

User's Manual for the HEC-FP3-DN

DeviceNet[™] Network Communication Option Board for use with Reliance Electric FlexPak 3000 DC Drive

Fourth Edition February 25, 1998

MAN0086-04

PREFACE

This manual explains how to use the Horner's DeviceNet[™] Network Communication Option Board for use with the Reliance Electric FlexPak 3000 DC Drive.

Copyright (C) 1998 Horner APG, LLC., 640 North Sherman Drive, Indianapolis, Indiana 46201. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior agreement and written permission of Horner APG, LLC.

All software described in this document or media is also copyrighted material subject to the terms and conditions of the Horner Software License Agreement.

Information in this document is subject to change without notice and does not represent a commitment on the part of Horner APG, LLC.

DeviceNet[™] is a trademark of the Open DeviceNet[™] Vendor Association, Inc. (OVDA).

FlexPak 3000® and Reliance® are registered trademarks of Reliance Electric Company or its subsidiaries.

For user manual updates, contact Horner APG, Technical Support Division, at (317) 916-4274 or visit our website at www.heapg.com.

LIMITED WARRANTY AND LIMITATION OF LIABILITY

Horner APG, LLC. ("HE") warrants to the original purchaser that the DeviceNet[™] Network Communication Option Board for use with the Reliance Electric FlexPak 3000 DC Drive manufactured by HE is free from defects in material and workmanship under normal use and service. The obligation of HE under this warranty shall be limited to the repair or exchange of any part or parts which may prove defective under normal use and service within two (2) years from the date of manufacture or eighteen (18) months from the date of installation by the original purchaser whichever occurs first, such defect to be disclosed to the satisfaction of HE after examination by HE of the allegedly defective part or parts. THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES EXPRESSED OR IMPLIED INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR USE AND OF ALL OTHER OBLIGATIONS OR LIABILITIES AND HE NEITHER ASSUMES, NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR HE, ANY OTHER LIABILITY IN CONNECTION WITH THE SALE OF THIS DeviceNet™ Network Communication Option Board for use with the Reliance Electric FlexPak 3000 DC Drive. THIS WARRANTY SHALL NOT APPLY TO THIS DeviceNet[™] Network Communication Option Board for use with the Reliance Electric FlexPak 3000 DC Drive OR ANY PART THEREOF WHICH HAS BEEN SUBJECT TO ACCIDENT, NEGLIGENCE, ALTERATION, ABUSE, OR MISUSE. HE MAKES NO WARRANTY WHATSOEVER IN RESPECT TO ACCESSORIES OR PARTS NOT SUPPLIED BY HE. THE TERM "ORIGINAL PURCHASER", AS USED IN THIS WARRANTY, SHALL BE DEEMED TO MEAN THAT PERSON FOR WHOM THE DeviceNet[™] Network Communication Option Board for use with the Reliance Electric FlexPak 3000 DC Drive IS ORIGINALLY INSTALLED. THIS WARRANTY SHALL APPLY ONLY WITHIN THE BOUNDARIES OF THE CONTINENTAL UNITED STATES.

In no event, whether as a result of breach of contract, warranty, tort (including negligence) or otherwise, shall HE or its suppliers be liable of any special, consequential, incidental or penal damages including, but not limited to, loss of profit or revenues, loss of use of the products or any associated equipment, damage to associated equipment, cost of capital, cost of substitute products, facilities, services or replacement power, down time costs, or claims of original purchaser's customers for such damages.

To obtain warranty service, return the product to your distributor with a description of the problem, proof of purchase, post paid, insured and in a suitable package.

ABOUT PROGRAMMING EXAMPLES

Any example programs and program segments in this manual or provided on accompanying diskettes are included solely for illustrative purposes. Due to the many variables and requirements associated with any particular installation, Horner APG cannot assume responsibility or liability for actual use based on the examples and diagrams. It is the sole responsibility of the system designer utilizing the DeviceNet[™] Network Communication Option Board for use with the Reliance Electric FlexPak 3000 DC Drive to appropriately design the end system, to appropriately integrate the DeviceNet[™] Network Communication Option Board for use Electric FlexPak 3000 DC Drive to appropriately design the end system, to appropriately integrate the DeviceNet[™] Network Communication Option Board for use with the Reliance Electric FlexPak 3000 DC Drive and to make safety provisions for the end equipment as is usual and customary in industrial applications as defined in any codes or standards which apply.

