template file. The value associated with
RecipeName can be a string constant or a message tag that contains the name of the recipe.

Example

The following statement loads the values of the Recipel recipe to the tags defined for Unit:
RecipeLoad ("c:\recipe\recfile.csv", "Unitl", "Recipel");

RecipeSave() Function

The RecipeSave() function saves a new recipe or changes made to an existing recipe to a specified
recipe template file.

Category
Recipe
Syntax

RecipeSave ("Filename","UnitName", "RecipeName") ;
Arguments

FileName
Name of the recipe template file. The value associated with FileName can be a string constant or a
message tag containing the name of the recipe template file.

UnitName

Name of the specific unit in the designated recipe template file that will be used by the function. The
RecipeSelectUnit() function returns a value to this parameter. The value associated with UnitName
can be a string constant or a message tag that contains the name of the unit.

RecipeName
Name of the specific recipe in the designated recipe template file. The value associated with
RecipeName can be a string constant or a message tag that contains the name of the recipe.

Example

The following example saves changes made to the Recipe3 recipe in the recfile.csv file. If Recipe3 does
not currently exist in the recfile.csvfile, it is created. The values set the values of the tags defined for
Unit2:

RecipeSave ("c:\recipe\recfile.csv", "Unit2", "Recipe3");

Deleting Recipes From a Recipe File

Use the RecipeDelete function to delete a recipe from a specified recipe template file.

RecipeDelete() Function
The RecipeDelete function deletes a recipe from a specified recipe template file.
Category
Recipe

Syntax
RecipeDelete ("Filename", "RecipeName") ;

Arguments

FileName
Name of the recipe template file. The value associated with FileName can be a string constant or a
message tag containing the name of the recipe template file.

23

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

RecipeName
Name of the specific recipe in the designated recipe template file. The value associated with
RecipeName can be a string constant or a message tag that contains the name of the recipe.

Example

The following statement deletes the Distltl recipe from the recfile.csv file:
RecipeDelete ("c:\recipel\recfile.csv", "Distltl");

Selecting Units (Tag Ingredient Mappings)

Use the RecipeSelectUnit() function to select the unit of tags to which the current recipe values are
loaded.

RecipeSelectUnit() Function

The RecipeSelectUnit() function opens the Select a Unit dialog box so that the run-time user can select
a unit. The selected unit name is returned to a message tag. Both the RecipeSelectRecipe() and
RecipeSelectUnit() functions are used in conjunction with the RecipelLoad() function.

Category
Recipe
Syntax

RecipeSelectUnit ("Filename", UnitName, Number) ;
Arguments

FileName
Name of the recipe template file. The FileName argument can be a string constant or a message tag
containing the name of the recipe template file.

UnitName
Message tag to which the name of the selected unit is written. Actual message tag without quotes or
a string literal.

Number

Maximum string length returned to the argument. In InTouch, string (message) tags have a
maximum length of 131 characters. Use 131 for this argument unless you have reduced the
maximum string length of the InTouch tag. Number or integer tag.

Example

The following statement causes the Select a Unit dialog box to open:
RecipeSelectUnit ("c:\recipelrecfile.csv", UnitName, 131);

After a Unit is selected, its name is returned to the UnitName tag.

Selecting Individual Recipes from a Recipe File

Recipe Manager includes a set of functions to select an individual recipe from the recipe file. When you
use these functions in a script, you can select a recipe from the file by its name or the next or previous
recipe in sequence within the file.

RecipeSelectRecipe() Function

The RecipeSelectRecipe() function opens the Select a Recipe dialog box so that the run-time user can
select a recipe. The selected recipe name is returned to a message tag.

Category

Recipe

24

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Syntax

RecipeSelectRecipe ("Filename", RecipeName, Number) ;
Arguments

FileName
Name of the recipe template file. The FileName argument can be a string constant or a message tag

containing the name of the recipe template file.

RecipeName
Message tag to which the name of the selected recipe is written. Actual message tag without

guotation marks or a string literal.

Number
Maximum string length returned to the argument. InTouch message tags have a maximum length of
131 characters. Use 131 for this parameter unless you have reduced the maximum string length of

the InTouch tag. Number or Integer tag.
Example

The following statement causes the Select a Recipe dialog box to open:
RecipeSelectRecipe ("c:\recipe\recfile.csv", RecipeName, 131);

After a recipe is selected from the dialog box, its name is returned to the RecipeName tag.

RecipeSelectNextRecipe() Function
The RecipeSelectNextRecipe() function selects the next recipe in the recipe template file.
Category
Recipe
Syntax

RecipeSelectNextRecipe ("Filename", RecipeName, Number) ;
Arguments

FileName
Name of the recipe template file. The FileName argument can be a string constant or a message tag

containing the name of the recipe template file.

RecipeName
Message tag that contains the recipe name to use as a starting point (before the function is

executed) and the selected recipe name (after the function is executed). Actual message tag without
guotation marks or a string literal.

Number

Maximum string length returned to the argument. In InTouch, string (message) tags have a
maximum length of 131 characters. Use 131 for this parameter unless you have reduced the
maximum string length of the InTouch tag. Number or integer tag.

Example

The following statement reads the current value of the tag RecipeName and returns the next recipe on
file. If the value of RecipeName is blank or cannot be found, the first recipe on file is returned. If
RecipeName currently contains the last Recipe Name on file, it is returned unchanged. Recipes are
saved in the recipe template file in the order in which they are created.

RecipeSelectNextRecipe ("c:\recipe\recfile.csv",

RecipeName, 131);

25

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

RecipeSelectPreviousRecipe() Function

The RecipeSelectPreviousRecipe() function selects the previous recipe defined in the recipe template
file.

Category
Recipe
Syntax

RecipeSelectPreviousRecipe ("Filename", RecipeName, Number) ;
Arguments

FileName
Name of the recipe template file. The FileName argument can be a string constant or a message tag

containing the name of the recipe template file.

RecipeName
Message tag that contains the recipe name to use as a starting point (before the function is

executed) and the selected recipe name (after the function is executed). Actual message tag without
quotation marks or a string literal.

Number

Maximum string length returned to the parameter. In InTouch, Message tags have a maximum length
of 131 characters. Use 131 for this parameter unless you have reduced the maximum string length of
the InTouch tag. Number or Integer tag.

Example

The following statement causes the system to read the current value of the tag RecipeName and return
the previous Recipe Name on file. This returned string will be stored in RecipeName and will overwrite
the current value. If the value of RecipeName is blank or cannot be found, the last recipe on file is
returned. If RecipeName currently contains the first Recipe Name on file, it is returned unchanged.
(Recipes are saved in the order in which they are created.)

RecipeSelectPreviousRecipe ("c:\recipe\recfile.csv", RecipeName, 131);

Understanding Error Messages Returned by Recipe Script Functions

You troubleshoot recipe applications using diagnostic error codes returned by a recipe function. This
section includes a list of recipe function error codes and how to use the RecipeGetMessage() function to
show the message associated with an error code.

The RecipeLoad() function sets the value of the analog ErrorCode tag to O if it is successful. If
RecipeLoad() fails, it sets the ErrorCode tag to the number of the specific error condition.

To retrieve the error code of a recipe function, it must be equated to an InTouch analogtag. The following

example shows a script statement to return a recipe function error code:
ErrorCode = RecipelLoad (FileName, UnitName, RecipeName) ;

Displaying Error Code Messages

Each recipe function returns a number that represents the error condition for the function. By using the
RecipeGetMessage() function in an InTouch Data Change script, the corresponding error code can be
written to an analog tag and the associated error code message can be written to a message tag.

The following code example shows a Data Change script.
RecipeGetMessage (ErrorCode, ErrorMessage, 131);

This script runs automatically whenever the value of the ErrorCode tag changes. When this script runs,
the RecipeGetMessage() function reads the current numeric value of the ErrorCode tag and returns the
message associated with that value to the ErrorMessage tag.

26

Using Recipe Manager

AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

The following table lists possible error codes, their corresponding error messages, and descriptions:

Value Error Message Description
0 Success The called recipe function executed
successfully.
-1 No Such Recipe The specified recipe template file does
Template not exist.
-2 View Not Active The recipe function called by another
program cannot execute because
WindowViewer is not running.
-3 Out of Memory There is not enough memory to
complete the current activity.
-4 Line too long in recipe A line in the recipe template file
template file exceeds the maximum allowed length.
-5 Truncated line in the A line in the recipe template file is
recipe file truncated.
-6 Not a valid recipe The specified file is not a valid recipe
template file template file.
-7 Expecting "unit" or A unit name or recipe name is missing
"recipe” from the recipe template file.
-8 No units defined in No units have been defined in the
recipe template file Units Definition template of the recipe
file.
-9 Recipe name not found The specified recipe is not defined in
in recipe template file the recipe template file.
-10 Unit name not found in The specified unit name is not defined
recipe template file in the unit definition template file
-12 Expecting "Analog", An incorrect type has been entered for
"Discrete”, "Message" an item in the recipe template file.
Valid types are analog, discrete or
message.
-13 Type of tag mismatches The specified tag does not match the

"Analog", "Discrete”,
"Message"

item type. For example, a recipe item
is defined as analog and a message
tag has been defined as the unit for it.

27

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Value Error Message Description
-14 Invalid discrete value, An incorrect value has been entered
expecting "0", "1" for a discrete tag in the recipe

template file. The only valid values for
discrete tags are 0 or 1.

-15 Unable to open The temporary file cannot be opened
temporary file possibly because of insufficient free
disk space.

-16 Write error while saving An error occurred while saving the

recipe template file recipe template file.

-17 User did not select The user selected Cancel in the Select
a Recipe dialog box instead of a recipe
name.

-19 Recipe template in use The recipe template file specified is

by another application open and, therefore, cannot be
accessed by WindowViewer.

RecipeGetMessage() Function

The RecipeGetMessage() function takes an error number (returned by some other recipe function) and
returns the plain text error message for that error number.

Category
Recipe

Syntax
RecipeGetMessage (Analog Tag,Message Tag, Number) ;

Arguments

Analog_Tag
Error number for which you want to get the error message.

Message_Tag
Actual message tag with no quotes or string literal.

Number

The Number argument sets the maximum length of the string returned with the Message_Tag
argument. By default, InTouch message tags are set to the maximum length of 131 characters. Use
131 for this parameter unless you have reduced the maximum string length of Message_Tag in the
InTouch Tagname Dictionary. The Number argument can be a constant or an integer tag containing
a number.

Example

By using the RecipeGetMessage() function in an InTouch Data Change QuickScript, the error code is
written to the ErrorCode tag and the associated error code message is written to the ErrorM essage tag:
Data Change Script Tagname[.field]:ErrorCode

Script body:RecipeGetMessage (ErrorCode, ErrorMessage,131);

28

Using Recipe Manager AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

This QuickScript automatically runs whenever the value of the ErrorCode tag changes. When this
QuickScript runs, the RecipeGetMessage() function reads the current numeric value of the ErrorCode
tag and returns the message associated with that value to ErrorMessageTag.
ErrorCode = RecipelLoad

("c:\App\recipe.csv","Unitl", "cookies") ;
RecipeGetMessage (ErrorCode, ErrorMessageTag, 131);

Applying Security to Recipes
Access to recipes can be controlled by defining an ltem Name in the recipe template file that sets the
minimum security access level required to load, save, or delete a recipe.

In the following file sample, the SecurityLevel Item Name is defined as an analog tag. The Review unit
contains the SecurityLevel analog tag for this item. Each recipe defines a value that is loaded into the
SecurityLevel tag when the recipe is loaded into the Review unit.

= MACHINE.CSV vwﬁl
1 [2 | 3 [4 [5 | 6 | 7

| 1 [tem Name ltern Type Unit Unit Recipe PRecipe Recipe | |

| 2 |Names PLC‘I SetuplA SetupZAlSeluE3A|

| 3 |PARMI Analog PARM1 11 21 3

| 4 |PARMZ Analog PARMZ 12 22 a9

| 5 |PARM3I Analog PARM3 13 23 bh

| B |PARMA Analog PARM4 14 24 34

| 7 |PARMS Analog PARMS 11 21 3

| 8 |PARME Analog PARME 12 22 32

| 9 |PARM? Analog PARM? 13 23 33

| 10 |PARMS Analog PARMS 14 24 34
11 |PARMSY Analog PARMY 15 25 35

| 12 |SecurityLevel |Analog]Sel:urityLeveII 2000 5000 7000(+]
Ll »

You can create a window containing an access denied message that is shown whenever your security
access lewel is invalid for a selected recipe. To do so, the selected recipe must be loaded into a unit that
contains only an analog tag to which the selected recipe's security level value is loaded for verification.

For example:
RecipeSelectRecipe ("c:\recipe\machine.csv",
MyRecipe, "131");

The Select a Recipe dialog box appears. After you select a Recipe Name, it is returned to the
RecipeName tag and the script continues running.
RecipelLoad("c:\Recipe\Machine.csv", "Review", MyRecipe);
IF Securitylevel <= S$AccessLevel THEN
Status =Recipeload("c:\Recipe\Machine.csv", "PLCl", MyRecipe);
ELSE Show "Access Denied";
ENDIF;

When this script runs, if your access level is equal to or greater than 7000, the selected recipe's values
are loaded into PLC1 unit's tags. If not, the Access Denied window appears and the recipe is not loaded
into PLC1.

29

AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

CHAPTER 3

Working with SQL Databases from InTouch
About Working with SQL Databases from InTouch

A database stores information in tables that share a common attribute or field. Structured Query
Language (SQL) is the language you use to access that information in the form of a query. SQL Access
Manager allows you to access, modify, create, and delete database tables with queries.

SQL Access Manager is an optional program that can be installed with InTouch. SQL Access Manager
allows you to:

e Create and run complex queries. These queries can be built dynamically or saved in external files.
Additionally, these queries can contain parameters that are passed to the query at run time.

o Run SQL statements supported by your database and retrieve the results from the query. You can
also use stored procedures with SQL Access Manager, although not all stored procedure functions
are fully supported.

SQL functions can be automatically inserted into InTouch QuickScripts by clicking on the Add-ons button
within the QuickScript editor dialog. The SQL function is automatically inserted into the script at the
current cursor position.

You can use SQL Access Manager to transfer data, such as batch recipes from a SQL database to an

InTouch application. SQL Access Manager can also be used to transfer run-time data, alarm status, or
historical data from InTouch to a database. For example, after a machine cycle is completed, a company
wants to save several sets of data, each for a different application. SQL databases provide the ability for
information to be transferred between one or more third-party applications easily. SQL Access Manager
allows this data to be accessed and displayed in any InTouch application.

SQL Access Manager consists of a program and a set of SQL functions. The SQL Access Manager
program creates and associates database columns with InTouch tags. The process of associating
database columns and InTouch database tags is called binding. Binding the InTouch database tags to
database columns allows SQL Access Manager to directly manipulate InTouch data stored in a
database.

SQL Access Manager saves the database field names and their associations in a comma -separated
variable file named SQL.DEF. This file resides in the InTouch application folder and can be viewed or
modified using SQL Access Manager or any text editor, such as Notepad. SQL Access Manager also
creates Table Templates that define the structure and format of the database used with InTouch.

SQL functions can be used in scripts to automatically run based on operator input, a tag value changing,
or when a particular set of conditions exist. These functions allow you to select, modify, inser, or delete
records in the tables you choose to access. For example, if an alarm condition exists, the application can
run a script that includes the SQLInsert() or SQLUpdate() functions that save all of the applicable data
points and the state of the alarm.

Setting Up a Data Source

SQL Access Manager is an ODB C-compliant application that communicates with any database that
supports an available ODBC driver or an OLE DB provider.

You can configure the connection string to the database by several methods:

e Use the Microsoft ODBC Administrator program to configure the ODBC driver for use with SQL
Access Manager.

31

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

e Run the SQLConnect() function and specify an OLE DB provider with argument values. For more
information, see SQL Server Database Applications on page 36.

e Set the database connection string with an external UDL file.
To configure an ODBC driver
1. Run the Microsoft ODBC Administrator program.

2. Select a driver or data source, and then click Add New Name, Set Default or Configure. The ODBC
Driver Setup dialog box appears.

Option Description

Data Source Name User-defined name that identifies the data
source.

Description User-defined description of the data source.

Database Directory Identify the folder that contains database files. If

none is specified, the current working folder is
used.

3. Click OK.

Note: When you create an ODBC Data Source, an ODBC.INI file is created in the Windows directory.
You can manually edit the ODBC.INI file.

