
BASIC Gateway Module

User Manual for
HE660BGM224, HE660BGM324, and HE660BGM424

7 May 2002 MAN0024-02

PREFACE Page ii

PREFACE

This manual explains how to use the Horner BASIC Gateway Module and accompanying software.

Copyright (c) 2002 Horner APG, LLC., 640 North Sherman Drive, Indianapolis, IN 46201. All
rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored
in a retrieval system, or translated into any language or computer language, in any form by any
means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior
agreement and written permission of Horner APG, LLC.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Horner APG, LLC.

Genius, Series 90 and Logicmaster are trademarks of GE Fanuc Automation North America
Inc.

Alspa 8000 and P8 are trademarks of CEGELEC

MCS and Intel are trademarks of Intel Corporation

ProComm is a registered trademark of the Datastorm Corporation

WordPerfect is a trademark of WordPerfect Corporation

Modbus is a trademark of AEG/Modicon

Page iii PREFACE

LIMITED WARRANTY AND LIMITATION OF LIABILITY

Horner APG, LLC. ("HE") warrants to the original purchaser that the BASIC Gateway Module
manufactured by HE APG is free from defects in material and workmanship under normal use and
service. The obligation of HE APG under this warranty shall be limited to the repair or exchange
of any part or parts which may prove defective under normal use and service within two years from
the date of manufacture or eighteen (18) months from the date of installation by the original
purchaser which every occurs first, such defect to be disclosed to the satisfaction of HE APG after
examination by HE APG of the allegedly defective part or parts. THIS WARRANTY IS
EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED INCLUDING
THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE AND OF ALL OTHER
OBLIGATIONS OR LIABILITIES AND HE APG NEITHER ASSUMES, NOR AUTHORIZES ANY
OTHER PERSON TO ASSUME FOR HE, ANY OTHER LIABILITY IN CONNECTION WITH THE
SALE OF THIS BASIC GATEWAY MODULE. THIS WARRANTY SHALL NOT APPLY TO THIS
ASCII BASIC MODULE OR ANY PART THEREOF WHICH HAS BEEN SUBJECT TO ACCI-
DENT, NEGLIGENCE, ALTERATION, ABUSE, OR MISUSE. HE APG MAKES NO WARRANTY
WHATSOEVER IN RESPECT TO ACCESSORIES OR PARTS NOT SUPPLIED BY HE. THE
TERM "ORIGINAL PURCHASER", AS USED IN THIS WARRANTY, SHALL BE DEEMED TO
MEAN THAT PERSON FOR WHOM THE BASIC GATEWAY MODULE IS ORIGINALLY
INSTALLED. THIS WARRANTY SHALL APPLY ONLY WITHIN THE BOUNDARIES OF THE
CONTINENTAL UNITED STATES.

In no event, whether as a result of breach of contract, warranty, tort (including negligence) or
otherwise, shall HE APG or its suppliers be liable for any special, consequential, incidental or
penal damages including, but not limited to, loss of profit or revenues, loss of use of the products
or any associated equipment, damage to associated equipment, cost of capital, cost of substitute
products, facilities, services or replacement power, down time costs, or claims of original
purchaser�s customers for such damages.

To obtain warranty service, return the product to your distributor after obtaining a "Return Material
Authorization" (RMA) number. Send the module with a description of the problem, proof of
purchase, post paid, insured and in a suitable package.

Second Edition, December 1994

PREFACE Page iv

ABOUT THE PROGRAM EXAMPLES

The example programs and program segments in this manual and provided on the accompa-
nying diskettes are included solely for illustrative purposes. Due to the many variables and
requirements associated with any particular installation, Horner Electric cannot assume
responsibility or liability for actual use based on the examples and diagrams. It is the sole
responsibility of the system designer utilizing the BASIC Gateway Module to appropriately
design the end system, to appropriately integrate the BASIC Gateway Module and to make
safety provisions for the end equipment as is usual and customary in industrial applications
as defined in any codes or standards which apply.

Page v TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 What You Have Page 1-1
1.2 BASIC Gateway Module features Page 1-1
1.3 Hardware description Page 1-2

1.3.1 Microprocessor Page 1-2
1.3.2 Module Reset Options Page 1-3
1.3.3 Primary Serial Port Page 1-3
1.3.4 Flexible Memory Configuration . . . Page 1-3
1.3.5 Firmware Memeory Page 1-3
1.3.6 Data Memory Page 1-3
1.3.7 Program File Memory Page 1-3
1.3.8 Genius interface Page 1-4
1.3.9 Auxiliary Serial Port Page 1-4

1.4 Specifications Page 1-4

CHAPTER 2: INSTALLATION

2.1 Mounting requirements Page 2-1
2.2 Power Requirements Page 2-1
2.3 Genius Network Connection Page 2-1
2.4 Main RS-232 Connection Page 2-2
2.5 GENI Configuration Page 2-2
2.6 The "Console" Device Page 2-3

2.6.1 Using a Host Computer Page 2-4
2.6.2 TERM - Dumb Terminal Emulation Software . Page 2-4

CHAPTER 3: BASIC PROGRAMMING OVERVIEW

3.1 What is BASIC? Page 3-1
3.2 Operating Modes Page 3-1
3.3 BASIC System Elements Page 3-1

3.3.1 Stack Structure Page 3-1
3.3.2 Control Stack Page 3-2
3.3.3 Argument Stack Page 3-2
3.3.4 The Line Editor Page 3-2

TABLE OF CONTENTS Page vi

3.4 BASIC Program Elements Page 3-3

3.4.1 Executable Statements Page 3-3
3.4.2 Line Numbers Page 3-3
3.4.3 BASIC Programs Page 3-4
3.4.4 Numeric Values Page 3-4
3.4.5 Integer Values Page 3-4
3.4.6 Floating-point Values Page 3-4
3.4.7 Numeric Constant Values Page 3-5
3.4.8 Operators Page 3-5
3.4.9 Variables Page 3-5
3.4.10 Array Variables Page 3-6
3.4.11 Numeric Expressions Page 3-7
3.4.12 Relational Expressions Page 3-7
3.4.13 String Expressions Page 3-7
3.4.14 Special Function Operators . . . Page 3-7

3.5 Manual Conventions Page 3-8

CHAPTER 4: COMMANDS AND STATEMENTS

4.1 System Commands Page 4-1

AUTORUN Page 4-2
BREAK@ Page 4-3
CONT Page 4-4
DELPGM Page 4-5
DIAG Page 4-6
EDIT Page 4-7
HELP Page 4-8
LIST Page 4-9
LIST# Page 4-10
NEW Page 4-11
RESET Page 4-12
RUN Page 4-13
SAVE Page 4-14
SELECT Page 4-15
STARTUP Page 4-16
STATUS Page 4-17
STEP Page 4-18

4.2 BASIC Statements and Operators . . . Page 4-19

4.2.1 Program Control Statements . . . Page 4-19
4.2.2 Data Manipulation Statements . . . Page 4-19
4.2.3 Serial Port Control Statements . . . Page 4-19

Page vii TABLE OF CONTENTS

4.2.4 Unary Operators Page 4-19
4.2.5 String Operators Page 4-20
4.2.6 Time Handling Operators Page 4-20
4.2.7 Special Function Operators . . . Page 4-20
4.2.8 Configuration Statements Page 4-20
4.2.9 Logical Operators Page 4-20

DESCRIPTION OF STATEMENTS AND OPERATORS

ABS() Page 4-21
.AND. Page 4-22
ASC() operator Page 4-23
ASC() function Page 4-24
ATN() Page 4-25
BCD() Page 4-26
BNR() Page 4-27
BREAK Page 4-28
CHAIN Page 4-30
CHR() Page 4-31
CHR$() Page 4-32
CLEAR Page 4-33
CLEAR I Page 4-34
CLEAR S Page 4-35
CLOCK Page 4-36
CLRMEM Page 4-37
CMDPORT Page 4-38
COMBRK Page 4-40
COS() Page 4-41
CR Page 4-42
CTS Page 4-43
DATA Page 4-44
DATE$ Page 4-45
DELAY Page 4-46
DIM Page 4-47
DO - UNTIL Page 4-48
DO - WHILE Page 4-49
END Page 4-50
ERC Page 4-51
EXP() Page 4-52
FOR - TO - STEP - NEXT Page 4-53
FREE Page 4-55
FTIME. Page 4-56
GOSUB - RETURN Page 4-57
GOTO. Page 4-58
IDLE Page 4-59
IF - THEN - ELSE Page 4-60

TABLE OF CONTENTS Page viii

INBUF$ Page 4-62
INKEY$ Page 4-63
INP() Page 4-64
INPUT Page 4-65
INSTR() Page 4-67
INT() Page 4-68
LCASE$() Page 4-69
LD@ Page 4-70
LEFT$() Page 4-71
LEN() Page 4-72
LET Page 4-73
LOG() Page 4-74
MID$() Page 4-75
MTOP. Page 4-76
NOT() Page 4-77
ON - GOSUB Page 4-78
ON - GOTO Page 4-79
ONERR Page 4-80
ONPORT Page 4-81

Notes about interrupt priority . . . Page 4-82
ONTIME Page 4-83
.OR. Page 4-85
OUT() Page 4-86
PH0. Page 4-87
PH1. Page 4-88
PI Page 4-89
POP Page 4-90
PRINT Page 4-91
PUSH Page 4-92
READ Page 4-93
REM Page 4-94
RESTORE Page 4-95
RETI Page 4-96
RIGHT$() Page 4-97
RND Page 4-98
RTRAP Page 4-99
RTS Page 4-100
RUN Page 4-101
SETCOM Page 4-102
SETINPUT Page 4-104
SETIO Page 4-106
SGN() Page 4-107
SIN() Page 4-108
SIZE Page 4-109
SPC() Page 4-110
SQR() Page 4-111

Page ix TABLE OF CONTENTS

ST@ Page 4-112
STOP Page 4-113
STRING Page 4-114
STR$() Page 4-115
TAB() Page 4-116
TAN() Page 4-117
TIME Page 4-118
TIME$. Page 4-119
UCASE$() Page 4-120
USING() Page 4-121
VAL Page 4-123
XBY() Page 4-124
XBY#() Page 4-125
.XOR. Page 4-126

CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS

5.1 Operator precedence Page 5-1

5.2 Arithmetic Operators Page 5-1

(+) Addition Operator Page 5-2
(-) Subtraction Operator Page 5-3
(*) Multiplication Operator Page 5-4
(/) Division Operator Page 5-5
(**) Exponentiation Operator Page 5-6

5.3 Relational Operators Page 5-7

(=) Equal Operator Page 5-8
(<>) Not Equal Operator Page 5-9
(>) Greater than Operator Page 5-10
(<) Less than Operator Page 5-11
(>=) Greater than or equal Operator . . . Page 5-12
(<=) Less than or equal Operator . . . Page 5-13

CHAPTER 6: STRING HANDLING

6.1 What are STRINGS? Page 6-1
6.2 Combining strings Page 6-1
6.3 How strings are stored Page 6-2
6.4 Strings in Relational Expressions Page 6-3

TABLE OF CONTENTS Page x

CHAPTER 7: ERROR HANDLING

7.1 ERROR Messages Page 7-1

7.1.1 Invalid syntax Page 7-2
7.1.2 Invalid argument Page 7-2
7.1.3 Arithmetic underflow Page 7-2
7.1.4 Arithmetic overflow Page 7-2
7.1.5 Division by zero Page 7-2
7.1.6 Out of data Page 7-2
7.1.7 Can't continue Page 7-3
7.1.8 While programming Page 7-3
7.1.9 Argument stack overflow Page 7-3
7.1.10 Control stack overflow Page 7-3
7.1.11 Internal stack overflow Page 7-3
7.1.12 Array size exceeded or not specified . . Page 7-4
7.1.13 Memory allocation Page 7-4
7.1.14 Invalid line number Page 7-4
7.1.15 Only program 0 may be edited . . . Page 7-4
7.1.16 Nothing to save Page 7-4
7.1.17 Specified program does not exist . . . Page 7-4

7.2 Warning Messages Page 7-5

7.2.1 WARNING! Extra input ignored! . . . Page 7-5
7.2.2 WARNING! String length exceeded... . . Page 7-5

CHAPTER 8: THE GENIUS INTERFACE

8.1 BASIC Gateway register mapping. . . . Page 8-1
8.2 Asynchronous program execution. . . . Page 8-1
8.3 Register usage Page 8-2
8.4 Using a register "protocol" Page 8-2

CHAPTER 9: PROGRAMMING TUTORIAL

9.1 Prepare to Use the Module. Page 9-1
9.2 Entering a Simple Program Page 9-2
9.3 Saving a Program in DATA Memory . . . Page 9-3
9.4 Using the PROGRAM FILE Memory . . . Page 9-4
9.5 Running a Program From the PROGRAM FILE . . Page 9-5
9.6 Deleting a Program from the PROGRAM FILE . . Page 9-6

APPENDIX A: RS232 SERIAL PORT WIRING

APPENDIX B: RESERVED WORD LIST

APPENDIX C: HARDWARE CONFIGURATION

APPENDIX D: ASCII CHARACTER SET

APPENDIX E: MEMORY CONFIGURATIONS

APPENDIX F: TERM - DUMB TERMINAL EMULATION SOFTWARE USER'S MANUAL

Page xi TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION Page 1-1

CHAPTER 1: INTRODUCTION

Congratulations on your purchase of the Horner Electric BASIC Gateway Module! This
module may be used in any GE Fanuc Genius system. The BASIC Gateway Module provides
the system designer with the ability to monitor and/or control Genius I/O. Many applications
where the module will be used as a stand-alone microcomputer or where information will be
passed between the PLC or Genius and the module, will allow more flexability to the system
designer.

1.1 What You Have

1. Stand-alone BGM in a backplate mountable aluminum enclosure.

2. Terminal Emulation Software (TERM)

3. This manual.

1.2 Basic Gateway Module features

1. Programmed via the BASIC programming language, very versatile instruction
set.

2. Integrated Genius network Interface board (GENI) for communications on GE
Fanuc's Genius Distributed I/O Network.

3. Very powerful floating-point math instructions, including logarithmic and trigono-
metric functions.

4. Primary RS232C communication port for connection to a "dumb" terminal or host
computer for program development.

5. Optional auxiliary RS232C, RS485, or Modem communication port for connec-
tion to an operator interface terminal, printer, etc.

6. Asynchronous program execution.

7. Genius Hand Held Monitor (HHM) port for convenient network configuration.

Page 1-2 CHAPTER 1: INTRODUCTION

1.3 Hardware description

The BASIC Gateway Module (HE660BGM) consists of three main components, and one
optional component. They are:

A) Metal Enclosure (2 pieces).

B) Main Circuit Board.

C) Genius Network Interface (GENI) Board.

E) (Optional) Auxiliary Serial Board. (HE-BUS architecture).

The block diagram of the BGM is illustrated in Figure 1-1 .

Figure 1-1. BGM Block Diagram

1.3.1 Microprocessor

At the heart of the BASIC Gateway Module lies the Intel 80C32 microprocessor running at
11.0592 Megahertz. This configuration yeilds an instruction execution time of slightly less than
one million instructions per second (at the assembly level). Internal to this chip are 256 bytes
of user memory (most of which are used by the Basic firmware). The 80C32 can address up

CHAPTER 1: INTRODUCTION Page 1-3

to 64 Kilobytes of external CODE memory (this is where the firmware resides), and up to 64
Kilobytes of external DATA memory (this space is divided between DATA and PROGRAM
space for the BASIC module).

1.3.2 Module Reset Options

The 80C32 microprocessor is equipped with a RESET signal that, when active, inhibits all
processing activity. This RESET signal is generated for a short time immediately following
power-up. Reset can be simulated in software using the RESET command.

1.3.3 Primary Serial Port

The PRIMARY port located on the front of the BASIC Gateway Module incorporates a 9-pin "D"
type connector for standard cable interface (See Appendix A for wiring diagrams). This port
features automatic baud rate detection and is used for program entry, editing and debug. It can
also be referenced from within the BASIC program during execution.

1.3.4 Flexible Memory Configuration

As stated before, the 80C32 can address up to 128 Kilobytes of external memory. This memory
is divided among 3 devices, and is configured at the factory (See Appendix E for a discussion
of the "memory map" configuration).

1.3.5 Firmware Memory

The firmware site consists of a 32 Kilobyte EPROM mapped to the 80C32’s CODE space. The
software in this site is a "miniature operating system", controlling user program input and
execution. The upper 32 Kilobytes of CODE space is not used.

1.3.6 Data Memory

The DATA site is equipped with a 32K static ram device in a battery-backed socket. This socket
also contains the real-time clock hardware. The lowest 1536 bytes of this memory are reserved
for the ASCII BASIC interpreter. The remaining DATA memory is is used for all variable
storage, AND for BASIC program number 0 entry and editing.

1.3.7 Program File Memory

The PROGRAM site can be equipped with a 32K Flash EPROM or a 32K EEPROM. Unlike
the DATA site, the PROGRAM site may also be EMPTY. In this case, the DATA site is divided
between DATA and PROGRAM FILE memory. See Appendix E for a more complete
discussion of the PROGRAM FILE memory.

Page 1-4 CHAPTER 1: INTRODUCTION

1.3.8 Genius Interface

The GE Fanuc GENI board is used to interface the BASIC Gateway Module with the Genius
Network. The XBY() command (see chapter 4) allows the user full access to the GENI board's
Shared RAM.

1.3.9 Auxiliary Serial Port

The BASIC Gateway Module can optionally be equipped with a second serial port. This port
is implemented as a factory installed "plug-in" option. At the time of this publication, three
interfaces are available, other interfaces are currently under design.

The three interfaces currently available for the auxiliary serial port are the high performance
RS232 interface, an RS485/422 interface, and the 1200 baud Hayes compatable smart-
modem. If the module that you have received is equipped with the modem option, it is
documented in a separate publication. The commands, statements and operators described
in this manual that are used to manipulate the auxiliary serial port will affect the RS232 serial
port, the RS485/422 serial port and the modem in exactly the same manner.

1.4 Specifications

Specifications

Mounting Requirements Backplate Mountable (no NEMA rating)

Dimensions 10.25"H x 4"H x 5.25"D

Genius Communications Genius Network Interface (GENI)

Serial Communications RS-232 (up to 19.2k baud)
RS-422/485 (up to 19.2k baud)
1200 baud Hayes compatible modem

Power Requirements 8-32 VDC, 3W

Operating Environment 0 to 60°C (32 to 140°F)
0 to 95% relative humidity (non-condensing)

Non-volatile Memory 32K Flash EPROM (Atmel AT29256)

CHAPTER 2: INSTALLATION Page 2-1

CHAPTER 2: INSTALLATION

2.1 Mounting Requirements

The BGM is designed for permanent backplate mounting. To install the BGM:

A. Drill four starter holes in the mounting surface (backplate) as located from
the drawing in Appendix C.

B. Secure the BGM to the backplate with four #8-32 screws.

2.2 Power Requirements

The BGM requires a DC supply voltage between 8 and 32 volts. A maximum of 3W will be drawn
by the BGM. The BGM power connector is a removeable, three-position screw connector. The
pinout for the connector is drawn on the cover of the BGM, and is recreated in Figure 2-1 .

2.3 Genius Network Connection

The BGM connects to the Genius LAN as a typical Genius I/O block would. The connection is drawn
on the front of the BGM, and is reproduced in Figure 2-2 .

Figure 2-2.
Genius connector pinout

Figure 2-1.
Power connector pinout

Pin Signal

1 DCD

2 TXD

3 RXD

4 DTR

5 GND

6 DSR

7 CTS

8 RTS

9 RI

Page 2-2 CHAPTER 2: INSTALLATION

2.4 Main RS-232 Connector

The Main RS-232 port on the BGM is the programming port. The pinout for the 9-pin “D” connector
is illustrated in Figure 2-3 .

Figure 2-3. Main RS-232 Port Pinout.

2.5 GENI Configuration

The BGM's integrated GENI board is equipped with a bank of 8 “DIP” switches. These dip
switches are exposed on the left side of the BGM. These switches are used to configure the
Genius “bus” address or “Device Number” for the BGM, and to set the Genius baud rate.

Each device on the Genius network must have a unique “Device Number” (0 to 31). The BGM may
be configured for any device number. When shipped from the factory, the BGM dip switches are
configured for device number 29, and for communication baud rate of 153.6K standard. Available
dip switch settings are illustrated on the BGM itself, and in Figure 2-4 on Page 2-3.

CHAPTER 2: INSTALLATION Page 2-3

2.6 The "Console" Device

To program the BASIC Gateway Module, the user must connect a "console" device to the primary
RS232C port. This device may be either a "dumb" terminal or a host computer running terminal
emulation software. Cable wiring diagrams can be found in Appendix A. The console device must
be configured to a baud rate of 50 to 38,400 baud with no parity, 8 data bits and one stop bit.
Software (or XON/XOFF) handshaking is implemented by the BASIC Gateway Module’s primary
port upon initial power-up. Once connected, follow these steps to initialize communications with
the module;

1. Apply power to the BASIC Gateway Module.

2. Press the SPACE bar on the console device. The BASIC Gateway Module will
automatically determine the baud rate at which the space character (ASCII 32) was
received and should respond with a full screen of sign-on/status information.

If no response is obtained, or if the module responds iradically, re-check the cable
wiring and communication parameters and try again.

The prompt characters "0>" are issued by the BASIC Gateway Module to indicate
that it is in "command" mode and is ready to accept commands. The "0" indicates
that program number 0 is currently selected.

16 8 4 2 1

Genius Bus Address
(0-31)

Binary Weight

8 7 6 5 4 3 2 1

8 output disable

0 illegal

1 normal

7 6 baud rate

0 0 153.6K extended

0 1 38.4K

1 0 76.8K

1 1 153.6K standard

Figure 2-4 . GENI DIP Switch Assignments

Page 2-4 CHAPTER 2: INSTALLATION

2.6.1 Using a Host Computer

A host computer may be used as the console device, if a "terminal emulation" softare program
is available (such as ProComm by DataStorm, or TERM). There are two important points
to be aware of when using such programs;

1. Some terminal emulator programs send out characters when they are invoked.
If the BASIC Gateway Module receives any character other than a space
character (ASCII 32), the baud rate will be incorrectly calculated and commu-
nications will not be possible. To avoid this problem, configure and initialize the
terminal emulation program before applying power to the BASIC Gateway
Module, then press the space bar.

2. Some terminal emulator programs do not support handshaking. This means that
it is very possible for the BASIC Gateway Module to send data to the console
device much faster than the host computer can process it. This may cause lost
data, erroneous display of characters or even computer "lock-up". If software
handshaking is not an available option for your terminal emulation software, use
a lower baud rate (to allow the terminal emulator program more time to process
each character).

2.6.2 TERM - Dumb Terminal Emulation Software

Included on the distribution diskette is a terminal emulation program called TERM.EXE. This
program may be loaded an run on most any IBM PC or compatable computer. This program
was designed and written specifically for communication with a BASIC Gateway Module and
provides the following features;

1. Automatic software (XON/XOFF) and hardware (RTS/CTS) handshaking capa-
bility.

2. Capable of communication rates of 110 to 57,600 baud.

3. Complete program UPLOAD and DOWNLOAD capability at any baud rate.
(Programs created with your favorite word processor may be downloaded).

CHAPTER 3: BASIC PROGRAMMING OVERVIEW Page 3-1

CHAPTER 3: BASIC PROGRAMMING OVERVIEW

3.1 What is BASIC?

BASIC is an acronym for "Beginner’s All-purpose Symbolic Instruction Code". It was created
in 1964 by two professors at Dartmouth University as a tool to teach the fundamentals of
computer programming. It is an interactive "interpreted" language, ideal for this industrial
application. Those already familiar with the BASIC language should have little difficulty
programming the BASIC Gateway Module.

This manual is not a "How to Write Programs in BASIC" guide. The commands and statements
available in the BASIC Gateway Module are very adequately described and demonstrated in
the examples. Hundreds of texts have been written to teach good efficient BASIC program-
ming, consult your local library.

3.2 Operating Modes

The BASIC Gateway Module operates in two states or "modes";

1. COMMAND MODE: Active whenever the prompt character ">" is present to
signify that the module is ready to accept commands and
statements from the console device. No BASIC program is
currently being executed. The BASIC Gateway Module
takes immediate action when a command is entered.

2. RUN MODE: Active whenever an ASCII BASIC program is currently
being executed. Commands may not be entered until the
program is halted.

Some of the commands and statements may only be entered while in COMMAND mode, while
some may only be entered on BASIC program lines. Some may be used in both modes. The
description of each command and statement contains it’s allowable usage.

3.3 BASIC System Elements

3.3.1 Stack Structure

A "stack" is a dedicated area of memory used to store important information regarding program
control and expression evaluation. The BASIC Gateway Module incorporates the use of two
software stacks.

Page 3-2 CHAPTER 3: BASIC PROGRAMMING OVERVIEW

3.3.2 Control Stack

The CONTROL STACK is used to store information regarding program control. The FOR-
NEXT, DO-WHILE, and GOSUB-RETURN statements will store information on the control
stack for use at the "bottom" of each loop or iteration. If too many of these statements are
"active" or "nested" at one time, a Control stack error will result.

3.3.3 Argument Stack

The ARGUMENT STACK is used to store information while the module evaluates complex
expressions. The PUSH and POP statements also make use of the ARGUMENT STACK. If
too many values are placed on the ARGUMENT STACK, or the POP instruction is executed
when no data is "on the stack", an Argument stack error is generated.

3.3.4 The Line Editor

An ASCII BASIC command or program line may contain up to 79 characters. If an attempt is
made to enter more that 79 characters, the BELL character (ASCII 7) is transmitted from the
module and the characters beyond the 79th are ignored.

During line entry, the BACKSPACE character (ASCII 8) may be used to perform a "rubout"
operation. This will cause the last character entered to be erased from the line, while the cursor
is placed at the position of the deleted character. If there are no characters to "rubout" when
the backspace key is pressed, a BELL character (ASCII 7) is sent from the module and the
rubout is ignored.

