

User Manual for

HE800DNM650/HEDNM650 & HE800DNS600/HEDNS600

DeviceNet

Master and Slave SmartStack[™] Modules

PREFACE

This manual explains how to use the Horner APG HSyCon software product.

Copyright © 2001 Horner APG, LLC., 640 North Sherman Drive, Indianapolis, Indiana 46201-3899. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior agreement and written permission of Horner APG, LLC.

Information in this document is subject to change without notice and does not represent a commitment on the part of Horner APG, LLC.

Windows 95[™], Windows 98[™], and Windows NT® are registered trademarks of Microsoft Corporation.

DeviceNet is a trademark of Open DeviceNet Vendors Association (ODVA). Profibus is a trademark of Siemens.

Cscape, CsCAN, and SmartStack are trademarks of Horner APG, LLC.

For user manual updates and technical support contact :

Horner APG (USA)	Horner APG (Europe)
Technical Support (317) 916-4274	Technical Support +353-21-4321266
web-site www.horner-apg.com.	web-site www.horner-apg.com

LIMITED WARRANTY AND LIMITATION OF LIABILITY

Horner APG, LLC. ("HE-APG") warrants to the original purchaser that the Operator Station manufactured by HE is free from defects in material and workmanship under normal use and service. The obligation of HE-APG under this warranty shall be limited to the repair or exchange of any part or parts which may prove defective under normal use and service within two (2) years from the date of manufacture or eighteen (18) months from the date of installation by the original purchaser whichever occurs first, such defect to be disclosed to the satisfaction of HE-APG after examination by HE-APG of the allegedly defective part or parts. THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE AND OF ALL OTHER OBLIGATIONS OR LIABILITIES AND HE-APG NEITHER ASSUMES, NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR HE-APG, ANY OTHER LIABILITY IN CONNECTION WITH THE SALE OF THE Operator Station. THIS WARRANTY SHALL NOT APPLY TO THE Operator Station OR ANY PART THEREOF WHICH HAS BEEN SUBJECT TO ACCESSORIES OR PARTS NOT SUPPLIED BY HE. THE TERM "ORIGINAL PURCHASER", AS USED IN THIS WARRANTY, SHALL BE DEEMED TO MEAN THAT PERSON FOR WHOM THE Operator Station IS ORIGINALLY INSTALLED. THIS WARRANTY SHALL APPLY ONLY WITHIN THE BOUNDARIES OF THE CONTINENTAL UNITED STATES.

In no event, whether as a result of breach of contract, warranty, tort (including negligence) or otherwise, shall HE-APG or its suppliers be liable of any special, consequential, incidental or penal damages including, but not limited to, loss of profit or revenues, loss of use of the products or any associated equipment, damage to associated equipment, cost of capital, cost of substitute products, facilities, services or replacement power, down time costs, or claims of original purchaser's customers for such damages.

List of Revisions

Index	Date	Version	Chapter	Revision	
	21-May-04	01	All	Initial Release	
	18-Mar-07	02	3	Added Cscape Configuration Section	
	10-Jul-08	03	9	Added Explicit Messaging chapter	

TABLE OF CONTENTS

PREFACE		.2
LIMITED	WARRANTY AND LIMITATION OF LIABILITY	.2
	R 1: INTRODUCTION	
1.1	Scope	.7
1.2	Introduction	.7
1.3	Installing and Removing a SmartStack Module	.8
1.4	Installing SmartStack Modules	
1.5	Removing SmartStack Modules	
1.6	Status LED definitions	
1.7	Main Functions	.9
CHAPTER	R 2: INSTALLATION	10
2.1	System Requirments	10
2.2	System Installation	10
2.3	Installation of the System Configurator HSyCon	11
CHAPTER	R 3: GETTING STARTED – CSCAPE CONFIGURATION	
3.1	Scope	
3.2	Configuring Cscape	15
3.3	Configuring a SmartStack DeviceNet Master with any DeviceNet Slave	
3.4	Configuring a SmartStack DeviceNet Slave with any DeviceNet Master	
3.5	Configuring a Horner DeviceNet Master with a Horner DeviceNet Slave	
	R 4: CONFIGURATION OF DEVICENET WITH HSYCON	22
4.1	Setting up the DEVICENET Configuration	
4.2	EDS Files (Electronic Data Sheet Files) Introduction	
4.3	EDS Files and HSyCon	
4.4	Insert Master	
4.5	Insert Device (Slave)	
4.6	Replace Slave	
4.7	Device Configuration	
4.8	MAC ID (Device network address)	
4.9	Actual chosen IO Connection	
4.10	Connection Object Instance Attributes	
4.11	UCMM Check	
4.12	Fragmented Timeout	
4.13	Parameter Data	
4.14	Process Data Configuration	
CHAPTER	R 5: SETTINGS	32
5.1	Device Assignment	32
5.2	COM Serial Driver	32
5.3	Bus Parameter	34
5.4	DeviceNet Master	34
5.5	Device (Slave)	38
5.6	Project Information	39
5.7	Path	39
5.8	Language	39
5.9	Start Options	40
CHAPTER	R 6: ONLINE FUNCTIONS	
6.1.	Introduction	
6.2.	Online to the Module	
6.3.	Downloading the Configuration	42
6.4.	Firmware Download	
6.5.	Firmware / Reset	43
6.6.	Device Info	44

DeviceNet Modules HE800DNM650 & HE800DNS600

6.7. 6.8.	Automatic Network Scan	
6.9.	Diagnostic Functions	
	•	
6.11.	Live List	
6.12.	•	
6.12. 6.13.	Debug Mode The Debug Window	
6.14.	Device Diagnostic	
6.1 4 .	Global State Field	
6.16.	Device Diagnostic	
6.17.	Extended Device Diagnostic	
6.18.	Extended Device Diagnostic Master	55
6.19.	Extended Device Diagnostic Naster	
6.20.	User Data Transfer	
6.21.	I/O Monitor	
6.22.	I/O Watch	
6.23.	DeviceNet Services	
6.24.	Get Device Attribute	
6.25.	Set Device Attribute	
6.26.	Change MAC-ID	
6.27.	Message Monitor	
6.28.	Message Monitor for testing explicit messaging of DeviceNet	
	R 7: FILE, PRINT, EXPORT, EDIT AND VIEW	
7.1. File		00
	pen	63
	ave and Save As	
	lose	
	t	
	ort Functions	
•	BM Export	
	SV Export	
	DataType Code	
	DataPosition Code	
7.4. Edit		•••
	elete	67
	eplace	
	v of the Configuration	
	evice Table	
	ddress Table	
	w Menu HSyCon	
	ogical Network View	
	polbars	
7.6.3. St	atus Bar	68
CHAPTER	8: ERROR NUMBERS	69
8.1.	CIF Device Driver (Dual-port memory) Error Numbers (-1-49)	69
	CIF Serial Driver Error Numbers (-2071)	
	RCS Error Numbers (4.93)	75
8.4.	Database Access Error Numbers (100 130)	77
8.5.	Online Data Manager Error Numbers (1000 . 1018)	
8.6.	Message Handler Error Numbers (2010 2027)	78
8.7.	Driver Functions Error Numbers (2501 2512)	79
8.8.	Online Data Manager Subfunctions Error Numbers (8001 8035)	79
8.9.	Data Base Functions Error Numbers (4000 4199).	80
8.10.	Converting Functions Error Numbers (5001 5008)	84
CHAPTEF	R 9: EXPLICIT MESSAGING USING DNM650	
9.1	General	85

DeviceNet Modules HE800DNM650 & HE800DNS600

9.2	Building Explicit Messages	85
9.3	How to Interpret Explicit Response Messages	
9.4	Explicit Message Errors	87
APPEN	NDIX:	
Α.	EXTENDED DEVICE DIAGNOSTIC MASTER	88
A.1.	PLC_TASK Common Variables	
A.2.	DNM_TASK Common Variables	
A.3.	DNM_TASK Device Running States	90
A.4.	DNM_Task Global State Field	90
A.5.	DNM_Task Communication Error	90
A.6.	DNM_Task Receive Queue	91
A.7.	DNM_Task Transmit Queue	91
A.8.	DNM_Task DeviceNet Command Counters	92
A.9.	DNM_Task Timeout Counter	93
A.10	. DNM_Task Init Counter	93
В.	EXTENDED DEVICE DIAGNOSTIC DEVICE (SLAVE)	94
B.1.	PLC_Task Common Variables (Device)	94
B.2.	DNS Task Common Variables	
B.3.	DNS_TASK Receive Queue (Device)	
B.4.	DNS_TASK Transmit Queue (Device)	

CHAPTER 1: INTRODUCTION

1.1 Scope

This manual shows how to connect and configure the DeviceNet Master or Slave Smartstack Modules. *HSyCon,* a Windows[™]-based software package, is an easy-to-use configuration package for use with the SmartStack COM range of fieldbus modules and Cscape or Cbreeze, a Windows[™] based package for use with the OCS/ TIU ranges. The software user's guide is contained in this manual.

A basic level of understanding of Microsoft Windows[™] technology and operation is assumed. The manual assumes that the user is familiar with Windows 95, Windows 98, Windows NT, Win 2000 or XP.

1.2 Introduction

The Fieldbus Smartstack module range require only three stages to get them operational, these are:

- 1. Physical installation and connection.
- 2. Configuration of the fieldbus interface.
- 3. Configuration of Cscape / Cbreeze to map the fieldbus data.

The system is comprised of two separate software software functions, the fieldbus interface software running independently in the COM module and the OCS/TIU firmware running in the main module. Data and commands are exchanged via a dual port ram interface. The configuration of the COM module is via the RS232 serial port on the module. For correct operation the number of registers assigned in the OCS must match the number required by the Master or Slave module configuration.

The Smartstack module should be configured with the OCS/TIU software first as otherwise it will be held in reset and cannot be configured.

1.3 Installing and Removing a SmartStack Module

The following section describes how to install and remove a SmartStack Module.

Caution: To function properly and avoid possible damage, do not install more than four SmartStack™ Modules per OCS or RCS. Do not attempt to install or remove a SmartStack module with the units powered on.

1.4 Installing SmartStack Modules

- 1. Hook the tabs. Each SmartStack Module has two tabs that fit into slots located on the OCS. (The slots on the OCS are located on the back cover.)
- 2. Press the SmartStack Module into the "locked" position, making sure to align the SmartStack Module fasteners with the SmartStack receptacles on the OCS.

1.5 Removing SmartStack Modules

- 1. Using a flathead screwdriver, lever up the end of the SmartStack Module (opposite end to tabs) and swing the module out.
- 2. Lift out the tabs of the module.

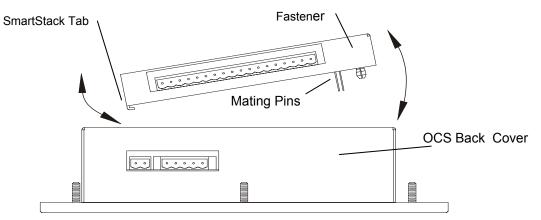


Figure 2.1 – Installing a SmartStack Module in an OCS

1.6 Status LED definitions

Signal	LED Colour	State	Definition
		ON	Critical Link Failure
NET	RED	Flashing	Connection Time out
		OFF	Device Not Powered
		ON	ON-LINE Link OK
	GREEN	Flashing	ON-LINE, Not connected
		OFF	Device Not Powered
		ON	Unrecoverable Fault
MOD	RED	FLASHING	Minor Fault
		OFF	No Power
		ON	Normal Operation
	GREEN	FLASHING	Configuration Failure
		OFF	No Power
		ON	COM ready
RDY	YELLOW	FLASHING CYCLIC	Bootstrap Loader Active
		FLASHING NON CYCLIC	Hardware or System Error
		OFF	Hardware Error
		ON	Communication Running
RUN	GREEN	FLASHING NON CYCLIC	Parameter Error
		OFF	Communication Stopped

Status Signals of the DNM650 and DNS600

1.7 Main Functions

The main functions of the DEVICENET System Configurator are:

- Universal Fieldbus Configurator Configuration of the complete Fieldbus range with one package.
- Documents Fieldbus system detailed documentation of the Fieldbus network may be printed.
- Standardised configuration files allows use of protocol specific standardised configuration files.
- Diagnostic tool upon configuration download the software may be switched into diagnostic mode.

CHAPTER 2: INSTALLATION

2.1 System Requirments

- PC with 486-, Pentium processor or higher.
- Windows 95/98/ME, Windows NT/2000/XP.
- Free disk space: 30 80 Mbyte.
- CD ROM drive.
- RAM: min. 16 Mbyte.
- Graphic resolution: min. 800 x 600 pixel.
- Windows 95: Service Pack 1 or higher.
- Windows NT: Service Pack 3 or higher.
- Keyboard and Mouse.

2.2 System Installation

It is recommended that all application programs on the system are closed before installation begins. Insert the Cscape CD in the local CD ROM drive. The HSycon installation program will start automatically when installation of Cscape is complete (see Fig 2.1)

i 🚼 Cscape	· InstallShield Wizard
Installin The pro	g Cscape gram features you selected are being installed.
12	Please wait while the InstallShield Wizard installs Cscape. This may take several minutes.
	Status:
	Comm Configurator
	Yes No
InstallShield	
	< <u>Back</u> Next > Cancel
	F : 0.4

Fig 2.1

Note: Administrator privileges are required on Windows NT/2000/XP systems for installation.

The installation program asks for the components to install. Answer these questions with **Yes** or **No**. Tick 'No' for the OPC Server function, it is not included with this installation pack.

Installing		izard
1	seve	e the InstallShield Wizard installs Cscape. This may take etup Language Select the language for this installation from the choices below. English French (Standard) German
InstallShield -		< <u>B</u> ack <u>N</u> ext > Cancel

Fig 2.2

2.3 Installation of the System Configurator HSyCon

Follow the instructions of the installation program by selecting the Language, Fieldbus system to be installed and answer all the questions with **OK** or **NEXT**.

Fig 2.3

The installation program copies the program files, GSD or EDS files and Bitmaps to the PC.

yCon Application Setup Select Components		
Select the components to install.		
PROFIBUS		16003 K
☑ DeviceNet		7457 K
✓ InterBus		34802 K
✓ AS-interface		4155 K
CANopen		11204 K
Destination Folder		
C:\Program Files\Horner APG\	HSyCon	Browse
Space Required on C:	99120 K	D 11.0
Space Available on C: allShield	45413076 K	Disk Space
	< Back	Next > Cancel

Fig 2.4

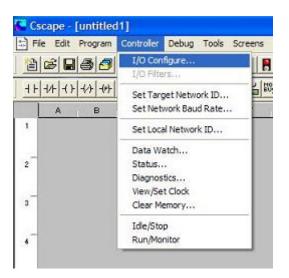
HSyCon Application Setup	
	Setup complete
	HSyCon Setup is almost complete. Choose the options you want below.
	✓ I would like to view the README file.
	Click Finish to complete HSyCon Setup.
	K Back Finish Cancel

Fig 2.5

Finally the following files are entered in the system Registry.

- System DLLs
- The application

<u>NOTES</u>


CHAPTER 3: GETTING STARTED – CSCAPE CONFIGURATION

3.1 Scope

This chapter describes the procedures for configuring the DeviceNet Master and slaves. This includes loading EDS files, saving, downloading and assigning I/O.

3.2 Configuring Cscape.

The following describes the steps involved to setup Cscape. Attach the communications module to the appropriate OCS unit. Open Cscape. All I/O is setup through the I/O Configure Menu in Cscape:

The following window is displayed. Select the CONFIG button adjacent to the first empty slot (nearest the main unit).

Figure 3.2

Select the COMM Tab. From here select the appropriate DeviceNet Module and click OK.

	Mixed Digital	Digital In	Digital Out	Mixed Analog	Analog In
5000CS	Analog C	u	Comm		Other
Auto Con	HE800DNT450 - C HE800ETN100 - E HE800ETN100 - E HE800ETN200 - E HE800ETN200 - F HE800FOX100 - F HE800JCM200 - J HE800JCM205 - J HE800PBM650 - F HE800PBM650 - F	CANopen Master T Net Interface DeviceNet Maste DeviceNet Slave DeviceNet Master themet Module themet themet ber Optic Expans CM20D-J1939 CA 2M205-J1939 CA	r ion N N		~

Figure 3.3

The selected module is now visibly attached to the main unit and can be configured.