Mapping InTouch Tags to Database Columns

You can map InTouch Tags to database columns. This is done with a Bind List. Most SQL Access
functions use the Bind List to enable InTouch tags to access data in SQL database tables.

A Bind List associates database table columns to tags in the InTouch Tagname Dictionary. A Bind List
also includes a Table Template that describes the format of the database tables.

Table Template

Defines the structure of
database tables with column
names, data types, and lengths

Column Mame |Data Type

SQL Database Column Name |Data Type
— B Column Mame |Data Type

s
Ay

— Column Name |Data Type
Table

Column Mame |Data Type
S A
Bind List
Assigns InTouch tags .)
to table columns Tagname Dictionary

Column Name | tag1 InTouch tagl
Column Name | tag2 InTouch tag2
Column Name | tag3 InTouch tag3
Column Name | tagd InTouch tag4
Column Name | tag4 InTouch tags

32

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

When you run a script containing the SQLInsert(), SQLSelect() or SQLUpdate() functions, the Bind List is
updated to s pecify which InTouch tags are used and which table columns are associated with these tags.

To create anew Bind List

1.

On the Special menu, point to SQL Access Manager, and then click Bind List. A message requests
confirmation to create the SQL.DEF file.

Click Yes to create the SQL.DEF file. The Select a Bind List dialog box appears.

Click New. The Bind List Configuration dialog box appears.

Cidiien || Delete ltem | Moy liem | Cancel i3
Bind List Mame: |Damngra|:hi|: Save

Tagname. Fisldd ams LColurnn Hame:
Ifirslname IFilst_Name

Tagname FieldN ame: I Wove Up Move Down

Tagname.FieldName | Colunn Manme

firstname First_Name

lastname Last_Mame

| | i

In the Bind List Name box, type the Bind List Name.
A Bind List name can be up to 32 characters.

To define the tags for the Bind List, do one of the following:

o Inthe Tagname.FieldName box, type an InTouch tag name. You can also add an optional tag
dotfield in the form tag_name.dotfield_name.

o Double-click Tagname to select an existing tag. The Select Tag dialog box appears. Select atag
from the list.

Note: I/O type tags that are not used in your application, but are specified in a SQL Access Bind List, are
activated (advised to the DAServer) as soon as WindowViewer starts.

6.

10.

Select the dotfield to append to the tag by one of the following:

o Inthe Tagname.FieldName box, type a period and the dotfield name after the tag name

o Click FieldName. The Choose field name dialog box appears. Click the dotfield that you want to
append to the tag.

In the Column Name box, type the name of the column.

A column name can be up to 30 characters in length. If the column name has a space, use square
brackets around the column name in the Bind List and when used in a script. For example:
WHERE EXPR= "[Valve ID] = " + text (tagname,"#");

Position the tag within the Bind List by doing one of the following:

o Click Move Up to move the selected tag up one level in the list.

o Click Move Down to move the selected tag down one level in the list.

Click Add Item to add your new Tagname.FieldName and Column Name to the Bind List.

Click OK to save your new Bind List configuration and close the dialog box.

33

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Configuring the SQL Server String Delimiter in Bind Lists

The SQLInsert() and the SQLUpdate() functions use a default format that encloses message strings
within single quotation marks. Some SQL databases expect to receive message strings enclosed by
another type of delimiter. For example, Oracle 8.0 expects to receive a date string surrounded by
brackets. When this occurs, the Delim() function must be used.

In the Bind List Configuration dialog box Column Name field, after the column name, use the delim()
function. The keyword "delim" must be entered followed by:

e aleft parenthesis

e the left delimiter

o the list separator character defined in the system’s regional settings
e the right delimiter

e aright parenthesis

Example for an English system: datestring delim (',")

Example for a German system: datestring delim (';")

To use the same delimiter for both left and right, specify the delimiter in parentheses without the
separator, as shown in the following example:
datestring delim (' ")

To modify a Bind List

1. On the Special menu, point to SQL Access Manager, and then click Bind List. The Select a Bind List
dialog box appears.

Select Bind List Find: [Demographics ‘

[] | | | |

ak. | Cancel | Hew | Modify | Delete |

| Dermographics

2. Select the Bind List name that you want to change, and then click Modify. The Bind List Configuration
dialog box appears.

3. Modify the required items.
4. Click OK to save your changes and close the dialog box.
To modify a Bind List with Excel

SQL Access Manager saves the configuration information for the Bind Lists and table templates to the
SQL.DEF file. This file is formatted as a Comma Separated Value (CSV) file.

The SQL.DEF file can be modified with any product that supports Comma Separated Value files like
Excel.

The data appears in the file as follows:

:BindListName, BindListName

Tagnamel.FieldName, ColumnNamel
TagnameZ.FieldName, ColumnNameZ2
Tagname3.FieldName, ColumnName3
:TableTemplateName, TableTemplateName
ColumnNamel,ColumnType, [ColumnLength] ,Null, Index
ColumnNameZ2,ColumnType, [ColumnLength] ,Null, Index
ColumnName3,ColumnType, [ColumnLength] ,Null, Index

34

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

To delete aBind List

1. On the Special menu, point to SQL Access Manager, and then click Bind List. The Select a Bind List
dialog box appears.

Select the Bind List name that you want to delete.
Click Delete. A message appears requesting confirmation to delete the Bind List.

Click Yes to delete the selected Bind List. The Bind List Configuration dialog box reappears.

o DN

Click OK to close the dialog box.

Defining the Structure of a New Table

A Table Template defines the structure and format for new tables you create in the database. The Table
Template is stored in the SQL. DEF file.

To create a new Table Template
1. Onthe Special menu, point to SQL Access Manager, and then click Table Template.

2. Click New. The Table Template Configuration dialog box appears.

sdd liem | Defete tem | Moty fem | Cancel
Table Template Mame: |Templatel
Calummn Marme Calumn Type Lenath
|Emp\oyeeID |Declmal |7.2
Index Typ
’7 " Unique " Non-Unigue & None v Allow Null Entry

[ColmnTyps [Lengh | AllowNullEnty | Index Type]
Decimal 3 Hull Mare

Column Mame
EmployeelD

3. Inthe Table Template Name box, type the name of the Table Template.

A Table Template name can be up to 32 characters without an index. If you are creating an index,
unique or otherwise, the Table Template name must not exceed 24 characters.

4. Inthe Column Name box, type the column name of the Table Template.
A column name can be up to 30 characters.

5. Inthe Column Type box, type the data type for the column. Data type selections vary according to
the database being used.

6. Inthe Index Type area, select one of the following options:
o Unique: Each column value must be unique.
o Non-Unique: Each column value is not required to be unique.

o None: No index.

Note: When you run a script containing the SQLCreateTable() function, an index file is automatically
created.

7. Select Allow Null Entry to allow null data to be entered in this column.

Note: InTouch does not support null data.

When inserting data, ifa value has not been entered for a tag, null values are assigned by the type of
tag.

35

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Data Type Value

Discrete 0

Integer 0

Message Strings with no characters

8. Click Add Item to add your new column name, column type, length, and index type to the Table

9.

Template.

Click OK to save your new Table Template configuration and close the dialog box.

To modify a Table Template

1.

3.
4.

On the Special menu, point to SQL Access Manager, and then click Table Template. The Select a
Table Template dialog box appears.

Select a Table Template Find: |Template‘l |
i N I
Ok | Cancel | Hew | Madify | Delete |

Select the Table Template name that you want to modify, and then click Modify. The Table Template
Configuration dialog box appears.

Modify the required item.

Click OK to save your changes and close the dialog box.

To delete a Table Template

1.

2
3
4,
5

On the Special menu, point to SQL Access Manager, and then click Table Template. The Select a
Table Template dialog box appears.

Select the Table Template name that you want to delete.
Click Delete. A message appears requesting confirmation to delete the Table Template.
Click Yes. The Table Template Configuration dialog box reappears.

Click OK to close the dialog box.

Working with Database Applications

SQL Access Manager supports Oracle, Microsoft SQL Server, and Microsoft Access databases. Each
database's requirements are unique. This section includes separate sections that describe how to
configure the connection between each database and SQL Access Manager.

SQL Server Database Applications

You use the SQLConnect() function in an InTouch QuickScript to connect to a Microsoft SQL Server
database. The SQLConnect() function logs on a user to a SQL Server database and opens a connection.
The connection string used by the SQLConnect() function is formatted as follows:

(SQLConnect(Connectionld,"<attribute>=<value>;
<attribute>=<value>;...");

The ConnectionlD argument is an integer tag containing a session number. This session number is used
by almost every other SQL Access function to reference the connection to the SQL Server database. The
session number increments by 1 with each SQLConnect() function call.

36

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

The following table describes the SQL Connect() function attributes used by Microsoft SQL Server:

Attribute Value

Provider SQLOLEDB

Data Source Server name where the database is installed
Initial Catalog Database name

User ID Logon ID, case sensitive

Password Password, case sensitive

"Provider=SQLOLEDB.1;User ID=UserIDStr; Password=PasswordStr;Initial
Catalog=DatabaseName;Data Source=ServerName;"

SQL Access Manager associates the four types of InTouch tags (discrete, integer, real, and message)
with other SQL Server database data types.

Data Type Length Range Tag Type

char 8,000 1to 131 Message
characters

int -2,147,483,648 to Integer

2,147,483,647

float 15 digits -1.79E+308 to 1.79E+308 Real

The char data type contains fixed-length character strings. InTouch message tags require a char data
type. A field length must be specified. Microsoft SQL Server databases support a char field with a
maximum length of 8,000 characters. However, InTouch message tags are limited to 131 characters. Ifa
message tag value contains more characters than the length specified for a database field, the char
string is truncated when inserted into the database.

The int data type represents InTouch integer tags. If a field length is not specified, the length is set to the
default value of the database. If the length is specified, it is in the form Width. The Width determines the
maximum number of digits for the column.

The float data type represents InTouch real tags. The field length setting is fixed by the database. A field
length for this data type is not required.

Microsoft Access Database Applications

To communicate with Microsoft Access, you must connect to it by executing the SQLConnect() function
in an InTouch QuickScript.

The SQLConnect() function is used to connect to Microsoft Access databases. Running a script
containing the SQLConnect() function logs you on to the database server and opens a connection to
allow other SQL functions to be run. The connection string used by SQLConnect() is formatted as
follows:

SQLConnect(Connectionld,"<attribute>=<value>;
<attribute>=<value>;...");

DSN is a unique attribute used by Microsoft Access and identifies the name of the data source as
configured in the Microsoft ODB C Administrator.

37

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

SQLConnect (ConnectionId, "DSN=MSACC") ;

The valid data types that SQL Access Manager supports depends on the version of the ODBC driver

being used.

Data Type Length Default Range Tag Type
text 255 characters - -- Message
number - - - Integer
number -- - - Real

The text data type contains fixed length character strings and are used with InTouch Message tags. A

length must be specified. Microsoft Access databases support text fields with a maximum length of 255
characters. InTouch Message tags are limited to 131 characters. If a message variable contains more

characters than the length specified for a database field, the string will be truncated when inserted into

the database. The Microsoft Access ODBC driver supports up to 17 characters per column name. The

maximum number of columns supported when using SQLSetStatement(Select Col1, Col2, ...) is 40.

Oracle Database Applications

To establish communication between SQL Access and an Oracle database, you must connect to it by
running a script containing the SQLConnect() function.

To communicate with an Oracle 8.0 database

1. Verify the Oracle OLEDB Provider (MSDAORA.DLL) file is installed on the computer running
InTouch. This file is installed by MDAC, which is installed when you install InTouch.

2. Connect to Oracle by executing the SQL Connect() function in an InTouch action script.
The connection string used by the SQL Connect() function is formatted as follows:

SQLConnect(Connectionld,"<attribute>=<value>;
<attribute>=<value>;...");

The following table describes the function attributes used by Oracle:

Attribute Value

Provider MSDAORA

User ID User name

Password Password

Data Source Oracle Server machine name

SQLConnect (ConnectionId, "Provider=MSDAORA; Data Source=OracleServer; User
ID=SCOTT; Password=TIGER;");

The following table lists the valid data types that SQL Access Manager supports for an Oracle database.

38

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Data Type Length Default Range Tag Type

char 2,000 1 character Message
characters

number 38 digits 38 digits Integer

To log the date and time to an Oracle 8.0 date field, you must configure the bind list using the delim()
function.

To log both date and time to an Oracle date field

1. Inthe Application Explorer under SQL Access Manager, double-click Bind List. The Bind List
Configuration dialog box appears.

2. Inthe Tagname.FieldName box, type the tag that you want to use. For example, DATE_TIME_TAG.

3. In the Column Name box, type the name of the Oracle date field. If you are using Oracle 8.0, use the
delim() function to specify any delimiters. The delim() function is not required if you are using Oracle

9.2 or later.

4. Inyour InTouch application, create a QuickScript to prepare input data from present date and time.
For example:
DATE TIME TAG = "TO DATE('" + SDateString + " " + StringMid($TimeString,1,8)
+ "', 'mm/dd/yy hh24:mi:ss'")";

After the QuickScript runs in WindowViewer, the date appears in the following format:
TO DATE('08/22/06 23:32:18' , 'mm/dd/yy hh24:mi:ss"')

Performing Common SQL Operations in InTouch

InTouch uses SQL Access functions to interact with information stored in a database. These SQL
Access functions enable you to write scripts that select, modify, insert, or delete database records.

SQL actions are synchronous. When you run a database QuickScript from an InTouch application,
control does not return to InTouch until the database action requested by the function is c omplete.

SQL Access functions adhere to punctuation standards that describe the type of arguments associated
with a function. When an argument is entered in a script string surrounded by quotation marks ("Argl")
that exact string is used. If no quotation marks are used, the argument value is assumed to be a tag
name and the current value of the tag is associated with the argument.

Most SQL functions return a result code. If the result code is non-zero, the function failed and other
actions should be taken. The result code can be used by the SQLErrorMsg() function.

You insert SQL functions in your QuickScripts using the InTouch Quick Script editor. The general
procedure to insert a SQL function into a script includes the following steps:

To add a SQL function to a script

1. Start InTouch WindowMaker.

2. Open the QuickScript with the QuickScript editor.

3. Place the cursor in the script where you want to insert the SQL function.

4. Inthe Functions area, click Add-ons to show the Choose function dialog box.
5

Click on the SQL function that you want to insert into the QuickScript. The script updates and shows
the SQL function that you inserted.

The arguments associated with SQL Access functions consist of the following:

° BindList

39

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Corresponds to a Bind List name defined in the SQL. DEF file.
e ConnectionlD

The ConnectionlD argument refers to the name of a memory integer tag that holds the number (ID)
assigned by the SQLConnect() function to each database connection.

e ConnectString

The ConnectString identifies the database system and any additional logon information. It is entered

in the following format:
"DSN=data source name[;attribute=value
[;attribute=value]...]"

