Micro Motion[™] 1500 Transmitters with Analog Outputs

Configuration and Use Manual

Safety messages

Safety messages are provided throughout this manual to protect personnel and equipment. Read each safety message carefully before proceeding to the next step.

Safety and approval information

This Micro Motion product complies with all applicable European directives when properly installed in accordance with the instructions in this manual. Refer to the EU declaration of conformity for directives that apply to this product. The following are available: the EU declaration of conformity, with all applicable European directives, and the complete ATEX Installation Drawings and Instructions. In addition the IECEX Installation Instructions for installations outside of the European Union and the CSA Installation Instructions for installations in North America are available on the internet at or through your local Micro Motion support center.

Information affixed to equipment that complies with the Pressure Equipment Directive, can be found on the internet at . For hazardous installations in Europe, refer to standard EN 60079-14 if national standards do not apply.

Other information

Full product specifications can be found in the product data sheet. Troubleshooting information can be found in the configuration manual. Product data sheets and manuals are available from the Micro Motion web site at www.emerson.com.

Return policy

Follow Micro Motion procedures when returning equipment. These procedures ensure legal compliance with government transportation agencies and help provide a safe working environment for Micro Motion employees. Micro Motion will not accept your returned equipment if you fail to follow Micro Motion procedures.

Return procedures and forms are available on our web support site at www.emerson.com, or by phoning the Micro Motion Customer Service department.

Emerson Flow customer service

Email:

Worldwide: flow.support@emerson.com

Asia-Pacific: APflow.support@emerson.com

Telephone:

North and South America		Europe and Middle East		Asia Pacific	
United States	800-522-6277	U.K. and Ireland	0870 240 1978	Australia	800 158 727
Canada	+1 303-527-5200	The Netherlands	+31 (0) 70 413 6666	New Zealand	099 128 804
Mexico	+52 55 5809 5010	France	+33 (0) 800 917 901	India	800 440 1468
Argentina	+54 11 4809 2700	Germany	0800 182 5347	Pakistan	888 550 2682
Brazil	+55 15 3413 8000	Italy	+39 8008 77334	China	+86 21 2892 9000
Chile	+56 2 2928 4800	Central & Eastern	+41 (0) 41 7686 111	Japan	+81 3 5769 6803
Peru	+51 15190130	Russia/CIS	+7 495 995 9559	South Korea	+82 2 3438 4600
		Egypt	0800 000 0015	Singapore	+65 6 777 8211
		Oman	800 70101	Thailand	001 800 441 6426
		Qatar	431 0044	Malaysia	800 814 008
		Kuwait	663 299 01		
		South Africa	800 991 390		
		Saudi Arabia	800 844 9564		
		UAE	800 0444 0684		

Contents

Part I	Getting started	
Chapter 1	Before you begin	9
	1.1 About this manual	9
	1.2 Transmitter model code	
	1.3 Communications tools and protocols	9
	1.4 Additional documentation and resources	10
Chapter 2	Quick start	1 1
	2.1 Power up the transmitter	11
	2.2 Check meter status	1 ⁻
	2.3 Make a startup connection to the transmitter	12
	2.4 (Optional) Adjust digital communications settings	12
	2.5 Verify mass flow measurement	13
	2.6 Verify the zero	13
Part II	Configuration and commissioning	
Chapter 3	Introduction to configuration and commissioning	17
-	3.1 Configuration flowchart	
	3.2 Default values and ranges	18
	3.3 Disable write-protection on the transmitter configuration	18
	3.4 Restore the factory configuration	18
Chapter 4	Configure process measurement	19
	4.1 Configure mass flow measurement	19
	4.2 Configure volume flow measurement for liquid applications	23
	4.3 Configure GSV flow measurement	27
	4.4 Configure Flow Direction	33
	4.5 Configure density measurement	38
	4.6 Configure temperature measurement	42
	4.7 Configure pressure compensation	43
Chapter 5	Configure device options and preferences	49
	5.1 Configure response time parameters	49
	5.2 Configure alert handling	5
	5.3 Configure informational parameters	55
Chapter 6	Integrate the meter with the control system	59
	6.1. Configure the transmitter channels	50

	6.2 Configure the mA Output	59
	6.3 Configure the Frequency Output	65
	6.4 Configure the Discrete Output	68
	6.5 Configure events	72
	6.6 Configure digital communications	74
Chapter 7	Complete the configuration	83
•	7.1 Test or tune the system using sensor simulation	
	7.2 Back up transmitter configuration	
	7.3 Enable write-protection on the transmitter configuration	85
Part III	Operations, maintenance, and troubleshoo	oting
Chapter 8	Transmitter operation	89
•	8.1 Record the process variables	89
	8.2 View process variables	89
	8.3 View transmitter status using the status LED	90
	8.4 View and acknowledge status alerts	90
	8.5 Read totalizer and inventory values	92
	8.6 Start and stop totalizers and inventories	92
	8.7 Reset totalizers	93
	8.8 Reset inventories	93
Chapter 9	Measurement support	95
-	9.1 Options for measurement support	95
	9.2 Use Smart Meter Verification	95
	9.3 Use Production Volume Reconciliation, Transient Mist Remediation, and Transient Bub	
	9.4 Piecewise linearization (PWL) for calibrating gas meters	102
	9.5 Zero the meter	
	9.6 Validate the meter	103
	9.7 Perform a (standard) D1 and D2 density calibration	105
	9.8 Perform a D3 and D4 density calibration (T-Series sensors only)	107
	9.9 Perform temperature calibration	110
Chapter 10	Troubleshooting	113
•	10.1 Status LED states	113
	10.2 Check the core processor LED	113
	10.3 Perform a 700 core processor resistance test	115
	10.4 Check the cutoffs	116
	10.5 Density measurement problems	116
	10.6 Check the drive gain	117
	10.7 Check for internal electrical problems	118
	10.8 Check Flow Direction	120

	10.9 Flow measurement problems	121
	10.10 Frequency Output problems	123
	10.11 Check Frequency Output Fault Action	123
	10.12 Check Frequency Output Scaling Method	124
	10.13 Check grounding	124
	10.14 Check the HART communication loop	124
	10.15 Check HART Address and mA Output Action	125
	10.16 Check HART burst mode	125
	10.17 Perform loop tests	125
	10.18 Check Lower Range Value and Upper Range Value	128
	10.19 Milliamp output problems	128
	10.20 Check mA Output Fault Action	130
	10.21 Check the trimming of the mA Output	130
	10.22 Check the pickoff voltage	130
	10.23 Check power supply wiring	131
	10.24 Check for radio frequency interference (RFI)	132
	10.25 Using sensor simulation for troubleshooting	132
	10.26 Check sensor-to-transmitter wiring	132
	10.27 Check for two-phase flow (slug flow)	133
	10.28 Status alerts, causes, and recommendations	133
	10.29 Temperature measurement problems	148
Appendix A	Using ProLink III with the transmitter	151
	A.1 Basic information about ProLink III	
	A.2 Connect with ProLink III	152
Appendix B	Using a field communicator with the transmitter	161
	B.1 Basic information about field communicators	
	B.2 Connect with a field communicator	162
Appendix C	Default values and ranges	165
Appendix D	Transmitter components and installation wiring	171
	D.1 Installation types	171
	D.2 Power supply terminals	173
	D.3 Input/output (I/O) wiring terminals	
Appendix E	NE 53 history	175

Part I Getting started

1 Before you begin

1.1 About this manual

This manual helps you configure, commission, use, maintain, and troubleshoot the 1500 transmitter.

Important

This manual assumes that:

- The transmitter has been installed correctly and completely according to the instructions in the transmitter installation manual
- Users understand basic transmitter and sensor installation, configuration, and maintenance concepts and procedures

1.2 Transmitter model code

You can verify that this manual pertains to your transmitter by ensuring the model code on the transmitter tag matches the format.

Example:

The transmitter has a model number of the following form: 1500DEB**A*****

- **D** 4-wire remote DIN rail-mount
- **E** 4-wire remote DIN rail transmitter with 9-wire remote enhanced core processor
- **B** 4-wire remote DIN rail transmitter with 9-wire remote core processor
- A Analog outputs option board

1.3 Communications tools and protocols

You must have a communications tool to interface with the transmitter. Several different communications tools and protocols are supported. You may use different tools in different locations or for different tasks.

Communications tool	Supported protocols
ProLink III	HART/Bell 202
	Modbus/RS-485
	Service port
Field communicator	HART/Bell 202

Tip

You may be able to use other communications tools, such as AMS[™] Suite: Intelligent Device Manager, or the Smart Wireless THUM[™] Adapter. Use of AMS or the Smart Wireless THUM Adapter is not discussed in this manual. For more information on the Smart Wireless THUM Adapter, refer to the documentation available at .

The following additional documentation supports the installation and operation of the transmitter.

Topic	Document
Hazardous area installation	See the approval documentation shipped with the transmitter, or download the appropriate documentation at www.emerson.com.
Product Data Sheet	Micro Motion Series 1000 and Series 2000 Transmitters with MVD™ Technology Product Data Sheet (PDS)
Production Volume Reconciliation (PVR), Transient Bubble Remediation (TBR), and Transient Mist Remediation (TMR) applications	Micro Motion Oil and Gas Production Supplement
Sensor	Sensor documentation
Transmitter installation	Micro Motion Model 1500 and Model 2500 Transmitters: Installation Manual

All documentation resources are available at www.emerson.com or on the user documentation DVD.

2 Quick start

2.1 Power up the transmitter

The transmitter must be powered up for all configuration and commissioning tasks, or for process measurement.

The 1500:

- Is DC powered only
- Has a minimum 19.2 to 28.8 VDC, 6.3 watts
- At startup, the transmitter power source must provide a minimum of 1.0 amperes of short-term current per transmitter
- The length and conductor diameter of the power cable must be sized to provide 19.2 VDC minimum at the power terminals, at a load current of 330 mA

Procedure

1. Ensure that all transmitter and sensor covers and seals are closed.

WARNING

To prevent ignition of flammable or combustible atmospheres, ensure that all covers and seals are tightly closed. For hazardous area installations, applying power while housing covers are removed or loose can cause an explosion.

2. Turn on the electrical power at the power supply.

The transmitter will automatically perform diagnostic routines. During this period, Alert 009 is active.

The diagnostic routines should complete in approximately 30 seconds. The status LED will turn green when the startup diagnostics are complete. If the status LED exhibits different behavior, an alert is active.

Postrequisites

Although the sensor is ready to receive process fluid shortly after power-up, the electronics can take up to 10 minutes to reach thermal equilibrium. Therefore, if this is the initial startup, or if power has been off long enough to allow components to reach ambient temperature, allow the electronics to warm up for approximately 10 minutes before relying on process measurements. During this warm-up period, you may observe minor measurement instability or inaccuracy.

2.2 Check meter status

Check the meter for any error conditions that require user action or that affect measurement accuracy.

Procedure

1. Wait approximately 10 seconds for the power-up sequence to complete. Immediately after power-up, the transmitter runs through diagnostic routines and checks for error conditions. During the power-up sequence, Alert A009 is active. This alert should clear automatically when the power-up sequence is complete.

2. Check the status LED on the transmitter.

Related information

View and acknowledge status alerts

2.2.1 Transmitter status reported by LED

Table 2-1: Status LED states

LED state	Alarm condition	Description
Solid green	No alarm	Normal operation
Flashing yellow	No alarm	Zero calibration procedure is in progressLoop test is in progress
Solid yellow	Low-severity alarm	Alarm condition that will not cause measurement error (outputs continue to report process data)
Solid red	High-severity alarm	Alarm condition that will cause measurement error (outputs in fault)

2.3 Make a startup connection to the transmitter

To configure the transmitter, you must have an active connection from a communications tool. Follow this procedure to make your first connection to the transmitter.

Procedure

Identify the connection type to use, and follow the instructions for that connection type in the appropriate appendix. Use the default communications parameters shown in the appendix.

Communications tool	Connection type to use	Instructions
ProLink III	Modbus/RS-485	Using ProLink III with the transmitter
Field Communicator		Using a field communicator with the transmitter

2.4 (Optional) Adjust digital communications settings

Change the communications parameters to site-specific values.

Important

If you are changing communications parameters for the connection type that you are using, you will lose the connection when you write the parameters to the transmitter. Reconnect using the new parameters.

Procedure

- To change the communications parameters using ProLink III, choose Device Tools → Configuration →
 Communications.
- 2. To change the communications parameters using the Field Communicator, choose **On-Line Menu** → **Configure** → **Manual Setup** → **Inputs/Outputs** → **Communications**.

2.5 Verify mass flow measurement

Check to see that the mass flow rate reported by the transmitter is accurate. You can use any available method.

Procedure

- Connect to the transmitter with ProLink III and read the value for **Mass Flow Rate** in the **Process Variables** panel.
- Connect to the transmitter with a field communicator and read the value for Mass Flow Rate.

Online → Overview → Mass Flow Rate

Postrequisites

If the reported mass flow rate is not accurate:

- Check the characterization parameters.
- Review the troubleshooting suggestions for flow measurement issues.

2.6 Verify the zero

Verifying the zero helps you determine if the stored zero value is appropriate to your installation, or if a field zero can improve measurement accuracy.

The zero verification procedure analyzes the Live Zero value under conditions of zero flow, and compares it to the Zero Stability range for the sensor. If the average Live Zero value is within a reasonable range, the zero value stored in the transmitter is valid. Performing a field calibration will not improve measurement accuracy.

Important

In most cases, the factory zero is more accurate than the field zero. Do not zero the meter unless one of the following is true:

- The zero is required by site procedures.
- The stored zero value fails the zero verification procedure.

Do not verify the zero or zero the meter if a high-severity alert is active. Correct the problem, then verify the zero or zero the meter. You may verify the zero or zero the meter if a low-severity alert is active.

Procedure

- 1. Allow the flowmeter to warm up for at least 20 minutes after applying power.
- 2. Run the process fluid through the sensor until the sensor temperature reaches the normal process operating temperature.
- 3. Stop flow through the sensor by shutting the downstream valve, and then the upstream valve if available.
- 4. Verify that the sensor is blocked in, that flow has stopped, and that the sensor is completely full of process fluid.
- 5. From ProLink III, choose **Device Tools** → **Calibration** → **Zero Verification and Calibration** → **Verify Zero** and wait until the procedure completes.
- 6. Observe the drive gain, temperature, and density readings. If they are stable, check the **Live Zero** or **Field Verification Zero** value. If the average value is close to 0, you should not need to zero the meter.

- 7. If the zero verification procedure fails:
 - a) Confirm that the sensor is completely blocked in, that flow has stopped, and that the sensor is completely full of process fluid.
 - b) Verify that the process fluid is not flashing or condensing, and that it does not contain particles that can settle out.
 - c) Remove or reduce sources of electromechanical noise if appropriate.
 - d) Repeat the zero verification procedure.
 - e) If it fails again, zero the meter.

Postrequisites

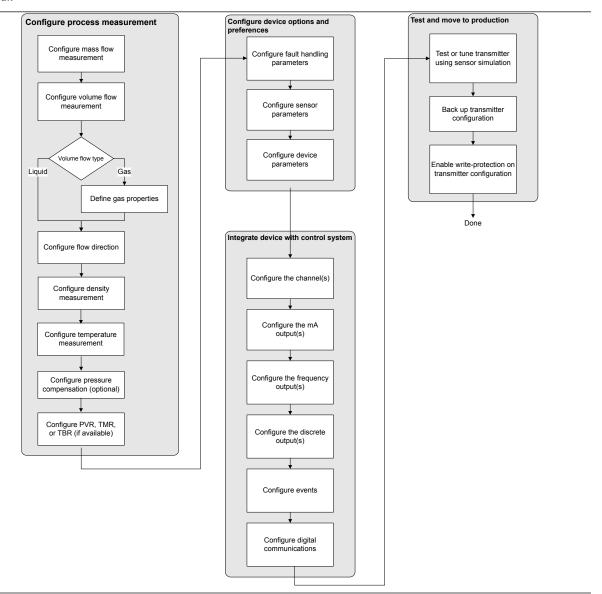
Restore normal flow through the sensor by opening the valves.

Related information

Zero the meter

2.6.1 Terminology used with zero verification and zero calibration

Term	Definition
Zero	In general, the offset required to synchronize the left pickoff and the right pickoff under conditions of zero flow. Unit = microseconds.
Factory Zero	The zero value obtained at the factory, under laboratory conditions.
Field Zero	The zero value obtained by performing a zero calibration outside the factory.
Prior Zero	The zero value stored in the transmitter at the time a field zero calibration is begun. May be the factory zero or a previous field zero.
Manual Zero	The zero value stored in the transmitter, typically obtained from a zero calibration procedure. It may also be configured manually. Also called "mechanical zero" or "stored zero".
Live Zero	The real-time bidirectional mass flow rate with no flow damping or mass flow cutoff applied. An adaptive damping value is applied only when the mass flow rate changes dramatically over a very short interval. Unit = configured mass flow measurement unit.
Zero Stability	A laboratory-derived value used to calculate the expected accuracy for a sensor. Under laboratory conditions at zero flow, the average flow rate is expected to fall within the range defined by the Zero Stability value (0 \pm Zero Stability). Each sensor size and model has a unique Zero Stability value.
Zero Calibration	The procedure used to determine the zero value.
Zero Time	The time period over which the Zero Calibration procedure is performed. Unit = seconds.
Field Verification Zero	A 3-minute running average of the Live Zero value, calculated by the transmitter. Unit = configured mass flow measurement unit.
Zero Verification	A procedure used to evaluate the stored zero and determine whether or not a field zero can improve measurement accuracy.


Part II Configuration and commissioning

3 Introduction to configuration and commissioning

3.1 Configuration flowchart

Use the following flowchart as a general guide to the configuration and commissioning process.

Some options may not apply to your installation. Detailed information is provided in the remainder of this manual.

3.2 Default values and ranges

See Default values and ranges to view the default values and ranges for the most commonly used parameters.

3.3 Disable write-protection on the transmitter configuration

Display	OFF-LINE MAINT → CONFG → LOCK
ProLink III	

If the transmitter is write-protected, the configuration is locked and you must unlock it before you can change any configuration parameters. By default, the transmitter is not write-protected.

Tip

Write-protecting the transmitter prevents accidental changes to configuration. It does not prevent normal operational use. You can always disable write-protection, perform any required configuration changes, then re-enable write-protection.

3.4 Restore the factory configuration

ProLink III	$\textbf{Device Tools} \rightarrow \textbf{Configuration Transfer} \rightarrow \textbf{Restore Factory Configuration}$
Field communicator	$Service\ Tools \rightarrow Maintenance \rightarrow Reset/Restore \rightarrow Restore\ Factory\ Configuration$

Restoring the factory configuration returns the transmitter to the same configuration it had when it left the factory. This may be useful if you experience problems during configuration.

Important

You cannot restore factory configurations with a 700 core.

Tip

Restoring the factory configuration is not a common action. You may want to contact customer support to see if there is a preferred method to resolve any issues.

4 Configure process measurement

4.1 Configure mass flow measurement

The mass flow measurement parameters control how mass flow is measured and reported.

4.1.1 Configure Mass Flow Measurement Unit

ProLink III	Device Tools → Configuration → Process Measurement → Flow
Field Communicator	$Configure \rightarrow Manual \ Setup \rightarrow Measurements \rightarrow Flow \rightarrow Mass \ Flow \ Unit$

Mass Flow Measurement Unit specifies the unit of measure that will be used for the mass flow rate. The unit used for mass total and mass inventory is derived from this unit.

Any selected measurement unit, (mass, volume or gas standard volume), is automatically applied to both the mA and Frequency Outputs.

Procedure

Set Mass Flow Measurement Unit to the unit you want to use.

The default setting for **Mass Flow Measurement Unit** is g/sec (grams per second).

Tip

If the measurement unit you want to use is not available, you can define a special measurement unit.

Options for Mass Flow Measurement Unit

The transmitter provides a standard set of measurement units for **Mass Flow Measurement Unit**, plus one user-defined special measurement unit. Different communications tools may use different labels for the units.

	Label	
Unit description	ProLink III	Field Communicator
Grams per second	g/sec	g/s
Grams per minute	g/min	g/min
Grams per hour	g/hr	g/h
Kilograms per second	kg/sec	kg/s
Kilograms per minute	kg/min	kg/min
Kilograms per hour	kg/hr	kg/h
Kilograms per day	kg/day	kg/d
Metric tons per minute	mTon/min	MetTon/min
Metric tons per hour	mTon/hr	MetTon/h
Metric tons per day	mTon/day	MetTon/d
Pounds per second	lbs/sec	lb/s

		Label	
Unit description	ProLink III	Field Communicator	
Pounds per minute	lbs/min	lb/min	
Pounds per hour	lbs/hr	lb/h	
Pounds per day	lbs/day	lb/d	
Short tons (2000 pounds) per minute	sTon/min	STon/min	
Short tons (2000 pounds) per hour	sTon/hr	STon/h	
Short tons (2000 pounds) per day	sTon/day	STon/d	
Long tons (2240 pounds) per hour	lTon/hr	LTon/h	
Long tons (2240 pounds) per day	ITon/day	LTon/d	
Special unit	special	Spcl	

Define a special measurement unit for mass flow

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Process\ Measurement \rightarrow Flow \rightarrow Special\ Units$
Field Communicator	$Configure \rightarrow Manual\ Setup \rightarrow Measurements \rightarrow Special\ Units \rightarrow Mass\ Special\ Units$

A special measurement unit is a user-defined unit of measure that allows you to report process data, totalizer data, and inventory data in a unit that is not available in the transmitter. A special measurement unit is calculated from an existing measurement unit using a conversion factor.

Procedure

1. Specify Base Mass Unit.

Base Mass Unit is the existing mass unit that the special unit will be based on.

2. Specify **Base Time Unit**.

Base Time Unit is the existing time unit that the special unit will be based on.

- 3. Calculate Mass Flow Conversion Factor as follows:
 - a) x base units = y special units
 - b) Mass Flow Conversion Factor = $x \div y$

The original mass flow rate value is divided by this value.

- 4. Enter Mass Flow Conversion Factor.
- 5. Set Mass Flow Label to the name you want to use for the mass flow unit.
- 6. Set Mass Total Label to the name you want to use for the mass total and mass inventory unit.

The special measurement unit is stored in the transmitter. You can configure the transmitter to use the special measurement unit at any time.

Example: Defining a special measurement unit for mass flow

You want to measure mass flow in ounces per second (oz/sec).

1. Set **Base Mass Unit** to Pounds (lb).

MMI-20019023 February 2022

- 2. Set Base Time Unit to Seconds (sec).
- 3. Calculate Mass Flow Conversion Factor:
 - a. 1 lb/sec = 16 oz/sec
 - b. Mass Flow Conversion Factor = $1 \div 16 = 0.0625$
- 4. Set Mass Flow Conversion Factor to 0.0625.
- 5. Set Mass Flow Label to oz/sec.
- 6. Set Mass Total Label to oz.

4.1.2 Configure Flow Damping

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Process\ Measurement \rightarrow Flow$
Field Communicator	$Configure \rightarrow Manual \ Setup \rightarrow Measurements \rightarrow Flow \rightarrow Flow \ Damping$

Damping is used to smooth out small, rapid fluctuations in process measurement. **Damping Value** specifies the time period (in seconds) over which the transmitter will spread changes in the process variable. At the end of the interval, the internal value will reflect 63% of the change in the actual measured value.

Procedure

Set **Flow Damping** to the value you want to use.

The default value is 0.8 seconds. The range depends on the core processor type and the setting of **Update Rate**, as shown in the following table.

Update Rate setting	Damping range
Normal	0 to 51.2 seconds
Special	0 to 40.96 seconds

The value you enter is automatically rounded off to the nearest valid value. For example, if the damping is currently set to 0.8 seconds, any value entered up to 1.2 seconds will be rounded down to 0.8 seconds, and any value entered from 1.21 to 1.59 seconds will be rounded up to 1.6 seconds.

Update Rate setting	Valid damping values
Normal	0.0, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6, 51.2
Special	0.0, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.56, 5.12, 10.24, 20.48, 40.96

Effect of flow damping on volume measurement

Flow damping affects volume measurement for liquid volume data. Flow damping also affects volume measurement for gas standard volume data. The transmitter calculates volume data from the damped mass flow data.

Interaction between Flow Damping and mA Output Damping

In some circumstances, both **Flow Damping** and **mA Output Damping** are applied to the reported mass flow value.

Flow Damping controls the rate of change in flow process variables. **mA Output Damping** controls the rate of change reported through mA Output. If **mA Output Process Variable** is set to Mass Flow Rate, and both **Flow Damping** and **mA Output Damping** are set to non-zero values, flow damping is applied first, and the added damping calculation is applied to the result of the first calculation.

4.1.3 Configure Mass Flow Cutoff

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Process\ Measurement \rightarrow Flow$
Field Communicator	$Configure \rightarrow Manual \ Setup \rightarrow Measurements \rightarrow Flow \rightarrow Mass \ Flow \ Cutoff$

Mass Flow Cutoff specifies the lowest mass flow rate that will be reported as measured. All mass flow rates below this cutoff will be reported as 0.

Procedure

Set Mass Flow Cutoff to the value you want to use.

The default value for **Mass Flow Cutoff** is 0.0 g/sec or a sensor-specific value set at the factory. The recommended value is 0.5% of the nominal flow rate of the attached sensor. See the sensor specifications. Do not leave **Mass Flow Cutoff** at 0.0 g/sec.

Effect of Mass Flow Cutoff on volume measurement

Mass Flow Cutoff does not affect volume measurement. Volume data is calculated from the actual mass data rather than the reported value.

Volume flow has a separate Volume Flow Cutoff that is not affected by the Mass Flow Cutoff value.

Interaction between Mass Flow Cutoff and mA Output Cutoff

Mass Flow Cutoff defines the lowest mass flow value that the transmitter will report as measured. mA

Output Cutoff defines the lowest flow rate that will be reported through mA Output. If mA Output Process

Variable is set to Mass Flow Rate, the mass flow rate reported through mA Output is controlled by the higher of the two cutoff values.

Mass Flow Cutoff affects all reported values and values used in other transmitter behavior (e.g., events defined on mass flow).

mA Output Cutoff affects only mass flow values reported through mA Output.

MMI-20019023 February 2022

Example: Cutoff interaction with mA Output Cutoff lower than Mass Flow Cutoff

Configuration:

mA Output Process Variable: Mass Flow Rate

• Frequency Output Process Variable: Mass Flow Rate

mA Output Cutoff: 10 g/sec

Mass Flow Cutoff: 15 g/sec

Result: If the mass flow rate drops below 15 g/sec, mass flow will be reported as 0, and 0 will be used in all internal processing.

Example: Cutoff interaction with mA Output Cutoff higher than Mass Flow Cutoff

Configuration:

• mA Output Process Variable: Mass Flow Rate

• Frequency Output Process Variable: Mass Flow Rate

mA Output Cutoff: 15 g/sec

Mass Flow Cutoff: 10 g/sec

Result:

- If the mass flow rate drops below 15 q/sec but not below 10 q/sec:
 - The mA Output will report zero flow.
 - The Frequency Output will report the actual flow rate, and the actual flow rate will be used in all internal processing.
- If the mass flow rate drops below 10 g/sec, both outputs will report zero flow, and 0 will be used in all internal processing.

4.2 Configure volume flow measurement for liquid applications

The volume flow measurement parameters control how liquid volume flow is measured and reported.

Restriction

You cannot implement both liquid volume flow and gas standard volume flow at the same time. Choose one or the other.

Note

If you need to switch from gas standard volume to liquid volume, polling for base density will automatically be disabled.

4.2.1 Configure Volume Flow Type for liquid applications

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Process\ Measurement \rightarrow Flow$
Field Communicator	Configure \rightarrow Manual Setup \rightarrow Measurements \rightarrow GSV \rightarrow Volume Flow Type \rightarrow Liquid

February 2022

Volume Flow Type controls whether liquid or qas standard volume flow measurement will be used.

Restriction

Gas standard volume measurement is incompatible with some applications. Set **Volume Flow Type** to Liquid if you are using any of the following applications:

Production Volume Reconciliation (PVR)

Procedure

Set Volume Flow Type to Liquid.

4.2.2 Configure Volume Flow Measurement Unit for liquid applications

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Process\ Measurement \rightarrow Flow$
Field Communicator	$Configure \to Manual \ Setup \to Measurements \to Flow \to Volume \ Flow \ Unit$

Volume Flow Measurement Unit specifies the unit of measurement that will be displayed for the volume flow rate. The unit used for the volume total and volume inventory is based on this unit.

Prerequisites

Before you configure **Volume Flow Measurement Unit**, be sure that **Volume Flow Type** is set to Liquid.

Procedure

Set **Volume Flow Measurement Unit** to the unit you want to use.

To read US gallons, select that unit from this menu. G/MIN stands for grams per minute (USGPM), not gallons per minute. The default setting for **Volume Flow Measurement Unit** is l/sec (liters per second).

Tip

If the measurement unit you want to use is not available, you can define a special measurement unit.

Options for Volume Flow Measurement Unit for liquid applications

The transmitter provides a standard set of measurement units for **Volume Flow Measurement Unit**, plus one user-defined measurement unit. Different communications tools may use different labels for the units.

	Label	
Unit description	ProLink III	Field Communicator
Cubic feet per second	ft3/sec	Cuft/s
Cubic feet per minute	ft3/min	Cuft/min
Cubic feet per hour	ft3/hr	Cuft/h
Cubic feet per day	ft3/day	Cuft/d
Cubic meters per second	m3/sec	Cum/s
Cubic meters per minute	m3/min	Cum/min
Cubic meters per hour	m3/hr	Cum/h

MMI-20019023 February 2022

Label	
ProLink III	Field Communicator
m3/day	Cum/d
US gal/sec	gal/s
US gal/min	gal/min
US gal/hr	gal/h
US gal/day	gal/d
mil US gal/day	MMgal/d
l/sec	L/s
l/min	L/min
l/hr	L/h
mil I/day	ML/d
Imp gal/sec	Impgal/s
Imp gal/min	Impgal/min
Imp gal/hr	Impgal/h
Imp gal/day	Impgal/d
barrels/sec	bbl/s
barrels/min	bbl/min
barrels/hr	bbl/h
barrels/day	bbl/d
Beer barrels/sec	bbbl/s
Beer barrels/min	bbbl/min
Beer barrels/hr	bbbl/h
Beer barrels/day	bbbl/d
special	Spcl
	ProLink III m3/day US gal/sec US gal/min US gal/hr US gal/day mil US gal/day I/sec I/min I/hr mil I/day Imp gal/sec Imp gal/min Imp gal/hr Imp gal/hr Imp gal/day barrels/sec barrels/hr barrels/day Beer barrels/hr Beer barrels/hr Beer barrels/day

- (1) Unit based on oil barrels (42 U.S. gallons).
- (2) Unit based on U.S. beer barrels (31 U.S. gallons).

Define a special measurement unit for volume flow

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Process\ Measurement \rightarrow Flow \rightarrow Special\ Units$
Field Communicator	Configure → Manual Setup → Measurements → Special Units → Volume Special Units

A special measurement unit is a user-defined unit of measure that allows you to report process data, totalizer data, and inventory data in a unit that is not available in the transmitter. A special measurement unit is calculated from an existing measurement unit using a conversion factor.