Note: The programming examples shown in this manual are for illustrative purposes only. Proper machine operation is the sole responsibility of the system integrator.

SAFETY NOTICES

DANGER

Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install it. Read and understand this manual in its entirety before proceeding. *Failure to observe this precaution could result in severe bodily injury or loss of life.*

DANGER

The user is responsible for conforming to the nec/cec and all other applicable local codes. Wiring practices, grounding, disconnects, and overcurrent protection are of particular importance. *Failure to observe this precaution could result in severe bodily injury or loss of life.*

DANGER

Do <u>not</u> install modification boards with power applied to the controller. Disconnect and lock out incoming power before attempting such installation. *Failure to observe this precaution could result in severe bodily injury or loss of life.*

WARNING

Only qualified individuals who are thoroughly familiar with the particular application may install, operate and maintain this equipment. Before any work is performed, read and understand this instruction manual as well as the appropriate drive instruction manual(s). *Failure to observe this precaution could result in severe bodily injury.*

TABLE OF CONTENTS

PREFACE				
LIMITED WARRANTY AND LIMITATION OF LIABILITY				
ABOUT PROGRAMMING EXAMPLES				
SAFETY NOTICES				
TABLE OF CONTENTS				
CHAPTER 1: INTRODUCTION				
1.1 General				
1.2 Description				
1.3 Additional Information				
1.4 Related Hardware and Software				
CHAPTER 2: INSTALLATION	.10			
2.1 General	.10			
2.2 Installing the Network Communication Option Board	.10			
2.2.1 Safety Notices	.10			
2.2.2 Procedure to Install the Network Communication Option Board	.10			
2.3 Connecting the FlexPak 3000 Controller to a DeviceNet Network				
CHAPTER 3: NETWORK OVERVIEW	.14			
1.2 General				
3.2 Network Layout				
3.3 Network Setup				
3.4 Network Connections				
3.4.1 Types of Network Connections				
3.4.2 The Polled DeviceNet Connection				
3.4.3 The Explicit DeviceNet Connection				
3.4.4 The Bit-Strobed DeviceNet Connection				
CHAPTER 4: DRIVE CONFIGURATION				
1.2 General				
4.2 Network Communication				
4.2 Network Connection Types				
4.3.1 Two Types of Network Connections				
4.3.1 Two Types of Network Connections				
4.3.3 FULL Drive Connection				
4.4 Drive Response to Loss of Network Communication				
4.4.1 Overview				
4.4.2 Fault/Alarm Conditions				
CHAPTER 5: PROGRAMMING				
5.1 Data Types and Transfer Rates				
5.1.1 General				
5.2 Data Types and Transfer Rates				
5.2.1 Input Data				
5.2.2 Output Data				
5.3 Transfer of Data from the Network Option Board to the Regulator				
5.4 Transfer of Data from the Regulator to the Network Option Board				
5.5 Tune/Config Update Synchronization Flag				
5.6 I/O Update Enable Logic Summary				
5.7 Parameter Processing Error Flag				
5.8 Data Retention Timing Requirements	.23			
5.9 Drive Ready Status Bit				
5.10 Network Register Organization				
5.11 FlexPak 3000 Parameters Not Accessible Over the Network				
5.12 Poll Connection Data Transfer Format	.26			
5.12.1 General				
5.12.2 Poll Connection Command Data Format	.26			