Microsoft SQL Server Connection Strings

o Microsoft OLE DB Provider for SQL Server (recommended use).
"Provider=SQLOLEDB.1;User ID=sa; Password=;Initial Catalog=MyDB;Data
Source=MyServer;"

The OLE DB Provider for SQL Server is sqgloledb.

o Microsoft OLE DB Provider for SQL Server (recommended use)
"Provider=SQLOLEDB.1l;uid=sa;pwd=; Database=MyDB"

o Microsoft OLE DB Provider for ODBC (using the default provider MSDASQL for SQL Server):
"DSN=Pubs;UID=sa; PWD=;"

o Microsoft OLE DB Provider for ODBC (using the default provider MSDASQL for SQL Server):
"Data Source=Pubs;User ID=sa;Password=;"

Oracle Connection Strings

o Microsoft OLE DB Provider for Oracle (recommended use)
"Provider=MSDAORA;Data Source=ServerName;User ID=UserIDStr;
Password=PasswordStr;"

Microsoft Access Connection Strings

Microsoft OLE DB Provider for Microsoft Jet (recommended use). Microsoft.Jet. OLEDB.4.0 is the
native OLE DB Provider for Microsoft Jet (Microsoft Access Database engine).
"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=d: \DBName.mdb;User
ID=UserIDStr; Password=PasswordStr;"

Microsoft OLE DB Provider for ODBC (using the default provider MSDASQL for MS Access):
"Provider=MSDASQL; DSN=DSNStr; UID=UserName; PWD=PasswordStr;"

e ErrorMsg

Message variable containing a text description of the error.
e FileName

Name of the file in which the information is contained.
e MaxLen

Maximum size of the column associated with a parameter. This argument determines whether the
data is of varying character or long varying character type. If MaxLen is less than or equal to the
largest character string allowed by the database, then the data is varying character type. If greater,
then the data is long varying character type.

e OrderByExpression

Defines the columns and either ascending or descending sort order. Only column names can be
used to sort. The expression must be formatted:

ColumnName [ASC|DESC]

40

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

To sort the selected table by a column name in ascending order:

"manager ASC"

To sort by multi-columns, the expression is formatted:

ColumnName [ASC|DESC],

ColumnName [ASC|DESC]

To sort a selected table by one column name (for example, temperature) in ascending order and
another column name (for example, time) in descending order:

"temperature ASC,

e ParameterNumber

time DESC"

Actual parameter number in the statement

e ParameterType

Data type of the specified parameter. Valid values are:

Type Description

Char Blank padded fixed length string
Var Char Variable Length String

Decimal BCD Number

Integer 4-byte signed integer

Small integer

2-byte signed integer

Float

4-byte floating point

Double Precision Float

8-byte floating point

DateTime 8-byte date time value
Date 4-byte date time value
Time 4-byte date time value
No Type No data type

e ParameterValue

Actual value to set.

e Precision

Is the decimal value's precision, the maximum size of the character, or the length in bytes of the

date-time value.

e RecordNumber

Actual record number to retrieve.

e ResultCode

Integer variable returned from most SQL functions. ResultCode is returned as zero (0) if the function
is successful and a negative integer if it fails.

e Scale

41

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Is the decimal value's scale. This value is required only if applicable to the parameter being set to
null.

e StatementID

When using the advanced functionality statements, SQL returns a StatementID, which it uses
internally.

e SQLStatement

Actual statement, for example:
ResultCode=SQLSetStatement (ConnectionID, "Select LotNo, LotName from
LotInfo");

e TableName

The TableName parameter contains the name of the table you want to access or create in the
database.

e TemplateName
The TemplateName parameter is the name of the template in the SQL.DEF file that defines the table.
o WhereExpr

Defines a condition that can be either true or false for any row of the table. The function extracts only
those rows from the table for which the condition is true. The expression must be in the following
format:

ColumnName comparison_operator expression

Note: If the column is a character data type, the expression must be enclosed within single quotation
marks.

The following example selects all rows whose Name column contains the value EmployeelD:
Name="'EmployeeID'

The following example selects all rows containing part numbers from 100 to 199:
partno>=100 and partno<200

The following example selects all records whose temperature column contains a value greater than

350:
temperature>350

Connecting and Disconnecting the Database

Use the SQLConnect() and SQLDisconnect() functions in a script to connect to and disconnect from a
SQL database.

SQLConnect() Function

You use the SQL Connect() function in an InTouch QuickScript to connect to the database specified by
the ConnectString argument.<

SQLConnect() returns a value to the ConnectionID argument that is used as a parameter in all
subsequent SQL functions. You must have a Bind List defined in the application folder before using the
SQLConnect function in a script.

Category
SQL

Syntax
[ResultCode=] SQLConnect (ConnectionID, "ConnectString"):;

42

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Arguments

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to

each database connection.

ConnectString
String that identifies the database and any additional logon information used in SQLConnect()

function.
Remarks
You must have a Bind List (a SQL.DEF file) in the application folder. This function does not work without
it.
If SQLTrace=1 is defined under the [InTouch] section of the win.ini file, each successful execution of

SQLConnect logs version information for the ADO, the provider, and the database system to the Log
Viewer.

Examples

The following statements connects to IBM OS/2 Database Manager and to the database named

SAMPLE:
[ResultCode=] SQLConnect (ConnectionID, "DSN=0S2DM;
DB=SAMPLE") ;

This function returns a value to the ConnectionID variable that is used as a parameter in all subsequent
SQL Functions.

"DSN=data source name[;attribute=value
[;attribute=value]...]"

SQLDisconnect() Function

The SQLDisconnect() function disconnects you from the database and cleans up all unreleased
resources that were obtained for SQLPrepareStatement() and SQLInsertPrepare() functions.

Category
SQL

Syntax
[ResultCode=]SQLDisconnect (ConnectionlID) ;

Argument

Connectionld
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to

each database connection.
See Also
SQLConnect()

Creating a New Table
You use the SQLCreateTable() function in an InTouch QuickScript to create a table in the database
using the parameters from a specified Table Template.

SQLCreateTable() Function

You use the SQLCreateTable() function in an InTouch QuickScript to create a table in the database
using the parameters from a specified Table Template. Table Templates are defined inthe SQL. DEF file,
which includes the structure of a database table.

43

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Category
SQL

Syntax
[ResultCode=]SQLCreateTable (ConnectionID, TableName, TemplateName) ;

Arguments

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

TableName
Name of the database table you want to create.

TemplateName
Name of the template definition you want to use.

Examples

The following example ofthe SQLCreatTable() function creates atable named BATCH1 with the column
names and data types defined in the OutputVal template:

ResultCode=SQLCreateTable (ConnectionID, "BATCH1",

"Outputval") ;

See Also
SQLConnect()

Deleting a Table

You use the SQLDropTable() function in an InTouch QuickScript to drop a table from the database.

SQLDropTable() Function

You use the SQL DropTable() functionin an InTouch QuickScript to drop atable from the database. After
the QuickScript containing the SQL Drop Table() function finishes, the table is no longer recognized and
does not respond to any SQL statements.

Category
SQL

Syntax
[ResultCode=] SQLDropTable (ConnectionID, TableName) ;

Arguments

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

TableName
Name of the table that you want to drop from the database.

Example

The following example of the SQL DropTable() function drops the BATCH1 table from the database:
ResultCode=SQLDropTable (ConnectionID, "BATCHL") ;

See Also
SQLConnect()

44

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Retrieving Data from a Table

You can use a set of SQL functions in scripts to retrieve data from a database and write the values to
InTouch tags.

e The SQLSelect() function retrieves information from a table and places this information in the form of
records into a temporary Results Table created in memory.

e The SQLGetRecord() function retrieves the record specified by RecordNumber from the current
selection buffer.

e The SQLNumRows() function returns the number of table rows that met the criteria specified in a
previous SQLSelect() function.

e The SQLFirst() function retrieves the first record of the Results Table created by the last
SQLSelect() function.

e The SQLNext() function retrieves the next record of the Results Table created by the last
SQLSelect() function.

e The SQLPrev() function retrieves data from the previous row of the logical table and fetch values
from that row into InTouch tags.

e The SQLLast() function retrieves the last row of the logical table and fetch values from that row into
InTouch tags.

e The SQLENd() function frees memory that stores the contents of the Results Table associated with
Connectionld.

The SQLFirst(), SQLPrev(), SQLNext(), SQLLast(), and SQL GetRecord () functions retrieve data from
specified rows of the logical table and save it as InTouch tag values. If a field is NULL, the value of the
associated InTouch tag is set to zero or a zero-length string depending on whether the tag is of analog or
message type.

If astring inthe database is greater than 131 characters, only the first 131 characters are copied from the
database to the associated InTouch message tag.

SQLSelect() Function

The SQLSelect() function retrieves records from a table. When the script containing the SQLSelect()
function is processed, the retrieved records are placed in a temporary Results Table in memory. These
records can be browsed using the SQLFirst(), SQLLast(), SQLNext() and SQLPrev() functions.

Important: Always call the SQLENnd() function after the script containing the SQLSelect() function ends
to free memory used by the Results Table.

Category
SQL

Syntax
[ResultCode=]SQLSelect (ConnectionID, TableName,
BindList, WhereExpr, OrderByExpression) ;

Arguments

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

TableName
Name of the database table to access.

45

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

BindList
Defines which InTouch tags are used and which database.

WhereExpr

Defines a condition that can be either true or false for any row of the table. The SQLSelect() function
extracts data from only those rows in which the WhereE xpr condition is true. The expression must be
in the following format:

ColumnName comparison_operator expression.

Note: Ifthe comparison is made with a character expression, the expression must enclosed within single
guotes.

The following example selects all rows whose name column contains the value EmployeelD:

name='EmployeeID'

The following example selects all rows containing part numbers from 100 to 199:

partno>=100 and partno<200

The following example selects all rows whose temperature column contains a value greater than
350:

temperature>350

WhereExpr - Memory message Tag

OrderByExpr - Memory message Tag

Speed Input - Memory Real - User Input Analog

Serial Input - Memory Message - User Input String
Analog Example
WhereExpr = "Speed = " + text

(Speed Input, "#.##");

Because Speed_Input is a number, it must be converted to text so it can be concatenated to the
WhereExpr string.

String Example

WhereExpr = "Ser No = ‘" +

Serial input + "'";

Because Serial_Input is a string it must have single quotes around the value for example:WhereExpr
= "Ser_No="125gh™;

String Example using the like statement

WhereExpr = "Ser No like ‘-'"

When using the Like comparison operator the % char can be used as a wild card.

String and Analog Example using a Boolean AND operator

WhereExpr = "Ser No = ‘" + Serial input + "'" + " and " + "Speed = " +
text (Speed Input,"#.##");OrderByExpr = "";

If the order does not matter, use a null string as shown above.

SQLSelect using WhereExpr tag

ResultCode = SQLSelect (Connect Id,TableName,

BindList,

WhereExpr, OrderByExpr) ;

Error msg = SQLErrorMsg(ResultCode);

SQLSelect WhereExpr built in function

ResultCode = SQLSelect (Connect Id,TableName,

BindList,

"Ser No = ‘" + Serial input + "’'", OrderByExpr);
Error msg = SQLErrorMsg(ResultCode);
OrderByExpr

Defines the direction to sort data within a table column. Only column names can be used to sort and
the expression must be in this form:
ColumnName [ASC|DESC]

The following example sorts a table in ascending order by the data from the manager column:
"manager ASC"

46

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

You can also sort by multi-columns where the expression is in the form:

ColumnName [ASC|DESC],

ColumnName [ASC|DESC]

The next example sorts the selected table by the temperature column in ascending order and the
time column in descending order:

"temperature ASC,time DESC"

Examples

The following statement selects records from the BATCH table using a BindList named Listl, whose
column name type contains the value cookie. It will present the information sorted by the amount column
in ascending order and the sugar column in descending order:

ResultCode=SQLSelect (ConnectionID, "BATCH", "Listl","type='cookie'","amount

ASC, sugar DESC") ;

The following statement selects all data in the database, do not specify a value for the WhereExpr and
OrderByExpr:
ResultCode=SQLSelect (ConnectionID, "BATCH", "Listl1", "","");

See Also
SQLFirst(), SQLConnect(), SQLLast(), SQLNext(), SQLPrev(), SQLEnd(), SQLSelect()

SQLGetRecord() Function

The SQLGetRecord() function retrieves the record specified by the RecordNumber argument from the
current selection buffer.

Category
SQL

Syntax
[ResultCode=]SQLGetRecord (ConnectionID, RecordNumber):;

Arguments

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

RecordNumber
Actual record number to retrieve.

Example
ResultCode=SQLGetRecord (ConnectionID, 3) ;

See Also
SQLConnect()

SQLNumRows() Function

The SQLNumRows() function indicates how many rows met the criteria specified in the last SQLSelect()
function. For example, if a WhereExpr argument is used to select all rows with a column name AGE,
where AGE is equal to 45, the number of rows returned could be 40 or 4000. This may determine which
function is processed next.

Category
SQL

Syntax
SQLNumRows (ConnectionID) ;

47

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Argument

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

Example

The following statement returns the number of rows selected to the NumRows integer tag:
NumRows=SQLNumRows (ConnectionID) ;

See Also
SQLConnect()

SQLFirst() Function

The SQLFirst() function selects the first record of the Results Table created by the last SQLSelect()
function.

Category
SQL

Syntax
[ResultCode=]SQLFirst (ConnectionID) ;

Argument

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

See Also
SQLConnect(), SQLSelect()

SQLNext() Function

The SQLNext() function selects the next record in sequence of the Results Table created by the last
SQLSelect() function. A SQLSelect() function must be processed before running the SQLNext() function
in a script.

Category
SQL

Syntax
[ResultCode=] SQLNext (ConnectionID) ;

Argument

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

Example
ResultCode=SQLNext (ConnectionID) ;

See Also
SQLConnect(), SQLSelect()

48

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

SQLPrev() Function

The SQLPrev() function selects the previous record of the Results Table created by the last SQLSelect()
function.

Category
SQL

Syntax
[ResultCode=] SQLPrev (ConnectionID) ;

Argument

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

Remarks
A SQLSelect() function must be processed before using this command.

Example
ResultCode=SQLPrev (ConnectionID) ;

See Also
SQLConnect(), SQLSelect()

SQLLast() Function

The SQLLast() function selects the last record of the Results Table created by the previous SQLSelect()
function.

Category
SQL

Syntax
[ResultCode=] SQLLast (ConnectionID) ;

Argument

ConnectionlD

Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

Example
ResultCode=SQLLast (ConnectionID) ;

See Also
SQLConnect(), SQLSelect()

SQLENd() Function

The SQLENd() function is run after the SQLSelect() function to free memory used to store the contents of
the Results Table.

Category
SQL

Syntax
[ResultCode=] SQLEnd (ConnectionID) ;

49

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Argument

ConnectionlD

Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

See Also
SQLConnect(), SQLSelect()

Writing New Records to a Table

You can insert new records to a database using the SQLInsert() function. The SQLInsert() function
uses the current value of an InTouch tag to insert one record into a table. The SQLInsert() function is a
one step operation that prepares, inserts, and ends the statement.

If the string associated with an InTouch message tag is longer than the defined size of the corresponding
text field of the table, the number of characters used from the message tag will be the defined size of the
field.

Note: InTouch tags cannot be NULL. It is impossible to update or insert NULL valu es into the database
using these functions if the Bind List includes the field. You can insert NULL values into a field using

SQLExecute on an INSERT statement that does not include the field, which should have been defined
to allow NULL values.

SQL Access provides three other functions that separately prepare, insert, and clean up after a record
insertion. Using these functions together, you can write scripts that include a single prepare and end
statement and add as many record insert statements as needed. If you use individual functions to insert
data instead of the SQLInsert() function, you can reduce resource usage on the computer.

SQLInsert() Function

The SQLlInsert() function inserts a new record into the referenced table using the values of the tags in the
supplied BindList. The BindList parameter defines which InTouch tags are used and which database
columns they are associated.

Use the SQLInsert() function to prepare, insert, and end the statement.
Category
SQL
Syntax
[ResultCode=]SQLInsert (ConnectionID, TableName, BindList) ;
Arguments

ConnectionlD

Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

TableName
Name of the database table you want to access.

BindList
Defines which InTouch tags are used and which database columns they are associated with.

Example

The following statement inserts a new record into table ORG with the tag values specified in List1:
ResultCode=SQLInsert (ConnectionID, "ORG", "Listl") ;

50

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

SQLInsertPrepare() Function

The SQLInsertPrepare() function creates and prepares an Insert statement each time the function runs.
The Insert statement is not processed. The StatementID argument is an integer tag containing a value
after the statement is processed.

Category
SQL

Syntax
[ResultCode=]SQLInsertPrepare (ConnectionID, TableName,BindList,StatementlID) ;

Arguments

ConnectionlD

Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

TableName
The name of the database table to access.

BindList
Defines which InTouch tags are used and which database columns they are associated with.

StatementID
Integer value returned by SQL when a SQLPrepareStatement() function is used.

See Also
SQLConnect(), SQLPrepareStatement()

SQLInsertExecute() Function

The SQLInsertExecute() function runs the previously prepared insert statement specified by the
SQLInsertPrepare() function.

The SQLInsertExecute() function uses the current values of InTouch tags to insert one row into the table
identified by the previous SQLInsertPrepare() function. If the BindList argument includes an Identity key
field for a MS SQL Server table, it is necessary to set the IDENTITY_INSERT option before running
SQLInsertExecute().

The StatementID argument contains an integer value returned by SQL when a previous
SQLInsertPrepare() function is run within the script.

Category
SQL

Syntax
[ResultCode=]SQLInsertExecute (ConnectionID, BindList,StatementID) ;

Arguments

ConnectionlD
A memory integer tag created by the user to hold the number (ID) assigned by the SQLConnect
function to each database connection.

BindList
Defines which InTouch tags are used and which database columns they are associated with.

StatementID
Integer value returned by SQL when a SQLPrepareStatement() function is used.

