

EXLW Model 5 Datasheet

12 DC In, 12 DC Out, 2 - 14/16 - bit Analog In (mA/V/TC/mV/RTD), 2 - 12-bit Analog Out HE-EXLWE5 / HEXT381C115

1. TECHNICAL SPECIFICATIONS

1.1 General Specificati	ons
Required Power	420mA @ 12VDC
(Steady State)	230mA @ 24VDC
Demuined Demon (Insuch)	25A for < 1ms @ 24VDC, DC
Required Power (Inrush)	switched
Primary Power Range	10 - 30VDC
Relative Humidity	5 to 95% non-condensing
Typical Power Backlight 100%	6.816W @ 24VDC
Power Backlight 50%	6.169W @ 24VDC
Power Backlight OFF	5.472W @ 24VDC
	+ / - 20 ppm maximum @
Clock Accuracy	25°C (+/-1 min/month)
	Battery Backed,
Real Time Clock	Rechargeable
	Lithium
Operating Air Temp	-10°C to +60°C
Storage Temp	-20°C to +60°C
Weight	1.59 lbs (721.2g)
Altitude	Up to 2000m
Rated Pollution Degree	Evaluated for Pollution
Rated Pollution Degree	Degree 2 Rating
	North America:
	https://hornerautomation.com/certif ications/ Europe:
Certifications (UL/CE)	https://www.hornerautomation.eu/s
	upport/certifi- cations-2

1. 2 Control & Logic	
Control Language Support	Advanced Ladder Logic Full IEC 61131-3 Languages Tag-Based Editor
Logic Program Size	1 MB, maximum
Logic Scan Rate	0.013ms/kB
Digital Inputs	2048
Digital Outputs	2048
Analog Inputs	512
Analog Outputs	512
Gen. Purpose Registers	50,000 (words) Retentive 16,384 (bits) Retentive 16,384 (bits) Non-retentive

1.3 Connectivi	ty
Serial Ports	1 RS-232 and 1 RS-485 on first Modular Jack (MJ1/2) 1 RS-232 or 1 RS-485 on second Modular Jack
USB mini-B	USB 2.0 (480MHz) Programming & Data Access
USB A	USB 2.0 (480MHz) for USB flash drives (2TB)
CAN Port Isolated 1kV	Remote I/O, Peer-to-peer Comms, Cscape
CAN Protocols Ethernet	CsCAN, CANopen, DeviceNet, J1939 10/100 Mb (Auto-MDX)
Ethernet Protocols	TCP/IP, Modbus TCP, FTP, SMTP, EGD, ICMP, ASCII, Cscape, Ethernet IP
Remote I/O	SmartRail, SmartStix, SmartBlock, SmartMod
Removable Memory	microSD, SDHC, SDXC IN FAT32 format, support for 32GB max. Application Updates, Datalogging, and more

1. 4 User Interface	
Display Type	7" TFT Color
Resolution	800 x 480
Color	16-bit (65,536)
Screen Memory	17MB
User-Program. Screens	1023 max pages; 1023
User-Program. Screens	objects per page
Backlight	LED - 50,000-hour life

1.5 High-Speed Inputs	
Number of Counters	4
Maximum Frequency	1MHz Max
Accumulator Size	32-bits each
Modes Supported	Totalizer, quadrature, pulse measurement, frequency measurement, set-point controlled outputs
1.6 High-Speed Outpu	ts
Modes Supported	Stepper, PWM
Output Frequency	500kHz

Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil

Please visit our website for a complete listing and to learn more about certified Horner Automation products. This document is the property of Horner Automation Group and is subject to change. EXLW

technical specifications cont'd...