Once a line has been entered (CARRIAGE RETURN has been pressed), the program line can
no longer be edited. If any changes are to be made to the program line, the entire line must be
re-entered.

Blanks or spaces imbedded in statements (except for those in quoted strings and in REM
statements) are ignored by the BASIC Gateway Module. However, during the LISTing of
programs, the module will insert spaces to improve program readability.

CAUTION!

If a CONTROL-S (ASCII 19) is inadvertenly entered while the primary port is configured for
XON/XOFF handshaking, the module will appear to "lock-up". This is because the CONTROL-
S character is the XOFF signal, which causes the module to cease transmission until a
CONTROL-Q (ASCII 17) is received. If this symptom occurs, try pressing CONTROL-Q to
resume module transmission.

3.4 BASIC Program Elements

3.4.1 Executable Statements

An ASCII BASIC program is comprised of statements. Every statement begins with a line
number, followed by the statement body, and terminated with a CARRIAGE RETURN <CR>
(or a colon ":" in the case of multiple statements per line).

3.4.2 Line Numbers

Every ASCII BASIC program line must begin with a line number ranging from 0 to 65535
inclusive. Line numbers are used to order the program sequentially. In any one program, a
line number can only be used once. Lines need not be entered in numerical order, because
the BASIC Gateway Module will automatically order them in ascending order. For example, if
the following program is entered non-sequentially;

0>10 PRINT "This is line 10"
0>30 PRINT "This is line 30"
0>20 PRINT "This is line 20"
0> RUN

This is line 10
This is line 20
This is line 30

Ready
0>

Notice that when the program was RUN, it was executed in numeric order, not in the order that
the statements were entered.

More than one statement may be placed on a single line if each statement is separated by a
colon ":". Only one line number may be used for a single line. For example;

0>10 PRINT "This is line 10":PRINT "This is also line 10"
0>RUN

This is line 10
This is also line 10

Ready
0>

BASIC PROGRAMMING OVERVIEW Page 3-3

Page 3-4 CHAPTER 3: BASIC PROGRAMMING OVERVIEW

If a line number is entered that already exists, the new line replaces the existing line. Therefore,
to remove a line from a program, simply enter the line number of the line to be deleted followed
by a CARRIAGE RETURN <CR>.

3.4.3 BASIC Programs

Basic programs are made up of one or more BASIC statements, each with a unique line
number. When in COMMAND mode, the BASIC program lines are entered via the console
device. Up to 255 programs can be stored in the BASIC Gateway Module's memory. Note,
however that only program number 0 can be edited. Program number zero is stored in the
DATA memory, all other programs are stored in the PROGRAM FILE memory. PROGRAM
FILE programs can be transferred into program 0 using the EDIT command and then re-saved
in the PROGRAM FILE. The COMMAND mode prompt will always specify which BASIC
program is currently SELECTed.

3.4.4 Numeric Values

The BASIC Gateway Module is capable of manipulating numbers in four formats: Decimal
integer (1234), hexidecimal integer (89ABH), fractional floating-point (12.34) and exponetial
floating-point (12.345678 E+5).

3.4.5 Integer Values

Integers require two bytes of memory storage. There are several occasions when integer
values are required. In these cases, if a floating point value is used, it will be truncated to an
integer, or an error will be generated.

Hexidecimal integers must always begin with a valid digit (0 through 9). For example, A0H
should always be entered as 0A0H.

3.4.6 Floating-point Values

Each floating point value requires six bytes of memory storage. The module will round all
floating point numbers to eight significant digits.

Exponential floating point values can range from +/- 1E-127 to +/- 99999999E+127.

CHAPTER 3: BASIC PROGRAMMING OVERVIEW Page 3-5

3.4.7 Numeric Constant Values

Some commands and statements require the use of a CONSTANT argument. This means
that a variable or expression is not allowed. Constants can be floating point values but some
cases will require integers.

3.4.8 Operators

An operator performs a pre-defined operation on variables and/or constants. Operators require
either one or two operands. Typical two operand or DYADIC operators include addition (+),
subtraction (-), multiplication (*) and division (/). Operators that require only one operand are
often referred to as UNARY operators and include SIN(), COS() and ABS().

3.4.9 Variables

A VARIABLE is an area of memory that is referenced in BASIC statements by a user-defined
NAME. Values may be assigned to the variable, and the variable’s value can at any time be
obtained.

Variable names must start with a letter (A to Z) and can contain up to 8 letters or numbers
(including the underscore character "_"). The following are examples of valid variable names;

FRED VOLTAGE1 I3 AIR_CYL

Variable are allocated in a "static" manner. This means that each time a new variable is defined,
BASIC will allocate a portion of memory (8 bytes) specifically for that variable. This memory
cannot be de-allocated on a variable by variable basis. For example, if you execute a statement
like "Q = 3", you cannot later tell BASIC that the variable "Q" no longer exists and have the 8
bytes that are allocated to Q "freed up". The only way to clear the memory that is allocated to
a variable is to execute a CLEAR statement. This will "free up" all memory allocated to ALL
variables.

Page 3-6 CHAPTER 3: BASIC PROGRAMMING OVERVIEW

CAUTION!

Three very important anomolies should be observed when defining variable names;

1. It takes BASIC longer to process variables whose names are greater than two
characters in length.

2. Only the first character, the last character and the number of characters in the
variable name are significant. This means that the following variable names will
refer to the same memory space and are in essence the same variable (because
they all start with "I", end with "R" and contain 7 characters);

IN_CHAR ILLFOUR INCDOOR

3. The user MAY NOT USE ANY BASIC KEYWORD as part of a variable name! A
BAD SYNTAX error will be generated if the user attempts to use a BASIC
reserved word as part of a variable name. The following variable names are
invalid;

TABLE (uses TAB) ONES (uses ON) CRABS (uses ABS)

See appendix B for a list of all BASIC reserved words.

3.4.10 Array Variables

The variables described up to this point are called SCALAR variables. Each variable name
refers to only one 8-byte memory entity. Variables may include a ONE DIMENSION subscript
expression (ranging from 0 to 254) enclosed in parentheses. This type of variable is referred
to as a "dimensioned" or "array" variable. For example, an array called MNTH might be used
to contain the number of days in each month. The following program segment illustrates;

0>10 DIM MNTH(13) : REM Tells BASIC how much space
0>20 MNTH(1) = 31 : REM to allocate for the MNTH array.
0>30 MNTH(2) = 28
0>40 MNTH(3) = 31
0>50 MNTH(4) = 30
0>60 MNTH(5) = 31
0>70 MNTH(6) = 30
0>80 MNTH(7) = 31
0>90 MNTH(8) = 31
0>100 MNTH(9) = 30
0>110 MNTH(10)= 31
0>120 MNTH(11)= 30
0>130 MNTH(12)= 31
0>140 FOR X = 1 TO 12
0>150 PRINT "There are ", MNTH(X), " days in month ", X
0>160 NEXT X

CHAPTER 3: BASIC PROGRAMMING OVERVIEW Page 3-7

3.4.11 Numeric Expressions

An expression is a logical mathmatical formula that involves OPERATORS, CONSTANTS,
and/or VARIABLES. Expressions can be simple or quite complex. For example;

12 * EXP(A) / 100
H(1) + 55
(SIN(A) * SIN(A) + COS(A) * COS(A)) / 2

A stand-alone variable or constant is also considered and expression.

3.4.12 Relational Expressions

Relational expressions involve the operators EQUAL (=), NOT EQUAL (<>), GREATER THAN
(>), LESS THAN (<), GREATER THAN OR EQUAL (>=), and LESS THAN OR EQUAL (<=).
They are used in control statements to "test" a condition. For example;

10 IF A<100 THEN...

Relational expresions ALWAYS require two numeric or string expressions.

3.4.13 String Expressions

String expressions are expressions that yeild a character string result. Strings are fully
discussed in chapter 6.

3.4.14 Special Function Operators

The special function operators available to the ASCII BASIC programmer are discussed in
chapter 6. These operators are used to assign and/or obtain values of pre-defined "special"
values.

Page 3-8 CHAPTER 3: BASIC PROGRAMMING OVERVIEW

3.5 Manual Conventions

The following notational conventions will be used in the remainder of this manual:

expr Numeric expression, a logical mathematical formula that involves operators,
(both unary and dyadic), constants, and/or numeric variables. A "stand-alone"
variable or constant is also considered an expression.

integer Numeric integer, Integers used by the BASIC Gateway module are whole
numbers that range from 0 to 65535 inclusive.

const Numeric constant, a real number that ranges from +/- 1 E-127 to +/- .99999999
E+127. A constant may be an integer.

line_num BASIC line number, an integer value that refers to or assigns a BASIC program
line number.

string_expr String expression, a logical string formula that involves string operators, quoted
strings, and/or string variables.

[] Optional parameter, objects appearing in square brackets are optional
parameters and may be omitted.

parameter A parameter is an argument required by a BASIC operator or statement. Param-
eters will always appear in italic print and will be fully described in the text for the
operator or statement.

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-1

CHAPTER 4: COMMANDS AND STATEMENTS

4.1 System Commands

The commands described in this section can only be executed while in "command" mode. Any
attempt to use these commands on a BASIC program line will cause an Invalid syntax error.

The following commands are discussed in this section;

AUTORUN EDIT RESET STATUS
BREAK@ HELP RUN STEP
CONT LIST SAVE
DELPGM LIST# SELECT
DIAG NEW STARTUP

Page 4-2 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

AUTORUN

MODE: COMMAND ONLY

SYNTAX: AUTORUN integer

DESCRIPTION:

The AUTORUN command is used to configure the program number that the BASIC Gateway
Module will automatically execute following a power-up or RESET condition. The integer is a
numeric constant that refers to the program number stored in the PROGRAM file memory. The
integer may be any value between 0 and 254 inclusive.

Note that the module must be placed in STARTUP mode 2 before it will run the specified program
following RESET.

If the integer value is zero, the program in DATA memory (program 0) will be executed following
a RESET. If this is desired, the CLRMEM 0 statement should be used to disable the DATA
memory initialization, retaining program 0 in DATA memory.

If the specified program does not exist following RESET, the module will default to STARTUP
mode 1, immediately displaying the sign-on/status message and entering COMMAND mode.

SEE ALSO: STARTUP, RESET, CLRMEM

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-3

BREAK@

MODE: COMMAND ONLY

SYNTAX: BREAK@ line_num

The BREAK@ command is used to set a breakpoint on a BASIC program. Setting the
breakpoint does not alter the program in any way, it merely configures the command interpreter
to HALT whenever the specified line_num is executed (similar to the STOP statement). The
BREAK@ command has a significant advantage over the STOP statement in that the
breakpoint can be set without modifying the BASIC program. Insertion of the STOP statement
in the BASIC program requires program modification, which makes the CONT command invalid
until the program is restarted. Using the BREAK@ command, the user can configure a
breakpoint and then execute the CONT command.

0>LIST
10 PRINT "This is line 10"
20 PRINT "This is line 20"
30 PRINT "This is line 30"
40 PRINT "This is line 40"
50 PRINT "This is line 50"
60 GOTO 10

Ready
0>BREAK@30

Ready
0>RUN
This is line 10
This is line 20

BREAK - In line 30
Ready
0>BREAK@ 10

0>CONT
This is line 30
This is line 40
This is line 50

BREAK - In line 10
Ready
0>

Only one breakpoint may be active at any given time. If more than one breakpoint is required,
then STOP statements must be inserted into the BASIC program. Note that when the program
is halted due to the breakpoint, BREAK is displayed prior to the display of the line number.

To disable the BREAK@ breakpoint, specify a line_num of zero

SEE ALSO: CONT, STEP, STOP

Page 4-4 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

CONT

MODE: COMMAND ONLY

SYNTAX: CONT

DESCRIPTION:

If an executing program is stopped by typing a CONTROL-C on the console device, or by the
execution of a STOP statement, program execution can be resumed from where it was
interrupted by entering the CONT system command. While program execution is halted, the
value of variables may be examined and/or modified. The CONT command may not be used
if the program has been modified or if the program was terminated due to an ERROR.

0>10 FOR I = 1 TO 10000
0>20 PRINT I
0>30 NEXT I
0>RUN
 1
 2
 3
 4
 5 <CONTROL-C TYPED ON CONSOLE DEVICE>

STOP! In line 20
Ready
0>PRINT I
 6

0>I=9997

0>CONT
 9997
 9998
 9999
 10000

Ready
0>

SEE ALSO: STOP

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-5

DELPGM

MODE: COMMAND ONLY

SYNTAX 1: DELPGM integer

DESCRIPTION:

The DELPGM command is used to erase one of the programs from the PROGRAM file memory.
The integer is a numeric constant that refers to the program number stored in the PROGRAM
file memory. The integer may be any value between 0 and 254 inclusive.

If the integer value refers to a non-existent program in the PROGRAM file memory, a "Program
does not exist" error message is generated.

If the integer value is zero, the program in DATA memory is erased. This is exactly the same
as entering the "NEW" command.

If the erased program was followed by one or more programs in the PROGRAM file, the
subsequent programs are "shifted" by one to "fill the gap". For example, if six programs are
stored in the PROGRAM FILE and the user erased program number 3 using the DELPGM
command, programs 4, 5 and 6 would be "moved" and would now be accessed as programs
3, 4 and 5 respectively.

Program 0 will always be SELECTed following a DELPGM command.

SYNTAX 2: DELPGM *

When an asterisk "*" is used as the argument to the DELPGM command, ALL of the programs
stored in the PROGRAM file memory are deleted! The module will display the following prompt
prior to erasing the programs;

Are you sure? (Y/N)

If a "Y" is entered, all programs in the PROGRAM file will be erased. If any other key is pressed
in response, the DELPGM command is ignored and the module will return to command mode.
Note the the DELPGM * command does not affect program 0 in DATA memory.

SEE ALSO: SAVE, SELECT

Page 4-6 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

DIAG

MODE: COMMAND ONLY

SYNTAX: DIAG

DESCRIPTION:

The DIAG command invokes the BASIC Gateway Module’s firmware diagnostic routine.
These diagnostic routines will functionally test most of the circuitry on the ASCII Basic Module.

THESE TESTS WILL DESTROY THE CONTENTS OF THE BASIC GATEWAY MODULE’S
DATA MEMORY.

When the DIAG command is entered, the module will respond with the following message;

The diagnostics will run continuosly until any key is pressed.

Press Y to begin...

If the user types any key other than "Y", the BASIC Gateway Module will return to command
mode, and the DIAG command is ignored. If the user types "Y" in response to the DIAG prompt,
the firmware diagnostic routines will run. The result of each test will be displayed as it is
executed. When all tests have completed, the tests are restarted from the beginning.

To terminate the diagnostic test execution, the user must simply press any key. The module
will prompt the user to press the space bar. At this point the module has been reset and will
respond by displaying the sign on screen.

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-7

EDIT

MODE: COMMAND ONLY

SYNTAX: EDIT [integer]

DESCRIPTION:

The EDIT command transfers the program specified by the integer into program 0 (DATA
memory) so that it may be edited. If the integer is omitted, the currently selected program is
transferred.

If program 0 (in DATA memory) exists when the EDIT command is issued, it will be overwritten
by the transferred program.

This command is most often used to place a PROGRAM FILE program into program 0 in DATA
memory for editing and debugging.

If the integer is zero, or if the currently selected program is zero and no integer is specifed,
program 0 in DATA memory is copied to itself, accomplishing nothing execpt wasting a few
milliseconds.

Page 4-8 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

HELP

MODE: COMMAND ONLY

SYNTAX: HELP [keyword]

DESCRIPTION:

The BASIC Gateway Module incorporates a very useful ON-LINE HELP system. If HELP is
entered with no argument, a full screen of information is displayed containing the HELP syntax
and all of the BASIC keywords implemented by the module.

If a keyword is specified following the HELP command, specific usage and syntax information
is displayed pertaining to the BASIC keyword.

Note that keywords should be entered EXACTLY as they appear in the HELP screen, including
parenthesis if required.

If an unrecognized keyword is entered following the HELP command, the HELP screen is
displayed.

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-9

LIST

MODE: COMMAND ONLY

SYNTAX: LIST [start_line_num] [- end_line_num]

DESCRIPTION:

The LIST command prints the current program to the console device. Note that the list command
"formats" the program in an easy to read manner. Spaces are inserted after the line number and
before and after statements. This feature is designed to aid in the debugging of ASCII Basic
programs.

The LISTing of a program may be terminated at any time by typing a CONTROL-C character
on the console device (unless the BREAK 0 option is in force).

If software handshaking (XON/XOFF) is being used, a LISTing may be paused by typing a
CONTROL-S character on the console device, and resumed by typing a CONTROL-Q.

If a start_line_num is specified, the program will be listed starting with the start_line_num and
continuing to the end of the program.

If a start_line_num and an end_line_num are specified, the program will be listed starting with
the start_line_num and continuing through the end_line_num.

0>LIST
10 FOR I = 1 TO 10000
20 PRINT I
30 NEXT I
40 END

Ready
0>LIST 30
30 NEXT I
40 END

Ready
0>LIST 20-30
20 PRINT I
30 NEXT I

Ready
0>

SEE ALSO: LIST#

Page 4-10 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

LIST#

MODE: COMMAND ONLY

SYNTAX: LIST# [start_line_num] [-end_line_num]

DESCRIPTION:

The LIST# is identical to the LIST command except that the LIST output is directed to the
AUXILIARY serial port. If no AUXILIARY port is installed, the output will be displayed on the
PRIMARY port.

SEE ALSO: LIST, SETCOM

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-11

NEW

MODE: COMMAND ONLY

SYNTAX: NEW

DESCRIPTION:

When the NEW command is entered, the BASIC Gateway Module will delete program 0 in DATA
memory. All variables are set to zero and all strings are cleared. The real-time and millisecond
clocks are not effected. Generally, the NEW command is used to erase the RAM program and
variables.

SEE ALSO: DELPGM

Page 4-12 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

RESET

MODE: COMMAND ONLY

SYNTAX: RESET

DESCRIPTION:

The RESET command will effectively cause the module to perform a software RESET, just as
though a hardware reset or power-up had been performed. The RESET command has been
provided as a means to test the RESET options (STARTUP, AUTORUN, etc.) without having
to manipulate the hardware.

SEE ALSO: AUTORUN, STARTUP, BREAK, CLRMEM

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-13

RUN

MODE: COMMAND ONLY

SYNTAX: RUN

DESCRIPTION:

After RUN is typed, all variables are set equal to zero, any pending ONTIME interrupts are
cleared and program execution begins with the first line number of the selected program. The
RUN command and the GOTO statement are the only way the user can place the BASIC
Gateway Module into the RUN mode from the COMMAND mode. Program execution may be
terminated at any time by typing a CONTROL-C character on the console device.

Some BASICs allow a line number to follow the RUN command. The BASIC Gateway Module
does not permit such a variation on the RUN command, the RUN command will always cause
execution to begin with the first line number. To obtain the same functionality as the
RUN[line_num] syntax, use the GOTO[line_num] statement instead.

Note that variables and BASIC interrupts are not cleared if the CLRMEM 0 option is in force, and
CONTROL-C can be disabled using the BREAK 0 option.

SEE ALSO: GOTO, RUN operator

Page 4-14 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

SAVE

MODE: COMMAND ONLY

SYNTAX: SAVE [integer]

DESCRIPTION:

The SAVE command will copy the currently selected program into the specified program number
in the PROGRAM file.

The integer value must be between 1 and 254 inclusive. If no integer is specified, or if storing
the program using the specified number would leave a "gap" in program numbers, the program
is copied into the next available program space in the PROGRAM file. PROGRAM NUMBERS
IN PROGRAM FILE MEMORY WILL ALWAYS REMAIN CONTIGUOUS STARTING WITH
PROGRAM NUMBER 1.

After SAVE is entered, the BASIC Gateway Module will respond with the program number that
the stored program will occupy in the PROGRAM file memory. This number is used when
accessing the program with the AUTORUN, SELECT, CHAIN, EDIT and DELPGM commands.

If the program number specified already exists in the PROGRAM file, the existing program and
all subsequent programs in the PROGRAM file are moved and the selected program will be
"inserted" as program number integer. For example, if there are 6 programs in the PROGRAM
file (1 through 6), and the currently selected program were SAVEd as number 4, programs 4,
5 and 6 in the PROGRAM file would be moved to 5, 6 and 7 respectively, making room for the
new program 4.

SEE ALSO: DELPGM, AUTORUN, SELECT, EDIT, CHAIN

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-15

SELECT

MODE: COMMAND ONLY

SYNTAX: SELECT integer

DESCRIPTION:

The SELECT command causes the BASIC Gateway Module to select the specified program as
the default program. The integer specifies the program number assigned to the program when
it was SAVED.

If an integer is specified for a program in the PROGRAM FILE that does not exist, a "Program
does not exist" error is generated. If no integer is specifed, the module will default to program
0.

The SELECT command does not cause the specified program to be transferred into program
0. It is possible to have several different programs in the PROGRAM FILE memory as well as
a separate program 0 in DATA memory.

When a program is SELECTed, it may be RUN or LISTed, but only program 0 may be edited.
If an attempt is made to modify a program in the PROGRAM FILE memory, an error will be
generated.

Note that the COMMAND mode prompt will always contain a number that represents the
currentlys SELECTed program.

SEE ALSO: SAVE, DELPGM, CHAIN, AUTORUN

Page 4-16 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

STARTUP

MODE: COMMAND ONLY

SYNTAX: STARTUP integer

DESCRIPTION:

The STARTUP command is used to configure the behavior of the module following a power-up
or RESET condition. Valid integer arguments are described below;

STARTUP 0 In this mode, the module will enter its automatic baud rate detection sequence
following RESET, waiting for a SPACE character (ASCII 32) to be transmitted to
the PRIMARY serial port so that the baud rate can be established. Once the
SPACE character has been received, the module will display the sign-on/status
screen and enter COMMAND mode.

STARTUP 1 In this mode, the module will configure the PRIMARY serial port with the last baud
rate used and will immediately display the sign-on/status screen following RESET
and enter COMMAND mode.

STARTUP 2 In this mode, the module will configure the PRIMARY serial port with the last baud
rate used and will immediately run the BASIC program specified by the last
AUTORUN command. If no AUTORUN command has been issued, program 0
is assumed. If the specified program does not exist, the module will revert to
STARTUP mode 1.

SEE ALSO: AUTORUN

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-17

STATUS

MODE: COMMAND ONLY

SYNTAX: STATUS

DESCRIPTION:

The STATUS command causes the BASIC Gateway Module to display a screen of useful
information regarding the current memory usage and some of the BASIC special function
operators. A sample STATUS display is shown below;

0>STATUS

DATA MEMORY:
32K bytes present, from 0 to 32767 (7FFFH).
No program exsists in DATA memory, 1537 bytes occupied.
MTOP = 32767 (7FFFH).
31231 bytes free.

PROGRAM FILE MEMORY:
32K bytes present, from 32768 (8000H) to 65023 (FDFFH).
10 program(s) exsist in PROGRAM FILE memory, 21452 bytes occuppied.
10803 bytes free.

SYSTEM STATUS:
AUTORUN: Program number for automatic execution is 0.
STARTUP: Startup mode is set to 0.
BREAK: Control-C break checking is enabled.
CLRMEM: Data memory initialization is disabled.
BAUD: Stored primary port baud rate is 4800.

0>

Page 4-18 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

STEP

MODE: COMMAND ONLY

SYNTAX: STEP

The STEP command will cause the BASIC Gateway Module to execute the next BASIC program
line and then halt, returning to COMMAND mode. This "single-step" operation provides a means
of tracing program execution.

If the current program has not yet been "RUN", or has been modified since the last halt, the STEP
command will cause the first program line to be executed. Otherwise, the next line is executed
(the line number displayed as a result of the BREAK@, STEP, or STOP execution).

Note that if multiple statements appear on the line to be executed (separated by colons ":"), all
of the statements on that line will be executed. The STEP command will follow program
execution even if control is passed using a GOTO or GOSUB statement. Whenever a new LINE
NUMBER is encountered, execution is halted and the line number of the next line to be executed
is displayed.

0>LIST
10 PRINT "This is line 10"
20 PRINT "This is line 20"
30 PRINT "This is line 30"
40 PRINT "This is line 40"
50 PRINT "This is line 50"
60 GOTO 10

Ready
0>STEP
This is line 10

LINE-STEP - In line 20
Ready
0>STEP
This is line 20

LINE-STEP - In line 30
Ready
0>

Note that whenever program execution is halted due to the STEP command, the LINE-STEP
is displayed prior to the line number of the next line to be executed. When BREAK is displayed,
the program was halted because of a BREAK@ breakpoint, and STOP is displayed when
execution is halted due to a STOP statement or a control-C break.

SEE ALSO: BREAK@, CONT, STOP

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-19

4.2 BASIC Statements and Operators

All of the BASIC statements are described in this section and are grouped below according to
the type of function performed. The BASIC statements are listed in alphabetical order on the
following pages.

4.2.1 Program Control Statements

These statements are used to alter program flow, or to transfer program execution to a specified
point in the program (or to a different program).

CHAIN DO-WHILE IDLE ONPORT
CLEAR I END IF-THEN-ELSE ONTIME
CLEAR S FOR-TO-STEP-NEXT ON-GOSUB REM
DELAY GOSUB-RETURN ON-GOTO RETI
DO-UNTIL GOTO ONERR STOP

4.2.2 Data Manipulation Statements

These statements are used to alter or initialize the values of numeric variables.

CLEAR LD@ PUSH
DATA-READ-RESTORE LET ST@
DIM POP

4.2.3 Serial Port Control Statements

These statements are used to send and receive data to and from the BASIC Gateway Module’s
PRIMARY and AUXILIARY serial ports.

CHR() INKEY$ PRINT SPC()
CMDPORT INPUT RTS TAB()
CTS PH0. SETINPUT USING()
INBUF$ PH1. SETIO

4.2.4 Unary Operators

These operators perform predefined numeric functions.

ABS() COS() LOG() SIN()
ATN() EXP() NOT() SQR()
BCD() INP() OUT() TAN()
BNR() INT() SGN() XBY()

Page 4-20 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

4.2.5 String Operators

These operators manipulate character "strings". See chapter 6 for a complete discussion of
string manipulation.