51

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

See Also
SQLConnect(), SQLPrepareStatement()

SQLInsertEnd() Function

The SQLInsertEnd function cleans up resources associated with the StatementID function created by
SQLInsertPrepare.

The following example shows how multiple insert functions should be specified in a script.
ResultCode = SQLSetStatement (ConnectionId, "SET IDENTITY INSERT Products ON");
ResultCode = SQLExecute (ConnectionId, "", 0);

ResultCode = SQLInsertPrepare (ConnectionId, TableName, Bindlist, StatementID) ;
ResultCode = SQLInsertExecute (ConnectionId, Bindlist, StatementID);
ResultCode = SQLInsertEnd(ConnectionId, StatementID);

Category
SQL

Syntax
[ResultCode=]SQLInsertEnd (ConnectionID, StatementID) ;

Argument

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

StatementID
Integer value returned by SQL when a SQLPrepareStatement() function is used.

See Also
SQLConnect(), SQLPrepareStatement()

Updating Existing Records in a Table

SQL Access provides two functions to update table records with values from InTouch tags:
e SQLUpdate()
e SQLUpdateCurrent()

SQLUpdate() Function

The SQLUpdate() function uses the current values of InTouch tags to update all rows in a table that
match the condition set by the WhereExpr argument.

Category
SQL

Syntax
[ResultCode=]SQLUpdate (ConnectionID, TableName, BindList,WhereExpr) ;
Argu ments

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

TableName
The name of the database table to access.

52

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

BindList
Defines which InTouch tags are used and which database columns they are associated with.

WhereExpr

Defines a condition that can be either true or false for any row of the table. The function updates only
those rows from the table for which the condition is true. The expression must be in the following
format:

ColumnName comparison_operator expression.

Note: If the column is a character data type, the expression must be in single quotes.

The following example selects all rows whose name column contains the value EmployeelD:
name='EmployeeID'

The following example selects all rows containing part numbers from 100 to 199:

partno>=100 and partno<200

The following example selects all rows whose temperature column contains a value that is greater
than 350:

temperature>350

Example

The following statement updates all records in the table BATCH, whose lot number is 65, to the current
values of the tags specified in the BindList "List1":
ResultCode=SQLUpdate (ConnectionID, "BATCH", "Listl","lotno=65");

Note: Be sure that all records are unique. If identical records exist in a table, all similar records are
updated.

See Also
SQLConnect()

SQLUpdateCurrent() Function

The SQLUpdateCurrent() function updates the current row of the logical table using InTouch tags
mapped to the table fields by the Bind List specified in SQLSelect() or SQLExecute() function
statements. If there are rows that are identical to the current row, all rows are updated.

Up to 54 identical records can be updated at once. If there are too many identical rows to be updated in
SQL Access, the SQLUpdateCurrent() function returns an error. The error message is similar to,
"Microsoft Cursor Engine: Key column information is insufficient or incorrect. Too many rows were
affected by update."

To avoid this error, create a unique key field in the table that makes each row unique. It is strongly
recommended that all tables used by SQL Access have a unique key. For a table without a key, it is
recommended that a field of type AutoNumber (Access) or an integer field used as the row Identity (SQL
Server) be used as the primary key so that SQLUpdateCurrent() function updates only one row at a time.
This primary key field does not have to be included in a Bind List.

Category

SQL

Syntax

[ResultCode=] SQLUpdateCurrent (ConnectionID) ;
Argument

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

53

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Example
ResultCode=SQLUpdateCurrent (ConnectionID) ;

See Also
SQLConnect()

Deleting Records from a Table

You can use two SQL functions to remove records from a database table.
SQL Access provides two functions to delete table records:
e SQLClearTable() deletes records from a table.

e SQLDelete() deletes records from a table that match a specified condition

SQLClearTable() Function

The SQL ClearTable() function deletes all records from a table. It does not delete the table from the
database.

Category
SQL

Syntax
[ResultCode=]SQLClearTable (ConnectionID, "TableName") ;

Arguments

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

TableName
Name of the table in which all records are cleared.

Example

In the following example, the SQLClearTable() function clears all records from the BATCH1 table.
ResultCode=SQLClearTable (ConnectionID, "BATCH1") ;

See Also
SQLConnect(), SQLClearStatement()

SQLDelete() Function

The SQL Delete() function removes all records from a table that match a condition specified by the
WhereExpr argument.

Category

SQL

Syntax

[ResultCode=]SQLDelete (ConnectionID, TableName, WhereExpr) ;
Arguments

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

54

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

TableName
Name of the table in which records are cleared that meet the condition specified by the WherExpr
argument.

WhereExpr

Defines a condition that can be either true or false for any row of the table. The SQL Delete() function
deletes only those row records in which the WherExpr condition is true. The expression must be in
the following format:

ColumnName comparison_operator expression

Note: The SQLDelete() function cannot contain a null WhereExpr argument.

Example

The following statement deletes all records in the BATCH1 table whose lot number is equal to 65:
ResultCode=SQLDelete (ConnectionID, "BATCH1", "lotno=65");

Note: If the column is a character data type, the expression must be in single quotes such as
"MachinelD="AG_LX7_2".

See Also
SQLConnect()

Executing Parameterized Statements

Use the SQLSetStatement() and the SQLAppendStatement() functions to build dynamic queries. The
SQLSetStatement() function starts a new SQL statement. This can be any valid SQL statement,
including the name of a stored procedure. The SQLAppendStatement() function continues a SQL
statement using the contents of string.

SQLSetStatement() Function

The SQLSetStatement() function starts a SQL statement buffer using the contents of SQLStatement, on
the established connection, ConnectionID. There can be one SQL Statement buffer per ConnectionID.
Errors are returned in the function return.

Category
SQL

Syntax
[ResultCode=] SQLSetStatement (ConnectionID, SQLStatement) ;

Arguments

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

SQLStatement
Actual SQL statement, see the following examples.

Examples
ResultCode=SQLSetStatement (ConnectionID, "Select LotNo, LotName from LotInfo") ;

In the following example, the StatementlD is set to zero so the statement does not have to call
SQLPrepare(Connect_ld, StatementID) before running the statement. Because the StatementID is not
created by the SQLPrepare to properly end this select, use the SQLEnd() function instead of the
SQLClearStatement() function.

SQLSetStatement (Connect Id, "Select Speed, Ser No from tablename where Ser No
=r" 4 Serial input + "'");

SQLExecute (Connect Id,0);

55

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

In the following example, the StatementlD is created by the SQLPrepareStatement() function and used
in the SQLExecute() function. To end this SELECT statement, use the SQLClearStatement() function to
free resources and the handle.

SQLSetStatement (Connect Id, "Select Speed, Ser No from tablename where Ser No
=rm" 4 Serial input + "'");

SQLPrepareStatement (Connect Id,StatementID);
SQLExecute (Connect Id,StatementID);

SQLSetStatement (Connect Id, "Select Speed, Ser No from tablename where Ser No
="+ Serial input + "'");

SQLPrepareStatement (Connect Id,StatementID);
SQLExecute (Connect Id,StatementID);

See Also
SQLConnect()

SQLAppendStatement() Function

The SQLAppendStatement() function continues a SQL statement using the contents of a string. A return
value indicates if an error occurred during the function call.

InTouch tags can support character strings to a maximum of 131 characters. You typically use the
SQLAppendStatement() function to concatenate additional strings to a statement.

Category
SQL

Syntax
[ResultCode=]SQLAppendStatement (ConnectionID, "SQLStatement") ;

Arguments

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

SQLStatement
Actual statement to append.

Example
ResultCode=SQLAppendStatement (ConnectionID, "where
tablename.columnname=TR-773-01") ;

See Also
SQLConnect(), SQLClearStatement()

Creating a Statement or Loading an Existing Statement from a File

You can create a query with other third-party database tools, and then use SQL Access to run the query.
First, you must load the SQL statement from an .SQL query file created by the third -party database tool.
ResultCode = SQLLoadStatement (ConnectionID, "c:\myappdir\lotquery.sqgl");

You load the SQL query using the SQLoadStatement() function. The statement is now ready to run.

SQLLoadStatement() Function

The SQLLoadStatement() function reads a SQL statement from a file.

There can be only one statement per file. However, SQLAppendStatement() function can be used to
append something to the statement if SQLPrepareStatement() function or SQLExecute() function has
not been called.

56

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Category
SQL

Syntax
[ResultCode=] SQLLoadStatement (ConnectionID, FileName) ;

Arguments

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

FileName
Name of the file containing the SQL statement.

Remarks

After you load the statement and get the statement handle, use the SQLPrepareStatement() function to
prepare the statement for execution.

Example

The SQL.txt file contains the following SQL statement:
Select ColumnName from TableName where ColumnName>100;

The SQLLoadStatement() function loads the statement from the file.
ResultCode=SQLLoadStatement (ConnectionID,
"C:\SQL.txt")

See Also
SQLConnect(), SQLAppendStatement(), SQLExecute(), SQLPrepareStatement

Preparing a Statement

Using the following functions, you can create any parameterized statement you want, and then
dynamically fill in the parameters one by one. For example, you could save a generic statement in a file,
load it using the SQLLoadStatement() function, prepare it using the SQLPrepareStatement() funtion to
get a statement ID, and then fill in the statement parameters using the following functions:

e SQLPrepareStatement()
e SQLSetParamChar()

e SQLSetParamDate()

e SQLSetParamDateTime()
e SQLSetParamDbDecimal()
e SQLSetParamFloat()

e SQLSetParamint()

e SQLSetParamLong()

e SQLSetParamNull()

e SQLSetParamTime()

e SQLClearParam()

e SQLClearStatement()

To perform parameter substitution on a SQL statement, place a"?" in the SQL statement where you want
to specify a subsequent parameter. The statement is prepared, parameters are set into the statement,
and then the statement is run.

57

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

SQLPrepareStatement() Function

The SQLPrepareStatement() function prepares the SQL statement to be run. It does not run the
statement, it just makes the statement active so you can set parameter values.

Category
SQL

Syntax
SQLPrepareStatement (ConnectionId, StatementID)

Arguments

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

Remarks

Prepare the default statement and return a StatementID (1, 2, 3, and so on). This preparation is useful for
statements with parameters that need to be set using the SQLS etParam{Type} functions.

Setting Statement Parameters

SQL Access Manager provides a set of functions to modify the value assigned to a parameterincluded in
a SQL statement.

SQLSetParamChar() Function

The SQLSetParmChar() function can be used in a script to set the value of the specified parameter
to the specified string. The function can be called multiple times before executing, resulting in the
parameter value being set to the concatenation of all values sent. Lengths of O (zero) are ignored.

Category

SQL

Syntax

SQLSetParamChar (StatementID, ParameterNumber, ParameterValue, MaxLength) ;

Arguments

StatementID
Integer value returned by SQL when a SQLPrepareStatement() function is used.

ParameterNumber
Parameter number in the statement.

ParameterValue
Value to set as the parameter value.

MaxLength

Maximum width of the column with which this parameter is associated. This setting determines
whether the parameter is of varying character or long varying character type. If MaxLength is less
than or equal to the largest character string allowed by the database, then the parameter is varying
character type. If greater, long varying character type.

See Also
SQLPrepareStatement()

58

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

SQLSetParamDate() Function
The SQLSetParamDate() function sets the value of a parameter to a specified date.
Category
SQL

Syntax
SQLSetParambDate (StatementID, ParameterNumber, "Value");

Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Integer value that identifies the parameter in the SQL statement identified by the StatementID
argument.

Value
Date assigned to the parameter as a literal enclosed with double quotation marks or the name of a
tag whose value is a date. The time assigned to the date is 12:00:00 am.

Example

This example sets the second parameter of the third statement to the date associated with the NewDate
tag.
SQLSetParambate (3, 2, NewDate) ;

See Also
SQLPrepareStatement()

SQLSetParamDateTime() Function
The SQLSetParamDateTime() function sets the value of a parameter to a specified date and time.
Category
SQL
Syntax

SQLSetParambDateTime (StatementID, ParameterNumber, Value, Precision);
Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Integer value that identifies the parameter in the SQL statement identified by the StatementID
argument.

Value
Date and time to assign to the parameter identified by the ParameterNumber argument.

Precision
Integer that specifies the number of characters of the date-time value assigned as the value of the
parameter.

See Also
SQLPrepareStatement()

59

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

SQLSetParamDecimal() Function
The SQLSetParamDecimal() function sets the value of a parameter to a decimal number.
Category
SQL
Syntax
SQLSetParambDecimal (StatementID, ParameterNumber, Value, Precision,Scale);

Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Integer value that identifies the parameter in the SQL statement identified by the StatementID
argument.

Value

Value can be either a string or an InTouch message tag that represents a decimal number (123.456)
or an InTouch memory real tag.

It is recommended that a message tag is used instead of a real tag to guarantee the precision of the
parameter. However, if Value must be a floating point number (for example, a real value received
from an DAServer), the function continues to work. But, high precision may not be guaranteed
because of the limitation of floating point representation.

Precision
Integer that specifies the total number of digits in the number.

Scale
Integer that specifies the number of digits to the right of the decimal point.

Example

This example sets the second parameter of the third SQL statement to 123.456. The precision is six
digits and the scale is three digits to the right of the decimal point.
SQLSetParamFloat (3, 2, 123.456, 6, 3)

See Also
SQLPrepareStatement()

SQLSetParamFloat() Function

The SQLSetParamFloat() function sets the value of a parameter to a 64-bit, signed, floating-point
value.

Category

SQL

Syntax

SQLSetParamFloat (StatementID, ParameterNumber, Value);
Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Integer value that identifies the parameter in the SQL statement identified by the StatementID
argument.

60

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Value
64-bit, signed, floating-point number to assign as the value of the specified parameter.

Example

This example sets the second parameter of the third SQL statement to -5.
SQLSetParamFloat (3, 2, -5)

See Also

SQLPrepareStatement()

SQLSetParamint() Function

The SQLSetParamint() function sets the value of a parameter to a 16-bit signed integer.
Category
SQL

Syntax
SQLSetParamInt (StatementID, ParameterNumber, Value);

Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Integer value that identifies the parameter in the SQL statement identified by the StatementID
argument.

Value
16-bit, signed, integer to assign as the value of the specified parameter.

Example

This example sets the second parameter of the third SQL statement to -5.
SQLSetParamInt (3, 2, -5)

See Also
SQLPrepareStatement()

SQLSetParamLong() Function
The SQLSetParamLong() function sets the value of a parameter to a 32-bit signed analog number.
Category
SQL
Syntax
SQLSetParamlong (StatementID, ParameterNumber, Value);
Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Integer value that identifies the parameter in the SQL statement identified by the StatementID
argument.

61

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Value
32-bit signed analog number to assign as the value of the specified parameter.

Example

This example sets the third parameter of the first statement to 4.5e12.
SQLSetParamlong (1, 3, 4.5el2);

See Also
SQLPrepareStatement()

SQLSetParamNull() Function
The SQLSetParamNull() function sets a specified parameter within a SQL statement to NULL.
Category
SQL

Syntax
SQLSetParamNull (StatementID, ParameterNumber, ParameterType, Precision, Scale)

Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Integer value that identifies the parameter in the SQL statement identified by the StatementID
argument.

ParameterType

Integer value that specifies the type of data associated with the parameter specified by the
ParameterNumber argument. The ParameterType argument can be assigned the following values:
0: String

1: Date/time

2: Integer

3: Floating point number

4: Decimal number

Precision
Precision of the data associated with the parameter data type.

Scale
Decimal value's scale. This value is required only if applicable to the parameter being set to null.

Remarks

Comparison with the NULL value is controlled by the ANSI_NULLS option in SQL Server. In SQL Server
7.0, this option is resolved at object creation time, not at query execution time. When a stored procedure
is created in SQL Server 7.0, this option is ON by default and thus a clause such as "WHERE MyField =
NULL" always returns NULL (FALSE) and no row is returned from a SELECT statement using this
clause.

In order for the comparison = or <> to return TRUE or FALSE, it is necessary to set the option to OFF
when creating the stored procedure. If the ANSI_NULLS is not set to OFF, then SQLSetParamNull()
does not work as expected. In this case, comparison against NULL value should use the syntax
"WHERE MyField IS NULL" or "WHERE MyField IS NOT NULL".

Example

This transaction set returns all rows of the Products table where the ProductName is not NULL.
SET ANSI NULLS OFF
GO

62

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

CREATE PROCEDURE sp TestNotNull @ProductParam varchar (255)
AS SELECT * FROM Products WHERE ProductName <> @ProductParam
GO

SET ANSI NULLS ON

GO

InTouch can run the following SQL Access scripts.