I/O Configuration	
CPU Slots Network I/O	
HE500OCS210-CsCAN	OCS Smart Stacktm
DeviceNet Master	Config
Empty	EMPTY Config
Empty	Config
Empty	Config
Auto Config System	
	OK Cancel Apply

Figure 3.4

) Map Module Setup	
Start SYCO	N Config Tool >>>
Inputs	
Starting Reg: %R0500	Number Regs: 8
	1
Outputs	
Starting Reg: %R0508	Number Regs: 8
Status	
Commands: %M0001	8x (1811)
Buffer Out: %R0900	
	4 х 16-вп
Bit Status: %M0009	16x (181)
Buffer In: %R0904	бх 16-ВІТ
Sanor III.	
	OK Cancel Apr

Select the CONFIG button adjacent to the module. Then select the MODULE SETUP tab.

Configure the Inputs and Outputs.

NOTE:

INPUTS: means data coming FROM the Network VIA the DNM/DNS Module to the OCS Registers.

OUTPUTS: means data going TO the NETWORK VIA the DNM/DNS Module from the OCS Registers.

In Figure 3.5 above, For both Inputs and Outputs, 8 %R registers are used. The OCS %R registers are retentive, general purpose, 16 bit registers.

It is VERY important that the number of registers used for both Inputs and Outputs in Cscape is identical to the number setup in the Hsycon software when setting up the DNM650 and DNS600 modules. See Figure 3.6 below.

evice Config	uration							
MAC ID Description	2 HE800DNS600	File name	HOF	INDNS.E	DS		_	Module Configuration
Actual choser	10 connection lit strobe C Cha pject Instance Attri	nge of state	• C C	yclic	IT UCI	MM che	ick	Start SYCON Config Tool >>>
Expected pac Watchdog tim Produced cor	ket rate 2 eout action 1	200 Fimeout	2	- Fra	duction i gmented isumed (l Timeou	ut	Inputs Starting Reg: 1/2 R0500 Number Regs: 1/8 Outputs
Data type BYTE ARRA' BYTE ARRA'	,	Description Input Date Output D	ta		1	Data le 8 8	ngth	Starting Reg: ¹ %R0508 Number Regs: 8 Status Commands: ¹ %M0001 8 x (19)
Data type BYTE ARRAN				ess I Addr. 0		e O Ler		Buffer Out: %R0900 4 x ****** Bit Status: %M0009 16 x ****** Buffer In: %R0904 6 x ************************************
BYTE ARRA'	' Output_Data				QB	8	0	OK Cancel Apply

Figure 3.6

3.3 Configuring a SmartStack DeviceNet Master with any DeviceNet Slave

Table 4 below describes the steps to configure a Horner Smartstack DeviceNet Master to any DeviceNet Device (Slave).

Action

- Create a new project
- Copy EDS file of the DeviceNet device (Slave), if the device is not in the selection list.
- Choose Horner DeviceNet Master and provide MAC ID.
- Choose DeviceNet device and provide MAC ID address
- Assign the input and output modules (*1)
- Assign the offset addresses
- Assign the Device Parameter data, if the Device needs Parameter data
- Set the Bus parameter
- Set device assignment if no automatic assignment has occurred
- Save project
- Download
- Live list
- Start Debugger
- Device diagnostic
- Stop Debugger
- Global Diagnostic
- Transfer user data:
 Write output, read input

Menu in the System Configurator File > New > DeviceNet File > Copy EDS

Insert > Master Insert > Device Mark the Device (left Mouse click), then Settings > Device Configuration Mark the Device (left Mouse click), then Settings > Device Configuration > Parameter Data Mark the Master (left Mouse click), then Settings > Bus Parameters Mark the Master (left Mouse click), then Settings > Device Assignment File > Save Mark the Master (left Mouse click), then Online > Download Mark the Master (left Mouse click), then Online > Live List Mark the Master (left Mouse click), then Online > Start Debug Mode Mark the Slave (left Mouse click), then **Online > Device Diagnostic** Online > Stop Debug Mode Mark the Master (left Mouse click), then **Online > Global State Field** Mark the Master (left Mouse click), then Online > I/O Monitor

Table 4: Steps to Configure DNM650 with any DeviceNet Slave.

Note (*1): The Offset addresses assigned in the Slave configuration are always related to the Master.

3.4 Configuring a SmartStack DeviceNet Slave with any DeviceNet Master

Table 5 below describes the steps to configure a Horner DeviceNet Slave to any DeviceNet Master as it is typical for many cases.

Action

Menu in the System Configurator

•	Create a new project	File > New > DeviceNet
•	Choose DeviceNet Master (*1) and provide MAC ID address	Insert > Master
•	Choose Horner DeviceNet device (Slave) and provide Mac address	Insert > Device
•	Assign the input and output modules (*2)	Mark the Device (left Mouse click), then
		Settings > Device Configuration
٠	Set device assignment if no automatic assignment	Mark the Device (left Mouse click), then
	has occurred	Settings > Device Assignment
•	Save project	File > Save
٠	Download	Mark the Slave (left Mouse click), then
		Online > Download
•	Device diagnostic	Mark the Slave (left Mouse click), then
		Online > Device Diagnostic
•	Transfer user data:	Mark the Device (left Mouse click), then
	Write output, read input	Online > I/O Monitor

Table 5: Steps to configure a DNS600 with any DeviceNet Master.

Note (*1): Insert a Horner SmartStack DeviceNet Master (HE800DNM650). This Master is a place holder and it is not necessary to match the connected Master.

Note (*2): The Offset addresses assigned in the Slave configuration are always related to the DeviceNet Master.

Menu in the System Configurator

3.5 Configuring a Horner DeviceNet Master with a Horner DeviceNet Slave

Table 6 below describes the steps to configure a SmartStack DeviceNet Master to a Smartstack DeviceNet slave :

Action

File > New > DeviceNet Create a new project Insert > Master Choose Horner DeviceNet Master and provide MAC ID address Choose Horner DeviceNet Device (Slave) and provide MAC ID Insert > Device address Assign the input and output modules Mark the Device (left Mouse click), then • Assign the offset addresses (*1) Settings > Device Configuration Set the Bus parameter Mark the Master (left Mouse click), then Settings > Bus Parameters Set device assignment for the Master if no automatic assignment Mark the Master (left Mouse click), then has occurred Settings > Device Assignment Set device assignment for the Device (Slave) if no automatic Mark the Device (left Mouse click), then assignment has occurred Settings > Device Assignment Save project File > Save • Download to the Master Mark the Master (left Mouse click), then Online > Download Download to the Device (Slave) Mark the Device (left Mouse click), then Online > Download Live list Mark the Master (left Mouse click), then Online > Live List Mark the Master (left Mouse click), then Start Debugger Online > Start Debug Mode Device diagnostic Mark the Device (left Mouse click), then **Online > Device Diagnostic** Stop Debugger Online > Stop Debug Mode • **Global Diagnostic** Mark the Master (left Mouse click), then **Online > Global State Field** Transfer user data: Mark the Master (left Mouse click), then Write output, read input Online > I/O Monitor

Table 6: Steps to configure a DNM650 with DNS600's.

Note (*1): The Offset addresses assigned in the Slave configuration are always related to the DeviceNet Master.

CHAPTER 4: CONFIGURATION OF DEVICENET WITH HSYCON

4.1 Setting up the DEVICENET Configuration

To create a new configuration, choose the **File > New** menu. This will offer a selection list of fieldbus systems. Choose **DEVICENET**. If only the DeviceNet fieldbus system is installed, the configuration window will open directly. The name of the configuration file can be allocated when the configuration is finished or with **File > Save As**.

4.2 EDS Files (Electronic Data Sheet Files) Introduction

An Electronic Data Sheet (EDS) provides information necessary to access and alter the configurable parameters of a device. An Electronic Data Sheet (EDS) is an external file that contains information about configurable attributes for the device, including object addresses of each parameter. The application objects in a device represent the destination addresses for configuration data. These addresses are encoded in the EDS. The figure below shows a general block diagram of a sample EDS.

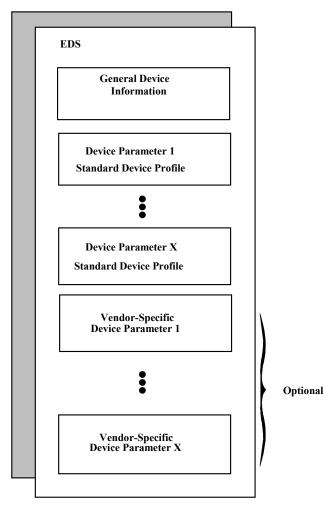


Figure 1: General block diagram of an EDS file

4.3 EDS Files and HSyCon

When HSyCon is started, it automatically retrieves all the EDS files stored in the EDS directory. The device names are placed in an internal list. During the configuration, the device-specific data is retrieved directly from the EDS files.

If a DeviceNet device does not appear in the selection list (Insert Master or Insert Device), the required EDS file may be copied into the EDS directory with **File > Copy EDS**. Another method is to copy the EDS file into the HSyCon EDS directory with Windows Explorer and then access the EDS files in the EDS directory with **Settings > Path** and **OK**.

Horner devices: The EDS files for Horner devices are included and already installed. **Other devices:** The respective device manufacturer provides the EDS files for other devices.

The EDS files of some vendors are available on the DeviceNet homepage <u>http://www.odva.org</u> or visit the homepage of the manufacturer.

The EDS directory is adjustable. In order to alter the directory from a previous setting in another directory, use the menu **Settings > Path**. All EDS files must be placed in this directory.

4.4 Insert Master

To insert a Master into the configuration, choose the **Insert > Master** menu, this will open the selection window, or click on the symbol :

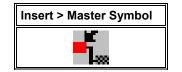


Figure 1: Symbol Insert > Master

The mouse pointer automatically changes to the Insert Master pointer.

Insert Master Mouse Pointer			
$\mathbf{\overline{M}}$			

Figure 2: Mousepointer insert Master

Click on the position where the Master should be inserted. The dialog box from which one or more Masters can be chosen opens. The following types of Masters may be selected:

Insert Master					X
Available master: HE800DNM650	-001	Add >> Add All >> << Remove << Remove All	Selected ma		OK Cancel
Vendor Catalog listing File name	Horner APG HE800DNM65 COMDNM.EDS		MAC ID Description	0 Master	

Figure 3: Selectable Master types

Select a Master device from the **Available Masters** list by clicking on it. By clicking the **Add** button the Master is shown in the list **Selected Masters**. Click the **OK** button, the Master will be inserted at the top of the configuration.

This example shows an HE500DNM650-001. The Master gets the description Master at first. This may be changed in the **Description** field. The **MAC ID** of the Master may also be changed here.

4.5 Insert Device (Slave)

To insert a DeviceNet Slave in the configuration select the **Insert > Device** menu to open the selection window or click on the following Icon:

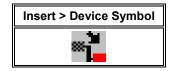


Table 4: Insert > Device Symbol

The mouse cursor changes automatically to the insert device cursor.

Insert Devic Pointer	ce Mouse
6	đ

Table 5: Insert Device Mouse Pointer

Click on the position at which the new device should be inserted. A dialogue box appears from which one or more devices may be chosen.

DeviceNet Modules HE800DNM650 & HE800DNS600

Insert Device		×
Device filter Vendor Hom Type All	er 💌	Master OK HE800DNM650-001 Cancel
Available devices		Selected devices
OCS200-DeviceNe	ət	Add >> Add All >> << Remove
Vendor	Horner	MAC ID 2
Catalog listing		Description Device2
EDS File	OCS200.EDS	
EDS File Revision	1.0	

Figure 2: Insert > Device (Slave)

The list on the left displays all the Slave devices whose EDS files have been put in the EDS directory. A filter may be used to limit the selection list of the manufacturer. Further information on a Slave is shown below the selection list (**Available devices**) when it is selected (one mouse click). Apart from the vendor name and the description especially the ID-Code, the I/O-Code, the file name and the file revision are given. The Slave appears on the right-hand list with a mouse click or with the **Add** button.

All devices in the right-hand list are assigned to the current insert point that is also shown in this window. If the Slaves in the right-hand list are chosen one after the other (a mouse click), then every Slave can be assigned a name in the **Description** field.

With each new selected device in the right list the MAC ID is incremented by one but it can be changed by the user in the field **MAC ID**.

Note: It is possible to select the same device more than once, however, each device must have a unique MAC ID to distinguish it in the network.

4.6 Replace Slave

To replace an existing Slave device first mark the device to be replaced. Then proceed as described in the section 4.5 Replace Master.

4.7 Device Configuration

To enter the Device Configuration set the focus on the device (left mouse click) and select the menu **Settings > Device Configuration** or set the focus on the device (left mouse click) and use the right mouse button at the device or simply double-click on the device.

The device's I/O are assigned to logical addresses in the process data image <u>of the Master</u> in the device configuration. Note that the device offsets set here will be used in the application to read inputs and write outputs.

DeviceNet Modules HE800DNM650 & HE800DNS600

evice Configuration			×
MAC ID 1 F Description HE5000CS200DN C Activate device in actual config			OK Cancel Actual device 1 / OCS200_DeviceNet
Actual chosen IO connection • Poll • Bit strobe • C Change	je of state O Cyclic 🗖 UC	MM check Group 3 💌	ſ
Connection Object Instance Attribu Expected packet rate 200 Watchdog timeout action Tim Produced connection size 32 Available predefined connection date	Production reout Fragmented Consumed		Parameter Data
	Description	Data length	
	Input	1	
BYTE ARRAY	Output	1	
		Add to	configured I/O data
- Configured I/O connection data an			
Data type Description		be O Len. O Addr. 🔺	
BYTE ARRAY Module1	IB 32 0		
BYTE ARRAY Module2	QB	32 0 Delete	configured I/O data
		S	ymbolic Names

Figure 3: Settings > Device Configuration

Note 1: The offset addresses set in this window are for the addressing of the input data and output data in the Master. These address settings (offsets) are not the settings in the DeviceNet device (Slave). The DeviceNet device (Slave) organizes its data itself.

Note 2: The input data and the output data from the bus are transferred directly to the dual-port memory in the DeviceNet Slave. These offset addresses are related to the Master.

The **File Name** displayed is the EDS file for the device.

The **Description** and **MAC ID** fields display the entries made during the selection phase of the Slave device. Both entries can be set/changed here.

The checkbox **Activate Device in actual configuration** decides, whether the Master tries to establish the communication with the Node or not. If a Node is physically not present in the network but will be present in future then the checkbox should not be checked. This suppresses unnecessary requests by the Master to devices that do not exist, but the device insertion reserves process data in the process data image of the Master.

4.8 MAC ID (Device network address)

The network address of a device serves to distinguish itself on a DeviceNet fieldbus system from any other device or Slave on this network. This should be a unique number for each device. A valid MAC-ID address is within a range of 0 to 63 and can be re-entered and changed in the **MAC-ID** box in the **Device Configuration** Dialog.

4.9 Actual chosen IO Connection

DeviceNet allows several kinds of I/O connections between devices. Please note that a device does not have to support all types of IO connections.

I/O connection				
Poll				
Bit Strobe				
Change of State				
Cyclic				

 Table 6: Overview I/O Connections

The different connections types are :

- Polled I/O Connection One poll command from the Master sends a number of output data to a single, specific device (point-to-point). The device receives (consumes) the poll command and processes the output data. If it has input data configured for this poll connection it reacts by sending (producing) back a number of input data and/or status information to the Master. Before a polled I/O connection is initiated by the Master, it reads the **Consumed** and **Produced Connection Size** of the data from the Slave first and compares each value with the internally configured one. If the Master detects differences the connection cannot be established. Sending a poll command can happen at any time the Master wants to and has timer or event dependencies. A device has to respond if it has consumed and understood the poll command request of the Master, even if it has no input data. Otherwise the Master will report a timeout error. Polling data to many devices has the disadvantage that the network traffic rate is very high and most data which is transferred has not changed since the last transmission. Furthermore the higher the bus load more communication errors can occur if the bus is disturbed by external influences.
- Bit Strobe I/O Connection Bit strobe command and response messages rapidly move small amounts of I/O data between the Master device and one/some/all Slave devices. The bit strobe message contains a bit string of 64 bits of output data, one output bit per possible device. Each bit is assigned to one device address in the network. This service has broadcast functionality that means more than one Slave device can be addressed by one command. Because all addressed Slave devices get this command at the same time, this command is normally used to synchronize data transfer to several Slave devices. A Slave device can take its corresponding output bit as a real output information to give it to the peripheral connections (e.g. an LED) and/or use the bit as a trigger to send back its input data with a poll response message. The data that can be send back from each Slave after a bit strobe command was received is limited to 8 bytes in length. Bit strobe connections reduce the bus loading.
- Change of State/Cyclic I/O Connection The Master device sends a number of output data to a single, specific device (point-to-point). Data production is triggered by either a determined changed value in the output data or the cyclic timer expiration. Depending on how the Slave behaviour is configured, the Slave can send back an acknowledge message, containing a number of input data and/or status information. The Slave device sends a number of input data to the Master, if the data is either changed or the cyclic timer has expired. The Master itself can acknowledge this message with output data if configured.
- Change of state only production of data hold down the bus load as small as possible, while data than can be transmitted as fast as possible by each device because bus conflicts are less possible. High performance data transmission can be achieved with comparatively low baud rates.

