

RTD Input Module

Product Specifications and Installation Data

1 DESCRIPTION

The HE693RTD720 Input Modules allow RTD temperature sensors to be directly connected to the PLC without external signal processing (transducers, transmitters, etc.). All analog and digital processing of the RTD signal is performed on the module, and temperature values in 0.125°C, 0.1°C, 0.5°C, 0.1°F or 0.5°F increments are written to the 90-30 %Al input table. The module features six channels, and supports PT-100 (platinum, 100 Ω at 0°C), Ni-120 (nickel, 120 Ω at 0°C), Cu-10 (Copper, 10 Ω at 25°C) or Pt-1000 (platinum, 1000 Ω at 0°C). This module has been specially coated and potted for environmental considerations.

2 INSTALLATION

13 September 1999

MAN0194-03

SPECIFICATIONS 3

Table 1 – RTD720 Specifications				
Power Consumption (typical)	75mA @ 5VDC	I/O Points Required	6%AI	
Number of Channels	6	Input Impedance	>1000 Megohms	
Types Supported				
Pt-100E	-100 to 850°C	Fault Protection	Zener Diode Clamp	
Pt-100C	-100 to 650°C	A/D Conversion Type	18 bit, Integrating	
Ni-120	-100 to 270°C	Update Time	50 Channels per second	
Cu-10	-200 to 260°C	Average RTD current, Pt-100	330 microamps	
Pt-1000	-100 to 850°C	Channel to Channel Tracking	0.1°C	
Posalution	0.125°C, 0.1°C, 0.5°C,	Operating	0 to 60°C	
0.1 °F or 0.5°F		Temperature	(32 ti 140°F)	
Accuracy	±0.5°C, typical	Relative Humidity	5% to 95% non-condensing	

CONFIGURATION 4

4.1 **Configuration Procedure**

:	SERIES 90-30 MODULE IN RACK 3 SLOT 2								
SLOT 2	Catalog #: FOI	REIGN	HKE V	UNI	F	OREIGN MC	DULE		
FRGN									
	Module ID :	3							
	×I Ref Adr :	×I0001	Byte	1	:	00000001	Byte 9	:	00
	×I Size :	0	Byte	2	:	00000100) Byte 10	:	00
	%Q Ref Adr :	×90001	Byte	3	:	5[5]	Byte 11	:	00
	×Q Size :	-0	Byte	4	:	00	Byte 12	:	00
	XAI Ref Adr:	%AI001	Byte	5	:	00	Byte 13	:	00
	XAI Size :	6	Byte	6		00	Byte 14	:	00
	XAQ Ref Adr:	%AQ001	Byte	7		00	Byte 15	:	00
	XAQ Size :	Ø	Byte	8	:	00	Byte 16	:	00

Figure 2 – Foreign Module Configuration Screen

To reach the Foreign Module Configuration screen:

- a. Select I/O Configuration (F1).b. Cursor over to the slot containing the module and select Other (F8), and Foreign (F3).
- c. Set parameters (refer to Table 1).

4.1.1 Configuration Parameters

Table 1 indicates the five necessary parameters for configuring the HE693RTD720 (refer to Figure 1). Change the various bytes (1-4) and set %AI to "6" to reach the desired set-up.

Table 2 – Configuration Parameters for RTD720						
%AI Size	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	
			00=Pt-100		00 through	
6 0001		0000	01=Ni-120			
	0004	thru	thru	02=Pt-100	01=0.5°F	00 through 0A
	0111	03=Cu-10	02=0.125°C	See dwell		
		(see chart)	04=Reserved	03=0.1°C 04=0.1°F	table.	
			05=Pt-200			

4.1.2 Digital Filtering (Byte 2)

Figure 3 indicates the effect of digital filtering (set with Byte 2 from Table 1) on module response to a temperature change. (% temp change completed vs. time).

Figure 3 – Digital Filtering

4.1.3 Temperature Scaling (Byte 4)

The RTD module reports values to the %AI table in 0.125 or 0.1 increments in either °C or °F (set with Byte 4 from Table 1). Conversion to actual degrees is shown in Table 2.

Table 3 – Temperature Scaling			
Module Configuration	Temperature Conversion		
0.125°C	°C = %AI / 8		
0.1°C	°C = %AI / 10		
0.1°F	°F = %AI / 10		
0.5°C	°C = %AI / 2		
0.5°F	°F = %AI / 2		
Note: The above values occur during normal operation. If a wiring fault occurs,			
refer to Table 5.			

4.1.4 Channel Dwell Time (Byte 5)

The RTD720 module multiplexes a single excitation current source between the six channels to improve channel to channel temperature tracking and to lower the average RTD current to reduce RTD self-heating errors. Each channel is normally driven for 22 milliseconds. For some applications such as electronic RTD simulators and other time dependent RTD sources, the channel dwell time can be insufficient. Byte 5 of the configuration can be used to increase this time as shown in Table 4. Longer channel dwell times increase the total scan time proportionally.

Table 4 – Channel Dwell Time vs. Byte 5 Value			
Byte 5	Seconds		
00	0.022		
01	0.044		
02	0.088		
03	0.175		
04	0.350		
05	0.700		
06	1.400		
07	2.800		
08	5.600		
09	11.20		
0A	22.40		

5 WIRING

5.1.1 Wiring Diagram

Figure 4 – Wiring Diagram

5.1.2 Wiring Installation Hints

Wiring must be routed in its own conduit.

Shielded, twisted wiring offers the best noise immunity.

If shielded wiring is used, a good earth ground connection (on one end only) is critical. If shields are connected at the module end, terminals 1 or 20 can be used as the shield ground point.

For proper RTD lead resistance compensation, the lead resistances must be matched and must be no more than 50 ohms each.

5.1.3 Wiring Fault Conditions

Figure 5 – Temperature Sensor

Figure 5 depicts a close-up view of the temperature sensor wiring. Consult Table 5 for wiring fault conditions.

Table 5 – Wiring Fault Conditions			
Fault Condition	%Al Value		
Short Circuit	Low Limit		
Excitation Open	Low Limit		
Sense Open	Low Limit		
Common Open	High Limit		

6 TECHNICAL ASSISTANCE

For user manual updates, contact Horner APG, Technical Support Division, at (317) 916-4274 or visit our website at www.heapg.com.

7 REVISIONS TO THIS DATA SHEET

This version of the data sheet for the HE693RTD720 contains the following revisions and additions:

- 1. Revised temperature values in Section 1. (Added 0.5°C and 0.5°F.)
- 2. Revised Resolution and Accuracy parameters in Table 1.
- 3. Revised Byte 4 and Byte 5 parameters in Table 2.
- 4. Revised Temperature parameters in Table 3. (Added 0.5°C and 0.5°F.)
- 5. Revised Table 4 (Byte 5 parameters) and added "OA" parameter.