ResultCode = SQLSetStatement (ConnectionId, "sp TestNotNull");
ResultCode = SQLPrepareStatement (ConnectionId, StatementID);
ResultCode = SQLSetParamNull (StatementID, 1, 0, 0, 0);
ResultCode = SQLExecute (ConnectionId, BindList, StatementID);
ResultCode = SQLFirst (ConnectionId);

ResultCode = SQLClearStatement (ConnectionId, StatementID);

See Also
SQLPrepareStatement()

SQLSetParamTime() Function

The SQLSetParamTime() function sets the value of the specified time parameter to a specified
string.

Category
SQL

Syntax
SQLSetParamTime (StatementID, ParameterNumber, Value)

Arguments

StatementID
Integer value that identifies a SQL statement within a query.

ParameterNumber
Actual parameter number in the SQL statement identified by the StatementlD argument.

Value
Actual value to set. Set the parameter specified by the ParameterNumber argument to a time value.
The current date from the computer running the function is included with the specified time.

Example

This examples sets the second parameter from the fourth SQL statement to 10:00 a.m.
ResultCode=SQLSetParamTime(1, 3, "10:00:00 AM");

See Also
SQLPrepareStatement()

Clearing Statement Parameters

The SQL ClearParam() function clears the value of the specified parameter.

SQLClearParam() Function

The SQL ClearParam() function clears the value of the specified parameter. One of the
SQLSetParamxxx() functions must be called again to reload parameters before calling the
SQLExecute() function to run the query.

Category
SQL

63

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Syntax
[ResultCode=] SQLClearParam(StatementID, ParameterNumber) ;

Arguments

StatementID
Integer value returned when a SQLPrepareStatement() function runs.

ParameterNumber

The ParameterNumber argument identifies the actual argument within the SQL statement to modify.
Set the value of ParameterNumber associated with StatementID to zero or a zero-length string,
depending on whether the argument is numeric or a string.

See Also
SQLPrepareStatement(), SQLExecute()

Executing a Statement

The SQL Execute() function can be used within an InTouch script to run a SQL query during run time.

SQLExecute() Function

The SQL Execute function runs a SQL query within a script. If the statement includes a SELECT, the
BindList argument designates the name of the Bind List to use for binding the database columns with
InTouch tags. If the Bind List is NULL, no tag associations are made.

Category
SQL

Syntax
SQLExecute (ConnectionID,BindList, StatementID) ;

Arguments

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

BindList

The BindList argument can be a zero-length string. If StatementID is associated with a row-returning
query, then the logical table is updated with the result of SQL Execute(). If a real Bind List is
specified, then the result is associated with the BindList argument. A zero-length Bind List is useful
when it is known in advance that the StatementID is not associated with a row-returning query.

StatementID
Integer value returned by SQL when a SQLPrepareStatement() function is used.

Remarks

Errors are returned in the function return. If the statement has been prepared, the statement handle
returned from the prepare should be passed. If the statement has not been prepared, the statement
handle should be zero.

Note: The SQLExecute() function can be called only once for a statement that has not been prepared. If
the statement has been prepared, it can be called multiple times.

A default statement is associated with a connection ID. It can be a textual SQL statement (SELECT,
INSERT, DELETE, or UPDATE), the name of a query in MS Access (with or without parameters), or the
name of a stored procedure in MS SQL Server (with or without parameters).

64

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

The default statement is modified by the SQLLoadStatement(), SQLSetStatement(), and
SQLAppendStatement() functions. The default statement is used by SQL Execute() whenever
StatementID = 0 is specified.

Examples

This example loads the SQL statements from the lotquery.sql file and places the results of the SELECT
statement to InTouch tags specified by the Bind List.

ResultCode = SQLLoadStatement (ConnectionID, "c:\myappdir\lotquery.sql"):;
ResultCode = SQLExecute (ConnectionID, "BindList", O0);

ResultCode SQLNext (ConnectionID) ;

This SQLSetStatement() function must be used for complex queries and string ex pressions greater than
131 characters. When the string expression exceeds 131 characters use the SQL Append() function.
SQLSetStatement (ConnectionID, "Select Speed, Ser No from tablename where
Ser No ="" + Serial input + "’'");

SQLExecute (ConnectionID, "BindList", 0);

In the previous example, the StatementID argument is set to zero so the statement does not have to call
SQLPrepareStatement(Connection_|Id, StatementID) before the execute statement.

Because the StatementID is not created by the SQLPrepare statement to prop erly end this SELECT, use
the SQLENd() function instead of the SQL ClearStatement() function.

SQLSetStatement (Connection Id, "Select Speed, Ser No from tablename where
Ser No ='" + Serial input + "'");

SQLPrepareStatement (Connection Id, StatementID);

SQLExecute (Connection Id, StatementID);

In the above example, the StatementID is created by a SQLPrepareStatement function call and used by
the SQLExecute function. To end this SELECT statement, use a SQLClearStatement() function call
within a script to free resources and the StatementID.

The SQLExecute() function supports some stored procedures. For example, suppose you create a
stored procedure on the database server named "LotInfoProc," that contains the following select
statement: "Select LotNo, LotName from LotInfo."

You write the InTouch QuickScript to run the stored procedure based upon the type of database that you
are using. The following example shows script statements to run a stored procedure for a SQL Server
database.

ResultCode = SQLSetStatement (ConnectionID,"LotInfoProc");

ResultCode SQLExecute (ConnectionID, "BindList", 0);

ResultCode = SQLNext (ConnectionlID);

{Get results of Select}

The following example shows script statements to run a stored procedure for an Oracle database.
ResultCode = SQLSetStatement (ConnectionID, "{CALL LotInfoProc}");
ResultCode = SQLExecute (ConnectionID, "BindList", 0);

ResultCode SQLNext (ConnectionID) ;

{Get results of Select}

See Also
SQLConnect(), SQLPrepareStatement()

Releasing Occupied Resources

The SQLClearStatement function releases database resources associated with the statement specified
by the StatementID.

65

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

SQLClear Statement() Function

The SQL ClearStatement() function releases database resources associated with the statement
specified by the StatementID argument.

Category
SQL

Syntax
[ResultCode=]SQLClearStatement (ConnectionID, StatementID) ;

Arguments

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

StatementID
Integer value returned by SQL when a SQLPrepareStatement() function is used.

See Also
SQLConnect(), SQLPrepareStatement()

Working with Transaction Sets

SQL Access includes a set of transaction functions to change insert, update, or delete records from a
database. Generally, these transactions are grouped within a script in the form of a transaction set. A
transaction set is committed at one time.

SQLTransact() Function

The SQLTransact() function defines the beginning of a group of SQL statements called a transaction
set. A transaction set is handled like a single transaction. After the SQL Transact() function runs, all
subsequent operations are not committed to the database until the SQLCommit() function runs
successfully.

Category
SQL

Syntax
[ResultCode=] SQLTransact (ConnectionID)

Argument

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

Example

This example transaction set includes three insert statements.

ResultCode = SQLTransact (ConnectionID) ;

ResultCode = SQLInsertPrepare(ConnectionID, TableName, BindList, StatementID
) ;

ResultCode = SQLInsertExecute(ConnectionID, BindList, StatementID) ;
ResultCode = SQLInsertExecute(ConnectionID, BindList, StatementID) ;
ResultCode = SQLInsertExecute(ConnectionID, BindList, StatementID);
ResultCode = SQLInsertEnd(ConnectionID, StatementID);

ResultCode = SQLCommit (ConnectionID) ;

66

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

See Also
SQLCommit(), SQLRollback()

SQLCommit() Function

The SQL Commit() function defines the end of a transaction set. After the SQLTransact() function runs,
all subsequent all SQL statements within the transaction set are not committed to the database until the
SQLCommit() function runs successfully.

Note: Use caution when writing QuickScripts that include the SQLCommit() function. Processing time
increases with the number of SQL statements in a transaction set.

Category
SQL

Syntax
[ResultCode=] SQLCommit (ConnectionID)

Argument

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

Example

This example script includes a transaction set that makes three database inserts.

ResultCode = SQLTransact (ConnectionID) ;

ResultCode = SQLInsertPrepare(ConnectionID, TableName, BindList, StatementID
) 7

ResultCode = SQLInsertExecute(ConnectionID, BindList, StatementID);
ResultCode = SQLInsertExecute(ConnectionID, BindList, StatementID);
ResultCode = SQLInsertExecute(ConnectionID, BindList, StatementID);
ResultCode = SQLInsertEnd(ConnectionID, StatementID);

ResultCode = SQLCommit (ConnectionID) ;

See Also
SQLRollback(), SQLTransact(), SQLCommit()

SQLRollback() Function

The SQLRollback() function reverses or rolls back the most recent transaction set. A transaction set is a
group of commands issued between the SQLTransact() and the SQLCommit() functions.

A transaction set is handled like a single transaction. After the SQLTransact() function runs, all
subsequent operations are not committed to the database. Query changes to the database occur after
the SQLCommit() function runs. The SQLRollback() function rolls back the transaction set if it runs before
the SQLCommit() function.

Category

SQL

Syntax

[ResultCode=] SQLRollback (ConnectionID)
Argument

ConnectionlD
Name of a memory integer tag that holds the number (ID) assigned by the SQLConnect() function to
each database connection.

67

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Example

This example rolls back the database values prior to the SQLTransact function within the script.
ResultCode =SQLTransact(ConnectionID) ;

ResultCode = SQLInsertPrepare(ConnectionID, TableName, BindList, StatementID
) 7

ResultCode SQLInsertExecute (ConnectionID, BindList, StatementID) ;
ResultCode = SQLInsertEnd(ConnectionID, StatementID);

ResultCode =SQLRollback(ConnectionID) ;

See Also
SQLCommit(), SQLTransact()

Opening the ODBC Administrator Dialog Box at Run Time

Use the SQLManageDSN() function to run the Microsoft ODBC Manager while an InTouch application is
running.

SQLManageDSN() Function

The SQLManageDSN function runs the Microsoft ODBC Manager setup program while an InTouch
application is running. SQLManageDSN() can be used within a script to add, delete, and modify existing
data source names of a SQL Server or Access database.

Category

SQL

Syntax

SQLManageDSN (ConnectionId)
Argument

Connectionld
Connectionld is not used. It is retained for backward compatibility with older versions of SQL Access.
Therefore, any humber can be passed to the function. No database connection needs to be
established before running the function to open Microsoft ODBC Manager.

Example

SQLManageDSN(0)

Understanding SQL Error Messages

This section explains how to troubleshoot InTouch applications that use SQL Access functions. The first
section describes the SQLErrorMsg() function and includes a table of SQL result codes with their

corresponding error messages. The second section includes tables with specific database error
messages.

SQLErrorMsg() Function

All SQL functions return a result code that can be used for troubleshooting. The SQLErrorMsg() function
returns the error message associated with the result code and assigns it as the value of an InTouch
message tag.

Category
SQL

Syntax
ErrorMsg=SQLErrorMsg (ResultCode) ;

68

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Argument

Result Code

Integer value returned by a previous SQL function. The SQLErrorMsg() function sets the value of an
InTouch message tag to the message associated with the result code. For more information about
error messages associated with result codes, see Understanding SQL Error Messages.

Remarks

Refer to your database documentation for undocumented result codes. Also, browse the Log Viewer for
any additional error messages.

The SQLTrace=1 flag defined under the [InTouch] section of the win.ini file is useful for debugging SQL
Access scripts.

Example

This example assigns the error message associated with the SQL Access Manager result code to the
ErrorMsg message tag.
ErrorMsg=SQLErrorMsg (ResultCode)

See Also
SQLConnect()

SQL Access Manager Result Codes and Messages

The following table lists some common SQL Access result codes, their corresponding error messages,
and descriptions:

Result Code Error Message Description
0 No errors occurred The SQL function ran successfully without errors.
-1 <Message from the A specific error message from the vendor database.

database provider>

-2 An empty statement A SQLExecute(Connectionld, BindList, 0)
cannot be executed is run without previously calling SQLS etStatement or
SQLLoadStatement with a non-empty statement.

4 Value returned was Null An integer or real value read from the database is null.
This is only a warning message sent to the Log Viewer.

-5 No more rows to fetch The last record in the table has been reached.

-7 Invalid parameter ID The SQLSetParamChar(), SQLSetParamDate(),
SQLSetParamDateTime(), SQLSetParamDecimal(),
SQLSetParamFloat(), SQLSetParamInt(),
SQLSetParamLong(), SQLSetParamNull(),
or SQLSetParamTime() function is called with an invalid
parameter ID.

-8 Invalid parameter list Example of an invalid parameter list: 1, 2, 3, 5 (Missing 4).

69

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Result Code Error Message

Description

-9

Invalid type for NULL
parameter

The SQLSetParamNull function is called with an invalid
Type argument value.

-10

Changing data type of
parameter is not allowed

The SQLSetParamChar(), SQLSetParam Date(),
SQLSetParamDateTime(), SQLSetParamDecimal(),
SQLSetParamFloat(), SQLSetParamInt(),
SQLSetParamLong(), SQLSetParamNull(),

or SQLSetParamTime() function is called with a different
type for an existing parameter.

-11

Adding parameter after the
statement has been
executed successfully is
not allowed.

The SQLSetParamChar(), SQLSetParam Date(),
SQLSetParamDateTime(), SQLSetParamDecimal(),
SQLSetParamFloat(), SQLSetParamInt(),
SQLSetParamLong(), SQLSetParamNull(),

or SQLSetParamTime() function is called for a new
parameter ID after the statement has been run
successfully.

-12

Invalid date time format

An invalid date time format is encountered, for example,
when executing SQLSetParamTime(),
SQLlInsertExecute(),

or SQLUpdateCurrent().

-13

Invalid decimal format

An invalid decimal format is encountered,
for example, when executing SQLSetParamDecimal(),
SQLInsertExecute(), or SQLUpdateCurrent().

Invalid currency format

An invalid currency format is encountered, for example,
when executing SQLInsertExecute() or
SQLUpdateCurrent ().

Invalid statement type for
this operation

SQLInsertEnd is called for a statement ID created by
SQLPrepareStatement()

or SQLClearStatement() is called for a statement ID
created by SQLInsertPrepare().

-1001

Out of memory

There is insufficient memory to run this function.

-1002

Invalid connection

The value passed to the Connectionld argument is not
valid.

-1003

No Bind List found

The specified Bind List name does not exist.

-1004

No template found

The specified Table Template name does not exist.

-1005

Internal Error

An internal error occurred. Call Technical Support.

70

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Result Code Error Message Description

-1006

String is null Warning - the string read from the database is null. This is
only a warning message sent to the Log Viewer.

-1007 String is truncated Warning - the string read from the database is longer than
131 characters and is truncated when selected. The
warning is sent to the Log Viewer.

-1008 No Where clause There is no Where clause on Delete.

-1009 Connection failed Check the Log Viewer for more information about the
failed connection to the database.

-1010 The database specified on The specified database does not exist.

the DB= portion of the
connect string does not
exist

-1011 No rows were selected A SQLNumRow s(), SQLFirst(), SQLNext(), SQLLast(),
or SQLPrev() function is called without running a
SQLSelect()
or SQL Execute() function first.

-1013 Unable to find file to load The SQLLoadStatement() function is called with a file

name that cannot be found.

Error messages from a vendor database return a ResultCode of -1. The SQL Access function
ResultCode is always -1, but the message is copied exactly from the database provider.

For error messages that occur when using an Oracle database, referto Oracle Server documentation for
specific error messages and solutions.

The following table lists common error messages that can occur when using a Microsoft SQL Server or
Access database.

Error Message Solution

You cannot have more You are trying to run a SQL command after
than one statement active calling the SQLSelect() function. Run SQLENd()

at a time to free system resources from the SQLSelect()
or use a separate Connectionld for the second
statement.

There is not enough Try rebooting the client workstation.

memory available to
process the command

71

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Error Message Solution

Invalid object name table The table name does not exist in the database
name you are using. Try DB=database name.

Check your Microsoft SQL Server documentation for specific error messages and solutions.

Reserved Word List

This section lists keywords that are excluded from use with the SQL Access Bind List, the Table
Template, and the ODBC interface.

If a reserved keyword is used as the Column Name in a Bind List or Table Template, an error message
appears inthe Log Viewer. The type of error depends upon the ODB C driver being used and the location
where the keyword is found. For example, one of the most common errors is using DATE and TIME for
Column Names in a Bind List or Table Template. To avoid this error, use a slightly different name, for
example, "aDATE" and "aTIME."