4.10 Connection Object Instance Attributes

The **Production Inhibit Time**, one for each connection, configures the minimum delay time between new data production in multiples of a millisecond. The timer is reloaded each time new data production through the established connection occurs. While the timer is running the device suppresses new data production until the timer has expired. This method prevents that the device is overloaded with to fast incoming requests.

The value 0 defines no inhibit time and data production can and will be done as fast as possible. If in polled mode for example a **Production Inhibit Time** of 1000dec is configured, then the poll request message to the device will be sent every second.

The **Expected Packet Rate**, one for each connection, is always transferred to the device before starting and doing the I/O transfer. The value is used by the device later to reload its 'Transmission Trigger' and 'Watchdog Timer'. The 'Transmission Trigger Timer' is used in a 'cyclic' I/O connection to control the time when the data shall be produced. Expiration of this timer then is an indication that the associated connection must transmit the corresponding I/O message. In 'change of state' connections the timer is used to avoid the watchdog timeout in this connection, when a production has not occurred since the timer was activated or reloaded.

Note: the **Production Inhibit Time** is verified against the **Expected Packet Rate**. If the Expected Packet Rate value is unequal zero, but less than the Production Inhibit Time value, then an error window is opened when pressing the OK button or changing to a wrong value.

The **Watchdog Timeout Action** defines the device behaviour when the watchdog timer in the device expires. The following values are defined and their functionality is closer described in the DeviceNet specification.

- **Transition to Timed Out**: The connection transitions to the Timed Out state and remains in this state until it is Reset or Deleted.
- Auto Delete: The connection class automatically deletes the connection if it experiences an Inactivity/Watchdog timeout.
- Auto Reset: The connection remains in the established state and immediately restarts the Inactivity/Watchdog timer.

4.11 UCMM Check

The UCMM Check box is used for modules that require the use of UCMM messaging format. Class 1,2,and 3 are supported. Check the documentation for the Slave device to identify if this box must be checked.

4.12 Fragmented Timeout

If a transmission of I/O data or explicit message is greater than 8 bytes in length, it must be transmitted on DeviceNet in a fragmented manner. The maximum time the Master will wait until a Slave has to respond during the fragmented transmissions is the fragmented timeout.

4.13 Parameter Data

The button **Parameter Data** can be selected in the Device Configuration window to edit the parameter data.

If default parameters are configured in the EDS file for this Node, they are inserted automatically when the menu is chosen the first time.

Some of devices need some further parameterisation data, to change for example a measurement limitation or a value range. These data is Node specific and their functionality can not be explained at this point.

The explanation can be normally found in the corresponding Node manual. This window below shows an example of parameter data of a device.

Obj. Cla 0001 64 0002 64	ass Inst. 01	Attr.	Туре						
	01		Libbe	Access	Parameter Name	Min	Max		<u>C</u> ancel
Na 2000	101	07	UINT	Ro	Analog Output Data Length	0000	FFFF		
0002 104	01	08	UINT	Ro	Analog Input Data Length	0000	FFFF		
0003 64	01	09	UINT	Ro	Digital Output Data Length	0000	FFFF		
0004 64	01	0A	UINT	Ro	Digital Input Data Length	0000	FFFF		
0005 64	01	05	USINT	Ro	Coupler status	00	FF		
0006 64	01	06	UINT	Ro	Module status	0000	FFFF		
0007 64	01	01	USINT	R/W	Module No.	Coupler	64. Module	-	⊻alues
ustomized Class Ins	l Paramete st. Attr.	г Туре		Paramet	er Name	Value			
	a. A.u.	Type		1 aramet	er Manie	* diuc		-71	
									<u>A</u> dd
									<u>D</u> elete
									<u>D</u> ele

Figure 4: Settings > Device Configuration > Parameter Data

Two tables are available: one table with all available parameters and one table for customized parameters. These parameters can be selected from the available parameters to that table.

4.14 Process Data Configuration

• Fixed I/O data transferred

DeviceNet handles I/O data transparent as a byte string without defining any data type in the transferred data. To be operative it defines only the number of bytes in consumed and produced direction that shall be transferred across a connection, nothing else. But HSyCon and the firmware now allows to assign modular each byte or a bunch of bytes of the transparent string to different data types. A list of the supported data types of the connection can be found in the middle table of the window called **Available Predefined Connection Data Types**.

The following data types are supported:

• Bit, Byte, Word, Dword, Byte Array

If the data type **Byte Array** is chosen the number of bytes that shall be reserved for this data type can be entered in the **Data Count** column in the lower table. Any other data type has its fixed length that can not be changed. The data types are distinguished in process output and process input data in the view of the Master device.

A double-click on a predefined data type or a click in the **Add to configured I/O data** button will insert the chosen data type in the lower table called **Configured I/O connection data**. This table contains all data that shall be really transferred across the connection. HSyCon will add separately the number of used bytes of each configured I/O data and forms the values **Consumed** and **Produced Connection Size** automatically. Both values indicates the sum of bytes which shall be sent by the Master as outputs (**Consumed** by the device) and received by the Master as inputs (**Produced** by the device).

• Assigning the process data offset addresses

The I/O offset addresses of each placed data type in the connection data table can be freely configured in a range of 0 to 3583 or they are set automatically by HSyCon. To enable or disable free configuration use the flag **Auto Addressing** in the menu **Settings - Auto Addressing**. If enabled HSyCon will place all configured I/O data, without spaces in physical order one after another based on the rising MAC-ID order. This is done during the download procedure. The assigned addresses can be checked then in the overview **Address Table** of the menu **View**. If the addresses are entered manually the default address 0 in the **input address** respectively the **output address** must be overwritten. Depending on the **Addressing mode** in the **DNM Master Settings** the addresses are byte addresses or word addresses. This is described in the chapter Addressing mode.

In case of manual addressing (that means auto addressing is deactivated) the configuration window looks like:

Device Configuration	×
MAC ID 1 Description HE5000CS200D	1 J OCC200, DaviesNet, H
Actual chosen IO connection • Poll C Bit strobe C Char	nge of state 🔿 Cyclic 🔲 UCMM check Group 3 💌
	00 Production inhibit time 10 imeout Fragmented Timeout 1600 ms
Available predefined connection	data types Description Data length
BYTE ARRAY	Input 1
BYTE ARRAY	Output 1
	Add to configured I/O data
Configured I/O connection data a	
BYTE ARRAY Module1 BYTE ARRAY Module2	I Type I Len. L Addr. O Type O Len. O Addr. IB 32 25
	Delete configured I/O data
	Symbolic Names

Figure 5: Settings > Device Configuration

In the column **I** Addr and **O** Addr, the addresses where to locate the data in the process image must be assigned. Remember that these addresses correspond to the application on the HOST side. If a device is deactivated in the actual configuration the device is shown like this:

Device1

MAC ID Gerät

1 CIF50-DNS

Activating or deactivating a device in a configuration can be very useful for devices that don't exist in the real physical network. The I/O offset addresses will be reserved or simply a symbolic 'missing device' waiting to be inserted as long the device is not connected.

CHAPTER 5: SETTINGS

5.1 Device Assignment

The Device Assignment setting determines how the System Configurator communicates with the device. This is set in the device arrangement via the menu **Settings > Device Assignment**. The following possibilities are available:

CIF Device Driver:

• Not supported do not choose this driver.

CIF Serial Driver:

• CIF Serial Driver: The HSycon Configurator communicates with the SmartStack device over a serial connection. In this case a COM interface of the PC must be connected via a cable (straight) with the diagnostic interface of the SmartStack device. The cable is standard Horner Programming cable.

CIF TCP/IP Driver:

• Not supported. Do not choose this driver.

5.2 COM Serial Driver

The serial driver supports COM1 to COM 4, in order to communicate via the diagnostic interface with the device. The Device is selected via **Settings > Device Assignment.**

Driver select		×
CIF TCP/IP D CIF Serial Driv CIF Device D	'er	<u>O</u> K <u>C</u> ancel
Vendor Version Date	Hilscher GmbH V1.100 25.02.2000	
Functions	5	

Figure 6: Driver selection > CIF Serial Driver

Choose the **CIF Serial Driver** and then **OK**, in order to select the CIF Serial Driver.

The connection must first be established using the switching surface **Connect COM1**, **Connect COM2**, **Connect COM3** or **Connect COM4**. They can be used depending on which COM interfaces are installed and free on the PC.

The System Configurator sends a request to the corresponding COM interface and polls the Firmware of the device. A display of the Firmware will indicate when a device is connected. In the other case, a Timeout error (-51) appears, which will state that no device is connected.

Device Assignme	ent CIF Serial	Driver					×
Driver Descriptio	n						ОК
Device Driver	CIF Serial Driv	CIF Serial Driver					
Board Selection							Cancel
Duala Selection	Name	Туре	Version	Date	Error		
🔽 СОМ 1	DNM	COM-DNM	V01.090	17.04.03	0	Connect COM 1	
🗖 COM 2					-20	Connect COM 2	
🗖 СОМ З					0	Connect COM 3	
🗖 COM 4					-20	Connect COM 4	

Figure 7: CIF Serial Driver > Device Assignment

The error number –20 indicates that this COM interface is not available or free.

Device Assignm	ent CIF S	erial Driver					×
Priver Descript	ion						<u>о</u> к
Device Drive	r CIF Seria	al Driver					
Board Selection	n						<u>C</u> ancel
	Name	Туре	Version	Date	Error		
🗖 СОМ 1	DNM	CIF50DNM	V01.060	16.08.00	0	Connect COM <u>1</u>	
🗖 COM 2					-51	Connect COM 2	
🗖 СОМ З					-20	Connect COM 3	
🗖 COM 4					-20	Connect COM <u>4</u>	

Figure 8: CIF Serial Driver > Device Assignment

5.3 Bus Parameter

In the menu **Settings > Bus Parameter** the basic settings for the DeviceNet network must be done.

Bus Parameter			×
Baudrate	125 KBits/s	•	ОК
MAC ID Master	0		Cancel
☑ Auto clear mode			

Figure 9: Settings > Bus Parameters

Mainly, this concerns the determination of the **Baudrate**. The DeviceNet board supports the baudrates 125kbit/s, 250kbit/s and 500kbit/s. Normally DeviceNet components use the autobaud detection to get the baudrate automatically. Furthermore, the **MAC ID** for the Master can be assigned in the Bus Parameter window.

The **Auto Clear mode** feature defines the behaviour of the Master if the communication breaks down or is interrupted to a Node. If the flag **Auto clear mode ON** is activated, then the Master will also stop the communication to all further Nodes which were still responding and active. If the flag Auto clear mode is not activated, then a lost communication contact to one Node has no influence on the communication channel of the still present ones. For all the error effected Nodes the Master remains in the state to try the reestablishment of the communication again.

5.4 DeviceNet Master

5.4.1. DeviceNet Master Settings

To enter the DeviceNet Master settings set the focus on the Master (left mouse click) and select the menu **Settings > Master Settings** or set the focus on the Master (left mouse click) and use the right mouse button at the DeviceNet Master device or simply doubleclick on the DeviceNet Master device. The DeviceNet Master settings contain parameters which define the behaviour of the device on its user interface which is not a part of the DeviceNet configuration directly. This menu is only valid for Horner devices, and is downloaded with the DeviceNet configuration.

DeviceNet Modules HE800DNM650 & HE800DNS600

Parameter to user interface Startup behaviour after system init		OK Cancel
User program monitoring Watchdog time	0 ms	
Parameter to process data interface Addressing mode C Byte addresses • Word addresses	Handshake of the process data C Bus synchronous, device controlled C Buffered, device controlled	
Storage format (word module) O Big Endian O Little Endian	 No consistence, uncontrolled Buffered, host controlled Bus synchronous, host controlled Buffered, extended host controlled 	
Hardware parameter C 2 kB dual-port memory C 8	kB dual-port memory C 16 kB dual-port memory	

Figure 10: Settings > Master Settings

• Startup behaviour after system initialization

If Automatic release of the communication by the device is selected, the Master starts with the data transfer on the bus when initialisation is finished. If Controlled release of the communication by the application program is selected, the user has to start the data transfer on the bus, by a defined release procedure.

Note: The HE800DNM650 must be set to Automatic release of the communication by the device

User program monitoring

The watchdog time appointed defines how long the device will wait for a user trigger of the software watchdog if started once, until it resets all outputs of the device to zero. This procedure must be activated by the user application and is not started automatically.

Note: This is not a special DeviceNet function. Watchdog Time must be set to 0 for HE800DNM650

• Addressing mode

The addressing mode of the process data defines, how to interpret the addresses of the process image. Possibilities are **Byte addresses** or **Word addresses**. See details next page.

• Storage format (word module)

The storage format fixes the format, how the data is placed and interpreted in the process images. For the data type word the **Little Endian** format and **Big Endian** format can be selected.

• Handshake of the process data

With these different modes the handshake of the process data is selected for the Master. The selection of this mode is important for the correct data exchange between the application and the device. Please refer to the tool kit or the device driver manual for the detailed description of these modes. If foreign user programs or drivers are used, like S5 for Windows for example, refer to the delivered manual to choose the right mode.

NOTE: For HE800DNM650, this must be set to Buffered, host controlled

• Hardware parameter

With this parameter, the size of the dual-port memory of the hardware is selected. The parameter will enlarge or reduce the possible value ranges for the I/O offsets.

5.4.2. Auto Addressing

With this Check Box it is possible to force the System Configurator to allocate the process data addresses in physical order itself or to enable the manual address configuration. Please see also Process Data Configuration on page 27.

5.4.2. Addressing Mode

The addresses in the configuration of the Nodes define the starting point of the data in the process depiction. This can work in a Word or Byte oriented method by means of the **Addressing mode** parameter.

Addresses	Meaning
Byte addresses	The process depiction has a Byte structure and each Byte has its own address.
Word addresses	The process depiction has a Word structure and each Word has its own address.

Table 7: Addressing Mode

This has nothing to do with the physical size of the Dual-port memory – this is always Byte-oriented! When the application makes a Word access, it is automatically divided by the PC into two sequential Byte accesses. The following table shows the different storing of the various data types in the Byte- or Word-oriented process image:

IEC address in Byte mode	IEC address in Word mode	Offset address in the Dual- port memory	Data in the Process image	Output to an I/O module
QB 0	QB 0	0	0000 0000	
QB 1		1	0000 0000	
QB 2	QB1	2	1110 0010	Output of QB2 / QB1 to a single Byte module: D7 D6 D5 D4 D3 D2 D1 D0 1 1 1 0 0 0 1 0
QB 3		3	0000 0000	
QB 4 QB 5	QB2	4 5	1111 1000 0000 0111	Output of two Bytes beginning from QB4 / QB2 to a module that is defined as a Byte module with the data count 2 (no differentiation between the two memory formats as the data are of Byte type): D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
QW 6	QW3	6 7	1111 1111 0100 0100	Output of QW6 / QW3 in the data format lower/higher value Byte: D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1

 Table 8: Example for data in the process data image

Byte Addressing			
Byte 0	IB 0	IW 0	
Byte 1	IB 1		
Byte 2	IB 2	IW 2	
Byte 3	IB 3		
Byte 4	IB 4	IW 4	
Byte 5	IB 5		

Word Addressing			
Word 0	IB 0	IW 0	
	-		
Word 1	IB 1	IW 1	
	-		
Word 2	IB 2	IW 2	
	-		

The following table is meant to clarify the method of addressing:

Figure 11: Image of the method of addressing for input

Byte Addressing			
Byte 0	QB 0	QW 0	
Byte 1	QB 1		
Byte 2	QB 2	QW 2	
Byte 3	QB 3		
Byte 4	QB 4	QW 4	
Byte 5	QB 5		

Word Addressing			
Word 0	QB 0	QW 0	
	-		
Word 1	QB 1	QW 1	
	-		
Word 2	QB 2	QW 2	
	-		

Figure 12: Image of the method of addressing for output

5.5 Device (Slave)

5.5.1. Device Configuration

To call up the menu Device Configuration, set the focus at the device (left mouse click) and select the menu **Settings > Device Configuration**

or

make a doubleclick on the device icon will open the **Device Configuration** window. The section Device Configuration on page 25 describes the configuration.