1.7 Digital DC Input	S	
Inputs per Module	12 including 4 HSC i	-
Commons per Module		
Input Voltage Range	12VDC /	24VDC
Absolute Max. Voltage	35VD(C Max.
Input Impedance	10	kΩ
Input Current	Positive Logic	Negative Logic
Upper Threshold	0.8mA	-1.6mA
Lower Threshold	0.3mA	-2.1mA
Max. Upper Threshold	8V	DC
Min. Lower Threshold	3V	DC
OFF to ON Response	1n	าร
ON to OFF Response	1n	าร
High Speed Counter Max. Freq *	1M	Hz

1.8 Digital DC Outputs	
Outputs per Mod.	16 including 2 configurable PWM outputs
Commons per Mod.	1
Output Type	Sourcing / 10kΩ Pull-Down
Output Frequency	500kHz
Absolute Max. Volt.	28VDC Max.
Output Protection	Short Circuit
Max. Output Current/Point	0.5A
Max. Total Current	4A Continuous
Max Output Supply Voltage	30VDC
Min. Output Supply Voltage	10VDC
Max. Voltage Drop at Rated Current	0.25VDC
Max. Inrush Current	650mA per Channel
Min. Load	None
OFF to ON Resp.	1 ms
ON to OFF Resp.	1 ms
Output Characteristics	Curr. Sourcing (Pos. Logic)
PWM Out	≈ 5kHz
Rise Time	50 - 115µs
Fall Time	8-20µs

	1.9 An	alog Inputs, High Resolution	
Number of Channels	2	Thermocouple: B / R / S E T J K / N	Temperature Range: 32°F to 2,912°F (0°C to 1,600°C) -328°F to 1,652°F (-200°C to 900°C) -400°F to 752°F (-240°C to 400°C) -346°F to 1,382°F (-210°C to 750°C) -400°F to 2,498°F (-240°C to 1, 370°C)
Input Ranges (Selectable)	0-10VDC; 0-20mA; 4-20mA; 100mV PT100; and J, K, N, T, E, R, S, B Thermocouples	Thermocouple Common Mode Range	+/-10V
Safe Input Voltage Range	10VDC: -0.5V to +15V 20mA: -0.5V to +6V RTD / TC: +/- 24VDC	Converter Type	Delta Sigma
Nominal Resolution	10V, 20mA, 100mV: 14 Bits RTD, Thermocouple: 16 Bits	Max. Error @ 25°C (*excluding zero)	*4-20mA +/- 0.10% of full scale *0-20mA +/- 0.10% of full scale *0-10VDC +/- 0.10% of full scale RTD (PT100) +/- 1.0 °C of full scale 0-100mV +/- 0.05% of full scale
Input Impedance (Clamped @ -0.5VDC to 12VDC)	Current Mode : 100Ω, 35mA Max Continuous Voltage Mode : 500kΩ, 25mA Max Continuous	Max. Thermocouple Error (After Warm-up Time of One Hour)	+/-0.2% (+/-0.3% below -100°C) of full scale
%AI Full Scale	10V, 20mA, 100mV: 32,000 counts full scale RTD / TC: 20 counts / °C	Conversion Speed, Both Channels Converted	10V, 20mA, 100mV: 30 Times/Second RTD Thermocouple: 7.5 Times/Second
Max Over Current	35mA	Conversion Time per Channel	OV, 20mA, 100mV: 16.7 ms RTD, Thermocouple: 66.7 ms
Open Thermocouple Detect Current	50nA	RTD Excitation Current	250μΑ

Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil

technical specifications cont'd...

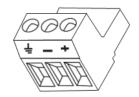
	1.10	Analog Outputs	
Number of Channels	2	Minimum 10V Load	1kΩ
Output Ranges	0-10VDC, 0-20mA	Minimum Resistance Load	500Ω
Nominal Resolution	12 Bits	Analog Outputs: Output Points Required	2
Update Rate	Once per PLC Scan	Additional Error for	20mA 0.000143%/ °C
Max. Error @ 25°C (Excluding Zero)	20mA 0.1% of full scale 0 - 10V 0.1% of full scale	Temp other than 25°C	0 - 10V 0.000151%/ °C

2. CONTROLLER OVERVIEW

2.1 Controller Overview

NOTE: See Precaution #12 on about USB and grounding.

