

XLE MODEL

MODEL 2: Rev T or Later

12 DC In, 6 Relay Out, 4-12-bit Analog In

XLT MODEL

1 TECHNICAL SPECIFICATIONS

1.1 General	
Primary Power Range	10-30VDC
Required Power (Steady State)	130mA @ 24VDC
Inrush Current	30 mA for $<1 \mathrm{~ms}$
Typical power: Backlight 100\%	267mA @ 10V (2.67W) 121mA @ 24V (2.90W)
Power: Backlight Off	15mA @ 24V (0.36W)
Power: Ethernet Models	$\begin{aligned} & 35 \mathrm{~mA} \text { @ } 10 \mathrm{~V}(0.35 \mathrm{~W}) \\ & 20 \mathrm{~mA} @ 24 \mathrm{~V}(0.48 \mathrm{~W}) \end{aligned}$
-22 Heater Option	250mA @ 24VDC with Heater Operating Heater option - Model\# plus "-22"
Real Time Clock	Battery backed; lithium coin cell CR2450
Clock Accuracy	+/-90 Secs/Month
Relative Humidity	5 to 95\% Non-condensing
Operating Temp.	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
-22 Heater Option	$-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage Temp.	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Weight	$0.75 \mathrm{lbs} / 340 \mathrm{~g}$ (without I/O)
Altitude	Up to 2000m
Rated Pollution Degree	Evaluated for Pollution 2 rating
Certifications (UL/CE)	USA: https://hornerautomation.com/certifications/ Europe: http://www.horn-er-apg.com/en/support/certification.aspx

1.2 User Interface	
Display Type	Transflective LCD Sunlight Readable
Resolution	128×64 pixels (XLE) 160×128 pixels (XLT)
Color	Monochrome
Built-In Storage	16MB
User-Program. Screens	1023 max pages; 50 objects per page
Backlight	LED
Backlight Lifetime	$30,000+$ hrs
Brightness Control	O-100\% (XLT) On/Off (XLE) via Sys- tem Register \%SR57
Number of Keys	20 (XLE) 5 (XLT)
Touchscreen (XLT)	Resistive 1,000,000+ touch life

1.3 Connectivity	
Serial Ports	RS-232 full handshaking or RS-485 half duplex on first Modular Jack (MJI) RS-232 or RS-485 on (MJ2) second Modular Jack (MJ2)
USB mini-B	Programming only
CAN	1x CAN Port, Isolated1kV
CAN Protocols	CsCAN, CANopen, DeviceNet, J1939
Ethernet	Ethernet versions only
Ethernet Protocols	TCP/IP, Modbus TCP, FTP, SRTP, EGD, ICMP, ASCII
Remote I/O	SmartRail, SmartStix, SmartBlock, SmartMod
Audio (XLT only)	microSD, SDHC, SDXC IN FAT32 format, support for 32 GB max. Application Updates,
Datalogging, more	

1.4 Control \& Logic

Control Lang. Support	Advanced Ladder Logic Full IEC 61131-3 Languages
Logic Program Size	256 kB
Scan Rate	$0.7 \mathrm{~ms} / \mathrm{kB}$ logic (XLE) $0.8 \mathrm{~ms} / \mathrm{kB}$ logic (XLT)
Digital Inputs	2048
Digital Outputs	2048
Analog Inputs	512
Analog Outputs	512
Gen. Purpose	9,999 (words) Retentive Registers 2,048 (bits) Retentive

1.5 High-Speed Inputs	
Number of Counters	4
Maximum Frequency	500 kHz each
Accumulator Size	32-bits each
Modes Supported	Totalizer, quadrature, pulse measurement, frequency measurement, set-point controllled outputs

XLE/XLT User Manual [MAN0878]

The User Manual includes extensive information on:

- Built-In I-O
- Common \%S \& \%SR Registers
- HSC/PWM/Totalizer/Quadrature \&

Accumulator Registers

- Resource Limits

technical specifications continued...