Note

Procedure

1. Specify **Base Volume Unit**.

Base Volume Unit is the existing volume unit that the special unit will be based on.

2. Specify Base Time Unit.

Base Time Unit is the existing time unit that the special unit will be based on.

- 3. Calculate Volume Flow Conversion Factor as follows:
 - a) x base units = y special units
 - b) Volume Flow Conversion Factor = x ÷ y
- 4. Enter Volume Flow Conversion Factor.

The original volume flow rate value is divided by this conversion factor.

- 5. Set Volume Flow Label to the name you want to use for the volume flow unit.
- 6. Set Volume Total Label to the name you want to use for the volume total and volume inventory unit.

The special measurement unit is stored in the transmitter. You can configure the transmitter to use the special measurement unit at any time.

Defining a special measurement unit for volume flow

You want to measure volume flow in pints per second (pints/sec).

- 1. Set **Base Volume Unit** to Gallons (gal).
- 2. Set Base Time Unit to Seconds (sec).
- 3. Calculate the conversion factor:
 - a. 1 gal/sec = 8 pints/sec
 - b. Volume Flow Conversion Factor = $1 \div 8 = 0.1250$
- 4. Set Volume Flow Conversion Factor to 0.1250.
- 5. Set Volume Flow Label to pints/sec.
- 6. Set Volume Total Label to pints.

4.2.3 Configure Volume Flow Cutoff

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Process\ Measurement \rightarrow Flow$	
Field Communicator	$Configure \rightarrow Manual\ Setup \rightarrow Measurements \rightarrow Flow \rightarrow Volume\ Flow\ Cutoff$	

Volume Flow Cutoff specifies the lowest volume flow rate that will be reported as measured. All volume flow rates below this cutoff are reported as 0.

Procedure

Set **Volume Flow Cutoff** to the value you want to use.

The default value for **Volume Flow Cutoff** is 0.0 l/sec (liters per second). The lower limit is 0. Leaving the volume flow cutoff at 0 is not recommended.

Interaction between Volume Flow Cutoff and mAO Cutoff

Volume Flow Cutoff defines the lowest liquid volume flow value that the transmitter will report as measured. **mAO Cutoff** defines the lowest flow rate that will be reported through mA Output. If **mA Output Process Variable** is set to Volume Flow Rate, the volume flow rate reported through mA Output is controlled by the higher of the two cutoff values.

Volume Flow Cutoff affects both the volume flow values reported via the outputs and the volume flow values used in other transmitter behavior (e.g., events defined on the volume flow).

mAO Cutoff affects only flow values reported through mA Output.

Example: Cutoff interaction with mAO Cutoff lower than Volume Flow Cutoff

Configuration:

- mA Output Process Variable: Volume Flow Rate
- Frequency Output Process Variable: Volume Flow Rate
- AO Cutoff: 10 l/sec
- Volume Flow Cutoff: 15 l/sec

Result: If the volume flow rate drops below 15 l/sec, volume flow will be reported as 0, and 0 will be used in all internal processing.

Example: Cutoff interaction with mAO Cutoff higher than Volume Flow Cutoff

Configuration:

- mA Output Process Variable: Volume Flow Rate
- Frequency Output Process Variable: Volume Flow Rate
- AO Cutoff: 15 l/sec
- Volume Flow Cutoff: 10 l/sec

Result:

- If the volume flow rate drops below 15 l/sec but not below 10 l/sec:
 - The mA Output will report zero flow.
 - The Frequency Output will report the actual flow rate, and the actual flow rate will be used in all internal processing.
- If the volume flow rate drops below 10 l/sec, both outputs will report zero flow, and 0 will be used in all internal processing.

4.3 Configure GSV flow measurement

The gas standard volume (GSV) flow measurement parameters control how volume flow is measured and reported in a gas application.

Restriction

You cannot implement both liquid volume flow and gas standard volume flow at the same time. Choose one or the other.

4.3.1 Configure Volume Flow Type for gas applications

ProLink III	Device Tools → Configuration → Process Measurement → Flow	
Field Communicator	$Configure \to Manual \ Setup \to Measurements \to GSV \to Volume \ Flow \ Type$	

Volume Flow Type controls whether liquid or gas standard volume flow measurement is used.

Restriction

Gas standard volume measurement is incompatible with some applications. Set **Volume Flow Type** to Liquid if you are using any of the following applications:

Production Volume Reconciliation (PVR)

Procedure

Set Volume Flow Type to Gas Standard Volume.

4.3.2 Configure Standard Density of Gas

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Process\ Measurement \rightarrow Flow$	
Field Communicator	$Configure \to Manual \ Setup \to Measurements \to GSV \to Gas \ Ref \ Density$	

The **Standard Density of Gas** value is the gas density at standard reference conditions. Use it to convert the measured mass flow data to volume flow at reference conditions.

Prerequisites

Ensure that **Density Measurement Unit** is set to the measurement unit you want to use for **Standard Density of Gas**.

Procedure

From the **Source** field, choose the method to supply gas base density data and perform the required setup.

Option	Description	
Fixed Value or Digital Communications	A host writes gas base density data to the meter at appropriate intervals. Continue to Configure fixed value or digital communications.	
Poll for external value	The meter polls an external HART device for gas base density data in order to then compute gas standard volume from the mass flow and gas base density. Continue to Poll for external value.	

Configure fixed value or digital communications

Prerequisites

Configure Standard Density of Gas

Procedure

1. Set **Standard Density of Gas** to the standard reference density of the gas you are measuring.

February 2022

MMI-20019023

Note

ProLink III provides a guided method that you can use to calculate your gas base density, if you do not know it.

2. Continue to Configure Gas Standard Volume Flow Unit.

Poll for external value

Prerequisites

Configure Standard Density of Gas

Procedure

- 1. Set **Polling Slot** to an available slot.
- 2. Set **Polling Control** *n* as one of the following options:

The *n* is the value you selected in the **Polling Slot** field.

If there is another master, and if that master is primary, then set this field to secondary. If the other master is secondary, then set this field to primary.

Option	Description	
Poll as Primary	No other HART masters will be on the network.	
Poll as Secondary	Other HART masters will be on the network.	

3. Set **External Device Tag** *n* to the HART tag of the device being polled.

The *n* is the value you selected in the **Polling Slot** field.

• The device being polled (slave) cannot have special units set for density. Otherwise, the master will reject the base density and report the following alarm:

```
A115: No External Input or Polled Data Alert
```

- On the slave side, setup the HART Primary Variable for Base Density. The master will reject anything other than Base Density for the HART Primary Variable and trigger an A115 alarm.
- The density units on the transmitter and the polled device can be different as long as they can be classified as density units; for example, kg/m³ and g/cm³. The transmitter converts the polled units into compatible specified units.

For wiring and setup instructions for a polled device, refer to the Micro Motion Gas Density Meters (GDM) Installation manual or the Micro Motion Specific Gravity Meters (SGM) Installation manual.

4. Continue to Configure Gas Standard Volume Flow Unit.

4.3.3 Configure Gas Standard Volume Flow Unit

ProLink III	Device Tools → Configuration → Process Measurement → Flow	
Field Communicator	$Configure \to Manual \ Setup \to Measurements \to GSV \to GSV \ Flow \ Unit$	

Gas Standard Volume Flow Unit specifies the unit of measure that will be displayed for the gas standard volume flow. The measurement unit used for the gas volume total and the gas volume inventory is derived from this unit.

Prerequisites

Before you configure **Gas Standard Volume Flow Unit**, be sure that **Volume Flow Type** is set to Gas Standard Volume

For polling, the first transmitter (master) requests density from a second transmitter (slave) via HART communications. Special units for GSV are allowed on the master side, but the device being polled (slave) cannot have special units set for density, otherwise the master will reject the base density and report an A115: No External Input or Polled Data Alert.

Procedure

Set Gas Standard Volume Flow Unit to the unit you want to use.

The default setting for Gas Standard Volume Flow Unit is SCFM (Standard Cubic Feet per Minute).

Tip

If the measurement unit you want to use is not available, you can define a special measurement unit.

Options for Gas Standard Volume Flow Unit

The transmitter provides a standard set of measurement units for **Gas Standard Volume Flow Unit**, plus one user-defined special measurement unit. Different communications tools may use different labels for the units.

	Label	
Unit description	ProLink III	Field Communicator
Normal cubic meters per second	Nm3/sec	Nm3/sec
Normal cubic meters per minute	Nm3/sec	Nm3/min
Normal cubic meters per hour	Nm3/hr	Nm3/hr
Normal cubic meters per day	Nm3/day	Nm3/day
Normal liters per second	NLPS	NLPS
Normal liters per minute	NLPM	NLPM
Normal liters per hour	NLPH	NLPH
Normal liters per day	NLPD	NLPD
Standard cubic feet per second	SCFS	SCFS
Standard cubic feet per minute	SCFM	SCFM
Standard cubic feet per hour	SCFH	SCFH
Standard cubic feet per day	SCFD	SCFD
Standard cubic meters per second	Sm3/sec	Sm3/sec
Standard cubic meters per minute	Sm3/min	Sm3/min
Standard cubic meters per hour	Sm3/hr	Sm3/hr
Standard cubic meters per day	Sm3/day	Sm3/day

MMI-20019023

		Label	
Unit description	ProLink III	Field Communicator	
Standard liters per second	SLPS	SLPS	
Standard liters per minute	SLPM	SLPM	
Standard liters per hour	SLPH	SLPH	
Standard liters per day	SLPD	SLPD	
Special measurement unit	special	Special	

Define a special measurement unit for gas standard volume flow

	ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Process\ Measurement \rightarrow Flow \rightarrow Special\ Units$	
Field Communicator Configure → Manual Setup → Measurements → Special Units → Special GSV Units		$Configure \rightarrow Manual \ Setup \rightarrow Measurements \rightarrow Special \ Units \rightarrow Special \ GSV \ Units$	

A special measurement unit is a user-defined unit of measure that allows you to report process data, totalizer data, and inventory data in a unit that is not available in the transmitter. A special measurement unit is calculated from an existing measurement unit using a conversion factor.

Procedure

1. Specify Base Gas Standard Volume Unit.

Base Gas Standard Volume Unit is the existing gas standard volume unit that the special unit will be based on.

2. Specify Base Time Unit.

Base Time Unit is the existing time unit that the special unit will be based on.

- 3. Calculate Gas Standard Volume Flow Conversion Factor as follows:
 - a) x base units = y special units
 - b) Gas Standard Volume Flow Conversion Factor = x ÷ y
- 4. Enter the Gas Standard Volume Flow Conversion Factor.

The original gas standard volume flow value is divided by this conversion factor.

- 5. Set **Gas Standard Volume Flow Label** to the name you want to use for the gas standard volume flow unit
- 6. Set **Gas Standard Volume Total Label** to the name you want to use for the gas standard volume total and gas standard volume inventory unit.

The special measurement unit is stored in the transmitter. You can configure the transmitter to use the special measurement unit at any time.

Example: Defining a special measurement unit for gas standard volume flow

You want to measure gas standard volume flow in thousands of standard cubic feet per minute.

- 1. Set Base Gas Standard Volume Unit to SCF.
- 2. Set Base Time Unit to minutes (min).
- 3. Calculate the conversion factor:

- a. 1 thousands of standard cubic feet per minute = 1000 cubic feet per minute
- b. Gas Standard Volume Flow Conversion Factor = 1 ÷ 1000 = 0.001 standard
- 4. Set Gas Standard Volume Flow Conversion Factor to 0.001.
- 5. Set Gas Standard Volume Flow Label to MSCFM.
- 6. Set Gas Standard Volume Total Label to MSCF.

4.3.4 Configure Gas Standard Volume Flow Cutoff

ProLink III	$Device \ Tools \rightarrow Configuration \rightarrow Process \ Measurement \rightarrow Flow$	
Field Communicator	$Configure \to Manual \ Setup \to Measurements \to GSV \to GSV \ Cutoff$	

Gas Standard Volume Flow Cutoff specifies the lowest gas standard volume flow rate that will reported as measured. All gas standard volume flow rates below this cutoff will be reported as 0.

Procedure

Set Gas Standard Volume Flow Cutoff to the value you want to use.

The default value for **Gas Standard Volume Flow Cutoff** is 0.0. The lower limit is 0.0. There is no upper limit. The recommended value is 0.5% of the nominal flow rate of the attached sensor. See the sensor specifications.

Interaction between Gas Standard Volume Flow Cutoff and mA Output Cutoff

Gas Standard Volume Flow Cutoff defines the lowest Gas Standard Volume flow value that the transmitter will report as measured. **mA Output Cutoff** defines the lowest flow rate that will be reported through mA Output. If **mA Output Process Variable** is set to Gas Standard Volume Flow Rate, the volume flow rate reported through mA Output is controlled by the higher of the two cutoff values.

Gas Standard Volume Flow Cutoff affects both the gas standard volume flow values reported through outputs and the gas standard volume flow values used in other transmitter behavior (for example, events defined on gas standard volume flow).

mA Output Cutoff affects only flow values reported through mA Output.

Example: Cutoff interaction with mA Output Cutoff lower than Gas Standard Volume Flow CutoffConfiguration:

- mA Output Process Variable for the primary mA Output: Gas Standard Volume Flow Rate
- Frequency Output Process Variable: Gas Standard Volume Flow Rate
- mA Output Cutoff for the primary mA Output: 10 SLPM (standard liters per minute)
- Gas Standard Volume Flow Cutoff: 15 SLPM

Result: If the gas standard volume flow rate drops below 15 SLPM, the volume flow will be reported as 0, and 0 will be used in all internal processing.

Example: Cutoff interaction with mA Output Cutoff higher than Gas Standard Volume Flow Cutoff

Configuration:

- mA Output Process Variable for the primary mA Output: Gas Standard Volume Flow Rate
- Frequency Output Process Variable: Gas Standard Volume Flow Rate
- mA Output Cutoff for the primary mA Output: 15 SLPM (standard liters per minute)
- Gas Standard Volume Flow Cutoff: 10 SLPM

Result:

- If the gas standard volume flow rate drops below 15 SLPM but not below 10 SLPM:
 - The primary mA Output will report zero flow.
 - The Frequency Output will report the actual flow rate, and the actual flow rate will be used in all internal processing.
- If the gas standard volume flow rate drops below 10 SLPM, both outputs will report zero flow, and 0 will be used in all internal processing.

4.4 Configure Flow Direction

ProLink III	Device Tools → Configuration → Process Measurement → Flow	
Field Communicator	$Configure \rightarrow Manual \ Setup \rightarrow Measurements \rightarrow Flow \rightarrow Flow \ Direction$	

Flow Direction controls how forward flow and reverse flow affect flow measurement and reporting.

Flow Direction is defined with respect to the flow arrow on the sensor:

- Forward flow (positive flow) moves in the direction of the flow arrow on the sensor.
- Reverse flow (negative flow) moves in the direction opposite to the flow arrow on the sensor.

Tip

Micro Motion sensors are bidirectional. Measurement accuracy is not affected by actual flow direction or the setting of the **Flow Direction** parameter.

Procedure

Set **Flow Direction** to the value you want to use.

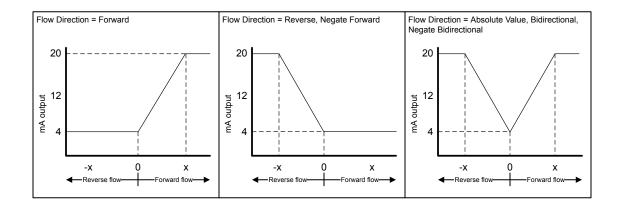
The default setting is Forward.

4.4.1 Options for Flow Direction

Flow Direction setting		
ProLink III	Field Communicator	Relationship to Flow Direction arrow on sensor
Forward	Forward	Appropriate when the Flow Direction arrow is in the same direction as the majority of flow.
Reverse	Reverse	Appropriate when the Flow Direction arrow is in the opposite direction from the majority of flow.

Flow Direction setting			
ProLink III	Field Communicator	Relationship to Flow Direction arrow on sensor	
Absolute Value	Absolute Value	Flow Direction arrow is not relevant.	
Bidirectional	Bi directional	Appropriate when both forward and reverse flow are expected, and forward flow will dominate, but the amount of reverse flow will be significant.	
Negate Forward	Negate/Forward Only	Appropriate when the Flow Direction arrow is in the opposite direction from the majority of flow.	
Negate Bidirectional	Negate/Bi-directional	Appropriate when both forward and reverse flow are expected, and reverse flow will dominate, but the amount of forward flow will be significant.	

Effect of Flow Direction on mA Outputs


Flow Direction affects how the transmitter reports flow values via the mA Outputs. The mA Outputs are affected by **Flow Direction** only if **mA Output Process Variable** is set to a flow variable.

Flow Direction and mA Outputs

The effect of Flow Direction on the mA Outputs depends on Lower Range Value configured for the mA Output:

- If Lower Range Value is set to 0, see Figure 4-1.
- If Lower Range Value is set to a negative value, see Figure 4-2.

Figure 4-1: Effect of Flow Direction on the mA Output: Lower Range Value = 0

- Lower Range Value = 0
- Upper Range Value = x

Figure 4-2: Effect of Flow Direction on the mA Output: Lower Range Value < 0

- Lower Range Value = -x
- Upper Range Value = x

Flow Direction = Forward and Lower Range Value = 0

Configuration:

- Flow Direction = Forward
- Lower Range Value = 0 g/sec
- Upper Range Value = 100 g/sec

Result:

- Under conditions of zero flow, the mA Output is 4 mA.
- Under conditions of forward flow, up to a flow rate of 100 g/sec, the mA Output varies between 4 mA and 20 mA in proportion to the flow rate.
- Under conditions of forward flow, if the flow rate equals or exceeds 100 g/sec, the mA Output will be proportional to the flow rate up to 20.5 mA, and will be level at 20.5 mA at higher flow rates.

Flow Direction = Forward and Lower Range Value < 0

Configuration:

- Flow Direction = Forward
- Lower Range Value = -100 g/sec
- Upper Range Value = +100 g/sec

Result:

- Under conditions of zero flow, the mA Output is 12 mA.
- Under conditions of forward flow, for flow rates between 0 and +100 g/sec, the mA Output varies between 12 mA and 20 mA in proportion to (the absolute value of) the flow rate.

- February 2022
- Under conditions of forward flow, if (the absolute value of) the flow rate equals or exceeds 100 g/sec, the mA Output is proportional to the flow rate up to 20.5 mA, and will be level at 20.5 mA at higher flow rates.
- Under conditions of reverse flow, for flow rates between 0 and -100 g/sec, the mA Output varies between 4 mA and 12 mA in inverse proportion to the absolute value of the flow rate.
- Under conditions of reverse flow, if the absolute value of the flow rate equals or exceeds 100 g/sec, the mA
 Output is inversely proportional to the flow rate down to 3.8 mA, and will be level at 3.8 mA at higher
 absolute values.

Flow Direction = Reverse

Configuration:

- Flow Direction = Reverse
- Lower Range Value = 0 g/sec
- Upper Range Value = 100 g/sec

Result:

- Under conditions of zero flow, the mA Output is 4 mA.
- Under conditions of reverse flow, for flow rates between 0 and +100 g/sec, the mA Output level varies between 4 mA and 20 mA in proportion to the absolute value of the flow rate.
- Under conditions of reverse flow, if the absolute value of the flow rate equals or exceeds 100 g/sec, the mA
 Output will be proportional to the absolute value of the flow rate up to 20.5 mA, and will be level at
 20.5 mA at higher absolute values.

Effect of flow direction on Frequency Outputs

Flow direction affects how the transmitter reports flow values via the Frequency Outputs. The Frequency Outputs are affected by flow direction only if **Frequency Output Process Variable** is set to a flow variable.

Table 4-1: Effect of the flow direction parameter and actual flow direction on Frequency Outputs

	Actual flow direction		
Flow Direction setting	Forward	Zero flow	Reverse
Forward	Hz > 0	0 Hz	0 Hz
Reverse	0 Hz	0 Hz	Hz > 0
Bidirectional	Hz > 0	0 Hz	Hz > 0
Absolute Value	Hz > 0	0 Hz	Hz > 0
Negate Forward	0 Hz	0 Hz	Hz > 0
Negate Bidirectional	Hz > 0	0 Hz	Hz > 0

Effect of flow direction on Discrete Outputs

The flow direction parameter affects the Discrete Output behavior only if **Discrete Output Source** is set to Flow Direction.

Table 4-2: Effect of the flow direction parameter and actual flow direction on Discrete Outputs

	Actual flow direction		
Flow Direction setting	Forward	Zero flow	Reverse
Forward	OFF	OFF	ON
Reverse	OFF	OFF	ON
Bidirectional	OFF	OFF	ON
Absolute Value	OFF	OFF	ON
Negate Forward	ON	OFF	OFF
Negate Bidirectional	ON	OFF	OFF

Effect of flow direction on digital communications

Flow direction affects how flow values are reported via digital communications. The following table describes the effect of the flow direction parameter and actual flow direction on flow values reported via digital communications.

Table 4-3: Effect of the flow direction on flow values

	Actual flow direction		
Flow Direction setting	Forward	Zero flow	Reverse
Forward	Positive	0	Negative
Reverse	Positive	0	Negative
Bidirectional	Positive	0	Negative
Absolute Value	Positive ⁽¹⁾	0	Positive ⁽¹⁾
Negate Forward	Negative	0	Positive
Negate Bidirectional	Negative	0	Positive

⁽¹⁾ Refer to the digital communications status bits for an indication of whether flow is positive or negative.

Effect of flow direction on flow totals

Flow direction affects how flow totals and inventories are calculated.

	Actual flow direction		
Flow Direction setting	Forward	Zero flow	Reverse
Forward	Totals increase	Totals do not change	Totals do not change
Reverse	Totals do not change	Totals do not change	Totals increase
Bidirectional	Totals increase	Totals do not change	Totals decrease
Absolute Value	Totals increase	Totals do not change	Totals increase

	Actual flow direction		
Flow Direction setting	Forward	Zero flow	Reverse
Negate Forward	Totals do not change	Totals do not change	Totals increase
Negate Bidirectional	Totals decrease	Totals do not change	Totals increase

4.5 Configure density measurement

The density measurement parameters control how density is measured and reported.

4.5.1 Configure Density Measurement Unit

ProLink III	$DeviceTools \to Configuration \to ProcessMeasurement \to Density$
Field Communicator	$Configure \rightarrow Manual \ Setup \rightarrow Measurements \rightarrow Density \rightarrow Density \ Unit$

Density Measurement Unit controls the measurement units that will be used in density calculations and reporting.

Procedure

Set **Density Measurement Unit** to the option you want to use.

The default setting for **Density Measurement Unit** is g/cm3 (grams per cubic centimeter).

Options for Density Measurement Unit

The transmitter provides a standard set of measurement units for **Density Measurement Unit**. Different communications tools may use different labels.

	Label	
Unit description	ProLink III	Field Communicator
Specific gravity unit ⁽¹⁾	SGU	SGU
Grams per cubic centimeter	g/cm3	g/Cucm
Grams per liter	g/l	g/L
Grams per milliliter	g/ml	g/mL
Kilograms per liter	kg/l	kg/L
Kilograms per cubic meter	kg/m3	kg/Cum
Pounds per U.S. gallon	lbs/Usgal	lb/gal
Pounds per cubic foot	lbs/ft3	lb/Cuft
Pounds per cubic inch	lbs/in3	lb/CuIn
Degrees API	degAPI	degAPI
Short ton per cubic yard	sT/yd3	STon/Cuyd

⁽¹⁾ Non-standard calculation. This value represents line density divided by the density of water at 60 °F.

February 2022

4.5.2 Configure two-phase flow parameters

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Process\ Measurement \rightarrow Density$
Field Communicator	Configure → Manual Setup → Measurements → Density → Slug Low Limit
	• Configure \rightarrow Manual Setup \rightarrow Measurements \rightarrow Density \rightarrow Slug High Limit
	Configure → Manual Setup → Measurements → Density → Slug Duration

The two-phase flow parameters control how the transmitter detects and reports two-phase flow (gas in a liquid process or liquid in a gas process).

Note

Two-phase flow is also referred to as *slug flow*.

Procedure

1. Set **Two-Phase Flow Low Limit** to the lowest density value that is considered normal in your process.

Values below this will cause the transmitter to post Alert A105 (Two-Phase Flow).

Tip

Gas entrainment can cause your process density to drop temporarily. To reduce the occurrence of two-phase flow alerts that are not significant to your process, set **Two-Phase Flow Low Limit** slightly below your expected lowest process density.

You must enter **Two-Phase Flow Low Limit** in g/cm³, even if you configured another unit for density measurement.

The default value for **Two-Phase Flow Low Limit** is 0.0 g/cm³. The range is 0.0 to 10.0 g/cm³.

2. Set **Two-Phase Flow High Limit** to the highest density value that is considered normal in your process.

Micro Motion recommends leaving Two-Phase Flow High Limit at the default value.

Values above this will cause the transmitter to post Alert A105 (Two-Phase Flow).

You must enter **Two-Phase Flow High Limit** in g/cm^3 , even if you configured another unit for density measurement.

The default value for **Two-Phase Flow High Limit** is 5.0 q/cm³. The range is 0.0 to 10.0 q/cm³.

3. Set **Two-Phase Flow Timeout** to the number of seconds that the transmitter will wait for a two-phase flow condition to clear before posting the alert.

The default value for **Two-Phase Flow Timeout** is 0.0 seconds, meaning that the alert will be posted immediately. The range is 0.0 to 60.0 seconds.

The Two-Phase Flow alert is set immediately. The flow rate will hold the last measured value for the Timeout time. Then the flow rate will report zero flow. If the density goes back in range, the error clears immediately.

Detecting and reporting two-phase flow

Two-phase flow (gas in a liquid process or liquid in a gas process) can cause a variety of process control issues. By configuring the two-phase flow parameters appropriately for your application, you can detect process conditions that require correction.

Micro Motion recommends leaving Two-Phase Flow High Limit at the default value.

A two-phase flow condition occurs whenever the measured density goes below **Two-Phase Flow Low Limit** or above **Two-Phase Flow High Limit**. If this occurs:

- A two-phase flow alert is posted to the active alert log.
- All outputs that are configured to represent flow rate hold their last *pre-alert* value for the number of seconds configured in **Two-Phase Flow Timeout**.

If the two-phase flow condition clears before **Two-Phase Flow Timeout** expires:

- Outputs that represent flow rate revert to reporting actual flow.
- The two-phase flow alert is deactivated, but remains in the active alert log until it is acknowledged.

If the two-phase flow condition does not clear before **Two-Phase Flow Timeout** expires, the outputs that represent flow rate report a flow rate of 0.

If **Two-Phase Flow Timeout** is set to 0.0 seconds, the outputs that represent flow rate will report a flow rate of 0 as soon as two-phase flow is detected.

4.5.3 Configure Density Damping

ProLink III	
Field Communicator	$Configure \to Manual \ Setup \to Measurements \to Density \to Density \ Damping$

Density Damping controls the amount of damping that will be applied to the line density value.

Damping is used to smooth out small, rapid fluctuations in process measurement. **Damping Value** specifies the time period (in seconds) over which the transmitter will spread changes in the process variable. At the end of the interval, the internal value will reflect 63% of the change in the actual measured value.

Tip

Density damping affects all process variables that are calculated from line density.

Procedure

Set **Density Damping** to the value you want to use.

The default value is 1.6 seconds. For most applications, the default density damping setting is sufficient. The range depends on the core processor type and the setting of **Update Rate**, as shown in the following table:

Update Rate setting	Damping range
Normal	0 to 51.2 seconds
Special	0 to 40.96 seconds

MMI-20019023 February 2022

Tip

- A high damping value makes the process variable appear smoother because the reported value changes slowly.
- A low damping value makes the process variable appear more erratic because the reported value changes more quickly.
- Whenever the damping value is non-zero, the reported measurement will lag the actual measurement because the reported value is being averaged over time.
- In general, lower damping values are preferable because there is less chance of data loss, and less lag time between the actual measurement and the reported value.

The value you enter is automatically rounded off to the nearest valid value. The valid values for **Density Damping** depend on the setting of **Update Rate**.

Update Rate setting	Valid damping values	
Normal	0.0, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6, 51.2	
Special	0.0, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.56, 5.12, 10.24, 20.48, 40.96	

Effect of Density Damping on volume measurement

Density Damping affects liquid volume measurement. Liquid volume values are calculated from the damped density value rather than the measured density value. **Density Damping** does not affect gas standard volume measurement.

Interaction between Density Damping and Added Damping

When the mA Output is configured to report density, both **Density Damping** and **Added Damping** are applied to the reported density value.

Density Damping controls the rate of change in the value of the process variable in transmitter memory. **Added Damping** controls the rate of change reported via the mA Output.

If mA Output Process Variable is set to Density, and both Density Damping and Added Damping are set to non-zero values, density damping is applied first, and the added damping calculation is applied to the result of the first calculation. This value is reported over the mA Output.

4.5.4 Configure Density Cutoff

Density Cutoff specifies the lowest density value that will be reported as measured. All density values below this cutoff will be reported as 0.

Procedure

Set **Density Cutoff** to the value you want to use.

For most applications, the default setting (0.2 q/cm³) is sufficient. The range is 0.0 q/cm³ to 0.5 q/cm³.

Effect of Density Cutoff on volume measurement

Density Cutoff affects liquid volume measurement. If the density value goes below **Density Cutoff**, the volume flow rate is reported as 0. **Density Cutoff** does not affect gas standard volume measurement. Gas standard volume values are always calculated from the value configured for **Standard Gas Density** or polled value if configured for polled base density.

4.6 Configure temperature measurement

The temperature measurement parameters control how temperature data from the sensor is reported.

4.6.1 Configure Temperature Measurement Unit

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Process\ Measurement \rightarrow Temperature$
Field Communicator	$Configure \rightarrow Manual \ Setup \rightarrow Measurements \rightarrow Temperature \rightarrow Temperature \ Unit$

Temperature Measurement Unit specifies the unit that will be used for temperature measurement.

Procedure

Set **Temperature Measurement Unit** to the option you want to use.

The default setting is Degrees Celsius.

Options for Temperature Measurement Unit

The transmitter provides a standard set of units for **Temperature Measurement Unit**. Different communications tools may use different labels for the units.

	Label	
Unit description	ProLink III	Field Communicator
Degrees Celsius	℃	degC
Degrees Fahrenheit	°F	degF
Degrees Rankine	°R	degR
Kelvin	°K	Kelvin

4.6.2 Configure Temperature Damping

ProLink III	Device Tools → Configuration → Temperature
Field Communicator	$Configure \to Manual \ Setup \to Measurements \to Temperature \to Temp \ Damping$

Temperature Damping controls the amount of damping that will be applied to the line temperature value, when the on-board temperature data is used (RTD).

Damping is used to smooth out small, rapid fluctuations in process measurement. **Damping Value** specifies the time period (in seconds) over which the transmitter will spread changes in the process variable. At the end of the interval, the internal value will reflect 63% of the change in the actual measured value.