Touchscreen
3. USB 2.0 "A": Flash Drive
LAN Port
PWR: 10-30VDC
CAN Port
MJ3: RS-232/485
Dip Switches
MJ1/MJ2: RJ45 Serial Port
microSD: Data Storage
USB mini "B": Programming


Wiring Details: Solid/Stranded Wire: 12-24 awg (2.5 - 0.2mm²) Strip Length: 0.28'' (7mm) Torque Rating: 4.5 - 7 in-lbs (0.50 - 0.78N-m)

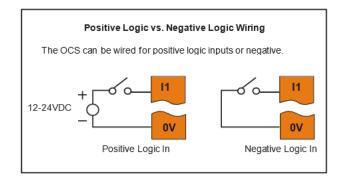
Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil

controller overview cont'd

2.2 Power Wiring

	Primary	Port Pins
PIN	SIGNAL	DESCRIPTION
1	Ground	Frame Ground
2	DC-	Input Power Supply Ground
3	DC+	Input Power Supply Voltage

DC INPUT / FRAME Solid/Stranded Wire: 12-24 awg (2.5-0.2mm). Strip Length: 0.28'' (7mm). Torque Rating: 4.5 - 7 in-lbs (0.50 - 0.78 N-m). DC- is internally connected to I/O V- but is isolated from CAN V-. A Class 2 power supply must be used.


POWER UP

- 1. Attach included ferrite core with a minimum of two turns of the DC+ and DC- signals from the DC supply that is powering the controller.
- 2. Connect to Earth Ground
- 3. Apply recommended power.

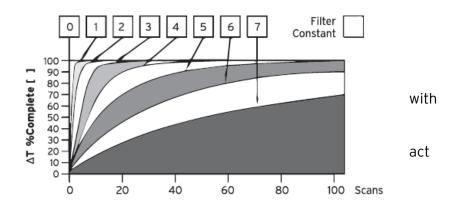
3. WIRING: INPUTS & OUTPUTS

3.1 Digital Input

Digital inputs may be wired in either a Positive Logic or Negative Logic fashion as shown. The setting in the Cscape Hardware Configuration for the Digital Inputs must match the wiring used in order for the correct input states to be registered. When used as a normal input and not for high speed functions, the state of the input is reflected in registers %11 -%112.

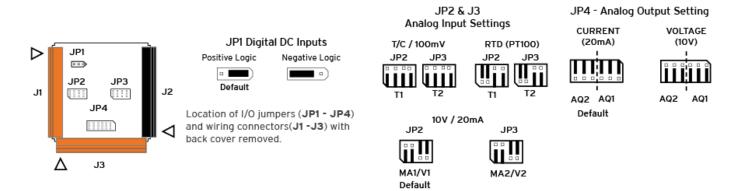
Digital inputs may alternately be specified for use with High Speed Counter functions, also found in the Hardware Configuration for Digital Inputs. Refer to the EXLW User Manual (MAN1256) for full details.

Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil



wiring: I/O cont'd

3.2 Analog Input

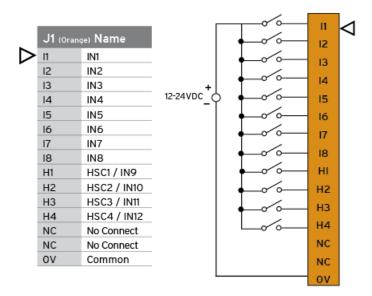

Raw input values for channels 1-4 are found in the registers as Integer- type data with a range from 0 - 32000.

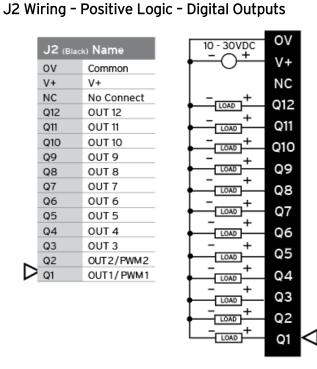
Analog inputs may be filtered digitally the Filter Constant found in the Cscape Hardware Configuration for Analog Inputs. Valid filter values are 0 - 7 and according to the following chart:

Data	Values
INPUT MODE:	DATA FORMAT, 12-bit INT:
0-20mA, 4-20mA	0-32000
0-10V	0-32000
Thermocouple and RTD	Temperature in °C or °F to 1 decimal place (xxx.y) NOTE : °C or °F may be selected in the Hardware Configuration section in Cscape. The value is an integer, so the user should divide by 20.