5.6 **Project Information**

When a project is created, the project information can be typed into the **Settings > Project Information** menu. This entry can then be read when this menu is called up.

Project Info		×
Design name Version number	HE800DNM650 and HE5000CS200DNet 1	OK Cancel
Company	Homer APG	
Producer		
Creation date	12.05.2004	
Last alternation by		
Last alternation at	12.05.2004	
Remark	comms test	

Figure 13: Settings > Project Information

Click the **OK** button to save the Project Information.

5.7 Path

In the menu **Settings > Path** the path directory of the EDS files is shown (EDS File directory). The default value is:

C:\Program Files\HornerAPG\HSyCon\Fieldbus\DEVNet\EDS

The path for Project directory defines the path where the project specific files are stored.

P	ath		×
	EDS Directory EDS File directory	C:\Program Files\Horner APG\HSyCon\Fieldbus\DEVNet\	OK Cancel
	Project directory	C:\Program Files\Horner APG\HSyCon\Project	

Figure 14: Settings > Path

Click the **OK** button to read in all EDS files.

5.8 Language

Choose the **Settings > Language** menu and the following window opens:

)K Incel

Figure 15: Settings > Language

The language of the System Configurator can be set. Select the desired language and confirm the entry with the **OK** button.

A message appears that the System Configurator must be started again in order to activate the selected language. Please carry this out.

After restarting the System Configurator, the language will have changed to the one selected.

Note: Up to now not all languages are available for all fieldbuses!

5.9 Start Options

After activating the **Settings > Start Options** menu point in the network mode (the network mode can be changed by choosing **Window > Logical Network View**), the following dialog will appear.

Here it is possible to set the various starting options or modes. Some are of importance only for the OPC-Server operation.

The important ones are given below.

Start Options		×
Simulation mode ON/OFF	Auto connect ON/OFF	ОК
 Start SyCon hidden if started via OPC Start SyCon next Time with last Configuration Logical Network View visible 	 Gend Message only when changed Message transfer syncronuous 	Cancel
Fast start options	Selected	
Fast start ON/OFF	Product	Code
	License	
MSG tracer options		
MSG tracing ON/OFF		
_		
Start with multiple configurations	[*	

Figure 16: Settings > Start Options

Simulation mode ON/OFF

Only valid for the OPC Server.

• Start HSyCon hidden if started via OPC

Only valid for the OPC Server.

• Start HSyCon next time with last Configuration

When this is selected the last saved configuration in the HSyCon is automatically loaded when the HSyCon is started again.

• Logic Network View visible

When this is selected possibility of diverting to the network mode without having to install the HSyCon with OPC. It is also possible to use the Watch List from the network mode.

• Fast start ON/OFF

Only valid for the OPC Server.

• TAG tracing ON/OFF

Only valid for the OPC Server.

• OPC tracing ON/OFF

Only valid for the OPC Server.

• Start with multiple configurations

If this option is selected HSyCon can be started with up to four configurations simultaneously. The paths are shown in the window and they are changeable there.

Start Options			×
	den if started via OPC t Time with last Configuration	 Auto connect ON/OFF Send Message only when changed Message transfer syncronuous 	OK Cancel
Fast start options-		Selected	
📕 📕 Fast start 0N/0	FF	Product	Code
MSG tracer options		License	
Configurations		rcon\project\dnm650 and ocs200dnet.dn	
Configuration 2		con\project\dnm650 and TIU103.dn	
Configuration 3		con\project\dnm650 and DNS600.dn	
Configuration 4	-	con\project\dnm650 and TIU203.dn	

Figure 17: Settings > Start Options

CHAPTER 6: ONLINE FUNCTIONS

6.1. Introduction

In this section all the functions that directly affect the Horner DeviceNet Modules are described, e.g. HE800DNS600 and HE800DNM650.

Note: This will permit interruption of Devicenet communication and outputs can be switched ON or OFF.

6.2. Online to the Module

First, the desired device must be chosen for downloading by a left mouse click on the symbol of the device.

6.3. Downloading the Configuration

In order to release the configuration and network access, a transfer (Download) to the DNM/DNS devices must be carried out on the **Online > Download** menu. A warning will appear that the communication on the DeviceNet will be interrupted. This warning must be confirmed.

Question	
?	If the download is done during the bus operation, the communication between the devices is stopped. Do you really want to download?
	Yes No

Figure 18: Security question before Download

Attention: The download overwrites the configuration in the device and the communication with the connected devices is interrupted.

Download		
a		
Data base	DNM650 and OCS200Dnet.dn	
Length of data base	880	
Error	0	
0	1650	

Figure 19: Online > Download

Before the download is executed, the configuration is tested by the Configurator. The most common cause of error is overlapping of addresses in the process data image. This can be checked by calling up the address table with the **View > Address Table** menu point.

If the issue of addresses in the process data image should be carried out automatically, then the **Auto Addressing** button in the **Master Configuration** window must be activated.

The configuration is transferred into the selected device and stored there in FLASH memory in a zero voltage manner so that the configuration is available when the voltage supply is switched off and on again.

After the download, the device carries out an internal restart and begins with the communication if in **DeviceNet Master Settings** the **Automatic Release of Communication by the Device** menu point has been set.

6.4. Firmware Download

If a Firmware download is to be carried out, proceed as follows: first the desired device for Firmware downloading must be chosen in that the symbol of the device is selected with a left mouse click. Then, call up the **Online > Firmware Download** menu. Select the new Firmware and retrieve it with **Download** into the device. The Firmware is now retrieved.

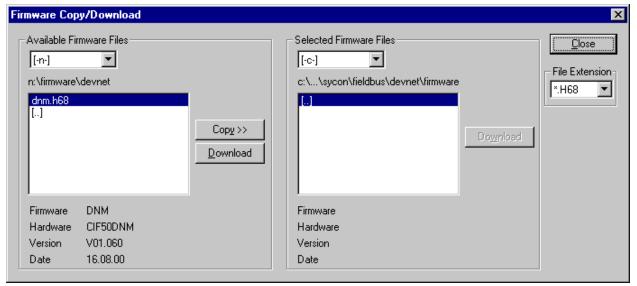


Figure 20: Online > Firmware Download

6.5. Firmware / Reset

First the desired device must be chosen with a left mouse click on the symbol of the device. Then the **Online > Firmware / Reset** menu must be called up and the name and the version of the Firmware are displayed.

ïrmware Inf	formation						ок			
Firmware	DNM	COM-DNM	1							
/ersion	V01.09	V01.090 17.04.03 Reset								
Error	0									
ask Inform	ation									
ask Inform	ation					_				
ask Inform Task	ation Task Name	Version	Prio	Start Idx.	State	7				
		Version 1.501	Prio 0	Start Idx.	State OK	7				
Task	Task Name									
Task	Task Name	1.501	0	0	OK					
Task O 1	Task Name RCS	1.501 0.000	0	0	OK free					
Task O 1 2	Task Name RCS PLC	1.501 0.000 1.009	0 0 2	0 0 1	OK free OK					
Task 0 1 2 3	Task Name RCS PLC	1.501 0.000 1.009 1.100	0 0 2 1	0 0 1 2	OK free OK OK					
Task 0 1 2 3 4	Task Name RCS PLC	1.501 0.000 1.009 1.100 0.000	0 0 2 1 0	0 0 1 2 0	OK free OK OK free					

Figure 21: Online > Firmware / Reset

Click the button **Reset** to reset the device.

6.6. Device Info

First the desired device must be chosen with a left mouse click on the symbol of the device. Then select the **Online > Device Info** menu in order to obtain further information on the selected device. The manufacturer date, the device number and the serial number of the device is retrieved and shown.

	ОК
i9	
	SEr

Figure 22: Online > Device Info

6.7. Automatic Network Scan

After the Master device is configured, it is possible to scan the DeviceNet network for other devices (automatic network scan). This allows a very fast configuration, and detailed parameters for these devices can be changed later.

To start an automatic network scan, please proceed as followed:

- 1. Create a new project: Select the menu **File > New** and **DeviceNet**.
- 2. Select a Master: The Master is selected with the menu Insert > Master
- 3. Click on **Settings > Bus parameters** and select the baudrate and the MAC ID from the Master (explained in section Bus Parameter on page 34)
- 4. Select **Online > Download** to load these settings into the DeviceNet Master.
- 5. Save: With the menu **File > Save** the so far set settings are saved.
- 6. Click on the Master and choose **Online > Automatic Network Scan**

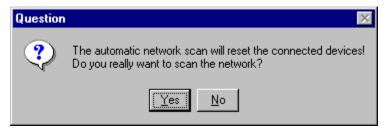


Figure 23: Online > Automatic Network Scan (Security question)

DeviceNet Modules HE800DNM650 & HE800DNS600

addrate	ate 500 KBits/s Current Status Scanning. Please Wait. Scan needs approx. 30 Seconds.										K.
Address	Supported Functions	Device Name	Poll Size	Poll Size	BitStr. Size	BitStr. Size	Cyc/COS. Size	Cyc/COS. Size	Choosen 🔺 Config.	Barrou	
	[Produced	Consumed	Produced	Consumed	Produced	Consumed		Configu	inatro
MACIDIO											
MAC ID 1											
MAC ID 2											
MAC ID 3											
MAC ID 4											
MAC ID 5											
MAC ID 6											
MACID 7											
MACID 8											
MAC ID 9											
MAC ID 10											
MAC ID 11											
MAC ID 12 MAC ID 13											
MACID 13 MACID 14											
MACID 14 MACID 15											
MACID 15 MACID 16										SError	0
MACID 16 MACID 17									•		0

Figure 24: Online > Automatic Network Scan (during scan)

The network scan will take approx. 30 seconds. The network scan is still in progress and could not be interrupted until the status, shown in the field "Current Status", is "Ready!". When the scan is done, the devices found can be seen at the corresponding MAC ID address in the table. The master reads the following objects from the DeviceNet device (Slave) during the scan:

Element	Class.Instance.Attribute
Device Name	1.1.7
Poll Size Produced	5.2.7
Poll Size Consumed	5.2.8
BitStr. Size Produced	5.3.7
BitStr. Size Consumed	5.3.8
Cyc/COS. Size Produced	5.4.7
Cyc/COS. Size Consumed	5.4.8

 Table 9: Readed Classes.Instance.Attribute during the network scan

Example:

		Current Status				Rea	dul				OK	<
audrate	125 KBits/	ls Current Status				1100	с.у.					·
Address	Supported Functions	Device Name	Poll Size	Poll Size	BitStr. Size	BitStr. Size	Cyc/CO Size	Cyc/COS Size	Choosen Config.	_	Auton	
			Produced	Consumed	Produce	Consurr	Produce	Consume			Configu	ration
MAC ID 0	Not found											_
MAC ID 1	Poll, Expl. Msg	OCS200-DeviceNet	32	32	0	0	0	0	Polling			
MAC ID 2	Not found											
MAC ID 3	Not found											
MAC ID 4	Not found											
MAC ID 5	Not found											
MAC ID 6	Not found											
MAC ID 7	Not found											
MAC ID 8	Not found											
MAC ID 9	Not found											
MAC ID 10	Not found											
	Not found											
MAC ID 12												
MAC ID 13												
MAC ID 14												
MAC ID 15												
MAC ID 16	Not found										SError	0
MAC ID 17	Not found									•	RError	0

Figure 25: Online > Automatic Network Scan (after scan)

In our example in the figure above the automatic network scan detected a Horner device at MAC ID 1. Here is an explanation of the different columns:

Variable	Meaning
Supported functions	Functions supported by the device, could be polled, bit strobe or cyclic/change of state (see explanation in Actual chosen IO Connection page 27)
Device Name	Name of the device, result from network scan
Poll Size Produced	Number of data for poll connection (input)
Poll Size Consumed	Number of data for poll connection (output)
BitStr. Size Produced	Number of data for bit strobe connection (input)
BitStr. Size Consumed	Number of data for bit strobe connection (output)
Cyc/COS. Size Produced	Number of data for cyclic/COS connection (input)
Cyc/COS. Size Consumed	Number of data for cyclic/COS connection (output)
Chosen Config	Configuration chosen by the user, could be Change of State, Cyclic, Polling, Bit strobed or explicit only and depends on the functions supported by the device. Click on the cell to change the configuration.

Table 10: Meaning of the columns in the automatic network scan

A double click on the first or second column of the corresponding row of the device shows information of the device

Figure 26: Information on a device in the automatic scan window

If this configuration is the required one, click on **Automatic Configuration** and select **Yes** when prompted. Afterwards the Automatic Configuration Window can be closed by clicking on **Close**. If the devices that were found in the configuration are not required, just click **Close**. To manually insert the devices, please go on with section Insert Device (Slave) on page 24.

6.8. Start/Stop Communication

First the desired Master must be chosen with a left mouse click on the symbol of the Master. The communication between the DeviceNet Master and the DeviceNet Slaves can be manually started or stopped. In order to do this select the **Online > Communication start** or **Online > Communication stop** menu.

6.9. Diagnostic Functions

The following table shows Diagnostic Functions and their using for

- Horner DeviceNet Master devices
- Horner DeviceNet Slaves

Diagnostic Functions	Using	Usable for Horner DeviceNet Masters devices	Usable for Horner DeviceNet Slave devices
Live List	Detects, which devices are connected to the Horner DeviceNet Master	Yes	No, only for Horner Master devices
Debug Mode	Detects, to which DeviceNet Slaves the Master has a connection	Yes	No, only for Horner Master devices
Global State Field	State information of the Horner DeviceNet Master	Yes	No, only for Horner Master devices
Extended Device Diagnostic	Statistic information and state information from the Horner DeviceNet device	Yes	Yes

Table 11: Overview Diagnostic Functions

6.10. Live List

×

Select the menu **Online > Live List** for an overview of all devices physically present in the actual network constellation. Present devices are drawn in black, all other non present devices are drawn in grey. The live list works online. If a station is connected or disconnected, the result can be seen as soon as HSyCon collects the latest live list from the Master board. Remember that all devices on DeviceNet have to proceed the autobaud detection phase first to get wholly run. This can take several milliseconds.

Figure 27: Online > Live List

6.11. Change MAC-ID

The window to change a MAC-ID opens with a double click on the address (MAC-ID) of a DeviceNet device (slave).

Change MAC	ID	×
Old MAC ID New MAC ID	1 2 T	<u>QK</u> <u>S</u> end Error

Figure 28: Online > Live List > Change MAC-ID

Select the new MAC-ID in the **New MAC-ID** field and click on the **Send** button to send it to the DeviceNet device (slave).

Note: The DeviceNet device (slave) has to support this function if this function is required.

6.12. Debug Mode

Select the Master device by clicking on it. Then select the menu item **Online > Start Debug Mode**. The System Configurator cyclically interrogates the status of the network communication on the CIF, COM or PKV and the individual condition of the devices.

To end the Debug Mode select the menu **Online > Stop Debug Mode**.

6.13. The Debug Window

When started the debug session the configuration window changes into the debug window. The devices and the line between them are displayed in green or red colour depending on the established network communication.

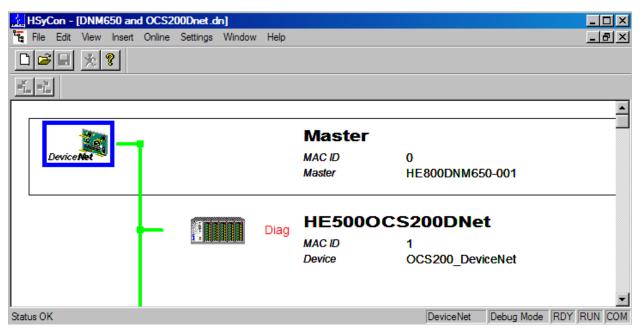


Figure 29: The Debug window

If diagnostic information is available for a specific device, next to the device icon the text **Diag** appears in red. To get further device specific diagnostic information then doubleclick on the device itself or set the focus to the device an select **Online > Device Diagnostic**.

6.14. Device Diagnostic

After the debug started from this time HSyCon requests the status of all devices from the Master. If there is an error on a device the bus line to this Slave is drawn in red colour otherwise it is green. HSyCon also displays the letters **Diag**, if the device signals a diagnostic information. Click on the device with the mouse to display more information. To activate the debug mode select the menu **Online > Start Debug Mode**. The menu **Online > Device Diagnostic** activates the DeviceNet device diagnostic. To end the Debug Mode select the menu **Online > Stop Debug Mode**.