Reserved keywords define the Structured Query Language (SQL) used by InTouch SQL Access. The
keywords are also recognized by the specific ODBC driver being used. If the SQL command cannot be

interpreted correctly, SQL Access Manager generates an error message that can be viewed from the

Log Viewer.

The following alphabetical list shows the reserved keywords for SQL Access and ODBC:

ABSOLUTE ADA ADD

ALL ALLOCATE ALTER

AND ANY ARE

AS ASC ASSERTION
AT AUTHORIZATION AVG

BEGIN BETWEEN BIT
BIT_LENGTH BY CASCADE
CASCADED CASE CAST
CATALOG CHAR CHAR_LENGTH
CHARACTER CHARACTER_LENGTH CHECK
CLOSE COALESCE COBOL COLLATE
COLLATION COLUMN COMMIT
CONNECT CONNECTION CONSTRAINT
CONSTRAINTS CONTINUE CONVERT
CORRESPONDING COUNT CREATE
CURRENT CURRENT_DATE CURRENT_TIME
CURRENT_TIMESTAMP CURSOR DATE

DAY DEALLOCATE DEC

DECIMAL DECLARE DEFERRABLE
DEFERRED DELETE DESC
DESCRIBE DESCRIPTOR DIAGNOSTICS

72

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

DICTIONARY
DISTINCT
DROP
ESCAPE
EXEC
EXTERNAL
FETCH

FOR FOREIGN

FROM FULL
GO
GROUP
IDENTITY
IN
INDICATOR
INPUT
INTEGER
INTO

JOIN

LAST

LIKE
MATCH
MINUTE
MUMPS
NCHAR
NOT
NUMERIC
OFF

OPEN

OR
OUTPUT
PASCAL
PRECISION
PRIMARY
PROCEDURE
REVOKE
ROWS
SECOND

DISCONNECT
DOMAIN
ELSE
EXCEPT
EXECUTE
EXTRACT
FIRST
FORTRAN
GET

GOTO
HAVING
IGNORE
INCLUDE
INITIALLY
INSENSITIVE
INTERSECT
IS

KEY

LEFT
LOCAL
MAX
MODULE
NAMES
NEXT
NULL
OCTET_LENGTH
ON

OPRN
ORDER
OVERLAPS
PLI
PREPARE
PRIOR
PUBLIC
RIGHT
SCHEMA
SECTION

DISPLACEMENT
DOUBLE
END
EXCEPTION
EXISTS
FALSE
FLOAT
FOUND
GLOBAL
GRANT
HOUR
IMMEDIATE
INDEX
INNER
INSERT
INTERVALL
ISOLATION
LANGUAGE
LEVEL
LOWER
MIN
MONTH
NATIONAL
NONE
NULLIF

OF

ONLY
OPTION
OUTER
PARTIAL
POSITION
PRESERVE
PRIVILEGES
RESTRICT
ROLLBACK
SCROLL
SELECT

73

Working with SQL Databases from InTouch AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

SEQUENCE
SMALLINT
SQLCA
SQLSTATE
SUM
TEMPORARY
TIMES TAMP
TO
TRANSLATION
UNIQUE
UPPER
VALUE
VARING
WHENEVER
WORK

SET
SOME

SQLCODE
SQLWARNING
SYSTEM

THEN
TIMEZONE_HOUR
TRANSACTION
TRUE

UNKNOWN
USAGE

VALUES

VIEW

WHERE

YEAR

SIZE
SQL
SQLERROR
SUBSTRING
TABLE

TIME
TIMEZONE_MINU
TRANSLATE
UNION
UPDATE
USING
VARCHAR
WHEN

WITH

74

AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

CHAPTER 4

Using the 16-Pen Trend Wizard
About Using a 16-Pen Trend

You can use an InTouch wizard to create real-time and historical trends capable of displaying data from
up to 16 tags. The 16-Pen Trend is a supplementary component that you can install during an InTouch
installation.

The 16-Pen Trend Wizard can be configured much like other InTouch chart wizards. The 16-Pen Trend
wizard allows you to configure the following trend properties:

Tag assigned to each trend pen

Trend line width and color

Starting and ending dates and times for historical trends

Update rate and time span for real-time trends

Minimum and maximum engineering units assigned to a trend tag
Major and minor trend time divisions

Major and minor trend value divisions

Creating a 16-Pen Trend

You can create a trend by selecting the 16-Pen Trend Wizard from WindowMaker.

To create a 16-Pen real-time or historical trend

1.
2.
3.

Open a window from WindowMaker to place the 16-Pen Trend.
Click the wizard tool in the Wizard Toolbar. The Wizard Selection dialog box appears.

Select Trends from the list of wizards. The right pane of the Wizard Selection dialog box shows a
set of trend wizard icons.

G

Select the 16-Pen Trend wizard and click OK. The Wizard Selection dialog box closes and your
window reappears.

Click in the window to place the 16-Pen Trend.

75

Using the 16-Pen Trend Wizard AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

The wizard places a 16-Pen Trend template in the window.

04/04/06 04/04.06 040406 04/04/06 04/04/06 04/04.06
14:05:09 14:08:21 14:05:33 14:05:45 14:05:57 14:08:09

6. Double-click the 16-Pen Trend template to open the PenTrend Control dialog box.

7. Inthe Trend Type area, select Historical or Realtime as the type of trend you want to create.

Trend Type [ptions

" Historical I Enable runtime
. configuration

% Realtime d

The PenTrend Control dialog box automatically shows the appropriate time and update options
based upon the type of trend you select.

8. Inthe Options area, select or clear the Enable runtime configuration option.

Selecting this option allows operators to modify some properties of the 16-Pen Trend while it is
running.

Configuring Which Tags to Display on the Trend Graph

You can use the 16-Pen Trend Wizard to assign tags to trend pens. The 16-Pen Trend Wizard includes a
set of columns that specify tag properties shown on the trend. These columns use the default property
values assigned to the tag from the Tagname Dictionary. You can override these assigned tag values by

specifying other values when you configure the trend.
To configure 16-Pen Trend tags

1. If needed, open the window containing the 16-Pen Trend template.

76

Using the 16-Pen Trend Wizard AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

2.

Double-click the 16-Pen Trend. The PenTrend Control dialog box appears with a grid area near the
bottom to specify the tags associated with trend pens.

PenTrend Control

Obiect Mam=: |FenTrerd_1
Time Axs Fomet
Dohe
MsjorDiigone 5 [s Raw [z
Iinor D' vizone: IE - Span[Seck Iaj
~ Walsa Az Formal 7~ Chart: ~Trend Tpoa Opbong
o Diviors. fig ' it Enatie runti
apor Diviore: [- Rackoioud: - ; :INUI:IPA?‘ [v B;':N;I;‘;"m"
MrDiviers: B | Bed [] Ranns
Calor Tagnzms |EU Tee | MinEU | MasEU | Min 5 caie | Mas Scae |DacFos | wWidh]
1 | nFurrpPress T 0 20 1] 1 1 1
2 J0uiPumoPics: e] 1] 1 1 1
OO & o 1 i 1 1 1
4 7?7 i 1 i 1 1 1
5 77 i 1 i 1 1 1
i 77 i 10 i 1 1 1
T 77 i 10 i 1 1 1
] 77 i 10 i 1 1 1
q T i 100 i 1 1 1 =
10 ke i 100 i 1 1 1 [=]
11 i il 100 i 1 1 1 [=]
2] "] 100 1] 1 1 1 [=]
12 " i 100] 1 1 1 [=]
1< ki) i 1] i 1 1 1=
15 fFi] i 1] i 1 1 1=
16 FEr i 100 i 1 1 1 [=1

In the Object Name box, assign a name to the 16-Pen Trend.

The default name is PenTrend_1, which increments the number in the name as you create each new
trend.

In the Tagname box, enter the name of the tag to associate with the pen number listed at the left of
the grid.

Double-clicking within a cell beneath Tagname shows the Select Tag dialog box. You can assign a
tag to a pen by selecting the tag from the Select Tag dialog box.

Note: Y ou remove a tag by selecting a Tagname box containing a tag name and pressing your keyboard
space bar.

5.
6.

In the Color column, click each color box to open a color palette. Select a color for the pen.

In the EU Text column, enter the text that you want to initially use in run time as the header text for
the pen axis for each respective pen.

This text is the axis text when a penis set to active. The EU Text column is initially assigned the tag’s
engineering units from the Tagname Dictionary. You can override the these default engineering units
for the 16-Pen Trend.

In the Min EU column, enter the minimum engineering units value assigned to the pen.

The Min EU column initially shows the tag’s minimum engineering units value from the Tagname
Dictionary. You can assign another minimum engineering units value that applies only to a 16 -Pen
Trend.

In the Max EU column, enter the maximum engineering units assigned to the pen.

The Max EU column initially shows the tag’s maximum engineering units value from the Tagname
Dictionary. You can assign another maximum engineering units value that applies only to a 16-Pen
Trend.

Note: The Min/Max engineering units are very important for showing historical trend data. The historical
trend shows from 0-100 percent of engineering units scale.

77

Using the 16-Pen Trend Wizard AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

9.

10.

11.

12.
13.

In the Min Scale column, enter the percentage that you want to use initially in run time to calculate
the minimum pen axis grid for the respective EU scale.

In the Max Scale column, enter the percentage that you want to use initially in run time to calculate
the maximum pen axis grid for the respective EU scale.

In the Dec.Pos column, enter the number of decimal points that you want to use initially in run time
when labeling the pen axis grid.

In the Width column, select the pen line width in pixels to plot data values shown on the trend.

Continue with the next procedure to update the trend time and update rate of a 16-Pen Trend.

Configuring the Trend Time Span and Update Rate

The Pen Trend Control dialog box shows different options based upon whether you are creating a
real-time or historical 16-Pen Trend. You can set the time span for a historical trend and the update rate
for a real-time trend.

To configure the time span of a 16-Pen historical trend

1.

Double-click a 16-Pen historical trend within a window. The Pen Trend Control dialog box appears
with options to set the starting and ending dates and time of a trend.

Start Tirne: |4.-"4.-"2DDB 207:47 P
End Time: I4.-"4."’2DDB 2:08:47 P

Set the starting and ending date and time of the historical trend.
Use the following format for both the starting and ending dates and times:

MM/DD/YY HH:MM:SS AM/PM

To configure the update rate of a 16-Pen real-time trend

1.

3.

Double-click a 16-Pen real-time trend object within a window. The Pen Trend Control dialog box
appears with options to set update rate and span of a real -time trend.

Update Rate: |2
[Sec]

Span[Secl (g0

In the Update Rate box, type the number of seconds between each refresh interval of the historical
trend.

In the Span box, type the number of seconds of the real-time interval shown in the trend.

Configuring the Trend Display Options

You can configure the visual appearance of a trend with the 16-Pen Trend Wizard.

To configure the display options of a 16-Pen Trend

1.
2.

Double-click the 16-Pen Trend in WindowMaker. The Pen Trend Control dialog box appears.

In the Time Axis Format area, enter the number of major time divisions in Major Divisions. This
option sets the number of major time divisions on the horizontal axis of the trend.

Click the color box to the right of Major Divisions to open the color palette and select a color if you
want to assign another color to the major time division lines. Otherwise, skip this step and accept the
default color assigned to major time division lines.

Inthe Minor Divisions box, enter the number of minor time divisions shown on the horizontal axis of
a trend.

78

Using the 16-Pen Trend Wizard

AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Select a color for the minor time division lines.

6. Inthe Value Axis Format area, enter the number of major divisions in Major Divisions. This option

sets the number of major divisions shown on the vertical value axis.

7. Set the color of the major value divisions.

8. Inthe Minor Divisions box, enter the number of minor value divisions shown on the vertical axis of

the trend.

9. Set the color of the minor value divisions.

10. In the Chart area, select the background and border colors of the trend.

11. Click Done to save the configuration changes to the 16-Pen Trend.

Changing the Trend Configuration at Run Time

If the Enable runtime configuration option is selected from the PenTrend Control dialog box,
operators can change some characteristics of a 16-Pen Trend while the application is running.

Run-time changes to the 16-Pen Trend are not permanent. If operators close WindowViewer and then

start the application window again, the 16-Pen Trend retains the configuration originally defined from

WindowMaker. The following figure shows the PenTrend Control dialog box that appears if you click on

a 16-Pen Trend while it is running.

PenTrend Control

Objzc! Mams Pen'[rend_1

= Time &uiz Foarmat ~Trend Type
) Dane
%ﬁ?enﬂ'e- ™ Historical o
Span IEEI
[Spec] ' Aealime
Cokr Tagrme | EU Test | MinEU | Max B | MinScale | M 5 cale | Dec. Pos | width]
React_zvel T8, 0 100 0 1 1 1 [=]
2 Prodlee M/ia] 100 a 1 1 1 %
S ReactTermp T] 220 1] 1 1 1=
q 7 0 oo [1} 1 1 1 [=]
- "] 100 1] 1 1 1 %
i] 100] 1 1 i |=
1 777 i 100 [i} 1 1 1 [=]
. il 1] 100 a 1 i i %
3 "] 100 1] 1 1 1=
0 77 1] 100 1] 1 1 1 [=]
1 "] 100 a 1 1 1 %
12 il 0 100 i] 1 1 1 [
N 7 0 oo [1} 1 1 1 [=]
[m] 100 1] 1 1 1 %
| | 7 n 11l i 1 1 1[5
N 777 i 100 [i} 1 1 1 [=]

You can change the following during run time:

Start Time: [1/12/2007 12:16:25 PM

End Time:

I'I 242007 12:19:25 PM

Type of trend (Historical or Realtime)

Tags or expressions assigned to trend pens

Characteristics of trend tags or expressions

Date and time range of a historical trend

Time Axis Format

79

Using the 16-Pen Trend Wizard AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

e Update rate and frequency of a real-time trend.

Update Fate: |2
[Sec)

Span[Secl |50

After clicking Done, the trend retains the configuration changes for the duration of the current
WindowViewer application session.

Controlling a 16-Pen Trend Wizard Using Scripts

You can use a set of functions in QuickScripts to control a 16-Pen Trend object in run time. For example,
you can connect pens to the chart, add new events to the chart, remowve or replot the grid, and remove or
replot the scooters.

ptGetTrendType() Function

The ptGetTrend Ty pe() function can be used in a script to return a value that indicates whether the current
mode of a 16-Pen Trend shows historical or real-time data.

Category
Pen trend

Syntax
ptGetTrendType (TrendName) ;

Argument

TrendName
Name of the trend. TrendName must be either a string constant or message tag.

Return Value
Returns the trend type:
0 = Historical trend
1 = Real-time noscroll
2 = Real-time trend
Example

The following example returns a value that indicates whether the PumpPress trend shows historical or
real-time data.
ptGetTrendType ("PumpPress") ;

ptLoadTrendCfg() Function

The ptLoadTrendCfg() function can be used in a script to load trend configuration values from a file.
Category
Pen trend

Syntax
ptGetTrendCfg (TrendName, FileName) ;

Arguments

TrendName
The name of the trend object. The value assigned to TrendName must be either a string constant or
a message tag.

80

Using the 16-Pen Trend Wizard AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

FileName
Name of the configuration file. The folder path to the configuration file must be included with the
Filename argument.

Example

The TankFarm trend is configured with values from the c:\TrendCfg.txt file.
ptLoadTrendCfg ("TankFarm","C:\TrendCfg.txt") ;

ptPanCurrentPen() Function

The ptPanCurrentPen() function can be used in a script to scroll a 16-Pen Trend’s pen upward or
downward on the vertical value axis. Vertical scrolling is determined by the number of major and minor
trend units specified as argument values.

Category
Pen trend
Syntax

ptPanCurrentPen (TrendName,MajorUnits, MinorUnits) ;
Arguments

TrendName
The name of the trend object. TrendName must be either a string constant or message tag.

MajorUnits
Multiplier to scroll by the number of units defined by the major division lines. A negative number
indicates a downward scroll of the vertical axis.

MinorUnits
Multiplier for additional scrolling by number of units defined by the minor division lines. A negative
number indicates a downward scroll of the vertical axis.

Examples

This example scrolls the pen upward one major division line.
ptPanCurrentPen ("TrendName", 1, 0);

This example scrolls the pen upward half a minor trend division.
ptPanCurrentPen ("TrendName", 0, 0.5);

This example scrolls the pen downward by 2 major division lines and half of a minor division line.
ptPanCurrentPen ("TrendName", -2, -0.5);

This example scrolls one major division line up 1 and downward by 2 minor division lines.
ptPanCurrentPen ("TrendName", 1, -2);

ptPanTime() Function

The ptPanTime() function can be used in a script to scroll a 16-Pen Trend’s pen left or right on the
horizontal time axis based on the number of specified major or minor trend units.