MMI-20019023 February 2022

Tip

Temperature Damping affects all process variables, compensations, and corrections that use temperature data from the sensor.

Procedure

Enter the value you want to use for Temperature Damping.

The default value is 4.8 seconds. For most applications, the default temperature damping setting is sufficient. The range is 0.0 to 38.4 seconds.

Tip

- A high damping value makes the process variable appear smoother because the reported value changes slowly.
- A low damping value makes the process variable appear more erratic because the reported value changes more quickly.
- Whenever the damping value is non-zero, the reported measurement will lag the actual measurement because the reported value is being averaged over time.
- In general, lower damping values are preferable because there is less chance of data loss, and less lag time between the actual measurement and the reported value.

The value you enter is automatically rounded off to the nearest valid value. Valid values for **Temperature Damping** are 0, 0.6, 1.2, 2.4, 4.8, 9.6, 19.2, and 38.4.

4.6.3 Effect of Temperature Damping on process measurement

Temperature Damping affects all processes and algorithms that use temperature data from the internal sensor RTD.

Temperature compensation

Temperature compensation adjusts process measurement to compensate for the effect of temperature on the sensor tubes.

4.7 Configure pressure compensation

Pressure compensation adjusts process measurement to compensate for the pressure effect on the sensor. The pressure effect is the change in the sensor's sensitivity to flow and density caused by the difference between the calibration pressure and the process pressure.

Tip

Not all sensors or applications require pressure compensation. The pressure effect for a specific sensor model can be found in the product data sheet located at . If you are uncertain about implementing pressure compensation, contact customer service.

Prerequisites

You will need the flow factor, density factor, and calibration pressure values for your sensor.

- For the flow factor and density factor, see the product data sheet for your sensor.
- For the calibration pressure, see the calibration sheet for your sensor. If the data is unavailable, use 20 PSI.

4.7.1 Configure pressure compensation using ProLink III

Procedure

February 2022

- 1. Choose Device Tools → Configuration → Process Measurement → Pressure Compensation.
- 2. Set Pressure Compensation Status to Enabled.
- 3. Set **Pressure Unit** to the appropriate unit.

If you will use an external pressure value, set **Pressure Unit** to match the pressure unit used by the external pressure device.

4. Enter Flow Calibration Pressure for your sensor.

The calibration pressure is the pressure at which your sensor was calibrated, and defines the pressure at which there is no pressure effect. If the data is unavailable, enter 20 PSI.

5. Enter **Flow Factor** for your sensor.

The flow factor is the percent change in the flow rate per PSI. When entering the value, reverse the sign.

Example

If the flow factor is 0.000004 % per PSI, enter -0.000004 % per PSI.

6. Enter **Density Factor** for your sensor.

The density factor is the change in fluid density, in $g/cm^3/PSI$. When entering the value, reverse the sign.

Example

If the density factor is -0.000006 g/cm³/PSI, enter +0.000006 g/cm³/PSI.

7. Set Pressure Source to the method that the transmitter will use to obtain pressure data.

Option	Description	
Poll for external value	The transmitter will poll an external pressure device, using HART protocol over the primary mA Output.	
Fixed Value or Digital Communications	The transmitter will use the pressure value that it reads from memory.	
	Fixed Value: The configured value is used.	
	Digital Communications: A host writes transmitter data to transmitter memory.	

- 8. If you chose to poll for pressure data:
 - a) Select the **Polling Slot** to use.
 - b) Set **Polling Control** to Poll as Primary or Poll as Secondary, and click **Apply**.

Tip

• Poll as Primary: No other HART masters will be on the network.

- Poll as Secondary: Other HART masters will be on the network. The Field Communicator is not a HART master.
- c) Set External Device Tag to the HART tag of the external pressure device, and click Apply.
- d) Ensure that the primary mA Output is wired to support HART communications with the external pressure device.
- 9. If you chose to use a fixed pressure value:
 - a) Set Fixed Value to the value to use, and click Apply
- 10. If you want to use digital communications, click **Apply**, then perform the necessary host programming and communications setup to write pressure data to the transmitter at appropriate intervals.

Postrequisites

If you are using an external pressure value, verify the setup by checking the **External Pressure** value displayed in the **Inputs** area of the main window.

4.7.2 Configure pressure compensation using the Field Communicator

Procedure

- Choose Online → Configure → Manual Setup → Measurements → External Pressure/Temperature
 → Pressure.
- 2. Set **Pressure Compensation** to Enabled.
- 3. Enter Flow Cal Pressure for your sensor.

The calibration pressure is the pressure at which your sensor was calibrated, and defines the pressure at which there is no pressure effect. If the data is unavailable, enter 20 PSI.

4. Enter Flow Press Factor for your sensor.

The flow factor is the percent change in the flow rate per PSI. When entering the value, reverse the sign.

Example

If the flow factor is -0.0002 % per PSI, enter +0.0002 % per PSI.

5. Enter **Dens Press Factor** for your sensor.

The density factor is the change in fluid density, in g/cm³/PSI. When entering the value, reverse the sign.

Example

If the density factor is -0.000006 g/cm³/PSI, enter +0.000006 g/cm³/PSI.

6. Determine how the transmitter will obtain pressure data, and perform the required setup.

Option	Setup
A user-configured static pressure value	a. Set Pressure Unit to the desired unit.
	b. Set Compensation Pressure to the desired value.
Polling for pressure	a. Ensure that the primary mA Output has been wired to support HART polling.
	b. Choose Online → Configure → Manual Setup → Measurements → External Pressure/Temperature → External Polling .
	c. Set Poll Control to Poll As Primary Host or Poll as Secondary Host.
	d. Choose an unused polling slot.
	e. Set External Tag to the HART tag of the external pressure device.
	f. Set Polled Variable to Pressure.
	 Tip Poll as Primary: No other HART masters will be on the network. Poll as Secondary: Other HART masters will be on the network. The Field Communicator is not a HART master.
A value written by digital communications	a. Set Pressure Unit to the desired unit.b. Perform the necessary host programming and communications setup to write pressure data to the transmitter at appropriate intervals.

Postrequisites

If you are using an external pressure value, verify the setup by choosing **Service Tools** \rightarrow **Variables** \rightarrow **External Variables** and checking the value displayed for **External Pressure**.

4.7.3 Options for Pressure Measurement Unit

The transmitter provides a standard set of measurement units for **Pressure Measurement Unit**. Different communications tools may use different labels for the units. In most applications, **Pressure Measurement Unit** should be set to match the pressure measurement unit used by the remote device.

	Label	
Unit description	ProLink III	Field Communicator
Feet water @ 68 °F	Ft Water @ 68°F	ftH2O
Inches water @ 4 °C	In Water @ 4°C	inH2O @4DegC
Inches water @ 60 °F	In Water @ 60°F	inH2O @60DegF
Inches water @ 68 °F	In Water @ 68°F	inH2O
Millimeters water @ 4 °C	mm Water @ 4°C	mmH2O @4DegC
Millimeters water @ 68 °F	mm Water @ 68°F	mmH2O

February 2022

	Label	
Unit description	ProLink III	Field Communicator
Millimeters mercury @ 0 °C	mm Mercury @ 0°C	mmHg
Inches mercury @ 0 °C	In Mercury @ 0°C	inHG
Pounds per square inch	PSI	psi
Bar	bar	bar
Millibar	millibar	mbar
Grams per square centimeter	g/cm2	g/Sqcm
Kilograms per square centimeter	kg/cm2	kg/Sqcm
Pascals	pascals	Pa
Kilopascals	Kilopascals	kPa
Megapascals	Megapascals	MPa
Torr@0°C	Torr @ 0°C	torr
Atmospheres	atms	atms

5 Configure device options and preferences

5.1 Configure response time parameters

You can configure the rate at which process data is polled and process variables are calculated.

5.1.1 Configure Update Rate

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Process\ Measurement \rightarrow Response \rightarrow Update\ Rate$
Field Communicator	$Configure \rightarrow Manual \ Setup \rightarrow Measurements \rightarrow Update \ Rate$

Update Rate controls the rate at which process data is polled and process variables are calculated. **Update Rate** = Special produces faster and "noisier" response to changes in the process. Do not use Special mode unless required by your application.

Prerequisites

Before setting **Update Rate** to Special:

- Check the effects of Special mode on specific process variables.
- Contact customer support.

Tip

For systems with a standard core processor, Special mode can improve performance for applications with entrained air or Empty-Full-Empty conditions. This does not apply to systems with an enhanced core processor.

Procedure

1. Set **Update Rate** as desired.

Option	Description
Normal	All process data is polled at the rate of 20 times per second (20 Hz). All process variables are calculated at 20 Hz.
	This option is appropriate for most applications.
Special	A single, user-specified process variable is polled at the rate of 100 times per second (100 Hz). Other process data is polled at 6.25 Hz. Some process, diagnostic, and calibration data is not polled.
	All available process variables are calculated at 100 Hz.
	Use this option only if required by your application.

If you change **Update Rate**, the settings for **Flow Damping**, and **Density Damping** are automatically adjusted.

2. If you set **Update Rate** to Special, select the process variable to be polled at 100 Hz.

Effects of Update Rate = Special

Incompatible features and functions

Special mode is not compatible with the following features and functions:

- Enhanced events. Use basic events instead.
- All calibration procedures.
- Zero verification.
- Restoring the factory zero or the prior zero.

If required, you can switch to Normal mode, perform the desired procedures, and then return to Special mode

Process variable updates

Some process variables are not updated when Special mode is enabled.

Table 5-1: Special mode and process variable updates

Always polled and updated	Updated only when the petroleum measurement application is disabled	Never updated
Mass flow	RPO amplitude	All other process variables and
Volume flow	Core input voltage	calibration data. They retain the values held at the time you enabled Special
Gas standard volume flow	Mass inventory	mode.
• Density	Volume inventory	
Temperature	Gas standard volume inventory	
Drive gain		
LPO amplitude		
Status [contains Event 1 and Event 2 (basic events)]		
Mass total		
Volume total		
Live zero		
Gas standard volume total		

5.1.2 Configure Response Time

ProLink III	$\textbf{Device Tools} \rightarrow \textbf{Configuration} \rightarrow \textbf{Process Measurement} \rightarrow \textbf{Response} \rightarrow \textbf{Response} \ \textbf{Time}$
Field Communicator	Not available

Response Time is used to apply a different algorithm to the calculation of process variables from the raw process data.

Restriction

Response Time is available only on systems with the enhanced core processor.

February 2022

MMI-20019023

Procedure

Set **Response Time** as desired.

Option	Description
Normal (Legacy)	Transmitter calculates process variables at the standard speed. This option is selected if this parameter was configured on an earlier version of ProLink III software.
Special (Legacy)	Transmitter calculates process variables at a faster speed. This option is selected if this parameter was configured on an earlier version of ProLink III software.
Normal - Optimal Filtering	Transmitter calculates process variables at standard filtering and speed.
Low Filtering - Fastest Response	Transmitter calculates process variables at the fastest speed.
High Filtering - Smoothest Output	Transmitter calculates process variables at the smoothest (least noisy) response to changes in the process.
Service	For factory use only.

5.2 Configure alert handling

The alert handling parameters control the transmitter's response to process and device conditions.

5.2.1 Configure Fault Timeout

ProLink III	Device Tools → Configuration → Fault Processing
Field Communicator	Configure \rightarrow Alert Setup \rightarrow Alert Severity \rightarrow Fault Timeout

Fault Timeout controls the delay before fault actions are performed.

Restriction

Fault Timeout is applied only to the following alerts (listed by Status Alert Code): A003, A004, A005, A008, A016, A017, A033. For all other alerts, fault actions are performed as soon as the alert is detected.

Procedure

Set Fault Timeout as desired.

The default value is 0 seconds. The range is 0 to 60 seconds.

If you set Fault Timeout to 0, fault actions are performed as soon as the alert condition is detected.

The fault timeout period begins when the transmitter detects an alert condition. During the fault timeout period, the transmitter continues to report its last valid measurements.

If the fault timeout period expires while the alert is still active, the fault actions are performed. If the alert condition clears before the fault timeout expires, no fault actions are performed.

5.2.2 Configure Status Alert Severity

ProLink III	
Field Communicator	Configure \rightarrow Alert Setup \rightarrow Alert Severity \rightarrow Set Alert Severity

Use **Status** Alert **Severity** to control the fault actions that the transmitter performs when it detects an alert condition.

Restriction

- For some alerts, **Status Alert Severity** is not configurable.
- For some alerts, **Status Alert Severity** can be set only to two of the three options.

Tip

Use the default settings for **Status Alert Severity** unless you have a specific requirement to change them.

Procedure

- 1. Select a status alert.
- 2. For the selected status alert, set **Status Alert Severity** as desired.

Option	Description
Fault	Actions when fault is detected: • The alert is posted to the Alert List.
	 Outputs go to the configured fault action (after Fault Timeout has expired, if applicable).
	 Digital communications go to the configured fault action (after Fault Timeout has expired, if applicable).
	The status LED (if available) changes to red or yellow (depending on alert severity).
	Actions when alert clears: Outputs return to normal behavior.
	Digital communications return to normal behavior.
	The status LED (if available) returns to green and may or may not flash.
Informational	Actions when fault is detected: • The alert is posted to the Alert List.
	The status LED (if available) changes to red or yellow (depending on alert severity).
	Actions when alert clears: • The status LED (if available) returns to green and may or may not flash.
Ignore	No action

Status alerts and options for Status Alert Severity

Table 5-2: Status alerts and Status Alert Severity

Alert code	Status message	Default severity	Notes	Configurable?
A001	EEPROM Error	Fault		No
A002	RAM Error	Fault		No
A003	No Sensor Response	Fault		Yes
A004	Temperature Overrange	Fault		No
A005	Mass Flow Rate Overrange	Fault		Yes
A006	Characterization Required	Fault		Yes
A008	Density Overrange	Fault		Yes
A009	Transmitter Initializing/ Warming Up	Fault		Yes
A010	Calibration Failure	Fault		No
A011	Zero Calibration Failed: Low	Fault		Yes
A012	Zero Calibration Failed: High	Fault		Yes
A013	Zero Calibration Failed: Unstable	Fault		Yes
A014	Transmitter Failure	Fault		No
A016	Sensor RTD Failure	Fault		Yes
A017	T-Series RTD Failure	Fault		Yes
A018	EEPROM Error (Transmitter)	Fault		No
A019	RAM Error (Transmitter)	Fault		No
A020	No Flow Cal Value	Fault		Yes
A021	Incorrect Sensor Type (K1)	Fault		No
A022	Configuration Database Corrupt (Core Processor)	Fault	Applies only to flowmeters with the standard core processor.	No
A023	Internal Totals Corrupt (Core Processor)	Fault	Applies only to flowmeters with the standard core processor.	No
A024	Program Corrupt (Core Processor)	Fault	Applies only to flowmeters with the standard core processor.	No
A025	Boot Sector Fault (Core Processor)	Fault	Applies only to flowmeters with the standard core processor.	No
A026	Sensor/Transmitter Communications Failure	Fault		No
A028	Core Processor Write Failure	Fault		No

Alert code Status message **Default severity Notes** Configurable? A031 Low Power Fault Applies only to flowmeters with the No enhanced core processor. A032 Meter Verification in Varies Applies only to transmitters with No Smart Meter Verification. Progress: Outputs to Fault If outputs are set to Last Measured Value, severity is Info. If outputs are set to Fault, severity is Fault. A033 Insufficient Right/Left Applies only to flowmeters with the Fault Yes enhanced core processor. Pickoff Signal A034 Meter Verification Failed Fault Applies only to transmitters with Yes Smart Meter Verification. Fault A035 Meter Verification Aborted Applies only to transmitters with Yes Smart Meter Verification. A100 mA Output 1 Saturated Informational Can be set to either Informational Yes or Ignore, but cannot be set to Fault. Can be set to either Informational A101 mA Output 1 Fixed Informational Yes or Ignore, but cannot be set to Fault. A102 **Drive Overrange** Informational Yes A104 Calibration in Progress Informational Can be set to either Informational Yes or Ignore, but cannot be set to Fault. A105 Slug Flow Informational Yes A106 **Burst Mode Enabled** Informational Can be set to either Informational Yes or lanore, but cannot be set to Fault. A107 **Power Reset Occurred** Informational Normal transmitter behavior; Yes occurs after every power cycle. A108 Informational Applies only to basic events. Yes Basic Event 1 On A109 Basic Event 2 On Informational Applies only to basic events. Yes A110 Frequency Output Informational Can be set to either Informational Yes Saturated or Ignore, but cannot be set to Fault. A111 Frequency Output Fixed Informational Can be set to either Informational Yes or Ignore, but cannot be set to

Fault.

v5.0.

Fault.

Applies only to systems with

transmitter software earlier than

Can be set to either Informational

or Ignore, but cannot be set to

Informational

Informational

A112

A113

Upgrade Transmitter

mA Output 2 Saturated

Software

Yes

Yes

MMI-20019023 February 2022

Table 5-2: Status alerts and Status Alert Severity (continued)

Alert code	Status message	Default severity	Notes	Configurable?
A114	mA Output 2 Fixed	Informational	Can be set to either Informational or Ignore, but cannot be set to Fault.	Yes
A115	No External Input or Polled Data	Informational		Yes
A118	Discrete Output 1 Fixed	Informational	Can be set to either Informational or Ignore, but cannot be set to Fault.	Yes
A119	Discrete Output 2 Fixed	Informational	Can be set to either Informational or Ignore, but cannot be set to Fault.	Yes
A131	Meter Verification in Progress: Outputs to Last Measured Value	Informational	Applies only to transmitters with Smart Meter Verification.	Yes
A132	Sensor Simulation Active	Informational	Applies only to flowmeters with the enhanced core processor.	To Informational or Ignore only
			Can be set to either Informational or Ignore, but cannot be set to Fault.	
A141	DDC trigger(s) have completed	Informational	Applies only to flowmeters with the enhanced core processor. Can be set to either Informational or Ignore, but cannot be set to Fault.	Yes

5.3 Configure informational parameters

The informational parameters can be used to identify or describe your meter. They are not used in process measurement and they are not required.

5.3.1 Configure Sensor Serial Number

ProLink III	Device Tools → Configuration → Informational Parameters → Sensor
Field Communicator	$\textbf{Configure} \rightarrow \textbf{Manual Setup} \rightarrow \textbf{Info Parameters} \rightarrow \textbf{Sensor Information} \rightarrow \textbf{Sensor Serial Number}$

Sensor Serial Number lets you store the serial number of the sensor component of your flowmeter in transmitter memory. This parameter is not used in processing and is not required.

Procedure

- 1. Obtain the sensor serial number from your sensor tag.
- 2. Enter the serial number in the **Sensor Serial Number** field.

5.3.2 Configure Sensor Material

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Informational\ Parameters \rightarrow Sensor$
Field Communicator	$Configure \rightarrow Manual \ Setup \rightarrow Info \ Parameters \rightarrow Sensor \ Information \rightarrow Tube \ Wetted \ Material$

Sensor Material lets you store the type of material used for your sensor's wetted parts in transmitter memory. This parameter is not used in processing and is not required.

Procedure

- 1. Obtain the material used for your sensor's wetted parts from the documents shipped with your sensor, or from a code in the sensor model number.
 - To interpret the model number, refer to the product data sheet for your sensor.
- 2. Set **Sensor Material** to the appropriate option.

5.3.3 Configure Sensor Liner Material

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Informational\ Parameters \rightarrow Sensor$
Field Communicator	$Configure \rightarrow Manual \ Setup \rightarrow Info \ Parameters \rightarrow Sensor \ Information \rightarrow Tube \ Lining$

Sensor Liner Material lets you store the type of material used for your sensor liner in transmitter memory. This parameter is not used in processing and is not required.

Procedure

- 1. Obtain your sensor's liner material from the documents shipped with your sensor, or from a code in the sensor model number.
 - To interpret the model number, refer to the product data sheet for your sensor.
- 2. Set **Sensor Liner Material** to the appropriate option.

5.3.4 Configure Sensor Flange Type

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Informational\ Parameters \rightarrow Sensor$
Field Communicator	$Configure \to Manual \ Setup \to Info \ Parameters \to Sensor \ Information \to Sensor \ Flange$

Sensor Flange Type lets you store your sensor's flange type in transmitter memory. This parameter is not used in processing and is not required.

Procedure

- 1. Obtain your sensor's flange type from the documents shipped with your sensor, or from a code in the sensor model number.
 - To interpret the model number, refer to the product data sheet for your sensor.
- 2. Set **Sensor Flange Type** to the appropriate option.

5.3.5 Configure Descriptor

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Informational\ Parameters \rightarrow Transmitter$
Field Communicator	$Configure \rightarrow Manual \ Setup \rightarrow Info \ Parameters \rightarrow Transmitter \ Info \rightarrow Descriptor$

Descriptor lets you store a description in transmitter memory. The description is not used in processing and is not required.

Procedure

Enter a description for the transmitter or device You can use up to 16 characters for the description.

5.3.6 Configure Message

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Informational\ Parameters \rightarrow Transmitter$
Field Communicator	$Configure \rightarrow Manual \ Setup \rightarrow Info \ Parameters \rightarrow Transmitter \ Info \rightarrow Message$

Message lets you store a short message in transmitter memory. This parameter is not used in processing and is not required.

Procedure

Enter a short message for the transmitter or device. Your message can be up to 32 characters long.

5.3.7 Configure Date

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Informational\ Parameters \rightarrow Transmitter$
Field Communicator	$Configure \rightarrow Manual \ Setup \rightarrow Info \ Parameters \rightarrow Transmitter \ Info \rightarrow Date$

Date lets you store a static date (not updated by the transmitter) in transmitter memory. This parameter is not used in processing and is not required.

Procedure

Enter the date you want to use, in the form mm/dd/yyyy.

Tip

ProLink III provides a calendar tool to help you select the date.

6 Integrate the meter with the control system

6.1 Configure the transmitter channels

ProLink III	Device Tools \rightarrow Configuration \rightarrow I/O \rightarrow Outputs
Field communicator	$Configure \to Manual\ Setup \to Inputs/Outputs \to Channels \to Channel\ C$

You can configure Channel C on your transmitter to operate as a Frequency Output or a Discrete Output. The channel configuration must match the wiring at the transmitter terminals.

Prerequisites

To avoid causing process errors:

- Configure the channels before configuring the outputs.
- Before changing the channel configuration, ensure that all control loops affected by the channel are under manual control.

Procedure

Set Channel C as desired.

Option	Description
Frequency Output	Channel C will operate as a Frequency Output.
Discrete Output	Channel C will operate as a Discrete Output.

Postrequisites

For each channel that you configured, perform or verify the corresponding input or output configuration. When the configuration of a channel is changed, the channel's behavior will be controlled by the configuration that is stored for the selected input or output type, and the stored configuration may not be appropriate for your process.

After verifying channel and output configuration, return the control loop to automatic control.

6.2 Configure the mA Output

The mA Output is used to report the configured process variable. The mA Output parameters control how the process variable is reported.

Your transmitter has one mA Output: Channel A.

Restriction

The process variable assigned to the primary mA Output is automatically assigned to the Frequency Output. You cannot assign a different process variable.

Important

Whenever you change an mA Output parameter, verify all other mA Output parameters before returning the meter to service. In some situations, the transmitter automatically loads a set of stored values, and these values may not be appropriate for your application.

6.2.1 Configure mA Output Process Variable

ProLink III	Device Tools \rightarrow Configuration \rightarrow I/O \rightarrow Outputs \rightarrow mA Output
Field Communicator	Configure \rightarrow Manual Setup \rightarrow Inputs/Outputs \rightarrow mA Output \rightarrow Primary Variable

Use **mA Output Process Variable** to select the variable that is reported over the mA Output. This variable is applied automatically to the Frequency Output.

Prerequisites

- If you plan to configure the output to report volume flow, ensure that you have set Volume Flow Type as
 desired: Liquid or Gas Standard Volume.
- If you are using the HART variables, be aware that changing the configuration of **mA Output Process**Variable will change the configuration of the HART Primary Variable (PV) and the HART Tertiary Variable (TV).

Procedure

Set mA Output Process Variable as desired.

The default setting is Mass Flow Rate.

Postrequisites

If you changed the setting of **mA Output Process Variable**, verify the settings of **Lower Range Value** (LRV) and **Upper Range Value** (URV).

Options for mA Output Process Variable

The transmitter provides a basic set of options for **mA Output Process Variable**, plus several application-specific options. Different communications tools may use different labels for the options.

Table 6-1: Standard mA Output process variables

Process variable	Label		
	ProLink III	Field Communicator	
Gas standard volume flow rate	Gas Standard Volume Flow Rate	Gas vol flo	
Mass flow rate	Mass Flow Rate	Mass flo	
Volume flow rate	Volume Flow Rate	Vol flo	

Table 6-2: PVR mA Output process variables

Process variable	Label	
	ProLink III	Field Communicator
Uncorrected oil flow	Oil Flow Rate At Line	Oil Flow Rate at Line

Table 6-2: PVR mA Output process variables (continued)

Process variable	Label		
	ProLink III	Field Communicator	
Uncorrected water cut	Water Cut At Line	Water Cut at Line	
Uuncorrected water flow	Water Flow Rate At Line	Water Flow Rate at Line	
Corrected oil flow	Oil Flow Rate At Reference	Oil Flow Rate at Reference	
Corrected water cut	Water Cut At Reference	Water Cut at Reference	
Corrected water flow	Water Flow Rate At Reference	Water Flow Rate at Reference	
Shrinkage factor corrected net oil at line	SF Oil Flow Rate At Line	Shrinkage Factor Oil Flow Rate at Line	
Shrinkage factor corrected net oil at 60F	SF Oil Flow Rate At Reference	Shrinkage Factor Oil Flow Rate at Reference	
Shrinkage factor corrected volume of mix at 60F	SF Volume Flow Rate At Reference	Shrinkage Factor Volume Flow Rate at Reference	

6.2.2 Configure Lower Range Value (LRV) and Upper Range Value (URV)

ProLink III	Device Tools \rightarrow Configuration \rightarrow I/O \rightarrow Outputs \rightarrow mA Output
Field Communicator	$\bullet Configure \to Manual \ Setup \to Inputs / Outputs \to mA \ Output \to mA \ Output \ Settings \to LRV$
	$\bullet Configure \to Manual \ Setup \to Inputs / Outputs \to mA \ Output \to mA \ Output \ Settings \to URV$

The Lower Range Value (LRV) and Upper Range Value (URV) are used to scale the mA Output, that is, to define the relationship between mA Output Process Variable and the mA Output level.

Prerequisites

Ensure that **mA Output Process Variable** is set to the desired process variable. Each process variable has its own set of **LRV** and **URV** values. When you change the values of **LRV** and **URV**, you are configuring values for the currently assigned mA Output process variable.

Ensure that the measurement unit for the configured process variable has been set as desired.

Procedure

Set LRV and URV as desired.

- LRVis the value of mA Output Process Variable represented by an output of 4 mA. The default value for LRV depends on the setting of mA Output Process Variable. Enter LRV in the measurement units that are configured for mA Output Process Variable.
- URV is the value of mA Output Process Variable represented by an output of 20 mA. The default value for URV depends on the setting of mA Output Process Variable. Enter URV in the measurement units that are configured for mA Output Process Variable.

The mA Output uses a range of 4–20 mA to represent mA Output Process Variable. Between LRV and URV, the mA Output is linear with the process variable. If the process variable drops below LRV or rises above URV, the transmitter posts an output saturation alert.

Default values for Lower Range Value (LRV) and Upper Range Value (URV)

Each option for mA Output Process Variable has its own LRV and URV. If you change the configuration of mA Output Process Variable, the corresponding LRV and URV are loaded and used.

Table 6-3: Default values for Lower Range Value (LRV) and Upper Range Value (URV)

Process variable	LRV	URV
All mass flow variables	-200.000 g/sec	200.000 g/sec
All liquid volume flow variables	-0.200 l/sec	0.200 l/sec
Gas standard volume flow	-423.78 SCFM	423.78 SCFM

6.2.3 Configure AO Cutoff

ProLink III	Device Tools \rightarrow Configuration \rightarrow I/O \rightarrow Outputs \rightarrow mA Output
Field Communicator	${\sf Configure} \to {\sf Manual Setup} \to {\sf Inputs/Outputs} \to {\sf mA Output} \to {\sf mA Output Settings} \to {\sf PV MAO Cutoff}$

AO Cutoff (Analog Output Cutoff) specifies the lowest mass flow rate, volume flow rate, or gas standard volume flow rate that will be reported through the mA Output. Any flow rates below **AO Cutoff** will be reported as 0.

Restriction

AO Cutoff is applied only if **mA Output Process Variable** is set to Mass Flow Rate, Volume Flow Rate, or Gas Standard Volume Flow Rate. If **mA Output Process Variable** is set to a different process variable, **AO Cutoff** is not configurable, and the transmitter does not implement the AO cutoff function.

Procedure

Set AO Cutoff as desired.

The default value for **AO Cutoff** is 0.0 g/sec.

Tip

For most applications, the default value of **AO Cutoff** should be used. Contact customer service before changing **AO Cutoff**.

Interaction between AO Cutoff and process variable cutoffs

When mA Output Process Variable is set to a flow variable (for example, mass flow rate or volume flow rate), AO Cutoff interacts with Mass Flow Cutoff or Volume Flow Cutoff. The transmitter puts the cutoff into effect at the highest flow rate at which a cutoff is applicable.

Example: Cutoff interaction

Configuration:

mA Output Process Variable = Mass Flow Rate

- Frequency Output Process Variable = Mass Flow Rate
- AO Cutoff = 10 q/sec
- Mass Flow Cutoff = 15 q/sec

Result: If the mass flow rate drops below 15 q/sec, all outputs representing mass flow will report zero flow.

Example: Cutoff interaction

Configuration:

- mA Output Process Variable = Mass Flow Rate
- Frequency Output Process Variable = Mass Flow Rate
- AO Cutoff = 15 q/sec
- Mass Flow Cutoff = 10 g/sec

Result

- If the mass flow rate drops below 15 q/sec but not below 10 q/sec:
 - The mA Output will report zero flow.
 - The Frequency Output will report the actual flow rate.
- If the mass flow rate drops below 10 q/sec, both outputs will report zero flow.

6.2.4 Configure Added Damping

ProLink III	Device Tools \rightarrow Configuration \rightarrow I/O \rightarrow Outputs \rightarrow mA Output
Field Communicator	Configure \to Manual Setup \to Inputs/Outputs \to mA Output \to mA Output Settings \to PV Added Damping

Added Damping controls the amount of damping that will be applied to the mA Output.

Damping is used to smooth out small, rapid fluctuations in process measurement. **Damping Value** specifies the time period (in seconds) over which the transmitter will spread changes in the process variable. At the end of the interval, the internal value will reflect 63% of the change in the actual measured value.

Added Damping affects the reporting of **mA Output Process Variable** through the mA Output only. It does not affect the reporting of that process variable via any other method (e.g., a Frequency Output or digital communications), or the value of the process variable used in calculations.

Note

Added Damping is not applied if the mA Output is fixed (for example, during loop testing) or if the mA Output is reporting a fault. **Added Damping** is applied while sensor simulation is active.

Procedure

Set **Added Damping** to the desired value.