1.6 Digital DC Inputs	
Inputs per Module	12 Including 4 Configurable HSC Inputs
Commons per Module	1
Input Voltage Range	12VDC / 24VDC
Absolute Max. Voltage	35VDC Max.
Input Impedance	$10 \mathrm{k} \Omega$
Input Current: Upper Threshold Lower Threshold	Positive Negative Logic: Logic: 0.8 mA -1.6 mA 0.3 mA -2.1 mA
Max. Upper Threshold	8VDC
Min. Lower Threshold	3VDC
OFF to ON Response	1 ms
ON to OFF Response	1 ms
High Speed Counter Max Freq*	500kHz Max

*See I/O info below for detail regarding HSC and PWM

1.7 Digital Relay Outputs

Outputs per Module	6 Relay
Commons per Module	6
Max. Output Current per Relay	3A @ 250VAC, resistive
Max. Total Output Current	5A continuous
Max. Output Voltage	275VAC, 30VDC
Max. Switched Power	1000VAC, 150 W
Contact Isolation to Ground	1000VAC
Max. Voltage Drop at Related Current	Expected Life (see below derating chart for detail)
No Load: 5,000,000 Rated Load: 100,000 Max. Switching Rate300 CPM at no load 20 CPM at rated load RypeMechanical Contact Response TimeOne update per ladder scan plus 10ms	

1.8 Analog Inputs, Medium Resolution

Number of Chan- nels	4
Input Ranges	0-10VDC, 0-20mA, $4-20 \mathrm{~mA}$
Safe Input Voltage Range	-0.5 V to 12V
Input Imped- ance (clamped @ -0.5 VDC to 12 VDC)	Current Mode: 100Ω Voltage Mode: $500 \mathrm{k} \Omega$
Nominal Resolution	12 Bits

160 Hz Hash (noise) Filter, 1-128 Scan Digital Running Average Filter

2 CONTROLLER OVERVIEW

2.1- Overview of XLE and XLT

NOTE: See Precaution \#12 on page 6 about USB and grounding.

2.2 Power Wiring

DC Input / Frame
Solid/Stranded Wire: 12-24 awg (2.5-0.2mm).
Strip Length: $0.28^{\prime \prime}(7 \mathrm{~mm})$.
Torque Rating: $4.5-7 \mathrm{in}-\mathrm{Ibs}(0.50-0.78 \mathrm{~N}-\mathrm{m}$).
DC- is internally connected to $\mathrm{I} / \mathrm{O} \mathrm{V}$-, but is isolated from CAN V -.
A Class 2 power supply must be used.

3 Wiring: Inputs and Outputs

3.1-Analog Inputs Information

Raw input values for channels 1-4 are found in the registers as Integertype data with a range from 0-32000.

Analog inputs may be filtered digitally with the Filter Constant found in the Cscape Hardware Configuration for Analog Inputs. Valid filter values are 0-7 and act according to the following chart.

Data Values

INPUT MODE:	DATA FORMAT, 12-bit INT:
$0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$	$0-32000$
$0-10 \mathrm{~V}$	$0-32000$

3.2-Relay Life

Relay Life Expectancy

WARNING: Exposure to some chemicals may degrade the sealing properties of materials used in the Tyco relay PCJ.

Cover/Case \& Base: Mistubishi engineering Plastics Corp. 5010GN6-30 or 5010GN6-30 M8 (PBT)

Sealing Material: Kishimoto 4616-50K (I part expoxy resin)
It is recommended to periodically inspect the relay for any degradation of properties and replace if necessary.

Wiring Details:

Solid/Stranded Wire: 12-24 awg (2.5-0.2mm²). Strip Length: $0.28^{\prime \prime}$ (7mm).
Torque Rating: 4.5-7 in-Ibs (0.50-0.78 N-m).

3.3 - Digital Inputs

Digital inputs may be wired in either a Positive Logic or Negative Logic fashion as shown. The setting in the Cscape Hardware Configuration for the Digital Inputs must match the wiring used in order for the correct input states to be registered. No jumper settings are required for XLE/ XLT. When used as a normal input and not for high speed functions, the state of the input is reflected in registers \% 11 - \%ll2.

Digital inputs may alternately be specified for use with High Speed Counter functions, also found in the Hardware Configuration for Digital Inputs. Refer to the XLE/XLT User Manual (MANO878) for full details.

3.4-Wiring Connectors

NOTE: The OV terminals are internally connected.

3.5-20mA Connections

20mA Analog In - Not Self Powered

20mA Analog In - Self Powered

Wiring: I/O continued on next page...

wiring: I-O continued...

J2 Wiring- Relay Out / Analog Digital In

3.5 - Jumper Settings for Model 2

Location of I/O jumpers (JP1 \& JP2) and wiring connectors (J1 \& J2) with back cover removed.

NOTE: The Cscape Module Configuration must match the selected I/O (JP) jumper settings.
(Cscape Path: Controller -> Hardware Configuration -> Local I/O -> Config -> Module Setup -> Analog In)

NOTE: When using JP2 (A1-A4), each channel can be independently configured.