Category
Pen trend

Syntax

ptPanTime (TrendName, MajorUnits, MinorUnits) ;
Argu ments

TrendName
The name of the trend object. TrendName must be either a string constant or message tag.

81

Using the 16-Pen Trend Wizard AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

MajorUnits
Multiplier for scrolling by the number of horizontal major division lines. A negative number indicates
panning left on the trend.

MinorUnits
Multiplier for additional scrolling by number of units defined by the minor division lines. A negative
number indicates panning left on the trend.

Remarks

The settings for Major Division and Minor Division specified in the PenTrend Control dialog box during
development are the basis from which the amount to scroll by is calculated. A trend with a time span of
120 seconds, a major division value of 10 and a minor division value of 2, results in a trend with a major
division line every 12 seconds and a minor division line every 6 seconds. The function

ptPanTime(" TrendName",1,0.5) scrolls the time axis by 1*12 + 0.5*6 = 15 seconds.

Examples

This example scrolls the pen 1 major division to the right on the horizontal trend axis.
ptPanTime ("TrendName", 1, 0);

This example scrolls the pen to the right on the horizontal axis of the trend by 0.5 minor division.
ptPanTime ("TrendName", 0, 0.5);

This example scrolls the pen 2.5 major divisions to the left on the horizontal axis of the trend.
ptPanTime ("TrendName", -2, -0.5);

This example scrolls the pen 1 major division to the right and 2 minor divisions to the left.
ptPanTime ("TrendName", 1, -2);

ptPauseTrend() Function

The ptPauseTrend() function can be used in a script to temporarily stop a 16-Pen Trend from updating
the graph. The trend remains stopped until you call ptPauseTrend again with a value of 0.

Category
Pen trend
Syntax

ptPauseTrend (TrendName, Value) ;
Argu ments

TrendName
The name of the trend object. TrendName must be either a string constant or message tag.

Value
A value of 1 pauses trend updates. A value of 0 resumes trend updating.

Example
This example pauses any further updates to the 16-Pen Trend while the Value argument is 1.
ptPauseTrend ("TrendName",1);

ptSaveTrendCfg() Function

The ptSaveTrendCfg() function can be used in a script to save a trend’s current configuration values to a
file.

Category

Pen trend

82

Using the 16-Pen Trend Wizard AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Syntax
ptSaveTrendCfg (TrendName, FileName) ;

Arguments

TrendName
The name of the trend object. Must be either a string constant or message tag.

FileName
Name of the file to save the trend’s configuration values. The folder path to the configuration file can
be specified with the Filename argument.

Example

The ptSaveTrendCfg () function saves the values from the PumpTrend 16-Pen Trend to the c:\Config.txt
file.
ptSaveTrendCfg ("PumpTrend", "C:\Config.txt")

ptSetCurrentPen() Function

The ptSetCurrentPen() function can be used in a script to select a pen by its assigned number to control
the pen axis.

Category
Pen trend

Syntax

ptSetCurrentPen (TrendName, PenNum) ;
Arguments

TrendName
Name of the trend. Must be either a string constant or message tag.

PenNum
Number of the pen (1-16) assigned as the current trend pen.

Example

The ptSetCurrentPen() function assigns pen 2 as the current pen of the PumpPress trend.
ptSetCurrentPen ("PumpPress", 2) ;

ptSetPen() Function
The ptSetPen() function can be used in a script to assign a tag to a trend pen.
Category
Pen trend

Syntax

ptSetPen (TrendName, PenNum, TagName) ;
Arguments

TrendName
The name of the trend object. Must be a string constant or a message tag.

PenNum
Number of the pen assigned as the current trend pen.

TagName
Name of the tag assigned to the trend pen.

83

Using the 16-Pen Trend Wizard AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Example

The ptSetPen() function assigns the PumplInP tag to pen 2 of the PumpPress trend.
ptSetPen ("PumpPress",2,"PumpInP");

ptSetPenEx() Function

The ptSetPenEXx() function can be used in a script to assign a tag to a specific trend pen and override the
tag’'s configuration values specified in the Tagname Dictionary.

Category
Pen trend
Syntax

ptSetPenEx (TrendName, PenNum, TagName, minEu, maxEU, minPercent, maxPercent,
Decimal, EU) ;

Arguments

TrendName
The name of the trend object. Must be either a string constant or message tag.

PenNum
Number of the pen assigned as the current trend pen.

TagName
Name of the tag assigned to the trend pen.

minEU
The minimum engineering units value for the specified tag.

maxEU
The maximum engineering units value for the specified tag.

minPercent
The percentage to use initially in run time to calculate the minimum pen axis grid for the respective
EU scale.

maxPercent
The percentage to use initially in run time to calculate the maximum pen axis grid for the respective
EU scale.

Decimal
Decimal precision of a tag’s value in the trend.

EU
The label for the tag's engineering units.

Example

The ptSetPenEx() function assigns the PumpInP tag to pen 2 of the PumpPress trend. The tag’'s
engineering units range is set between 0 to 1500 and its units are PSI. The percentages for the grid are
0 to 1, and the decimal precision is set to 2.

ptSetPenEx ("PumpPress", 2, "PumpInP", 0, 1500, 0, 1, 2, "PSI");

ptSetTimeAxis() Function

The ptSetTimeAxis() function can be used in a script to set the trend’s starting date and time and ending
date and time.

Category

Pen trend

84

Using the 16-Pen Trend Wizard AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Syntax
ptSetTimeAxis (TrendName, StartDateTime, EndDateTime) ;

Arguments

TrendName
The name of the trend object. Must be either a string constant or message tag.

StartDateTime
The date and time when the trend begins. The format for the starting date and time is: mm/dd/yyyy
hh:mm:ss AM/PM

EndDateTime
The date and time when the trend ends. The format for the ending date and time is: mm/dd/yyyy
hh:mm:ss AM/PM.

Example

The ptSetTimeAxis() function sets the starting and ending dates and times of a trend for a 25 hour
period starting at 8:30 on May 22, 2007.

ptSetTimeAxis ("PumpPress", "05/22/2007 08:30:00 AM", "05/23/2007 09:30:00
AM") ;

ptSetTimeAxisToCurrent() Function

The ptSetTimeAxis ToCurrent() function can be used in a script to calculate the current chart span and
the chart's ending time.

Category
Pen trend
Syntax

ptSetTimeAxisToCurrent (TrendName) ;
Argument

TrendName
The name of the trend object. TrendName must be a string constant or a message tag.

Example

The ptSetTimeAxisToCurrent() function sets the ending date and time of the PumpPress trend to the

current date and time.
ptSetTimeAxisToCurrent ("PumpPress") ;

ptSetTrend() Function
The ptSetTrend() function can be used in a script to pause or restart updates to a 16-Pen Trend.
Category
Pen trend

Syntax
ptSetTrend (TrendName, EnableUpdates) ;

Arguments

TrendName
The name of the trend object. Must be either a string constant or message tag.

EnableUpdates
The value 1 starts updates to the trend. The value 0 stops trend updates.

85

Using the 16-Pen Trend Wizard AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Example

The ptSetTrend () function updates the PumpPress trend.
ptSetTrend ("PumpPress", 1) ;

ptSetTrendType() Function

The ptSetTrendType() function can be used in a script to specify whether the trend shows historical or
real-time data.

Category
Pen trend

Syntax
ptSetTrendType (TrendName, TrendType) ;

Arguments

TrendName
The name of the trend object. Must be either a string constant or Message tag.

TrendType
The value 1 indicates a historical trend. The value 2 specifies a real -time trend.

Example

The ptSetTrendtype() function specifies the PumpPress trend shows real-time data.
ptSetTrendType ("PumpPress",2) ;

ptZoomCurrentPen() Function

The ptZoomCurrentPen() function can be used in a script to change the value range shown on a trend’s
Y-axis. The range of the trend’s vertical value axis can be increased or decreased by a specified zoom
ratio.

Category
Pen trend
Syntax

ptZoomCurrentPen (TrendName, ZoomFactor) ;
Arguments

TrendName
The name of the trend object. Must be either a string constant or message tag.

ZoomFactor

Assigning a number larger than 1.0 increases the value range of the trend by multiplying the current
range limits by the zoom factor. Assigning a zoom factor less than 1.0 decreases the value range
shown in the vertical axis of the trend.

Remarks

The zoom ratio is applied to the existing span of the current pen’s Y -axis range. For example, if the trend
starts with a Y-axis range of —50 to 50 and then you zoom by a ratio of 2.0, the new range is —100 to 100.
If you zoom by 2.0 again, then the new range is —200 to 200. The zoom ratio applies to the range
currently in effect, not the original Y-axis range.

The zoom ratio persists during run time for each of the trend’s pens. As you switch from one pen to
another using the ptSetCurrentPen() function, the Y-axis value range reflects the current scaling for the
selected pen.

86

Using the 16-Pen Trend Wizard AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Example

The ptZoomCurrentPen function doubles the Y-axis range of the current tag in the trend named
"PumpPress".
ptZoomCurrentPen ("PumpPress", 2) ;

ptZoomTime() Function

The ptZoomTime() function can be used in a script to change the time range shown on the trend’s
horizontal axis.

Category
Pen trend
Syntax

ptZoomTime (TrendName, Zoom) ;
Arguments

TrendName
The name of the trend object. Must be either a string constant or message tag.

Zoom
Assigning a number larger than 1.0 increases the time period shown on the trend’s horizontal axis.
Assigning a number less than 1.0 decreases the time period shown on the horizontal axis.

Examples

The ptZoomTime() function increases the time period shown on the trend’s horizontal axis by 17
percent.
ptZoomTime ("PenTrend 1",1.17);

The ptZoomTime() function decreases the time period shown on the trend’s horizontal axis by 50
percent. For example, the ptZoomTime() function reduces the trend’s time period to 30 minutes if the
original time range was set to 1 hour.

ptZoomTime ("PenTrend 1", 0.5);

87

AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

CHAPTER 5

Symbol Factory

About Symbol Factory

Symbol Factory includes a collection of over 4,000 industrial symbols that can be used as visual
elements in your InTouch application windows. Symbol Factory is a supplementary component that you
can install during the InTouch HMI installation.

Note: Use the Industrial Graphic Editor to create visual elements for InTouch applications that interact
with Application Server. You can also use the Graphic Editor to create intelligent visual elements for
applications independent of the InTouch HMI. For more information about the Industrial Graphic Editor,
see the Application Server documentation.

AVEVA provides no warranty of any kind for any of this product. You can report problems to Global
Technical Support. We highly recommend that you always back up your application and data before you
install or use any new utility or application.

Symbol Types

Symbol Factory includes four types of wizards:
e Picture Wizards
e Bitmap Wizards
e Texture Wizards

e InTouch Objects

Picture Wizards

Symbol Factory picture wizards are vector-based images of equipment or flow diagrams. As you are
create your application, you can modify picture wizard images by doing the following:

e Assign an animation to an image

e Flip an image horizontally or vertically

e Change the horizontal and vertical perspective of an image
e Rotate an image on its axis

e Change the fill color and pattern of an image

e Change the size, pattern, and color of image lines

Bitmap Wizards

Bitmap wizards are bitmap images, such as windows icons, or a block of text. As you are create your
application, you can modify picture bitmap wizard images by doing the following:

e Assign an animation to a bitmap
e Flip aimage horizontally or vertically

e Change the horizontal and vertical length of a bitmap

89

Symbol Factory AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

e Place a border or a shadow around the bitmap border
¢ Rotate the bitmap image on its axis in 90 degree increments
o Define atransparent color

e Replace up to three colors in the bitmap with other colors

Texture Wizards

A texture wizard is similar to a bitmap wizard, except that it can be resized to form a continuous pattern.
Texture wizards are typically used to create backgrounds for windows or as afill for a graphic object. You
select texture wizards from the Symbol Factory Textures category.

InTouch Object

An InTouch object is an InTouch cell or wizard that is stored "as is" in the Symbol Factory.

After you paste an InTouch object from the Symbol Factory into WindowMaker, you cannot edit it in
Symbol Factory.

When you double-click the object in WindowMaker, the Substitute Tagnames dialog box appears if the
object is a cell, or the animation link selection dialog box appears for an individual graphic object.

Using Symbol Factory

Using the Symbol Factory wizard is very similar to using other wizards. Select a wizard, place it in a
window, and configure it.

Getting Started Quickly

If you are familiar with Symbol Factory, review these tips for getting started quickly:

e To configure options for a wizard, double-click it in the window and then click Options in the Symbol
Factory by Reichard Software dialog box.

e To copy a wizard to another category, drag its thumbnail image into the Categories window and
drop it on another category. To move, hold down the SHIFT key.

e To edit a wizard's description, right-click the wizard thumbnail. To edit a category's description,
right-click the category.

e To delete a wizard, right-click the wizard thumbnail with and then click Delete Symbol.

e The Symbol Factory can be configured so that a group of developers can use and contribute to the
same library of wizards across a network.

e All ofthe wizards in a particular category are stored in a file with the .cat file name extension. Symbol
Factory category files are normally placed in the c:\program files\wonderware\intouch\symfac folder.
You can copy the file into the c:\program files\wonderware\intouch\symfac folder on another
computer.

Placing a Symbol Factory Wizard in a Window

You place a Symbol Factory wizard in a window similar to placing other wizards.
To place a Symbol Factory wizard into a window

1. Open an application in WindowMaker.

90

Symbol Factory AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

2. Click the Wizard icon in the Wizards/ActiveX Toolbar. The Wizard Selection dialog box appears.

Activer! Controls
Alarm Dizplays
Buttons

Clocks S yrmbal
Frames Factary
Lights

Meters

Fanels

Runtime Tools
Sliders
SmartSymbol

SPC Charts

SPC Limits Wizard
Switches

Symbol Factory

Symbol Factony

Text Displays
Trends

Value Displays
windows Controls

‘wizard Description
Symbol Factory 1.1.24

| Ok I Cancel | Add to toolbar | Eemovehantoalbal|

In the list of wizards shown in the left pane, click Symbol Factory.
4. Select the Symbol Factory wizard in the display area and then click OK.

Click in the window to place the wizard. The Symbol Factory by Reichard Software dialog box
appears.

Symbol Factory by Reichard Sofbware

Categaries:
s :I Options... | 0K I
Mekare
Haiure . I |
Operctor Irteface Animalicn... Cancel
ancl:
Ouick Stark I Hel| |
| P

Plat Fariliies

Fower
Process Cooling LI

Sprnbols

=

Shiort horzontal pipe Lic=rsed from
Fechard Sofware .

6. Inthe Categories list, select a category. The Symbol window shows the wizards for the category
you selected.

7. Select the wizard to place and then click OK.

Configuring Symbol Options

Wizard options vary for different wizards. Changing colors will impact the drawing speed of the bitmaps
and textures since each pixel must be scanned and possibly changed.

91

Symbol Factory

AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

To configure wizard options

1.
2.
3.

Open a window containing a Symbol Factory wizard.

Double-click the wizard. The Symbol Factory by Reichard Software dialog box appears.

Keep the wizard selected and click Options. The Symbol Options dialog box appears.

The image properties shown on the Symbol Options dialog box vary by the type of wizard you
selected to edit. The following example shows the options that are available when you selected a
picture wizard symbol.

Symbol Options E3

r— Size and Fotation

¥ Keep Original 3% Proportions
™ Flip Horizantal Cancel
™ Flipertical

Defaults
Ratation: ID 90

_I Configure...
—Fil Help

Fill Calar Made: IDriginaI j

Fill| Ealar: -

~ Line
Lirne Color Maode IDriginal ﬂ
Lite Cofar: -
Line Style: [Solid- 1 pisel thick x|

[Extra Lines

Symbol Tepe: Picture Wwizard

Tip: If the Enable alternatives to right mouse button option is selected in the Configure Symbol
Factory dialog box, the Edit Symbol button is shown and you can click it to configure the selected wizard.

4,

In the Size and Rotation area, do any of the following:

O

Select the Keep Original XY Proportions check box to retain the original aspect ratio of the
wizard.

Select the Flip Horizontal check box to flip the wizard horizontally.
Select the Flip Vertical check box to flip the wizard vertically.