ASC() LCASE$() RIGHT$() VAL()
CHR$() LEFT$() STRING
CR LEN() STR$()
INSTR() MID$() UCASE$()

4.2.6 Time Handling Operators

These operators allow manipulation of the BASIC Gateway Module’s two timers, the REAL-
TIME clock and the millisecond clock. See chapter 7 for a complete discussion of the module’s
TIME handling capability.

CLOCK FTIME TIME$
DATE$ TIME

4.2.7 Special Function Operators

These operators provide specific information regarding program size, memory usage, error
status, or special numeric values.

ERC MTOP RND SIZE
FREE PI RUN

4.2.8 Configuration Statements

These statements allow configuration of some of the BASIC Gateway Module’s characteristics.

BREAK CLRMEM RTRAP SETCOM

4.2.9 Logical Operators

These operators perform logical and bitwise boolean functions.

.AND. .OR. .XOR.

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-21

ABS()

MODE: COMMAND and/or RUN

SYNTAX: ABS(expr)

DESCRIPTION:

The ABS() operator returns the ABSOLUTE VALUE of the numeric expr.

0>PRINT ABS(5) 0>PRINT ABS(-5)
 5 5

Page 4-22 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

.AND.

MODE: COMMAND and/or RUN

SYNTAX 1: var = expr1 .AND. expr2

DESCRIPTION:

A bit-wise AND function is performed on the two expressions and the result is placed in the var.
Each binary bit of the two expressions is manipulated as shown in the truth table below;

 expr1 expr2 result

 0 0 0

 0 1 0

 1 0 0

 1 1 1

0>PRINT 2.AND.3 0>PH0. 55H.AND.0C0H
 2 50H

SYNTAX 2: rel_expr1 .AND. rel_expr2

DESCRIPTION:

A logical AND function is performed on the two relational expressions. If BOTH relational
expressions are TRUE, a TRUE result (65535) is returned. If either relational expression is
FALSE, a FALSE result (0) is returned.

0>PRINT (2=2).AND.(3=3) 0>PRINT (2=3).AND.(3=2)
 65535 0

SEE ALSO: .OR., .XOR., NOT()

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-23

ASC() operator

MODE: COMMAND and/or RUN

SYNTAX: ASC(string_expr [,position])

DESCRIPTION:

The ASC() returns the numeric ASCII value of the character at the specified position in the
string_expr. if the position argument is omitted, the ASCII value of the first character in the
string_expr is returned.

0>PRINT ASC("A")
 65

0>STRING 257, 15
0>$(0)="Horner Electric"
0>PRINT CHR($(0),1), ASC($(0), 1)
H 72

In the following example, the ASCII value of each character in the string is displayed using the
ASC operator.

0>10 STRING 110, 10
0>20 $(0) = "ABCDEFGHIJK"
0>30 FOR I=1 TO 11
0>40 PRINT ASC($(0), I),
0>50 NEXT I
0>60 END
0>RUN

 65 66 67 68 69 70 71 72 73 74 75

Ready
0>

SEE ALSO: CHR$(), STR$(), VAL()

Page 4-24 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

ASC() function

MODE: COMMAND and/or RUN

SYNTAX: ASC(string_var , position) = char

DESCRIPTION:

The ASC() function will replace the character at the specified position in the string_var with the
ASCII character represented by the numeric expression represented by char.

0>10 STRING 110, 10
0>20 $(0) = "abcdefghijk"
0>30 PRINT $(0)
0>40 ASC($(0),1)=75
0>50 PRINT $(0)
0>60 ASC($(0),2)=ASC($(0),3)
0>70 PRINT $(0)
0>RUN

abcdefghijk
Kbcedfghijk
Kccedfghijk

Ready
0>

SEE ALSO: MID$(), ASC() operator

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-25

ATN()

MODE: COMMAND and/or RUN

SYNTAX: ATN(expr)

DESCRIPTION:

The ATN() Operator returns the the trigonometric ARCTANGENT of the numeric expr. The
argument is expressed in radians an must be between +/- 200000. The calculation is carried
out to 7 significant digits.

0>PRINT ATN(PI) 0>PRINT ATN(1)
 1.2626272 .78539804

SEE ALSO: COS(), SIN(), TAN(), PI

Page 4-26 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

BCD()

MODE: COMMAND and/or RUN

SYNTAX: BCD(binary_expr)

DESCRIPTION:

The BCD() operator returns the BINARY CODED DECIMAL equivalent of the binary_expr. The
binary_expr is a valid numeric expression. Note that many values are invalid and cannot be
converted to BCD. For example, the values 10 through 15 would all return invalid BCD values.
If an attempt is made to convert an invalid binary_expr to BCD, an Invalid argument error is
generated.

0>10 BINVAL = 85 : REM Initialize
0>20 PRINT BCD(BINVAL)
0>30 BINVAL = BINVAL+1
0>40 GOTO 20
0>RUN

 55
 56
 57
 58
 59

ERROR! Bad argument! - In line 20

20 PRINT BCD(BINVAL)
———————————X
Ready
0>

SEE ALSO: BNR()

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-27

BNR()

MODE: COMMAND and/or RUN

SYNTAX: BNR(bcd_expr)

DESCRIPTION:

The BNR() operator returns the BINARY equivalent of the bcd_expr. The bcd_expr is a valid
numeric expression that solves to an integer value between 0 and 9999 inclusive. If an attempt
is made to convert an invalid BCD value, an Invalid argument error is generated.

0>PRINT BNR(9999)
 39321

0>

SEE ALSO: BCD()

Page 4-28 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

BREAK

MODE: COMMAND and/or RUN

DESCRIPTION:

In normal operating conditions, the BASIC Gateway Module will halt program execution when
a CONTROL-C character (ASCII 3) is received at the PRIMARY serial port. This can cause
problems under certain circumstances.

If the PRIMARY serial port is used to communicate with an external device during program
execution, the CONTROL-C character might be used in some sort of communication protocol.
In this case, the programmer must insure that the CONTROL-C character does NOT cause the
ASCII BASIC program to halt its execution.

Additionally, the programmer may wish to disable the CONTROL-C break feature to prevent end
users from halting a program that utilizes an operator interface terminal.

The BREAK command is used to disable and enable the BASIC Gateway Module’s CONTROL-
C BREAK feature.

SYNTAX 1: BREAK 0

Following execution of the BREAK0 statement, when a CONTROL-C character is received by
the BASIC Gateway Module, program execution is NOT halted. If the CONTROL-C character
is received while the module is in COMMAND mode, the CONTROL-C character is ECHOED
to the transmitting device. The character is only echoed during an INPUT statement if the
character echo feature is enabled (See the SETINPUT statement).

SYNTAX 2: BREAK 1

Following execution of the BREAK1 statement, when a CONTROL-C character is received by
the BASIC Gateway Module, program execution is halted. The module will assume this
configuration following a RESET.

(cont.)

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-29

CAUTION!

It is possible to configure a program to automatically run following RESET. If the program
immediately disables the CONTROL-C break feature and does not provide a means for re-
enabling it, THERE WILL BE NO WAY FOR THE PROGRAMMER TO STOP THE PROGRAM .
For this reason, the programmer should provide a means for re-enabling the CONTROL-C
interrupt from within the program.

There are several methods that may be incorporated to allow re-enabling of the CONTROL-C
break feature. Two methods are illustrated below.

EXAMPLE 1 THREE SECOND TIMEOUT:

0>10 TIME=0 : CLOCK1 : REM Initialize the clock
0>20 IF INKEY$="" THEN END : REM If a key is pressed, exit
0>30 IF TIME<=3 THEN 20 : REM Wait for 3 seconds
0>40 BREAK0 : REM No key pressed, disable CTRL-C

.

. (Rest of program)

.

EXAMPLE 2 PASSWORD:

0>10 STRING 257,15 : REM Allocate string storage
0>20 BREAK0 : REM Disable CONTROL-C
0>30 $(0)="PASSWORD" : L=0 : REM Define the password
0>40 GOSUB 100 : $(1)=$(1)+INKEY$: REM Read the keyboard
0>50 IF LEN($(1)) < LEN($(0)) THEN 40 : REM If not enough chars, continue
0>60 IF $(0)=$(1) THEN 80 : REM Otherwise, see if strings match
0>70 $(1)="" : GOTO 40 : REM If not, set input string to null
0>80 BREAK 1 : GOTO 40 : REM Otherwise, enable CTRL-C
0>100 .

.

. (Rest of program)

.

Page 4-30 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

CHAIN

MODE: COMMAND and/or RUN

SYNTAX: CHAIN expr

DESCRIPTION:

The CHAIN statement will immediately transfer program control to the program specified by the
numeric expr. The specified program is executed starting at it’s first line number.

The expr is a valid expression that solves to an integer value between 0 and 254 inclusive, any
other value will cause an Invalid argument error.

If the specified program does not exist, the CHAIN statement is ignored and execution will
resume with the statement following the CHAIN statement.

If the CLRMEM 0 option is in force, all string, array dimension and variable values are preserved
between CHAINs. If the CLRMEM 0 option is NOT in force, all variables and strings will be set
equal to zero.

CHAIN will allways clear any pending ONERR, ONTIME or ONPORT interrupts.

SEE ALSO: CLRMEM

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-31

CHR()

MODE: COMMAND and/or RUN

SYNTAX 1: CHR(expr)

This operator is only included in the BASIC instruction set for compatablility with earlier versions
of the firmware, new programs should use the more versatile CHR$() operator.

The CHR() operator converts the numeric expr to an ASCII character (See Appendix D for a list
of the ASCII character set). The CHR() operator CAN ONLY BE USED WITHIN A PRINT
STATEMENT!

0>PRINT CHR(65)
A

SYNTAX 2: CHR(string_var, position)

The CHR() operator can also "pick out" characters from within an ASCII string. This is done by
including the string variable name within the parentheses of the CHR operator, followed by the
position of the character to "pick out".

0>$(0)=”Horner Electric”
0>PRINT CHR($(0),1)
H

In the following example, the string is displayed using the CHR operator, one character at a time.
Then the string is displayed in reverse.

0>10 STRING 257,15
0>20 $(0) = "ASCII Basic"
0>30 FOR I=1 TO 11
0>40 PRINT CHR($(0), I),
0>50 NEXT I
0>60 PRINT
0>70 FOR I=11 TO 1 STEP -1
0>80 PRINT CHR($(0), I),
0>90 NEXT I
0>100 END
0>RUN
ASCII Basic
cisaB IICSA

Ready

0>

Page 4-32 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

CHR$()

MODE: COMMAND and/or RUN

SYNTAX: CHR$(expr)

DESCRIPTION:

The CHR() operator returns a single character string whose ASCII value is expr (See Appendix
D for a list of the ASCII character set). The expr argument must solve to an integer value
between 0 and 255 inclusive. The CHR$ operator may be used in any valid string expression.

0>PRINT CHR$(65)
A

0>PRINT "This is"+CHR$(20H)+CHR$(61H)+CHR$(20H)+"test"
This is a test

The CHR$() operator can also be used to imbed control characters inside string variables.

0>STRING 257,31
0>$(0)="Horner Electric"+CHR$(13)+CHR$(10)+"ASCII Basic"
0>PRINT $(0)

Horner Electric
ASCII Basic

0>

SEE ALSO: ASC(), CHR(), MID$()

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-33

CLEAR

MODE: COMMAND and/or RUN

SYNTAX: CLEAR

DESCRIPTION:

The CLEAR statement sets all variables equal to zero, sets all strings to NULL, and executes
the equivalent of the CLEAR I and CLEAR S statements. CLEAR does NOT reset the memory
that has been allocated for strings via the STRING statement, nor does it affect the real-time
or millisecond clocks.

In general, the CLEAR statement is used to erase all variables.

0>10 X=1
0>20 CLEAR
0>30 PRINT X
0>RUN

 0

Ready
0>

SEE ALSO: CLEAR I, CLEAR S, NEW, RUN, CLRMEM

Page 4-34 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

CLEAR I

MODE: COMMAND and/or RUN

SYNTAX: CLEAR I

DESCRIPTION:

When the CLEAR I statement is executed, the BASIC Gateway Module will clear and disable
the ONTIME and ONPORT interrupts. This is used to disable the interrupts during specific
sections of the user’s BASIC program. This command does not affect the millisecond clock
which is enabled by the CLOCK1 statement, it merely inhibits the interrupts. If the CLEAR I
statement is used, the ONTIME and/or ONPORT statements must be re-issued before the
interrupts will again be recognized.

0>10 TIME = 0 : CLOCK1
0>20 ONTIME TIME + 1, 100
0>30 IF INT(TIME) <> 3 THEN 30
0>40 CLEAR I
0>50 IF TIME > 6 THEN 20 ELSE 50
0>60 REM ** Timer interrupt subroutine. **
0>100 PRINT TIME
0>110 ONTIME TIME + 1, 100
0>120 RETI
0>RUN

 1.005
 2.005
 3.005
 7.005
 8.005

.

.

.

SEE ALSO: CLEAR, CLEAR S, NEW, RUN, CLRMEM

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-35

CLEAR S

MODE: COMMAND and/or RUN

SYNTAX: CLEAR S

DESCRIPTION:

The CLEARS statement is used to reset the two BASIC Gateway Module stacks (the CONTROL
stack and the ARGUMENT stack, discussed in section 3.3). This statement can be used to
"purge" the stack should an unrecoverable error occur. Also, this statement can be used as an
alternate means to exit a FOR-NEXT, DO-WHILE or DO-UNTIL loop.

0>10 PRINT "Multiplication test, you have 5 seconds"
0>20 FOR I = 2 TO 9
0>30 N = INT(RND * 10) : A = N * I
0>40 PRINT "What is ", N, " * ", I, "?"
0>50 CLOCK1 : TIME = 0
0>60 ONTIME 5, 200 : INPUT R : IF R<> A THEN 100
0>70 PRINT "That’s right!" : NEXT I
0>80 PRINT "You did it! Good job." : END
0>100 PRINT "Wrong, try again..." : GOTO 50
0>200 REM ** Reset the control stack, too much time. **
0>210 CLEAR S : PRINT "You took too long..." : GOTO 10

SEE ALSO: CLEAR, CLEAR I, NEW, RUN, CLRMEM

Page 4-36 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

CLOCK

MODE: COMMAND and/or RUN

SYNTAX 1: CLOCK 1

DESCRIPTION:

The CLOCK1 statement is used to START the millisecond clock. After execution of the CLOCK1
statement, the special function operator TIME is incremented once every 5 milliseconds. When
the millisecond clock is running, the ASCII BASIC program will execute at about 99.8% of its
normal speed.

SYNTAX 2: CLOCK 0

DESCRIPTION:

The CLOCK0 statement is used to STOP the millisecond clock. After execution of the CLOCK0
statement, the special function operator TIME is no longer incremented. Following a power-up
or reset, the millisecond clock is STOPPED.

SEE ALSO: TIME, FTIME, ONTIME, TIME$, DATE$

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-37

CLRMEM

MODE: COMMAND and/or RUN

SYNTAX 1: CLRMEM 0

DESCRIPTION:

If the CLRMEM0 statement is executed, the BASIC Gateway Module will NOT clear any of the
DATA memory following a power-up or RESET condition, or prior to running a CHAINed
program. This option allows the user to retain program 0 in DATA memory without the danger
of “losing” the program following a RESET.

SYNTAX 2: CLRMEM 1

DESCRIPTION:

If the CLRMEM1 statement is executed, the BASIC Gateway Module WILL clear DATA memory
(up to MTOP) following a power-up or RESET condition. This means that if program 0 exists
in DATA memory it will be lost, and the value of any variables will be initialized to zero following
a power-up or RESET.

SEE ALSO: CLEAR, CLEAR I, CLEAR S, NEW, RUN, CHAIN

Page 4-38 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

CMDPORT

MODE: COMMAND and/or RUN

SYNTAX: CMDPORT [#]

The CMDPORT statement is used to assign the programming console to the desired serial
device. The "console" is the port used for entering commands, statements and program lines.
Initially, (following RESET) the console is assigned to the PRIMARY serial device. using the
CMDPORT# statement, the console can be assigned to the AUXILIARY serial device. When
the AUXILIARY serial port is configured as the console, all commands, statements and program
lines are input via the AUXILIARY serial device. All command mode transmission from the
module is directed to the AUXILIARY serial device.

Note that all of the serial port control commands and statements (e.g. PRINT, INPUT, etc.) must
still incorporate the use of the "#" character in order to act upon the AUXILIARY serial device.
The following example assumes that the module is in it's initial state;

0>CMDPORT# <The command port is now assigned to the AUXILIARY device>

After entry of the CMDPORT# command, the following sequence can be performed via the
AUXILIARY port;

Ready
0>10 REM This is a test line
0>LIST

Ready <The LIST command sent the output to the PRIMARY port>
0>LIST# <The LIST# command will send output to the AUXILIARY port>
10 REM This is a test line

Ready
0>

When the CMDPORT statement is entered with no "#" parameter, the console device is
assigned to the PRIMARY port. If the CMDPORT# statement is entered and no AUXILIARY
serial device is present, the CMDPORT statement is ignored and the PRIMARY port will retain
the console.

This feature could be used with the modem option to allow Basic programming from a remote
location. To do this, the module would have to be programmed to establish the connection, at
which point a password routine could be implemented to allow the remote station access to the
COMMAND mode. An example program is provided on the following page.

(cont.)

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-39

CMDPORT (cont.)

The following example program can be automatically executed following a RESET (see
STARTUP and AUTORUN) to allow the BASIC module to be programmed from a remote
location via modem (assuming a modem is installed as the AUXILIARY port).

10 STRING 257,15 : REM Allocate some string space
20 PRINT# “ATZV0X4E0S0=1” : REM Initialize the modem
30 INPUT# ,$(0) : REM Get and ignore the modem response
40 ONPORT# 1000 : REM Set up a modem RX interrupt
50 IDLE : TRY=0 : REM Wait for the modem interrupt
60 IF CNCT=0 THEN 40 : REM If not connected, go wait again
70 $(0)=”JPD” : $(2)=”” : REM Initialize the password
80 PRINT# “Password? “, : REM Prompt for password
90 $(1)=INKEY$# : REM Get one character at a time
100 IF LEN($(1))=0 THEN 90 : REM If not char available, look again
110 IF $(1)=CHR$(13) THEN 200 : REM If CR, done building string
120 $(2)=$(2)+$(1) : REM Else, add this char to string
130 PRINT# $(1), : REM Echo the password
140 GOTO 90 : REM Go get next char

200 IF $(2)=$(0) THEN 400 : REM If password matches, go exit
210 PRINT : PRINT “Invalid password...” : REM Else display error
220 TRY=TRY+1 : REM Increment the TRY counter
230 IF TRY<3 THEN 70 : REM Only allow 3 attempts
240 PRINT# “Disconnecting...” : REM Disconnect on 4th attempt
250 DELAY (1500) : REM Wait for the escape guard time
260 PRINT# “+++”, : REM Send the escape code.
270 DELAY (1500) : REM Wait for another escape time
280 GOTO 30 : REM Done

400 CMDPORT# : REM Make the modem the command port
410 END : REM Exit to COMMAND mode.

1000 IF X=5 THEN CNCT=1 ELSE CNCT=0 : REM Return 1 if connected
1010 RETI : REM Done

Page 4-40 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

COMBRK

MODE: COMMAND and/or RUN

SYNTAX: COMBRK

DESCRIPTION:

The COMBRK statement is a special operator that returns a three character time break.

When used with the PRINT statement, the COMBRK function can be used to send the three
character break out one of the serial ports. This function is particularly useful when attempting
to transfer SNP protocol messages from one serial port to another.

>10 STRING 257,31 : DELAY(3000) : BREAK 0
>20 SETCOM #1200,N,8,1,N
>25 SETCOM 1200,N,8,1,N
>30 PRINT #"ATV0E0S0=1"
>100 PRINT INKEY$#, : PRINT #INKEY$,
>110 IF (XBY(0FE05H) .AND. 10H) =0 THEN 100
>120 PRINT COMBRK : GOTO 100

The above example is used with the BASIC Gateway Module with built-in modem to cause the
BASIC Gateway module to act as an SNP modem for remote programming purposes. An SNP
Adapter (HE693SNP232) is also required. The COMBRK operator is used to handle the SNP
Protocol's "long break".

The COMBRK operator may also be used to imbed a three character break inside a string
variable.

SEE ALSO: PRINT

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-41

COS()

MODE: COMMAND and/or RUN

SYNTAX: COS(expr)

DESCRIPTION:

The COS() operator returns the the trigonometric COSINE of the numeric expr. The argument
is expressed in radians and must be between +/- 200000. The calculation is carried out to seven
significant digits.

0>PRINT COS(PI/4) 0>PRINT COS(0)
 .7071067 1

SEE ALSO: ATN(), SIN(), TAN(), PI

Page 4-42 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

CR

MODE: COMMAND and/or RUN

SYNTAX: CR

DESCRIPTION:

The CR statement is a special operator that returns a single CARRIAGE RETURN character
(with no LINE FEED).

When used in the PRINT statement, the CR function can be used to create a line on the console
device that is repeatedly updated.

>10 FOR I=1 TO 1000
>20 PRINT I, CR,
>30 NEXT I

The CR operator may also be used to imbed a CARRIAGE RETURN character inside a string
variable.

0> STRING 257,63
0> $(0)=" is hidden"+CR+"This string"
0> PRINT $(0)

This string is hidden

SEE ALSO: CHR$()

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-43

CTS

MODE: COMMAND and/or RUN

SYNTAX: CTS [#]

DESCRIPTION:

The CTS operator is used to control the state of the hardware handshaking output on one of the
two serial ports. The CTS (Clear To Send) signal is pin 8 on the DB-9 connector. This signal
can be activated (to it’s "high" state) by setting it to a non-zero value;

0>CTS=1 : REM Sets the PRIMARY port CTS line HIGH (+12V)
0>PRINT CTS
 65535

0>

Likewise, the CTS signal can be deactivated (to it’s "low" state) by setting it to zero.

0>CTS#=0 : REM Sets the AUXILIARY port CTS line LOW (-12V)
0>PRINT CTS#
 0

0>

As shown in the example above, if a "#" character is appended to the CTS operator, the
AUXILIARY port CTS line is manipulated.

SEE ALSO: RTS

Page 4-44 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

DATA

MODE: RUN ONLY

SYNTAX: DATA expr [,expr ,expr ...]

DESCRIPTION:

The DATA statement specifies CONSTANT expressions that may be retrieved by a READ
statement. If multiple expressions are to be used for a single DATA statement, the expressions
must be separated by commas. More than one DATA statement may appear within the same
program, in this case the expressions in the DATA statements will appear to BASIC as one long
DATA statement. DATA statements may appear anywhere in the program, they are not
executed and will not generate an error.

SEE ALSO: READ, RESTORE

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-45

DATE$

MODE: COMMAND and/or RUN

SYNTAX: DATE$

DESCRIPTION:

The DATE$ operator is used to assign or retrieve a value to the REAL-TIME calendar. The real-
time clock/calendar continues to run and maintains the time/date even when power is removed
from the BASIC Gateway Module.

When the DATE$ operator is used to retrieve the value of the real-time calendar, the date is
returned in the format shown below.

When the DATE$ operator appears on the left side of an assignment statement, a string variable
or constant that represents the date must appear on the right side. This string MUST be
formatted as follows;

MM/DD/YY

where MM is the month (01 to 12), DD is the day of the month (01 to 31) and YY is the year (00
to 99). Delimiting characters (shown in the example as slashes) must appear between the
arguments but may be any character.

Leading zeros may NOT be omitted. This means that the following statement would generate
an Invalid argument error;

0>DATE$="1/1/90"

ERROR! Invalid argument!
Ready

0>DATE$="122590"

ERROR! Invalid argument!
Ready

The following are valid examples of DATE$ manipulation:

0>DATE$="01/01/80"
0>DATE$="12-25-92"

SEE ALSO: TIME$, CLOCK, TIME, FTIME

Page 4-46 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

DELAY

MODE: RUN ONLY

SYNTAX: DELAY(expr)

DESCRIPTION:

The DELAY() function will cause the module to pause for the number of milliseconds specified
by the numeric expr.

The following example program segment will update the DATE and TIME on the console device
approximately once per second.

0>10 PRINT DATE$, " ", TIME$, CR, : REM Display the current DATE/TIME
0>20 DELAY(1000) : REM Wait for one second
0>30 GOTO 10 : REM Go update the DATE/TIME again

SEE ALSO: ONTIME

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-47

DIM

MODE: COMMAND and/or RUN

SYNTAX: DIM var(expr) [var(expr), var(expr)...]

DESCRIPTION:

The DIM statement reserves memory storage space for ARRAY variables. ARRAY variables
may be assigned a ONE DIMENSION subscript which may not exceed 254. Once a variable
has been DIMensioned in a program, it may not be re-DIMensioned. If this is attempted, an array
size error will be generated.

If an arrayed variable is used that has NOT been dimensioned using a DIM statement, the
maximum subscript for the array is 9 (10 elements, 0 through 9). All arrays are set equal to zero
whenever a NEW or CLEAR command are executed. If the CLRMEM 1 option is in force, all
arrays will be cleared following the RUN command.

More than one variable may be dimensioned by a single DIM statement.

0>10 A(5)=10
0>20 DIM A(10)
0>RUN

ERROR! Array size exceeded or not specified! - In line 20

20 DIM A(10)
———————X
Ready
0>

SEE ALSO: CLEAR

Page 4-48 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

DO-UNTIL

MODE: RUN ONLY

SYNTAX: DO ... UNTIL rel_expr

DESCRIPTION:

The DO-UNTIL statements provide a means of "loop" control within a BASIC program. All
statements between the DO and the UNTIL rel_expr are executed until the relational expression
following the UNTIL becomes TRUE. DO - UNTIL loops may be nested.