4 COMMUNICATIONS

4.1-CAN Communications

CAN
Solid/Stranded Wire: 12-24 awg (2.5-0.2mm).
Strip Length: 0.28" (7mm).
Locking spring-clamp, two-terminators per conductor.
Torque Rating: 4.5 in -Ibs ($0.50 \mathrm{~N}-\mathrm{m}$).
$\mathrm{V}+$ pin is not internally connected, the SHLD pin is connected to Earth ground via a $1 \mathrm{M} \Omega$ resistor and 10 nF capacitor.

4.2-Serial Communications

MJ1 PINS					
PIN	SIGNAL				
8	DIRECTION				
7	RXD	OUT	6	OV	GROUND
:---	:---	:---			
5	+5V @ 60mA	OUT			
4	RTS	OUT			
3	CTS	IN			
2	RX-/TX-	IN/OUT			
1	RX+/TX+	IN/OUT			

MJ1: RS-232
w/full handshaking or RS485 half-duplex

RS-485 termination via switches; biasing via software

MJ2 SERIAL PORT
MJ2: RS-232 or RS485 half or full-duplex, software selectable

RS-485 termination via switches; biasing via software

via softrare

MJ2 PINS		
PIN	SIGNAL	DIRECTION
8	232 TXD	OUT
7	232 RXD	IN
6	OV	Ground
5	+5V @ 60mA	OUT
4	$485 ~ T X-$	OUT
3	485 TX+	OUT
2	$485 ~ R X-~ o r ~ R X / T X-~$	IN or IN/OUT
1	$485 ~ R X+$ or RX/TX+	IN or IN/OUT

communications continued...

4.3-Dip Switches

The DIP switches are used to provide a built-in termination to both the MJ1 port and MJ2 port if needed. The termination for these ports should only be used if this device is located at either end of the multidrop/daisychained RS-485 network.

DIP SWITCHES			
PIN	NAME	FUNCTION	DEFAULT
1	MJ1RS-485 Termination	ON = Terminated	OFF
2	MJ2 RS-485 Termination	ON = Terminated	OFF
3	Bootload	Always Off	OFF

4.4-Ethernet Communications

Green LED indicates link - when illuminated, data communication is available.

Yellow LED indicates activity - when flashing, data is in transmission.

5 BUILT-IN I/O

5.1-Built-in I/O for XLE/XLT - Model 2

The I/O is mapped into OCS Register space, in three separate areas - Digital/Analog I/O, High-Speed Counter I/O, and High-speed Output I/O. Digital/Analog I/O location is fixed starting at 1, but the high-speed counter and high-speed output references may be mapped to any open register location. For more details on using the high-speed counter and high-speed outputs, see the XLE/XLT OCS User's Manual (MAN0878).

Digital and Analog I/O Functions	
Digital Inputs	\%l1-12
Reserved	\%l13-32
ESCP Alarm	n / a
Digital Outputs	\%Q1-6
Reserved	\%Q7-24
Analog Inputs	\%Al1-4
Reserved	\%Al5-12
Analog Outputs	n / a
Reserved	n / a

6 INSTALLATION DIMENSIONS

6.1-XLE/XLT - Dimensions

6.2 - Installation Procedure

- The XLE/XLT utilizes a clip installation method to ensure a robust and watertight seal to the enclosure. Please follow the steps below for the proper installation and operation of the unit.
- This equipment is suitable for Class I, Division 2, Groups A, B, C and D or non-hazardous locations only.
- Digital outputs shall be supplied from the same source as the operator control station.
- Jumpers on connector JP1 shall not be removed or replaced while the circuit is live unless the area is known to be free of ignitable concentrations of flammable gases or vapors.

1. Carefully locate an appropriate place to mount the XLE/XLT. Be sure to leave enough room at the top of the unit for insertion and removal of the microSD ${ }^{\text {TM }}$ card.
2. Carefully cut the host panel per the diagram, creating a $92 \mathrm{~mm} x$ $92 \mathrm{~mm}+/-0.1 \mathrm{~mm}$ opening into which the XLE/XLT may be installed. If the opening is too large, water may leak into the enclosure, potentially damaging the unit. If the opening is too small, the OCS may not fit through the hole without damage.
3. Remove any burrs and or sharp edges and ensure the panel is not warped in the cutting process.
4. Remove all Removable Terminals from the XLE/XLT. Insert the XLE/XLT through the panel cutout (from the front). The gasket must be between the host panel and the XLE/XLT.
5. Install and tighten the four mounting clips (provided in the box) until the gasket forms a tight seal (NOTE: Max torque 0.8 to 1.13 Nm , or 7-10 in-lbs).
6. Reinstall the XLE/XLT I/O Removable Terminal Blocks. Connect communications cables to the serial port, USB ports, Ethernet port, and CAN port as required.