The default value is 0.0 seconds. The range is 0.0 to 440 seconds.

When you specify a value for **Added Damping**, the transmitter automatically rounds the value down to the nearest valid value.

Note

Added Damping values are affected by the setting of Update Rate and 100 Hz Variable.

Table 6-4: Valid values for Added Damping

Setting of Update Rate	Process variable	Update rate in effect	Valid values for Added Damping
Normal	N/A	20 Hz	0.0, 0.1, 0.3, 0.75, 1.6, 3.3, 6.5, 13.5, 27.5, 55, 110, 220, 440
Special	100 Hz variable (if assigned to the mA Output)	100 Hz	0.0, 0.04, 0.12, 0.30, 0.64, 1.32, 2.6, 5.4, 11, 22, 44, 88, 176, 350
	100 Hz variable (if not assigned to the mA Output) All other process variables	6.25 Hz	0.0, 0.32, 0.96, 2.40, 5.12, 10.56, 20.8, 43.2, 88, 176, 352

Interaction between mA Output Damping and process variable damping

When **mA Output Source** is set to a flow rate variable, **mA Output Damping** interacts with **Flow Damping**. If multiple damping parameters are applicable, the effect of damping the process variable is calculated first, and the mA output damping calculation is applied to the result of that calculation.

Example: Damping interaction

Configuration:

- Flow Damping = 1 second
- mA Output Source = Mass Flow Rate
- mA Output Damping = 2 seconds

Result: A change in the mass flow rate will be reflected in the mA Output over a time period that is greater than 3 seconds. The exact time period is calculated by the transmitter according to internal algorithms which are not configurable.

6.2.5 Configure mA Output Fault Action and mA Output Fault Level

ProLink III	Device Tools → Configuration → Fault Processing
Field Communicator	$Configure \to Manual\ Setup \to Inputs/Outputs \to mA\ Output \to mA\ Fault\ Settings$

mA Output Fault Action controls the behavior of the mA Output if the transmitter encounters an internal fault condition.

Note

For some faults only: If **Fault Timeout** is set to a non-zero value, the transmitter will not implement the fault action until the timeout has elapsed.

Procedure

1. Set mA Output Fault Action to the desired value.

The default setting is Downscale.

If **Digital Communications Fault Action** is set to NAN (not a number), you cannot set **mA Output Fault Action** or **Frequency Output Fault Action** to None. If you try to do this, the transmitter will not accept the configuration.

2. If you set mA Output Fault Action to Upscale or Downscale, set mA Output Fault Level as desired.

Postrequisites

NOTICE

If you set mA Output Fault Action or Frequency Output Fault Action to None, be sure to set Digital Communications Fault Action to None. If you do not, the output will not report actual process data, and this may result in measurement errors or unintended consequences for your process.

Options for mA Output Fault Action and mA Output Fault Level

Option	mA Output behavior	mA Output Fault Level
Upscale	Goes to the configured fault level	Default: 22.0 mA Range: 21.0 to 24.0 mA
Downscale (default)	Goes to the configured fault level	Default: 2.0 mA Range: 1.0 to 3.6 mA
Internal Zero	Goes to the mA Output level associated with a process variable value of 0 (zero), as determined by Lower Range Value and Upper Range Value settings	Not applicable
None	Tracks data for the assigned process variable; no fault action	Not applicable

6.3 Configure the Frequency Output

The Frequency Output is used to report a process variable. The Frequency Output parameters control how the process variable is reported. Your transmitter has one Frequency Output: Channel C.

Restriction

The process variable assigned to the primary mA Output is automatically assigned to the Frequency Output. You cannot assign a different process variable.

Important

Whenever you change a Frequency Output parameter, verify all other Frequency Output parameters before returning the flowmeter to service. In some situations, the transmitter automatically loads a set of stored values, and these values may not be appropriate for your application.

6.3.1 Configure Frequency Output Polarity

ProLink III	Device Tools \rightarrow Configuration \rightarrow I/O \rightarrow Outputs \rightarrow Frequency Output
Field Communicator	$Configure \rightarrow Manual\ Setup \rightarrow Inputs/Outputs \rightarrow Frequency\ Output \rightarrow FO\ Settings \rightarrow FO\ Polarity$

Frequency Output Polarity controls how the output indicates the ON (active) state. The default value, Active High, is appropriate for most applications. Your receiving device might require an Active Low setting.

Procedure

Set Frequency Output Polarity as desired.

The default setting is Active High.

Options for Frequency Output Polarity

Polarity option	Reference voltage (OFF)	Pulse voltage (ON)
Active High	0	As determined by power supply, pull-up resistor, and load. See the installation manual for your transmitter.
Active Low	As determined by power supply, pull-up resistor, and load. See the installation manual for your transmitter.	0

6.3.2 Configure Frequency Output Scaling Method

ProLink III	Device Tools \rightarrow Configuration \rightarrow I/O \rightarrow Outputs \rightarrow Frequency Output
Field Communicator	$Configure \to Manual\ Setup \to Inputs/Outputs \to Frequency\ Output \to FO\ Scaling$

Frequency Output Scaling Method defines the relationship between output pulse and flow units. Set **Frequency Output Scaling Method** as required by your frequency receiving device.

Procedure

1. Set Frequency Output Scaling Method.

Option	Description
Frequency=Flow (default)	Frequency calculated from flow rate
Pulses/Unit	A user-specified number of pulses represents one flow unit
Units/Pulse	A pulse represents a user-specified number of flow units

- 2. Set additional required parameters.
 - If you set **Frequency Output Scaling Method** to Frequency=Flow, set **Rate Factor** and **Frequency Factor**.
 - If you set **Frequency Output Scaling Method** to Pulses/Unit, define the number of pulses that will represent one flow unit.
 - If you set **Frequency Output Scaling Method** to Units/Pulse, define the number of units that each pulse will indicate.

For all scaling methods, the transmitter puts out a fixed number of pulses per unit, and at the same time, the Frequency Output signal varies in proportion to flowrate.

Calculate frequency from flow rate

The Frequency=Flow option is used to customize the Frequency Output for your application when you do not know appropriate values for Units/Pulse or Pulses/Unit.

If you specify Frequency=Flow, you must provide values for **Rate Factor** and **Frequency Factor**:

Rate Factor The maximum flow rate that you want the Frequency Output to report.

Frequency Factor A value calculated as follows:

FrequencyFactor
$$\frac{RateFactor}{T} \times N$$

where:

T Factor to convert selected time base to seconds

N Number of pulses per flow unit, as configured in the receiving device

The resulting **Frequency Factor** must be within the range of the Frequency Output 0 to 10,000 Hz:

- If Frequency Factor is less than 1 Hz, reconfigure the receiving device for a higher pulses/unit setting.
- If **Frequency Factor** is greater than 10,000 Hz, reconfigure the receiving device for a lower pulses/unit setting.

6.3.3 Configure Frequency Output Fault Action and Frequency Output Fault Level

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Fault\ Processing$	
Field Communicator	 Configure → Manual Setup → Inputs/Outputs → Frequency Output → FO Fault Parameters → FO Fault Action 	
	 Configure → Manual Setup → Inputs/Outputs → Frequency Output → FO Fault Parameters → FO Fault Level 	

Frequency Output Fault Action controls the behavior of the Frequency Output if the transmitter encounters an internal fault condition.

Note

For some faults only: If **Fault Timeout** is set to a non-zero value, the transmitter will not implement the fault action until the timeout has elapsed.

Procedure

1. Set **Frequency Output Fault Action** as desired.

The default value is Downscale (0 Hz).

2. If you set **Frequency Output Fault Action** to Upscale, set **Frequency Fault Level** to the desired value. The default value is 15000 Hz. The range is 10 to 15000 Hz.

February 2022

Options for Frequency Output Fault Action

Table 6-5: Options for Frequency Output Fault Action

Label	Frequency Output behavior
Upscale	Goes to configured Upscale value: Range: 10 Hz to 15000 Hz Default: 15000 Hz
Downscale	0 Hz
Internal Zero	0 Hz
None (default)	Tracks data for the assigned process variable; no fault action

NOTICE

If you set mA Output Fault Action or Frequency Output Fault Action to None, be sure to set Digital Communications Fault Action to None. If you do not, the output will not report actual process data, and this may result in measurement errors or unintended consequences for your process.

Restriction

If **Digital Communications Fault Action** is set to NAN (not a number), you cannot set **mA Output Fault Action** or **Frequency Output Fault Action** to None. If you try to do this, the transmitter will not accept the configuration.

6.4 Configure the Discrete Output

The Discrete Output is used to report specific meter or process conditions. The Discrete Output parameters control which condition is reported and how it is reported.

Restriction

Before you can configure the Discrete Output, you must configure a channel to operate as a Discrete Output.

Important

Whenever you change a Discrete Output parameter, verify all other Discrete Output parameters before returning the meter to service. In some situations, the transmitter automatically loads a set of stored values, and these values may not be appropriate for your application.

6.4.1 Configure Discrete Output Source

ProLink III	Device Tools \rightarrow Configuration \rightarrow I/O \rightarrow Outputs \rightarrow Discrete Output	
Field Communicator	$Configure \rightarrow Manual\ Setup \rightarrow Inputs/Outputs \rightarrow Discrete\ Output \rightarrow DO\ Assignment$	

Discrete Output Source controls which device condition or process condition is reported via the Discrete Output.

Procedure

Set **Discrete Output Source** to the desired option.

The default setting for **Discrete Output Source** is Flow Direction.

Options for Discrete Output Source

Option	Label		State	Discrete Output
	ProLink III	Field Communicator		voltage
Discrete Event 1–5 ⁽¹⁾	Enhanced Event 1	Discrete Event x	ON	Site-specific
	Enhanced Event 2 Enhanced Event 3 Enhanced Event 4 Enhanced Event 5		OFF	0 V
Event 1–2 ⁽²⁾	Event 1	Event 1	ON	Site-specific
	Event 2 Event 1 or Event 2 Status	Event 2 Event 1 or Event 2	OFF	0 V
Flow Switch	Flow Switch Indicator	Flow Switch	ON	Site-specific
			OFF	0 V
Flow Direction	Forward Reverse Indicator	Forward/Reverse	Forward flow	0 V
			Reverse flow	Site-specific
Calibration in Progress	Calibration in Progress	Calibration in Progress	ON	Site-specific
			OFF	0 V
Fault	Fault Indication	Fault	ON	Site-specific
			OFF	0 V

- (1) Events configured using the enhanced event model.
- (2) Events configured using the basic event model.

Important

If you assign Flow Switch to the Discrete Output, you should also configure Flow Switch Variable, Flow Switch Setpoint, and Hysteresis.

Related information

Configure an enhanced event Fault indication with a Discrete Output

Configure Flow Switch parameters

ProLink III	Device Tools \rightarrow Configuration \rightarrow I/O \rightarrow Outputs \rightarrow Discrete Output	
Field Communicator	 Configure → Manual Setup → Inputs/Outputs → Discrete Output → Flow Switch Source 	
	$\textbf{Configure} \rightarrow \textbf{Manual Setup} \rightarrow \textbf{Inputs/Outputs} \rightarrow \textbf{Discrete Output} \rightarrow \textbf{Flow Switch Setpoint}$	
	• Configure $ o$ Manual Setup $ o$ Inputs/Outputs $ o$ Discrete Output $ o$ Hysteresis	

Flow Switch is used to indicate that the flow rate (measured by the configured flow variable) has moved past the configured setpoint, in either direction. The flow switch is implemented with a user-configurable hysteresis.

Procedure

- 1. Set **Discrete Output Source** to Flow Switch, if you have not already done so.
- 2. Set Flow Switch Variable to the flow variable that you want to use to control the flow switch.
- 3. Set **Flow Switch Setpoint** to the value at which the flow switch will be triggered (after **Hysteresis** is applied).
 - If the flow rate is below this value, the Discrete Output is ON.
 - If the flow rate is above this value, the Discrete Output is OFF.
- 4. Set **Hysteresis** to the percentage of variation above and below the setpoint that will operate as a deadband.

Hysteresis defines a range around the setpoint within which the flow switch will not change. The default is 5%. The valid range is 0.1% to 10%.

Example

If Flow Switch Setpoint = 100 g/sec and Hysteresis = 5%, and the first measured flow rate is above 100 g/sec, the Discrete Output is OFF. It will remain OFF unless the flow rate drops below 95 g/sec. If this happens, the Discrete Output will turn ON, and remain ON until the flow rate rises above 105 g/sec. At this point it turns OFF and will remain OFF until the flow rate drops below 95 g/sec.

6.4.2 Configure Discrete Output Polarity

ProLink III	Device Tools \rightarrow Configuration \rightarrow I/O \rightarrow Outputs \rightarrow Discrete Output	
Field Communicator	Configure \rightarrow Manual Setup \rightarrow Inputs/Outputs \rightarrow Discrete Output \rightarrow DO Polarity	

Discrete Outputs have two states: ON (active) and OFF (inactive). Two different voltage levels are used to represent these states. **Discrete Output Polarity** controls which voltage level represents which state.

Procedure

Set Discrete Output Polarity as desired.

The default setting is Active High.

Options for Discrete Output Polarity

Polarity option	Description
Active High	 When asserted (condition tied to DO is true), the circuit provides a pull-up to 24 V. When not asserted (condition tied to DO is false), the circuit provides 0 V.

Polarity option	Description
Active Low	 When asserted (condition tied to DO is true), the circuit provides 0 V. When not asserted (condition tied to DO is false), the circuit provides a pull-up to 24 V.

6.4.3 Configure Discrete Output Fault Action

ProLink III	Device Tools → Configuration → Fault Processing	
Field Communicator Configure → Manual Setup → Inputs/Outputs → Discrete Output → DO Fault Action		

Discrete Output Fault Action controls the behavior of the Discrete Output if the transmitter encounters an internal fault condition.

Note

For some faults only: If **Fault Timeout** is set to a non-zero value, the transmitter will not implement the fault action until the timeout has elapsed.

NOTICE

Do not use **Discrete Output Fault Action** as a fault indicator. If you do, you may not be able to distinguish a fault condition from a normal operating condition. If you want to use the Discrete Output as a fault indicator, set **Discrete Output Source** to Fault and set **Discrete Output Fault Action** to None.

Procedure

Set Discrete Output Fault Action as desired.

The default setting is None.

Related information

Fault indication with a Discrete Output

Options for Discrete Output Fault Action

Label	Discrete Output behavior
Upscale	Fault: Discrete Output is ON (site-specific voltage)
	No fault: Discrete Output is controlled by its assignment
Downscale	Fault: Discrete Output is OFF (0 V)
	No fault: Discrete Output is controlled by its assignment
None (default)	Discrete Output is controlled by its assignment

Fault indication with a Discrete Output

To indicate faults via a Discrete Output, set **Discrete Output Source** to Fault. Then, if a fault occurs, the Discrete Output is always ON and the setting of **Discrete Output Fault Action** is ignored.

6.5 Configure events

An event occurs when the real-time value of a user-specified process variable moves past a user-defined setpoint. Events are used to provide notification of process changes or to perform specific transmitter actions if a process change occurs.

Your transmitter supports two event models:

- Basic event model
- Enhanced event model

6.5.1 Configure a basic event

ProLink III	
Field Communicator	Not available

A basic event is used to provide notification of process changes. A basic event occurs (is ON) if the real-time value of a user-specified process variable moves above (HI) or below (LO) a user-defined setpoint. You can define up to two basic events. Event status can be queried via digital communications, and a Discrete Output can be configured to report event status.

Procedure

- 1. Select the event that you want to configure.
- 2. Specify **Event Type**.

Option	Description
HI	x > A
	The event occurs when the value of the assigned process variable (x) is greater than the setpoint (Setpoint A), endpoint not included.
LO	x < A
	The event occurs when the value of the assigned process variable (x) is less than the setpoint (Setpoint A), endpoint not included.

- 3. Assign a process variable to the event.
- 4. Set a value for **Setpoint A**.
- 5. Optional: Configure a Discrete Output to switch states in response to the event status.

6.5.2 Configure an enhanced event

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Events \rightarrow Enhanced\ Events$
Field Communicator	Configure → Alert Setup → Discrete Events

An enhanced event is used to provide notification of process changes and, optionally, to perform specific transmitter actions if the event occurs. An enhanced event occurs (is ON) if the real-time value of a user-specified process variable moves above (HI) or below (LO) a user-defined setpoint, or in range (IN) or out of range (OUT) with respect to two user-defined setpoints. You can define up to five enhanced events.

Procedure

- 1. Select the event that you want to configure.
- 2. Specify Event Type.

Option	Description
HI	x > A
	The event occurs when the value of the assigned process variable (x) is greater than the setpoint (Setpoint A), endpoint not included.
LO	x < A
	The event occurs when the value of the assigned process variable (x) is less than the setpoint (Setpoint A), endpoint not included.
IN	$A \le x \le B$
	The event occurs when the value of the assigned process variable (x) is <i>in range</i> , that is, between Setpoint A and Setpoint B , endpoints included.
OUT	$x \le A \text{ or } x \ge B$
	The event occurs when the value of the assigned process variable (x) is out of range, that is, less than Setpoint A or greater than Setpoint B , endpoints included.

- 3. Assign a process variable to the event.
- 4. Set values for the required setpoints.
 - For HI and LO events, set **Setpoint A**.
 - For IN and OUT events, set **Setpoint A** and **Setpoint B**.
- 5. Optional: Configure a Discrete Output to switch states in response to the event status.
- 6. Optional: Specify the action or actions that the transmitter will perform when the event occurs.
 - With ProLink III: Device Tools \rightarrow Configuration \rightarrow I/O \rightarrow Action Assignment
 - With a field communicator: Configure \rightarrow Alert Setup \rightarrow Discrete Events \rightarrow Assign Discrete Action

Options for Enhanced Event Action

Action	Label		
	ProLink III Field Communicator		
Standard			
None (default)	None	None	
Start sensor zero	Start Sensor Zero	Perform auto zero	
Start/stop all totalizers	Start/Stop All Totalization	Start/stop totals	

Action	Label			
	ProLink III	Field Communicator		
Reset mass total	Reset Mass Total	Reset mass total		
Reset volume total	Reset Volume Total	Reset volume total		
Reset gas standard volume total	Reset Gas Std Volume Total	Reset gas standard volume total		
Reset all totals	Reset All Totals	Reset totals		
Meter verification				
Start meter verification test	Start Meter Verification	Not available		

Note

Before assigning actions to an enhanced event, check the status of the event. If it is ON, all assigned actions will be performed when the new configuration is implemented. If this is not acceptable, wait until an appropriate time to assign actions to the event.

6.6 Configure digital communications

The digital communications parameters control how the transmitter will communicate using digital communications.

Your transmitter supports the following types of digital communications:

- HART/Bell 202 over the primary mA terminals
- Modbus/RS-485 over the RS-485 terminals
- Modbus RTU via the service port

The 1500 has only a single Modbus port.

Procedure

You have the following digital communication options:

- During the first 10 seconds after a power cycle, connect to the service port using address 111 and the service port communication parameters.
- After the initial startup period, you can connect using Modbus with the configured Modbus address and communication parameters.

6.6.1 Configure HART/Bell 202 communications

HART/Bell 202 communications parameters support HART communications with the transmitter's primary mA terminals over a HART/Bell 202 network.

Configure basic HART parameters

ProLink III	Device Tools → Configuration → Communications → Communications (HART)	
Field Communicator	Configure → Manual Setup → Inputs/Outputs → Communications	

Basic HART parameters include the HART address, HART tags, and the operation of the primary mA Output.

HART/Bell 202 communications parameters support HART communication with the transmitter's primary mA terminals over a HART/Bell 202 network. The HART/Bell 202 communications parameters include:

- HART Address (Polling Address)
- mA Output Action
- Burst Parameters (optional)
- HART Variables (optional)

Procedure

- 1. Set **HART Address** to a value that is unique on your network.
 - Default: 0
 - Range: 0 to 15

Tip

- The default address is typically used unless you are in a multidrop environment.
- Devices using HART protocol to communicate with the transmitter may use either HART Address or HART Tag (Software Tag) to identify the transmitter. Configure either or both, as required by your other HART devices.
- 2. Ensure that **mA Output Action** is configured appropriately.

Option	Description
Enabled (Live)	The primary mA Output reports process data as configured.
Disabled (Fixed)	The primary mA Output is fixed at 4 mA and does not report process data.

Important

If you use ProLink III to set **HART Address** to 0, the program automatically enables **mA Output Action**. If you use ProLink III to set **HART Address** to any other value, the program automatically disables **mA Output Action**. This is designed to make it easier to configure the transmitter for legacy behavior. Always verify **mA Output Action** after setting **HART Address**.

Configure burst parameters

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Communications \rightarrow Communications\ (HART)$
Field Communicator	$Configure \rightarrow Manual\ Setup \rightarrow Inputs/Outputs \rightarrow Communications \rightarrow Set\ Up\ Burst\ Mode$

Burst mode is a mode of communication during which the transmitter regularly broadcasts HART digital information over the mA Output. The burst parameters control the information that is broadcast when burst mode is enabled.

Tip

In typical installations, burst mode is disabled. Enable burst mode only if you are using a HART Triloop.

Procedure

- 1. Enable Burst Mode.
- 2. Set **Burst Mode Output** as desired.

Label		Description		
ProLink III	Field Communicator			
Source (Primary Variable)	PV	The transmitter sends the primary variable (PV) in the configured measurement units in each burst (e.g., 14.0 g/sec, 13.5 g/sec, 12.0 g/sec.		
Primary Variable (Percent Range/Current)	% range/current	The transmitter sends the PV's percent of range and the PV's actual mA level in each burst (e.g., 25%, 11.0 mA.		
Process Variables/Current	Process variables/current	The transmitter sends PV, SV, TV, and QV values in measurement units and the PV's actual milliamp reading in each burst (e.g., 50 g/sec, 23 °C, 50 g/sec, 0.0023 g/cm3, 11.8 mA.		
Transmitter variables	Fld dev var	The transmitter sends four user-specified process variables in each burst.		

- 3. Ensure that the burst output variables are set appropriately.
 - If you set **Burst Mode Output** to send four user-specified variables, set the four process variables to be sent in each burst.
 - If you set **Burst Mode Output** to any other option, ensure that the HART variables are set as desired.

Configure HART variables (PV, SV, TV, QV)

ProLink III	Device Tools → Configuration → Communications → Communications (HART)
Field Communicator	$Configure \to Manual\ Setup \to Inputs/Outputs \to Variable\ Mapping$

The HART variables are a set of four variables predefined for HART use. The HART variables include the Primary Variable (PV), Secondary Variable (SV), Tertiary Variable (TV), and Quaternary Variable (QV). You can assign specific process variables to the HART variables, and then use standard HART methods to read or broadcast the assigned process data.

Restriction

The TV is automatically set to match the PV and cannot be configured independently.

Tin

The Tertiary Variable and Quaternary Variable are also called the Third Variable (TV) and Fourth Variable (FV).

Options for HART variables

Table 6-6: Standard HART process variables

Process variable	Primary Variable (PV)	Secondary Variable (SV)	Third Variable (TV)	Fourth Variable (QV)
Gas Standard Volume Flow Rate	✓	✓	✓	✓

Table 6-6: Standard HART process variables (continued)

Process variable	Primary Variable (PV)	Secondary Variable (SV)	Third Variable (TV)	Fourth Variable (QV)
Gas Standard Volume Inventory				✓
Gas Standard Volume Total				✓
Line (Gross) Volume Flow Rate	✓	✓	✓	✓
Line (Gross) Volume Inventory				✓
Line (Gross) Volume Total				✓
Mass Flow Rate	✓	✓	✓	✓
Mass Inventory				✓
Mass Total				✓

Table 6-7: PVR-only HART process variables

Process variable	Primary Variable (PV)	Secondary Variable (SV)	Third Variable (TV)	Fourth Variable (QV)
Corrected Oil Flow	1	✓		✓
Corrected Oil Total				✓
Corrected Water Cut				✓
Corrected Water Flow	1	✓		✓
Corrected Water Total				✓
Density of Oil @ Line Fixd degAPI				✓
Density of Oil @ Line Fixd SGU				√
Oil Total @ Line				√
Shrinkage Factor Corrected Oil Flow @ 60F	1	✓		✓
Shrinkage Factor Corrected Oil Flow @ Line	1	✓		✓
Shrinkage Factor Corrected Oil Total @ 60F				✓
Shrinkage Factor Corrected Oil Total @ Line				√
Shrinkage Factor Corrected Total of Mix @ 60F				✓
Shrinkage Factor Corrected Volume Of Mix @ 60F	✓	✓		√
Uncorrected Oil Flow	✓	✓		√
Uncorrected Water Cut				√
Uncorrected Water Flow	1	✓		✓
Volume Flow of Mix at Line	1	✓		✓
Volume Total Of Mix @ Line				✓
Water Total @ Line				√

Table 6-8: TMR-only HART process variables

Process variable	Primary Variable (PV)	Secondary Variable (SV)	Third Variable (TV)	Fourth Variable (QV)
Remediated Mass Flow	✓	✓		✓
Remediated Mass Total				✓
Remediated Mass Inventory				✓

Table 6-9: PVR- and TBR-only HART process variables

Process variable	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	Third Variable (TV)	Fourth Variable (QV)
Unremediated Density				✓

Table 6-10: PVR, TBR, and TMR HART process variables

Process variable	Primary Variable (PV)	· · · · · · · · · · · · · · ·	Third Variable (TV)	Fourth Variable (QV)
Total Remediated Time				✓

Interaction of HART variables and transmitter outputs

The HART variables are automatically reported through specific transmitter outputs. They may also be reported through HART burst mode, if enabled on your transmitter.

Table 6-11: HART variables and transmitter outputs

HART variable	Reported via	Comments
Primary Variable (PV)	Primary mA output	If one assignment is changed, the other is changed automatically, and vice versa.
Secondary Variable (SV)	Not associated with an output	The SV must be configured directly, and the value of the SV is available only via digital communications.
Tertiary Variable (TV)	Frequency Output	If one assignment is changed, the other is changed automatically, and vice versa.
Quaternary Variable (QV)	Not associated with an output	The QV must be configured directly, and the value of the QV is available only via digital communications.

6.6.2 Configure Modbus/RS-485 communications

ProLink III	Device Tools \rightarrow Configuration \rightarrow Communications \rightarrow RS-485 Terminals
Field Communicator	Configure → Manual Setup → Inputs/Outputs → Communications → Set Up RS-485 Port

Modbus/RS-485 communications parameters control Modbus communication with the transmitter's RS-485 terminals.

Procedure

1. Set Disable Modbus ASCII as desired.

Support for Modbus ASCII limits the set of addresses that are available for the transmitter's Modbus address.

Modbus ASCII support	Available Modbus addresses	
Disabled	1–127, excluding 111 (111 is reserved to the service port)	
Enabled	1–15, 32–47, 64–79, and 96–110	

2. Set **Protocol** to match the protocol used by your Modbus/RS-485 host.

Option	Description
Modbus RTU (default)	8-bit communications
Modbus ASCII	7–bit communications

If support for Modbus ASCII is disabled, you must use Modbus RTU.

- 3. Set **Modbus Address** to a unique value on the network.
- 4. Set **Parity**, **Stop Bits**, and **Baud Rate** as appropriate for your network.
- 5. Set **Floating-Point Byte Order** to match the byte order used by your Modbus host.

Code	Byte order
0	1–2 3–4
1	3–4 1–2
2	2–1 4–3
3	4–3 2–1

See the following table for the bit structure of bytes 1 through 4.

Table 6-12: Bit structure of floating-point bytes

Byte	Bits	Definition
1	SEEEEEE	S=Sign
		E=Exponent
2	ЕММММММ	E=Exponent
		M=Mantissa
3	МММММММ	M=Mantissa
4	МММММММ	M=Mantissa

6. (Optional) Set Additional Communications Response Delay in delay units.

A delay unit is 2/3 of the time required to transmit one character, as calculated for the port currently in use and the character transmission parameters. Valid values range from 1 to 255.

Additional Communications Response Delay is used to synchronize Modbus communications with hosts that operate at a slower speed than the transmitter. The value specified here will be added to each response the transmitter sends to the host.

Tip

Do not set **Additional Communications Response Delay** unless required by your Modbus host.

6.6.3 Configure Digital Communications Fault Action

ProLink III	Device Tools → Configuration → Fault Processing
Field Communicator	Configure \rightarrow Alert Setup \rightarrow I/O Fault Actions \rightarrow Comm Fault Action

Digital Communications Fault Action specifies the values that will be reported via digital communications if the device encounters an internal fault condition.

Procedure

Set Digital Communications Fault Action as desired.

The default setting is None.

Restriction

- If mA Output Fault Action or Frequency Output Fault Action is set to None, Digital Communications Fault Action should also be set to None. If you do not, the output will not report actual process data, and this may result in measurement errors or unintended consequences for your process.
- If you set Digital Communications Fault Action to NAN, you cannot set mA Output Fault Action or Frequency Output Fault Action to None. If you try to do this, the transmitter will not accept the configuration.

Options for Digital Communications Fault Action

La	bel	Description
ProLink III	Field Communicator	
Upscale	Upscale	 Process variable values indicate that the value is greater than the upper sensor limit. Totalizers stop incrementing.
Downscale	Downscale	Process variable values indicate that the value is lower than the lower sensor limit.
		Totalizers stop incrementing.
Zero	IntZero-All 0	Flow rate variables go to the value that represents a flow rate of 0 (zero).
		Density is reported as 0.
		• Temperature is reported as 0 °C, or the equivalent if other units are used (e.g., 32 °F.
		Drive gain is reported as measured.
		Totalizers stop incrementing.

La	bel	Description
ProLink III	Field Communicator	
Not a Number	Not-a-Number	Process variables are reported as IEEE NAN.
		Drive gain is reported as measured.
		Modbus scaled integers are reported as Max Int.
		Totalizers stop incrementing.
Flow to Zero	IntZero-Flow 0	Flow rates are reported as 0.
		Other process variables are reported as measured.
		Totalizers stop incrementing.
None	None (default)	All process variables are reported as measured.
		Totalizers increment if they are running.

NOTICE

If you set mA Output Fault Action or Frequency Output Fault Action to None, be sure to set Digital Communications Fault Action to None. If you do not, the output will not report actual process data, and this may result in measurement errors or unintended consequences for your process.

Restriction

If **Digital Communications Fault Action** is set to NAN (not a number), you cannot set **mA Output Fault Action** or **Frequency Output Fault Action** to None. If you try to do this, the transmitter will not accept the configuration.

7 Complete the configuration

7.1 Test or tune the system using sensor simulation

Use sensor simulation to test the system's response to a variety of process conditions, including boundary conditions, problem conditions, or alert conditions, or to tune the loop.

Prerequisites

Before enabling sensor simulation, ensure that your process can tolerate the effects of the simulated process values.

Restriction

Sensor simulation is available only on flow meters with the enhanced core processor.

Procedure

1. Navigate to the sensor simulation menu.

Communications tool	Menu path
ProLink III	$Device\ Tools \rightarrow Diagnostics \rightarrow Testing \rightarrow Sensor\ Simulation$
Field Communicator	Service Tools → Simulate → Simulate Sensor

- 2. Enable sensor simulation.
- 3. For mass flow, set **Wave Form** as desired and enter the required values.