Diagnostic MAC ID 1			×
Device status flags No response Error buffer overflow Parameterization fault Configuration fault UCMM support	Device main state Online error number General error code Additional error code Heartbeat timeout counter	wait I/O poll response 2'nd time none 0 0 0	OK
Deactivated			Error 0

Figure 30: Online > Device Diagnostic

Device status flags in the Device Diagnostic	Meaning
No response	The Device is configured but is not present in the network. Please check the physical connection between the Master and this Node. Check also the chosen baudrate and if this baudrate is supported by this device.
Error Buffer Overflow	DeviceNet defines a special reserved error channel for each Slave with high priority to give each Node the possibility to report emergency messages triggered by the occurrence of a device internal fatal error situation. The emergency message of each Node are collected in an internal buffer of a limited size. In this case the buffer overflow event is reported.
Parameterization Fault	The Master compares the configured Device Profile and the corresponding Device Type value of the Device Configuration window with the real physically present ones in the Slave by reading out the Slave configuration object. If the Master detects differences between the values it will report the Parameterization Fault.
Configuration Fault	A configuration fault will occur if a difference is seen between the configured Produced/Consumed data size and the actual Slave Produced/Consumed data size.
UCMM Support	The box will be checked if the Slave device requires UCMM support.
Deactivated	This bit is set by the Master automatically, if the Node state was configured to Deactivate Device in actual configuration in the Device Configuration window.

The individual bits in the **Device Diagnostic** have the following meaning:

Table 12: Meaning of the bits in the Device Diagnostic

6.15. Global State Field

First select the Master device by clicking on it. With the menu option **Online > Global State Field** opens a window in that cyclically statistic about the bus status and attached devices is put out.

Global stat	le fie	d																×
Online mas Collective :				OP UP [ERA DMAC	-	1DY	EVE	E/	ΑT	NEX	CA	CLR	CTRL		0	ĸ	
Collective Error at r				ation	and	corre	spon	iding i O		dec]			
Correspo	onding	error	ever	nt				(nor	ie)									
- Statistic Counter Counter	of det	ecteo	lbus		•		ns	0 0		dec dec								
Device s	pecifi	c stat	us bi	ts—											1			
Parame	eterize	ed De	vices		Act	ivate	d De ^r	vices		Devi	ces v	vith D	iagno	ostic				
0	1	2	3	4	5	6	7	8	9	10	11	12	13					
14	15	16	17	18	19	20	21	22	23	24	25	26	27					
28	29	30	31	32	33	34	35	36	37	38	39	40	41					
42	43	44	45	46	47	48	49	50	51	52	53	54	55					
56	57	58	59	60	61	62	63									Error	0	

Figure 31: Online > Global State Field

The first row displays the main state of the Master. It can have the state **OPERATE** or **STOP**. The next row display individual bus errors. A pending error is displayed with a red field. The meaning of the individual abbreviations is described in the following.

Status Bits	Meaning
PDUP	The device is involved in the duplicate MAC-ID check procedure, to check if other devices with the same address are connected to the network. The duplicate MAC-ID check will be finished, if at least one DeviceNet device could have been found connected to the network.
DMAC	The DEVICE has stopped the duplicate MAC-ID check procedure and found an other device having the same MAC-ID address. Change the DEVICE address to avoid this failure.
NRDY	HOST-NOT-READY-NOTIFICATION indicates if the host program has set its state to operative or not. If this bit is set the host program is not ready to communicate.
EVE	EVENT-ERROR The used CAN chip has detected transmission errors. The number of detected events are counted in the bus off reports and the error warning limit counter. The bit will be set when the first event was detected and will not be deleted any more.
FAT	FATAL-ERROR Because of severe bus error, no further bus communication is possible.
NEXC	NON-EXCHANGE-ERROR At least one Node has not reached the data exchange state and no process data are exchange with it.
ACLR	AUTO-CLEAR-ERROR The device stopped the communication to all Nodes and reached the auto-clear end state.
CTRL	CONTROL-ERROR Master parameterization error detected.

Table 13: Meaning of collecting status bits in the Global State Field

Further Information:

Collective online error location and corresponding error gives the address of the faulty station and the error in words.

Statistical bus information gives the number of detected bus errors and the rejected telegrams. Device specific status bits: **Parameterized Devices**, **Activated Devices** and **Devices with Diagnostic** are shown when this button is clicked. The activated addresses are white numbers.

This application updates online the status in the global state field.

Diagnostics can be seen by double clicking at a highlighted station address of a device.

6.16. Device Diagnostic

After the debug started from this time HSyCon requests the status of all devices from the Master. If there is an error on a device the bus line to this Slave is drawn in red colour otherwise it is green. HSyCon also displays the letters **Diag**, if the device signals diagnostic information. Click on the device for more information. To activate the debug mode select the menu **Online > Start Debug Mode**. The menu **Online > Device Diagnostic** activates the DeviceNet device diagnostic. To end the Debug Mode select the menu **Online > Stop Debug Mode**.

Diagnostic MAC ID 1			×
Device status flags No response Error buffer overflow Parameterization fault Configuration fault UCMM support	Device main state Online error number General error code Additional error code Heartbeat timeout counter	wait 1/0 poll response 2'nd time none 0 0 0	OK
Deactivated			Error 0

Figure 32: Online > Device Diagnostic

The individual bits in the **Device Diagnostic** have the following meaning:

Device status flags in the Device Diagnostic	Meaning
No response	The Device is configured but is not present in the network. Please check the physical connection between the Master and this Node. Check also the chosen baudrate and if this baudrate is supported by this device.
Error Buffer Overflow	DeviceNet defines a special reserved error channel for each Slave with high priority to give each Node the possibility to report emergency messages triggered by the occurrence of a device internal fatal error situation. The emergency message of each Node are collected in an internal buffer of a limited size. In this case the buffer overflow event is reported.
Parameterization Fault	The Master compares the configured Device Profile and the corresponding Device Type value of the Device Configuration window with the real physically present ones in the Slave by reading out the Slave configuration object. If the Master detects differences between the values it will report the Parameterization Fault.
Configuration Fault	A configuration fault will occur if a difference is seen between the configured Produced/Consumed data size and the actual Slave Produced/Consumed data size.
UCMM Support	The box will be checked if the Slave device requires UCMM support.
Deactivated	This bit is set by the Master automatically, if the Node state was configured to Deactivate Device in actual configuration in the Device Configuration window.

Table 14: Meaning of the bits in the Device Diagnostic

6.17. Extended Device Diagnostic

The Extended Device Diagnostic helps to find bus and configuration errors when the HSyCon menu functions are of no further help.

First the desired device must be chosen with a left mouse click on the symbol of the device. Then select the menu **Online > Extended Device Diagnostic**.

This menu opens a list of diagnostic structures. These contain online counters, statuses and parameters:

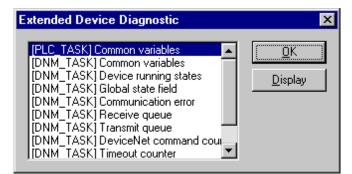


Figure 33: Online > Extended Device Diagnostic (Master)

6.18. Extended Device Diagnostic Master

PLC_TASK DNM_TASK

Task / Task State	Page
	88
PLC_TASK Common Variables	
DNM_TASK Common Variables	88
DNM_TASK Device Running States	90
DNM_Task Communication Error	90
DNM_Task Receive Queue	91
DNM_Task Transmit Queue	91
DNM_Task DeviceNet Command Counters	92
DNM_Task Timeout Counter	93
DNM_Task Init Counter	93

 Table 15: Extended Device Diagnostic Master

6.19. Extended Device Diagnostic Device (Slave)

PLC_TASK DNS_TASK

Task / Task State	Page
PLC_Task Common Variables (Device)	94
DNS_Task Common Variables	95
DNS_TASK Receive Queue (Device)	96
DNS_TASK Transmit Queue (Device)	97

Table 16: Extended Device Diagnostic Device (Slave)

6.20. User Data Transfer

The following table shows test functions with user data transfer and the usability for

- Horner DeviceNet Master devices
- Horner DeviceNet Slaves

User data transfer function	Usage	Usable with Horner DeviceNet Master devices	Usable with Horner DeviceNet Master devices
I/O Monitor	Read input data and set output data. (cyclic I/O data exchange)	Yes	Yes
I/O Watch	Read input data and set output data. (cyclic I/O data exchange)	Yes	Yes
Get Device Attribute and	Get and Set attribute	Yes	No, only for Horner Master
6.25 Set Device Attribute			devices

Table 17: Overview User Data Transfer

Further test functions with user data transfer are available for

- Explicit Messaging for DeviceNet Master in section *Message Monitor for testing explicit* messaging of DeviceNet
- on page 62.

6.21. I/O Monitor

This is an easy way of viewing and changing the first 32 Bytes of the process data image.

dec	0	1	2	3	4	5	6	7	8	9		
0	0	0	127	255	127	255	127	0	0	0		DEC/HE
1	0	0	0	0	0	0	0	0	0	0		
2	0	0	0	0	0	0	0	0	0	0		
3	0	0										
4												
											- U	
5												
5 6												
5												
5 6 7												
5 6 7	lata											
5 6 7	Jata 0	1	2	3	4	5	6	7	8	9		<u>U</u> pdate
5 6 7 Jutput d		1				5	6	7	8			Update
5 6 7 Jutput d	0		0	0	0							<u>U</u> pdate
5 6 7 0 0 1 2	0 255	0 0 0	0		0	0	0	0	0		_	Update
5 7 Jutput o dec 0 1	0 255 0	0	0		0	0	0	0	0		0	<u>U</u> pdate
5 6 7 0 0 1 2	0 255 0 0	0 0 0	0		0	0	0	0	0		0	 Update

Figure 34: Online > IO Monitor

DEC/HEX converts the display of the input data. The output data are always in the decimal form. Enter the output value and then press **Update**.

Always the first 32 input and output Bytes of the process description are shown, also when these Bytes have not been occupied by the configuration.

The display is always in a byte manner.

The I/O Watch Monitor described in the next section allows a more comfortable display.

6.22. I/O Watch

The I/O Watch monitor can be used in place of the I/O Monitor and offers more functionality.

- Various data formats: Hex, Unsigned Decimal, Signed Decimal, Bit
- The I/O Watch monitor works symbol oriented
- It is not necessary to know the offset addresses

The following firmware supports the I/O Watch monitor function:

Fieldbus	From Version
PROFIBUS-DP Master	1.040 (Kombimaster) bzw. 1.140 (DP-Master)
InterBus Master	2.040
CANopen Master	1.040
DeviceNet Master	1.058

Table 18: Firmware for I/O Watch functions

The following table lists the typical steps to use the I/O Watch monitor. Preconditions:

- The project/configuration already exists, containing a DeviceNet Master and a DeviceNet device (or Slave) as described in CHAPTER 3: Getting Started CSCAPE Configuration starting on page 15.
- The Configuration has been downloaded into the DeviceNet Master using **Online > Download**
- Running bus system
 - 1. Open the existing project using **File > Open**.
 - 2. Open the Windows dropdown menu and select **Window > Logical Network View** to change the window. A window with three sections opens

Left Window	Center Window	Right Window
Project Tree structure	Tag / Symbol	IO Watch

3. Open the tree structure in the left window to reach the I/O module of the device desired:

HSyCon - [Network View]				
File View Online Settings Window	Help			_ & ×
Logical Network View		Tag	l List	
DNM650 and OCS200Dnet_dn	Tag Name	Туре	Offset	Processing
🖻 🦉 Master	I Input001	8-bit signed integer (char)	0 Master Assignment	direct Read Only
HE Name: DNM650 and OCS	200Dnet_dn, Desc:Lo	aded configuration, Tag count:	64 Master Assignment	direct Read Only
	Input003	8-bit signed integer (char)	2 Master Assignment	direct Read Only
Module 1	Input004	8-bit signed integer (char)	3 Master Assignment	direct Read Only
	Input005	8-bit signed integer (char)	4 Master Assignment	direct Read Only
Onconnected	Input006	8-bit signed integer (char)	5 Master Assignment	direct Read Only
	I Input007	8-bit signed integer (char)	6 Master Assignment	direct Read Only
	I Input008	8-bit signed integer (char)	7 Master Assignment	direct Read Only
	I Input009	8-bit signed integer (char)	8 Master Assignment	direct Read Only
	I Input010	8-bit signed integer (char)	9 Master Assignment	direct Read Only
	I Input011	8-bit signed integer (char)	10 Master Assignment	direct Read Only
	Input012	8-bit signed integer (char)	11 Master Assignment	direct Read Only
	1 i into 1	013 - 111 - 71 - 3	12 1 1 1 1	
For Help, press F1			<insta< td=""><td>alled without OPC></td></insta<>	alled without OPC>

Project > Master > Device > Connection Type > Date Type

Figure 35: Logical Network View and I/O Watch

- 4. Left click on the module desired and the tags (I/Os) will be displayed in the center window of the Logical Network View.
- 5. Select with the left mouse button the tag/symbol desired and drag and drop them in the right window of the Logical Network View (IO Watch).
- 6. In the right window select the desired tag with the left mouse click to highlight it then right mouse click to open a menu. Select **Start**. A new window called IO Watch appears.
- 7. A table shows the Device, Symbolic Name, IEC Address (Offset), Data type Representation and Value. Select the line with the desired information. Click on **Hex** under Representation and select the way the values are to be displayed. Choices are Hex, Decimal unsigned, Decimal signed, Bit pattern.
- 8. Input data are displayed and can't be changed. Output data can be entered into the value column.

)evice	SymName	IEC-Address	Data-Type	Representation	Value
E5000CS200DNet.Poll.Module1	Input001	0	Byte	Hex	F5
E5000CS200DNet.Poll.Module1	Input002	1	Byte	Hex	05
E5000CS200DNet.Poll.Module1	Input003	2	Byte	Hex	40
E5000CS200DNet.Poll.Module1	Input004	3	Byte	Hex	01
E5000CS200DNet.Poll.Module1	Input005	4	Byte	Hex	00
E5000CS200DNet.Poll.Module1	I Input006	5	Byte	Hex	40
E5000CS200DNet.Poll.Module1	I Input007	6	Byte	Hex	00
E5000CS200DNet.Poll.Module1	Input008	7	Byte	Hex	00
E5000CS200DNet.Poll.Module1	I Input009	8	Byte	Hex	00
E5000CS200DNet.Poll.Module1	Input010	9	Byte	Hex	00
E5000CS200DNet.Poll.Module2	Output001	0	Byte	Hex	24
E5000CS200DNet.Poll.Module2	Output002	1	Byte	Hex	00
E5000CS200DNet.Poll.Module2	O Output003	2	Byte	Hex	00
E5000CS200DNet.Poll.Module2	Output004	3	Byte	Hex	00
E5000CS200DNet.Poll.Module2	Output005	4	Byte	Hex	AA
E5000CS200DNet.Poll.Module2	Output006	5	Byte	Hex	00
E5000CS200DNet.Poll.Module2	Output007	6	Byte	Hex	7C
E5000CS200DNet.Poll.Module2	Output008	7	Byte	Hex	05
E5000CS200DNet.Poll.Module2	Output009	8	Byte	Hex	56
E5000CS200DNet.Poll.Module2	Output010	9	Byte	Hex	00
E5000CS200DNet.Poll.Module2	Output011	10	Byte	Hex	BA
E5000CS200DNet.Poll.Module2	Output012	11	Byte	Hex	00
E5000CS200DNet.Poll.Module2	O Output013	12	Byte	Hex	00

Figure 36: I/O Watch Window

To close this windows use Alt-F4 or click the icon in the upper left corner of the window select Exit.

- 6.23. DeviceNet Services
- 6.24. Get Device Attribute

This menu selection enables the user to get/receive attribute related information from a Slave device. The user should be familiar with the supported Class, Instance, and Attribute entrees for the Slave device. These entries should be available within the suppliers data sheet for the Slave product. The return value will be represented in Hexadecimal. Clicking the ASCII button will change this value to ASCII text. The Hexadecimal code can be resorted by clicking now the Hex button. Clicking the Get button will receive the Value from the device.

Get Attribute		×
Class Instance Attribute	3 1 1	<u>O</u> K <u>G</u> et
Value 01		<u>A</u> scii
		Error 0

Figure 37: Get Attribute Window

6.25. Set Device Attribute

This menu selection enables the user to set a attribute related to a Slave device. The user should be familiar with the supported Class, Instance, and Attribute entrees for the Slave device. These entrees should be available within the suppliers data sheet for the Slave product. The Value will be represented in Hexadecimal. Clicking the Set button will send the information to the Slave device.

