

High Density Thermocouple Input Module Product Specifications and Installation Data

1 DESCRIPTION

The Horner APG HE697THM160 offers 16 channels of thermocouple input with 0.1°C resolution. Ten thermocouple types are currently supported; J, K, N, T, E, R, S, B, C, and JX (extended J). Thermocouple type is selectable on a channel-by-channel basis. The module allows the direct connection of thermocouple sensors, without the need for external signal conditioners and standard analog input modules. The thermocouple voltage is converted to a digital value, cold junction compensated, and the appropriate temperature value is reported directly to %AI registers in 0.1° or 0.5° increments. The temperature value may be reported in °C or °F increments. Various configuration parameters, as well as high and low setpoints for each channel, are available using %AQ output registers. **Recommended wire size is 24 AWG.** THM160 requires a power supply to provide \pm 12V and 5V to the backplane.

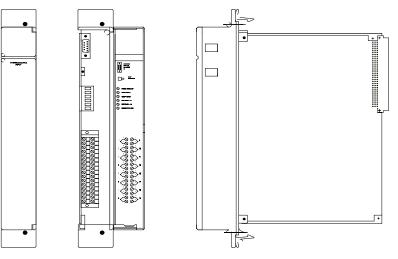
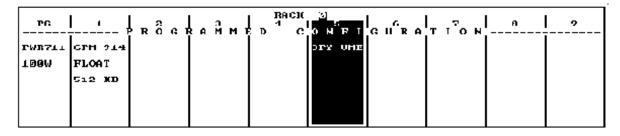



Figure 1 – HE697THM160 Module

2 SPECIFICATIONS

Table 1 – HE697THM160 Specifications						
Specification	HE697THM160					
Number of Channels	16	Input Impedance	>20Mohms			
Types Supported	J, K, N, T, E, R, S, B, C, JX	Maximum Safe Overload	+/-35V (from floating common)			
Cold Junction Comp.	Internal (AD592) External (AD592) Future Option	Common Mode Range	+/-11 V (from floating common)			
Resolution	0.1°C or 0.1°F	Common Mode Rejection	>100dB			
Accuracy	+/-0.5°C typical (J, K, N, T)	A/D Conversion Type	16-bit, Successive Approx.			
Operating Temperature	0 to 60°C (32 to 140°F)	Channel Scan Rate	960 channels/second			
Relative Humidity	5% to 95% non-cond.	Isolation	500VDC Bus Isolation			
Requirements						
Backplane Voltages	+/-12V, 5V	Software Version	Release 5.0 or later			
CPU Version	Relaease 5.5 or later	Module Placement	Main or Expansion Rack			

3 RACK CONFIGURATION

Figure 2 - Foreign Module Configuration

To reach this screen, select I/O Configuration (F1), cursor over to the slot containing the module and select VME (F7), VME (F1), and 3RD Party VME Module (2).

	SEBLES 90-70 MODULE IN BOCK 3 SLOT 5					
E LOT		3RD PORTY VI	TE MODULE			
יישר ו	HT Configuration Mode OM Code (Hex) Address (Hex) Beduced Mail Interrupt ID (Hex)	: I./0 SCAN : 29 : ыббызуры INTERRUPT : DISANLED : 50				

To reach this screen, select I/O SCAN for Configuration Mode, then change Reduced Mail from ENABLED to DISABLED. The configuration software will automatically select the correct numbers for AM Code, Address and Interrupt ID based on rack and slot location. If these numbers are incorrect the module should be deleted and reconfigured.

то.18 5	C.I.	ניין י	#:	3 RD		ARE CON			UME MODII	ЪЕ.	
3PV UME											
	Hef	Ade		=	×100001	LENGTH	:	6			
	Ref	ACP		=	X000001	LENGTH	:	ø			
	Def.	0 dr		•	5:0 T 0 0 0 1	LENGTH		16			
	Hef	Adar		-	×8 90001	LENGTH	-	52			

Figure 4 - Foreign Module Configuration

To reach this screen, press the page down key. Select the correct Reference Address for both the %AI registers and the %AQ registers. Enter 16 for %AI Length and 52 for %AQ Length.