Option	Required values
Fixed	Fixed Value
Sawtooth	Period Minimum Maximum
Sine	Period Minimum Maximum

4. For density, set **Wave Form** as desired and enter the required values.

Option	Required values
Fixed	Fixed Value
Sawtooth	Period Minimum Maximum
Sine	Period

Option	Required values
	Minimum
	Maximum

5. For temperature, set **Wave Form** as desired and enter the required values.

Option	Required values
Fixed	Fixed Value
Sawtooth	Period
	Minimum
	Maximum
Sine	Period
	Minimum
	Maximum

- 6. Observe the system response to the simulated values and make any appropriate changes to the transmitter configuration or to the system.
- 7. Modify the simulated values and repeat.
- 8. When you have finished testing or tuning, disable sensor simulation.

7.1.1 Sensor simulation

Sensor simulation allows you to test the system or tune the loop without having to create the test conditions in your process. When sensor simulation is enabled, the transmitter reports the simulated values for mass flow, density, and temperature, and takes all appropriate actions. For example, the transmitter might apply a cutoff, activate an event, or post an alert.

When sensor simulation is enabled, the simulated values are stored in the same memory locations used for process data from the sensor. The simulated values are then used throughout transmitter functioning. For example, sensor simulation will affect:

- All mass flow rate, temperature, and density values displayed or reported via outputs or digital communications
- The mass total and mass inventory values
- All volume calculations and data, including reported values, volume totals, and volume inventories
- · All mass, temperature, density, or volume values logged to Data Logger

Sensor simulation does not affect any diagnostic values.

Unlike actual mass flow rate and density values, the simulated values are not temperature-compensated (adjusted for the effect of temperature on the sensor's flow tubes).

7.2 Back up transmitter configuration

ProLink III provides a configuration upload/download function which allows you to save configuration sets to your PC. This allows you to back up and restore your transmitter configuration. This is also a convenient way to replicate a configuration across multiple devices.

Restriction

This function is not available with any other communications tools.

Procedure

To back up the transmitter configuration using ProLink III:

- a) Choose Device Tools \rightarrow Configuration Transfer \rightarrow Save or Load Configuration Data.
- b) In the Configuration group box, select the configuration data you want to save.
- c) Click **Save**, then specify a file name and location on your computer.
- d) Click Start Save.

The backup file is saved to the specified name and location. It is saved as a text file and can be read using any text editor.

7.3 Enable write-protection on the transmitter configuration

ProLink III	$Device\ Tools \rightarrow Configuration \rightarrow Write-Protection$
Field Communicator	$Configure \rightarrow Manual \ Setup \rightarrow Info \ Parameters \rightarrow Transmitter \ Info \rightarrow Write \ Protect$

If the transmitter is write-protected, the configuration is locked and nobody can change it until it is unlocked. This prevents accidental or unauthorized changes to the transmitter configuration parameters.

Part III Operations, maintenance, and troubleshooting

8 Transmitter operation

8.1 Record the process variables

Micro Motion suggests that you make a record of specific process variable measurements, including the acceptable range of measurements, under normal operating conditions. This data will help you recognize when the process or diagnostic variables are unusually high or low, and may help you diagnose and troubleshoot application issues.

Procedure

Record the following process and diagnostic variables, under normal operating conditions.

	Measurement		
Variable	Typical average Typical high Typical low		
Flow rate			
Density			
Temperature			
Tube frequency			
Pickoff voltage			
Drive gain			

8.2 View process variables

	View the desired variable on the main screen under Process Variables . See View process variables and other data using ProLink III for more information.	
Field Communicator	$Overview \rightarrow Shortcuts \rightarrow Variables \rightarrow Process \ Variables$	

Process variables provide information about the state of the process fluid, such as flow rate, density, and temperature, as well as running totals. Process variables can also provide data about flowmeter operation, such as drive gain and pickoff voltage. This information can be used to understand and troubleshoot your process.

8.2.1 View process variables and other data using ProLink III

Monitor process variables, diagnostic variables, and other data to maintain process quality.

ProLink III automatically displays process variables, diagnostic variables, and other data on the main screen.

Tip

ProLink III allows you to choose the process variables that appear on the main screen. You can also choose whether to view data in Analog Gauge view or digital view, and you can customize the gauge settings. For more information, see the .

8.2.2 View process variables using the Field Communicator

Monitor process variables to maintain process quality.

Procedure

- To view current values of basic process variables, choose Overview.
- To view a more complete set of process variables, plus the current state of the outputs, choose Service
 Tools → Variables.

8.3 View transmitter status using the status LED

The status LED shows the current alert condition of the transmitter.

Procedure

Observe the status LED.

To interpret the status LED, see the following table.

Table 8-1: Status LED states

LED state	Alarm condition	Description
Solid green	No alarm	Normal operation
Flashing yellow	No alarm	Zero calibration procedure is in progressLoop test is in progress
Solid yellow	Low-severity alarm	Alarm condition that will not cause measurement error (outputs continue to report process data)
Solid red	High-severity alarm	Alarm condition that will cause measurement error (outputs in fault)

8.4 View and acknowledge status alerts

The transmitter posts status alerts whenever a process variable exceeds its defined limits or the transmitter detects a fault condition. You can view active alerts, and you can acknowledge alerts. Acknowledging alerts is not required.

8.4.1 View and acknowledge alerts using ProLink III

You can view a list containing all alerts that are active, or inactive but unacknowledged. From this list, you can acknowledge individual alerts or choose to acknowledge all alerts at once.

Procedure

View alerts on the ProLink III Device Tools → Alerts tab.
 All active or unacknowledged alerts are listed, and displayed according to the following categories:

Category	Description	
Failed: Fix Now	A meter failure has occurred and must be addressed immediately.	

Category	Description	
Maintenance: Fix Soon	A condition has occurred that can be fixed at a later time.	
Advisory: Informational	A condition has occurred, but requires no maintenance from you.	

Notes

- All fault alerts are displayed in the **Failed: Fix Now** category.
- All information alerts are displayed in either the Maintenance: Fix Soon category or the Advisory: Informational category. The category assignment is hard-coded.
- The transmitter automatically filters out alerts with Alert Severity set to Ignore.
- 2. To acknowledge a single alert, check the **Ack** checkbox for that alert. To acknowledge all alerts at once, click **Ack** All.

Postrequisites

- To clear the following alerts, you must correct the problem, acknowledge the alert, then power-cycle the transmitter: A001, A002, A010, A011, A012, A013, A018, A019, A022, A023, A024, A025, A028, A029, A031.
- For all other alerts:
 - If the alert is inactive when it is acknowledged, it will be removed from the list.
 - If the alert is active when it is acknowledged, it will be removed from the list when the alert condition clears.

Related information

Alert data in transmitter memory

8.4.2 View alerts using the Field Communicator

You can view a list containing all alerts that are active, or inactive but unacknowledged.

Procedure

To view active or unacknowledged alerts, choose Service Tools → Alerts.

All active alerts and unacknowledged alerts are listed.

Note

Only Fault and Informational alerts are listed. The transmitter automatically filters out alerts with **Status Alert Severity** set to Ignore.

To refresh the list, choose Service Tools → Alerts → Refresh Alerts.

Related information

Alert data in transmitter memory

8.4.3 Alert data in transmitter memory

The transmitter maintains three sets of data for every alert that is posted.

For each alert occurrence, the following three sets of data are maintained in transmitter memory:

- Alert List
- Alert Statistics
- Recent Alerts

Alert data structure	Transmitter action if condition occurs	
	Contents	Clearing
Alert List	As determined by the alert status bits, a list of: All currently active alerts All previously active alerts that have not been acknowledged	Cleared and regenerated with every transmitter power cycle
Alert Statistics	One record for each alert (by alert number) that has occurred since the last master reset. Each record contains: • A count of the number of occurrences • Timestamps for the most recent posting and clearing	Not cleared; maintained across transmitter power cycles
Recent Alerts	50 most recent alert postings or alert clearings	Not cleared; maintained across transmitter power cycles

8.5 Read totalizer and inventory values

ProLink III	View the desired variable on the main screen under Process Variables .
Field Communicator	Service Tools \rightarrow Variables \rightarrow Totalizer Control

Totalizers keep track of the total amount of mass or volume measured by the transmitter since the last totalizer reset. Inventories keep track of the total amount of mass or volume measured by the transmitter since the last inventory reset.

Tip

You can use the inventories to keep a running total of mass or volume across multiple totalizer resets.

8.6 Start and stop totalizers and inventories

ProLink III	Device Tools → Totalizer Control → Totalizer and Inventories → Start All Totals Device Tools → Totalizer Control → Totalizer and Inventories → Stop All Totals
Field Communicator	Service Tools \rightarrow Variables \rightarrow Totalizer Control \rightarrow All Totalizers \rightarrow Start Totalizers Service Tools \rightarrow Variables \rightarrow Totalizer Control \rightarrow All Totalizers \rightarrow Stop Totalizers

MMI-20019023

When you start a totalizer, it tracks process measurement. In a typical application, its value increases with flow. When you stop a totalizer, it stops tracking process measurement and its value does not change with flow. Inventories are started and stopped automatically, when totalizers are started and stopped.

Important

Totalizers and inventories are started or stopped as a group. When you start any totalizer, all other totalizers and all inventories are started simultaneously. When you stop any totalizer, all other totalizers and all inventories are stopped simultaneously. You cannot start or stop inventories directly.

8.7 Reset totalizers

ProLink III	Device Tools → Totalizer Control → Totalizer and Inventories → Reset Mass Total Device Tools → Totalizer Control → Totalizer and Inventories → Reset Volume Total Device Tools → Totalizer Control → Totalizer and Inventories → Reset Gas Total Device Tools → Totalizer Control → Totalizer and Inventories → Reset All Totals
Field Communicator	Service Tools → Variables → Totalizer Control → Mass → Mass Total Service Tools → Variables → Totalizer Control → Gas Standard Volume → Volume Total Service Tools → Variables → Totalizer Control → Gas Standard Volume → GSV Total Service Tools → Variables → Totalizer Control → All Totalizers → Reset All Totals

When you reset a totalizer, the transmitter sets its value to 0. It does not matter whether the totalizer is started or stopped. If the totalizer is started, it continues to track process measurement.

Tip

When you reset a single totalizer, the values of other totalizers are not reset. Inventory values are not reset.

8.8 Reset inventories

ProLink III	Device Tools \rightarrow Totalizer Control \rightarrow Totalizer and Inventories \rightarrow Reset Mass Inventory
	Device Tools \rightarrow Totalizer Control \rightarrow Totalizer and Inventories \rightarrow Reset Volume Inventory
	Device Tools \rightarrow Totalizer Control \rightarrow Totalizer and Inventories \rightarrow Reset Gas Inventory
	$\label{eq:Device Tools} \textbf{Device Tools} \rightarrow \textbf{Totalizer Control} \rightarrow \textbf{Totalizer and Inventories} \rightarrow \textbf{Reset All Inventories}$

When you reset an inventory, the transmitter sets its value to 0. It does not matter whether the inventory is started or stopped. If the inventory is started, it continues to track process measurement.

Tip

When you reset a single inventory, the values of other inventories are not reset. Totalizer values are not reset.

9 Measurement support

9.1 Options for measurement support

Micro Motion provides several measurement support procedures to help you evaluate and maintain your flowmeter's accuracy.

The following methods are available:

- Smart Meter Verification (SMV) evaluates the structural integrity of the sensor tubes by comparing current
 tube stiffness to the stiffness measured at the factory. Stiffness is defined as the load per unit deflection, or
 force divided by displacement. Because a change in structural integrity changes the sensor's response to
 mass and density, this value can be used as an indicator of measurement performance.
- Meter validation compares flowmeter measurements reported by the transmitter to an external measurement standard. Meter validation requires one data point.
- Calibration establishes the relationship between a process variable and the signal produced at the sensor. You can calibrate the flowmeter for zero, density, and temperature. Density and temperature calibration require two data points (low and high) and an external measurement for each.

Tip

- Perform SMV at regular intervals to get the best data on your meter's performance.
- To prove the meter against a regulatory standard, or to correct measurement error, use meter validation and meter factors.
- Before performing a field calibration, contact customer support to see if there is an alternative. In many cases, field calibrations have a negative effect on measurement accuracy.

9.2 Use Smart Meter Verification

Smart Meter Verification[™] provides in-process flow meter health verification by analyzing the meter components related to measurement performance. You can run Smart Meter Verification without stopping the process. Use this section to run a Smart Meter Verification test, view and interpret the results, set up automatic execution, and check if a field reference point has been established.

9.2.1 SMV requirements

To use SMV, the transmitter must be paired with an 800 enhanced core processor.

See Table 9-1 for the minimum version of the transmitter, 800 enhanced core processor, and communication tool needed to support SMV.

Table 9-1: Minimum SMV version

Item	Minimum version (legacy)	Minimum basic SMV transmitter
Transmitter	6.0	8.0
Enhanced core processor	3.6	4.4
ProLink III	1.0	4.0

Table 9-1: Minimum SMV version (continued)

Item	Minimum version (legacy)	Minimum basic SMV transmitter
Field Communicator	HART device description: device rev 6, DD rev 2	HART device description: device rev 8, DD rev 1

9.2.2 SMV test preparation

Prerequisites

The following information pertains to the transmitter when connected to an 800 enhanced core processor \geq 4.7.

• To avoid or reduce corrosion, erosion, and other process effects, make sure the sensor tube material is compatible with the process fluid in use. For more information, see the *Micro Motion Corrosion Guide*.

Important

Micro Motion highly recommends:

- Running the first Smart Meter Verification test when the flow meter is installed in the pipeline
 according to the installation instructions, and the process is running at its normal operating conditions
- Running all tests thereafter at similar operating conditions
- The Smart Meter Verification test runs best when process conditions are stable. If process conditions are too unstable, the test will abort. To maximize process stability:
 - Maintain a constant fluid temperature and pressure.
 - Maintain a constant flow rate. If possible, stop flow through the sensor. The sensor should be full of process fluid.
 - Avoid changes to fluid composition; for example, two-phase flow or settling.
- For all applications, run Smart Meter Verification while commissioning the meter at normal operating conditions and then run it regularly. Micro Motion also recommends using Smart Meter Verification results along with other diagnostics like drive gain and density to help determine the health of a sensor.
- In certain scenarios, Smart Meter Verification field upgrades for pre-installed meters are possible. Contact factory support to discuss pre-installed meter upgrades.

9.2.3 Smart Meter Verification capabilities

Canability	Basic	Professional
Capability	Included	Licensed
Calibration coefficients audit	•	•
Zero audit	•	•
Electronics verification	•	•
Automatic test scheduler	•	•
History of previous 20 results	•	•

Capability	Basic	Professional
Capability	Included	Licensed
Verification report		• (1)

⁽¹⁾ Create and export with Prolink III, web page, or AMS SNAP-ON.

9.2.4 Run SMV

Run an SMV test using ProLink III

Procedure

Choose Device Tools → Diagnostics → Meter Verification → Run Test.
 You may need to wait a few seconds while ProLink III synchronizes its database with the transmitter data.

- 2. Enter any desired information on the *Test Definition* screen, and click **Next**. All information on this screen is optional.
- 3. Choose the desired output behavior.

Option	Description
Continue Measuring	During the test, all outputs will continue to report their assigned process variable. The test will run for approximately 90 seconds.
Held at Last Value	During the test, all outputs will report the last measured value of their assigned process variable. The test will run for approximately 140 seconds.
Held at Fault	During the test, all outputs will go to their configured fault action. The test will run for approximately 140 seconds.

4. Press Start.

Test progress is displayed on the screen.

Postrequisites

View the test results and take any appropriate actions. You can also print the report.

Run an SMV test using the Field Communicator

Procedure

- 1. Navigate to the **Smart Meter Verification** menu:
 - Overview → Shortcuts → Meter Verification
 - Service Tools → Maintenance → Routine Maintenance → Meter Verification
- 2. Choose Manual Verification.
- 3. Choose Start.
- 4. Set output behavior as desired, and press **OK** if prompted.

Option	Description
Continue Measuring	During the test, all outputs will continue to report their assigned process variable. The test will run for approximately 90 seconds.
Outputs Held at Last Value	During the test, all outputs will report the last measured value of their assigned process variable. The test will run for approximately 140 seconds.
Outputs Held at Fault	During the test, all outputs will go to their configured fault action. The test will run for approximately 140 seconds.

Test progress is displayed on the screen.

Postrequisites

View the test results and take any appropriate actions.

9.2.5 View test data

You can view the results of the current test. You can also view results from previous tests. You must use ProLink III to view test results.

Important

You can view previous test results and see detailed test reports only if SMV is licensed.

The transmitter stores the following information about the previous twenty SMV tests:

- Powered-on hours at the time of the test.
- Test result (Pass, Fail, Abort).
- Abort code, if applicable.

In addition, ProLink III provides a detailed test reporting and analysis framework. This information is stored on the PC where ProLink III is installed for tests that were run only on that PC. It includes:

- Timestamp from the PC clock
- · Current flowmeter identification data
- Current flow and density configuration parameters
- Current zero values
- Current process values for mass flow rate, volume flow rate, density, temperature, and external pressure
- Customer and test descriptions (if entered by the user)

You can use ProLink III to run a test that displays a test result chart and a test report at the completion of the test. On-screen directions are provided to manipulate the test data or export the data to a CSV file for offline analysis.

View test result data using ProLink III

Prerequisites

You can view test result data only if your SMV is licensed and only for tests that were run on the PC you are currently using.

Procedure

- 1. Choose **Device Tools** → **Diagnostics** → **Meter Verification** and click **Previous Test Results**. The chart shows test results for all tests stored in the ProLink III database.
- 2. (Optional) Click **Next** to view and print a test report.
- 3. (Optional) Click Export Data to CSV File to save the data to a file on your PC.

View test result data using the Field Communicator

Prerequisites

You can view test result data only if your SMV is licensed.

Procedure

- 1. Navigate to the **Smart Meter Verification** menu:
 - Overview → Shortcuts → Meter Verification
 - Service Tools → Maintenance → Routine Maintenance → Meter Verification
- 2. (Optional) If the Field Communicator database is out of date, choose **Upload Results Data from Device**.
- 3. To view data from the most recent test, choose **Most Recent Test Results**.
- 4. To view data for all tests in the Field Communicator database:
 - a) Press Show Results Table.
 Data from the most recent test is displayed.
 - b) Press **OK** to scroll through data from previous tests.
 - c) To exit the results table, press **Abort**.

Interpreting Smart Meter Verification results

When the Smart Meter Verification Basic or Professional test is completed, the result is reported as Pass, Fail, or Abort. (Some tools report the Fail result as Advisory instead.)

Pass The meter is performing within factory specifications.

Abort When you execute a Smart Meter Verification Basic or Professional test, the test performs a self-diagnostic check to ensure that the flow meter is stable prior to running the test. In the rare case that this check reveals an issue, Smart Meter Verification will report an abort code.

If you manually cancel an in-process Smart Meter Verification Basic or Professional test, the test result displays Abort Code 1: User-Initiated Abort. In this case, you can restart Smart Meter Verification without any further action. In the rare case any other abort occurs, contact factory support.

In all cases where a Smart Meter Verification Professional test aborts, no report will be generated.

Fail If a Smart Meter Verification Basic or Professional test ran at normal operating conditions while conditions were stable and failed, see Resolve a failed Smart Meter Verification test to determine the appropriate actions.

9.2.6 Resolve a failed Smart Meter Verification test

Use this procedure if a Smart Meter Verification Basic or Professional test ran at normal operating conditions while conditions were stable and failed.

Procedure

- 1. Verify the sensor by performing a visual inspection, density verification, or field proving.
- 2. If possible, run Smart Meter Verification Professional with Prolink III Basic or Professional and save the results as follows:
 - Ina.csv
 - In a report
- 3. Contact the factory for further evaluation and instructions.

9.2.7 Schedule automatic execution of the SMV test

You can set up and run a single test at a user-defined future time. You can also set up and run tests on a regular schedule.

Manage scheduled test execution using ProLink III

Procedure

- 1. Choose Device Tools \rightarrow Diagnostics \rightarrow Meter Verification \rightarrow Schedule Meter Verification.
- 2. To schedule a single test or the first test in recurring execution, specify a value for **Hours Until Next Run**.
- 3. To schedule recurring execution, specify a value for **Hours Between Recurring Runs**.
- 4. To disable scheduled execution:
 - To disable execution of a single scheduled test, set **Hours Until Next Run** to 0.
 - To disable recurring execution, set **Hours Between Recurring Runs** to 0.
 - To disable all scheduled execution, click **Disable Scheduled Execution**.

Manage scheduled test execution using the Field Communicator

Procedure

- 1. Navigate to the **Smart Meter Verification** menu:
 - Overview → Shortcuts → Meter Verification
 - Service Tools → Maintenance → Routine Maintenance → Meter Verification
- 2. Choose **Automatic Verification**.
- 3. To schedule a single test or the first test in recurring execution, specify a value for Hrs Until Next Run.
- 4. To schedule recurring execution, specify a value for **Set Recurring Hours**.
- 5. To disable scheduled execution:
 - To disable execution of a single scheduled test, set **Hrs Until Next Run** to 0.

- To disable recurring execution, set Set Recurring Hours to 0.
- To disable all scheduled execution, choose Turn Off Schedule.

9.3 Use Production Volume Reconciliation, Transient Mist Remediation, and Transient Bubble Remediation

For detailed information about Production Volume Reconciliation (PVR), Transient Mist Remediation (TMR), and Transient Bubble Remediation (TBR), see the .

Restriction

PVR, TBR, and TMR are available only with a transmitter that is ordered with one of these software options:

- An 800 Enhanced Core Processor version 4.4 and later
- HART with HART 7 enabled in order to view process variables over HART (default)

Restriction

PVR, TBR, and TMR process variables are available only over HART with HART 7 enabled (default). PVR, TBR, and TMR parameters cannot be configured with HART.

9.3.1 PVR, TBR, and TMR applications

PVR, TBR, and TMR are applications designed to provide more accurate process data in the presence of multiple phases. For example, if bubbles are present in the process fluid, or the process fluid is flashing, the volume measurements are often incorrect.

Production Volume Reconciliation (PVR)

- Provides oil and water volumes through density-based calculations for both line and reference conditions
- Detects bubble entrainment or flashing in the sensor, and can correct volumes accordingly
- Best for undersized three-phase separators that frequently have intermittent gas or water contamination in the oil leg
- Offers a simple, low-cost solution for net oil and net water measurement for two-phase separators

Transient Bubble Remediation (TBR)

- Used with single-component liquid streams that may experience intermittent low levels of gas entrainment, that is, gas carryunder
- Enables accurate measurement of a single fluid during periods of entrained gas by providing a substitute density value based on the immediately preceding process density (standard configuration)
- Tracks total time of aerated flow to assist in diagnosing process issues that may cause aeration

Transient Mist Remediation (TMR)

- Used with gas streams that may experience intermittent low levels of liquid entrainment, i.e., liquid carryover
- Allows gas measurement to continue during periods of entrained liquid (mist) by providing a substitute flow rate value based on the immediately preceding process flow rate

- Returns to reporting the measured flow rate when the mist interval is over, increased or decreased by a
 maximum of 10%, until flow totals are appropriately adjusted for the unmeasured flow
- Provides an indication of the amount of time that liquid was present in the stream identifying process improvements to reduce gas stream contamination

9.4 Piecewise linearization (PWL) for calibrating gas meters

Piecewise linearization (PWL) can linearize the measurements of flow meters for greater accuracy in order to measure gas over a wide range of flow rates. PWL does not apply when measuring liquid flow. When better accuracy is required over the published gas measurement specifications, an Emerson-approved independent gas laboratory can calibrate gas up to 10 PWL adjustment points.

Restriction

You cannot use a field communicator to configure PWL.

For more information, see the white paper, *The Practical Application of Multi-Point Piecewise Linear Interpolation (PWL) and Other Developing Trends with Coriolis Meters for Natural Gas Custody Transfer Applications*, available at .

9.4.1 Configure PWL

Display	Not available
ProLink III	Device Tools → Configuration → Process Measurement → Piecewise Linearization for Gas (PWL)
Field communicator	Not available

9.5 Zero the meter

ProLink III	Device Tools \rightarrow Calibration \rightarrow Zero Verification and Calibration \rightarrow Calibrate Zero
Field Communicator	Service Tools \rightarrow Maintenance \rightarrow Zero Calibration \rightarrow Perform Auto Zero

Zeroing the meter establishes a baseline for process measurement by analyzing the sensor's output when there is no flow through the sensor tubes.

Prerequisites

Verify the zero and prepare the meter using the procedures in Verify the zero.

Procedure

Zero the meter.

If necessary, modify **Zero Time**. **Zero Time** controls the amount of time the transmitter takes to determine its zero-flow reference point. The default **Zero Time** is 20 seconds. For most applications, the default **Zero Time** is appropriate.

Postrequisites

Restore normal flow through the sensor by opening the valves. Verify that the sensor tubes are full.

MMI-20019023

Need help?

If the zero fails:

- Verify that there is no flow through the sensor, then retry.
- Remove or reduce sources of electromechanical noise, then retry.
- Set **Zero Time** to a lower value, then retry.
- If the zero continues to fail, contact customer service.

9.6 Validate the meter

ProLink III	Device Tools → Configuration → Process Measurement → Flow Device Tools → Configuration → Process Measurement → Density
Field Communicator	Configure → Manual Setup → Measurements → Flow Configure → Manual Setup → Measurements → Density

Meter validation compares flowmeter measurements reported by the transmitter to an external measurement standard. If the transmitter value for mass flow, volume flow, or density measurement is significantly different from the external measurement standard, you may want to adjust the corresponding meter factor. The flowmeter's actual measurement is multiplied by the meter factor, and the resulting value is reported and used in further processing.

Prerequisites

Identify the meter factor(s) that you will calculate and set. You may set any combination of the three meter factors: mass flow, volume flow, and density. Note that all three meter factors are independent:

- The meter factor for mass flow affects only the value reported for mass flow.
- The meter factor for density affects only the value reported for density.
- The meter factor for volume flow affects only the value reported for volume flow or gas standard volume flow.

Important

To adjust volume flow, you must set the meter factor for volume flow. Setting a meter factor for mass flow and a meter factor for density will not produce the desired result. The volume flow calculations are based on original mass flow and density values, before the corresponding meter factors have been applied.

If you plan to calculate the meter factor for volume flow, be aware that validating volume in the field may be expensive, and the procedure may be hazardous for some process fluids. Therefore, because volume is inversely proportional to density, an alternative to direct measurement is to calculate the meter factor for volume flow from the meter factor for density. See Alternate method for calculating the meter factor for volume flow for instructions on this method.

Obtain a reference device (external measurement device) for the appropriate process variable.

Important

For good results, the reference device must be highly accurate.

Procedure

1. Determine the meter factor as follows:

- a) Set the meter factor to 1 to take a sample measurement.
- b) Measure the same sample using the reference device.
- c) Calculate the meter factor using the following formula:

$$NewMeterFactor = ConfiguredMeterFactor \times \left(\frac{ReferenceMeasurement}{FlowmeterMeasurement}\right)$$

- 2. Ensure that the calculated meter factor does not fall outside 0.98 and 1.02. If the meter factor is outside these limits, contact customer service.
- 3. Configure the meter factor in the transmitter.

Calculating the meter factor for mass flow

The flowmeter is installed and validated for the first time. The mass flow measurement from the transmitter is 250.27 lb. The mass flow measurement from the reference device is 250 lb. The mass flow meter factor is calculated as follows:

$$MeterFactor_{MassFlow} = 1 \times \left(\frac{250}{250.27}\right) = 0.9989$$

The first meter factor for mass flow is 0.9989.

One year later, the flowmeter is validated again. The mass flow measurement from the transmitter is 250.07 lb. The mass flow measurement from the reference device is 250.25 lb. The new mass flow meter factor is calculated as follows:

$$MeterFactor_{MassFlow} = 0.9989 \times \left(\frac{250.25}{250.07}\right) = 0.9996$$

The new meter factor for mass flow is 0.9996.

9.6.1 Alternate method for calculating the meter factor for volume flow

The alternate method for calculating the meter factor for volume flow is used to avoid the difficulties that may be associated with the standard method.

This alternate method is based on the fact that volume is inversely proportional to density. It provides partial correction of the volume flow measurement by adjusting for the portion of the total offset that is caused by the density measurement offset. Use this method only when a volume flow reference is not available, but a density reference is available.

Procedure

- 1. Calculate the meter factor for density, using the standard method.
- 2. Calculate the meter factor for volume flow from the meter factor for density:

$$MeterFactor_{Volume} = \left(\frac{1}{MeterFactor_{Density}}\right)$$

The following equation is mathematically equivalent to the first equation. You may use whichever version you prefer.

$$MeterFactor_{Volume} = ConfiguredMeterFactor_{Density} \times \left(\frac{Density_{Flowmeter}}{Density_{ReferenceDevice}}\right)$$

- 3. Ensure that the calculated meter factor does not fall outside 0.98 and 1.02. If the meter factor is outside these limits, contact customer service.
- 4. Configure the meter factor for volume flow in the transmitter.

9.7 Perform a (standard) D1 and D2 density calibration

Density calibration establishes the relationship between the density of the calibration fluids and the signal produced at the sensor. Density calibration includes the calibration of the D1 (low-density) and D2 (high-density) calibration points.

Important

Micro Motion flow meters are calibrated at the factory, and normally do not need to be calibrated in the field. Calibrate the flow meter only if you must do so to meet regulatory requirements. Contact customer support before calibrating the flow meter.

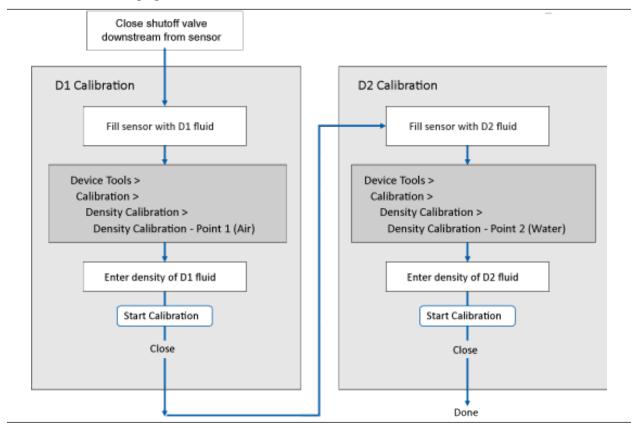
Tip

Use meter validation and meter factors, rather than calibration, to prove the meter against a regulatory standard or to correct measurement error.