0>10 A = 0 0>10 A = 0 : B = 0
0>20 DO 0>20 DO
0>30 A = A + 1 0>30 A = A + 1
0>40 PRINT A 0>40 DO
0>50 UNTIL A = 4 0>50 B = B + 1
0>60 PRINT "DONE" 0>60 PRINT A, B, A*B
0>RUN 0>70 UNTIL B = 3

0>80 B = 0
 1 0>90 UNTIL A = 3
 2 0>100 PRINT "DONE"
 3 0>RUN
 4
DONE 1 1 1

 1 2 2
Ready 1 3 3
0> 2 1 2

 2 2 4
 2 3 6
 3 1 3
 3 2 6
 3 3 9
DONE

Ready
0>

SEE ALSO: DO-WHILE, FOR-TO-STEP-NEXT

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-49

DO-WHILE

MODE: RUN ONLY

SYNTAX: DO ... WHILE rel_expr

DESCRIPTION:

The DO-WHILE statements provide a means of "loop" control within an ASCII BASIC program.
All statements between the DO and the WHILE rel_expr are executed as long as the relational
expression following the WHILE is TRUE. DO - WHILE loops may be nested.

0>10 A = 0 0>10 A = 0 : B = 0
0>20 DO 0>20 DO
0>30 A = A + 1 0>30 A = A + 1
0>40 PRINT A 0>40 DO
0>50 WHILE A <> 4 0>50 B = B + 1
0>60 PRINT "DONE" 0>60 PRINT A, B, A*B
0>RUN 0>70 WHILE B <> 3

0>80 B = 0
 1 0>90 WHILE A <> 3
 2 0>100 PRINT "DONE"
 3 0>RUN
 4
DONE 1 1 1

 1 2 2
Ready 1 3 3
0> 2 1 2

 2 2 4
 2 3 6
 3 1 3
 3 2 6
 3 3 9
DONE

Ready
0>

SEE ALSO: DO-UNTIL, FOR-TO-STEP-NEXT

Page 4-50 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

END

MODE: RUN ONLY

SYNTAX: END

DESCRIPTION:

The END statement terminates program execution and puts the BASIC Gateway Module into
the COMMAND mode. The CONT command can not be used to resume program execution if
the END statement is used to terminate the program execution (a Can’t continue error is
generated). If no END statement is used, the last statement in the program will automatically
cause the program to END.

The two examples shown below can be considered identical.

0>10 FOR I = 1 TO 4 0>10 FOR I = 1 TO 4
0>20 PRINT I 0>20 PRINT I
0>30 NEXT I 0>30 NEXT I
0>RUN 0>40 END

0>RUN
 1
 2 1
 3 2
 4 3

 4
Ready
0> Ready

0>

SEE ALSO: STOP, CONT

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-51

ERC

MODE: COMMAND and/or RUN

SYNTAX: ERC

DESCRIPTION:

ERC is a READ-ONLY special function operator that will only return a meaningful result while
in RUN mode. If used in COMMAND mode, zero is always returned.

In RUN mode, ERC returns the type of arithmetic error that last occurred. the ERC special
function operator is typically used in an error trapping routine (see the ONERR statement). The
value returned by ERC will be one of 5 values;

No errors (ERC = 0)
Division by zero (ERC = 10)
Arithmetic overflow (ERC = 20)
Arithmetic underflow (ERC = 30)
Bad argument (ERC = 40)

Note that when ERC is read, it is set to zero. This means that a variable should be used to store
the error type if multiple error type tests are to be performed.

SEE ALSO: ONERR

Page 4-52 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

EXP()

MODE: COMMAND and/or RUN

SYNTAX: EXP(expr)

DESCRIPTION:

The EXP() Operator returns the the number "e" (2.7182818) raised to the power of the numeric
expr.

0>PRINT EXP(1) 0>PRINT EXP(LOG(2))
 2.7182818 2

SEE ALSO: LOG()

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-53

FOR - TO - STEP - NEXT

MODE: COMMAND and/or RUN

SYNTAX: FOR var = start_expr TO end_expr [STEP inc_expr] ... NEXT [var]

DESCRIPTION:

The FOR-TO-STEP-NEXT statements are used to execute "iterative" loops (or loops that are
executed a specified number of times).

The var is a numeric variable that will be incremented each time the NEXT statement is
executed.

The start_expr is a numeric expression whose value is assigned to the var upon entry into the
FOR statement.

The end_expr is a numeric expression that the var will be compared to each time the NEXT
statement is executed.

The inc_expr is a numeric expression whose value is "added" to the var each time the NEXT
statement is executed.

Each time the NEXT statement is encountered, the var is compared to the end_expr. If the var
is less than the end_expr, program control is transferred back to the statement following the FOR
statement and the var is incremented by inc_expr. If the var is greater than or equal to the
end_expr, control resumes with the statement following the NEXT statement.

If the STEP and inc_expr are omitted, the inc_expr defaults to 1.

0>10 FOR I = 1 TO 4
0>20 PRINT I
0>30 NEXT I
0>RUN

 1
 2
 3
 4

Ready
0>

(cont.)

Page 4-54 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

FOR-TO-STEP-NEXT (cont.)

The inc_expr may be a negative value, thus the var is actually decremented each time through
the loop.

0>10 FOR I = 4 TO 1 STEP -1
0>20 PRINT I
0>30 NEXT I
0>RUN

 4
 3
 2
 1

Ready
0>

The var is very useful for accessing variable array elements (among other things). For example,
consider an array containing the number of days in each month;

0>110 FOR X = 1 TO 12
0>120 PRINT "There are ", MONTH(X), " days in month ", X
0>130 NEXT X

The FOR-NEXT loop may be used in COMMAND mode, provided the entire sequence will fit
on a single command line.

Ready
0>FOR X=0 TO 7 : PRINT INP(X) : NEXT X

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-55

FREE

MODE: COMMAND and/or RUN

SYNTAX: FREE

DESCRIPTION:

The FREE system control value returns the number of unused bytes in DATA memory that are
available to the user. When the currently selected program is in RAM, the following relationship
will always hold true.

FREE = MTOP-SIZE-1280

The FREE operator DOES NOT account for any defined variables or string space below MTOP.

The FREE operator is generally used to derive a new value for MTOP.

0>NEW

0>10 FOR I=512 TO 528 : REM Display program 0
0>20 PRINT XBY(I),
0>30 NEXT I
0>PRINT FREE
 32202

Ready
0>

SEE ALSO: MTOP, SIZE

Page 4-56 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

FTIME

MODE: COMMAND and/or RUN

SYNTAX: FTIME

DESCRIPTION:

The FTIME special function operator is used to assign a value to the fractional portion of the
TIME operator.

When the TIME operator is set using a LET statement, only the integer portion is affected. This
is to allow accurate one-second intervals when an ONTIME interrupt is used.

Consider the following program segment:

0>10 TIME=0 : CLOCK 1 : ONTIME 1, 100
0>20 IDLE : GOTO 20

0>100 PRINT TIME$, CR,
0>110 TIME=0
0>120 ONTIME 1, 100
0>130 RETI

When the TIME operator was set equal to 0 in line 110, a few milliseconds had already elapsed
since TIME was equal to 1 (generating the ONTIME interrupt). If when setting the TIME
operator, the fractional portion were also changed, accurate second-based interrupts would be
impossible.

For this reason, the FTIME operator is included. The value assigned to FTIME must be less than
1! If a value greater than or equal to 1 is assigned to FTIME, an Invalid argument error is
generated. Note that if the value assigned to FTIME is truncated to the nearest 5 milliseconds.

SEE ALSO: TIME, CLOCK, ONTIME, TIME$, DATE$

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-57

GOSUB - RETURN

MODE: RUN ONLY

SYNTAX: GOSUB line_num ... RETURN

DESCRIPTION:

The GOSUB statement transfers program control to the specified program line_num. The
location of the GOSUB statement is saved on the CONTROL STACK. If the specified line_num
does not exist, an Invalid line number error is genterated.

When a RETURN statement is encountered, the location of the GOSUB statement is retrieved
from the CONTROL STACK and program control is transferred to the statement following the
GOSUB statement.

These two statements provide a means to incorporate SUBROUTINES. A subroutine is a
program segment that may be executed from several points in the program. Instead of keeping
several copies of an identical program segment in the program, a subroutine can be created to
reduce program size and to ease the program maintainance and debug chores.

Subroutines may be nested. This means that a GOSUB can be used from within a subroutine.

0>10 FOR I = 1 TO 3
0>20 GOSUB 100
0>30 NEXT I
0>40 END

0>100 PRINT I,
0>110 GOSUB 200
0>120 RETURN

0>200 PRINT I*I
0>210 RETURN
0>RUN

 1 1
 2 4
 3 9

Ready
0>

SEE ALSO: GOTO, ON-GOSUB, ON-GOTO

Page 4-58 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

GOTO

MODE: COMMAND and/or RUN

SYNTAX: GOTO line_num

DESCRIPTION:

The GOTO statement will cause BASIC to immediately transfer program control to the specified
program line_num. If the specified line_num does not exist, an Invalid line number error is
generated.

The GOTO statement may be used while in COMMAND mode. Unlike the RUN command, this
action will NOT cause BASIC to clear the variable storage space or BASIC interrupts (unless
the program has been modified).

0>10 GOTO 150 Ready
0>GOTO 50

SEE ALSO: GOSUB, ON-GOSUB, ON-GOTO

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-59

IDLE

MODE: RUN ONLY

SYNTAX: IDLE

DESCRIPTION:

The IDLE statement forces the BASIC Gateway Module to cease all program execution activity
until an ONTIME or ONPORT interrupt is generated. The programmer must insure that one of
these interrupts is pending before executing an IDLE statement, otherwise the module will be
IDLE forever.

Once the ONTIME or ONPORT interrupt is generated, the module will "break out" of the IDLE
mode and will execute the interrupt service subroutine. When the RETI statement is encoun-
tered, program control returns to the statement following the IDLE statement.

0>10 TIME=0 : CLOCK1 : ONTIME 1, 100
0>20 IDLE : GOTO 20

0>100 PRINT TIME$, CR,
0>110 TIME=0 : ONTIME 1,100
0>120 RETI

SEE ALSO: ONPORT, ONTIME, RETI, CLEAR I

Page 4-60 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

IF - THEN - ELSE

MODE: RUN ONLY

SYNTAX: IF rel_expr [THEN] true_statement [ELSE false_statement]

DESCRIPTION:

The IF-THEN-ELSE statement provides a means to perform a conditional test. The rel_expr
is used to determine which of the statements following the THEN to execute. If the rel_expr
evaluates to 65535 (or is TRUE), the true_statement following the THEN is executed.
Otherwise, if the rel_expr evaluates to zero (or is FALSE) the false_statement following the
ELSE is executed.

The ELSE portion of this statement is optional and may be omitted. If it is omitted and the
rel_expr is FALSE, the statement following the THEN is not executed and program control
resumes with the statement following the IF statement.

In the following statement, IF A is equal to 100 THEN A would be assigned a value of 0,
otherwise, A is incremented by 1.

0>10 IF A=100 THEN A=0 ELSE A=A+1

If program control is to be transferred to a different line number using the GOTO statement, the
GOTO keyword may be omitted. The following examples are functionally equivalent.

0>10 IF A>100 THEN GOTO 50 ELSE GOTO 100
0>10 IF A>100 THEN 50 ELSE 100

Additionally, the THEN keyword may be replaced by any valid BASIC statement. Again, the
following two statements are functionally equivalent.

0>10 IF A>100 THEN PRINT A
0>10 IF A>100 PRINT A

(cont.)

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-61

IF - THEN - ELSE (cont.)

Multiple statements may be placed on same line following an IF-THEN-ELSE statement (using
the colon ":" delimiter). The additional statements are executed if the LAST target statement
of the IF-THEN-ELSE statement is executed.

0>10 X=0
0>20 IF X= 0 THEN PRINT "X is", : PRINT " equal to zero"
0>RUN

X is equal to zero

Ready
0>10 X = 1
0>20 IF X=0 THEN PRINT "zero" ELSE PRINT "Greater " : PRINT "than zero"
0>RUN

Greater than zero

Ready
0>

Notice that multiple statements can NOT appear between the THEN and the ELSE!

Page 4-62 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

INBUF$

MODE: COMMAND and/or RUN

SYNTAX: INBUF$ [#]

DESCRIPTION:

The INBUF$ operator is a READ-ONLY special function operator that will return a character
string that represents all of the characters currently in the INPUT buffer for the specified serial
port. The characters are NOT removed from the buffer.

If the "#" character is appended to the INBUF$ operator, the AUXILIARY serial INPUT buffer
is returned, otherwise the PRIMARY serial buffer is returned.

The INBUF$ operator is useful when dealing with a serial communications protocol. The string
operators can be used to determine the number of characters waiting in the buffer, or if a
particular terminating character has been received.

0>100 IF LEN(INBUF$)>10 THEN 200 : REM Wait for 10 characters
0>110 IF INSTR(INBUF$,CR)>0 THEN 200 : REM Wait for a <CR>
0>120 GOTO 100

0>200 INPUT $(0) : REM Read the buffer

SEE ALSO: INKEY$, INPUT, SETINPUT, LEN()

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-63

INKEY$

MODE: RUN ONLY

SYNTAX: INKEY$ [#]

DESCRIPTION:

The INKEY$ special function operator will only produce a meaningful result when used in the
RUN mode. It will always return a null string in COMMAND mode.

The INKEY$ operator will return a one character string that represents the next available
character waiting in the serial INPUT buffer. If no characters are waiting in the INPUT buffer,
INKEY$ returns a null string.

If one or more characters are available in the INPUT buffer, the INKEY$ operator will REMOVE
the character from the buffer and return it in the string.

If the "#" character is appended to the INKEY$ operator, the AUXILIARY serial INPUT buffer
is read, otherwise, the PRIMARY serial INPUT buffer is read.

The following program simply reads all characters from the PRIMARY port and transmits them
out the AUXILIARY port. Likewise, all characters received at the AUXILIARY port are
transmitted to the PRIMARY port.

0>10 PRINT INKEY$ #,
0>20 PRINT # INKEY$,
0>30 GOTO 10

SEE ALSO: INBUF$, INPUT, SETINPUT

Page 4-64 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

INP()

MODE: COMMAND and/or RUN

SYNTAX 1: INP(ref)

DESCRIPTION:

The INP() operator appears as a READ-ONLY array of variables that represents up to 64 words
of Genius global data for the BASIC Gateway Module. The ref is a numeric expression that
yeilds an integer value that is less than the number of registers defined for the module. Any other
value will generate an Invalid argument error.

0>10 X=INP(0) : REM Lower byte represents X coordinate
0>20 Y=INP(1) : REM Upper byte represents Y coordinate
0>30 PRINT "The X coordinate is",BCD(X),
0>40 PRINT "and the Y coordinate is",BCD(Y)
0>50 END
0>RUN

The X coordinate is 17 and the Y coordinate is 85

READY
0>

SYNTAX 2: INP(ref, bit)

DESCRIPTION:

The INP() operator can also be used to obtain the state of a single BIT in any of the input
registers. The ref is a numeric expression that represents the register number that contains the
bit number (0 to 15) represented by bit. An Invalid argument error is generated if either
expression is out of range.

If the specified bit is set (1), a TRUE result (65535) is returned. If the specified bit is clear (0),
a FALSE result (0) is returned.

0>10 FOR X=0 TO 7 : REM Do 8 registers
0>20 FOR Y=0 TO 15 : REM Do all 15 bits
0>30 IF INP(X,Y) PRINT "1", ELSE PRINT "0" : REM Display state of bit
0>40 NEXT Y : REM Do next bit
0>50 PRINT : REM New line when end of reg
0>60 NEXT X : REM Do next reg

SEE ALSO: OUT(), SETIO

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-65

INPUT

MODE: RUN ONLY

SYNTAX: INPUT [#] ["prompt_string"] [,] var [,var ,var ...]

DESCRIPTION:

The INPUT statement will read data from one of the serial INPUT buffers and assign the data
to the var(s) in the variable list.

If the "#" character is appended to the INPUT keyword, the AUXILIARY serial INPUT buffer is
read, otherwise the PRIMARY serial INPUT buffer is read.

One or more variables may be assigned data with a single INPUT statement. If more than one
variable appears in the INPUT variable list, they must be separated by commas. If the user does
not enter enough data, the an warning message is displayed on the console device and the
INPUT statement is re-executed. When more than one data item is to be entered in response
to an INPUT statement, each data item must be separated by a comma.

Normally, a carriage return/line feed sequence and a question mark (?) are transmitted to the
specified device. However, if a comma immediately preceeds the first var in the variable list,
the carriage return/line feed/question mark sequence is suppressed.

0>10 INPUT A,B
0>20 PRINT A,B
0>RUN

?1 <typed by user>

Data entered does not match variable type...try again

?1,2 <typed by user>
 1 5

Ready
0>

An INPUT statement may be written so that a descriptive "prompt_string" is displayed on the
console device prior to data entry. This prompt must appear between the INPUT keyword and
the variable list, and must be enclosed in quotes (").

(cont.)

Page 4-66 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

INPUT (cont.)

0>10 INPUT "Enter a number - ", A
0>20 PRINT SQR(A)
0>RUN

Enter a number - 100
 10

Ready
0>

String variables can also be assigned using the INPUT statement. During INPUT, strings are
normally terminated with a carriage return character (but any character can be configured as
the terminating character using the SETINPUT statement). If more than one string is to be
assigned with a single INPUT statement, the termination character must be sent following each
string. The module will prompt the user with a question mark between each string entry. If a
comma is entered during the INPUT of a string variable, it is simply placed in the string.

0>10 STRING 110,10 0>10 STRING 110,10
0>20 INPUT "NAME: ",$(1) 0>20 INPUT "NAMES: ",$(1),$(2)
0>30 PRINT "HI ",$(1) 0>30 PRINT "HI ",$(1)," AND ",$(2)
0>RUN 0>RUN

NAME: Jim NAMES: Jim
HI Jim ?Joe

HI Jim AND Joe
Ready
0> Ready

0>

SEE ALSO: SETINPUT, INBUF$, INKEY$

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-67

INSTR()

MODE: COMMAND and/or RUN

SYNTAX: INSTR (string_expr1, string_expr2)

DESCRIPTION:

The INSTR() function searches for the first occurrence of string_expr2 in string_expr1 and
returns the character position at which the match is found.

If string_expr2 is not found in string_expr1, 0 is returned.

0>PRINT INSTR("This is a test", "is a")
 6

0>STRING 257,31
0>$(0)="Horner Electric"
0>PRINT INSTR($(0), CHR$(45H))
 8

0>PRINT INSTR($(0), "F")
 0

0>

SEE ALSO: MID$(), LEN()

Page 4-68 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

INT()

MODE: COMMAND and/or RUN

SYNTAX: INT(expr)

DESCRIPTION:

The INT() operator returns the INTEGER PORTION of the numeric expr.

0>PRINT INT(3.7) 0>PRINT INT(104.554) 0>PRINT INT(PI)
 3 104 3

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-69

LCASE$()

MODE: COMMAND and/or RUN

SYNTAX: LCASE$(string_expr)

DESCRIPTION:

The LCASE$ function will return the string_expr with all of the alphabetic characters converted
to lower case.

0>PRINT LCASE$("THIS is A tEsT")
this is a test

0>STRING 257,31
0>$(0)="HorNEr ELEctRIc"
0>PRINT LCASE$($(0))
horner electric

0>

SEE ALSO: UCASE$()

Page 4-70 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

LD@

MODE: COMMAND and/or RUN

SYNTAX: LD@ expr

DESCRIPTION:

The LD@ expr statement, in conjunction with the ST@ statement allow the programmer to store
and retrieve floating-point values anywhere in the module’s DATA memory.

The expr is a numeric expression that represents the DATA memory address of the value
(placed using the ST@ statement). The value is copied starting at the specified address and
is placed on the ARGUMENT STACK. The value can then be POPped off of the ARGUMENT
STACK into a user variable.

Each floating-point value requires 6 bytes of storage. The expression specified in the
statements represent the HIGHEST memory address used by the operation. For example,
ST@ 32767 would actually cause the value to be stored at addresses 32767, 32766, 32765,
32764, 32763 and 32762.

The LD@ and ST@ statements are the only available means of passing floating-point values
between CHAINed programs when the CLRMEM 1 option is in force (See CHAIN statement).

CAUTION!

The LD@ and ST@ statements allow manipulation of DATA memory and do not check the
specified addresses. It is possible to specify addresses in DATA memory that interfere with
ASCII Basic Module firmware operations, or with the RAM program or string variable operations.
To avoid problems, the programmer should use the SPECIAL FUNCTION OPERATOR, MTOP
to set aside a protected area of memory for use by these instructions.

0>10 REM ** Save array **
0>20 FOR I=0 TO 9
0>30 PUSH A(I) : REM Put array on arg stack
0>40 ST@ 32767+(6*I) : REM Store it, 6 bytes per value
0>50 NEXT I
0>60 REM ** Get array **
0>70 FOR I=0 TO 9
0>80 LD@ 32767+(6*I)
0>90 POP B(I)
0>100 NEXT I

SEE ALSO: ST@, MTOP, FREE, SIZE, CHAIN

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-71

LEFT$()

MODE: COMMAND and/or RUN

SYNTAX: LEFT$(string_expr, num)

DESCRIPTION:

The LEFT$ function will return the leftmost num characters of the string_expr.

0>PRINT LEFT$("Horner Electric", 8)
Horner E

0>STRING 257,15

0>$(0)="This is a test"

0>PRINT LEFT$($(0), 6)
This i

0>

SEE ALSO: RIGHT$(), MID$()

Page 4-72 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

LEN()

MODE: COMMAND and/or RUN

SYNTAX: LEN(string_expr)

DESCRIPTION:

The LEN() function will return the number of characters contained in the string_expr.

0>PRINT LEN("Horner Electric")
 15

0>STRING 257,15
0>$(0)="This is a test"
0>PRINT LEN($(0))
 14

0>

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-73

LET

MODE: COMMAND and/or RUN

SYNTAX: [LET] var = expr

DESCRIPTION:

The LET statement is used to assign a variable to the value of an expression.

Note that the equal sign (=) is not used to test equality, instead it causes the value of the var to
be replaced by the value of the expr.

Note also that the keword LET is always OPTIONAL and may be omitted. When the LET
keyword is omitted, the LET statement is called an IMPLIED LET statement.

The LET statement is also used to assign values to string variables and special function
operators.

The following examples are ALL valid LET statements.

0>LET A=5
0>D(0)=15
0>$(0)="Horner Electric"

0>10 A=5
0>20 TIME=0
0>30 A=5 : B=PI/2 : C=COS(B)

Page 4-74 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

LOG()

MODE: COMMAND and/or RUN

SYNTAX: LOG(expr)

DESCRIPTION:

The LOG() Operator returns the natural logarithm of the expr. The expr is a numeric expression
and must solve to a positive value. The returned value will contain up to 7 digits of significance.

0>PRINT LOG(12) 0>PRINT LOG(EXP(1))
 2.484906 1

SEE ALSO: EXP()

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-75

MID$()

MODE: COMMAND and/or RUN

SYNTAX: MID$(string_expr, start_position [,num])

DESCRIPTION:

The MID$() function returns num characters of the string_expr beginning with the character at
start_position. If the num parameter is omitted, the remainder of the string_expr is returned.

The start_position and num arguments must be valid integer expressions between 1 and 255
inclusive. if start_position specifies a character position greater than the number of characters
in the string_expr, a null string is returned. If num specifies more characters than are available
in the string_expr, or if num is omitted, the remainder of the string_expr is returned.

0>PRINT MID$("This is a test", 6, 4)
is a

0>10 STRING 257,15
0>20 $(0)=" Test program "
0>30 FOR X=0 TO 14
0>40 PRINT MID$($(0),X,3), CR,
0>50 DELAY(500)
0>60 NEXT X
0>70 GOTO 30

SEE ALSO: LEFT$(), RIGHT$(), ASC()

Page 4-76 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

MTOP

MODE: COMMAND and/or RUN

SYNTAX: MTOP

DESCRIPTION:

Following RESET, the BASIC Gateway Module will read the last known value of MTOP from
battery -backed memory. Whenever the MTOP value is changed, it will be stored in battery-
backed memory. Initially, this value is set to the last available address of DATA memory. MTOP
is used by basic to determine the location of variables and string storage space

The user may assign a different value to MTOP, allowing a region of "protected" DATA memory
for use with the XBY(), LD@ and ST@ statements. If MTOP is assigned a value beyond
available DATA memory, a MEMORY ALLOCATION error is generated.

If a program modifies the MTOP value, it should be done in the FIRST statement of the program,
as BASIC will store any referenced variable or string starting from MTOP down.

The amount of "unused" DATA memory can be determined using the LEN and FREE values,
described in this chapter.

0>PRINT MTOP
 32767

0>MTOP=32700 : REM Basic will not use memory from here to 32767

0>PRINT MTOP
 32700

0>

SEE ALSO: FREE, SIZE, STRING

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-77

NOT()

MODE: COMMAND and/or RUN

SYNTAX: NOT(expr)

DESCRIPTION:

The NOT() operator returns the 16-bit ONE’S COMPLEMENT of the expr. The expr is a
numeric exprssion that must solve to a valid integer (0 to 65535 inclusive). Non-integers will be
truncated, NOT rounded.

0>PRINT NOT(65000) 0>PRINT NOT(0)
 535 65535

SEE ALSO: .AND., .OR., .XOR.

Page 4-78 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

ON - GOSUB

MODE: RUN ONLY

SYNTAX: ON expr GOSUB line_num [, line_num, line_num ...]

DESCRIPTION:

The ON - GOSUB statement will evaluate the numeric expr and transfer program control to one
of the specified line numbers in the line_num list.

The expr is a numeric expression that must evaluate to an integer value from zero to the number
of line numbers in the line number list. If the expr is less than zero, or greater than the number
of line numbers in the list, an Invalid argument error is generated.

After the successful execution of the ON-GOSUB statement, when a RETURN statement is
encountered, program control will resume at the statement following the ON-GOSUB state-
ment.

In the following example, if X is equal to 0, program control will transfer to the subroutine at line
100. If X is equal to 1, the subroutine at line 200 is executed. If X is 2, we GOSUB line 300,
and if X is 3, line 400 will be executed.