4 MODULE CONFIGURATION

Table 2 – I/O Map Table					
Module Configuration (Filtering, Temperature format, Open Circuit Detection, Cold Junction Compensation)	%AQ0001 through %AQ0004				
Channel Configuration (Thermocouple Type, Low and High Setpoints)	%AQ0005 through %AQ0052				
Temperature Values	%AI0001 through %AI0016				

(Filte	Table 3 – Module Configuration. %AQ0001-0004 (Filtering, Resolution, Open Circuit Burnout and Cold Junction Compensation)					
Register	Function	Configuration				
%AQ0001	Digital Filtering	0 = No Filtering = 0.017 Second Scan Time 1 = 2 Samples/Update = .035 Second Scan Time 2 = 4 Samples/Update = .070 Second Scan Time 3 = 8 Samples/Update = .140 Second Scan Time 4 = 16 Samples/Update = .280 Second Scan Time 5 = 32 Samples/Update = .560 Second Scan Time 6 = 64 Samples/Update = 1.20 Second Scan Time 7 = 128 Samples/Update = 2.40 Second Scan Time				
%AQ0002	Temperature Format	$0 = 0.5^{\circ}$ Celsius Resolution $1 = 0.5^{\circ}$ Fahrenheit Resolution $2 = 0.1^{\circ}$ Celsius Resolution $3 = 0.1^{\circ}$ Fahrenheit Resolution				
%AQ0003	Open Circuit Detection	0 = Upscale Burnout 1 = Downscale Burnout				
%AQ0004	Cold Junction Compensation	0 = Internal 1 = External Current, -1uA/°K 2 = External voltage, 1mV/°K				

5 DIGITAL FILTERING

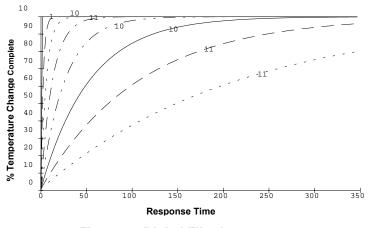


Figure 5 - Digital Filtering

The effect of digital filtering (set with %AQ0001) on the module's response to a temperature change. (%temperature change completed vs. time).

	Table 4 – Channel Configuration. %AQ0005-00052 (Thermocouple Type, Low Alarm Setpoint and High Alarm Setpoint						
%AQ	Function	%AQ	Function	%AQ	Function	%AQ	Function
5	Thermocouple Type Channel 1	17	Thermocouple Type Channel 5	29	Thermocouple Type Channel 9	41	Thermocouple Type Channel 13
6	Low Alarm Setpoint Channel 1	18	Low Alarm Setpoint Channel 5	30	Low Alarm Setpoint Channel 9	42	Low Alarm Setpoint Channel 13
7	High Alarm Setpoint Channel 1	19	High Alarm Setpoint Channel 5	31	High Alarm Setpoint Channel 9	43	High Alarm Setpoint Channel 13
8	Thermocouple Type Channel 2	20	Thermocouple Type Channel 6	32	Thermocouple Type Channel 10	44	Thermocouple Type Channel 14
9	Low Alarm Setpoint Channel 2	21	Low Alarm Setpoint Channel 6	33	Low Alarm Setpoint Channel 10	45	Low Alarm Setpoint Channel 14
10	High Alarm Setpoint Channel 2	22	High Alarm Setpoint Channel 6	34	High Alarm Setpoint Channel 10	46	High Alarm Setpoint Channel 14
11	Thermocouple Type Channel 3	23	Thermocouple Type Channel 7	35	Thermocouple Type Channel 11	47	Thermocouple Type Channel 15
12	Low Alarm Setpoint Channel 3	24	Low Alarm Setpoint Channel 7	36	Low Alarm Setpoint Channel 11	48	Low Alarm Setpoint Channel 15
13	High Alarm Setpoint Channel 3	25	High Alarm Setpoint Channel 7	37	High Alarm Setpoint Channel 11	49	High Alarm Setpoint Channel 15
14	Thermocouple Type Channel 4	26	Thermocouple Type Channel 8	38	Thermocouple Type Channel 12	50	Thermocouple Type Channel 16
15	Low Alarm Setpoint Channel 4	27	Low Alarm Setpoint Channel 8	39	Low Alarm Setpoint Channel 12	51	Low Alarm Setpoint Channel 16
16	High Alarm Setpoint Channel 4	28	High Alarm Setpoint Channel 8	40	High Alarm Setpoint Channel 12	52	High Alarm Setpoint Channel 16