3.3 Jumper Settings

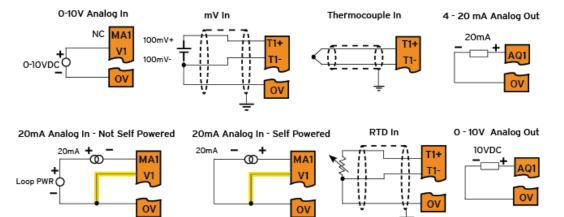
NOTE: The Cscape Module Configuration must match the selected I/O (JP) jumper settings. Path: Controller \rightarrow Hardware Configuration \rightarrow Local I/O \rightarrow Module Setup \rightarrow Analog I/O


Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil


wiring: I/O cont'd

Wiring Connectors 3.4

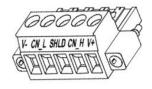
J1 Wiring - Positive Logic - Digital In / Out



ov	Common
V+	V+
NC	No Connect
Q12	OUT 12
Q11	OUT 11
Q10	OUT 10
Q9	OUT 9
Q8	OUT 8
Q7	OUT 7
Q6	OUT 6
Q5	OUT 5
Q4	OUT 4
Q3	OUT 3
Q2	OUT2/PWM2
Q1	OUT1/PWM1

J3 Wiring

J3 (Orange) Name		
T1+	TC (1+) or RTD (1+) or 100mV (1+)	
T1-	TC (1-) or RTD (1-) or 100mV (1-)	
T2+	TC (2+) or RTD (2+) or 100mV (2+)	
T2-	TC (2-) or RTD (2-) or 100mV (2-)	
AQ1	10V or 20mA OUT (1)	
AQ2	10V or 20mA OUT (2)	
٥v	Common	
MA1	0-20mA IN (1)	
V1	0-10V IN (1)	
٥V	Common	
MA2	0-20mA IN (2)	
V2	0-10V IN (2)	
ov	Common	



Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil

4. COMMUNICATIONS

4.1 CAN Communications

CAN Pin Assignments			
PIN	SIGNAL	DESCRIPTION	
1	V-	CAN Ground - Black	
2	CN L	CAN Data Low - Blue	
3	SHLD	Shield Ground - None	
4	CN H	CAN Data High - White	
5	V+ (NC)	No Connect - Red	

Solid/Stranded Wire: 12-24 awg (2.5-0.2mm).

Strip Length: 0.28" (7mm).

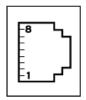
Locking spring-clamp, two-terminators per conductor.

Torque Rating: 4.5 - 7 in-lbs (0.50 - 0.78 N-m).

V+ pin is not internally connected, the SHLD pin is connected to Earth ground via a 1 $M\Omega$ resistor and 10nF capacitor.

4.2 Serial Communications

MJ1/2 Independent Serial Ports

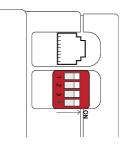

MJ1: RS-232 w/ full handshaking MJ2: RS-485 Half-Duplex

-8	Ъ,
I E	
I F.	4
[1]	

MJ1 PINS			MJ2 F	PINS
PIN	SIGNAL	DIRECTION	SIGNAL	DIRECTION
8	TXD	OUT		
7	RXD	IN		
6	OV	GROUND	OV	GROUND
5	+5 @ 60mA	OUT	+5 @ 60mA	OUT
4	RTS	OUT		
3	CTS	IN		
2			RX- / TX-	IN / OUT
1			RX+ / TX+	IN / OUT

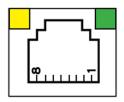
MJ3 Serial Port

2 Multiplexed Serial Ports on One Module Jack (8posn)


MJ3 PINS			
PIN	SIGNAL	DIRECTION	
8	TXD RS232	OUT	
7	RXD RS232 IN		
6	OV	GROUND	
5	+5 @ 60mA	OUT	
4	TX- RS485	OUT	
3	TX+ RS485	OUT	
2	RX- RS485	IN	
1	RX+ RS485	IN	

Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil

communications cont'd


4.3 DIP Switches

DIP SWITCHES			
PIN	NAME	FUNCTION	DEFAULT
1	MJ3 RS485 Termination	ON = Terminated	OFF
2	MJ3 Duplex	ON = Half OFF = Full	OFF OFF
4	MJ2 RS485 Termination	ON = Terminated	OFF

The dip switches are used to provide a built-in termination to both the MJ1, MJ2 & MJ3 ports if needed. The termination for these ports should only be used if this device is located at either end of the multidrop/daisy-chained RS-485 network.

4.4 Ethernet Communications

Green LED indicates link - when illuminated, data communication is available.

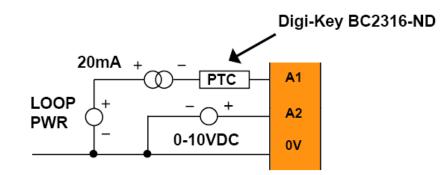
Yellow LED indicates activity - when flashing, data is in transmission.

5. BUILT-IN I/O for MODEL 5

All EXLW models (except Model O) feature built-in I/O. The I/O is mapped into OCS Register space, in three separate areas - Digital/Analog I/O, High-Speed Counter I/O, and High-speed Output I/O. Digital/Analog I/O location is fixed starting at 1, but the High-Speed Counter and High-Speed Output references may be mapped to any open register location. For more details, see the EXLW OCS User's Manual [MAN1256].

Digital and Analog I/O Functions		
Digital Inputs	%I1-12	
Reserved	%113-31	
ESCP Alarm	%I32	
Digital Outputs	%Q1-12	
Reserved	%Q13-24	
Analog Inputs	%Al1-2	
Reserved	%AI3-12	
Analog Outputs	%AQ9-10	
Reserved	%AQ1-8	

Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil

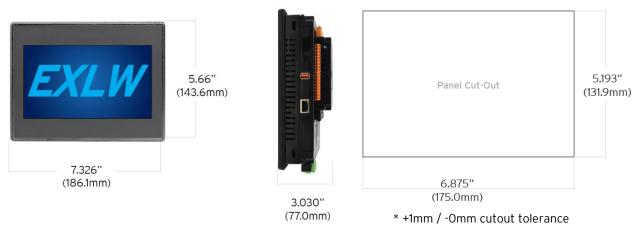

6. BATTERY MAINTENANCE

The EXLW has an advanced battery system that uses a rechargeable lithium battery. The battery power the real-time clock when power is removed, and it is needed for register data retention. Refer to the user manual, MAN1256, for more instructions on replacing the battery.

NOTE: For detailed rechargeable battery information, refer to the Battery Manual [MAN1142].

7. ANALOG IN TRANZORB FAILURE

A common cause of Analog Input Tranzorb Failure on Analog Inputs Models 2, 3, 4, & 5: If a 4-20mA circuit is initially wired with loop power, but without a load, the analog input could see 24VDC. This is higher than the rating of the tranzorb. This can be solved by NOT connecting to loop power prior to load connection, or by installing a low-cost PTC in series between the load and the analog input.



Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil

8. DIMENSIONS & INSTALLATION

8.1 Dimensions

8.2 Install Instructions

- The EXLW utilizes a clip installation method to ensure a robust and watertight seal to the enclosure. Please follow the steps below for the proper installation and operation of the unit.
- This equipment is suitable for Class I, Division 2, Groups A, B, C and D or non-hazardous locations only.
- Digital outputs shall be supplied from the same source as the operator control station.
- Jumpers on connector JP1 shall not be removed or replaced while the circuit is live unless the area is known to be free of ignitable concentrations of flammable gases or vapors.
- 1. Carefully locate an appropriate place to mount the EXLW. Be sure to leave enough room at the top of the unit for insertion and removal of the microSD[™] card.
- 2. Carefully cut the host panel per the diagram, creating a 175.0mm x 131.9mm, with a +1mm/-0mm panel cutout tolerance, opening into which the EXLW may be installed. If the opening is too large, water may leak into the enclosure, potentially damaging the unit. If the opening is too small, the OCS may not fit through the hole without damage.
- 3. Remove any burrs and or sharp edges and ensure the panel is not warped in the cutting process.
- 4. Remove all Removable Terminals from the EXLW. Insert the EXLW through the panel cutout (from the front). The gasket must be between the host panel and the EXLW.
- 5. Install and tighten the four mounting clips (provided in the box) until the gasket forms a tight seal. **NOTE: Max torque is 0.8 to 1.13Nm, or 7 to 10 in-lbs**.
- 6. Reinstall the EXLW I/O Removable Terminal Blocks. Connect communications cables to the serial port, USB ports, Ethernet port, and CAN port as required. Refer to the user manual, MAN1256, for more instructions.

Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil

9. SAFETY & WARNINGS

9.1 Warnings

- 1. To avoid the risk of electric shock or burns, always connect the safety (or earth) ground before making any other connections.
- 2. To reduce the risk of fire, electrical shock, or physical injury, it is strongly recommended to fuse the voltage measurement inputs. Be sure to locate fuses as close to the source as possible.
- 3. Replace fuse with the same type and rating to provide protection against risk of fire and shock hazards.
- 4. In the event of repeated failure, do NOT replace the fuse again as repeated failure indicates a defective condition that will NOT clear by replacing the fuse.
- 5. Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install, adjust, operate, or service this equipment. Read and understand this manual and other applicable manuals in their entirety before proceeding. Failure to observe this precaution could result in severe bodily injury or loss of life.
- 6. WARNING Battery may explode if mistreated. Do not recharge, disassemble, or dispose of in fire. AVERTISSEMENT - La batterie peut exploser si elle est mal traitée. Ne pas recharger, démonter ou jeter au feu.
- WARNING EXPLOSION HAZARD Batteries must only be changed in an area known to be non-hazardous. AVERTISSEMENT - RISQUE D'EXPLOSION - Les piles ne doivent être changées que dans une zone connue pour être non dangereuse.

9.2 FCC Compliance

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference
- 2. This device must accept any interference received, including interference that may cause undesired operation

9.3 Precautions

- 1. All applicable codes and standards need to be followed in the installation of this product. Adhere to the following safety precautions whenever any type of connection is made to the module:
- 2. Connect the safety (earth) ground on the power connector first before making any other connections.
- 3. When connecting to the electric circuits or pulse-initiating equipment, open their related breakers.
- 4. Do NOT make connection to live power lines.
- 5. Make connections to the module first; then connect to the circuit to be monitored.
- 6. Route power wires in a safe manner in accordance with good practice and local codes.
- 7. Wear proper personal protective equipment including safety glasses and insulated gloves when making connections to power circuits.
- 8. Ensure hands, shoes, and floor are dry before making any connection to a power line.
- 9. Make sure the unit is turned OFF before making connection to terminals.
- 10. Make sure all circuits are de-energized before making connections.
- 11. Before each use, inspect all cables for breaks or cracks in the insulation. Replace immediately if defective.
- 12. Use copper conductors in Field Wiring only, 60/75°C.
- 13. Use caution when connecting controllers to PCs via serial or USB. PCs, especially laptops may use "floating power supplies" that are ungrounded. This could cause a damaging voltage potential between the laptop and controller. Ensure the controller and laptop are grounded for maximum protection. Consider using a USB isolator due to voltage potential differences as a preventative measure.

10. TECHNICAL SUPPORT

For assistance and manual updates, contact Technical Support at the following locations:

North America

(317) 916-4274 www.hornerautomation.com techsppt@heapg.com

Europe

(+) 353-21-4321-266 www.hornerautomation.eu technical.support@horner-apg.com

Indianapolis, USA | Cork, Ireland | Calgary, Canada | Bangalore, India | Oakleigh, Australia | Tianjin, China | Esteio, Brazil