Prerequisites

- During density calibration, the sensor must be completely filled with the calibration fluid, and flow through the sensor must be at the lowest rate allowed by your application. This is usually accomplished by closing the shutoff valve downstream from the sensor, then filling the sensor with the appropriate fluid.
- D1 and D2 density calibration require a D1 (low-density) fluid and a D2 (high-density) fluid. You may use air and water.
- If LD Optimization is enabled on your meter, disable it. To do this, choose Configure → Manual Setup →
 Measurements → LD Optimization. LD Optimization is used only with large sensors in hydrocarbon
 applications. In some installations, only customer service has access to this parameter. If this is the case,
 contact customer service before continuing.
- If LD Optimization is enabled on your meter, disable it. To do this using a field communicator, choose
 Configure → Manual Setup → Measurements → Optional Setup → LD Optimization. LD Optimization is
 used only with large sensors in hydrocarbon applications. If you are not using a field communicator,
 contact Emerson before continuing.
- The calibrations must be performed without interruption, in the order shown. Make sure that you are prepared to complete the process without interruption.
- Before performing the calibration, record your current calibration parameters. You can do this by saving the current configuration to a file on the PC. If the calibration fails, restore the known values.

Restriction


For T-Series sensors, the D1 calibration must be performed on air and the D2 calibration must be performed on water.

9.7.1 Perform a D1 and D2 density calibration using ProLink III

Procedure

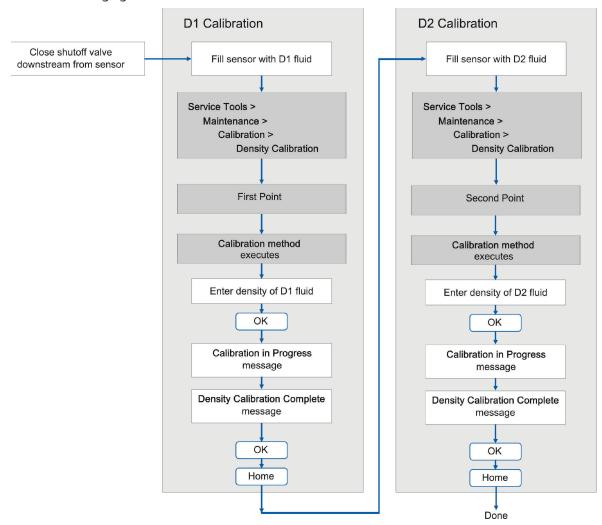
1. Read the Prerequisites in Perform a (standard) D1 and D2 density calibration if you have not already done so.

2. See the following figure.

Postrequisites

If you disabled LD Optimization before the calibration procedure, re-enable it.

9.7.2 Perform a D1 and D2 density calibration using a field communicator


Procedure

1. Read the Prerequisites in Perform a (standard) D1 and D2 density calibration if you have not already done so.

February 2022

MMI-20019023

2. See the following figure.

Postrequisites

If you disabled LD Optimization before the calibration procedure, re-enable it.

9.8 Perform a D3 and D4 density calibration (T-Series sensors only)

For T-Series sensors, the optional D3 and D4 calibration could improve the accuracy of the density measurement if the density of your process fluid is less than 0.8 g/cm^3 or greater than 1.2 g/cm^3 .

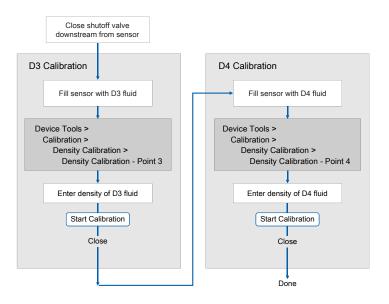
If you perform the D3 and D4 calibration, note the following:

- Do not perform the D1 and D2 calibration.
- Perform the D3 calibration if you have one calibrated fluid.

• Perform both the D3 and D4 calibrations if you have two calibrated fluids (other than air and water). The calibrations must be performed without interruption, in the order shown. Make sure that you are prepared to complete the process without interruption.

Prerequisites

- During density calibration, the sensor must be completely filled with the calibration fluid, and flow through the sensor must be at the lowest rate allowed by your application. This is usually accomplished by closing the shutoff valve downstream from the sensor, then filling the sensor with the appropriate fluid.
- For D3 density calibration, the D3 fluid must meet the following requirements:
 - Minimum density of 0.6 q/cm³
 - Minimum difference of 0.1 g/cm³ between the density of the D3 fluid and the density of water. The
 density of the D3 fluid may be either greater or less than the density of water.
- For D4 density calibration, the D4 fluid must meet the following requirements:
 - Minimum density of 0.6 g/cm³
 - Minimum difference of 0.1 g/cm³ between the density of the D4 fluid and the density of the D3 fluid.
 The density of the D4 fluid must be greater than the density of the D3 fluid.
 - Minimum difference of 0.1 g/cm³ between the density of the D4 fluid and the density of water. The
 density of the D4 fluid may be either greater or less than the density of water.
- Before performing the calibration, record your current calibration parameters. You can do this by saving the current configuration to a file on the PC. If the calibration fails, restore the known values.


9.8.1 Perform a D3 or D3 and D4 density calibration using ProLink III

Procedure

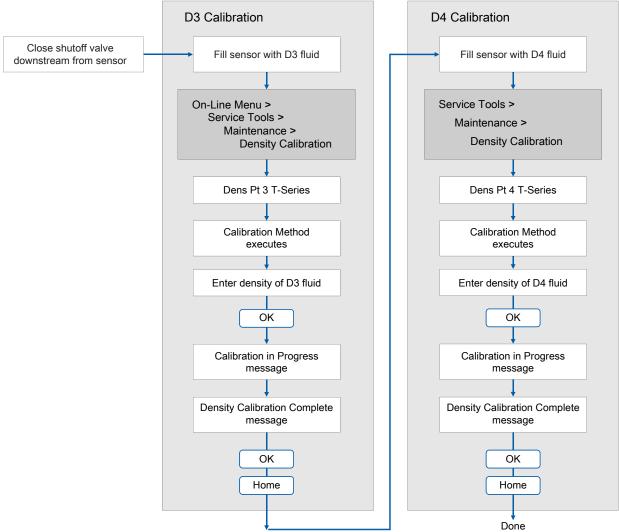
See Figure 9-1.

MMI-20019023 February 2022

Figure 9-1: D3 or D3 and D4 density calibration using ProLink III

9.8.2 Perform a D3 or D3 and D4 density calibration using the Field Communicator

Procedure


See the following flowchart.

MMI-20019023

Figure 9-2: D3 or D3 and D4 density calibration using the Field Communicator

D3 Collibration

D4 Co.

9.9 Perform temperature calibration

Temperature calibration establishes the relationship between the temperature of the calibration fluids and the signal produced by the sensor.

Prerequisites

The temperature calibration is a two-part procedure: temperature offset calibration and temperature slope calibration. The two parts must be performed without interruption, in the order shown. Ensure that you are

MMI-20019023

prepared to complete the process without interruption. You will need a low-temperature calibration fluid and a high-temperature calibration fluid. You will not see the effect of the calibration until both the temperature offset calibration and the temperature slope calibration are complete.

You must use ProLink III to calibrate for temperature.

Important

Consult customer support before performing a temperature calibration. Under normal circumstances, the temperature circuit is stable and should not need an adjustment.

Procedure

- 1. Calibrate temperature offset:
 - a) Fill the sensor with low-temperature fluid.
 - b) Wait until the sensor achieves thermal equilibrium.
 - c) Go to Device Tools → Calibration → Temperature Calibration → Temperature Calibration → Offset.
 - d) Enter the temperature of a low-temperature fluid.
 - e) Start the calibration.
- 2. Calibrate the temperature slope:
 - a) Fill the sensor with high temperature fluid.
 - b) Wait until the sensor achieves thermal equilibrium.
 - c) Go to Device Tools → Calibration → Temperature Calibration → Temperature Calibration → Slope.
 - d) Enter the temperature of a high-temperature fluid.
 - e) Start the calibration.

10 Troubleshooting

10.1 Status LED states

The status LED on the transmitter indicates whether or not alerts are active. If alerts are active, view the alert list to identify the alerts, then take appropriate action to correct the alert condition.

Table 10-1: Status LED states

LED state	Alarm condition	Description
Solid green	No alarm	Normal operation
Flashing yellow	No alarm	Zero calibration procedure is in progressLoop test is in progress
Solid yellow	Low-severity alarm	Alarm condition that will not cause measurement error (outputs continue to report process data)
Solid red	High-severity alarm	Alarm condition that will cause measurement error (outputs in fault)

10.2 Check the core processor LED

The core processor has an LED that indicates different meter conditions.

Procedure

- 1. Maintain power to the transmitter.
- 2. Remove the core processor lid. The core processor is intrinsically safe and can be opened in all environments.
- 3. Check the state of the core processor LED.

Postrequisites

To return to normal operation, replace the core processor lid.

Important

When reassembling the meter components, be sure to grease all O-rings.

10.2.1 Core processor LED states

Table 10-2: Standard core processor LED states

LED state	Description	Recommended actions
1 flash per second (ON 25%, OFF 75%)	Normal operation	No action required.
1 flash per second (ON 75%, OFF Slug flow (two-phase flow) 25%)		See Check for two-phase flow (slug flow).
Solid ON	Zero or calibration in progress	No action required.

Table 10-2: Standard core processor LED states (continued)

LED state	Description	Recommended actions
	Core processor receiving between 11.5 and 5 volts	Check power supply to transmitter.
3 rapid flashes, followed by	Sensor not recognized	Check wiring between transmitter and sensor.
pause	Improper configuration	Check sensor characterization parameters.
	Broken pin between sensor and core processor	The meter requires factory service.
4 flashes per second	Fault condition	Check alert status.
OFF	Fault condition Core processor receiving less than 5 volts	 Verify power supply wiring to core processor. If transmitter status LED is lit, transmitter is receiving power. Check voltage across terminals 1 (VDC+) and 2 (VDC-) in core processor. If reading is less than 1 VDC, verify power supply wiring to core processor. Wires may be switched. If transmitter status LED is not lit, transmitter is not receiving power. Check power supply. If power supply is operational, internal transmitter, display, or LED failure is possible – the meter may require factory service.
	Core processor internal failure	The meter requires factory service.

Table 10-3: Enhanced core processor LED states

LED state	Description	Recommended action
Solid green	Normal operation	No action required.
Flashing yellow	Zero in progress	No action required.
Solid yellow	Low-severity alert	Check alert status.
Solid red	High-severity alert	Check alert status.
Flashing red (80% on, 20% off)	Tubes not full	If alert A105 (slug flow) is active, refer to the recommended actions for that alert.
		If alert A033 (tubes not full) is active, verify process. Check for air in the flow tubes, tubes not filled, foreign material in tubes, or coating in tubes.
Flashing red (50% on, 50% off)	Electronics failed	The meter requires factory service.
Flashing red (50% on, 50% off, skips every 4th)	Sensor failed	The meter requires factory service.

Table 10-3: Enhanced core processor LED states (continued)

LED state	Description	Recommended action
OFF	Core processor receiving less than 5 volts	 Verify power supply wiring to core processor. If transmitter status LED is lit, transmitter is receiving power. Check voltage across terminals 1 (VDC+) and 2 (VDC-) in core processor. If reading is less than 1 VDC, verify power supply wiring to core processor. Wires may be switched. If transmitter status LED is not lit, transmitter
		is not receiving power. Check power supply. If power supply is operational, internal transmitter, display, or LED failure is possible – the meter may require factory service.
	Core processor internal failure	The meter requires factory service.

10.3 Perform a 700 core processor resistance test

Note

You can perform a resistance test only on a 700 core processor.

Procedure

- 1. Power down the transmitter.
- 2. Remove the core processor lid.
- 3. At the core processor, disconnect the 4-wire cable between the core processor and the transmitter.
- 4. Measure the resistance between core processor terminal pairs 3–4, 2–3, and 2–4.

Terminal pair	Function	Expected resistance
3–4	RS-485/A and RS-485/B	40 kΩ to 50 kΩ
2–3	VDC- and RS-485/A	$20 \text{ k}\Omega$ to $25 \text{ k}\Omega$
2–4	VDC- and RS-485/B	$20 \text{ k}\Omega$ to $25 \text{ k}\Omega$

5. If any resistance measurements are lower than specified, the core processor may not be able to communicate with a transmitter or a remote host. The meter may need factory service.

Postrequisites

To return to normal operation:

- 1. Reconnect the 4-wire cable between the core processor and the transmitter.
- 2. Replace the core processor lid.
- 3. Restore power to the transmitter.

Note

When reassembling the meter components, be sure to grease all O-rings.

10.4 Check the cutoffs

If the transmitter cutoffs are configured incorrectly, the transmitter may report zero flow when flow is present, or very small amounts of flow under no-flow conditions.

There are separate cutoff parameters for mass flow rate, volume flow rate, gas standard volume flow rate (if applicable), and density. There is an independent cutoff for the mA Output on your transmitter. The interaction between cutoffs sometimes produces unexpected results.

Procedure

Verify the configuration of all cutoffs.

Tip

For typical applications, set **Mass Flow Cutoff** between 0.1% of the nominal flow rate of the attached sensor. See the sensor specifications for nominal flow rate data.

10.5 Density measurement problems

Problem	Possible causes	Recommended actions
Inaccurate density reading	 Problem with process fluid Incorrect density calibration factors Wiring problem Incorrect grounding Two-phase flow Plugged or coated sensor tube Incorrect sensor orientation RTD failure Physical characteristics of sensor have changed 	 Check your process conditions against the values reported by the device. Ensure that all of the calibration parameters have been entered correctly. See the sensor tag or the calibration sheet for your meter. Check the wiring between the sensor and the transmitter. Check the grounding of all components. Verify all of the characterization or calibration parameters. See the sensor tag or the calibration sheet for your meter. Check for two-phase flow. If two sensors with similar frequency are too near each other, separate them. Purge the sensor tubes.
Unusually high density reading	 Plugged or coated sensor tube Incorrect density calibration factors Incorrect temperature measurement RTD problem In high-frequency meters, this can indicate erosion or corrosion In low-frequency meters, this can indicate tube fouling 	 Ensure that all of the calibration parameters have been entered correctly. See the sensor tag or the calibration sheet for your meter. Verify all of the characterization or calibration parameters. See the sensor tag or the calibration sheet for your meter. Purge the sensor tubes. Check for coating in the flow tubes.

Problem	Possible causes	Recommended actions
Unusually low density reading	 Two-phase flow Ensure that all of the calibration parameters have been entered correctly. See the sensor tag or the calibration sheet for your meter. In low-frequency meters, this can indicate erosion or corrosion 	 Check your process conditions against the values reported by the device. Check for two-phase flow. Verify all of the characterization or calibration parameters. See the sensor tag or the calibration sheet for your meter. Check the wiring between the sensor and the transmitter. Check for tube erosion, especially if the process fluid is abrasive.

10.6 Check the drive gain

Excessive or erratic drive gain may indicate any of a variety of process conditions or sensor problems.

To know whether your drive gain is excessive or erratic, you must collect drive gain data during the problem condition and compare it to drive gain data from a period of normal operation.

Excessive (saturated) drive gain

Table 10-4: Possible causes and recommended actions for excessive (saturated) drive gain

Possible cause	Recommended actions
Bent sensor tube	Check the pickoff voltages (see Check the pickoff voltage). If either of them are close to zero (but neither is zero), the sensor tubes may be bent. The sensor will need to be replaced.
Cavitation or flashing;	Increase the inlet or back pressure at the sensor.
settling of two-phase or three-phase fluids	If a pump is located upstream from the sensor, increase the distance between the pump and sensor.
	The sensor may need to be reoriented or repositioned. Consult the installation manual for your sensor.
Cracked sensor tube	Replace the sensor.
Core processor or module failure	Contact customer support.
Flow rate out of range	Ensure that the flow rate is within sensor limits.
Incorrect sensor characterization	Verify the characterization or calibration parameters.
Open drive or pickoff sensor coil	Contact customer support.
Over-pressurized tubes	Contact customer support.
Plugged sensor tube	A dull, audible hum, and unusually high sensor vibration is usually accompanied by high, even saturated, drive gain. Check the pickoff voltages (see Check the pickoff voltage). If either of them are close to zero (but neither is zero), plugged tubes may be the source of your problem. Purge the tubes. In extreme cases, you may need to replace the sensor.

Table 10-4: Possible causes and recommended actions for excessive (saturated) drive gain (continued)

Possible cause	Recommended actions
Sensor case full of process fluid	Replace the sensor.
Sensor imbalance	Contact customer support.
Sensor tubes not completely full	Correct process conditions so that the sensor tubes are full.
Two-phase flow	Check for two-phase flow. See Check for two-phase flow (slug flow).
Vibrating element not free to vibrate	Ensure that the vibrating element is free to vibrate.

Erratic drive gain

Table 10-5: Possible causes and recommended actions for erratic drive gain

Possible cause	Recommended actions	
Two-phase flow	Check for two-phase flow. See Check for two-phase flow (slug flow).	
Polarity of pick-off reversed or polarity of drive reversed	Applicable for a 9-wire sensor. Check the wiring between the sensor and the transmitter.	
Foreign material caught in sensor tubes	Purge the sensor tubes.Replace the sensor.	

10.6.1 Collect drive gain data

Drive gain data can be used to diagnose a variety of process and equipment conditions. Collect drive gain data from a period of normal operation, and use this data as a baseline for troubleshooting.

Procedure

- 1. Navigate to the drive gain data.
- 2. Observe and record drive gain data over an appropriate period of time, under a variety of process conditions.

10.7 Check for internal electrical problems

Shorts between sensor terminals or between the sensor terminals and the sensor case can cause the sensor to stop working.

Possible cause	Recommended action
Moisture inside the sensor junction box	Ensure that the junction box is dry and no corrosion is present.
Liquid or moisture inside the sensor case	Contact customer support.
Internally shorted feedthrough	Contact customer support.
Faulty cable	Replace the cable.

MMI-20019023

Possible cause	Recommended action
Improper wire termination	Verify wire terminations inside the sensor junction box. See 9-Wire Flowmeter Cable Preparation and Installation Guide.
Shorts to the housing created by trapped or damaged wires	Contact customer support.
Loose wires or connectors	Contact customer support.
Liquid or moisture inside the housing	Contact customer support.

10.7.1 Check the sensor coils

Checking the sensor coils can identify a cause for a no sensor response alert.

Procedure

1. Disconnect power to the transmitter.

Note

- 2. Unplug the terminal blocks from the terminal board on the core processor.
- 3. Using a digital multimeter (DMM), check the pickoff coils by placing the DMM leads on the unplugged terminal blocks for each terminal pair. See the following table for a list of the coils. Record the values.

Table 10-6: Coils and test terminal pairs

Coil	Sensor model	Terminal colors
Drive coil	All	Brown to red
Left pickoff coil (LPO)	All	Green to white
Right pickoff coil (RPO)	All	Blue to gray
Resistance temperature detector (RTD)	All	Yellow to violet
Lead length compensator (LLC)	All except T-Series and CMF400 (see note)	Yellow to orange
Composite RTD	All CMFSs, T-Series, H300, and F300	Yellow to orange
Fixed resistor (see note)	CMFS007, CMFS010, CMFS015, CMF400, and F300	Yellow to orange

Note

The fixed resistor on F300/H300/CMF400 sensors adds ~ 40 ohms to the reading between the yellow and orange leads and applies to only specific sensor releases. Contact customer support for more information.

There should be no open circuits, that is, no infinite resistance readings. The left pickoff and right pickoff readings should be the same or very close ($\pm 5~\Omega$). If there are any unusual readings, repeat the coil resistance tests at the sensor junction box to eliminate the possibility of faulty cable. The readings for each coil pair should match at both ends.

Test the terminals in the sensor junction box for shorts to case.
 Test results will be inconclusive with nonconductive process fluids such as hydrocarbons.

- a) Leave the terminal blocks disconnected.
- b) Remove the lid of the junction box.
- c) Testing one terminal at a time, place a DMM lead on the terminal and the other lead on the sensor case.

With the DMM set to its highest range, there should be infinite resistance on each lead. If there is any resistance at all, there is a short to case.

- 5. Test the resistance of junction box terminal pairs.
 - a) Test the brown terminal against all other terminals except the red one.
 - b) Test the red terminal against all other terminals except the brown one.
 - c) Test the green terminal against all other terminals except the white one.
 - d) Test the white terminal against all other terminals except the green one.
 - e) Test the blue terminal against all other terminals except the gray one.
 - f) Test the gray terminal against all other terminals except the blue one.
 - g) Test the orange terminal against all other terminals except the yellow and violet ones.
 - h) Test the yellow terminal against all other terminals except the orange and violet ones.
 - i) Test the violet terminal against all other terminals except the yellow and orange ones.

There should be infinite resistance for each pair. If there is any resistance at all, there is a short between terminals.

Postrequisites

To return to normal operation:

- 1. Plug the terminal blocks into the terminal board.
- 2. Replace the lid on the sensor junction box.

Important

When reassembling the meter components, be sure to grease all O-rings.

10.8 Check Flow Direction

If **Flow Direction** is set inappropriately for your process, the transmitter may report flow data that is not appropriate for your requirements.

The **Flow Direction** parameter interacts with actual flow direction to affect flow values, flow totals and inventories, and output behavior. For the simplest operation, actual process flow should match the flow arrow that is on the side of the sensor case.

Procedure

- 1. Verify the actual direction of process flow through the sensor.
- 2. Verify the configuration of **Flow Direction**.

10.9 Flow measurement problems

Problem	Possible causes	Recommended actions
Non-zero flow reading at no-flow conditions or at zero offset	 Misaligned piping (especially in new installations) Open or leaking valve Incorrect sensor zero 	 If the reading is not excessively high, review the live zero. You may need to restore the factory zero. Check for open or leaking valves or seals. Check for mounting stress on the sensor (e.g., sensor being used to support piping, misaligned piping). Contact customer support.
Erratic non-zero flow rate at no-flow conditions	 Leaking valve or seal Two-phase flow Incorrect sensor orientation Wiring problem Vibration in pipeline at rate close to sensor tube frequency Damping value too low Mounting stress on sensor Empty sensor when reading liquid volume flow 	 Verify that the sensor orientation is appropriate for your application (refer to the sensor installation manual). Check the drive gain and the pickoff voltage. If the wiring between the sensor and the transmitter includes a 9-wire segment, verify that the 9-wire cable shields are correctly grounded. Check the wiring between the sensor and the transmitter. For sensors with a junction box, check for moisture in the junction box. Purge the sensor tubes. Check for open or leaking valves or seals. Check for sources of vibration. Verify damping configuration. Verify that the measurement units are configured correctly for your application. Check for radio frequency interference. Contact customer support.

Problem	Possible causes	Recommended actions
Erratic non-zero flow rate when flow is steady	 Two-phase flow Damping value too low Plugged or coated sensor tube	Verify that the sensor orientation is appropriate for your application (refer to the sensor installation manual). Chack the drive gain and the pickoff.
	 Plugged or coated sensor tube Output wiring problem Problem with receiving device Wiring problem 	 Check the drive gain and the pickoff voltage. If the wiring between the sensor and the transmitter includes a 9-wire segment, verify that the 9-wire cable shields are correctly grounded. Check for air entrainment, tube fouling, flashing, or tube damage. Check the wiring between the sensor and the transmitter. For sensors with a junction box, check for moisture in the junction box. Purge the sensor tubes. Check for open or leaking valves or seals. Check for sources of vibration. Verify damping configuration. Verify that the measurement units are configured correctly for your application. Check for radio frequency interference. Contact customer support.
Inaccurate flow rate or batch total	 Wiring problem Inappropriate measurement unit Incorrect flow calibration factor Incorrect meter factor Incorrect density calibration factors Incorrect grounding Two-phase flow Problem with receiving device Incorrect sensor zero Incorrect measurement unit configured for a process variable - for example, selecting g/min instead of USGPM 	 Check the wiring between the sensor and the transmitter. Verify that the measurement units are configured correctly for your application. Verify all of the characterization or calibration parameters. See the sensor tag or the calibration sheet for your meter. Perform a bucket test to verify batch totals. Zero the meter. Check the grounding of all components. Check for two-phase flow. Verify the receiving device, and the wiring between the transmitter and the receiving device. Check sensor coil resistance and for shorts to case. Replace the transmitter.

10.10 Frequency Output problems

Table 10-7: Frequency Output problems and recommended actions

Problem	Possible causes	Recommended actions
No Frequency Output	Stopped totalizerProcess condition below cutoff	Verify that the process conditions are below the low-flow cutoff. Reconfigure the low-flow cutoff if necessary.
	Fault condition if Fault Action is set to Internal Zero or Downscale	Check the Fault Action settings.
	Two-phase flow	Verify that the totalizers are not stopped. A stopped totalizer will cause the Frequency Output to be locked.
	Flow in reverse direction from configured flow direction parameter	Check for two-phase flow.
	Bad frequency receiving device	Check flow direction.
	Output level not compatible with receiving device	Verify the receiving device, and the wiring between the transmitter and the receiving
	Bad output circuit (rarely occurs)	device.
	Incorrect internal/external power configuration	Verify that the channel is wired and configured as a Frequency Output.
	Wiring problem	Verify the power configuration for the Frequency Output (internal vs. external).
		Perform a loop test.
Consistently incorrect	Output not scaled correctly	Check the Frequency Output scaling.
frequency measurement	Incorrect measurement unit configured for process variable	Verify that the measurement units are configured correctly for your application.
Erratic Frequency Output	Radio frequency interference (RFI) from environment	Check for radio frequency interference.

10.11 Check Frequency Output Fault Action

The **Frequency Output Fault Action** controls the behavior of the Frequency Output if the transmitter encounters an internal fault condition. If the Frequency Output is reporting a constant value, the transmitter may be in a fault condition.

Procedure

- 1. Check the status alerts for active fault conditions.
- 2. If there are active fault conditions, the transmitter is performing correctly. If you want to change its behavior, consider the following options:
 - Change the setting of Frequency Output Fault Action.
 - For the relevant status alerts, change the setting of Alert Severity to Ignore.

Restriction

For some status alerts, **Alert Severity** is not configurable.

3. If there are no active fault conditions, continue troubleshooting.

10.12 Check Frequency Output Scaling Method

If **Frequency Output Scaling Method** is set incorrectly, the Frequency Output may report an incorrect value.

Procedure

- 1. Verify the configuration of the Frequency Output.
- 2. If you changed the setting of **Frequency Output Scaling Method**, check the settings of all other Frequency Output parameters.

10.13 Check grounding

The sensor and the transmitter must be grounded.

Prerequisites

You will need an:

- Installation manual for your sensor
- Installation manual for your transmitter (remote-mount installations only)

Procedure

Refer to the sensor and transmitter installation manuals for grounding requirements and instructions.

10.14 Check the HART communication loop

If you cannot establish or maintain HART communications, the HART loop may be wired incorrectly.

Prerequisites

You will need:

- A copy of your transmitter installation manual
- A 250–600 Ω resistor
- A Field Communicator
- Optional: the HART Application Guide, available at www.hartcomm.org

Procedure

- 1. Verify that the loop wires are connected as shown in the wiring diagrams in the transmitter installation manual.
 - If your HART network is more complex than the wiring diagrams in the transmitter installation manual, contact either customer service or the HART Communication Foundation.
- 2. Disconnect the primary mA Output wiring from the transmitter.
- 3. Install a 250–600 Ω resistor across the transmitter's primary mA Output terminals.
- 4. Check the voltage drop across the resistor (4–20 mA = 1–5 VDC for a 250 Ω resistor). If voltage drop is less than 1 VDC, add resistance to achieve a voltage drop of greater than 1 VDC.
- 5. Connect a Field Communicator directly across the resistor and attempt to communicate (poll).

If communication with the transmitter cannot be established, the transmitter may need service. Contact customer service.

10.15 Check HART Address and mA Output Action

If the transmitter is producing a fixed current from the mA Output, the **mA Output Action** parameter may be set incorrectly.

When the **mA Output Action** parameter is set to Fixed, the mA Output produces a fixed value, and does not report process data or implement its fault action.

When HART Address is changed, some configuration tools will automatically change mA Output Action.

Tip

Always verify **mA Output Action** after setting or changing **HART Address**.

Procedure

- Set HART Address as appropriate for your HART network.
 The default address is 0. This is the recommended value unless the transmitter is in a multidrop network.
- 2. Set mA Output Action to Live.

10.16 Check HART burst mode

HART burst mode is normally disabled, and should be enabled only if a HART Triloop is being used.

Procedure

- 1. Check to see if burst mode is enabled or disabled.
- 2. If burst mode is enabled, disable it.

10.17 Perform loop tests

A loop test is a way to verify that the transmitter and the remote device are communicating properly. A loop test also helps you know whether you need to trim mA Outputs.

Prerequisites

• Follow appropriate procedures to ensure that loop testing will not interfere with existing measurement and control loops.

10.17.1 Perform loop tests using ProLink III

Prerequisites

Before performing a loop test, configure the channels for the transmitter inputs and outputs that will be used in your application.

Follow appropriate procedures to ensure that loop testing will not interfere with existing measurement and control loops.

MMI-20019023

Procedure

- 1. Test the mA Output(s).
 - a) Choose Device Tools \rightarrow Diagnostics \rightarrow Testing \rightarrow mA Output Test.
 - b) Enter 4 in **Fix to:**.
 - c) Select Fix mA.
 - d) Read the mA current at the receiving device and compare it to the transmitter output.

The readings do not need to match exactly. If the values are slightly different, you can correct the discrepancy by trimming the output.

- e) Select **UnFix mA**.
- f) Enter 20 in Fix to:.
- g) Select Fix mA.
- h) Read the mA current at the receiving device and compare it to the transmitter output.

The readings do not need to match exactly. If the values are slightly different, you can correct the discrepancy by trimming the output.

- i) Select UnFix mA.
- 2. Test the Frequency Output(s).
 - a) Choose Device Tools → Diagnostics → Testing → Frequency Output Test.
 - b) Enter the Frequency Output value in **Fix to**.
 - c) Select Fix FO.
 - d) Read the frequency signal at the receiving device and compare it to the transmitter output.
 - e) Select UnFix FO.
- 3. Test the Discrete Output(s).
 - a) Choose Device Tools \rightarrow Diagnostics \rightarrow Testing \rightarrow Discrete Output Test.
 - b) Set Fix To: to ON.
 - c) Verify the signal at the receiving device.
 - d) Set Fix To: to OFF.
 - e) Verify the signal at the receiving device.
 - f) Select **UnFix**.

Postrequisites

- If the mA Output readings are within 20 microamps of the expected values, you can correct this discrepancy by trimming the output.
- If the discrepancy between the mA Output readings is greater than 20 microamps, or if at any step the reading was faulty, verify the wiring between the transmitter and the remote device, and try again.

If the Discrete Output readings are reversed, check the setting of Discrete Output Polarity.

10.17.2 Perform loop tests using the Field Communicator

Prerequisites

Before performing a loop test, configure the channels for the transmitter inputs and outputs that will be used in your application.

Follow appropriate procedures to ensure that loop testing will not interfere with existing measurement and control loops.

Procedure

- 1. Test the mA Output(s).
 - a) Choose Service Tools → Simulate → Simulate Outputs → mA Output Loop Test and select 4 mA
 - b) Read the mA current at the receiving device and compare it to the transmitter output.
 The readings do not need to match exactly. If the values are slightly different, you can correct the discrepancy by trimming the output.
 - c) Press OK.
 - d) Select 20 mA.
 - e) Read the mA current at the receiving device and compare it to the transmitter output.