0>10 ON X GOSUB 100, 200, 300, 400

SEE ALSO: GOSUB, GOTO, ON-GOTO

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-79

ON - GOTO

MODE: RUN ONLY

SYNTAX: ON expr GOTO line_num [, line_num, line_num ...]

DESCRIPTION:

The ON - GOTO statement will evaluate the expr and transfer program control to one of the
specified line numbers in the line_num list.

The expr is a numeric expression that must evaluate to an integer value from zero to the number
of line numbers in the line number list. If the expr is less than zero, or greater than the number
of line numbers in the list, an Invalid argument error is generated.

In the following example, if X is equal to 0, program control will transfer to line 100. If X is equal
to 1, line 200 is executed. If X is 2, we GOTO line 300, and if X is 3, line 400 will be executed.

0>10 ON X GOTO 100, 200, 300, 400

SEE ALSO: GOSUB, GOTO, ON-GOSUB

Page 4-80 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

ONERR

MODE: RUN ONLY

SYNTAX: ONERR line_num

DESCRIPTION:

The ONERR statement provides a means for the programmer to "handle" arithmetic errors that
may occur during program execution. There are four types of arithmetic errors that will cause
program control to transfer to the specified line_num;

Division by zero (ERC = 10)
Arithmetic overflow (ERC = 20)
Arithmetic underflow(ERC = 30)
Bad argument (ERC = 40)

The error code value may be examined using the ERC special function operator

Following the execution of the ONERR statement, if any of the above arithmetic errors are
encountered, program control passes to the specified line_num. The line_num specified should
be the beginning of an error handling routine that will process the error in a manner appropriate
to the application.

Note that the ONERR routine should not perform a RETURN or a RETI instruction! There is no
way to "RESUME" program operation from where the error occured. The error handling routine
must GOTO the appropriate line number in the application program.

Typically, this statement is used to handle errors that may occur when the user has entered
inappropriate data to and INPUT statement.

0>10 ONERR 100
0>20 FOR I=3 TO 0 STEP -1
0>30 PRINT 100/I
0>40 NEXT I
0>100 ETYPE = (ERC/10)-1
0>110 ON ETYPE GOTO 120, 130, 140, 150
0>120 PRINT "Division by zero" : END
0>130 PRINT "Underflow" : END
0>140 PRINT "Overflow" : END
0>150 PRINT "Bad argument" : END
0>110 END

SEE ALSO: ERC

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-81

ONPORT

MODE: RUN ONLY

SYNTAX: ONPORT [#] line_num

DESCRIPTION:

The ONPORT statement provides a communications-based interrupt function. Following the
execution of the ONPORT statement, the next character received at the specified serial port will
cause a BASIC interrupt to be generated and program control is passed to the specified
line_num.

If the "#" character is appended to the ONPORT keyword, the AUXILIARY serial port interrupt
is armed, otherwise the PRIMARY serial port interrupt is armed.

Once an ONPORT interrupt is generated, the ONPORT interrupt is "disarmed". If subsequent
serial interrupts are to be generated, the ONPORT statement should be issued from WITHIN
the serial interrupt service subroutine.

The RETI statement must be used in place of the RETURN statement in the serial interrupt
subroutine! Failure to do this will cause the BASIC Gateway Module to ignore all future timer
ONPORT interrupts.

0>10 ONPORT 100
0>20 ONPORT# 200
0>30 IDLE : GOTO 30
0>100 PRINT "Primary serial interrupt, character recieved was - ", INKEY$
0>110 ONPORT 100 : RETI
0>200 PRINT "Auxiliary serial interrupt, character recieved was - ", INKEY$#
0>210 ONPORT# 200 : RETI

SEE ALSO: IDLE, RETI, ONTIME

Page 4-82 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

NOTES ABOUT INTERRUPT PRIORITY:

All three of the BASIC interrupts (ONPORT, ONPORT#, and ONTIME) can be armed
concurrently. The ONTIME interrupt has the highest priority, this means that if an ONPORT or
ONPORT# interrupt service subroutine is being executed when an ONTIME interrupt occurs,
the ONTIME interrupt will be immediately executed. When the ONTIME interrupt service
subroutine RETI instruction is executed, control is passed back to the ONPORT service
subroutine.

If the ONTIME interrupt is being executed, it will run until it’s RETI instruction is encountered.
The ONPORT interrupts cannot supercede the ONTIME interrupt.

The ONPORT and ONPORT# interrupts share equal priority, this means that if one of the
interrupt service subroutines is being executed and the other interrupt occurs, the second
interrupt service subroutine will not be executed until the active interrupt service subroutine’s
RETI statement is encountered. If both the ONPORT and ONPORT# interrupts occur
simultaneously, the ONPORT interrupt will take priority over the ONPORT# interrupt.

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-83

ONTIME

MODE: RUN ONLY

SYNTAX: ONTIME expr, line_num

DESCRIPTION:

The ONTIME statement provides a time-based interrupt function. The ONTIME statement uses
the special function operator, TIME. Whenever the TIME operator is greater than or equal to
the specified expr, a timer interrupt is generated and program control is passed to the specified
line_num.

Only the integer portion of the expression is compared to the integer portion of the TIME
operator.

Once an ONTIME interrupt is generated, the ONTIME interrupt is "disarmed". If recursive timer
interrupts are to be generated on a periodic basis, the ONTIME statement should be issued from
WITHIN the timer interrupt service subroutine.

The RETI statement must be used in place of the RETURN statement in the timer interrupt
subroutine! Failure to do this will cause the BASIC Gateway Module to ignore all future
interrupts.

0>10 TIME=0 : CLOCK1 : ONTIME 2, 100
0>20 DO
0>30 UNTIL TIME>10
0>40 END
0>100 PRINT “Timer interrupt at - “, TIME, “seconds”
0>110 ONTIME TIME+2, 100
0>120 RETI
0>RUN

Timer interrupt at - 2.045 seconds
Timer interrupt at - 4.045 seconds
Timer interrupt at - 6.045 seconds
Timer interrupt at - 8.045 seconds
Timer interrupt at - 10.045 seconds

Ready
0>

(cont.)

Page 4-84 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

ONTIME (cont.)

Note that in the previous example the TIME displayed is 45 milliseconds greater than the time
that the interrupt was supposed to be generated. This is due to the amount of time required to
transmit the PRINTed string prior to the TIME display (at 4800 baud). To avoid this delay, assign
a variable to TIME at the beginning of the interrupt routine.

0>10 TIME=0 : CLOCK1 : ONTIME 2, 100
0>20 DO
0>30 UNTIL TIME>10
0>40 END
0>100 A=TIME
0>110 PRINT “Timer interrupt at - “, A, “seconds”
0>120 ONTIME TIME+2, 100
0>130 RETI
0>RUN

Timer interrupt at - 2 seconds
Timer interrupt at - 4 seconds
Timer interrupt at - 6 seconds
Timer interrupt at - 8 seconds
Timer interrupt at - 10 seconds

Ready
0>

SEE ALSO: TIME, FTIME, IDLE, RETI, ONPORT

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-85

.OR.

MODE: COMMAND and/or RUN

SYNTAX 1: var = expr1 .OR. expr2

DESCRIPTION:

A bit-wise OR function is performed on the two expressions and the result is placed in the var.
Each binary bit of the two expressions is manipulated as shown in the truth table below;

 expr1 expr2 result

 0 0 0

 0 1 1

 1 0 1

 1 1 1

0>PRINT 2.OR.3 0>PH0. 55H.OR.0C0H
 3 D5H

SYNTAX 2: rel_expr1 .AND. rel_expr2

DESCRIPTION:

A logical OR function is performed on the two relational expressions. If EITHER of the relational
expressions are TRUE, a TRUE result (65535) is returned. If both relational expressions are
FALSE, a FALSE result (0) is returned.

0>PRINT (2=2).OR.(3=2) 0>PRINT (2=3).OR.(3=2)
 65535 0

SEE ALSO: .AND., .XOR., NOT()

Page 4-86 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

OUT()

MODE: COMMAND and/or RUN

SYNTAX 1: OUT(ref)

DESCRIPTION:

The OUT() operator appears as a WRITE-ONLY array of variables that represents up to 64
words of Genius global data for the BASIC Gateway Module. The ref is a numeric expression
that must yeild an integer value that is less than the number of registers defined for the module.
Any other value will generate an Invalid argument error.

0>10 OUT(0)=BCD(INP(0))
0>20 OUT(1)=BNR(INP(1))

SYNTAX 2: OUT(ref, bit) = expr

DESCRIPTION:

The OUT() operator can also be used to assign the state of a single BIT in any of the output
registers. The ref is a numeric expression represents the register number that contains the bit
number (0 to 15) represented by bit. An Invalid argument error is generated if either expression
is out of range.

If the expr is non-zero, the specified bit is set (1), otherwise the specified bit is cleared (0).

0>OUT(0,7)=1 : REM Set bit 7 of global word 0.
0>OUT(X,Y)=0 : REM Clear bit Y of global word X.

SEE ALSO: INP(), SETIO

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-87

PH0.

MODE: COMMAND and/or RUN

SYNTAX: PH0. [#] expr_list

DESCRIPTION:

The PH0. statement is functionally identical to the PRINT statement, except that all numeric
values are PRINTed in HEXIDECIMAL (base 16) format.

The PH0. statement will always display numeric values in at least two digits followed by an “H”
character. If the value displayed is less than 10H, a leading zero is displayed. If the value
displayed is greater than 255, three or four digits will be displayed.

If a numeric value to be displayed is greater than 65535, the module will print the value in decimal
format.

Numeric values are truncated to integers before being printed.

All format specifiers that are used with the PRINT statement can be used with PH0. and PH1.
statements.

0>PH0. 2*2
 04H

0>PH0. 1000
 3E8H

0>PH0. PI
 03H

0>PH0. 600000
 600000

SEE ALSO: PRINT, PH1., TAB()

Page 4-88 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

PH1.

MODE: COMMAND and/or RUN

SYNTAX: PH1. [#] expr_list

DESCRIPTION:

The PH1. statement is functionally identical to the PH0. statement, except that four hexidecimal
digits will always be PRINTed. Leading zeros will be displayed where necessary.

0>PH1. 2*2
 0004H

0>PH1. 1000
 03E8H

0>PH1. PI
 0003H

0>PH1. 600000
 600000

SEE ALSO: PRINT, PH0., TAB()

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-89

PI

MODE: COMMAND and/or RUN

SYNTAX: PI

DESCRIPTION:

PI is a stored constant. The value returned by the PI constant is 3.1415926. Mathemeticians
will notice that the value of PI is actually closer to 3.141592653, so proper rounding for PI should
yeild a value of 3.1415927. The reason that the BASIC Gateway Module uses a "6" instead of
a "7" for the least significant digit is that errors in the SIN, COS and TAN operators were found
to be greater when 7 was used instead of 6. This is because the number PI/2 is needed for these
calculations and it is desireable to have the equation (PI/2+PI/2=PI) hold true. This cannot be
done if the last digit of PI is an odd number, so the last digit of PI was rounded to 6 instead of
7 to make these calculations more accurate.9

0>PRINT PI
 3.1415926

SEE ALSO: ATN(), COS(), SIN(), TAN()

Page 4-90 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

POP

MODE: COMMAND and/or RUN

SYNTAX: POP expr [,expr, expr ...]

DESCRIPTION:

The POP statement, when used with the PUSH statement provides a means of passing
parameters to BASIC subroutines via the BASIC ARGUMENT STACK.

Note that more than one value may be POPped with one POP statement. The last value
PUSHED onto the ARGUMENT STACK is always the first value POPped off of the ARGUMENT
STACK.

The following example shows how the PUSH and POP statements can be used to "swap" two
variables.

0>10 A=5 : B=10
0>20 PRINT A,B
0>30 PUSH A,B
0>40 POP A,B
0>50 PRINT A,B
0>RUN

 5 10
 10 5

Ready
0>

SEE ALSO: PUSH

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-91

PRINT

MODE: COMMAND and/or RUN

SYNTAX: PRINT [#] expr_list

DESCRIPTION:

The PRINT statement directs the BASIC Gateway Module to output data to the specified serial
device. The value of expressions, strings, literal values, variables or test strings may be
manipulated by the PRINT statement. The various forms may be combined in the expr_list by
separating them with commas.

If the "#" character is appended to the PRINT keyword, data will be sent to the AUXILIARY serial
device, otherwise the data is sent to the PRIMARY serial device.

Normally, a carriage return/line feed sequence is PRINTed following the last item in the expr_list.
If the list is terminated with a comma, the carriage return/line feed will be suppressed.

When numeric values are PRINTED, a leading SPACE is included if the value is positive,
otherwise the minus sign (-) preceeds the value. Also, if the numeric value is to be displayed
in decimal notation, a trailing SPACE is appended to the displayed value, otherwise, the
hexidecimal specifier “H” is displayed.

The PRINT keyword may be abbreviated as "P." or by a question mark (?).

0>PRINT 10*10, 3*3
 100 9

0>PRINT "Hello, world!"
Hello, world!

0>P. 10-20, 1E3
-10
 1000

0>? "The value of PI is ", PI
The value of PI is 3.1415926

SEE ALSO: SPC(), TAB(), USING(), PH0., PH1., CHR()

Page 4-92 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

PUSH

MODE: COMMAND and/or RUN

SYNTAX: PUSH expr [,expr, expr ...]

DESCRIPTION:

The PUSH statement provides a means of passing parameters to BASIC subroutines via the
BASIC ARGUMENT STACK.

Note that more than one value may be PUSHed with one PUSH statement. The last value
PUSHED onto the ARGUMENT STACK is always the first value POPped off of the ARGUMENT
STACK.

The following example shows how the PUSH and POP statements can be used to "swap" two
variables.

0>10 A=5 : B=10
0>20 PRINT A,B
0>30 PUSH A,B
0>40 POP A,B
0>50 PRINT A,B
0>RUN

 5 10
 10 5

Ready
0>

SEE ALSO: POP

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-93

READ

MODE: RUN ONLY

SYNTAX: READ var [,var ,var ...]

DESCRIPTION:

The READ statement is used to sequentially retrieve the expressions that appear in the DATA
statement(s). The READ statement must be followed by one or more variable names, each var
following the READ statement is assigned the value of the next "unREAD" expression in the
DATA list. If more than one var appears following the READ statement, they must be separated
by commas. If all expressions in a program’s DATA statements have been READ and another
READ is attempted without RESTOREing, an Out of data error is generated.

0>10 FOR I=1 TO 3
0>20 READ A,B
0>30 PRINT A,B
0>40 NEXT I
0>50 RESTORE
0>60 READ A,B
0>70 PRINT A,B
0>80 DATA 10,20,10/2,20/2,SIN(PI),COS(PI)
0>RUN

 10 20
 5 10
 0 -1
 10 20

Ready
0>

SEE ALSO: DATA, RESTORE

Page 4-94 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

REM

MODE: COMMAND and/or RUN

SYNTAX: REM [comment]

DESCRIPTION:

REM is short for REMark. It does nothing, but allows the user to add comments to a program.
Comments are usually needed to make a program more legible and easier to understand.

Once a REM statement appears on a line, the remainder of that line is assumed to be a remark,
so a REM statement may not be terminated with a colon ":" delimiter. REM statements may,
however, be placed AFTER a colon delimiter, allowing the programmer to comment each
program line.

0>10 REM ** Input a variable **
0>20 INPUT A
0>30 REM ** Input another variable **
0>40 INPUT B
0>50 REM ** Multiply the two **
0>60 Z=A*B
0>70 PRINT Z : REM ** Z is the answer, print it **

The following REM statement illustrates that executable statements may NOT be placed
following a REM statement on the same line. The PRINT statement is considered part of the
REM statement and is not executed.

0>10 REM ** print the number ** : PRINT A
0>RUN

Ready
0>

The REM statement may be used in COMMAND mode. This is an important feature for those
who use a host computer as the console device, implementing some sort of program download
routine. REM statements can be placed in the source program without line numbers. When the
program is downloaded, the REM statements will not occupy any of the valuable program
memory space.

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-95

RESTORE

MODE: RUN ONLY

SYNTAX: RESTORE

DESCRIPTION:

The RESTORE statement "resets" the DATA pointer to the beginning of the program’s first
DATA statement so that the data may be read again.

0>10 FOR I=1 TO 3
0>20 READ A,B
0>30 PRINT A,B
0>40 NEXT I
0>50 RESTORE
0>60 READ A,B
0>70 PRINT A,B
0>80 DATA 10,20,10/2,20/2,SIN(PI),COS(PI)
0>RUN

 10 20
 5 10
 0 -1
 10 20

Ready
0>

SEE ALSO: DATA, READ

Page 4-96 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

RETI

MODE: RUN ONLY

SYNTAX: RETI

DESCRIPTION:

The RETI statement must be used in place of the RETURN statement in the ONPORT and
ONTIME interrupt service subroutines! Failure to do this will cause the BASIC Gateway Module
to ignore future interrupts.

SEE ALSO: ONPORT, ONTIME

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-97

RIGHT$()

MODE: COMMAND and/or RUN

SYNTAX: RIGHT$(string_expr, num)

DESCRIPTION:

The RIGHT$() function will return a character string composed of the right-most num characters
of the string_expr. The num parameter is a valid integer value between 1 and 255 inclusive. If
num is greater than the number of characters in string_expr, all of the string_expr is returned.

0>PRINT RIGHT$("Horner Electric", 10)
r Electric

0>STRING 257,31
0>$(0)="This is a test"
0>PRINT RIGHT$($(0), 6)
a test

0>

SEE ALSO: LEFT$(), MID$()

Page 4-98 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

RND

MODE: COMMAND and/or RUN

SYNTAX: RND

DESCRIPTION:

The RND operator returns a random number in the range between 0 and 1 inclusive. The RND
operator uses a 16-bit binary seed and generates 65536 random numbers before repeating the
sequence. The numbers generated are specifically between 0/65536 and 65535/65536 inclusive. Unlike
most BASICs, the RND operator provided by the BASIC Gateway Module does not require an
argument seed.

0>PRINT RND
 .2023926

0>PRINT RND
 .6832341

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-99

RTRAP

MODE: COMMAND and/or RUN

SYNTAX: RTRAP const

DESCRIPTION:

It is possible to "trap" the BASIC Gateway Module in the RUN mode. This option is evoked by
executing the RTRAP 1 statement.

After this is done, the ASCII BASIC Program is "trapped" in RUN mode forever, or until the
RTRAP 0 statement is executed. If no program is present when the "trap" is set, the BASIC
Gateway Module will continuously print the READY message until the device is RESET.

This option is normally used to prevent the application program from halting execution due to
a BASIC error.

CAUTION!

It is possible to configure a program to automatically run following RESET. If the program
immediately executes a RTRAP statement and does not provide a means for disabling it,
THERE WILL BE NO WAY FOR THE PROGRAMMER TO STOP THE PROGRAM . For this
reason, the programmer should provide a means for executing a RTRAP 0 statement within
the program. Schemes can be implemented very similarly to those discussed for the BREAK
command.

SEE ALSO: BREAK, CLRMEM, AUTORUN, STARTUP

Page 4-100 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

RTS

MODE: COMMAND and/or RUN

SYNTAX: RTS [#]

DESCRIPTION:

The RTS operator returns the state of a the specified serial port’s hardware handshaking input.

If the RTS signal for the specified port currently HIGH (+12V), the RTS operator will return a
TRUE result (65535). If the RTS signal for the specified serial port is LOW (-12V), the RTS
operator will return a FALSE (0) result.

If the "#" character is appended to the RTS operator, the RTS signal state for the AUXILIARY
serial port is returned, otherwise the RTS signal state for the PRIMARY serial port is returned.

SEE ALSO: CTS

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-101

RUN operator

MODE: COMMAND and/or RUN

SYNTAX: RUN

The RUN operator returns the numeric value that reflects the "RUN" status of the GE Series
90-30 CPU. If the host CPU is currently in RUN mode, the RUN operator will return a TRUE
result (65535), otherwise the RUN operator will return a FALSE result (0).

0>PRINT RUN
 0

0>10 IF RUN THEN PRINT "GE Series 90-30 CPU is running the ladder program"

Page 4-102 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

SETCOM

MODE: COMMAND and/or RUN

SYNTAX: SETCOM [#] baud_const [, parity, data_bits, stop_bits, handshake]

DESCRIPTION:

The SETCOM statement is used to configure the communications parameters used by the
specified serial device. If the "#" character is appended to the SETCOM keyword, the
AUXILIARY serial port is configured, otherwise the PRIMARY serial port is configured.

Only the baud_const parameter is mandatory, the remain parameters are optional. Note,
however that if an optional parameter is specified, all of the preceding parameters must also be
specified. For example, if the stop_bits parameter is specified, the parity and data_bits
parameters must also be specified.

When configuring the PRIMARY serial port using the SETCOM statement, only the baud_const
and handshake parameters are configured. The other parameters must be included as
described above, but only the baud_const and handshake paramters are used. The PRIMARY
port will always use no parity, 8 data bits and 1 stop bit. Future revisions of the firmware will
incorporate all of these parameters for the PRIMARY serial port.

The parameters are described in detail below;

baud_const: An numeric constant whose value represents the baud rate to be used by
the specified port. Valid values are 300, 600, 1200, 2400, 4800, 9600,
19200 and 57600. The AUXILIARY port is configured to 9600 baud after
RESET.

parity: A single character representing type of parity implemented. Valid values
are "N" (no parity), "E" (Even parity), and "O" (Odd parity). Both ports
default to "N".

data_bits: A single character representing the number of data bits to be received and
transmitted. Valid values are "7" and "8". Both ports default to “8”.

stop_bits: A single character representing the number of stop bits to be received and
transmitted. Valid values are "1" and "2". Both ports default to "1".

(cont.)

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-103

SETCOM (cont.)

handshake: A single character representing the type of serial handshaking to perform
during transmission and reception. Valid values are "N" (No handshaking),
"S" (Software XON/XOFF handshaking) and "H" (Hardware RTS/CTS
handshaking). Both ports default to "S".

NOTE: If two-wire RS-485 is used on the auxiliary port, then the
handshaking should be set to "A" (AUTO).

0>10 REM Set the PRIMARY port for terminal communications
0>20 SETCOM 9600, N, 8, 1, S

0>10 REM Set the AUX port for OIT communications
0>20 SETCOM# 19200, E, 7, 1, H

SEE ALSO: SETINPUT

Page 4-104 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

SETINPUT

MODE: COMMAND and/or RUN

SYNTAX: SETINPUT no_echo [, no_edit, terminator, length, first_wait, next_wait]

DESCRIPTION:

Normally when an INPUT statement is executed, it will wait forever for a carriage return
character before returning control to the BASIC program. The SETINPUT statement allows very
versatile configuration of the INPUT statement.

Only the no_echo paramter is mandatory, the remain parameters are optional. Note, however
that if an optional parameter is specified, all of the preceding parameters must also be specified.
For example, if the length parameter is specified, the no_edit and terminator parameters must
also be specified.

The parameters are described in detail below;

no_echo: When non-zero, characters received during the INPUT statement are not
echoed to the transmitting device. When zero, all characters received
during the INPUT are echoed. The default is 0, echo.

no_edit: When non-zero, the module will store the BACKSPACE (ASCII 8) and DEL
(ASCII 127) characters as normal ASCII characters. When zero, the
BACKSPACE and DEL characters will perform the BACKSPACE opera-
tion, deleting the last character from the INPUT buffer. The default is 0,
enable BACKSPACE and DEL editing.

terminator: An ASCII value (0 to 255) that is to be used as the INPUT termination
character. The INPUT statement will stop reception and return to the
program when this character is received. The default is 13 (carriage
return).

length: An expression whose value represents the maximum number of charac-
ters that the INPUT instrucion is to receive. When this number of
characters has been received, the INPUT statement will stop reception
and return to the program. If length is 0 or greater than 79, the length
parameter is disabled. The default value is 0.

(cont.)

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-105

first_wait: An integer expression whose value represents the number of milliseconds
that the INPUT instruction is to wait for the first character. If no character
is received within the specified time limit, the BASIC program will resume
execution. If first_wait is set to 0, the module will wait forever for the first
character. The default value is 0.

next_wait: An integer expression whose value represents the number of milliseconds
that the INPUT instruction is to wait for subsequent characters. If no
character is received within the specified time limit, the BASIC program will
resume execution. If next_wait is set to 0, the module will wait forever for
the next character. The default value is 0.

0>10 REM Disable character echo
0>20 SETINPUT 1

0>10 REM Set the terminating character to "="
0>20 SETINPUT 0, 0, 61

0>10 REM Set the max length to 20 and the first timeout to 3 seconds
0>20 SETINPUT 0, 0, 13, 20, 3000, 0

SETINPUT (cont.)

SEE ALSO: INPUT, SETCOM

Page 4-106 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

SETIO()

MODE: COMMAND and/or RUN

SYNTAX: SETIO inputs [, outputs [, ref_addr]]

DESCRIPTION:

The BASIC Gateway Module incorporates the use of the GENI interface board. This board is
capable of providing up to 64 words of Genius global data as input to the system, and up to 64
words of output to be driven by the system controller. To minimize the amount of global data
on the Genius Network, these values are configurable.

The ref_addr is the Genius reference address for those systems that require it for I/O mapping.
Note that if the supplied reference is belo 32768, it must be a multiple of 8 plus 1 (e.g. 1, 9, 17,
etc.).

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-107

SGN()

MODE: COMMAND and/or RUN

SYNTAX: SGN(expr)

DESCRIPTION:

The SGN() operator returns a value that represents the SIGN of the numeric expr. If the
expression solves to a positive value, 1 is returned. If the expression solves to 0, 0 is returned.
If the expression solves to a negative value, -1 is returned.

0>PRINT SGN(52) 0>PRINT SGN(0) 0>PRINT SGN(-33)
 1 0 -1

Page 4-108 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

SIN()

MODE: COMMAND and/or RUN

SYNTAX: SIN(expr)

DESCRIPTION:

The SIN() Operator returns the the trigonometric SINE of the expr. The expr is a numeric
expression that must solve to a value between +/- 200000. The calculation is carried out to
seven significant digits.

