

XLE MODEL

MODEL 4: Rev T or Later
24 DC In, 16 DC Out, 2-12-bit Analog In

XLT MODEL

1 TECHNICAL SPECIFICATIONS

1.1 General	
Primary Pwr. Range	10-30VDC
Required Power (Steady State)	130mA @ 24VDC
-22 Heater Option	390 mA @ 24VDC with Heater Operating
Typical pow- er-backlight 100\%	$\begin{aligned} & 173 \mathrm{~mA} @ 10 \mathrm{~V}(1.73 \mathrm{~W}) \\ & 132 \mathrm{~mA} @ 24 \mathrm{~V}(3.17 \mathrm{~W}) \end{aligned}$
Power Backlight Off	15mA @ 24V (0.36W)
Power Ethernet Models	$\begin{aligned} & 35 \mathrm{~mA} @ 10 \mathrm{~V}(0.35 \mathrm{~W}) \\ & 20 \mathrm{~mA} @ 24 \mathrm{~V}(0.48 \mathrm{~W}) \end{aligned}$
Inrush Current	30 A for $<1 \mathrm{~ms}$
Real Time Clock	Battery backed; lithium coin cell CR2450
Clock Accuracy	$+/-90 \mathrm{Secs} /$ Month at $25^{\circ} \mathrm{C}$
Relative Humidity	5 to 95\% Non-condensing
Operating Temp.	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
-22 Heater Option	$-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage Temp.	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Weight	$0.75 \mathrm{lbs} / 340 \mathrm{~g}$ (without I/O)
Certifications (UL/CE)	USA: https://hornerautomation. com/certifications/ Europe: http://www.horner-apg. com/en/support/certification. aspx

1.2 User Interface	
Display Type	Transflective LCD Sunlight Readable
Resolution	128×64 pixels (XLE) 160×128 pixels (XLT)
Color	Monochrome
Built-In Storage	16MB
User-Program. Screens	1023 max pages; 50 objects per page
Backlight	LED
Backlight Lifetime	$30,000+$ hrs
Brightness Control	O-100\% (XLT) On/Off (XLE) via System Register \%SR57
Number of Keys	20 (XLE) 5 (XLT)
Touchscreen (XLT)	Resistive 1,000,000+ touch life

- Built-in I/O
- Common \%S \& \%SR Registers
- HSC/PWM/Totalizer/Quadrature \&

Accumulator Registers
Resource Limits

1.3 Connectivity	RS-232 full handshaking or RS-485 half duplex on first Modular Jack (MJI) RS-232 or RS-485 on second Modular Jack (MJ2)
Serial Ports	Programming only
USB mini-B	1x CAN Port, Isolated 1kV
CAN	CsCAN, CANopen, DeviceNet, J1939
CAN Protocols	Ethernet versions only
Ethernet	TCP/IP, Modbus TCP, FTP, SRTP, EGD, ICMP, ASCII
Ethernet Protocols	SmartRail, SmartStix, SmartBlock, SmartMod
Remote I/O	microSD, SDHC, SDXC IN FAT32 format, support for 32GB max. Application Updates, Datalogging, and more
Removable Mem- ory	
Audio (XLT only)	Beeper, System or Soft- ware Controlled

XLE/XLT User Manual [MAN0878]

The User Manual includes extensive information on:

1.4 Control \& Logic	
Control Lang. Support	Advanced Ladder Logic Full IEC 61131-3 Languages
Logic Program Size	256 kB
Logic Scan Rate	$0.7 \mathrm{~ms} / \mathrm{kB}$ (XLE) $0.8 \mathrm{~ms} / \mathrm{kB} \mathrm{(XLT)}$
Digital Inputs	2048
Digital Outputs	2048
Analog Inputs	512
Analog Outputs	512
Gen. Purpose	9,999 (words) Retentive 2,048 (bits) Retentive 2,048 (bits) Non-retentive

\subsection*{1.5 High-Speed Inputs
 | Number of Counters | 4 |
| :--- | :--- |
| Maximum Frequency | 500 kHz each |
| Accumulator Size | 32-bits each |
| Modes Supported | Totalizer, quadrature, pulse
 measurement, frequency
 measurement, set-point
 controlled outputs |}

1.6 High-Speed Outputs	
Modes Supported	Stepper, PWM
Maximum Frequency	10 kHz or 65 kHz with HE-XHSQ

technical specifications continued...