 The readings do not need to match exactly. If the values are slightly different, you can correct the discrepancy by trimming the output.
 - f) Press OK.
 - g) Choose **End**.
- 2. Test the Frequency Output(s).

Note

If the Weights & Measures application with NTEP approval is enabled on the transmitter, it is not possible to perform a loop test of the Frequency Output, even when the transmitter is unsecured.

- a) Press Service Tools → Simulate → Simulate Outputs → Frequency Output Test, and choose the Frequency Output level.
- b) Read the frequency signal at the receiving device and compare it to the transmitter output.
- c) Choose End.
- 3. Test the Discrete Output(s).
 - a) Press Service Tools → Simulate → Simulate Outputs → Discrete Output Test.
 - b) Choose Off.
 - c) Verify the signal at the receiving device.
 - d) Press OK.

- e) Choose **On**.
- f) Verify the signal at the receiving device.
- q) Press OK.
- h) Choose End.

Postrequisites

- If the mA Output readings are within 20 microamps of the expected values, you can correct this discrepancy by trimming the output.
- If the discrepancy between the mA Output readings is greater than 20 microamps, or if at any step the reading was faulty, verify the wiring between the transmitter and the remote device, and try again.
- If the Discrete Output readings are reversed, check the setting of **Discrete Output Polarity**.

10.18 Check Lower Range Value and Upper Range Value

If the process variable assigned to the mA Output falls below the configured **Lower Range Value** (LRV) or rises above the configured **Upper Range Value** (URV), the meter will post a saturation alert (A100), then perform the configured fault action. If the process variable assigned to the mA Output falls below the configured **Lower Range Value** (LRV) or rises above the configured **Upper Range Value** (URV), the meter will post an Output Saturated alert for the affected output, then perform the configured fault action.

Procedure

- 1. Record your current process conditions.
- 2. Check the configuration of the LRV and URV.

10.19 Milliamp output problems

Table 10-8: Milliamp output problems and recommended actions

Problem	Possible causes	Recommended actions
No mA Output	Wiring problemCircuit failure (rarely occurs)Channel not configured for desired output	 Check the power supply and power supply wiring. Verify the output wiring. Check the Fault Action settings. Contact customer support.
Loop test failed	 Power supply problem Wiring problem Circuit failure (rarely occurs) Incorrect internal/external power configuration 	 Check the power supply and power supply wiring. Verify the output wiring. Check the Fault Action settings. Verify channel configuration for the affected mA Output. Contact customer support.

Table 10-8: Milliamp output problems and recommended actions (continued)

Problem	Possible causes	Recommended actions
mA Output below 4 mA Constant mA Output	 Open in wiring Bad output circuit (rarely occurs) Process condition below LRV LRV and URV are not set correctly Fault condition if Fault Action is set to Internal Zero or Downscale Bad mA receiving device Incorrect process variable assigned to the output Fault condition exists Non-zero HART address (mA Output 1) Output is configured for loop test mode 	 Recommended actions Check your process conditions against the values reported by the device. Verify the receiving device, and the wiring between the transmitter and the receiving device. Check the settings of Upper Range Value and Lower Range Value. Check the Fault Action settings. Verify the output variable assignments. View and resolve any existing alert conditions. Check the HART address. If the HART address is non-zero, you may need to change the setting of mA Output Action.
mA Output	 Output is configured for a range that is far in excess of intended range. Reconfigure output. The process condition is below cutoff. Incorrect process variable or units assigned 	 Check to see if a loop test is in process (the output is fixed). Check HART burst mode configuration. If related to a zero calibration failure, cycle power to the meter and retry the zeroing procedure. Process condition is below cutoff. Check and adjust the cutoff setting. Verify the output variable assignments.
consistently out of range	 Fault condition if Fault Action is set to Upscale or Downscale LRV and URV are not set correctly 	 Verify the measurement units configured for the output. Check the Fault Action settings. Check the settings of Upper Range Value and Lower Range Value. Check the mA Output trim.
Consistently incorrect mA measurement	 Loop problem Output not trimmed correctly Incorrect measurement unit configured for process variable Incorrect process variable configured LRV and URV are not set correctly 	 Verify the process variable assigned to the mA Output. Check the settings of Upper Range Value and Lower Range Value.
mA Output correct at lower current, but incorrect at higher current	mA loop resistance may be too high	 Verify that the mA Output load resistance is below the maximum supported load (see the installation manual for your transmitter).

10.20 Check mA Output Fault Action

The mA Output Fault Action controls the behavior of the mA Output if the transmitter encounters an internal fault condition. If the mA Output is reporting a constant value below 4 mA or above 20 mA, the transmitter may be in a fault condition.

Procedure

- 1. Check the status alerts for active fault conditions.
- 2. If there are no active fault conditions, continue troubleshooting.

10.21 Check the trimming of the mA Output

If the trim values for the mA Output are inaccurate, the transmitter will under-compensate or over-compensate the output.

Procedure

- 1. Trim the output, following the standard procedure.
- 2. If this does not correct the problem, contact customer support.

10.22 Check the pickoff voltage

If the pickoff voltage readings are unusually low, you may have any of a variety of process or equipment problems.

To know whether your pickoff voltage is unusually low, you must collect pickoff voltage data during the problem condition and compare it to pickoff voltage data from a period of normal operation.

Drive gain and pickoff voltage are inversely proportional. As drive gain increases, pickoff voltages decrease and vice versa.

Table 10-9: Possible causes and recommended actions for low pickoff voltage

Possible cause	Recommended actions
Cavitation or flashing; settling of two-phase or three-phase fluids	Increase the inlet or back pressure at the sensor. Increasing back pressure is recommended. Applying back pressure downstream from the sensor can prevent flashing inside the sensor tubes. That way, if the process fluid is going to flash, it will do so downstream from the sensor after it has been measured.
	If a pump is located upstream from the sensor, increase the distance between the pump and sensor.
	The sensor may need to be reoriented or repositioned. Consult the installation manual for your sensor.
Faulty wiring runs between the sensor and transmitter	Verify wiring between sensor and transmitter.
Process flow rate beyond the limits of the sensor	Verify that the process flow rate is not out of range of the sensor.

Table 10-9: Possible causes and recommended actions for low pickoff voltage (continued)

Possible cause	Recommended actions
Two-phase flow	Check for two-phase flow. See Check for two-phase flow (slug flow).
Sensor tubes are not vibrating	Check for plugging or deposition.
	Ensure that the vibrating element is free to vibrate (no mechanical binding).
	Verify wiring.
Moisture in the sensor electronics	Eliminate the moisture in the sensor electronics.
The sensor is damaged, or sensor magnets may have become demagnetized	Replace the sensor.

10.22.1 Collect pickoff voltage data

Pickoff voltage data can be used to diagnose a variety of process and equipment conditions. Collect pickoff voltage data from a period of normal operation, and use this data as a baseline for troubleshooting.

Procedure

- 1. Navigate to the pickoff voltage data.
- 2. Observe and record data for both the left pickoff and the right pickoff, over an appropriate period of time, under a variety of process conditions.

10.23 Check power supply wiring

If the power supply wiring is damaged or improperly connected, the transmitter may not receive enough power to operate properly.

Prerequisites

• You will need the installation manual for your transmitter.

Procedure

- 1. Use a voltmeter to test the voltage at the transmitter power supply terminals.
 - If the voltage is within the specified range, you do not have a power supply problem.
 - If the voltage is low, ensure that the power supply is adequate at the source, the power cable is sized correctly, there is no damage to the power cable, and an appropriate fuse is installed.
 - If there is no power, continue with this procedure.

2. Note

Before inspecting the power supply wiring, disconnect the power source.

- 3. Ensure that the terminals, wires, and wiring compartment are clean and dry.
- 4. Ensure that the power supply wires are connected to the correct terminals.
- 5. Ensure that the power supply wires are making good contact, and are not clamped to the wire insulation.

6. Note

Reapply power to the transmitter.

7. Test the voltage at the terminals.
If there is no power, contact customer service.

10.24 Check for radio frequency interference (RFI)

The transmitter Frequency Output or Discrete Output can be affected by radio frequency interference (RFI). Possible sources of RFI include a source of radio emissions, or a large transformer, pump, or motor that can generate a strong electromagnetic field. Several methods to reduce RFI are available. Use one or more of the following suggestions, as appropriate to your installation.

Procedure

- Use shielded cable between the output and the receiving device.
 - Terminate the shielding at the receiving device. If this is impossible, terminate the shielding at the cable gland or conduit fitting.
 - Do not terminate the shielding inside the wiring compartment.
 - 360-degree termination of shielding is unnecessary.
- Eliminate the RFI source.
- Move the transmitter.

10.25 Using sensor simulation for troubleshooting

When sensor simulation is enabled, the transmitter reports user-specified values for basic process variables. This allows you to reproduce various process conditions or to test the system.

You can use sensor simulation to help distinguish between legitimate process noise and externally caused variation. For example, consider a receiving device that reports an unexpectedly erratic density value. If sensor simulation is enabled and the observed density value does not match the simulated value, the source of the problem is likely to be somewhere between the transmitter and the receiving device.

Sensor simulation requires an enhanced core and a communication device.

Important

When sensor simulation is active, the simulated value is used in all transmitter outputs and calculations, including totals and inventories, volume flow calculations, and concentration calculations. Disable all automatic functions related to the transmitter outputs and place the loop in manual operation. Do not enable simulation mode unless your application can tolerate these effects, and be sure to disable simulation mode when you have finished testing.

10.26 Check sensor-to-transmitter wiring

A number of power-supply and output problems may occur if the wiring between the sensor and the transmitter is improperly connected, or if the wiring becomes damaged.

Be sure to check all wiring segments:

• If you have a 4-wire transmitter, check the wiring between the transmitter and the core processor.

If you have a 9-wire transmitter, check the wiring between the transmitter and the sensor junction box.

Prerequisites

You will need the installation manual for your transmitter.

Procedure

1. Before opening the wiring compartments, disconnect the power source.

Note

- 2. Verify that the transmitter is connected to the sensor according to the information provided in the installation manual.
- 3. Verify that the wires are making good contact with the terminals.
- 4. Check the continuity of all wires from the transmitter to the sensor.

10.27 Check for two-phase flow (slug flow)

Two-phase flow can cause rapid changes in the drive gain. This can cause a variety of measurement issues.

Procedure

- 1. Check for two-phase flow alerts (e.g., A105). If the transmitter is not generating two-phase flow alerts, verify that two-phase flow limits have been set. If limits are set, two-phase flow is not the source of your problem.
- 2. Check the process for cavitation, flashing, or leaks.
- 3. Monitor the density of your process fluid output under normal process conditions.
- 4. Check the settings of Two-Phase Flow Low Limit, Two-Phase Flow High Limit, and Two-Phase Flow Timeout.

Tip

You can reduce the occurrence of two-phase flow alerts by setting **Two-Phase Flow Low Limit** to a lower value, **Two-Phase Flow High Limit** to a higher value, or **Two-Phase Flow Timeout** to a higher value. Micro Motion recommends leaving the **Two-Phase Flow High Limit** at the default value.

10.28 Status alerts, causes, and recommendations

Not all of these alerts may apply to your type of transmitter.

10.28.1 A001

Alert

EEPROM Error

Cause

The transmitter has detected a problem communicating with the sensor.

Recommended actions

- 1. Cycle power to the meter.
- 2. Replace the core processor.
- 3. Contact customer support.

10.28.2 A002

Alert

RAM Error

Cause

The transmitter has detected a problem communicating with the sensor.

Recommended actions

- 1. Cycle power to the meter.
- 2. Replace the core processor.
- 3. Contact customer support.

10.28.3 A003

Alert

No Sensor Response

Cause

The transmitter is not receiving one or more basic electrical signals from the sensor.

This alert often occurs in conjunction with Alert 102.

Recommended actions

- 1. Check the drive gain and the pickoff voltage.
- 2. Check the wiring between the sensor and the transmitter.
- 3. Verify that internal wiring is secure and that there are no internal electrical problems.
- 4. Check the integrity of the sensor tubes.
- 5. Perform sensor coil resistence checks.

10.28.4 A004

Alert

Temperature Overrange

Cause

The RTD resistance is out of range for the sensor. The tube RTD resistance is out of range for the sensor.

Recommended actions

1. Check your process conditions against the values reported by the device.

- 2. Verify temperature characterization or calibration parameters.
- 3. Verify that internal wiring is secure and that there are no internal electrical problems.
- 4. Check the wiring between the sensor and the transmitter.
- 5. Contact customer support.

10.28.5 A005

Alert

Mass Flow Rate Overrange

Cause

The measured flow rate is greater than the maximum flow rate of the sensor (ΔT greater than 200 μ s).

Recommended actions

- 1. If other alerts are present, resolve those alert conditions first. If the current alert persists, continue with the recommended actions.
- 2. Check your process conditions against the values reported by the device.
- 3. Check for two-phase flow.

10.28.6 A006

Alert

Characterization Required

Cause

- Calibration factors have not been entered
- The sensor type is incorrect
- The calibration factors are incorrect for the sensor type

Recommended actions

- 1. Verify all of the characterization or calibration parameters. See the sensor tag or the calibration sheet for your meter.
- 2. Verify the setting of the Sensor Type parameter.
- 3. If **Sensor Type = Curved Tube**, ensure that no parameters specific to **Straight Tube** have been set.
- 4. Verify that internal wiring is secure and that there are no internal electrical problems.
- 5. Replace the core processor.
- 6. Contact customer support.

10.28.7 A008

Alert

Density Overrange

Cause

The line density is greater than 10 g/cm^3 (10000 kg/m^3 .

Recommended actions

- 1. If other alerts are present, resolve those alert conditions first. If the current alert persists, continue with the following steps.
- 2. Check for air in the flow tubes, tubes not filled, foreign material in the tubes, coating in the tubes, or other process problems.
- 3. Check for two-phase flow.
- 4. Verify all of the characterization or calibration parameters. See the sensor tag or the calibration sheet for your meter.
- 5. Check the drive gain and the pickoff voltage.
- 6. Perform Smart Meter Verification.
- 7. Perform density calibration.
- 8. Contact customer support.

10.28.8 A009

Alert

Transmitter Initializing/Warming Up

Cause

Transmitter is in power-up mode.

This alert often occurs in conjunction with Alert 14.

Recommended actions

- 1. Allow the meter to complete its power-up sequence. The alert should clear automatically.
- 2. If other alerts are present, resolve those alert conditions first. If the current alert persists, continue with the following steps.
- 3. Verify that the tubes are full of process fluid.
- 4. Check the wiring between the sensor and the transmitter.
- 5. Verify that the transmitter is receiving sufficient power. If using DC power, verify that there is a minimum of 1.5 amps of startup current available.

Option	Description
If no	Correct the problem and cycle power to the meter.
If yes	The transmitter probably has an internal power issue. Replace the transmitter.

6. Ensure that the process fluid is stable.

Check for two-phase flow, high process noise, or a fast transition between two fluids of different densities.

10.28.9 A010

Alert

Calibration Failure

Cause

There are many possible causes. This alert will not clear until you cycle power to the meter.

Recommended actions

- 1. Ensure that your calibration procedure meets the documented requirements, cycle power to the meter, then retry the procedure.
- 2. If this alert appears during zeroing:
 - a) Verify that there is no flow through the sensor.
 - b) Cycle power to the meter.
 - c) Retry the procedure.

10.28.10 A011

Alert

Zero Calibration Failed: Low

Cause

There are many possible causes, such as:

- Too much flow, especially reverse flow through the sensor during a calibration procedure
- A zero result occurred that is too low.

This alert is accompanied by A010, and will not clear until you cycle power to the meter.

Recommended actions

- 1. Verify that there is no flow through the sensor.
- 2. Cycle power to the meter.
- 3. Retry the procedure.

10.28.11 A012

Alert

Zero Calibration Failed: High

Cause

There are many possible causes, such as:

- Too much flow, especially forward flow through the sensor during a calibration procedure
- A zero result occurred that is too high.

This alert is accompanied by A010, and will not clear until you cycle power to the meter.

Recommended actions

- 1. Verify that there is no flow through the sensor.
- 2. Cycle power to the meter.
- 3. Retry the procedure.

10.28.12 A013

Alert

Zero Calibration Failed: Unstable

Cause

There was too much process instability during the calibration procedure.

This alert will not clear until you cycle power to the meter.

Recommended actions

1. Remove or reduce sources of electromechanical noise.

Example

Pumps, vibration, or pipe stress

- 2. Cycle power to the meter.
- 3. Retry the procedure.

10.28.13 A014

Alert

Transmitter Failure

Cause

There are many possible causes.

Recommended actions

- 1. Ensure that all wiring compartment covers are installed correctly
- Ensure that all transmitter wiring meets specifications and that all cable shields are properly terminated.
- 3. Check the grounding of all components.
- 4. Evaluate the environment for sources of high electromagnetic interference (EMI) and relocate the transmitter or wiring as necessary.
- 5. Contact customer support.

10.28.14 A016

Alert

Sensor Temperature (RTD) Failure

Cause

The value computed for the resistance of the line RTD is outside limits.

Recommended actions

- 1. Check your process conditions against the values reported by the device.
- 2. Check the wiring between the sensor and the transmitter.
- 3. Verify that internal wiring is secure and that there are no internal electrical problems.
- 4. Contact customer support.

10.28.15 A017

Alert

Sensor Case Temperature (RTD) Failure

Cause

The values computed for the resistance of the meter and case RTDs are outside limits.

Recommended actions

- 1. Check your process conditions against the values reported by the device. Temperature should be between -200 °F (-129 °C) and +400 °F (+204 °C).
- 2. Verify all of the characterization or calibration parameters. See the sensor tag or the calibration sheet for your meter.
- 3. Check the wiring between the sensor and the transmitter.
- 4. Verify that internal wiring is secure and that there are no internal electrical problems.
- 5. Contact customer support.

10.28.16 A020

Alert

Calibration Factors Missing

Cause

Some calibration factors have not been entered or are incorrect.

Recommended actions

- 1. Verify all of the characterization or calibration parameters. See the sensor tag or the calibration sheet for your meter.
- 2. Verify the setting of the **Sensor Type** parameter.
- 3. If **Sensor Type** = Curved Tube, ensure that no parameters specific to Straight Tube have been set.

10.28.17 A021

Alert

Transmitter/Sensor/Software Mismatch

Cause

The configured board type does not match the physical board, or the configured sensor type does not match the physical sensor.

Recommended actions

- 1. Verify all of the characterization or calibration parameters. See the sensor tag or the calibration sheet for your meter.
- 2. Ensure that the correct board is installed.
- 3. Verify the setting of the **Sensor Type** parameter.
- 4. If Sensor Type=Curved Tube, ensure that no parameters specific to Straight Tube have been set.

10.28.18 A026

Alert

Sensor/Transmitter Communications Failure

Cause

The transmitter has lost communication with the core processor. There may be a problem with the wiring or with either component.

This alert often occurs in conjunction with alerts A009 and A014.

Recommended actions

- 1. Check the wiring between the sensor and the transmitter.
- 2. Check for noise in the wiring or in the transmitter environment.
- 3. Verify that internal wiring is secure and that there are no internal electrical problems.
- 4. Check the status LED on the core processor.
- 5. Check the resistance across core processor terminals.
- 6. If the alert persists:
 - a) Replace the core processor.
 - b) If that does not solve the problem, restore the original core processor and replace the transmitter.
 - c) If that does not solve the problem, replace both the transmitter and the core processor.

10.28.19 A028

Alert

Core Processor Write Failure

Cause

There is an internal electronics failure.

Recommended actions

- 1. Cycle power to the meter.
- 2. Contact customer support.

10.28.20 A030

Alert

Incorrect Board Type

Cause

The loaded software is not compatible with the programmed board type.

Recommended actions

Contact customer support.

10.28.21 A031

Alert

Low Power

Cause

The transmitter is not receiving enough power.

This alert will not clear until you cycle power to the meter.

Recommended actions

- 1. Check the wiring between the transmitter and the core processor.
- 2. Cycle power to the meter.
- 3. Check the wiring of the transmitter.
- 4. Cycle power to the meter.
- 5. Verify that the transmitter is receiving sufficient power.

Option	Description
If it is not	a. Correct the problem.
	b. Cycle power to the meter.
If it is	The transmitter probably has an internal power issue. Replace the transmitter.

10.28.22 A032

Alert

Meter Verification in Progress: Outputs to Fault

Cause

A meter verification test is in progress, with outputs set to Fault.

Recommended actions

Allow the procedure to complete.

10.28.23 A033

Alert

Insufficient Pickoff Signal

Cause

The signal from the sensor pickoff(s) is insufficient. This suggests that the sensor tubes or vibrating elements are not vibrating. This alert often occurs in conjunction with Alert 102.

Recommended actions

- 1. Check for air in the flow tubes, tubes not filled, foreign material in the tubes, coating in the tubes, or other process problems.
- 2. Check for foreign material in the process gas or fluid, coating, or other process problems.
- 3. Check for fluid separation by monitoring the density value and comparing the results against expected density values.
- 4. Ensure that the sensor orientation is appropriate for your application.

 Settling from a two-phase or three-phase fluid can cause this alert even if the flow tubes are full.

10.28.24 A035

Alert

Meter Verification Aborted

Cause

The meter verification test did not complete, possibly because of a manual abort.

Recommended actions

- 1. Verify that process conditions are stable, then retry the test.
- 2. Contact customer support.

10.28.25 A100

Alert

mA Output 1 Saturated

Cause

The calculated mA Output value is outside the configured range.

Recommended actions

- 1. Check the settings of **Upper Range Value** and **Lower Range Value**.
- 2. Check process conditions.

 Actual conditions may be outside the normal conditions for which the output is configured.
- 3. Check for air in the flow tubes, tubes not filled, foreign material in the tubes, coating in the tubes, or other process problems.
- 4. Verify that the measurement units are configured correctly for your application.
- 5. Purge the sensor tubes.

10.28.26 A101

Alert

mA Output 1 Fixed

Cause

The HART address is set to a non-zero value, or the mA Output is configured to send a constant value.

Recommended actions

- 1. Check whether the output is in loop test mode. If it is, unfix the output.
- 2. Exit mA Output trim, if applicable.
- 3. Check the HART address. If the HART address is non-zero, you may need to change the setting of mA Output Action.
- 4. Check whether the output has been set to a constant value via digital communication.

10.28.27 A102

Alert

Drive Overrange

Cause

The drive power (current/voltage) is at its maximum.

Recommended actions

- 1. Check the drive gain and the pickoff voltage.
- 2. Check the wiring between the sensor and the transmitter.
- 3. Verify that internal wiring is secure and that there are no internal electrical problems.
- 4. Check for air in the flow tubes, tubes not filled, foreign material in the tubes, coating in the tubes, or other process problems.
- 5. Check for fluid separation by monitoring the density value and comparing the results against expected density values.

6. Ensure that the sensor orientation is appropriate for your application. Settling from a two-phase or three-phase fluid can cause this alert even if the flow tubes are full.

10.28.28 A104

Alert

Calibration in Progress

Cause

A calibration procedure is in process.

Recommended actions

- 1. Allow the procedure to complete.
- 2. For zero calibration:
 - a) Abort the calibration.
 - b) Set **Zero Time** to a lower value.
 - c) Restart the calibration.

10.28.29 A105

Alert

Two-Phase Flow

Cause

The line density is outside the user-defined two-phase flow limits.

Recommended actions

- 1. Check for two-phase flow.
- 2. Check the live density reading against the upper and lower two-phase flow limit settings.

10.28.30 A106

Alert

Burst Mode Enabled

Cause

HART burst mode is enabled.

Recommended actions

- 1. No action required.
- 2. If desired, you can set Alert Severity Level to Ignore.

10.28.31 A107

Alert

Power Reset Occurred

Cause

The transmitter has been restarted.

Recommended actions

No action is required.

If desired, you can set **Alert Severity Level** to Ignore.

10.28.32 A108

Alert

Basic Event 1 On

Cause

The process has triggered Basic Event 1.

Recommended actions

- 1. No action is required.
- 2. Review event configuration if you believe the event was triggered erroneously.

10.28.33 A109

Alert

Basic Event 2 On

Cause

The process has triggered Basic Event 2.

Recommended actions

- 1. No action is required.
- 2. Review event configuration if you believe the event was triggered erroneously.

10.28.34 A110

Alert

Frequency Output Saturated

Cause

The calculated Frequency Output is outside the configured range.

Recommended actions

- 1. Check the Frequency Output scaling.
- 2. Check process conditions.

 Actual conditions may be outside the normal conditions for which the output is configured.
- 3. Check for air in the flow tubes, tubes not filled, foreign material in the tubes, coating in the tubes, or other process problems.
- 4. Verify that the measurement units are configured correctly for your application.
- 5. Purge the sensor tubes.

10.28.35 A111

Alert

Frequency Output Fixed

Cause

The Frequency Output has been configured to send a constant value.

Recommended actions

- 1. Cycling power to the meter or restarting totalizers will restore the Frequency Output to normal operation.
- 2. Check whether the output is in loop test mode. If it is, unfix the output.
- 3. Check whether the output has been set to a constant value vial digital communication.

10.28.36 A112

Alert

Upgrade Transmitter Software

Cause

The transmitter software is down-level from the core processor software.

Recommended actions

Contact customer support.

10.28.37 A113

Alert

mA Output 2 Saturated

Cause

The calculated mA Output value is outside the configured range.

Recommended actions

1. Check the settings of **Upper Range Value** and **Lower Range Value**.

- 2. Check process conditions.

 Actual conditions may be outside the normal conditions for which the output is configured.
- 3. Check for air in the flow tubes, tubes not filled, foreign material in the tubes, coating in the tubes, or other process problems.
- 4. Verify that the measurement units are configured correctly for your application.
- 5. Purge the sensor tubes.

10.28.38 A114

Alert

mA Output 2 Fixed

Cause

The mA Output is configured to send a constant value.

Recommended actions

- 1. Check whether the output is in loop test mode. If it is, unfix the output.
- 2. Exit mA Output trim, if applicable.
- 3. Check whether the output has been set to a constant value via digital communication.

10.28.39 ts_A117

Alert

Density Overrange (Petroleum)

Cause

The measured density is outside the range of the API table.

Recommended actions

- 1. Check your process conditions against the values reported by the device.
- 2. Verify the configuration of the petroleum measurement application and related parameters.
- 3. Verify the configuration of the API referral application and related parameters.

10.28.40 A131

Alert

Meter Verification in Progress: Outputs to Last Measured Value

Cause

A meter verification test is in progress, with outputs set to Last Measured Value.

Recommended actions

Allow the procedure to complete.

10.28.41 Density D[1 - 4] Calibration in Progress

Cause

A D[1 - 4] density calibration is in progress.

Recommended actions

No action required.

10.28.42 Reverse Flow

Cause

Flow through the device is in the reverse direction (against the flow arrow).

Recommended actions

No action is required.

10.28.43 Zero Calibration in Progress

Cause

A zero calibration is in progress.

Recommended actions

No action required.

10.29 Temperature measurement problems

Problem	Possible causes	Recommended actions
Temperature reading significantly different from process temperature	 RTD failure Incorrect compensation factors Line temperature in bypass does not match temperature in main line 	 Check junction box for moisture or verdigris. Perform RTD resistance checks and check for shorts to case (see Check the sensor coils). Verify that the temperature compensation factors match the value on the sensor tag or calibration sheet. If Alert A004, A016, or A017 is active, perform the actions recommended for that alert.

Problem	Possible causes	Recommended actions
Temperature reading slightly different from process temperature	 Sensor temperature not yet equalized Sensor leaking heat 	 If the error is within the temperature specification for the sensor, there is no problem. If the temperature measurement is outside the specification, contact customer support. The temperature of the fluid may be changing rapidly. Allow sufficient time for the sensor to equalize with the process fluid. Perform RTD resistance checks and check for shorts to case (see Check the sensor coils). The electrical connection between the RTD
In a courage	. Minima nanahiran	and the sensor may be damaged. This may require replacing the sensor.
Inaccurate temperature data from external device	 Wiring problem Problem with input configuration Problem with external device Problem with input configuration 	 Verify the wiring between the transmitter and the external device. Verify that the external device is operating correctly. Verify the configuration of the temperature input. Ensure that both devices are using the same measurement unit.

A Using ProLink III with the transmitter

A.1 Basic information about ProLink III

ProLink III is a configuration and service tool available from Micro Motion. ProLink III runs on a Windows platform and provides complete access to transmitter functions and data.

Version requirements

Use the latest version of ProLink III and the device firmware to support all features. For details about ProLink III device support, refer to the ProLink III ChangeLog.txt file.

ProLink III requirements

To install ProLink III, you must have:

- The ProLink III installation media
- The ProLink III installation kit for your connection type:

To obtain ProLink III and the appropriate installation kit, contact customer support.

ProLink III documentation

Most of the instructions in this manual assume that you are already familiar with ProLink III or that you have a general familiarity with Windows programs. If you need more information than this manual provides, see the *ProLink® III Configuration and Service Tool for Micro Motion® Transmitters: User Manual.*

In most ProLink III installations, the manual is installed with the ProLink III program. Additionally, the ProLink III manual is available on the documentation CD or at .

ProLink III features and functions

ProLink III offers complete transmitter configuration and operation functions. ProLink III also offers a number of additional features and functions, including:

- A Professional version with expanded features not available on the Basic version.
- The ability to save the transmitter configuration set to a file on the PC, and reload it or propagate it to other transmitters
- The ability to log specific types of data to a file on the PC
- The ability to view performance trends for various types of data on the PC
- The ability to connect to and view information for more than one device
- A guided connection wizard

These features are documented in the . ProLink III features are not documented in this manual.

ProLink III messages

As you use ProLink III with a Micro Motion transmitter, you will see a number of messages and notes. This manual does not document all of these messages and notes.

Important

The user is responsible for responding to messages and notes and complying with all safety messages.

A.2 Connect with ProLink III

A connection from ProLink III to your transmitter allows you to read process data, configure the transmitter, and perform maintenance and troubleshooting tasks.

A.2.1 Connection types supported by ProLink III

Different connection types are available for connecting from ProLink III to the transmitter. Choose the connection type appropriate to your network and the tasks you intend to perform.

The transmitter supports the following ProLink III connection types:

- Service port connections
- HART/Bell 202 connections
- Modbus/RS-485 8-bit connections (Modbus RTU)
- Modbus/RS-485 7-bit connections (Modbus ASCII)

When selecting a connection type, consider the following:

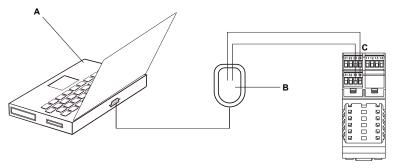
- Service port connections are specialized Modbus/RS-485 connections that use standard connection parameters and a standard address that are already defined in ProLink III. Service port connections are typically used by field service personnel for specific maintenance and diagnostic functions. Use a service port connection only when another connection type does not provide the functionality you need.
- HART/Bell 202 connections use standard HART connection parameters that are already defined in ProLink III. The only parameter you must configure is the transmitter address.
- Service port connections can be made only when the transmitter's RS-485 terminals are in service port mode. If they are not, you must switch them to service port mode by power-cycling the transmitter and connecting within the first 10 seconds.
- RS-485 connections can be made only when the transmitter's RS-485 terminals are in RS-485 mode. If they are not, you must switch them to RS-485 mode by power-cycling the transmitter and waiting 15 seconds before connecting.
- When you are using a HART connection, ProLink III will not allow you to open more than one window at a time. This is done to manage network traffic and optimize speed.
- You cannot make concurrent Modbus connections if the connections use the same terminals. You can make concurrent Modbus connections if the connections use different terminals.