0>PRINT SIN(PI/4) 0>PRINT SIN(0)
.7071067 0

SEE ALSO: ATN(), COS(), TAN(), PI

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-109

SIZE

MODE: COMMAND and/or RUN

SYNTAX: SIZE

DESCRIPTION:

The SIZE operator returns the number of bytes occupied by the currently selected program.

SIZE is a READ-ONLY value and cannot be assigned a value. Any attempt to do so will generate
a syntax error.

Note that the SIZE operator will return a value of 1 when no program exists. This is because
all programs (even null programs) contain an "end of file" character.

0>10 FOR I=1280 TO 1334 : REM Display the program
0>20 PRINT XBY(I),
0>30 NEXT I
0>PRINT LEN
 54

0>

SEE ALSO: FREE, MTOP

Page 4-110 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

SPC()

MODE: COMMAND and/or RUN

SYNTAX: SPC(expr)

DESCRIPTION:

The SPC() function will return a character string comprised of the number of SPACE characters
(ASCII 32) specified by the numeric expr.

0>PRINT SPC(20), "Horner", SPC(10), "Electric"
 Horner Electric

0>STRING 257, 31
0>$(0)="This is"+SPC(10)+"a test"
0>PRINT $(0)
This is a test

SEE ALSO: TAB()

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-111

SQR()

MODE: COMMAND and/or RUN

SYNTAX: SQR(expr)

DESCRIPTION:

The SQR() operator returns a square root of the expr. The expr is a numeric expression that
must solve to a positive value. The value returned will be accurate to +/- a value of 5 on the least
significant digit.

0>PRINT SQR(9) 0>PRINT SQR(45) 0>PRINT SQR(PI*PI)
 3 6.7082035 3.1415926

Page 4-112 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

ST@

MODE: COMMAND and/or RUN

SYNTAX: ST@ expr [,expr ,expr ...]

DESCRIPTION:

The ST@ statement allows the programmer to store floating-point values anywhere in the
module’s DATA memory.

The expr is a numeric expression that represents the DATA memory address where the value
is to be placed. The last value PUSHed onto the ARGUMENT STACK is copied to the specified
DATA memory address.

Each floating-point value requires 6 bytes of storage. The expr represents the HIGHEST
memory address used by the operation. For example, ST@ 32767 would actually cause the
value to be stored at addresses 32767, 32766, 32765, 32764, 32763 and 32762.

The LD@ and ST@ statements are the only available means of passing variables between
CHAINed programs.

CAUTION!

The LD@ and ST@ statements allow manipulation of DATA memory and do not check the
specified addresses. It is possible to specify addresses in DATA memory that interfere with
BASIC Gateway Module firmware operations, or with the RAM program or string variable
operations. To avoid problems, the programmer should use the SPECIAL FUNCTION
OPERATOR, MTOP to set aside a protected area of memory for use by these instructions.

0>10 REM ** Save array **
0>20 FOR I=0 TO 9
0>30 PUSH A(I) : REM ** Put array on arg stack **
0>40 ST@ 32767+(6*I) : REM ** Store it, 6 bytes per value **
0>50 NEXT I
0>60 REM ** Get array **
0>70 FOR I=0 TO 9
0>80 LD@ 32767+(6*I)
0>90 POP B(I)
0>100 NEXT I

SEE ALSO: LD@, POP, PUSH

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-113

STOP

MODE: RUN ONLY

SYNTAX: STOP

DESCRIPTION:

The STOP statement allows the programmer to break program execution at a specific point in
the program. After the program is STOPped, variables can be examined and/or modified.
Program execution may be resumed at the point that it was STOPped using the CONT
command (provided that the program was not modified).

The STOP and CONT commands are invaluable program debugging tools, and programmers
are encouraged to provide line number gaps in their programs for their implementation during
program debugging.

When an executing program encounters a STOP statement, the line number following the STOP
statement is displayed prior to entering the COMMAND mode.

0>10 FOR I=1 TO 100
0>20 PRINT I
0>30 STOP
0>40 NEXT I
0>RUN

 1
STOP - In line 40

Ready
0>I=50

0>CONT

 51
STOP - IN LINE 40

Ready
0>

SEE ALSO: CONT

Page 4-114 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

STRING

MODE: COMMAND and/or RUN

SYNTAX: STRING total_bytes, max_string_size

DESCRIPTION:

The STRING statement is used to allocate memory for character string storage. Initially, NO
MEMORY is allocated for string storage. If the user attempts to define a string variable such
as $(1)="HELLO", before the STRING statement has been used to allocate string memory, a
Memory allocation error is generated.

The total_bytes numeric expression following the string statement represents the total number
of bytes the user wishes to allocate for string storage. The max_string_size numeric expression
represents the maximum number of bytes that are in each string.

The meaning of these parameters is a bit ambiguous. The BASIC Gateway Module requires
one additional byte of storage for each string, plus one additional byte overall. This means that
the statement STRING 100,10 would allocate enough memory for 9 ten character string
variables and all 100 bytes would be used (((10+1)*9)+1).

The total number of bytes of string storage memory required (M) can be derived using the
following formula, given the maximum number of characters for each string (L) and the total
number of strings (S);

M = ((L + 1) * S) + 1

(S) can not exceed 254 and the maximum value for (L) is limited only to the amount of available
memory.

CAUTION!

Whenever the STRING statement is executed, the equivalent of a CLEAR statement is also
executed. The STRING statement should be executed as early as possible in the program (after
modifying MTOP, but before execution of any DIM statements). The only way to DEALLOCATE
string storage is to execute another STRING statement. The CLEAR statement won’t affect
string allocation.

>10 S=25 : REM ** 25 strings **
>20 L=80 : REM ** 80 characters each **
>30 STRING (((L+1)*S)+1), L

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-115

STR$()

MODE: RUN ONLY

SYNTAX: STR$(expr)

DESCRIPTION:

The STR$() function returns the string representation of the value of the numeric expr.

Note that if the result is positive, the string returned will contain a leading space.

0>PRINT STR$(PI)
 3.1415926

0>STRING 257,31
0>$(0)=STR$(INT(RND*100))
0>PRINT $(0)
 32

SEE ALSO: VAL()

Page 4-116 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

TAB()

MODE: COMMAND and/or RUN

SYNTAX: TAB(expr)

DESCRIPTION:

The TAB() statement is a special PRINT statement formatting option specifier and may ONLY
appear following a PRINT statement. The TAB() function is used to cause the next PRINTed
item to be displayed at the column specified by the numeric expr on the output device.

Each time a character is transmitted from one of the serial ports, the "printhead" position is
incremented. When the TAB() function is used, the module will output the correct number of
spaces require to move the "printhead" to the specified column. When a carriage return is
transmitted, the "printhead" position is reset.

Note that the printhead position is maintained for both the PRIMARY and AUXILIARY serial
devices separately.

If the expr specifies a position less than the CURRENT print position, the TAB function is
ignored.

0>10 FOR I=1 TO 3
0>20 PRINT TAB(5), I, TAB(10), I*I
0>30 NEXT I
0>RUN

 1 1
 2 4
 3 9

Ready
0>

SEE ALSO: SPC(), PRINT

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-117

TAN()

MODE: COMMAND and/or RUN

SYNTAX: TAN(expr)

DESCRIPTION:

The TAN() operator returns the trigonometric TANGENT of the expr. The expr is a numeric
expression that solves to a value between +/- 200000. The calculation is carried out to seven
significant digits.

0>PRINT TAN(PI/4) 0>PRINT COS(0)
 1 0

SEE ALSO: ATN(), COS(), SIN(), PI

Page 4-118 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

TIME

MODE: COMMAND and/or RUN

SYNTAX: TIME

DESCRIPTION:

TIME is a special function operator that is used to assign or retrieve a value to the millisecond
clock. Following a power-up or reset, TIME is assigned a value of ZERO. After execution of
the CLOCK1 statement, the TIME operator is incremented once every 5 milliseconds. The unit
of TIME is seconds, when TIME reaches a value of 65535.995 seconds, it overflows back to a
count of zero.

When the TIME operator is assigned a value, only the integer portion of TIME is affected. To
assign a value to the fractional portion of the TIME operator, the FTIME operator must be used.

0>PRINT TIME
 0

0>CLOCK 1
0>PRINT TIME
 .735

0>PRINT TIME
 1.24

SEE ALSO: CLOCK, FTIME, ONTIME

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-119

TIME$

MODE: COMMAND and/or RUN

SYNTAX: TIME$

DESCRIPTION:

The TIME$ operator is used to assign or retrieve a value to the REAL-TIME clock. The real-time
clock/calendar continues to run and maintains the time/date even when power is removed from
the BASIC Gateway Module.

When the TIME$ operator is used to retrieve the value of the real-time clock, the time is returned
in the format shown below.

When the TIME$ operator appears on the left side of an assignment statement, a string variable
or constant that represents the time must appear on the right side. This string MUST be
formatted as follows;

HH:MM:SS

where HH is the hour (00 to 23), MM is the minute (00 to 59) and SS is the second (00 to 59).
Delimiting characters (shown in the example as colons) must appear between the arguments
but may be any character.

Leading zeros may NOT be omitted. This means that the following statement would generate
an Invalid argument error;

0>TIME$="1:03:00"

ERROR! Invalid argument!
Ready

0>TIME$="122590"

ERROR! Invalid argument!
Ready

The following are valid examples of TIME$ manipulation:

0>TIME$="00:00:00"

0>TIME$="23-59-59"

Page 4-120 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

UCASE$()

MODE: COMMAND and/or RUN

SYNTAX: UCASE$(string_expr)

DESCRIPTION:

The UCASE$ function will return the string_expr with all of the alphabetic characters converted
to upper case.

0>PRINT UCASE$("THIS is A tEsT")
THIS IS A TEST

0>STRING 257,31
0>$(0)="HorNEr ELEctRIc"
0>PRINT UCASE$($(0))
HORNER ELECTRIC

0>

SEE ALSO: LCASE$()

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-121

USING()

MODE: COMMAND and/or RUN

SYNTAX: PRINT USING (format), [expr_list]

DESCRIPTION:

The USING() statement is a special PRINT statement formatting option specifier and may ONLY
appear following a PRINT statement. The USING() function is used to cause numeric data
displayed in a pre-defined decimal format. When a USING() option is invoked, the desired
"format" is stored and used for all subsequent numeric displays until a new USING format is
specified or the program terminates.

The USING keyword may be abbreviated with "U.". The following data formats are available
with the USING statement.

USING(Fx) This will force all numeric data to be displayed in exponetial floating-point
format. The value of "x" determines how many significant digits of the
mantissa will be PRINTed. If x is zero, no trailing zeros are displayed and
the number of significant digits displayed is dependant on the value.
Otherwise, The module will always display at least 3 significant digits, even
if x is 1 or 2. The maximum value for x is 8.

0>10 PRINT USING(F3), 1, 2, 3
0>20 PRINT USING(F4), 1, 2, 3
0>30 PRINT USING(F5), 1, 2, 3
0>40 FOR I=10 TO 30 STEP 10
0>50 PRINT I
0>60 NEXT I
0>RUN

 1.00 E 0 2.00 E 0 3.00 E 0
 1.000 E 0 2.000 E 0 3.000 E 0
 1.0000 E 0 2.000 E 0 3.000 E 0
 1.0000 E+1
 2.0000 E+1
 3.0000 E+1

Ready
0>

(cont.)

Page 4-122 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

USING() (cont.)

USING(#.#) This will force all numeric data to be displayed in an integer and/or
fractional format. The number of "#"s that appear before the decimal point
determine how many significant digits of the integer portion will be
displayed. The number of "#"s that appear following the decimal point
determine how many significant fractional digits will be displayed. The
decimal point may be omitted, in which case only the integer portion of the
value will be displayed. The maximum number of "#" characters that may
appear is 8. If the value to be displayed is too large to fit in the specified
format, a question mark (?) is printed and the valued is displayed in the
USING(0) format, described below. Leading integer zeroes are sup-
pressed.

0>10 PRINT USING(##.##), 1, 2, 3
0>20 FOR I=1 TO 120 STEP 20
0>30 PRINT I
0>40 NEXT I
0>RUN

 1.00 2.00 3.00
 1.00
 21.00
 41.00
 61.00
 81.00
? 101

Ready
0>

USING(0) This argument lets the BASIC Gateway Module determine what format to
use. The rules are simple, if the number is between +/- 99999999 and +/
- .1, the module will display integers and fractions. If it is out of this range,
the module will use the USING(F0) format. Leading and trailing zeros are
always suppressed. The module selects this format following RESET.

SEE ALSO: PRINT, SPC(), TAB()

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-123

VAL()

MODE: COMMAND and/or RUN

SYNTAX: VAL(string_expr)

DESCRIPTION:

The VAL() function returns the numeric value of the string_expr. The string_expr should be a
sequence of characters that can be interpreted as a numeric value. The VAL() function will stop
reading the string_expr at the first character that is non-numeric.

The VAL() function will ignore leading SPACE and TAB characters. If the first non-white
character of the string_expr is non-numeric, the VAL() function will return zero.

0>STRING 257,31
0>$(0)=" 3.14 and more characters"
0>PRINT VAL($(0))
 3.14

0>PRINT VAL(STR$(PI))
 3.1415926

SEE ALSO: STR$()

Page 4-124 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

XBY()

MODE: COMMAND and/or RUN

SYNTAX: XBY(address)

DESCRIPTION:

The XBY() operator is used to assign or retrieve a value to one of the battery-backed DATA
memory or PROGRAM FILE memory locations in the BASIC Gateway Module. The XBY
operator returns and expects an 8-bit value ranging from 0 to 255 inclusive. The address
parameter is a numeric expression and must solve to an integer value between 0 and 65535
inclusive.

This operator is useful in applications that use several different programs in the PROGRAM file.
Data can be placed in the DATA memory using the XBY operator and then retrieved by a
program invoked with the CHAIN statement.

CAUTION!

The DATA memory used by the BASIC Gateway firmware varies between models. However
ALL models reserve the first 1280 bytes of DATA memory for important system usage. If the
data at these addresses is modified by the ASCII BASIC program, the results will be
UNPREDICTABLE!

If an ASCII BASIC program 0 is present in DATA memory, this program is located starting at
address 1280 through the size of the program. The LEN, FREE and MTOP operators can be
used to determine how much unused DATA memory is available for general XBY access.

0>10 MTOP = 32700 : REM Protect upper DATA memory
0>20 STRING 2026,80
0>30 $(0)="This is a string"
0>40 FOR I=1 TO 16 : REM Store string in protected memory
0>50 XBY(32701+I)=ASC($(0),I)
0>60 NEXT I
0>70 CHAIN 2 : REM Program 2 can now access data stored.

SEE ALSO: SIZE, FREE, MTOP, LD@, ST@

CHAPTER 4: BASIC COMMANDS AND STATEMENTS Page 4-125

XBY#()

MODE: COMMAND and/or RUN

SYNTAX: XBY#(address)

DESCRIPTION:

The GENI board incorporates a shared RAM interface to the BASIC Gateway Module. To
provide the maximum flexibility to the BASIC program, this shared RAM interface is directly
accessible for read and write operations using the XBY# operator. Consult the Genius I/O GENI
Board User's Manual (GFK-0073) for details regarding the memory map of the shared RAM.
Consult Chapter 8 "The Genius Interface" for a more detailed description of the XBY#()
command.

Page 4-126 CHAPTER 4: BASIC COMMANDS AND STATEMENTS

.XOR.

MODE: COMMAND and/or RUN

SYNTAX 1: var = expr1 .XOR. expr2

DESCRIPTION:

A bit-wise XOR function is performed on the two expressions and the result is placed in the var.
Each binary bit of the two expressions is manipulated as shown in the truth table below;

 expr1 expr2 result

 0 0 0

 0 1 1

 1 0 1

 1 1 0

0>PRINT 2.XOR.3 0>PH0. 55H.XOR.0C0H
 1 95H

SYNTAX 2: rel_expr1 .XOR. rel_expr2

DESCRIPTION:

A logical XOR function is performed on the two relational expressions. If one of the relational
expressions is TRUE and the other is FALSE, a TRUE result (65535) is returned. If both
relational expressions are TRUE, or both are FALSE, a FALSE result (0) is returned.

0>PRINT (2=2).XOR.(3=3) 0>PRINT (2=2).XOR.(3=2)
 0 65535

SEE ALSO: .AND., .OR., NOT()

CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS Page 5-1

CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS

5.1 Operator precedence

5.2 Arithmetic operators

The arithmetic operators supported by the BASIC Gateway Module are listed below;

+ (addition) - (subtracion) * (multiplication)
/ (division) ** (exponentiation)

The hierarchy of mathematics dictates that some operations are carried out before others. If
you understand the hierarchy of mathematics, it is possible to write complex expressions using
only a minimal amount of parenthesis. It’s easy to illustrate whan precedence is all about, for
example;

 4 + 3 * 2 = ?

Should you add (4 + 3) and then multiply seven by 2, or should you multiply (3 * 2) then add 4?
The hierarchy of mathematics dictates that multiplication has precedence over addition, so the
answer is

 4 + 3 * 2 = 10.

The rules for this hierarchy are simple. When an expression is scanned from left to right, an
operation is not performed until an operator of lower or equal precedence is encountered. In
the example, the addition could not be performed because the multiplication has higher
precedence.

In the ASCII Basic Module, the precedence of operators from highest to lowest is as follows;

1. Operators that use parenthesis ().
2. Exponentiation (**).
3. Negation (-).
4. Multiplication (*) and Division (/).
5. Addition (+) and Subtraction (-).
6. Relational Expressions (=, <>, >, <, >=, <=)
7. Logical AND (.AND.)
8. Logical OR (.OR.)
9. Logical XOR (.XOR.)

Whenever in doubt about the rules for operator precedence, use parenthesis.

Page 5-2 CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS

(+) Addition Operator

The addition operator, when used in a numeric expression, will return the sum of the two
operands.

0>PRINT 3+2 0>PRINT PI+5
 5 8.1415926

When used in a string expression, the addition operator will concatenate the two string operands
(See chapter 6 for more details).

0>PRINT "This is "+"a test"
This is a test

CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS Page 5-3

(-) Subtraction Operator

The subtraction operator will return the difference of the two numeric operands.

0>PRINT 3-2 0>PRINT PI-2
 1 1.1415926

Page 5-4 CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS

(*) Multiplication Operator

The multiplication operator will return the product of the two numeric operands.

0>PRINT 3*2 0>PRINT PI*4
 6 12.566370

CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS Page 5-5

(/) Division Operator

The division operator will return the quotient of the two numeric operands.

0>PRINT 3/2 0>PRINT PI/2
 1.5 1.5707963

Page 5-6 CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS

(**) Exponentiation Operator

The Exponentiation operator will return the value of the first operand raised to the power of the
second operand.

0>PRINT 3**2 0>PRINT PI**3
 9 31.006275

CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS Page 5-7

5.3 Relational operators

Relational expressions involve the operators listed below. These operators are typically used
to “test” a condition. Unlike most BASICs, the BASIC Gateway Module returns a result of TRUE
(65535) when the relational expression is true, or FALSE (0) if the relational expression is false.

It may seem strange to have a relational expression actually return a result, but is offers a unique
benefit in that relational expressions can actually be "chained" together using the LOGICAL
operators .AND., .OR., .XOR. and NOT(). This makes it possible to test a rather complex
condition with ONE statement.

0>10 IF A<B .AND. A>C .OR. A>D THEN...

Additionally, the NOT() operator may be used to "invert" the result of a relational expression.

0>10 IF NOT(A<B) .AND. A>C THEN...

When using logical operators to link together relational expressions, it is very important that the
programmer pay careful attention to the precedence of operators. The logical operators were
assigned lower precedence, relative to the relational operators, just to make the linking of
relational expressions possible without using parentheses.

The relational operators supported by the BASIC Gateway Module are;

= (equal)
< (not equal)
> (greater than)
> (less than)
>= (greater than or equal)
<= (less than or equal)

Page 5-8 CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS

(=) Equal operator

Used to test equality. If the two expressions are equal, a TRUE result (65535) is returned,
otherwise a FALSE result (0) is returned.

0>PRINT 0=0 0>PRINT 1=0
 65535 0

0>10 IF 0=0 THEN PRINT "Equal" ELSE PRINT "Not equal"

CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS Page 5-9

(<>) Not equal operator

Used to test the relation of two values. If the first expression is NOT EQUAL to the second
expression, a TRUE result (65535) is returned, otherwise a FALSE result (0) is returned.

0>PRINT 0<>0 0>PRINT 1<>0
 0 65535

0>10 IF 0<>0 THEN PRINT "Not equal" ELSE PRINT "Equal"

Page 5-10 CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS

(>) Greater than operator

Used to test the relation of two values. If the first expression is GREATER THAN the second
expression, a TRUE result (65535) is returned, otherwise a FALSE result (0) is returned.

0>PRINT 0>0 0>PRINT 1>0
 0 65535

0>10 IF 0>0 THEN PRINT "Greater than" ELSE PRINT "Less than or equal to"

CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS Page 5-11

(<) Less than operator

Used to test the relation of two values. If the first expression is LESS THAN the second
expression, a TRUE result (65535) is returned, otherwise a FALSE result (0) is returned.

0>PRINT 0<0 0>PRINT 0<1
 0 65535

0>10 IF 0<0 THEN PRINT "Less than" ELSE PRINT "Greater than or equal to"

Page 5-12 CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS

(>=) Greater than or equal operator

Used to test the relation of two values. If the first expression is GREATER THAN OR EQUAL
TO the second expression, a TRUE result (65535) is returned, otherwise a FALSE result (0) is
returned.

0>PRINT 0>=0 0>PRINT 0>=1
 65535 0

0>10 IF 0>=0 THEN PRINT "Greater than or equal to" ELSE PRINT "Less than"

CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS Page 5-13

(<=) Less than or equal operator

Used to test the relation of two values. If the first expression is LESS THAN OR EQUAL TO the
second expression, a TRUE result (65535) is returned, otherwise a FALSE result (0) is returned.

0>PRINT 0<=0 0>PRINT 1<=0
 65535 0

0>10 IF 0>=0 THEN PRINT "Less than or equal to" ELSE PRINT "Greater than"

Page 5-14 CHAPTER 5: ARITHMETIC AND RELATIONAL OPERATORS

This page has been intentionally left blank.

CHAPTER 6: STRING HANDLING Page 6-1

CHAPTER 6: STRING HANDLING

6.1 What are STRINGS?

A STRING is a character or several characters that are stored in memory. Usually, the
characters stored in a string make up a word or sentence. Strings are useful because they allow
the programmer to deal with words instead of numbers, an invaluable aid to writing "user-
friendly" programs.

The BASIC Gateway Module supports a ONE dimensional string variable, $(expr). The
dimension of the string value (the expr value) ranges from 0 to 254. This means that 255
different strings can be defined and manipulated in BASIC.

Initially, NO memory is allocated for string storage. Memory is allocated for string storage using
the STRING statement, described in chapter 4.

There are several operators discussed in chapter 4 that are used to manipulate strings;

CHR() INKEY$ LEN() STRING
CHR$() INSTR() MID$() STR$()
DATE$ LCASE$() RIGHT$() TIME$
INBUF$ LEFT$() SPC() UCASE$()

6.2 Combining strings

The BASIC Gateway Module allows string concatenation using the addition operator (+).
Whenever a string expression is required by a string operator, the addition operator can be used
to combine two or more strings.

0>STRING 257,31
0>$(0)="This is " + "a test"
0>PRINT $(0)
This is a test

Page 6-2 CHAPTER 6: STRING HANDLING

This feature allows quite complex string manipulation WITHIN the string operators.

0>PRINT LEFT$(MID$(UCASE$("Horner" + " " + "Electric"), 8, 4), 3)
ELE

The CR and SPC() operators may also be used in string concatenation.

0>PRINT "This is" + CR + CHR$(10) + "really" + SPC(12) + "a test"
This is
really a test

6.3 How strings are stored

Character string variables used in a BASIC program are allocated memory using the STRING
statement (discussed in chapter 4). When the STRING statement is executed, the module will
allocate the specified amount of memory starting from MTOP down. For example, the
statement;

0>STRING 257, 31

will allocate 257 bytes of memory for string storage. If MTOP is set to 32767, string memory
will begin at (32767-257), or 32510. All of the memory from this address through the MTOP
address is allocated for string storage.

The first string variable ($(0)) will begin at 32510 and will occupy 32 bytes. The first byte (at
32510) is reserved as the "length" byte for the $(0) variable. This byte contains the number of
characters contained the the string variable. Initially, the length of all strings is set to 0. The
remaining bytes (from 32511 through 32542) contain the characters that comprise the $(0)
string variable. The second string variable ($(1)) immediately follows at address 32543.

Note that no terminating character is used and that all ASCII values from 0 to 255 inclusive are
valid string components.

CHAPTER 6: STRING HANDLING Page 6-3

6.4 Strings in Relational Expressions

The relational operators (=, <>, >, <, >= and <=) may be used to compare the characters in two
string expressions. When used with string expressions, relational expressions will return a
value (TRUE or FALSE) exactly as when used with numeric expressions (see chapter 5).

Parenthesis are NOT ALLOWED, nor are they necessary when defining a relational string
expression.

0>10 IF ($(0) = "TEST") THEN PRINT "Equal"
0>RUN

ERROR! Invalid syntax! - In line 10
10 IF ($(0)="TEST") THEN PRINT "Equal"
-----------X

Ready
0>

The relational operators perform a chacter by character comparison of the two string
expressions.

string_expr1 = string_expr2

When using the "=" operator in a relational string expression, if the two string expressions are
identical (every character is the same and the string lengths are equal), then a TRUE (65535)
result is returned. If the string expressions are in any way different, a FALSE (0) result is
returned.

PRINT "TEST" = "TEST"
 65535

PRINT "TEST" = "TEST1"
 0

10 IF "TEST" = "TEST1" THEN PRINT "Equal" ELSE PRINT "Not Equal"

string_expr1 <> string_expr2

The "<>" operator is the complement of the "=" operator, if the two string expressions are
identical (every character is the same and the string lengths are equal), then a TRUE (65535)
result is returned. If the string expressions are in any way different, a FALSE (0) result is
returned.