Set Attribute		×
Class Instance Attribute	3 1 1	<u>D</u> K <u>S</u> et
Value		Error O

Figure 38: Set Attribute Window

6.26. Change MAC-ID

To change a MAC-ID of a DeviceNet device (slave), open the Live List. This is described in section Change MAC-ID on page 49.

6.27. Message Monitor

The Message Monitor permits access to the Mailbox of the CIF. The usage of the Message Monitor assumes advanced knowledge from the user.

First the Horner device must be chosen with a left mouse click on the symbol of the Horner device. Then call up the **Online > Message Monitor** menu.

Eile Edit View MESSAGE OUTPUT Counter 0 Message Header MESSAGE INPUT Counter 0 RX 0 TX 0 Message Header 0 0 RX 0 TX 0 Message Header 0 0 0 0 RX 0 TX 0 0 Auto NR NR 0 0 A 0 F 0 0 F 0 0 E 0 0 E 0 0 E 0 0 E 0 0 E <	×
Message Header TX 0 RX 0 TX 0 LN 0 NR 0 A 0 F 0 B 0 E 0 Telegram Header Data Area Device Adr. Data Area	
LN 0 NR 0 A 0 F 0 B 0 E 0 Telegram Header Device Adr. Data Area	
A 0 F 0 B 0 E 0 Telegram Header Device Adr. Data Area	
B O E O Telegram Header Device Adr. Data Area	
Telegram Header Telegram Header Device Adr. Data Area	
Device Adr. Data Area Device Adr. Data Area	
Data Ada Data Ida	
Data Adr. Data Idx. Data Adr. Data Idx.	
Data Count Data Type Data Count Data Type	
Function enable Function enable	
Receive data Send data	
0 1 2 3 4 5 6 7 8 9 • 10 10 1 <th></th>	

Figure 39: Online > Message Monitor

A Message can be saved and retrieved and has the file suffix *.MSG.

File > New: closes the window

File > Open: opens a Message (Message can be retrieved)

File > Save or File > Save As: saves a Message

File > Exit: ends the Message Monitor and returns to the HSyCon.

Edit > Create answer: creates an answer Message

Edit > Reset counter: resets the Message counter

View > Review the received data: all received data is shown

View > Review the send data: all the send data is shown

View > Number of receipt errors: the number of the receipt errors are shown

View > Decimal/Hexadecimal: Switch the display format

Save As			<u>?×</u>
Save in: 🗀 Proje	ct	- 🗢 🖻	📸 🎟 -
Message Mon			
File name: *.ms	g		Save
Save as type: MS	G-file (*.msg)	•	Cancel
			///

It is recommend to create a sub-directory MSG and to store the messages in it.

Figure 40: Save a Message

6.28. Message Monitor for testing explicit messaging of DeviceNet

In the following, the Message Monitor for reading and writing data via DeviceNet at the Master is described.

The following must be entered in the Message Monitor in order to read or write data via DeviceNet from a Device:

Message header							
Rx = 3 (always)	Tx = 255						
Ln = (calculated)	Nr = 0 255						
A = 0	F = 0						
B = 17	E = 0						
Telegram header	ler Meaning for DeviceNet Value range						
Device Adr	MAC ID of the device	063					
Data Area	Class ID	032					
Data Address	Instance ID	0 255					
Data Index	Attribute ID	0 255					
Data Count	Data Count						
	Unused in read access	0					
	length of attribute data in write access	1 – 240					
Data Type	Data Type, unused	0					
Function	Read	1					
	Write	2					

Table 19: Message Monitor – Example DeviceNet

CHAPTER 7: FILE, PRINT, EXPORT, EDIT AND VIEW

7.1. File

7.1.1. Open

An existing project can be opened with **File > Open**.

7.1.2. Save and Save As

When the file name is known, the configuration can be saved under the **File > Save** menu, otherwise the **File > Save As** menu must be selected.

7.1.3. Close

The current project can be closed with **File > Close**.

7.2. Print

After the current printer has been selected in the **File > Printer Setup** menu, the configuration can be printed out under the **File > Print** menu. For a page view, select the **File > Page View** menu.

Print Setup	×
Topology Device table	
Bus parameters	
 Address table sort according to device addresses sort according to data addresses 	
Device Information	
Device Selection	
© All	
• from 0 to 0 1	
 Ine oriented device address oriented 	
select HE5000CS200DNet Master	
OK Cancel	

Figure 41: File > Print

The base setting prints information on one sheet only for one device. **Topology** the topology of the Bus system. **Bus parameters** prints the Bus parameters of the Bus system. **Address table** prints the address table of the Master. **Device table** prints the device table. The scope can be given with the **Device Selection** menu point. The following can be chosen:

- All
- From Station address to Station address
- Selection of a device by means of its description

If no option is selected and the **OK** button is pressed nothing will be printed out. It is like clicking the **Cancel** button.

7.3. Export Functions

7.3.1. DBM Export

Select the **File > Export > DBM** menu in order to save the previously saved project file (*.DN Microsoft Access Format) in a DBM file (Hilscher binary format). This DBM file can be retrieved in the DOS Compro program. The configuration is stored in the Project directory in the path of the HSyCon Installation with extention *.DBM.

7.3.2. CSV Export

With the menu **File > Export > CSV** the configuration data of the connected Slaves can be exported into a table.

Requirement is that the configuration was saved before the export is executed. The exported file has the ending .csv (comma separated value) and is placed in the same directory as the configuration, but with the ending *.csv.

The CSV file can be read with a table program like for example Excel.

The CSV Export saves only the text and the values of the configured Slaves. The meaning of the individual values can be shown in the table.

Here is the description of the text and values:

Value	Meaning
Stationaddress	The Stationaddress is the clear device address of the Slave on the bus.
RecordType	The RecordType defines the arrangement of the structure and is always defaultly 2.
IdentNumber	This number is the clear device number of the Slave (if available).
VendorNumber	The VendorNumber is the clear number of the vendor (if available).
VendorName	Here the name of the vendor is shown.
Device	Name of the device.
Description	This is the description of the device, which is set by the user.
MasterAddress	This is the number of the Master Address, where the devices are connected to (if available).
Settings	The Settings of the I/O Data is shown here.
Reserved	reserved
ModulCount	The ModulCount gives the number of the actual modules. Depending on this there are the DataType, DataSize, DataPosition and the Address from 0 to 59.
DataType_0	The DataType, which is used in the configuration. The code for this can be found in section 7.3.2.1. DataType Code.
DataSize_0	Number of bytes, which were used by the module.
DataPosition_0	The byte DataPosition, which is used in the configuration. The code for this can be found in section 7.3.2.2. DataPosition Code.
Address_0	Offset Address in the Dual-port memory

Table 20: CSV Export - Meaning of the values

7.3.2.1. DataType Code

D7	D6	D5	D4	D3	D2	D1	D0		
SubFlag	Data Direc	tion		Data Format					
				according EN standard 0 blank space 1 Boolean 2 Integer 8 3 Integer 16 4 Integer 32 5 Unsigned Integer 8 6 Unsigned Integer 16 7 Unsigned Integer 32 8 Float 9 ASCII 10 String 14 Bit					
	0 emty spa 1 input 2 output	ice		ſ					
0 start of a	module								
1 submodu	le								

Table 21: CSV Export > DataType Code

7.3.2.2. DataPosition Code

D7	D6	D5 D4		D3	D2	D1	D0
Reserved	Area	Bit Position					
				Bit Positior	n of the Offs	et Address	

reserved

Table 22: CSV Export - DataPosition Code

Example of a CSV file which was exported in Excel:

N	licrosoft	Exc	el - dnr	1650 a	and ocs2	00dnet								_ 🗆	×
	🖻 🔒	6	3 B	кл .	- Σ -	24 🛍	? *	Arial		• 10 • B Z 1	u 📰 🚍 🗄	E 🔁 🔊	% 🗐 🗹 🕶	🕭 - <u>A</u> -	» •
	<u>F</u> ile <u>E</u>	dit	<u>V</u> iew	<u>I</u> nsert	F <u>o</u> rmat	<u>T</u> ools	<u>D</u> ata <u>V</u>	<u>V</u> indow <u>H</u> el	р			Ту	pe a question for h	elp 🝷 🗕 🗗	×
	C6		-	f _x											
	A		В		С	D	E		F	G	Н		J	K	
1		1		2	0		0	OCS200_	DeviceNet	HE500OCS200DN	et 25	5 3	***reserved***	2	
2											_				-
ļ∎ -	с►яА	dnm	650 and	ocs2	00dnet /					1	1			•	
D <u>r</u> a	w 🕶 🕞	Aut	oShapes	• \	\rightarrow		4 🛟	🙎 🔜 🖉	- 🚄 - 🛓	\ - ≡ ≡ ≓ □	I -				
Rea	dy														1.

Table 23: Example of a CSV file in Excel format

The DeviceNet Salve device has the **Station address** 1 (A1).

- The **RecordType** is default 2 (B1).
- The IdentNumber of the Slave is 0 (C1).

No VendorNumber is available, so this is 0 (D1).

The VendorName is empty (Horner) (E1).

The **Device** has the description OCS200_DeviceNet (F1).

The **Description** of the Device is HE500OCS200DNet (G1).

The Masteraddress is 255 (H1).

There are **Settings** of the I/O data, so this is 3, (I1).

This field is Reserved, because of "reserved" is displayed (J1).

The number of the actual modules is 2, so in the field **ModulCount** a 2 is shown (K1).

The **DataType** of module 1 is 2 (K1).

The **DataSize** of the first module is 32 (L1).

The DataPosition of the first module is 26 (M1).

In the following field the DataType, DataSize and DataPosition of the following modules are shown.

Note: If two or more Slave devices are connected to the Master, these are displayed in the next lines of the table.

7.4. Edit

With **Edit > Cut** and **Edit > Copy** the Slave device with its settings and configuration (not the description of the device) is placed on the Clipboard and with **Edit > Paste** it can be inserted. The difference between **Cut** and **Copy** is:

With the menu option **Edit > Cut** the Slave device can be moved from one point in the configuration to another. With the menu option **Edit > Copy** an existing Slave device is duplicated.

Selecting Edit > Cut gives the following security question:

Figure 42: Security question cut device

If **Yes** is selected, the Slave device is cut and stays in the clipboard.

When **Edit > Paste** is selected, the device can be inserted again at the position required. The mouse pointer changes into the "insert device mouse pointer". Click the position where the device should be inserted. A window opens, where the cut/copied device can be selected.

Insert Device from Clipboard					×
Vendor Ve		Master		Y	OK Cancel
Available devices		Selected devi	ices		
	Add>> Add All>>	OCS200_De	viceNet		
	<< Remove				
	<< Remove All				
Vendor	м	AC ID	1		
Catalog listing	D	escription	Device1		
EDS File					
EDS File Revision					

Figure 43: Edit > Paste cut/copied device

Click **OK** button to insert the device.

7.4.1. Delete

To delete a Slave device, select the device by clicking on it. Then select the menu **Edit > Delete**. Before HSyCon deletes the Slave a security question appears.

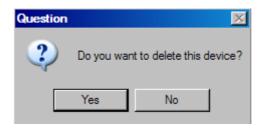


Figure 44: Security question delete device

Note: When a device is deleted, the settings and the configuration of this device are deleted.

7.4.1. Replace

With the menu **Edit > Replace** the Slave device can be replaced. Look in section Replace Slave at page 25.

7.5. View of the Configuration

7.5.1. Device Table

The View > Device Table menu shows the list of all devices that have been inserted.

able			×
Device	Description		
HE800DNM650-001	Master		
OCS200_DeviceNet	Device1		
		~	
	Device HE800DNM650-001	Device Description HE800DNM650-001 Master	Device Description K HE 800DNM650-001 Master

Figure 45: View > Device Table

7.5.2. Address Table

A list of all addresses used in the process depiction is displayed in the **View > Address Table** menu. For this purpose the current Master for which the table is to be displayed must be chosen. **Note:** Addresses refer to the Master.

MAC ID	Device	Module	Com.	I Type	I Len.	I Addr.	О Туре	O Len.	0 Addr.		OK
1	OCS200_Devi	Module1	Poll	IB	32	0					
		Module2	Poll				QB	32	0		
										- 1	
										- 1	
							_				

Figure 46: View > Address Table

7.6. View Menu HSyCon 7.6.1. Logical Network View

In the menu **View > Logical Network View** the user can activate or deactivate the network view by selecting its (with hook) or by not selecting it (without hook). The network view is used for example for the Start Options.

7.6.2. Toolbars

In the menu **View > Toolbars** the user has the possibility to activate or deactivate the Toolbars **Standard** and **Fieldbus**. If this function is deactivated the toolbars are not shown.

7.6.3. Status Bar

In the menu View > Status Bar this bar can be activated (with hook) or deactivated (without hook).

CHAPTER 8: ERROR NUMBERS

8.1. CIF Device Driver (Dual-port memory) Error Numbers (-1-49)

This is the list of error numbers of dual-port memory access using the CIF Device Driver.

Error Number	Description
-1	Driver: Board not initialized
	The communication board is not initialized by the driver.
	No or wrong configuration found for the given board, check the driver configuration.
	Driver function used without calling DevOpenDriver() first.
-2	Driver: Error in internal 'Init state'
-3	Driver: Error in internal 'Read state'
-4	Driver: Command on this channel is active
-5	Driver: Unknown parameter in function occurred
-6	Driver: Version is incompatible
	The device driver version does not correspond to the driver DLL version. From version V1.200 the internal command structure between DLL and driver has changed. Make sure to use the same version of the device driver and the driver DLL.
-10	Device: Dual port memory RAM not accessible (board not found)
	Dual-ported RAM (DPM) not accessible / no hardware found.
	This error occurs, when the driver is not able to read or write to the Dual- port memory.
	Check the BIOS setting of the PC Memory address conflict with other PC components.
	Try another memory address, check the driver configuration for this board, check the jumper setting of the board.
-11	Device: Not ready (RDY flag=Ready, flag failed)
	Board is not ready. This could be a hardware malfunction or another program writes inadmissible to the dual-port memory.
-12	Device: Not running (RUN flag=Running flag failed)
	The board is ready but not all tasks are running, because of an initialisation error. No data base is loaded into the device or a wrong parameter can causes that a task can't initialise.
-13	Device: Watch dog test failed
-14	Device: Signals wrong Operating System version
	No license code found on the communication board. Device has no license for the used operating system or customer software. No firmware or no data base to the device is loaded.