6 CHANNEL CONFIGURATION


Table 5 – Thermocouple Type Configuration (J, K, N, T, E, R, S, B, C and JX)					
%AQ Value	Thermocouple Type	Temperature Range			
0	J	-210°C to 760°C			
1	К	-270°C to 1372°C			
2	Ν	-270°C to 1300°C			
3	Т	-270°C to 400°C			
4	E	-270°C to 1000°C			
5	R	0°C to 1768°C			
6	S	0°C to 1768°C			
7	В	0°C to 1820°C			
8	С	0°C to 2320°C			
9	J Extended	-178°C to 982.3°C			

6 TEMPERATURE INPUT

Table 6 – Temperature Values. %Al0001-00016					
Register	Value	Register	Value		
%AI0001	Temperature Channel 1	%AI0009	Temperature Channel 9		
%AI0002	Temperature Channel 2	%Al0010	Temperature Channel 10		
%AI0003	Temperature Channel 3	%Al0011	Temperature Channel 11		
%AI0004	Temperature Channel 4	%Al0012	Temperature Channel 12		
%AI0005	Temperature Channel 5	%Al0013	Temperature Channel 13		
%AI0006	Temperature Channel 6	%Al0014	Temperature Channel 14		
%AI0007	Temperature Channel 7	%Al0015	Temperature Channel 15		
%AI0008	Temperature Channel 8	%Al0016	Temperature Channel 16		

Table 7 – Temperature Scaling. %AQ0002				
%AQ0002 Value Temperature Format Scaling Formu				
0	0.5°C	°C = %AI / 2		
1	0.5°F	°F = %AI / 2		
2	0.1°C	°C = %AI / 10		
3	0.1°F	°F = %AI / 10		

7 EXTERNAL COLD JUNCTION

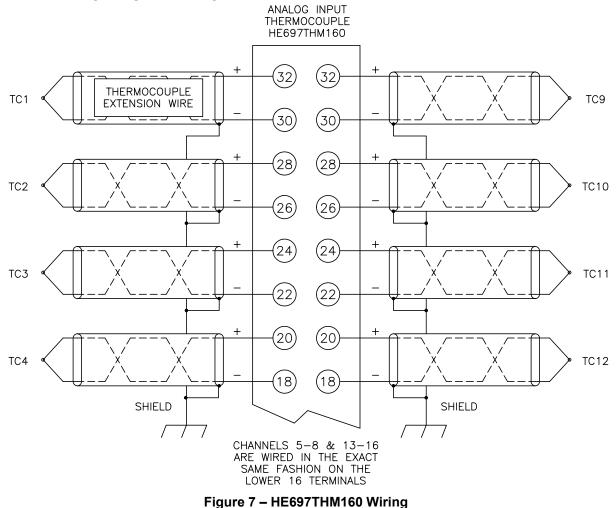


Figure 6 – External CJ and Ground Connector

- **PLC Gnd:** PLC Frame ground connection. Do <u>not</u> connect thermocouple grounds or shields to this point due to isolation barrier crossing.
- Vin -: Voltage common for external cold junction compensation. Not currently supported.
- Vin +: Voltage positive for external cold junction compensation. Not currently supported.
- AD592 +: Positive input for AD592 for external cold junction compensation. Not currently supported.
- AD592 -: negative input for AD592 for external cold junction compensation. Not currently supported.
- **THM Gnd:** Floating ground for thermocouple shields. This ground is isolated 500VDC from PLC ground.

NOTE: The 9-pin female D-sub connector and the reset push-button are used for factory calibration and configuration only.

8 WIRING / INSTALLATION

8.1 Installation Requirements

Special care must be taken with grounded junction sensors to avoid applying a voltage potential to the thermocouple junction. Extension wire of the proper Thermocouple type must be used. Keep total wire resistance less than 100Ω to maintain rated accuracy. Extension wiring should be routed in its own conduit. Shielded, twisted pair extension wiring offers best noise immunity. If shielded wiring is used, a good earth ground connection is critical. **Unused thermocouple inputs should be shorted together to avoid channel to channel cross-talk. Recommended wire size for terminal strip is 24 AWG**.

9 TECHNICAL ASSISTANCE

North America: (317) 916-4274 www.heapg.com

Europe: (+) 353-21-4321-266 www.horner-apg.com