Page 6-4 CHAPTER 6: STRING HANDLING

When using the >, <, <= or >= operators in a relational string expression, the two string
expressions are compared character by character until a "non-match" is encountered (or until
the end of one of the strings is reached). If a character non-match is found, the ASCII values
of the two characters are compared and the result is based on these values. If the end of one
of the strings is reached, the result will be based on the comparison of the string lengths.

string_expr1 > string_expr2

0>PRINT "TEST" > "test" 0>PRINT "TEST" > "TEST" 0>PRINT "test" > "TEST"
 0 0 65535

string_expr1 < string_expr2

0>PRINT "TEST" < "test" 0>PRINT "TEST" < "TEST" 0>PRINT "test" < "TEST"
 65535 0 0

string_expr1 >= string_expr2

0>PRINT "TEST" >= "test" 0>PRINT "TEST" >= "TEST" 0>PRINT"test" >= "TEST"
 0 65535 65535

string_expr1 <= string_expr2

0>PRINT "TEST" <= "test" 0>PRINT "TEST" <= "TEST" 0>PRINT"test" <= "TEST"
 65535 65535 0

CHAPTER 7: ERROR HANDLING Page 7-1

CHAPTER 7: ERROR HANDLING

7.1 ERROR MESSAGES

The BASIC Gateway Module provides a relatively sophisticated ERROR processor. When an
error is encountered in an executing BASIC program, the module will generate an error
message in the following format;

ERROR: XXX - In line YYY
YYY BASIC STATEMENT
———————X

Where XXX is the TYPE of ERROR and YYY is the line number in the program where the error
occurred. A specific example is;

ERROR! Invalid syntax! - In line 100
100 PRINT I*4*
———————X

Notice that a dashed line followed by an "X" is generated below the error-riden line. The
"X"signifies approximately where the ERROR occurred in the BASIC line. This location may
be off by one or two characters or expressions, depending on the type and location of the error
encountered. If an error is encountered while in COMMAND mode, only the error TYPE is
displayed, not the line number or the pointer line.

Page 7-2 CHAPTER 7: ERROR HANDLING

7.1.1 Invalid syntax

An Invalid syntax error means that either an invalid ASCII BASIC COMMAND, STATEMENT
or OPERATOR was entered and BASIC cannot process the entry. The user should check to
insure that the line was typed correctly, and that no imbedded BASIC keywords appear in any
user variable names.

7.1.2 Invalid argument

An Invalid argument error means that the argument of an operator is not within the limits of that
operator. For example, BCD(10) generates an Invalid argument error because 10 can not be
converted to a legal BCD value. Similarly, OUT(0)=-1 would generate an Invalid argument error
because the assignment argument for the OUT() operator must be between 0 and 65535.

7.1.3 Arithmetic underflow

If the result of an arithmetic operation exceeds the lower limit of an ASCII BASIC floating-point
number, an Arithmetic underflow error is generated. The smallest floating-point number that
the BASIC Gateway Module can process is + or - 1E-127.

7.1.4 Arithmetic overflow

If the result of an arithmetic operation exceeds the upper limit of an ASCII BASIC floating-point
number, an Arithmetic overflow error is generated. The largest floating-point number that the
BASIC Gateway Module can process is + or - .99999999E+127.

7.1.5 Division by zero

If zero appears as the denominator in a division operation, a Division by zero error is generated.

7.1.6 Out of data

If a READ statement is executed and no DATA statement exists, or all of the data in the DATA
statement(s) has been READ without execution of a RESTORE statement, an Out of data error
is generated.

CHAPTER 7: ERROR HANDLING Page 7-3

7.1.7 Can’t continue

Program execution can be halted by either typing a CONTROL-C to the console device or by
execution of a STOP statement. Normally, program execution can be resumed by executing
the CONT command, however, if the user modifies the program after halting execution and
attempts to execute the CONT command, the CAN’T CONTINUE error is generated.

7.1.8 While programming

If an error occurs while the BASIC Gateway Module is storing a program into the PROGRAM
FILE memory, this error is generated. This error should only occur when the program being
stored is larger than the available PROGRAM FILE memory. If this error occurs, the
PROGRAM FILE structure will be disrupted and the user will not be able to save any further
programs in the PROGRAM FILE memory.

7.1.9 Argument stack overflow

If the ARGUMENT STACK pointer is forced "out-of-bounds", an Argument stack error is
generated. This can happen if the user attempts to PUSH too many values onto the
ARGUMENT STACK, or by attempting to POP data from the ARGUMENT STACK when no
data is present.

7.1.10 Control stack overflow

If the CONTROL STACK pointer is forced "out-of-bounds", a Control stack error is generated.
158 bytes of memory are allocated to the CONTROL STACK, FOR-NEXT loops require 17 byte
of CONTROL STACK, DO-UNTIL and DO-WHILE and GOSUB statements require 3 bytes of
CONTROL STACK. If too many "nested" loops are implemented, the CONTROL STACK will
overflow and the Control stack error is generated. Additionally, if a NEXT statement is executed
before a FOR statement, or if an UNTIL or a WHILE statement are executed before a DO, or
if a RETURN is executed prior to a GOSUB, this error occurs.

7.1.11 Internal stack overflow

The Internal stack overflow error indicates that the BASIC Gateway Module has run out of
internal "expression" analysis stack space. This error should never occur, if it does, simplify
the expression that generates the error.

Page 7-4 CHAPTER 7: ERROR HANDLING

7.1.12 Array size exceeded or not specified

If an array is dimensioned by a DIM statement and then you attempt to access a variable that
is outside the dimensioned bounds, this error is generated.

7.1.13 Memory allocation

This error is generated when the user attempts to access strings that are "outside" of the defined
string limits. Additionally, if the MTOP system control value is assigned to a value greater than
the available DATA memory, this error is generated.

7.1.14 Invalid line number

This error will only occur if the program structure with a BASIC program has been corrupted.
This will not normally occur, but if the XBY() or ST@ statements are used to store data in the
area of memory reserved for the PROGRAM file, the BASIC program(s) might be corrupted.

7.1.15 Only program 0 may be edited

This error is generated whenever a BASIC program line is entered while a program other than
program number 0 is "selected". The COMMAND mode prompt will always display the number
of the currently "selected" program.

7.1.16 Nothing to save

This error is generated whenever an attempt is made to SAVE a null program.

7.1.17 Specified program does not exist

This error is generated whenever the argument to the SELECT, DELPGM or EDIT commands
specify a program that does not exist.

CHAPTER 7: ERROR HANDLING Page 7-5

7.2 Warning messages

The following WARNING messages will be displayed under certain circumstances, but will
NOT cause an executing BASIC program to terminate.

7.2.1 WARNING! Extra input ignored!

This message is displayed whenever more numeric values are entered during an INPUT
statement than are required. For example, if 3 variables are listed as the target to an INPUT
statement and 5 values are entered when the INPUT statement executes, this warning is
displayed.

7.2.2 WARNING! String length exceeded, destination string truncated!

This warning message is displayed whenever too few numeric values are entered during an
INPUT statement, or when an attempt is made to store more characters in a string variable than
have been configured using the STRING statement.

Page 7-6 CHAPTER 7: ERROR HANDLING

This page has been intentionally blank.

CHAPTER 8: THE GENIUS INTERFACE Page 8-1

CHAPTER 8: THE GENIUS INTERFACE

This chapter deals with probably the most important feature of the BASIC Gateway Module, the
interface between the BASIC Gateway Module and the Genius Network. There are three
operators that allow data transfer between the BASIC Gateway Module and the Genius
Network, the INP() operator, the OUT() operator and the XBY#() operator, these operators are
fully described in chapter 4.

8.1 BASIC Gateway register mapping

As stated earlier, the BASIC Gateway Module incorporates up to 64 words of Genius global
data as inputs and up to 64 words of Genius global data as outputs. The type of data placed
in these registers is completely dependant on the application, there are no pre-defined "special
function" registers.

The BASIC Gateway Module is configured as a Genius Block. The configuration of the BASIC
Gateway Module is defined by the use of the SETIO command. This command allows the user
to configure the amount of global data to be read, the amount of global data to be written and
the Genius reference address.

8.2 Asynchronous program execution

The BASIC program runs completely independant of the Genius Network. The BASIC program
will begin execution at the first program line (the line number with the smallest value) and will
continue executing as the BASIC instructions direct the program flow.

Page 8-2 CHAPTER 8: THE GENIUS INTERFACE

8.3 Register usage

In most applications, the 64 input and 64 output words provide adequate "communications"
between the BASIC Gateway Module and the Genius Network. A particular register can be
defined to contain a specific piece of information at all times.

For example, the BASIC program could be written to perform a PID function, processing data
from an analog input block and returning data to an analog output block. In its simplest form,
only one of the INP() registers and one datagram needs be used. The INP() register would be
written to by the Genius Network, and read by the BASIC Gateway Module periodically each
time the PID loop is executed. Conversly, the BASIC program would generate a Datagram
each time the PID loop is performed, and send it to the analog output module.

There are no ill affects if the PID loop were only executed once each several seconds, since
the values passed between the BASIC Gateway Module and the analog blocks always contain
the most recent "reading" for the same type of data. the INP() register will always contain the
most recent analog input value, while the generated datagram will always send the most recent
value to the analog output.

The interface becomes more complex if a large quantity of data must be shared between the
BASIC Gateway Module and the Genius Network. For example, assume that the BASIC
program is to perform several PID loops and that the PID gain values are also to be passed from
the Series 90-70 CPU to the BASIC Gateway Module. In this case, the 64 input and 64 output
registers will need to be "multi-purpose".

8.4 Using a register "protocol"

When more data is to be passed between the BASIC Gateway Module and the Series 90-70
CPU than will "fit" in the 64 input and 64 output registers, a communications "protocol" must be
established in the BASIC and ladder programs.

Since the Series 90-70 ladder program and the BASIC program execute asynchronously, the
protocol must be used to "synchronize" the transfer of the various "sets" of data between the
two programs.

As the Series 90-70 ladder program begins, it will initially write the first PID channel data to the
BASIC Gateway Module's INP() registers. The BASIC module will read the data and begin
processing the first PID loop. If the Series 90-70 program "blindly" updates the BASIC Gateway
Module's INP() registers with the second PID channel data without some kind of verification
from the module that the data previously written has been read, the Series 90-70 program might
overwrite the INP() registers before the BASIC Gateway Module has finished reading them.

CHAPTER 8: THE GENIUS INTERFACE Page 8-3

Additionally, the Series 90-70 program might attempt to read the BASIC Gateway Module's
OUT() registers WHILE the module is in the process of updating them. The Series 90-70
program might read half of the registers that pertain to one of the PID channels and half that
pertain to another.

To avoid this problem, the programs should use one of the INP() registers and one of the OUT()
registers as "protocol" variables.

An example implementation is to use the "bits" of one of the registers as status flags. For
instance, if the OUT(63) register is used as the BGM to Series 90-70 protocol variable, it could
be define as follows;

OUT(63,0) This bit is used to tell the Series 90-70 that new OUT() data is
available. It should be set after the BGM has finished writing the
new data to the OUT() registers, and cleared when the Series 90-
70 has read the OUT() register data (when INP(63,1) gets set by
the Series 90-70).

OUT(63,1) This bit is used to tell the Series 90-70 that the BGM has read the
new INP() register data. This bit should be set when the BGM has
finished reading the INP() register data and cleared when the
Series 90-70 signifies that new INP() data is available (when
INP(63,0) gets set by the Series 90-70).

INP(63,0) This bit is used to tell the BGM that new INP() data is available. It
should be set after the Series 90-70 has finished writing the new
data to the INP() registers, and cleared when the BGM has read the
INP() register data (when OUT(63,1) gets set by the BGM).

INP(63,1) This bit is used to tell the BGM that the Series 90-70 has read the
new OUT() register data. This bit should be set when the Series
90-70 has finished reading the OUT() register data and cleared
when the BGM signifies that new OUT() data is available (when
OUT(63,0) gets set by the BGM).

The following page contains the example BASIC program for this protocol implementation.

Similarly, the INP(63) register can be used as the "Series 90-70 to BGM" protocol register;

Page 8-4 CHAPTER 8: THE GENIUS INTERFACE

An example BASIC program using the described protocol;

10 REM Example PID program
20 OUT(63,1)=0 : OUT(63,0)=0: REM Clear the protocol bits
30 GOSUB 1000 : REM Go read the INPut registers
40 GOSUB 2000 : REM Go perform the PID function
50 GOSUB 3000 : REM Go write the OUTput registers
60 GOTO 30 : REM Go do it again.

1000 DO : UNTIL INP(63,0) : REM Wait for the Series 90-70 to update the registers
1010 OUT(63,1)=0 : REM Tell the Series 90-70 that the registers are busy
1020 FOR X=0 TO 62 : REM Read the INPuts
1030 PIDIN(X)=INP(X)
1040 NEXT X
1050 OUT(63,1)=1 : REM Tell the Series 90-70 that registers are available
1060 RETURN

2000 REM PID loop goes here
2010 RETURN

3000 DO : UNTIL INP(63,1) : REM Wait for Series 90-70 to finish with registers
3010 OUT(63,0)=0 : REM Tell the Series 90-70 that the registers are busy
3020 FOR X=0 TO 62 : REM Write the OUTputs.
3030 OUT(X)=PIDOUT(X)
3040 NEXT X
3050 OUT(63,0)=1 : REM Done with registers.
3060 RETURN

CHAPTER 9: PROGRAMMING TUTORIAL Page 9-1

CHAPTER 9: PROGRAMMING TUTORIAL

This chapter will take a new BASIC programmer through some of the steps required to enter,
edit, store and execute a BASIC program.

Review Appendix C to familiarize yourself with what is meant by RESETting the BASIC
Gateway Module.

9.1 Prepare to Use the Module

This chapter assumes that the user has the BASIC Gateway Module’s primary port connected
to an IBM PC or compatable computer running the supplied TERM.EXE dumb terminal
emulation program (See appendix F).

After executing the TERM.EXE program on the host computer, a sign-on message will appear
and then the CONFIGURATION menu will appear. The default configuration should be used
and sets the communication parameters as follows;

COM port: COM1 (this should be set to the port you are using)
Baud rate: 9600
Parity type: No parity
Data bits: 8
Stop bits: 1
Handshake type: XON / XOFF
Display mode: ASCII

The ENTER key on the keyboard can be pressed to invoke these parameters and initiate the
“terminal” mode. At this point, the BASIC Gateway Module should be RESET.

Following the RESET, the BASIC Gateway Module will perform its reset sequence and then
enter its “baud rate detection” mode. The FIRST character received by the module must be
a SPACE character in order for the module to properly calculate the baud rate and initiate
communication. When the SPACE bar is pressed on the host computer’s keyboard, the module
will respond with the following signon\status message;

Page 9-2 CHAPTER 9: PROGRAMMING TUTORIAL

ASCII Basic Genius Gateway Module V2.45
(C) Copyright 1991-1993 Horner Electric, Inc.

DATA MEMORY:
 32K bytes battery-backed RAM present, from 0 to 32767 (7FFFH).
 No program exists in DATA memory, 1537 bytes occupied.
 MTOP = 32767 (7FFFH).
 31231 bytes free.

PROGRAM FILE MEMORY:
 32K bytes EEPROM present, from 32768 (8000H) to 65471 (FDFFH).
 0 program(s) exist in PROGRAM FILE memory, 16 bytes occupied.
 32239 bytes free.

SYSTEM STATUS:
 AUTORUN: Program number for automatic execution is 0.
 STARTUP: Startup mode is set to 0.
 BREAK: Control-C break checking is enabled.
 CLRMEM: Data memory initialization is enabled.
 BAUD: Stored primary port baud rate is 9600.
 SETIO: 0 input(s), 0 output(s), reference address = 65535 (FFFFH).

Ready
0>

If the module responds erratically, reset the module and try again. If the response is still erratic,
re-check the communication parameters and try again.

9.2 Entering a Simple Program

After the "0>" prompt character is displayed, enter and LIST the following simple program;

0>10 P.
0>65535 P.
0>LIST

10 PRINT
65535 PRINT

Ready
0>

Now, RESET the BASIC Gateway Module and press the space bar once again. The module
will respond once again with the sign-on message. At this point, attempt to list the program
entered previously;

CHAPTER 9: PROGRAMMING TUTORIAL Page 9-3

0>LIST

Ready
0>

9.3 Saving a Program in DATA Memory

Notice that the program entered previously is GONE! This is because the BASIC Gateway
Module clears it’s DATA memory following a RESET. To avoid this problem, enter the following
commands prior to RESETting the module;

0>STARTUP 1
0>CLRMEM 0

0>10 P.
0>65535 P.
0>LIST

10 PRINT
65535 PRINT

Ready
0>

Now, RESET the BASIC Gateway Module again. This time, the space bar need not be pressed
to produce the sign-on message, as the baud rate information was saved when the STARTUP
1 command was entered. The module will automatically initialize itself with the stored baud rate
and immediately generate the sign-on message with no interaction.

List the program, notice that this time the program "survived" through the RESET sequence
(thanks to the CLRMEM 0 command entered earlier);

0>LIST

10 PRINT
65535 PRINT

Ready
0>

Page 9-4 CHAPTER 9: PROGRAMMING TUTORIAL

9.4 Using the PROGRAM FILE memory

Using the SAVE command, programs entered into the DATA memory can be more perma-
nently stored into the PROGRAM FILE memory. Erase the program entered earlier and enter
the new program as shown;

0>NEW

0>10 P."This is my first BASIC program!"
0>RUN

This is my first BASIC program!

Ready
0>SAVE
 1

Ready
0>

The SAVE command was used to "copy" program 0 from DATA memory into the PROGRAM
FILE memory. The module responded with the "1" following the SAVE command to indicate
the program’s number in the program file memory. Since no programs existed prior to the
execution of the SAVE command, this program was assigned to number 1, or the first program
stored in the PROGRAM FILE.

At this point, two identical copies of the program exist in the BASIC Gateway Module, the
original copy still exists in program 0 in DATA memory, while the PROGRAM FILE memory
contains a second copy.

Now, use the CLRMEM1 commands to restore the BASIC Gateway Module to it’s original
RESET configuration (this means that DATA memory will once again be CLEARED following
a RESET).

0>CLRMEM1

Now RESET the module again. Once the sign-on message appears, an attempt to list the
program in DATA memory will prove that the DATA memory has in fact been cleared. However,
the program was copied to the PROGRAM FILE memory, so the SELECT command can be
used to "select" the program in the PROGRAM FILE memory;

CHAPTER 9: PROGRAMMING TUTORIAL Page 9-5

0>LIST

Ready
0>SELECT 1

Ready
1>LIST
10 PRINT "This is my first BASIC program!"

Ready
1>

Notice that the BASIC prompt has changed from "0>" to "1>". This is because program number
1 is now selected. The prompt will always signify the currently selected program (the "selected"
program means the program that will be used when the LIST or RUN commands are entered).

9.5 Running a Program from the PROGRAM FILE

Once a program has been placed into the PROGRAM FILE, it can be executed using three
methods:

1. The user can "select" the program in the PROGRAM file and then issue the RUN
command. The first program in the PROGRAM FILE is still currently selected.

1>RUN

This is my first BASIC program!

Ready
1>

2. The user can issue the CHAIN command to select a program from the PRO-
GRAM FILE to be executed. In this case, it does not matter which program is
currently selected.

Page 9-6 CHAPTER 9: PROGRAMMING TUTORIAL

1>SELECT 0

Ready
0>CHAIN 1

This is my first BASIC program!

Ready
1>

3. The user can configure the module to AUTOMATICALLY execute any program
following a RESET. This is done by executing the STARTUP 2 command to place
the module in STARTUP mode 2, AND by using the AUTORUN command to
select which program is to be executed following the RESET.

1>STARTUP 2
1>AUTORUN 1

Ready
1>RESET

This is my first BASIC program!

Ready
1>

9.6 Deleting a Program from the PROGRAM FILE

The DELPGM command is provided to allow programs to be REMOVED from the PROGRAM
FILE. Enter another program and save it in the PROGRAM FILE. Note that ONLY PROGRAM
0 MAY BE EDITED. This means that the SELECT 0 command must be entered before the new
program can be entered.

1>SELECT 0

0>10 P. "This is my second BASIC program!"
0>PROG
 2

Ready
0>DELPGM 1

Ready
0>

CHAPTER 9: PROGRAMMING TUTORIAL Page 9-7

By deleting program number 1, the new program (number 2) was "shifted" into program number
1. Since the STARTUP and AUTORUN modes are still in affect for program 1 to be exectuted
following a RESET, the new program will now be executed. Reset the BASIC Gateway Module
to verify this;

This is my second BASIC program!

Ready
1>

Page 9-8 CHAPTER 9: PROGRAMMING TUTORIAL

This page has been left intentionally blank.

APPENDIX A: SERIAL PORT WIRING Page A-1

APPENDIX A: RS232 SERIAL PORT WIRING

The "pinout" for the PRIMARY and AUXILIARY RS232C serial ports provided by the BASIC
Gateway Module are identical. The pinout for both ports is defined below. The direction
indicated is with respect to the BASIC Gateway Module.

Signal name Direction

1 [DCD] DATA CARRIER DETECT OUTPUT

2 [RXD] RECEIVE DATA OUTPUT

3 [TXD] TRANSMIT DATA INPUT

4 [DTR] DATA TERMINAL READY INPUT

5 [GND] GROUND ******

6 [DSR] DATA SET READY OUTPUT

7 [RTS] REQUEST TO SEND INPUT

8 [CTS] CLEAR TO SEND OUTPUT

9 [RI] RING INDICATE OUTPUT

Table A-1

This pinout was chosen to allow direct connection (using a straight through, or 1 to 1 cable) to
a standard 9-pin IBM PC/AT serial port. Nearly ALL of the IBM PC/AT and compatable
computers equipped with an RS232 port will provide a pinout compatable with that shown
above.

Page A-2 APPENDIX A: SERIAL PORT WIRING

The active signals are determined by the handshaking configuration (See the SETCOM
statement in chapter 4). When a port is configured for hardware (RTS/CTS) handshaking, the
RTS signal is used as the transmission handshaking line. In this mode, whenever the RTS
signal is active (low), data can be transmitted from the BASIC Gateway Module port. When the
RTS signal becomes inactive (high), data transmission is suppressed from the module’s port.

Conversly, when hardware handshaking is configured, the CTS signal is the BASIC module’s
OUTPUT signal used to make a transmitting device pause it’s transmission. The Basic module
will activate the CTS line (high) when the receive buffer is nearly full. As characters are read
from the buffer by the BASIC module, the CTS line will be deactivated (low) to allow further
transmission. All other hardware handshaking signals are ignored by the BASIC Gateway
Module.

A.1 Cable diagrams

When connecting a BASIC Gateway Module port to a DCE device (such as an IBM PC/AT) with
no hardware handshaking, the following cable interface should be used.

BASIC Gateway RS232 port 9-PIN DCE Device

RXD (pin 2) RXD (pin 2)
TXD (pin 3) TXD (pin 3)

RTS (pin 7)
CTS (pin 8)

GND (pin 5) GND (pin 5)
DCD (pin 1)
DSR (pin 4)
DTR (pin 6)

BASIC Gateway RS232 port 25-PIN DCE Device

RXD (pin 2) RXD (pin 2)
TXD (pin 3) TXD (pin 3)

RTS (pin 4)
CTS (pin 5)

GND (pin 5) GND (pin 7)
DCD (pin 8)
DSR (pin 6)
DTR (pin 20)

APPENDIX A: SERIAL PORT WIRING Page A-3

This standard IBM PC and PC/XT serial port pinouts differ from that of the PC/AT. To connect
the BASIC module serial port to an IBM PC or PC/XT serial port with no hardware handshaking,
use the following cable arrangement (this cable arrangement will work for most "terminals" as
well);

BASIC Gateway RS232 port 9-PIN DTE Device

RXD (pin 2) RXD (pin 3)
TXD (pin 3) TXD (pin 2)

RTS (pin 4)
CTS (pin 5)

GND (pin 5) GND (pin 7)
DCD (pin 8)
DSR (pin 6)
DTR (pin 9)

BASIC Gateway RS232 port 25-PIN DTE Device

RXD (pin 2) RXD (pin 3)
TXD (pin 3) TXD (pin 2)

RTS (pin 4)
CTS (pin 5)

GND (pin 5) GND (pin 7)
DCD (pin 8)
DSR (pin 6)
DTR (pin 20)

Page A-4 APPENDIX A: SERIAL PORT WIRING

When hardware handshaking is to be used, the RTS and CTS signals must be connected to
the remote device. When using an IBM PC/AT as the remote device, the following cable can
be used to permit hardware handshaking;

BASIC Gateway RS232 port 9-PIN DTE Device

RXD (pin 2) RXD (pin 3)
TXD (pin 3) TXD (pin 2)
RTS (pin 7) RTS (pin 4)
CTS (pin 8) CTS (pin 5)
GND (pin 5) GND (pin 7)

DCD (pin 8)
DSR (pin 6)
DTR (pin 20)

BASIC Gateway RS232 port 25-PIN DTE Device

RXD (pin 2) RXD (pin 3)
TXD (pin 3) TXD (pin 2)
RTS (pin 7) RTS (pin 4)
CTS (pin 8) CTS (pin 5)
GND (pin 5) GND (pin 7)

DCD (pin 8)
DSR (pin 6)
DTR (pin 20)

Some serial devices use the DSR/DTR signals for hardware handshaking. In this case the
BASIC Gateway Module's RTS signal should be connected to the remote device's DSR signal
and the BASIC Gateway Module's CTS signal should be connected to the remote device's DTR
signal.

APPENDIX B: RESERVED WORD LIST Page B-1

APPENDIX B: RESERVED WORD LIST

The following is an alphabetic list of all of the BASIC reserved and key words. These words
may NOT appear in BASIC variable names.