Table 24: CIF Device Driver Error Numbers (-1..-14)

Error Number	Description
-15	Device: Error in dual port memory flags
-16	Device: Send mailbox is full
-17	Device: Function PutMessage timeout
	No message could be send during the timeout period given in the DevPutMessage() function.
	If an interrupt is used, check the interrupt on the device and in driver setup. These settings have to be the same! Is an interrupt on the board set? Is the right interrupt set? The interrupt could already be used by another PC component, also if the operating system reports it as unused.
	If polling mode is used, make sure that no interrupt is set on the board and that polling is set in the driver setup. These settings have to be the same!
	Device internal segment buffer full and therefore PutMessage() function is not possible, because all segments on the device are in use. This error occurs, when only PutMessage() is used but not GetMessage().
	HOST flag is not set for the device. No messages are taken by the device. Use DevSetHostState() to signal a board an application is available.
-18	Device: Function GetMessage timeout
	No message received during the timeout period given in the DevGetMessage() function.
	If an interrupt is used, check the interrupt on the device and in driver setup. These settings have to be the same! Is an interrupt on the board set? Is the right interrupt set? The interrupt could already be used by another PC component, also if the operating system reports it as unused.
	If polling mode is used, make sure that no interrupt is set on the board and that polling is set in the driver setup. These settings have to be the same!
	The used protocol on the device needs longer than the timeout period given in the DevGetMessage() function.
-19	Device: No message available

Table 25: CIF Device Driver Error Numbers (-15..-19)

Error Number	Description
-20	Device: Reset command timeout
	The board is ready but not all tasks are running, because of an initialisation error. No data base is loaded into the device or a wrong parameter can causes that a task can't initialise.
	The device needs longer than the timeout period given in the DevReset() function. Using device interrupts. The timeout period can differ between fieldbus protocols.
	If an interrupt is used, check the interrupt on the device and in driver setup. These settings have to be the same! Is an interrupt on the board set? Is the right interrupt set? The interrupt could already be used by an other PC component, also if the operating system reports it as unused.
	If polling mode is used, then make sure that no interrupt is set on the board and that polling is set in the driver setup. These settings have to be the same!
-21	Device: COM flag not set
	The device can not reach communication state. Device not connected to the fieldbus. No station found on the fieldbus. Wrong configuration on the device.
-22	Device: IO data exchange failed
-23	Device: IO data exchange timeout
	The device needs longer than the timeout period given in the DevExchangeIO() function.
	If an interrupt is used, check the interrupt on the device and in driver setup. These settings have to be the same! Is an interrupt on the board set? Is the right interrupt set? The interrupt could already be used by another PC component, also if the operating system reports it as unused.
	If polling mode is used, make sure that no interrupt is set on the board and that polling is set in the driver setup. These settings have to be the same!
-24	Device: IO data mode unknown
-25	Device: Function call failed
-26	Device: Dual-port memory size differs from configuration
-27	Device: State mode unknown

 Table 26: CIF Device Driver Error Numbers (-20..-27)

Error Number	Description
-30	User: Driver not opened (device driver not loaded)
	The device driver could not be opened. Device driver not installed. Wrong parameters in the driver configuration. If the driver finds invalid parameters for a communication board and no other boards with valid parameters are available, the driver will not be loaded.
-31	User: Can't connect with device board
-32	User: Board not initialised (DevInitBoard not called)
-33	User: IOCTRL function failed
	A driver function could not be called. This is an internal error between the device driver and the DLL. Make sure to use a device driver and a DLL with the same version. An incompatible old driver DLL is used.
-34	User: Parameter DeviceNumber invalid
-35	User: Parameter InfoArea unknown
-36	User: Parameter Number invalid
-37	User: Parameter Mode invalid
-38	User: NULL pointer assignment
-39	User: Messagebuffer too short
-40	User: Size parameter invalid
-42	User: Size parameter with zero length
-43	User: Size parameter too long
-44	User: Device address null pointer
-45	User: Pointer to buffer is a null pointer
-46	User: SendSize parameter too long
-47	User: ReceiveSize parameter too long
-48	User: Pointer to send buffer is a null pointer
-49	User: Pointer to receive buffer is a null pointer

Table 27:CIF Device Driver Error Numbers (-30..-49)

Error Number	Description
1000	If the operating system of the device reports an initialisation error, then a value of 1000 will be add to the error number and shown to the user

Table 28: CIF Device Driver Error Numbers (1000)

8.2. CIF Serial Driver Error Numbers (-20 ... -71) This is the list of error numbers using the serial driver.

Error Number	Description
-20	Driver: No COM port found or COM port already in use.
-21	Driver: COM port already opened
-22	Driver: Function call into driver has failed
-23	Driver: Internal driver error
-24	Driver: Could not create read thread
-25	Driver: Could not create read event
-26	Driver: Could not create write event
-27	Driver: Could not create timer event
-28	Driver: Error by writing data
-29	Driver: Wrong COM state
-30	Driver: COM state error is set
-31	Driver: COM buffer setup failed
-32	Driver: COM set timeout failed
-33	Driver: Receive buffer overrun
-34	Driver: Receive buffer full
-35	Driver: Send busy
-36	Driver: Error during close driver
-40	User: COM port not opened
-41	User: Invalid handle value
-42	User: Invalid COM number
-43	User: Size parameter invalid
-44	User: Size parameter zero
-45	User: Buffer pointer is zero
-46	User: Buffer too short
-47	User: Setup error

Table 29: CIF Serial Driver Error Numbers (-20..-47)

Error Number	Description
-50	User: Send message, timeout error
-51	User: Could not send a message
	Cable not connected.
	Wrong cable.
	Device does not respond.
-52	User: Send message, no device connected
-53	User: Error by send message, message receiving
-54	User: Telegram collision
-55	User: Telegram, no acknowledgement received
-56	User: Telegram, noise
-57	User: Telegram, data overrun
-58	User: Telegram, parity error
-59	User: Telegram, framing error
-60	User: Telegram, unknown error
-70	User: Timeout by receive a message
-71	User: No message received

Table 30: CIF Serial Driver Error Numbers (-20..-47)

8.3. RCS Error Numbers (4 .. 93)

This is the list of error numbers returned by the RCS (Realtime Communication System), that is the operating system of Horner devices. The error number is returned in an answer message. Command messages and answer messages are used to communicate between the application (e.g. the System Configurator) and the Horner device. An example of this communication is the download of a configuration.

Error Number	Description			
4	Task does not exist			
5	Task is not initialised			
6	The MCL is locked			
7	The MCL rejects a send command because of an error			
20	The user will download a database into the device that is not valid for this device type.			
21	Data base segment not configured or not existed			
22	Number for message wrong during download			
23	Received number of data during download does not match to that in the command message			
24	Sequence identifier wrong during download			
25	Checksum after download and checksum in command message do not match			
26	Write/Read access of data base segment			
27	Download/Upload or erase of configured data base type is not allowed			
28	The state of the data base segment indicated an error. Upload not possible			
29	The access to the data base segment needs the bootstraploader. The bootstraploader is not present			
30	Trace buffer overflow			
31	Entry into trace buffer too long			
37	No or wrong licence. The OEM licence of the System Configurator allows only communication to devices that have the same licence inside			
38	The data base created by the System Configurator and the data base expected by the firmware is not compatible			
39	DBM module missing			

Table 31: RCS error numbers (answer message) (4..39)

Error Number	Description			
40	No command free			
41	Command unknown			
42	Command mode unknown			
43	Wrong parameter in the command			
44	Message length does not match to the parameters of the command			
45	Only a MCL does use this command to the RCS			
50	FLASH occupied at the moment			
51	Error deleting the FLASH			
52	Error writing the FLASH			
53	FLASH not configured			
54	FLASH timeout error			
55	Access protection error while deleting the FLASH			
56	FLASH size does not match or not enough FLASH memory			
60	Wrong structure type			
61	Wrong length of structure			
62	Structure does not exist			
70	No clock on the device			
80	Wrong handle for the table (table does not exist)			
81	Data length does not match the structure of this table			
82	The data set of this number does not exist			
83	This table name does not exist			
84	Table full. No more entries allowed			
85	Other error from DBM			
90	The device info (serial number, device number and date) does already exist			
91	Licence code invalid			
92	Licence code does already exist			
93	All memory locations for licence codes already in use			

Table 32: RCS error numbers (answer message) (40..93)

8.4. Database Access Error Numbers (100 .. 130) The following table lists the error numbers of the database access errors

Error Number	Description
100	Database already opened
101	Dataset could not be opened
103	Error while opening database occurred
104	No valid path name
105	No connection to data base. Call function DbOpen().
106	Error in parameter
107	Error during opening a table
108	Nullpointer occurred
109	Table not opened. Call function OpenTable() first.
110	The first record is reached
111	The last record is reached
112	Unknown type in the record found
113	Data has to be truncated
114	No access driver installed on the system
115	Exception received
116	This table is set to read only
117	There is no data set in the table
118	The requested table could not be edit
119	An operation could not be completed
120	User gives an unexpected length in WritsDs().
121	An assertion failed
122	DLL not found
123	DLL couldn't be freed
124	Specified function not found in the DLL
125	ODBC Function returns an error
126	Count of data bytes in the record exceeds 1938
127	DBM32 DLL is not loaded
128	Field with the given index was not found
129	This table contains no records
130	Invalid character (' ') found in a Table or Column

Table 33: Database Access Error Numbers (100..130)

8.5. Online Data Manager Error Numbers (1000 .. 1018)

The following table lists the error numbers of the Online Data Manager.

Error Number	Description	
1000	Driver OnlineDataManager not opened	
1001	Initialization of the OnlineDataManager has failed	
1002	No DriverObject found. OnlineDataManager Sub DLL not found.	
1003	No DeviveObject found. Device not found.	
1004	Application not found	
1010	Application has requested an unknown event	
1011	Application has requested an unknown function mode, operating mode. Known function modes, operating modes are Reset, Download, Register Server, Unregister Server.	
1012	Application has requested an unknown command	
1013	Message Server already exists	
1014	Message Server not registered	
1015	Device already in use	
1016	Device not assigned	
1017	Device has changed	
1018	Command active	

Table 34: Online Data Manager Error numbers (1000..1018)

8.6. Message Handler Error Numbers (2010 .. 2027)

The following table lists the error numbers of the Message handler of the Online Data Manager.

Error Number	Description
2010	Message handler: Messagebuffer empty
2011	Message handler: Messagebuffer full
2021	Message handler: Invalid Message ID (msg.nr)
2022	Message handler: No entry
2023	Message handler: Message already active
2024	Message handler: Wrong Application
2025	Message handler: Message Timeout
2026	Message handler: Wait for Delete
2027	Message handler: No cyclic Message

Table 35: Error Numbers of the Message Handler of the Online Data Manager (2010..2027)

8.7. Driver Functions Error Numbers (2501 .. 2512)

The following table lists the error numbers of the Driver Functions of the Online Data Manager.

Error Number	Description
2501	OnlineDataManager Sub DLL not found
2502	Function missing
2503	'Read Thread' not created
2504	'Write Thread' not created
2505	'IO Thread' not created
2510	Function failed
2512	Assign reports error. Return neither OK or cancel

Table 36: Error Numbers of the Driver Functions of the Online Data Manager (2501..2512)

8.8. Online Data Manager Subfunctions Error Numbers (8001 .. 8035)

The following table lists the error numbers of the Subfunctions of the Online Data Manager.

Error Number	Description		
8001	Driver not opened. E.g. CIF Device Driver		
8002	Application has requested an unknown event		
8003	Application has requested an unknown command		
8004	Command has failed		
8005	Command active		
8006	Device invalid		
8010	No device was assigned		
8011	Device was already assigned		
8020	Driver not connected		
8021	Driver already connected		
8030	Faulty 'GetState'		
8031	Send error (PutMessage returns error)		
8032	Send active (PutMessage active)		
8033	Receive error (GetMessage returns error)		
8034	Receive active (GetMessage active)		
8035	IO Error (ExchangelO returns error)		

Table 37: Subfunction Error Numbers of the Driver Functions of the Online Data Manager (8001..8035)

8.9. Data Base Functions Error Numbers (4000 .. 4199) The following table lists the error numbers of the converting functions.

Error Number	Description		
4000	File does not exist		
4001	Success in comprimizing		
4002	Dataset does not exist		
4003	Last respectively first entry reached		
4004	Not enough memory		
4005	File directory full		
4006	Max number of entries reached		
4007	No writing to this table possible, because the table is located in the FLASH		
4008	Table name does already exist		
4009	File name does not exist		
4010	Free RAM length from RCS_CNF.P86 is smaller than E_F_INDEX * 2		
4011	Parameter 'next' wrong		
4012	Not enough free space to copy data set		
4013	Set is deleted		
4014	Value for Index is wrong		
4015	Access not allowed		
4016	open_file used before init_file		
4017	Drive is not ready		
4018	Not enough drive memory		
4019	File name or path does not exist		
4020	Cannot create path		
4021	Wrong path		
4022	Wrong flag		
4023	The delete path is the root path		
4024	Path file exists		
4025	Write error during write a file		
4026	Error during create a file		
4027	Error during close a file		
4028	No DBM file		
4029	Length of the read data is unequal of the file length		

 Table 38: Error numbers of converting functions (4000..4029)

Error Number	Description	
4030	Path too long	
4031	Directory changed	
4032	Directory created	
4034	Length of converting stream is 0	
4035	Non equal data set found	
4036	Non equal data set found	
4037	Non equal data set found	
4038	Data set has length 0	
4039	The function DbmInit has assigned a Zero pointer during RCS initialisation	
4040	Printer not ready	
4041	The data base is used from another function	
4042	New length of data base is smaller than used	
4043	Unknown access mode	
4044	Old data base has to be converted	
4045	Error while converting. Function not known	
4046	Unknown type in set 0 found	
4047	No float function available	
4048	Function not in RCS module	
4049	Check failed	
4050	Checksum check failed	
4051	More segments are existing in file, than in the structure FILE_INFO_T in wMaxEintraege	
4052	SegLen in structure FILE_INFO_T is smaller then the length in the file. Return of function dbm_restore_data	
4053	The header file holds an other information for a length than in the segment itself	
4054	Not enough memory for allocation on the PC	
4055	No index for file handle in structure FLASH_DIR of RCS found	
4057	File type 2 can not be printed because of too many definitions	
4058	The definitions need too many lines to display them, than in the program available	
4059	An unknown format for the parameter. Valid is U, H, or S	
4060	Unknown parameter type	

Table 39: Error numbers of convertin	g functions	(40304060)
--------------------------------------	-------------	------------

Error Number	Description
4061	The data base was transmitted into the FLASH
4062	Set 0 contains no structure definition
4063	Set 0 can not be deleted
4064	Error during execution of a ODBC data base access
4065	Initializing of DBM through RCS had no success
4066	Passed data length incorrect
4067	Sorting function not linked
4068	Error in function parameter
4069	Error from ODBC table
4070	No free handle available. Too many data base links are already opened
4071	Unknown data type found in the table
4072	Structure of table GLOBAL not correct or no such table existing
4073	No name of an ACCESS data base
4074	Download window can't be created
4075	Download not fully performable

 Table 40: Error numbers of converting functions (4061..4075)

Error Number	Description
4082	More than 32 tables should be created
4083	No entry in element szSourceFile
4084	ODBC connection initialisation not possible. This could happen when in file ODBCINST.INI in section [Microsoft Access Driver (*.mdb)] is no valid path to ODBCJT16/32.DLL.
4085	Error in structure in the ACCESS data base that is in DBM format
4086	Error in structure in the ACCESS data base that is in DBM format
4087	No data in a ODBC table
4088	No entry
4089	ODBC set length not valid
4090	Not enough data sets in ODBC table
4091	Table CreateTab not found
4092	Error in structure of table CreateTab
4093	No entry in element szSourceTable
4094	No entry in element szDestTable
4095	Entry in iSourceType of table CreateTab is wrong
4096	Entry in iTranslate of table CreateTab is wrong
4097	Function SQLAllocStmt reports an error
4098	ODBC source table not found
4099	ODBC data truncated
4100	Download timeout
4101	Library load error
4102	Library function error
4103	Error in description 'toggle'
4104	Error in description 'KB'
4105	Column does not exists
4106	ODBC structure different
4107	ODBC address error
4108	No CRC sum exists (table GLOBAL exists or old)
4109	Table GLOBAL is old
4110	Calculated CRC different to CRC in table GLOBAL
4199	Programming error

 Table 41: Error numbers of converting functions (4082..4199)

8.10. Converting Functions Error Numbers (5001 .. 5008) The following table lists the error numbers of converting functions.

Error Number	Description
5000	Function PackLongToByteShort: Not enough space in pvD (Number of elements greather than reserved memory)
5001	Function PackLongToByteShort: Not enough space in pvD. Detected during converting of pvS
5002	Function PackLongToByteShort: Not enough space in pvD
5003	Function StringToByte: Not enough space in pvD
5004	Function IntToByte: Not enough space in pvD
5005	Function LongToShort: Not enough space in pvD
5006	Function PackStringDumpToByteArray: Not enough space in pvD
5007	Function PackStringBumpToByteArray: A character was found, which is not convertible into a HEX value
5008	Function PackStringDumpToByteArray: Number of character odd
5009	Function PackStringDumpToByteArray: Not enough space in pvD
5010	Function PackStringDumpToByteArray: The current data set needs to be appended the previous one
5011	Function PackStringDumpToByteArray: No corresponding function to the given number exist
5012	Converting error

Table 42: Error Numbers of data base functions (5000 .. 5012)

CHAPTER 9: EXPLICIT MESSAGING USING DNM650

9.1 General

The DNM650 supports both POLLED and EXPLICIT connections. Explicit Messaging requires a great deal of overhead in both the DNM650 and the OCS. Multiple PLC scans may be required to access the required data between the OCS and the DNM650. As a result, Explicit Messages should be reserved for access to infrequently needed data, such as configuration or tuning parameters only.

The sequence below presents a general description of the process that must be executed to service an Explicit request.