5.12.3 Poll Connection Reply Data Format	27
CHAPTER 6: ELECTRONIC DATÁ SHEET (EDS) FILE	
6.1 General	
6.2 Installation	
6.3 Using the EDS File	
6.4 Data Mapping	
APPENDIX A - FLEXPAK 3000 PARAMETERS	
APPENDIX B: POLL CONNECTION DATA FORMAT	53
APPENDIX C: EXPLICIT MESSAGING FOR THE HEC-FP3-DN	55
1.1 General	
1.2 Explicit Message Format	
1.3 Explicit Message Response Format	
1.4 Explicit Message Error Format	
1.4.1.1 Components of an Explicit Error Message (See Table C.4)	
1.5 Error Codes	
1.6 Using Explicit Messages and Polling with the Same Device	59

This Page Intentionally Left Blank

CHAPTER 1: INTRODUCTION

1.1 General

1.1.1 The Horner DeviceNet[™] Network Communication Option Board is designed to allow a Reliance FlexPak 3000 ® (version 3.1 or higher) to be operated and monitored via the DeviceNet network. The option board makes use of the parallel-bus connection port on the FlexPak 3000 controller. The option board mounts behind the regulator board inside the FlexPak 3000 carrier assembly and connects to the regulator board via a flexible ribbon cable. Power for the option board comes from the FlexPak 3000 controller power supply.

1.1.2 In normal operation, the drive can be completely controlled via the network option board. In many applications, there may be only a network interface connection, a hard-wired emergency stop (function loss input), and three-phase input and output power wiring. Start, stop, fault codes and complete control can be accomplished over the DeviceNet network.

1.2 Description

1.2.1 The section describes the mechanical and electrical characteristics of the DeviceNet Network Communication Option Board.

a. Mechanical Description

The DeviceNet Network Communication Option Board is a printed circuit assembly that mounts inside a FlexPak 3000 Controller. It connects to the regulator board within the controller via a ribbon cable. It has a standard DeviceNet 5-pin "pluggable" screw-terminal connector which is used to connect a DeviceNet cable (dual twisted pairs with shield).

b. Electrical Description

The DeviceNet Network Communication Option Board contains its own microprocessor. The microprocessor connects to one port of the board's dual port memory while the other port interfaces to the FlexPak 3000 regulator. The board contains a watchdog timer which is enabled when power is turned on the controller. The microprocessor must reset the watchdog timer within a specified period or the microprocessor will shut down resulting in a fault.

At power-up, the microprocessor will run diagnostics on the CPU, EPROM, RAM, memory management unit, and dual-port memory. If there is an error during diagnostics, a fault will be generated, and the output parameter NETWORK KIT (P.796) (available in the OIM's Drive Information menu) will indicate "FAILED DIAGS". If the power-up self-tests pass, the NETWORK KIT parameter will indicate "INSTALLED".

Each option card requires a maximum of 95mA @ 11VDC of DeviceNet network power for the transceiver circuit to operate.

1.3 Additional Information

1.1.3 The user must be familiar with all of the instruction manuals that describe the system configuration. This may include, but is not limited to, the following:

D2-3335 FlexPak 3000 Digital DC Drives (1½-75HP @ 230VAC, 3-300HP @ 460 VAC)

1.4 Related Hardware and Software

1.4.1 The option board package consists of one DeviceNet network communication option board, which provides a single connection to a DeviceNet network. This board can be mounted inside a FlexPak 3000 controller, which can then be used with the following hardware and software (purchased separately from Allen-Bradley):

a. 1747-SDN SLC500 DeviceNet Scanner Mode	ule
b. 1746-P2 SLC500 Power Supply	
c. 1747-L532 SLC503 Central Processing Unit	
d. 1746-A4 SLC500 Rack	
e. 1787-MGR DeviceNet Manager Software	
f. 1747-PA2E SLC500 Advanced Programming	Software

Note: The list includes the devices that would be required to construct an SLC500-based DeviceNet controller. This is only one example of the many different DeviceNet controller combinations that can be used.

CHAPTER 2: INSTALLATION

2.1 General

2.1.1 The section describes how to install the DeviceNet Network Communication Option Board into the FlexPak 3000 controller and how to connect the controller to a DeviceNet network.