1.7 Digital DC Inputs	
Inputs per Module	24 Including 4 Configurable HSC Inputs
Commons per Module	1
Input Voltage Range	12VDC/ 24VDC
Absolute Max. Voltage	35VDC Max
Input Impedance	$10 \mathrm{k} \Omega$
Input Current:	Positive Negative Logic: Logic:
Upper Threshold Lower Threshold	$\begin{array}{ll} 0.8 \mathrm{~mA} & -1.6 \mathrm{~mA} \\ 0.3 \mathrm{~mA} & -2.1 \mathrm{~mA} \end{array}$
Max. Upper Threshold	8VDC
Min. Lower Threshold	3VDC
OFF to ON Response	1 ms
ON to OFF Response	1 ms
High Speed Counter Max Freq*	500kHz Max

*See I/O info below for detail regarding HSC and PWM

1.8 Digital DC Outputs	
Outputs per Module	16 Including 2 Config- urable PWM Outputs
Commons per Module	1
Output Type	Sourcing / 10k Ω PullDown
Absolute Max. Voltage	28VDC Max
Output Frequency	10kHz or 65kHz with HE-XHSQ
Output Protection	Short Circuit
Max. Output Current/Point	0.5
Max. Total Current	4A Continuous
Max. Output Supply	Voltage
Min. Output Supply	
Voltage	

Number of Channels	2
Input Ranges	$\begin{aligned} & 0-10 \mathrm{VDC} \\ & 0-20 \mathrm{~mA} \\ & 4-20 \mathrm{~mA} \end{aligned}$
Safe Input Range	-0.5 V to +12 V
Input Impedance (Clamped @ -0.5 VDC to 12VDC)	Current Mode: 100Ω Voltage Mode: 500Ω
Nominal Resolution	12 Bits
\%AI full scale	OV, 20mA, 100mV: 32,000 counts full scale
Max. Over-Current	35 mA
Conversion Speed	All channels converted once per ladder scan
Max. Error @ $25^{\circ} \mathrm{C}$ (excluding zero) Adjusting filtering may improve error	$\begin{aligned} & \text { 4-20mA 1.00\% } \\ & \text { 0-20mA 1.00\% } \\ & \text { 0-10VDC 0.50\% } \end{aligned}$
Filtering	160 Hz hash (noise) filter 1-128 scan digital running average filter

2 WIRING DIAGRAMS

2.1-Overview of XLE and XLT

1. Function Keys
2. Softkeys
3. Navigation Keys
4. Touchscreen
5. Wide Range DC Powser
6. CAN Port
7. Mounting Clip Locations
8. RS232/RS485 Serial Ports (2)
9. USB Mini-B Port
10. Ethernet LAN Port (optional)
11. Optional Built-In I/O
12. High Capacity microSD Slot
13. Configuration Switches
14. DIN Rail Clip

2.2 - Power Wiring,

DC Input / Frame
Solid/Stranded Wire: 12-24 awg (2.5-0.2mm).
Strip Length: 0.28 " (7 mm).
Torque Rating: $4.5-7 \mathrm{in}-\mathrm{lbs}$ ($0.50-0.78 \mathrm{~N}-\mathrm{m}$).
DC- is internally connected to $\mathrm{I} / \mathrm{O} \mathrm{V}$-, but is isolated from CAN V -.
A Class 2 power supply must be used.

3 WIRING: INPUTS AND OUTPUTS

3.1-Analog Input

Raw input values for channels 1-4 are found in the registers as Integertype data with a range from 0-32000.

Analog inputs may be filtered digitally with the Filter Constant found in the Cscape Hardware Configuration for Analog Inputs. Valid filter values are 0-7 and act according to the following chart.

	Data Values
INPUT MODE:	DATA FORMAT, 12-bit INT:
$0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$	$0-32000$
$0-10 \mathrm{~V}$	$0-32000$

3.2 - Digital Inputs

Digital inputs may be wired in either a Positive Logic or Negative Logic fashion as shown. The setting in the Cscape Hardware Configuration for the Digital Inputs must match the wiring used in order for the correct input states to be registered. P1 jumper settings are required for Pos/Neg setup. When used as a normal input and not for high-speed functions, the state of the input is reflected in registers \%|1-\%|12.

Digital inputs may alternately be specified for use with High Speed Counter functions, also found in the Hardware Configuration for Digital Inputs. Refer to the XLE/XLT User Manual (MANO878) for full details.

3.3 - Jumper Setting Details

Location of I/O jumpers (JP1 \& JP3) andwiring connectors ($\mathbf{J 1}, \mathbf{J 2}, \mathbf{J 3}$ \& J4) with back cover removed.

NOTE: The Cscape Module Configuration must match the selected I/O (JP) jumper settings.
(Cscape Path: Controller -> Hardware Configuration -> Local I/O -> Config -> Module Setup -> Analog In)

NOTE: When using JP3 (A1-A2), each channel can be independently configured.