- 1. The ladder code builds an explicit request message in a group of %R registers.
- The ladder code plugs the start of and length of the transmit and receive buffers into four %AQ
 registers. The transmit and receive buffers must both be located in the %R register space of the OCS.
- 3. The ladder code then sets the "Send Explicit Message" command bit.
- 4. The DNM650 periodically checks the "Send Explicit Message" command bit.
- 5. If the "Send Explicit Message" command bit is set, processing of the explicit request begins. This command bit must remain on until success or error status is returned.
- 6. The four %AQ registers are examined and checked for validity.
- 7. The DNM650 requests the PLC to send the transmit buffer.
- 8. The DNM650 then checks the MACID contained in the transmit buffer. Several checks take place, MACID out-of-range, referenced node not configured and referenced node not On-line.
- 9. Then the message is formatted and sent to the referenced node.
- 10. When the response message is received, a check is made to see if the allocated receive buffer is large enough to accept the response message.
- 11. The message is then sent to the block of %R registers designated as the receive buffer.
- 12. The Explicit Transaction Complete bit is then set.
- 13. If there were any errors detected in any of the previous steps, the process is aborted and the appropriate error status bit along with the Explicit Transaction Complete bit are set.

9.2 Building Explicit Messages

In the following example, let's assume that we want to read the polled consumption size from the node at MACID 3, we also want to locate the transmit buffer at %R101, the receive buffer at %R51 and we will also allocate 20 bytes to the receive buffer.

BYTE NUMBER	REGISTER NUMBER	DESCRIPTION	TRANSMIT BUFFER DATA
0	R101 LSB	MACID (Node Address)	03
1	R101 MSB	Service Code (Get Attribute Single)	14
2	R102 LSB	Class ID (Connection Class)	05
3	R102 MSB		00
4	R103 LSB	Instance ID (Polled Connection)	02
5	R103 MSB		00
6	R103 LSB	Attribute # (Consumption Size)	07

REGISTER	DESCRIPTION	VALUE
%AQ1	Start of Transmit Buffer	101
%AQ2	Number of Bytes to Transmit	7
%AQ3	Start of Receive Buffer	51
%AQ4	Receive Buffer Allocation Size	20

In the following example we want to write the polled expected packet rate to the node at MACID 3, we also want to locate the transmit buffer at %R101, the receive buffer at %R51, we will also allocate 20 bytes to the receive buffer.

BYTE NUMBER	REGISTER NUMBER	DESCRIPTION	TRANSMIT BUFFER DATA
0	R101 LSB	MACID (Node Address)	03
1	R101 MSB	Service Code (Set Attribute Single)	16
2	R102 LSB	Class ID (Connection Class)	05
3	R102 MSB		00
4	R103 LSB	Instance ID (Polled Connection)	02
5	R103 MSB		00
6	R104 LSB	Attribute (Expected Packet Rate)	07
7	R104 MSB	Data Value Low Byte	E8(Hex)
8	R105 LSB	Data Value High Byte	03

REGISTER	DESCRIPTION	VALUE
%AQ1	Start of Transmit Buffer	101
%AQ2	Number of Bytes to Transmit	9
%AQ3	Start of Receive Buffer	51
%AQ4	Receive Buffer Allocation Size	20

9.3 How to Interpret Explicit Response Messages

The normal, expected response from an Explicit Message is the Acknowledge Message:

BYTE NUMBER	DESCRIPTION	EXAMPLE	
0	Number of	Xx	
1	bytes received	Xx	
2	MACID	01	
3	*Service Code	0x90(Hex)	
4	Optional Data	Хх	
-	Optional Data	Xx	
-	Optional Data	Хх	
n	Optional Data	Хх	
* Previously sent Service Code (0x10) + 0x80			

Note: The Most Significant Bit in the Service Code byte is used as a Response Bit indicating that the command was properly received. [Service Code 0x10 + Response Bit 0x80 = 0x90]. If any extra data needs to be returned, that data will be placed into subsequent bytes.

Note: The number of bytes received value is the number of bytes of the message placed in the receive buffer including the two bytes devoted to the number of bytes received.

9.4 Explicit Message Errors

In the case that an Explicit Message requests a function that cannot be performed by the referenced node, an Explicit Error Message will be returned.

Byte Number	Description	Example	Word Offset	Value
	Description	(values in HEX)		(from example)
0	Number of bytes received	06	%R1	0006
1		00	70 K I	0000
2	MACID	01	%R2	0x9401
3	Service Code	94	70RZ	0.001
4	General Error Code	XX	%R3	VAAA
5	Additional Error Code	XX	70153	XXXX

An Explicit Error Message takes the following form:

An Error is indicated by a 0x94 in the service code byte. This indicates that the referenced node has detected an error and the two bytes following indicate the specifics to that error. The next byte indicates the General Error Code. The last byte contains an Additional Error Code to indicate additional information. See appendix C for a list of and definitions of General and Additional Error Codes.

Many DeviceNet manufactures have defined vendor specific error codes. In this case the General error code will be in the range of 0xD0 to 0xFF (Vendor-specific Object and Class errors). In these cases the Additional error code can be anything. Consult the documentation from the node manufacture for more details.

APPENDIX:

A. EXTENDED DEVICE DIAGNOSTIC MASTER

On the following pages the task state structures of the DeviceNet Master are described.

A.1. PLC_TASK Common Variables

Common variables		×
Version compiled	DNM	<u>o</u> k
Task state	0	
Handshake counter	0	
Handshake mode	2	Error 0

Variable	Meaning
Version Compiled	Hardware
Task State	Task State
Handshake Counter	Counter for the performed process data handshakes
Handshake Mode	This value represents the actual handshake mode between application and CIF.
	0 = Bus synchonous, Device Controlled
	1 = Buffered, Device Controlled
	2 = No consistence, Uncontrolled
	3 = Buffered, Host Controlled
	4 = Bus synchonous, Host Controlled
	5 = Buffered, extended host controlled

Figure 47: PLC_TASK Common Variables

Table 43: PLC_TASK Common Variables

A.2. DNM_TASK Common Variables

Common variables		×
Received CAN messages	5952	ОК
Send CAN messages	3119	<u></u>
Received overruns	0	
Low transmission quality	0	
Bus off counter	0	
Baudrate	3	
Activated bus parameters	0	
Announced devices	1	
Hard transmission aborts	0	
Hard transmission aborts	0	Error 0

Figure 48: DNM_TASK Common Variables

Variable	Meaning
Received message	number of received CAN-Messages
Sent messages	number of sent CAN-Messages
Receive overruns	this counter is incrementing when to many incoming CAN messages overload the Master. An incremented counter will always cause lost CAN message data, so it should normally contain the value 0
Received Overruns	our DeviceNet controller has two internal error frame counter for detected
Low Transmission Quality	if the internal DeviceNet controller error frame counter overstep a defined limit
Bus Off Counter	This number will increment when the bus is off or not powered during bus cycles
Baudrate	this value shows numeric the actual baudrate the Master is working with (, 1 = 500kBaud, 2 = 250Kbaud, 3 = 125kBaud)
Activated bus parameters	value 0, the Master has found a configuration data base coming from HSyCon, value 1, the Master device isn't configured and need to be configured via HSyCon
Announced Nodes	this value represents the number of found device data sets in the download database
Wrong parameters	this value indicates, if the Master has detected errors in a device data set which was a containment of the actual downloaded database. For each Slave device that has a wrong entry the counter is incremented by 1
Hard Transmission Aborts	this value indicates transmission aborts by the Master

Table 44: DNM_TASK Common Variables

A.3. DNM_TASK Device Running States

Device running	j states			×
Description	Value		<u> </u>	
MAC ID 0	master handler			
MAC ID 1	1/0 COS,Cyclic or Bit-Strobe.			
MAC ID 2	enter state			
MAC ID 3	enter state			
MAC ID 4	enter state			
MAC ID 5	enter state			
MAC ID 6	enter state			
MAC ID 7	enter state			
MAC ID 8	enter state			
MAC ID 9	enter state			
MAC ID 10	enter state			
MAC ID 11	enter state			
MAC ID 12	enter state	_	F	
,	•		Error	0

Figure 49: DNM_Task Device Running States

To handle the Slave devices in their different states the Master device has a Slave device handler running, where each Slave device has its own actual running state. HSyCon interprets what the actual state of each Slave and enters these states on the screen in textual form.

A.4. DNM_Task Global State Field

See section Global State Field at page 52.

A.5. DNM_Task Communication Error

Communicatio	n error		×
			·····
Description	Value	^	<u> </u>
MAC ID 0	none		
MAC ID 1	none		
MAC ID 2	none		
MAC ID 3	none		
MAC ID 4	none		
MAC ID 5	none		
MAC ID 6	none		
MAC ID 7	none		
MAC ID 8	none		
MAC ID 9	none		
MAC ID 10	none		
MAC ID 11	none		
MAC ID 12	none	-	Error 0

Figure 50: DNM_Task Communication Error

For each Slave device the Master has an internal online error buffer. HSyCon interprets the actual error condition and prints it on the screen in textual form.

A.6. DNM_Task Receive Queue

Receive que	ue		×
BaseLow BaseHigh bNel bWidth bRear bFront bInner fnUser	27098 256 150 10 66 66 0	Error	0

Figure 51: DNM_Task Receive Queue

The Receive Queue is used to monitor the receive transmission queue of the internal CAN controller.

Variable	Meaning
bRear	A pointer to where the next message will be dequeue from the queue body
bFront	A pointer to where the next message will be stored
blnner	The actual number of stored messages

Table 45: Receive Queue

A.7. DNM_Task Transmit Queue

Transmit qu	eue	×
BaseLow BaseHigh bNel bWidth	25598 256 150 10	<u></u> K
bRear	0	
bFront	0	
binner	0	
fnUser	0	Error 0

Figure 52: DNM_Task Transmit Queue

DeviceNet Modules HE800DNM650 & HE800DNS600

The Transmit Queue is used to	monitor the transmission queue	of the internal CAN controller.

Variable	Meaning
BaseLow	not documentated
BaseHigh	not documentated
bNel	not documented
bWidth	not documented
bRear	A pointer to where the next message will be deckle from the queue body
bFront	A pointer to where the next message will be stored
blnner	The actual number of stored messages
fnUser	not documented

Table 46: DNM_Task Transmit Queue

A.8. DNM_Task DeviceNet Command Counters

DeviceNet command cour	nters			×
OpenUnconnRequest	0	AllocIOCyclicRequest	0	<u> </u>
OpenUnconnAckPos	0	AllocIOCyclicAckPos	0	· · · · · · · · · · · · · · · · · · ·
OpenUnconnAckNeg	0	AllocIOCyclicAckNeg	0	
CloseUnconnRequest	0	ReleaseIOPollRequest	0	
CloseUnconnAckPos	0	ReleaselOPollAckPos	0	
CloseUnconnAckNeg	0	ReleaselOPollAckNeg	0	
AllocateExplicitRequest	4	ReleaselOBitStrobeRequest	0	
AllocateExplicitAckPos	2	ReleaselOBitStrobeAckPos	0	
AllocateExplicitAckNeg	2	ReleaselOBitStrobeAckNeg	0	
ReleaseExplicitRequest	2	ReleaseIOCosRequest	0	
ReleaseExplicitAckPos	2	ReleaseIOCosAckPos	0	
ReleaseExplicitAckNeg	0	ReleaseIOCosAckNeg	0	
AllocIOPollRequest	0	ReleaseIOCyclicRequest	0	
AllociOPollAckPos	0	ReleaselOCyclicAckPos	0	
AllociOPollAckNeg	0	ReleaseIOCyclicAckNeg	0	
AllocIOBitStrobeRequest	0	GetAttributeSingleRequest	8	
AllocIOBitStrobeAckPos	0	GetAttributeSingleAckPos	8	
AllocIOBitStrobeAckNeg	0	GetAttributeSingleAckNeg	0	
AllocIOCosRequest	4	SetAttributeSingleRequest	4	
AllocIOCosAckPos	2	SetAttributeSingleAckPos	6	
AllocIOCosAckNeg	2	SetAttributeSingleAckNeg	0	Error 0

Figure 53: DNM_Task DeviceNet Command Counters

The DeviceNet Command Counters dialog box shows a listing of the DeviceNet specific commands used by the controller and there associated usage count.

A.9. DNM_Task Timeout Counter

imeout coun	ter	×
Description	Value 🔺	<u> </u>
MAC ID 0	0	
MAC ID 1	0	
MAC ID 2	0	
MAC ID 3	0	
MAC ID 4	0	
MAC ID 5	0	
MAC ID 6	0	
MAC ID 7	0	
MAC ID 8	0	
MAC ID 9	0	
MAC ID 10	0	
MAC ID 11	0	
MAC ID 12	0 🗸	Error 0

Figure 54: DNM_Task Timeout Counter

The Timeout Counter shows the number of timeouts for each Slave device configured in the DeviceNet bus system.

A.10. DNM_Task Init Counter

Init counter		×
Description	Value 🔺	<u> </u>
MAC ID 0	0	
MAC ID 1	1	
MAC ID 2	0	
MAC ID 3	0	
MAC ID 4	0	
MAC ID 5	0	
MAC ID 6	0	
MAC ID 7	0	
MAC ID 8	0	
MAC ID 9	0	
MAC ID 10	0	
MAC ID 11	0	
MAC ID 12	0 🗸	Error 0
		2.101 0

Figure 55: DNM_Task Init Counter

The Device init counter is incremented whenever the Slave device is initialized. Normally the counter must show the value 1 for each configured Slave, but if a Slave is detected as inactive during the diagnostic procedure, then the Master tries to reinitialize the Slave again. If this happens the Slave init counter is incremented by a value of 1. So values larger then 1 are an indication for communication error to the corresponding Slave.

B. EXTENDED DEVICE DIAGNOSTIC DEVICE (SLAVE)

On the following pages the task state structures of DeviceNet Slaves are described.

B.1. PLC_Task Common Variables (Device)

Common variables		×
Version compiled Task state	DNS 0	<u>0</u> K
Handshake counter	0	
Handshake mode	2	Error 0

Figure 56: PLC_Task Common Variables (Slave)

Variable	Meaning	
Version Compiled	Hardware	
Task State	Task State	
Handshake Counter	Counter for the performed process data handshakes	
Handshake Mode	This value represents the actual handshake mode between application and CIF.	
	0 = Bus synchonous, Device Controlled	
	1 = Buffered, Device Controlled	
	2 = No consistence, Uncontrolled	
	3 = Buffered, Host Controlled	
	4 = Bus synchonous, Host Controlled	
	5 = Buffered, extended host controlled	

Table 47: PLC_Task Common Variables (Slave)

B.2. DNS_Task Common Variables

Common variables		×
Received CAN messages	7	
Send CAN messages	5	<u></u>
Received overruns	0	
Low transmission quality	0	
Bus off counter	0	
Baudrate	0	
Activated bus parameters	0	
Hard transmission aborts	0	Error 0

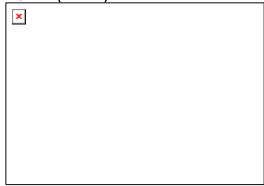
Figure 57: DNS_Task Common Variables

Variable	Meaning
Received message	number of received CAN-Messages
Sent messages	number of sent CAN-Messages
Received Overruns	our DeviceNet controller has two internal error frame counter for detected
Low Transmission Quality	if the internal DeviceNet Slave error frame counter overstep a defined limit
Bus Off Counter	This number will increment when the bus is off or not powered during bus cycles
Baudrate	this value shows numeric the actual baudrate the Master is working with(255 = Auto, 0 = 500kBaud, 1 = 250Kbaud, 2 = 125kBaud)
Activated bus parameters	value 0, the Master has found a configuration data base coming from HSyCon, value 1, the Master device isn't configured and need to be configured via HSyCon
Hard Transmission Aborts	this value indicates transmission aborts by the Slave

Table 48: DNS_Task Common Variables

B.3. DNS_TASK Receive Queue (Device)

Receive qu	eue	×
BaseLow BaseHigh bNel bWidth bRear	8919 256 150 10 7	<u> </u>
bFront binner fnUser	7 0 0	Error 0


Figure 58: DNS_TASK Receive Queue (Device)

The Receive Queue is used to monitor the receive transmission queue of the internal CAN controller.

Variable	Meaning
BaseLow	undocumented
BaseHigh	undocumented
BNel	undocumented
bWidth	undocumented
bRear	A pointer to where the next message will be dequeue from the queue body
bFront	A pointer to where the next message will be stored
bInner	The actual number of stored messages
bfnUser	undocumented

Table 49: DNS_TASK Receive Queue (Device)

B.4. DNS_TASK Transmit Queue (Device)

Figure 59: DNS_TASK Transmit Queue

Variable	Meaning
BaseLow	undocumented
BaseHigh	undocumented
BNel	undocumented
bWidth	undocumented
bRear	A pointer to where the next message will be dequeue from the queue body
bFront	A pointer to where the next message will be stored
blnner	The actual number of stored messages
bfnUser	undocumented

Table 50: Transmit Queue (Device)

<u>NOTES</u>