A.2.2 Connect with ProLink III to the service port

Prerequisites

- ProLink III is installed and licensed on your PC
- One of the following:
 - RS-232 to RS-485 signal converter
 - USB to RS-485 signal converter
- An available serial port or USB port
- Adapters as required (for example, 9-pin to 25-pin)

MMI-20019023 February 2022


Procedure

- 1. Make sure that the transmitter's RS-485 terminals are in service port mode. If they are not, switch them to service port mode by power-cycling the transmitter and connecting within the first 10 seconds.
- 2. Connect the leads from the signal converter to terminals 33 (RS-485/A) and 34 (RS-485/B).

Tip

Usually, but not always, the black lead is RS-485/A and the red lead is RS-485/B.

Figure A-1: Connection to service port

- A. PC
- B. Signal converter
- C. Transmitter

Note

This figure shows a serial port connection. USB connections are also supported.

- 3. Start ProLink III.
- 4. Choose Connect to Physical Device.
- 5. Set **Protocol** to Service Port.

Tip

Service port connections use standard connection parameters and a standard address. You do not need to configure them here.

- 6. Set the **PC Port** value to the PC COM port that you are using for this connection.
- 7. If required, power-cycle the transmitter to set the terminals to service port mode.

 The transmitter terminals operate in either service port mode or RS-485 mode. If they are in RS-485 mode, you must power-cycle the transmitter and connect within the first 10 seconds. If you do not connect within 10 seconds, the terminals will switch to RS-485 mode. If the terminals are already in
- 8. Click Connect.

Need help?

If an error message appears:

Switch the leads and try again.

service port mode, skip this step.

- Ensure that you have specified the correct port on your PC.
- Check the wiring between the PC and the transmitter.

February 2022

Ensure that the RS-485 terminals on the transmitter are in service port mode.

A.2.3 Make a HART/Bell 202 connection

Prerequisites

- ProLink III is installed and licensed on your PC
- One of the following:
 - RS-232 to Bell 202 signal converter
 - USB to Bell 202 signal converter
- An available serial port or USB port
- Adapters as required (for example, 9-pin to 25-pin)

You can connect directly to the mA terminals on the transmitter, to any point in a local HART loop, or to any point in a HART multidrop network.

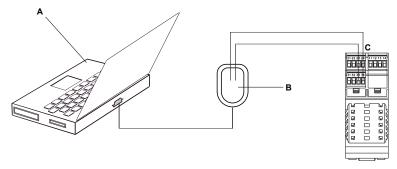
WARNING

If you connect directly to the mA terminals, the transmitter's mA Output may be affected. If you are using the mA Output for process control, set devices for manual control before connecting directly to the mA terminals.

Procedure

- 1. Attach the signal converter to the serial port or USB port on your PC.
- 2. To connect directly to the transmitter terminals:
 - a) Connect the leads from the signal converter to terminals 21 and 22.

HART connections are not polarity-sensitive. It does not matter which lead you attach to which terminal.


b) Add resistance as necessary to achieve at least one volt across the connection points.

Important

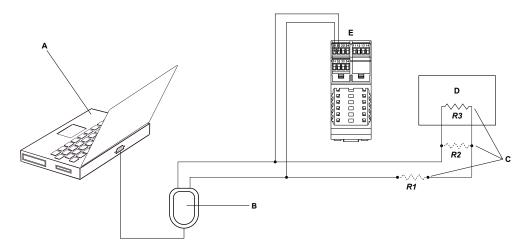
HART/Bell 202 connections require a voltage drop of 1 VDC. To achieve this, add resistance of 250–600 Ω to the connection.

MMI-20019023 February 2022

Figure A-2: Connection to transmitter terminals

- A. Computer
- B. Signal converter
- C. Transmitter

Note


This figure shows a serial port connection. USB connections are also supported.

- 3. To connect to a point in the local HART loop:
 - a) Attach the leads from the signal converter to any point in the loop.
 - b) Add resistance as necessary to achieve at least one volt across the connection points.

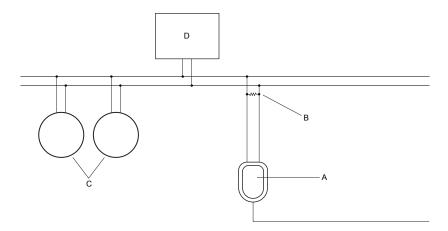
Important

HART/Bell 202 connections require a voltage drop of 1-5 VDC. To achieve this, add resistance of 250–600 Ω to the connection.

Figure A-3: Connection over local loop

- A. Computer
- B. Signal converter
- C. Any combination of resistors R1, R2, and R3 as necessary to meet HART communication resistance requirements
- D. DCS or PLC
- E. Transmitter

Note


This figure shows a serial port connection. USB connections are also supported.

- 4. To connect over a HART multidrop network:
 - a) Attach the leads from the signal converter to any point on the network.
 - b) Add resistance as necessary to achieve at least one volt across the connection points.

Important

HART/Bell 202 connections require a voltage drop of 1-5 VDC. To achieve this, add resistance of $250-600\,\Omega$ to the connection.

Figure A-4: Connection over multidrop network

- A. Signal converter
- B. $250-600 \Omega$ resistance
- C. Devices on the network
- D. Master device
- 5. Start ProLink III.
- 6. Choose Connect to Physical Device.
- 7. Set Protocol to HART Bell 202.

Tip

HART/Bell 202 connections use standard connection parameters. You do not need to configure them here.

- 8. If you are using a USB signal converter, enable **Toggle RTS**.
- 9. Set **Address/Tag** to the HART polling address configured in the transmitter.

Tip

- If this is the first time you are connecting to the transmitter, use the default address: 0.
- If you are not in a HART multidrop environment, the HART polling address is typically left at the default value.
- If you are unsure of the transmitter's address, click **Poll**. The program will search the network and return a list of the transmitters that it detects.
- 10. Set the **PC Port** value to the PC COM port that you are using for this connection.
- 11. Set **Master** as appropriate.

Option	Description
Secondary	Use this setting if a primary HART host such as a DCS is on the network.

Option	Description
Primary	Use this setting if no other primary host is on the network. A field communicator is a secondary host.

12. Click Connect.

Need help?

If an error message appears:

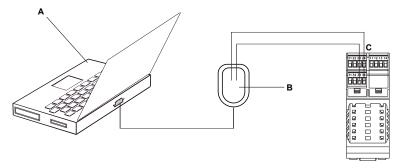
- Verify the HART address of the transmitter, or poll HART addresses 1–15.
- Ensure that you have specified the correct port on your PC.
- Check the wiring between the PC and the transmitter.
- Increase or decrease resistance.
- Ensure that there is no conflict with another HART master. If any other host (DCS or PLC) is connected to the mA Output, temporarily disconnect the DCS or PLC wiring.

A.2.4 Connect with ProLink III to the RS-485 port

Prerequisites

- ProLink III is installed and licensed on your PC.
- One of the following:
 - RS-232 to RS-485 signal converter
 - USB to RS-485 signal converter
- An available serial port or USB port
- Adapters as required (for example, 9-pin to 25-pin)

Procedure

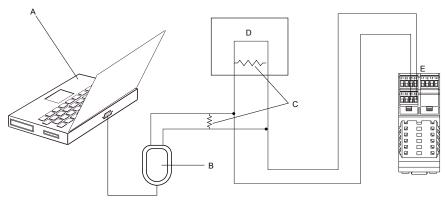

- 1. Attach the signal converter to the serial port or USB port on your PC.
- 2. Connect the leads from the signal converter to terminals 33 (RS-485/A) and 34 (RS-485/B).

Tip

Usually, but not always, the black lead is RS-485/A and the red lead is RS-485/B.

MMI-20019023 February 2022

Figure A-5: Connection to transmitter terminals


- A. Computer
- B. Signal converter
- C. Transmitter

Note

This figure shows a serial port connection. USB connections are also supported.

- 3. To connect over the RS-485 network:
 - a) Attach the leads from the signal converter to any point on the network.

Figure A-6: Connection over network

- A. Computer
- B. Signal converter
- C. $120-\Omega$, 1/2-watt resistors at both ends of the segment, if necessary
- D. DCS or PLC
- E. Transmitter

Note

This figure shows a serial port connection. USB connections are also supported.

- 4. Start ProLink III.
- 5. Choose **Connect to Physical Device**.
- 6. Set the connection parameters to the values configured in the transmitter.

If your transmitter has not been configured, use the default values shown here.

Table A-1: Default Modbus/RS-485 connection parameters

Parameter	Default value
Protocol	Modbus RTU
Baud	9600
Parity	Odd
Stop Bits	1
Address	1

Tip

If you do not know the transmitter's RS-485 communication settings, you can connect through the service port, which always uses default settings, or use another communications tool to view or change the settings.

- 7. Set the **PC Port** value to the PC COM port that you are using for this connection.
- 8. If required, power-cycle the transmitter and wait 10 seconds to set the terminals to RS-485 mode. The transmitter terminals operate in either service port mode or RS-485 mode. If they are in service port mode, you must power-cycle the transmitter and wait for 10 seconds before connecting. At the end of this period, the terminals switch to RS-485 mode. If the terminals are already in RS-485 mode, skip this step.
- 9. Select Connect.

Need help?

If an error message appears:

- Verify the Modbus address of the transmitter.
- Ensure that you have specified the correct port on your PC.
- Ensure that the RS-485 terminals on the transmitter are in RS-485 mode.
- Check the wiring between the PC and the transmitter.
- Increase or decrease resistance.
- For long-distance communication, or if noise from an external source interferes with the signal, install $120-\Omega$ ½-W terminating resistors in parallel with the output at both ends of the communication segment.
- Ensure that there is no concurrent Modbus communication to the transmitter.

B Using a field communicator with the transmitter

B.1 Basic information about field communicators

A field communicator is a handheld configuration and management tool that can be used with a variety of devices, including Micro Motion transmitters. It provides complete access to transmitter functions and data.

Field communicator documentation

Most of the instructions in this manual assume that you are already familiar with field communicators and can perform the following tasks:

- · Turn on the field communicator
- Navigate the field communicator menus
- Establish communication with HART-compatible devices
- Send configuration data to the device
- Use the alpha keys to enter information

Device descriptions (DDs)

In order for a field communicator to work with your device, the appropriate device description (DD) must be installed: 1500 Mass flo, Dev v8 DD v1

To view the device descriptions that are installed on your field communicator:

- 1. At the HART application menu, press **Utility** → **Available Device Descriptions**.
- 2. Scroll the list of manufacturers and select **Micro Motion**, then scroll the list of installed device descriptions.

If **Micro Motion** is not listed, or you do not see the required device description, use a field communicator's upgrade utility to install the device description or contact customer support.

Field communicator menus and messages

Many of the menus in this manual start with the **On-Line** menu. Ensure that you are able to navigate to the **On-Line** menu.

As you use a field communicator with a Micro Motion transmitter, you will see a number of messages and notes. This manual does not document all of these messages and notes.

Important

The user is responsible for responding to messages and notes and complying with all safety messages.

Field communicator with PVR, TBR, and TMR applications

Production Volume Reconciliation (PVR), Transient Bubble Remediation (TBR), and Transient Mist Remediation (TMR) are available only over HART with HART 7 enabled (default).

B.2 Connect with a field communicator

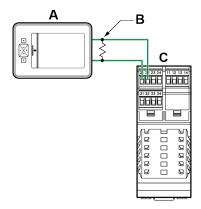
A connection from the field communicator to your transmitter allows you to read process data, configure the transmitter, and perform maintenance and troubleshooting tasks.

Prerequisites

The latest HART device description (DD) must be installed on the field communicator.

You can connect the field communicator to the mA terminals on the transmitter, to any point in a local HART loop, or to any point in a HART multidrop network.

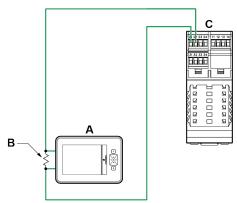
Procedure


1. To connect to the transmitter terminals, attach the leads from the field communicator to terminals 21 and 22 on your transmitter and add resistance as required.

The field communicator must be connected across a resistance of 250–600 Ω .

Tip

HART connections are not polarity-sensitive. It does not matter which lead you attach to which terminal.


Figure B-1: Field communicator connection to transmitter terminals

- A. Field communicator
- B. $250-600 \Omega$ resistance
- C. Transmitter terminals
- 2. To connect to a point in the local HART loop, attach the leads from the field communicator to any point in the loop and add resistance as necessary.

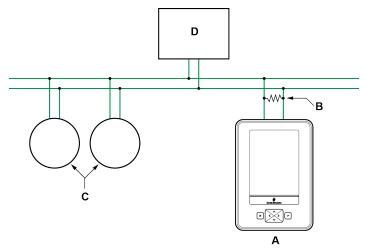

The field communicator must be connected across a resistance of 250–600 Ω .

Figure B-2: Field communicator connection to local HART loop

- A. Field communicator
- B. $250-600 \Omega$ resistance
- 3. To connect to a point in the HART multidrop network, attach the leads from the field communicator to any point on the network.

Figure B-3: Field communicator connection to multidrop network

- A. Field communicator
- B. $250-600 \Omega$ resistance
- C. Devices on the network
- D. Master device
- 4. Turn on the field communicator and wait until the main menu is displayed.
- 5. If you are connecting across a multidrop network:
 - Set the field communicator to poll. The device returns all valid addresses.
 - Enter the HART address of the transmitter. The default HART address is 0. However, in a multidrop network, the HART address has probably been set to a different, unique value.

Postrequisites

To navigate to the *Online* menu, choose **HART Application** \rightarrow **Online**. Most configuration, maintenance, and troubleshooting tasks are performed from the *Online* menu.

Tip

You may see messages related to the DD or active alerts. Press the appropriate buttons to ignore the message and continue.

Need help?

The field communicator requires a minimum of 1 VDC across the connection leads to communicate. If necessary, increase the resistance at the connection point until 1 VDC is achieved.

C Default values and ranges

The default values and ranges represent the typical factory transmitter configuration. Depending on how the transmitter was ordered, certain values may have been configured at the factory and are not represented in the default values and ranges.

Table C-1: Transmitter default values and ranges

Туре	Parameter	Default	Range	Comments
Flow	Flow direction	Forward		
	Flow damping	0.8 sec ⁽¹⁾	0.0 – 51.2 sec	User-entered value is corrected to the nearest valid value in list of preset values. In Special mode, the preset values are 1/5 normal. For gas applications, a minimum value of 2.56 is recommended. The 2.56 value will be automatically rounded up to 3.2 seconds.
	Flow calibration factor	1.00005.13		For sensors, this value represents the FCF and FT factors concatenated.
	Mass flow units	g/s		
	Mass flow cutoff	Sensor-specific value set at factory		For most sensors, the typical setting is 0.05% to 0.10% of the sensor's rated maximum flow rate. For some sensors, the setting may be higher. For some applications, such as empty-full-empty batching, a higher value is recommended. Contact customer service for assistance.
	Volume flow type	Liquid		assistance.
	Volume flow units	L/s		
	Volume flow cutoff	0/0 L/s	0.0 – x L/s	x is obtained by multiplying the flow calibration factor by 0.2, using units of L/s.
Meter factors	Mass factor	1		
	Density factor	1		
	Volume factor	1		
Density	Density damping	1.6 sec	0.0 – 51.2 sec	User-entered value is corrected to nearest valid value in a list of preset values.
	Density units	g/cm ³		
	Density cutoff	0.2 g/cm ³	0.0 – 0.5 g/cm ³	

Table C-1: Transmitter default values and ranges (continued)

Туре	Parameter	Default	Range	Comments
	D1	0 g/cm ³		
	D2	1 g/cm ³		
	K1	1000 μsec	1000 – 50,000 μsec	
	K2	50,000 μsec	1000 – 50,000 μsec	
	FD	0		
	Temp Coefficient	4.44		
Two-phase flow	Two-phase flow low limit	0.0 g/cm ³	0.0 – 10.0 g/cm ³	
	Two-phase flow high limit	5.0 g/cm ³	0. 0 – 10.0 g/cm ³	
	Two-phase duration	0.0 sec	0.0 – 60.0 sec	
Temperature	Temperature damping	4.8 sec	0.0 – 38.4 sec	User-entered value is corrected to nearest valid value in a list of preset values.
	Temperature units	Deg C		
	Temperature calibration factor	1.00000T0.000 0		
Pressure	Pressure units	PSI		
	Flow factor	0		
	Density factor	0		
	Cal pressure	0		
T-Series sensor	D3	0 g/cm ³		
	D4	0 g/cm ³		
	K3	0 μsec		
	K4	0 μsec		
	FTG	0		
	FFQ	0		
	DTG	0		
	DFQ1	0		
	DFQ2	0		
Special units	Base mass unit	g		
	Base mass time	sec		
	Mass flow conversion factor	1		
	Base volume unit	L		

Table C-1: Transmitter default values and ranges (continued)

Туре	Parameter	Default	Range	Comments
	Base volume time	sec		
	Volume flow conversion factor	1		
Variable	Primary variable	Mass flow		
mapping	Secondary variable	Volume flow		
	Tertiary variable	Mass flow		
	Quaternary variable	Volume flow		
mA Output 1	Primary variable	Mass flow		
	LRV	-200.00000 g/s		
	URV	200.00000 g/s		
	AO cutoff	0.00000 g/s		
	AO added damping	0.00000 sec		The user-entered value is corrected down to the nearest lower value in a list of preset values.
	LSL	-200 g/s		Read-only. LSL is calculated based on the sensor size and characterization parameters.
	USL	200 g/s		Read only. USL is calculated based on the sensor size and characterization parameters.
	MinSpan	0.3 g/s		Read-only.
	Fault action	Downscale		
	AO fault level – downscale	2.0 mA	1.0 – 3.6 mA	
	AO fault level – upscale	22 mA	21.0 – 24.0 mA	
	Last measured value timeout	0.00 sec		
mA Output 2	Secondary variable	Density		
	LRV	0.00 g/cm3		
	URV	10.00 g/cm3		
	AO cutoff	Not-A-Number		
	AO added damping	0.00000 sec		
	LSL	0.00 g/cm ³		Read-only. LSL is calculated based on the sensor size and characterization parameters.

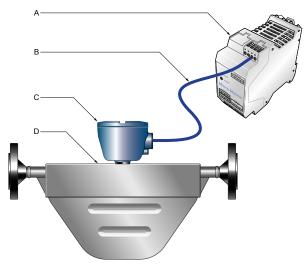
Table C-1: Transmitter default values and ranges (continued)

Туре	Parameter	Default	Range	Comments
	USL	10.00 g/cm ³		Read only. USL is calculated based on the sensor size and characterization parameters.
	MinSpan	0.05 g/cm ³		Read-only.
	Fault action	Downscale		
	AO fault level – downscale	2.0 mA	1.0 – 3.6 mA	
	AO fault level – upscale	22 mA	21.0 – 24.0 mA	
	Last measured value timeout	0.00 sec		
LRV	Mass flow rate	-200.000 g/s		
	Volume flow rate	-0.200 L/s		
	Density	0.000 g/cm ³		
	Temperature	−240.000 °C		
	Drive gain	0.000%		
	Gas standard volume flow rate	-423.78SCFM		
	External temperature	-240.000 °C		
	External pressure	0.000 psi		
URV	Mass flow rate	200.000 g/s		
	Volume flow rate	0.200 L/s		
	Density	10.000 g/cm ³		
	Temperature	450.000 °C		
	Drive gain	100.000%		
	Gas standard volume flow rate	423.78 SCFM		
	External temperature	450.000 °C		
	External pressure	100.000 psi		
Frequency	Tertiary variable	Mass flow		
Output	Frequency factor	1,000.00 Hz	0.001 – 10,000 Hz	
	Flow rate factor	1000 kg/min		
	Scaling method	Freq=Flow	0 or 0.5 – 277.5 ms	
	Frequency fault action	Downscale		
	Frequency fault level – upscale	15,000 Hz	10.0 – 15,000 Hz	
	Frequency Output polarity	Active high		

MMI-20019023

Table C-1: Transmitter default values and ranges (continued)

Туре	Parameter	Default	Range	Comments
	Last measured value timeout	0.0 seconds	0.0 – 60.0 sec	
Discrete	Source	Flow direction		
Output	Fault Indicator	None		
	Power	Internal		
	Polarity	Active high		
Digital comm	Fault action	None		
	Fault timeout	0 seconds	0.0 – 60.0 sec	
	Modbus address	1		
	Modbus ASCII support	Enabled		
	Floating-point byte order	3-4-1-2		
	Double-precision byte order	1-2-3-4-5-6-7-8		

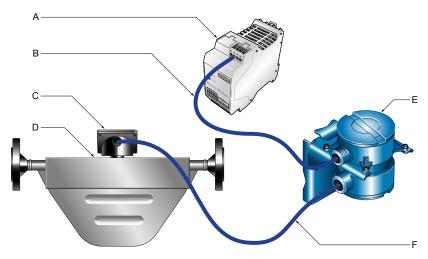

⁽¹⁾ In Special mode, the default value is 0.64 sec.

D Transmitter components and installation wiring

D.1 Installation types

The transmitter was ordered and shipped to be installed in one of two possible configurations.

Figure D-1: 4-wire remote installation

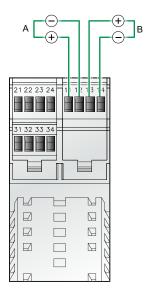


The transmitter is installed remotely from the sensor. The 4-wire connection between the sensor and transmitter must be field wired. Power supply and I/O must be field wired to the transmitter.

- A. Transmitter
- B. Field-wired 4-wire connection
- C. Core processor
- D. Sensor

MMI-20019023

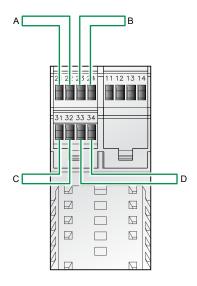
Figure D-2: Remote core processor with remote sensor installation



The transmitter, core processor, and sensor are all mounted separately. The 4-wire connection between the transmitter and core processor must be field wired. The 9-wire connection between the core processor and the sensor must be field wired. Power supply and I/O must be field wired to the transmitter. This configuration is sometimes called double-hop.

- A. Transmitter
- B. Field-wired 4-wire connection
- C. Junction box
- D. Sensor
- E. Core processor
- F. Field-wired 9-wire connection

D.2 Power supply terminals


Figure D-3: Power supply wiring terminals

- A. Primary power supply (DC)
- B. Power supply jumper to other 1500 or 2500 transmitters (optional)

D.3 Input/output (I/O) wiring terminals

Figure D-4: I/O wiring terminals

- A. mA/HART
- B. Unused
- C. Frequency Output or Discrete Output
- D. Service port or Modbus/RS-485

E NE 53 history

Important

Not all features and capabilities described in this section may apply to your transmitter or configuration.

August 2000, Version 1.x

Modification type	Change
Expansion	Added writing of the device tag using Modbus
Adjustment	Improved communication handling with the HART Tri-Loop product
Feature	Indication of outputs option board type appears on display at power-up

May 2001, version 2.x

Modification type	Change
Expansion	Added alarm A106 to indicate that HART burst mode is enabled
	Indication of outputs option board type appears on display at power-up
	Added alarm A106 to indicate that HART burst mode is enabled
	Control of HART burst mode now available via Modbus
	Added support for the Model 1700 transmitter
	Added support for the intrinsically safe transmitter option
	Added support to configure the process variable units for mass flow, volume flow, density and temperature from the display
	Added support for assigning process variables to the mA and Frequency Output from the display
Adjustment	Clarified the interaction of the digital fault setting and the fault timeout (last measured value timeout)
Feature	Drive gain can be assigned to mA Output
	Pressure compensation added via HART
	Channel B can be configured as a Discrete Output

December 2001, version 3.x

Modification type	Change
Expansion	Added support for the configurable I/O option board
	Software version information available via the display or Modbus
	Configurable density cutoff
	Additional HART variables can be assigned to QV
	The display start/stop totalizers function can be enabled or disabled
	Petroleum measurement application improvements
	Live zero available as display variable
	Increased options for fault output settings
	New cryogenic application temperature algorithms
Adjustment	Improved Frequency Output stability and unit conversions
	Improved the handling of volume flow rate when two-phase flow is detected
	Improved handling of density values and calibrations during fault conditions
	Display configuration, screen flow and optical switch changes
	HART communication and burst mode improvements
Feature	Petroleum measurement application added
	Custody transfer option added to the configurable I/O option board
	HART polling for external pressure/temperature added

June 2003, version 4.x

Modification type	Change
Expansion	Added support for the Model 1500 transmitter
	Additional variables displayed by the Model 1700 transmitter
Adjustment	Improved the handling of certain alarm conditions
	Clarified the behavior of certain Modbus calibration coils
	Clarified the interaction between certain density measurement units and density cutoff values
	Improved the handling of the mA source setting via the display
	Improvements to pressure and temperature polling
	HART Tri-Loop and other communication improvements
	Clarified the value returned by Modbus scaled integer registers during a fault condition
Feature	Discrete values now available through Modbus

September 2006, version 5.x

Modification type	Change
Expansion	Discrete Output assignable as a flow switch
	Discrete Output fault indication configurability
	Discrete Input support for multiple action assignments
	Added support for querying the display LED status via Modbus
	Additional HART and Modbus commands
	Process comparator expanded to five configurable events
	Factory configuration restore function
	Factory zero restore function
	Alarm history expanded
	Selectable write protection for configuration data
	Expanded selection of source assignments for mA Output
	Expanded storage of mA range values
	Expanded custody transfer application for independent implementation of NTEP and OIML compliance
Adjustment	Display improvements for floating-point data
Feature	Configurable alarm severity
	Gas standard volume functionality
	Meter verification availability as an option
	Multiple display language selections

September 2009, version 6.x

Modification type	Change
Expansion	Frequency Output configurable as Discrete Output on Series 1000 transmitters
	Discrete Output assignable as flow switch on Series 1000 transmitters
	Display Variable 1 optionally fixed to process variable assigned to primary mA Output
	Frequency Output scaling method and related parameters configurable from display
	For enhanced density and petroeum measurement process variables, display cycles among variable name, current value and unit, and reference temperature

Modification type	Change
Adjustment	mA Output Fault Action = None and Digital Communications Fault Action = NAN is no longer allowed
	Frequency Output Fault Action = None and Digital Communications Fault Action = NAN is no longer allowed
	Display variables set to a volume process variable automatically switch between liquid and GSV, according to current setting of Volume Flow Type
Feature	Configurable hysteresis for flow switch
	Field Verification Zero added to support Weights & Measures application
	Transmitter firmware checksum and core processor firmware checksum assignable as display variables and viewable in ProLink

February 2018, version 8.x

Modification type	Change
Expansion	Polling an external device for base density Gas Standard Volume (GSV)
	NE 53 version added to the display and accessed using Modbus and HART
	Improved data update rate for Advanced Zero Check using ProLink III
	Byte order configuration for double totals
	Modbus Function 43 basic objects for FDI identification
	Fast access to Live Zero in 100 Hz mode
	Display used to disable user access to the Smart Meter Verification menu. Once disabled, access can only be enabled using ProLink III or a HART device

Modification type	Change
Adjustment	Sensors that are not straight tube sensors are now correctly identified
	The mA Output fixed alert is now set
	 The Factory Configuration Invalid status bit is now set correctly when connected to a 700 core processor — as the 700 core processor does not support saving and restoring the factory configuration
	 Enabling a new feature on a flow-only device does not reset the output configuration to factory defaults
	 Polled variables are now converted to the transmitter units before being used
	 HART Primary, Secondary, and Tertiary Variables can be changed using HART when the transmitter is configured for gas standard volume
	 Petroleum measurement variables are removed from the display when petroleum measurement is disabled
	 The mA Output can be fixed when assigned to a concentration measurement, petroleum measurement, or GSV variable when the transmitter is not connected to a core processor
	The units for concentration curve data are correctly converted when the data is entered using HART
	 Meter verification failed and aborted alerts are now reflected in the HART More Status flag
	The HART Squawk command is functional when the HART write protect is enabled
	 Locking the transmitter, unlocking the transmitter, or changing write protection does not set the HART Configuration Changed flag
	 If connected to a 700 core processor with software version 3.1 or earlier, there is no longer a core processor write failed alert when setting volume flow units to beer barrels per time unit
	 The factory zero value is immediately updated from the core processor after running a zero calibration and saving the factory configuration
	A firmware upgrade done without clearing non-volatile memory no longer causes an EEPROM Failure alert
	 The status bit for the undefined A141 alert (Device Data Capture Triggered) no longer appears in the Modbus status register
	When using AMS to configure the transmitter:
	 Changing the output configuration for mA 1, mA 2, or the Frequency Output, does not change the configuration of all three outputs
	 mA configuration methods can be cancelled
	 Density and temperature units display on the concentration measurement configuration page
	 An AMS Field Device did not respond message no longer displays when the concentration offset is configured even though the value was changed

Modification type	Change
	 When the volume flow type is changed, the new setting is updated from the transmitter without having to rescan the device
Feature	Basic meter verification
	Production Volume Reconciliation (PVR)
	Transient Mist Remediation (TMR)
	Transient Bubble Remediation (TBR)
	Piecewise Linearization for Gas
	Support for Micro Load

May 2018, version 8.02/v6.82

- Added Basic Smart Meter Verification (SMV).
- Changed the default for the HART version to HART 7.
- Added Production Volume Reconciliation (PVR) that requires an 800 Enhanced Core Processor with version 4.42 or greater software and HART 7.
- Added Transient Mist Remediation (TMR) that requires an 800 Enhanced Core Processor with version 4.42 or greater software and HART 7.
- Added Transient Bubble Remediation (TBR) that requires an 800 Enhanced Core Processor with version 4.42 or greater software and HART 7.
- Added Piecewise Linearization for gas that requires an 800 Enhanced Core Processor with version 4.42 or greater software and HART 7.
- Added polling an external device for base density for Gas Standard Volume.
- Added support for Micro Load.
- The NE53 version is added to the display and can be accessed using Modbus and HART.
- Improved the update rate of the data for Advanced Zero Check using ProLink III.
- Added byte order configuration for double totals.
- Added Modbus Function 43 basic objects for FDI identification.
- Added fast access to Live Zero in 100 Hz mode.
- Added the ability to use the display to configure user access to the Smart Meter Verification menu on the display. This feature can be used only to disable access. Once disabled, access can only be enabled using ProLink III or a HART device.

MMI-20019023 February 2022

11-20019023 Rev. AC 2023

For more information: www.emerson.com

©2022 Micro Motion, Inc. All rights reserved.

The Emerson logo is a trademark and service mark of Emerson Electric Co. Micro Motion, ELITE, ProLink, MVD and MVD Direct Connect marks are marks of one of the Emerson Automation Solutions family of companies. All other marks are property of their respective owners.