KEYWORD DESCRIPTION PAGE

.AND. Logical or bit-wise AND 4-22

.OR. Logical or bit-wise OR 4-85

.XOR. Logical or bit-wise XOR 4-126

ABS Returns absolute value 4-21
ASC(Returns ASCII character code 4-23, 4-24
ATN Returns ARCTANGENT 4-25
AUTORUN Configures the program to run after RESET 4-2

BCD Binary to BCD conversion 4-26
BNR BCD to Binary conversion 4-27
BREAK Enable/disables ctrl-c break or sets a breakpoint 4-3, 4-28

CHAIN Runs PROGRAM FILE memory program 4-30
CHR(Returns ASCII character 4-31
CHR$(Returns ASCII character 4-32
CLEAR Clears all BASIC variables 4-33
CLOCK Starts/stops millisecond clock 4-36
CLRMEM Enables/disables RESET memory init. 4-37
CMDPORT Assigns the console to the specified serial port 4-38
COMBRK Returns a three character time break 4-40
CONT Continue program execution after STOP 4-4
COS Returns COSINE 4-41
CR Prints a carriage return, no line feed 4-42
CTS Sets or returns the state of the CTS signal 4-43

DATA List of constant data 4-44
DATE$ Returns real-time date 4-45
DELAY Causes the program to “pause” 4-46
DELPGM Erases a program from the PROGRAM FILE 4-5
DIAG Firmware diagnostics 4-6
DIM Defines max subscript for array varariables 4-47
DO Iterative loop control 4-48, 4-49

Page B-2 APPENDIX B: RESERVED WORD LIST

KEYWORD DESCRIPTION PAGE

EDIT Moves PROGRAM FILE program to DATA mem 4-7
ELSE Conditional statement (see IF) 4-60
END Terminates program 4-50
ERC Returns arithmetic error code 4-51
EXP(Returns “e” (2.7182818) to the “x” 4-52

FOR Iterative loop control 4-53
FREE Returns amount of available memory 4-55
FTIME Assigns/returns frac. portion of TIME 4-56

GOSUB Executes a subroutine 4-57,4-78
GOTO Jumps to specified line 4-58,4-79

HELP Displays ON-LINE help information 4-8

IDLE Waits for a BASIC interrupt 4-59
IF Conditional statement 4-60
INBUF$ Returns all characters in the INPUT buffer 4-62
INKEY$ Returns next character in the INPUT buffer 4-63
INP(Returns Genius global data register 4-64
INPUT Reads serial console input 4-65
INSTR(Returns position of string2 in string1 4-67
INT Returns integer portion of argument 4-68

LCASE$(Returns string argument in lower case 4-69
LD@ Stores a floating-point value 4-70
LEFT$(Returns leftmost characters of string 4-71
LEN(Returns length of the current program 4-72
LET Assigns a value to a variable 4-73
LIST Outputs program listing 4-9, 4-10
LOG Returns natural logarithm 4-74

MID$(Returns a portion of a string 4-75
MTOP Assigns/returns “protected” memory 4-76

NEW Erases DATA memory program 4-11
NEXT Iterative loop control (see FOR) 4-53
NOT Returns ONES complement 4-77

APPENDIX B: RESERVED WORD LIST Page B-3

KEYWORD DESCRIPTION PAGE

ON Case sensitive program vector control 4-78, 4-79
ONERR Error trapping control 4-80
ONPORT Serial interrupt control 4-81
ONTIME Timer interrupt control 4-73
OUT(Assigns output registers 4-86

PH0. Print values in HEX format (2 digit) 4-87
PH1. Print values in HEX format (4 digit) 4-88
PI Returns value of PI (3.1415926) 4-89
POP Gets floating-point value from stack 4-90
PRINT Serial output 4-91
P. Same as PRINT 4-91
? Same as PRINT 4-91
PUSH Puts floating-point value to stack 4-92

READ Assigns constant from DATA list to var 4-93
REM Comment 4-94
RESTORE Initializes DATA pointer 4-95
RESET Causes a software RESET of the module 4-13
RETI Returns from timer interrup routine 4-96
RETURN Returns from subroutine 4-57
RIGHT$(Returns rightmost characters of a string 4-97
RND Returns a random number 4-98
RTRAP Enables/disables run trap option 4-99
RTS Returns the state of the RTS signal 4-100
RUN Runs selected program, or returns PLC run state 4-14,4-101

SAVE Stores a program in the PROGRAM file 4-14
SELECT Selects a program 4-15
SETCOM Configures one of the serial ports 4-102
SETINPUT Configures the INPUT statement 4-104
SETIO Assigns Genius global registers 4-106
SGN Returns the sign of the value 4-107
SIN Returns the SINE of the value 4-108
SIZE Returns the SIZE of the current program 4-109
SPC Outputs specified number of spaces 4-110
SQR Returns square-root 4-111
STARTUP Configures the modules behavior after RESET 4-16
STATUS Displays memory and configuration data 4-17
ST@ Stores floating point value 4-112
STEP Single step, or Iterative loop control (see FOR) 4-18, 4-53
STOP Halts program execution 4-113
STRING Allocates memory for STRING storage 4-114
STR$ Returns the string equivalent of an expr 4-115

Page B-4 APPENDIX B: RESERVED WORD LIST

KEYWORD DESCRIPTION PAGE

TAB(Outputs spaces until at specified pos 4-116
TAN(Returns TANGENT 4-117
THEN Conditional statement (see IF) 4-60
TIME Assigns/returns millisecond clock 4-118
TIME$ Assigns/returns real-time clock 4-119
TO Iterative loop control (see FOR) 4-53

UCASE$(Returns string argument in upper case 4-120
UNTIL Iterative loop control (see DO) 4-48
USING(Defines numeric output format 4-121
U.(Same as USING(4-121

VAL(Returns numeric equivalent of string 4-123
WHILE Iterative loop control (see DO) 4-49

XBY(Assigns/returns data at given address 4-124
XBY#(Assigns/returns data at given GENI address 4-125

APPENDIX C: HARDWARE CONFIGURATION Page C-1

APPENDIX C: HARDWARE CONFIGURATION

1.1 Jumper Configuration

The BASIC Gateway Module is equipped with several hardware jumper areas. These jumpers
are configured at the factory and should not be modified by the user!! Changing any of the pre-
configured jumpers may cause the module to malfunction!

1.2 Panel Cutout

BGM BACK PLATE

 Page C-2 APPENDIX C: HARDWARE CONFIGURATION

This page has been intentionally left blank.

APPENDIX D: ASCII CHARACTER SET Page D-1

APPENDIX D: ASCII CHARACTER SET

The following is a list of the ASCII (American Standare Code for Information Interchange)
character set.

DEC HEX Character DEC HEX Character

00 00H NULL 32 20H SPACE
01 01H SOH 33 21H !
02 02H STX 34 22H “
03 03H ETX 35 23H #
04 04H EOT 36 24H $
05 05H ENQ 37 25H %
06 06H ACK 38 26H &
07 07H BELL 39 27H ‘
08 08H BS 40 28H (
09 09H HT 41 29H)
10 0AH LF 42 2AH *
11 0BH VT 43 2BH +
12 0CH FF 44 2CH ,
13 0DH CR 45 2DH -
14 0EH SO 46 2EH .
15 0FH SI 47 2FH /
16 10H DLE 48 30H 0
17 11H DC1 49 31H 1
18 12H DC2 50 32H 2
19 13H DC3 51 33H 3
20 14H DC4 52 34H 4
21 15H NAK 53 35H 5
22 16H SYN 54 36H 6
23 17H ETB 55 37H 7
24 18H CAN 56 38H 8
25 19H EM 57 39H 9
26 1AH SUE 58 3AH :
27 1BH ES1 59 3BH ;
28 1CH FS2 60 3CH <
29 1DH GS 61 3DH =
30 1EH RS 62 3EH >
31 1FH US 63 3FH ?

(cont.)

Page D-2 APPENDIX D: ASCII CHARACTER SET

DEC HEX Character DEC HEX Character

64 40H @ 96 60H ‘
65 41H A 97 61H a
66 42H B 98 62H b
67 43H C 99 63H c
68 44H D 100 64H d
69 45H E 101 65H e
70 46H F 102 66H f
71 47H G 103 67H g
72 48H H 104 68H h
73 49H I 105 69H i
74 4AH J 106 6AH j
75 4BH K 107 6BH k
76 4CH L 108 6CH l
77 4DH M 109 6DH m
78 4EH N 110 6EH n
79 4FH O 111 6FH o
80 50H P 112 70H p
81 51H Q 113 71H q
82 52H R 114 72H r
83 53H S 115 73H s
84 54H T 116 74H t
85 55H U 117 75H u
86 56H V 118 76H v
87 57H W 119 77H w
88 58H X 120 78H x
89 59H Y 121 79H y
90 5AH Z 122 7AH z
91 5BH [123 7BH {
92 5CH \ 124 7CH |
93 5DH] 125 7DH }
94 5EH ^ 126 7EH ~
95 5FH _ 127 7FH DEL

APPENDIX E: MEMORY CONFIGURATIONS Page E-1

APPENDIX E: MEMORY CONFIGURATIONS

The BASIC Gateway Module was designed with a very flexible memory configuration. Both the
DATA memory site and the PROGRAM FILE memory site are capable of providing either 8K
or 32K of battery-backed static RAM memory. This means that the module can be configured
with the following memory sizes;

DATA site PROGRAM site DATA memory PROGRAM FILE memory

8K EMPTY 4K 4K

32K EMPTY 16K 16K

32K 8K 32K 8K

32K 32K 32K 32K

E.1 The BASIC Gateway memory map

Two areas of memory are reserved for the BASIC Gateway Module firmware and should
NEVER be manipulated by the XBY() or ST@ commands. These areas are located from
address 0 through address 1536 (5FFH), and from address 65024 (0FE00H) through 65535
(0FFFFH).

DATA memory provides storage memory for BASIC program number 0 (the only program that
may be edited) as well as all variable and string storage space. The following table illustrates
the DATA memory map for each of the possible hardware configurations;

From To
Bytes

Dec Hex Dec Hex

 4K 1536 600H 4095 0FFFH

 16K 1536 600H 16383 3FFFH

 32K 1536 600H 32767 7FFFH

Page E-2 APPENDIX E: MEMORY CONFIGURATIONS

From To
Bytes

Dec Hex Dec Hex

 4K 4096 1000H 8191 1FFFH

 8K 8192 2000H 16383 3FFFH

 16K 16384 4000H 32767 7FFFH

 32K 32768 8000H 65023 FDFFH

The first 16 bytes of the PROGRAM FILE memory are used to store important configuration
information such as the primary port baud rate, the STARTUP mode and the AUTORUN
program number.

PROGRAM FILE memory is the memory used to store BASIC programsusing the SAVE
command. These programs canbe deleted using the DELPGM command, but cannot be
edited. The following table illustrates the PROGRAM FILE memory map for each of the
possible hardware configurations;

APPENDIX F: TERMINAL EMULATION SOFTWARE USER'S MANUAL Page F-1

APPENDIX F: TERMINAL EMULATION SOFTWARE USER’S MANUAL

TERM - Dumb Terminal Emulation Program

Version 2.23

Operations Manual

April 6, 1990

Written by James P. David

(C) Copyright 1990-1993
Horner Electric, Incorporated
1521 East Washington Street
Indianapolis, Indiana 46201

Phone: (317) 639-4261
Fax: (317) 639-4269

Page F-2 APPENDIX F: TERMINAL EMULATION SOFTWARE USER'S MANUAL

SOFTWARE LICENSE AGREEMENT

This software is protected by both United States copyright law and international treaty
provisions. Therefore, you must treat this software JUST LIKE A BOOK, with the following
single exception. Horner Electric authorizes you to make archival copies of the software for the
sole purpose of backing-up our software and protecting your investment from loss.

This software is in no way "copy protected", and may be placed on and run from a fixed storage
device.

By saying "just like a book", Horner Electric means, for example, that this software may be used
by any number of people and may be freely moved from one computer location to another, so
long as there is NO POSSIBILITY of it being used at one location while it is being used at
another. Just like a book that can’t be read by two different people in two different places at
the same time, neither can the software be used by two different people in two different places
at the same time (unless, of course, Horner Electric’s copyright has been violated).

APPENDIX F: TERMINAL EMULATION SOFTWARE USER'S MANUAL Page F-3

TABLE OF CONTENTS

SECTION 1: INTRODUCTION: What is TERM? . . Page F-4

1.1 Equipment Requirements Page F-4

SECTION 2: INVOCATION: Running TERM . . . Page F-5

2.1 Installing TERM Page F-5
2.2 Running TERM for the First Time . . . Page F-6
2.3 Screen Colors Page F-6
2.4 Exiting TERM Page F-6

SECTION 3: <F1> - CONFIGURING TERM . . . Page F-7

3.1 The TERM.CFG Configuration File . . . Page F-7
3.2 What Happens when F1 is Pressed . . . Page F-8
3.3 COM Port Selection Page F-8
3.4 Baud Rate Selection Page F-8
3.5 Parity Type Selection Page F-8
3.6 Data Bit Selection Page F-9
3.7 Stop Bit Selection Page F-9
3.8 Handshake Type Selection Page F-9
3.9 Display Type Selection . . . Page F-9

SECTION 4: THE TERMINAL SCREEN . . . Page F-10

4.1 Transmitting and Receiving Data . . . Page F-10
4.2 Error Messages Page F-10

SECTION 5: <F2> - FILE DOWNLOAD Page F-11

5.1 Selecting a File to Download Page F-11

SECTION 6: <F3> - FILE UPLOAD Page F-12

6.1 Selecting a Filename Page F-12
6.2 What Happens During the Upload . . . Page F-12

APPENDIX A: ANSI COMPATABILITY Page F-13

Page F-4 APPENDIX F: TERMINAL EMULATION SOFTWARE USER'S MANUAL

SECTION 1: INTRODUCTION - What is TERM?

TERM is an executable program that may be run on any IBM Personal Computer (PC), PC/XT,
PC/AT or close compatable. Essentially, TERM simply converts the host computer into a dumb
terminal (a keyboard and a display screen). Utilizing one of the host computer’s RS232 COM
ports, TERM will display characters received at the COM port and will transmit characters that
are typed on the keyboard to the COM port. Although there are some enhancements
(discussed in detail later), that is TERM’s primary function.

1.1 Equipment Requirements

As stated above, TERM will run on any IBM PC, PC/XT, PC/AT or clone compatable running
DOS 2.0 or later with at least one COM port. TERM is distributed on one 3-1/2 inch 720 floppy
diskette and occupies 34K+ bytes. At least one floppy drive is required. TERM requires
approximately 100K bytes of available RAM memory to run. Color displays are supported but
not required.

APPENDIX F: TERMINAL EMULATION SOFTWARE USER'S MANUAL Page F-5

SECTION 2: INVOCATION - Running TERM

TERM was written with ease of use in mind at all times. After TERM has been invoked, there
will always be help or status messages on the display to inform the user of his/her options, or
to show what operation is currently taking place.

2.1 Installing TERM

Before running TERM, you should make a working copy of the distribution diskette and put the
distribution diskette in a safe place should your working copy ever fail. If you are working on
a floppy drive system;

1. Insert a diskette that contains the DOS DISKCOPY.COM program.

2. Type "DISKCOPY A: A:" (without the quotes).

3. When prompted to insert the source diskette, place the TERM distribution
diskette into the floppy drive and press the “ENTER” key.

4. When prompted to insert the destination diskette, place a formatted diskette into
the floppy drive and press the "ENTER" key.

If you have a hard disk, insert the distribution diskette into the floppy drive, log to a directory
on the hard disk (preferrably one that is in the DOS search path) and type

"COPY A:TERM.EXE /V" (without the quotes).

TERM is now installed and ready for use!!!

Page F-6 APPENDIX F: TERMINAL EMULATION SOFTWARE USER'S MANUAL

2.2 Running TERM for the First Time

To run TERM, simply log to a drive/directory that contains TERM.EXE (if the drive/directory is
in the DOS search path, TERM may be run when logged to any drive/directory), and type;

TERM

and then press the "ENTER" key. There are no command line parameters associated with
TERM. Once the program is loaded into memory, TERM will display a sign-on message. This
message will remain on the screen for five seconds, or until a key on keyboard is pressed,
whichever occurs first.

Initially, TERM will search the current drive/directory for a file called TERM.CFG. If this file is
found, the "terminal" screen is displayed following the sign-on message. If the TERM.CFG file
is not present, the "configuration" menu is displayed. See section 3 for more information about
the configuration menu. The TERM.CFG file is updated every time the configuration is
changed. Therefore, once you have run TERM the first time, the terminal screen will appear
after the sign-on message and the configuration will be set as it was during the last session with
TERM.

2.3 Screen Colors

If you are using a color display, the colors generated by TERM are those used by DOS when
the TERM program is invoked. You can use the DOS PROMPT command (or several third party
packages) to alter the screen colors used by DOS prior to running TERM if a color display is
desired.

2.4 Exiting TERM

At any time during terminal mode, the <F10> key may be pressed to cause TERM to terminate,
returning control to DOS.

APPENDIX F: TERMINAL EMULATION SOFTWARE USER'S MANUAL Page F-7

SECTION 3: <F1> - CONFIGURING TERM

TERM allows "on-line" configuration of several RS232 parameters as well as a display
"mode”"selection.

3.1 The TERM.CFG Configuration File

TERM is distributed as a single file called TERM.EXE. Following the initial invocation of TERM,
you will notice an additional file called TERM.CFG located on the directory that was "logged"when
TERM was invoked. This file contains the information regarding the COM port configuration
as it was set during the previous session with TERM. The following information is stored in the
TERM.CFG file (the information in parentheses denotes the value displayed on the configura-
tion menu if no TERM.CFG file is present);

COM port (1)
Baud rate (9600)
Parity type (N)
Number of data bits (8)
Number of stop bits (1)
Handshake type (XON / XOFF)
Display mode (ASCII)

Each of these parameters is discussed in detail later in this section.

The TERM.CFG file is placed on the "current" or "logged" directory. If TERM is run from a
different directory, no TERM.CFG file will exist and a new one will be created. This is done
purposely, our philosophy is that if one wants to run TERM from a different directory, chances
are good that it is being used for a different project and hence will probably require a different
configuration. This method allows TERM to be used for several different projects with several
different configurations without having to configure the port every time TERM is run.

Page F-8 APPENDIX F: TERMINAL EMULATION SOFTWARE USER'S MANUAL

3.2 What Happens when F1 is Pressed

If, during the display of the configuration menu, the ENTER key is pressed, the parameters
displayed are stored in the TERM.CFG file and are used to configure the specified COM port.

If, during the display of the configuration menu, the ESCape key is pressed, the parameters
displayed are used to configure the specified COM port, but the TERM.CFG file is left intact.

The configuration menu allows alteration of seven paramters. Each of these parameters is
associated with a numeric key on the keyboard. Each of these parameters is discussed in detail
below.

3.3 COM Port Selection

Item number one (1) on the configuration menu pertains to the COM port selection. During the
display of the configuration screen, the (1) key may be pressed to select COM1:, COM2:,
COM3: or COM4: as the device used by TERM in terminal mode. Only COM ports that are
present in the host computer are displayed for selection.

3.4 Baud Rate Selection

Item number two (2) on the configuration menu pertains to the Baud rate selection or data
transmission rate used by TERM in terminal mode. During the display of the configuration
menu, the (2) key may be pressed to select any of the following values; 110, 300, 600, 1200,
1800, 2400, 3600, 4800, 9600, 19200, 38400, or 57600 baud. If higher baud rates are to be
selected (19200 and up), the cabling distance should be kept to a minimum.

3.5 Parity Type Selection

Item number three (3) on the configuration menu pertains to the type of parity used by TERM
in terminal mode. During the display of the configuration menu, the (3) key may be pressed
to select any of the following values; None, Even, Odd, Marking or Spacing parity. Parity is a
sort of "built-in" mode of error checking for RS232 communications. To simplify this document,
set the parity to that of the device to which you are communicating.

APPENDIX F: TERMINAL EMULATION SOFTWARE USER'S MANUAL Page F-9

3.6 Data Bit Selection

Item number four (4) on the configuration menu pertains to the number of RS232 data bits that
are transmitted and received by TERM in terminal mode. During the display of the configuration
menu, the (4) key may be pressed to select 5, 6, 7 or 8 data bits. Again, set this number to that
of the device to which you are communicating.

3.7 Stop Bit Selection

Item number five (5) on the configuration menu pertains to the number of RS232 stop bits that
are transmitted and received by TERM in terminal mode. During the display of the configuration
menu, the (5) key may be pressed to select 1 or 2 stop bits. Again, set this number to that of
the device to which you are communicating.

3.8 Handshake Type Selection

Item number six (6) on the configuration menu pertains to the type of RS232 handshaking that
is to be performed by TERM in terminal mode. During the display of the configuration menu,
the (6) key may be pressed to select NONE, XON/XOFF or RTS/CTS handshaking.

3.9 Display Type Selection

Item number seven (7) on the configuration menu pertains to the display mode of received
characters by TERM in terminal mode. During the display of the configuration menu, the (7)
key may be pressed to select ANSI, ASCII or HEX, display mode. When the ASCII mode is
selected, data received is displayed as ASCII characters. When the HEX mode is selected,
the ASCII value of the characters received are displayed as hexidecimal numbers. The HEX
mode is useful for debugging communication intensive operations. The ANSI display mode is
identical to the ASCII mode except that some of the ANSI-standard ESCape sequences are
supported. See appendix A for a complete discussion of the ANSI display mode.

Page F-10 APPENDIX F: TERMINAL EMULATION SOFTWARE USER'S MANUAL

SECTION 4: THE TERMINAL SCREEN

Once TERM has been configured, the terminal screen is displayed. (Actually, the screen is
cleared and a status line appears on the 25th line of the display). A flashing cursor is displayed
in the upper left corner of the display. This cursor represents the location of the next character
received.

4.1 Transmitting and Receiving Data

As data characters are received at the selected COM port, they are displayed on the screen.
Each time a key on the keyboard is pressed, it is transmitted to the selected COM port.
TRANSMITTED CHARACTERS ARE NOT ECHOED ON THE DISPLAY UNLESS THE
RECEIVING DEVICE SENDS THEM!

Carriage return characters (ASCII 13) and line feed characters (ASCII 10) are displayed just
as they should be - Carriage returns will cause the cursor to revert to the first column of the
current line. Line feeds will advance the cursor down one line but maintain the current column.

All other ASCII characters will be displayed as the IBM standard character set.

As data is received, the cursor will advance. If the cursor reaches the 24th line of the display
and a line feed character is received (or data is received beyond the 79th column), the display
will scroll up one line and the data received will be displayed on the 24th line.

4.2 Error Messages

No error message are "built-in" to the TERM program. Communication errors are ignored, disk
errors will make TERM crash!

APPENDIX F: TERMINAL EMULATION SOFTWARE USER'S MANUAL Page F-11

SECTION 5: <F2> - FILE DOWNLOAD

TERM has the ability to transmit a disk file to the selected COM port. This is initiated by pressing
the <F2> key during the display of the terminal screen.

5.1 Selecting a File to Download

When the <F2> key is pressed, a prompt box will appear in the center of the terminal screen
and the user is prompted to enter the filename of the file to be transmitted. The user may enter
up to a 50 characters of path/filename. Once the filename is typed, the user must press the
"ENTER" key. TERM will then search for the file in the specified directory (or in the current
directory if no pathname is specified). If the file is not found, an error message is displayed and
the user is returned to the terminal screen. If the file exists, it is immediately transmitted to the
COM device. When the entire file has been downloaded, the user is returned to the terminal
screen. The user may abort the entry of a filename or the download at any time by pressing
the <ESCape> key.

Page F-12 APPENDIX F: TERMINAL EMULATION SOFTWARE USER'S MANUAL

SECTION 6: <F3> - FILE UPLOAD

TERM has the ability to store received data into a disk file. This is initiate by pressing the <F3>
key during the display of the terminal screen.

6.1 Selecting a Filename

When the <F3> key is pressed, a prompt box will appear in the center of the terminal screen
and the user is prompted to enter the filename of the file to which the received data is to be
written. The user may enter up to a 50 characters of path/filename. Once the filename is typed,
the user must press the "ENTER" key. TERM will then search for the file in the specified
directory (or in the current directory if no pathname is specified). If the file exists, the user is
asked if the existing file is to be deleted. If the user enters "N" (for NO), control returns to the
terminal screen. If the user enters "Y" (for YES) or if the file doesn't exist, TERM will begin the
upload operation.

6.2 What Happens During the Upload

Once the file has been opened, TERM begin writing all received characters to the specified disk
file. The disk file is closed (the UPLOAD operation is terminated) when the user presses the
ESCape key.

APPENDIX F: TERMINAL EMULATION SOFTWARE USER'S MANUAL Page F-13

APPENDIX A: ANSI COMPATABILITY

The TERM program now supports the following ANSI escape sequences when configured in
ANSI display mode:

In the descriptions below, <ESC> appears whenever the ESCape character is referenced. All
of the ANSI escape sequences begin with this character (ASCII 1BH, 27 decimal). (Numeric
parameters appear in italic print) character.

The ANSI escape sequences supported by TERM are documented below:

Set absolute cursor postion: <ESC>[r;cH
r=row# (1 to 24), c=col# (1 to 80). If unspecifed, r and c default to 1. If to large, r and
c default to max.

Move cursor up: <ESC>[rA
r=number of rows. If unspecified, r defaults to 1. If (current postion)-r < 1, cursor is
moved to line 1.

Move cursor down: <ESC>[rB
r=number of rows. If unspecified, r defaults to 1. If (current postion)+r > 24, cursor is
moved to line 24.

Move cursor right: <ESC>[cC
c=number of columns. If unspecified, c defaults to 1. If (current postion)-c < 1, cursor
is moved to column 1.

Move cursor left: <ESC>[cD
c=number of columns. If unspecified, c defaults to 1. If (current postion)+c > 80, cursor
is moved to column 80.

Save cursor postion: <ESC>[s

Restore cursor postion: <ESC>[u

Erase display: <ESC>[2J

Page F-14 APPENDIX F: TERMINAL EMULATION SOFTWARE USER'S MANUAL

Set graphics rendition: <ESC>[pm
p=7 for reversed video, p=0 for normal video.

Invisible cursor: <ESC>[i

Visible cursor: <ESC>[v