Inthe Rotation Type box, type the number of degrees to rotate a wizard. Picture wizards can be
rotated to any angle. Bitmap and texture wizards can only be rotated in 90 degree increments (0,
90, 180, or 270). Click the button to automatically increment the rotation angle by 90 degrees.

If you are configuring a picture wizard, in the Line and Fill areas, do any the following:

O

In the Fill Color Mode list, click a fill type. Double-click the Fill Color box to open the color
palette.

In the Line Color Mode list, click a line color. Double-click the Line Color box to access the
color palette.

In the Line Style list, click a line style.

Select the Extra Lines check box to add lines at the borders of gradients within the wizard.

92

Symbol Factory AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

6. Ifyou are configuring a bitmap or texture wizard, in the Effects and Change Colors areas, do any
the following:

o Select the Include Border check box to create a black border around a wizard.
o Select the Include Shadow check box to create a dark gray shadow behind the wizard.
o Click each color box to open the color palette to change the colors in the wizard.

7. Click OK.

Animating a Wizard

You can animate any Symbol Factory wizard. The Symbol Factory provides you with access to the most
common animation links.

If you need another type of animation link, you must break the wizard and then animate it using the
standard InTouch animation links.

To animate a wizard

1. Select a wizard in the Symbol Factory, or double-click the wizard if you have already pasted it into
your window. The Symbol Factory by Reichard Software dialog box appears.

2. Click Animation. The Animation Links dialog box appears.

Animation Links

— Line Color — Fill Color———
[Done

r Digcrete I [T Discrele I
Help |

— Touch Pushbutton— — Mizcellaneous Percent Fill
[ction I [~ Wisibility [Wertical
~ Key Equivalent—— [Blink. [Horizontal
[T cul T Shif

Key.. INDne

3. Click the button for each type of animation link to apply to the selected wizard. An expression dialog
box appears.

Fill Color -» Dizcrete Exprezsion

Expresszion;
0K
W alvel -
Cancel |
r— Colors
0.FALSE Off - 1.TRUE.On - Clear |

4. Inthe Expression window, type the expression.

Double-click in the window to open the Select Tag dialog box. If you use an existing tag, you can
double-click the tag in your expression to open the Taghame Dictionary and see the tag definition.

If you use an undefined tag, you are prompted to define it when you close the expression dialog box.
Configure the details for the type of animation link.
6. Click OK.

93

Symbol Factory AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

Editing a Symbol

You can change the description in a wizard tool tip, delete a wizard, or copy a wizard to the Windows
clipboard.

To edit awizard
1. Inthe Symbol Factory by Reichard Software dialog box, select the category containing the wizard.

2. Right-click the wizard. The Edit Symbol dialog box appears.

Edit Symbol E3
— Sumbaol Dezscription
OF.
Tank 3
Cancel

Help |
Delete Symbol

Copy to Clipboard

il

— Sumbaol Information

Bytes: 3.3 K

Type: Picture “Wizard

3. Edit the wizard. Do any of the following:

o Inthe Symbol Description box, type the tool tip text. The maximum description is 80
characters.

o Click Delete Symbol to delete the wizard.

o Click Copy to Clipboard to copy the wizard to the Windows clipboard. If the wizard is a picture
wizard, it will be copied as a Windows metafile. If the wizard is a bitmap wizard or texture wizard,
it will be copied as a Windows bitmap.

4. Click OK.

Breaking a Wizard for Editing

You can break a Symbol Factory wizard for individual editing. However, after you break a wizard, it loses
its wizard properties. If you accidentally break a wizard, you can reassemble it by using the Undo tool.

To break awizard

e Onthe WindowMaker Arrange menu, click Break Cell.

Sharing a Category of Symbols on a Network

You can configure the Symbol Factory to allow multiple developers across a network to use and
contribute to the category file of wizards.

To move the category file to a network folder
1. Inthe Symbol Factory dialog box, click Options. The Symbol Options dialog box appears.

94

Symbol Factory AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

2. Click Configure. The Configure Symbol Factory dialog box appears.

Configure Symbol Factory |
— Category File Path
(1] 4
Iram Filez\wondenwarehnT ouchhSymFach
Cancel

Thiz iz the location of the categaom [* CAT) —
filez. Thiz can be on pour local hard drive, Hel |
or somewhere on your network, P

— Mizcellaneous

¥ Enable ToolTips ToalTips

[~ Enable altematives to right mouse button

3. Inthe Category File Path box, type the full path to the network folder where the category file is
sawed.

4. Click OK.

Making a Category Read-Only

When storing a wizard file on a network folder, you may want to make the category read-only to prevent
other users from moving or renaming wizards.

To make a category read-only

e Set the file as read-only in Windows Explorer.

Viewing Category Properties
You can view the category path, file size, and number of wizards.
To view properties of a category

1. Inthe Symbol Factory dialog box, right-click the category in the Categories list. The Edit Category
dialog box appears.

Edit Category E3 |

— Category Description

0k

I"v"alves
Cancel

Help

— Category Information

File Marne: C:\Program
FilegwfondenmarebnT ouchhSymFach 1LY, cat

Filz Size: 2765 K
Mumber of symbols: 73

2. Inthe Category Description box, type the new description for the category, and click OK. The
maximum length of the description is 40 characters.

95

Symbol Factory AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

3. Inthe Category Information area, view the properties.

Category

Information Description

Filename The category (.cat) file path. By default, this path
is c:\program files\wonderware\intouch\ symfac.

File Size Size of the category file, in kilobytes.

Number of Symbols Total number of wizards contained in the
category. Maximum is 32,767.

4. Click OK.

Editing an Existing Category
You can only edit the category name.
To edit an existing category

1. Inthe Symbol Factory dialog box, right-click the category in the Categories list. The Edit Category
dialog box appears.

Edit Category Ed |

— Cateqory Description

] 4

|Valves
Cancel

Help

— Category Information

File Marne: C:%\Program
Filez\w onderwaretlnT ouchtSymF ach 1L cat

File Size: 27E.5 K
Mumber of symbols: 73

2. Inthe Category Description box, type the new description for the category, and click OK. The
maximum length of the description is 40 characters.

3. Click OK.

Deleting a Category

Use Windows Explorer and delete the category (.cat) file by specifying the filename for the category.

Tip: You can verify the category filename in the Edit Category dialog box.

Configuring Symbol Factory
When you configure the Symbol Factory, you can specify:

e Whether tool tips are shown when you select a wizard.

96

Symbol Factory AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

e Whether additional options should appear in the Symbol Factory by Reichard Software dialog box.
By default, to edit category and wizard descriptions, you must right-click the item.

e The location for your category (.cat) files. All data for all wizards in each category is stored in one
category file. For performance reasons, this path should contain only .cat files. To share wizards with
other developers, set this path to a network folder. See Sharing a Category of Symbols on a Network
on page 94.

Caution: Do not place category files in your local InTouch application folder. Instead, save category files
to: C:\Program Files\Wonderware\intouch\symfac

To configure Symbol Factory

1. Inthe Symbol Factory dialog box, click Options. The Symbol Options dialog box appears.
2. Click Configure. The Configure Symbol Factory dialog box appears.

Configure Symbol Factory |
— Category File Path
(] 4
Iram FileswondenvarehnT ouchhSymFach
Cancel

Thiz is the location of the categon [*.CAT) —_—
filez. Thiz can be on vour local hard drive, Hel |
or zomewhere on your nebwork, P

— Mizcellaneous

¥ Enable ToolTips ToolTips

[” Enable altematives to right mouse button

3. Configure Symbol Factory. Do the following:

o Inthe Category File Path box, type the location where you want to save your Symbol Factory
category (.cat) files.

o Select the Enable ToolTips check box if you want tool tips to be shown for wizards in the
Symbol Factory by Reichard Software dialog box.

o Select the Enable alternatives to right mouse button check box if you want buttons added to
the Symbol Factory by Reichard Software dialog box. You can use these buttons instead of the
right mouse button for editing categories and wizards:

Edit Categary

Shows the Edit Category dialog box for a selected category.
Edit Symbol

Shows the Edit Symbol dialog box for a selected wizard.
4. Click OK.

Troubleshooting

If you accidentally uninstall the Symbol Factory wizard, you need to install it again. For more information
on installing wizards, see Wizards n the InTouch HMI Visualization Guide.

If you accidentally delete a wizard and you want it back, you must retrieve it.

97

Symbol Factory AVEVA™ InTouch HMI formerly Wonderware Supplementary Components Guide

To retrieve a deleted wizard from a category

1. Rename the file ~cat.bak to temp.cat.

2. Run Symbol Factory and see ifthe deleted wizard is back. Move it to its original category, then delete
the temp.cat file.

3. Ifthe above step did not work, hold down the CTRL key while you right-click the category with the
deleted wizard. This compacts the category file and creates a fresh backup ~cat.bak.

Perform the previous steps until you find your deleted wiz ard.

98

Index

1

16-Pen Trend
creatinglX16PenTrendcreating * 75

description * 75

F

functions
ptGet Trend Ty pe() function « 80
ptPanCurrentPen() function « 81
ptPanTime() function « 81
ptPauseTrend() function « 82
ptSaveTrendCfg() function « 82
ptSetCurrentPen() function « 83
ptSetPen() function « 83
ptSetPenEx() function « 84
ptSetTimeAxis() function « 84
ptSetTimeAxisToCurrent() function « 85
ptSetTrend() function « 85
ptSetTrend Type() function « 86
ptZoomCurrentPen() function « 86
ptZzoomTime() function « 87
RecipeDelete() function « 23
RecipelLoad() function « 22
RecipeSave() function « 23
RecipeSelectNextRecipe() function « 25
RecipeSelectPreviousRecipe() function « 26
RecipeSelectRecipe() function * 24
RecipeSelectUnit() function » 24
SQLAppendStatement() « 56
SQLClearParam() function « 63
SQLClearStatement() function « 66
SQLClearTable() function « 54

SQLCommit() function « 67
SQLConnect() function « 42
SQLCreateTable() function « 43
SQLDelete() function « 54
SQLDisconnect() function « 43
SQLDropTable() function « 44
SQLENd() function « 49
SQLErrorMsg() function « 68
SQLExecute() function « 64
SQLFirst() function « 48
SQLGetRecord() function « 47
SQLlInsert() function « 50
SQLlInsertEnd() function « 52
SQLlnsertExecute() function « 51
SQLInsertPrepare() function « 51
SQLLast() function « 49
SQLLoadStatement() function « 56
SQLManageDSN() function « 68
SQLNext() function « 48
SQLNumRows() function « 47
SQLPrepareStatement() function « 58
SQLPrev() function « 49
SQLRollback() function « 67
SQLSelect() function « 45
SQLSetParamChar() function « 58
SQLSetParamDate() function « 59
SQLSetParamDateTime() function « 59
SQLSetParamDecimal() function « 60
SQLSetParamFloat() function * 60
SQLSetParamInt() function * 61
SQLSetParamLong() function « 61
SQLSetParamNull() function « 62
SQLSetParamTime() function « 63
SQLSetStatement() function « 55
SQLTransact() function « 66
SQLUpdate() function « 52
SQLUpdateCurrent() function « 53

P
ptLoad TrendCfg() function « 80

R

Recipe Manager
deleting a template row * 12

descriptionIXRecipeManagerdescription * 9
RecipeGetMessage() function « 28

S

SQL Access Manager

descriptionIXSQLAccessManagerdescription « 31
Symbol Factory

symbol types * 89
troubleshooting * 97

	About Supplementary Components
	Using Recipe Manager
	About Using Recipe Manager
	Overview of Recipe Manager
	Recipe Manager Utility
	Recipe Template Files
	Template Definition
	Unit Definition
	Recipe Definition

	Editing Recipe Data in Recipe Manager
	Configuring the Recipe Manager Editing Grid
	Working with the Editing Grid
	Defining Ingredient Names and Data Types
	Mapping InTouch Tags to Ingredients
	Defining Values for Ingredients in Different Recipes

	Editing Recipe Data in Other Applications
	Using Excel with a Recipe Template File
	Using Notepad with a Recipe Template File

	Nesting Recipes to Create Complex Structures
	Using Recipes in InTouch
	Loading and Saving Recipe Data From/to a Recipe File
	RecipeLoad() Function
	RecipeSave() Function

	Deleting Recipes From a Recipe File
	RecipeDelete() Function

	Selecting Units (Tag Ingredient Mappings)
	RecipeSelectUnit() Function

	Selecting Individual Recipes from a Recipe File
	RecipeSelectRecipe() Function
	RecipeSelectNextRecipe() Function
	RecipeSelectPreviousRecipe() Function

	Understanding Error Messages Returned by Recipe Script Functions
	Displaying Error Code Messages
	RecipeGetMessage() Function

	Applying Security to Recipes

	Working with SQL Databases from InTouch
	About Working with SQL Databases from InTouch
	Setting Up a Data Source
	Mapping InTouch Tags to Database Columns
	Configuring the SQL Server String Delimiter in Bind Lists

	Defining the Structure of a New Table
	Working with Database Applications
	SQL Server Database Applications
	Microsoft Access Database Applications
	Oracle Database Applications

	Performing Common SQL Operations in InTouch
	Connecting and Disconnecting the Database
	SQLConnect() Function
	SQLDisconnect() Function

	Creating a New Table
	SQLCreateTable() Function

	Deleting a Table
	SQLDropTable() Function

	Retrieving Data from a Table
	SQLSelect() Function
	SQLGetRecord() Function
	SQLNumRows() Function
	SQLFirst() Function
	SQLNext() Function
	SQLPrev() Function
	SQLLast() Function
	SQLEnd() Function

	Writing New Records to a Table
	SQLInsert() Function
	SQLInsertPrepare() Function
	SQLInsertExecute() Function
	SQLInsertEnd() Function

	Updating Existing Records in a Table
	SQLUpdate() Function
	SQLUpdateCurrent() Function

	Deleting Records from a Table
	SQLClearTable() Function
	SQLDelete() Function

	Executing Parameterized Statements
	SQLSetStatement() Function
	SQLAppendStatement() Function

	Creating a Statement or Loading an Existing Statement from a File
	SQLLoadStatement() Function

	Preparing a Statement
	SQLPrepareStatement() Function

	Setting Statement Parameters
	SQLSetParamChar() Function
	SQLSetParamDate() Function
	SQLSetParamDateTime() Function
	SQLSetParamDecimal() Function
	SQLSetParamFloat() Function
	SQLSetParamInt() Function
	SQLSetParamLong() Function
	SQLSetParamNull() Function
	SQLSetParamTime() Function

	Clearing Statement Parameters
	SQLClearParam() Function

	Executing a Statement
	SQLExecute() Function

	Releasing Occupied Resources
	SQLClearStatement() Function

	Working with Transaction Sets
	SQLTransact() Function
	SQLCommit() Function
	SQLRollback() Function

	Opening the ODBC Administrator Dialog Box at Run Time
	SQLManageDSN() Function

	Understanding SQL Error Messages
	SQLErrorMsg() Function
	SQL Access Manager Result Codes and Messages

	Reserved Word List

	Using the 16-Pen Trend Wizard
	About Using a 16-Pen Trend
	Creating a 16-Pen Trend
	Configuring Which Tags to Display on the Trend Graph
	Configuring the Trend Time Span and Update Rate
	Configuring the Trend Display Options
	Changing the Trend Configuration at Run Time
	Controlling a 16-Pen Trend Wizard Using Scripts
	ptGetTrendType() Function
	ptLoadTrendCfg() Function
	ptPanCurrentPen() Function
	ptPanTime() Function
	ptPauseTrend() Function
	ptSaveTrendCfg() Function
	ptSetCurrentPen() Function
	ptSetPen() Function
	ptSetPenEx() Function
	ptSetTimeAxis() Function
	ptSetTimeAxisToCurrent() Function
	ptSetTrend() Function
	ptSetTrendType() Function
	ptZoomCurrentPen() Function
	ptZoomTime() Function

	Symbol Factory
	About Symbol Factory
	Symbol Types
	Picture Wizards
	Bitmap Wizards
	Texture Wizards
	InTouch Object

	Using Symbol Factory
	Getting Started Quickly
	Placing a Symbol Factory Wizard in a Window
	Configuring Symbol Options
	Animating a Wizard
	Editing a Symbol
	Breaking a Wizard for Editing
	Sharing a Category of Symbols on a Network
	Making a Category Read-Only
	Viewing Category Properties
	Editing an Existing Category
	Deleting a Category

	Configuring Symbol Factory
	Troubleshooting

	Index