7 ANALOG INPUT TRANZORB FAILURE

A common cause of Analog Input Tranzorb Failure on Analog Inputs Model $2,3,4 \& 5$: If a 4-20mA circuit is initially wired with loop power, but without a load, the analog input could see 24VDC. This is higher than the rating of the tranzorb. This can be solved by NOT connecting loop power prior to load connection, or by installing a low-cost PTC in series between the load and analog input.

8 SAFETY

8.1-WARNINGS

1. To avoid the risk of electric shock or burns, always connect the safety (or earth) ground before making any other connections.
2. To reduce the risk of fire, electrical shock, or physical injury, it is strongly recommended to fuse the voltage measurement inputs. Be sure to locate fuses as close to the source as possible.
3. Replace fuse with the same type and rating to provide protection against risk of fire and shock hazards
4. In the event of repeated failure, do NOT replace the fuse again as repeated failure indicates a defective condition that will NOT clear by replacing the fuse.
5. Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install, adjust, operate, or service this equipment. Read and understand this manual and other applicable manuals in their entirety before proceeding. Failure to observe this precaution could result in severe bodily injury or loss of life.
6. WARNING - Battery may explode if mistreated. Do not recharge, disassemble, or dispose of in fire.
7. WARNING - EXPLOSION HAZARD - Batteries must only be changed in an area known to be non-hazardous.

8.2 - FCC COMPLIANCE

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

1. This device may not cause harmful interference
2. This device must accept any interference received, including interference that may cause undesired operation

8.3 - PRECAUTIONS

All applicable codes and standards need to be followed in the installation of this product. Adhere to the following safety precautions whenever any type of connection is made to the module:

1. Connect the safety (earth) ground on the power connector first before making any other connections.
2. When connecting to the electric circuits or pulse-initiating equipment, open their related breakers.
3. Do NOT make connection to live power lines.
4. Make connections to the module first; then connect to the circuit to be monitored.
5. Route power wires in a safe manner in accordance with good practice and local codes.
6. Wear proper personal protective equipment including safety glasses and insulated gloves when making connections to power circuits.
7. Ensure hands, shoes, and floor are dry before making any connection to a power line.
8. Make sure the unit is turned OFF before making connection to terminals.
9. Make sure all circuits are de-energized before making connections.
10. Before each use, inspect all cables for breaks or cracks in the insulation. Replace immediately if defective.
11. Use copper conductors in Field Wiring only, $60 / 75^{\circ} \mathrm{C}$.
12. Use caution when connecting controllers to PCs via serial or USB. PCs, especially laptops, may use "floating power supplies" that are ungrounded. This could cause a damaging voltage potential between the laptop and controller. Ensure the controller and laptop are grounded for maximum protection. Consider using a USB isolator due to voltage potential differences as a preventative measure.

9 BATTERY

The XLE/XLT uses a replaceable non-rechargeable 3V Lithium coincell battery (CR2450) to run the Real-Time Clock and to keep the retained register values. This battery is designed to maintain the clock and memory for 7 to 10 years. Please reference MANO878 providing instructions on how to replace the battery.

10 PART NUMBER BUILDER

GLOBAL MODEL NUMBERS

EUROPEAN MODEL NUMBERS

screen	Ethernet	CAN	N option	I/O	overlay type
HEX	C				-
E22	0 (no Ethernet)	0	(no CAN*)	00 (model 0)	00 (dark colour)
(no touchscreen)	1 (Ethernet)	1	(CsCAN)	12 (model 2)	01 (light colour)
T24		2	(CANopen)	13 (model 3)	02 (blank)
(touchscreen)		4	(DeviceNet)	14 (model 4)	03-99 (custom)
		5	(J1939)	15 (model 5)	
				16 (model 6)	
*No CAN is only available on XLE					

11 CONTACT INFORMATION

For assistance and manual updates, contact Technical Support at the following locations:

North America

(317) 916-4274
(877) 665-5666
www.hornerautomation.com
techsppt@heapg.com

Europe

(+) 353-21-4321-266
www.hornerautomation.eu
technical.support@horner-apg.com