3.4-Wiring Connectors

Model 4 - Digital In / Analog In J1 Wiring

J1 (Orange) Name	
I1	IN1
I2	IN2
I3	IN3
I4	IN4
I5	IN5
I6	IN6
I7	IN7
I8	IN8
H1	HSC1 / IN9
H2	HSC2 / IN10
H3	HSC3 / IN11
H4	HSC4 / IN12
A1	Analog IN1
A2	Analog IN2
OV	Common

wiring: I-O continued on next page...
wiring: l-O continued...

Model 4 - Relay Out/ Digital In \& Out J2 Wiring

Model 4 - Digital Out - Positive Logic J4 Wiring

> Model 4 - Digital In - Positive Logic J3 Wiring

J3 (Orange) Name	
I13	IN13
I14	IN14
I15	IN15
I16	IN16
I17	IN17
I18	IN18
I19	IN19
120	IN20
I21	IN21
122	IN22
I23	IN23
I24	IN24
OV	Common

CAN Pin Assignments		
PIN	SIGNAL	DESCRIPTION
$\mathbf{1}$	V-	CAN Ground - Black
$\mathbf{2}$	CN L	CAN Data Low - Blue
$\mathbf{3}$	SHLD	Shield Ground - None
$\mathbf{4}$	CN H	CAN Data High - White
$\mathbf{5}$	V+ (NC)	No Connect - Red

Solid/Stranded Wire: 12-24 awg (2.5-0.2mm).
Locking spring-clamp, two-terminators per conductor.
Torque Rating: $4.5 \mathrm{in}-\mathrm{Ibs}(0.50 \mathrm{~N}-\mathrm{m})$.
V+ pin is not internally connected, the SHLD pin is connected to Earth ground via a $1 \mathrm{M} \Omega$ resistor and 10 nF capacitor.

4.2-Ethernet Communications

Green LED indicates link - when illuminated, data communication is available.

Yellow LED indicates activity - when flashing, data is in transmission.

communications continued...

4.3-Serial Communications

MJ1: RS-232
w/full handshaking or RS485 half-duplex

RS-485 termination via switches; biasing via software

MJ1 PINS		
PIN	SIGNAL	DIRECTION
8	TXD	OUT
7	RXD	IN
6	OV	GROUND
5	+5V @	OUT
4	RTS	OUT
3	CTS	IN
2	RX-/TX-	IN/OUT
1	RX+/TX+	IN/OUT

MJ2 SERIAL PORT
MJ2: RS-232 or RS485 half or full-duplex, software selectable

RS-485 termination via switches; biasing via software.

4.4-Dip Switches

MJ2 PINS		
PIN	SIGNAL	DIRECTION
8	232 TXD	OUT
7	232 RXD	IN
6	OV	Ground
5	$+5 V ~ @ ~ 60 m A ~$	OUT
4	485 TX-	OUT
3	485 TX+	OUT
2	$485 ~ R X-$ or RX/TX-	IN or IN/OUT
1	485 RX+ or RX/TX+	IN or IN/OUT

The DIP switches are used to provide a built-in termination to both the MJ1 port and MJ2 port if needed. The termination for these ports should only be used if this device is located at either end of the multidrop/daisy-chained RS-485 network.

DIP SWITCHES

PIN	NAME	FUNCTION	DEFAULT
1	MJ1 RS-485 Termination	ON = Terminated	OFF
2	MJ2 RS-485 Termination	ON = Terminated	OFF
3	Bootload	Always Off	OFF

5 BUILT IN I/O

5.1-Built-in I/O for XLE/XLT - Model 4

The I/O is mapped into OCS Register space, in three separate areas - Digital/Analog I/O, High-Speed Counter I/O, and High-speed Output I/O. Digital/Analog I/O location is fixed starting at 1, but the high-speed counter and high-speed output references may be mapped to any open register location. For more details, see the XLE/XLT OCS User's Manual (MAN0878).

5.1 Digital and Analog I/O Functions	
Digital Inputs	\%l1-24
Reserved	\%l125-31
ESCP Alarm	\%l32
Digital Outputs	\%Q1-16
Reserved	\%Q17-24
Analog Inputs	\%Al1-2
Reserved	\%Al3-12
Analog Outputs	n / a
Reserved	\%AQ1-8

6 ANALOG IN TRANZORB FAILURE

6.1-Tranzorb Failure Solutions

A common cause of Analog Input Tranzorb Failure on Analog Inputs Models $2,3,4, \& 5$: If a 4-20mA circuit is initially wired with loop power, but without a load, the analog input could see 24 VDC . This is higher than the rating of the tranzorb. This can be solved by NOT connecting loop power prior to load connection, or by installing a low-cost PTC in series between the load and Analog input.

Digi-Key BC2316-ND

7 BATTERY

7.1-Battery Maintenance

The XLE/XLT uses a replaceable non-rechargeable 3 V Lithium coincell battery (CR2450) to run the Real-Time Clock and to keep the retained register values. This battery is designed to maintain the clock and memory for 7 to 10 years. Please reference MAN0878 providing instructions on how to replace the battery.

8 DIMENSIONS \& INSTALLATION

8.1 - Dimensions

8.2 - Installation Procedure

The XLE/XLT utilizes a clip installation method to ensure a robust and watertight seal to the enclosure. Please follow the steps below for the proper installation and operation of the unit.

1. Carefully locate an appropriate place to mount the XLE/XLT. Be sure to leave enough room at the top of the unit for insertion and removal of the microSD ${ }^{T M}$ card.
2. Carefully cut the host panel per the diagram, creating a 92 mm $\times 92 \mathrm{~mm}+/-0.1 \mathrm{~mm}$ opening into which the XLE/XLT may be installed. If the opening is too large, water may leak into the enclosure, potentially damaging the unit. If the opening is too small, the OCS may not fit through the hole without damage.
3. Remove any burrs and or sharp edges and ensure the panel is not warped in the cutting process.
4. Remove all Removable Terminals from the XLE/XLT. Insert the XLE/XLT through the panel cutout (from the front). The gasket must be between the host panel and the XLE/XLT.
5. Install and tighten the four mounting clips (provided in the box) until the gasket forms a tight seal (NOTE: Max torque 0.8 to 1.13 Nm , 7-10 in-Ibs).
6. Reinstall the XLE/XLT I/O Removable Terminal Blocks. Connect communications cables to the serial port, USB ports, Ethernet port, and CAN port as required.

9 SAFETY

9.1-WARNINGS

1. To avoid the risk of electric shock or burns, always connect the safety (or earth) ground before making any other connections.
2. To reduce the risk of fire, electrical shock, or physical injury, it is strongly recommended to fuse the voltage measurement inputs. Be sure to locate fuses as close to the source as possible.
3. Replace fuse with the same type and rating to provide protection against risk of fire and shock hazards.
4. In the event of repeated failure, do NOT replace the fuse again as repeated failure indicates a defective condition that will NOT clear by replacing the fuse.
5. Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install, adjust, operate, or service this equip ment. Read and understand this manual and other applicable manuals in their entirety before proceeding. Failure to observe this precaution could result in severe bodily injury or loss of life.

9.2 - FCC COMPLIANCE

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
. This device may not cause harmful interference
2. This device must accept any interference received, including interference that may cause undesired operation

9.3 - PRECAUTIONS

All applicable codes and standards need to be followed in the installation of this product. Adhere to the following safety precautions whenever any type of connection is made to the module:

1. Connect the safety (earth) ground on the power connector first before making any other connections.
2. When connecting to the electric circuits or pulse-initiating equipment, open their related breakers.
3. Do NOT make connection to live power lines.
4. Make connections to the module first; then connect to the circuit to be monitored.
5. Route power wires in a safe manner in accordance with good practice and local codes.
6. Wear proper personal protective equipment including safety glasses and insulated gloves when making connections to power circuits.
7. Ensure hands, shoes, and floor are dry before making any connection to a power line.
8. Make sure the unit is turned OFF before making connection to terminals.
9. Make sure all circuits are de-energized before making connections.
10. Before each use, inspect all cables for breaks or cracks in the insulation. Replace immediately if defective.
11. Use copper conductors in Field Wiring only, $60 / 75^{\circ} \mathrm{C}$.

10 PART NUMBER

10.1-Part Number Builder

GLOBAL MODEL NUMBERS		
screen	Ethernet	1/0
HE-X		
E (notouchscreen)	0 (no Ethernet)	0 (model 0)
T (touchscreen)	E (Ethernet)	2 (model 2)
		3 (model 3)
		4 (model 4)
		5 (model 5)
		6 (model 6)

EUROPEAN MODEL NUMBERS

11 TECHNICAL SUPPORT

11.1-Contact Information

For assistance and manual updates, contact Technical Support at the following locations:

North America

(317) 916-4274
(877) 665-5666
www.hornerautomation.com
techsppt@heapg.com

Europe

(+) 353-21-4321-266
www.horner-apg.com
technical.support@horner-apg.com