2.2 Installing the Network Communication Option Board

2.2.1 Safety Notices

a. **Danger**

Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install it. Read and understand this manual in its entirety before proceeding. *Failure to observe this precaution could result in severe bodily injury or loss of life.*

b. Danger

The user is responsible for conforming to the nec/cec and all other applicable local codes. Wiring practices, grounding, disconnects, and overcurrent protection are of particular importance. *Failure to observe this precaution could result in severe bodily injury or loss of life.*

c. **Danger**

Do <u>not</u> install modification boards with power applied to the controller. Disconnect and lock out incoming power before attempting such installation. *Failure to observe this precaution could result in severe bodily injury or loss of life.*

d. Warning

Only qualified individuals who are thoroughly familiar with the particular application may install, operate and maintain this equipment. Before any work is performed, read and understand this instruction manual as well as the appropriate drive instruction manual(s). *Failure to observe this precaution could result in severe bodily injury.*

2.2.2 Procedure to Install the Network Communication Option Board

2.2.2.1 Use the following procedure to install the Network Communication Option Board. Refer to Figures 2.1, 2.2, and 2.3 for mounting locations.

- 1. Turn off, lock out, and tag all incoming power to the FlexPak 3000 drive.
- 2. Loosen and remove the two (2) mounting screws on the FlexPak 3000 drive cover and remove the cover.
- 3. Loosen the captive screw on the carrier and swing open the carrier.
- 4. Loosen and remove the four screws attaching the carrier shield to the carrier.
- 5. Remove the connector attaching the shield's ground wire to the drive's power supply. Set the shield aside.
- 6. Position the Option board over the molded standoffs.

- 7. Secure the Option board using three (3) captive screws on the board.
- 8. Plug the Option board ribbon cable into the Option board.
- 9. Re-attach the carrier shield's ground wire to the drive's power supply.
- 10. Re-attach the carrier shield to the carrier.
- 11. Close the carrier and fasten it with the captive screw.
- 12. Route the DeviceNet network cable through the leftmost opening at the bottom of the controller. With the contacts numbered 1-5 from left to right, connect as described below:

Pin 1:	V-	(black)
Pin 2:	CAN_L	(blue)
Pin 3:	SHIELD	(bare)
Pin 4:	CAN_H	(white)
Pin 5:	V+	(red)

13. Re-install the FlexPak 3000 drive cover.

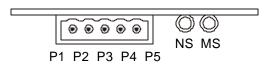


Figure 2.1 - DeviceNet Option Board End View

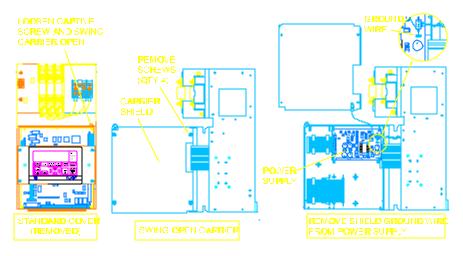


Figure 2.2 - Carrier Shield Removal

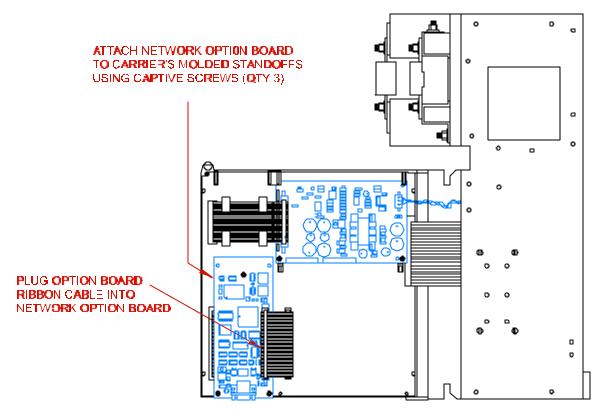


Figure 2.3 - Installing the Network Communications Option Board

2.3 Connecting the FlexPak 3000 Controller to a DeviceNet Network

2.3.1 When connecting to the DeviceNet network, the FlexPak 3000 controller should be wired with the same cabling and termination as any other DeviceNet device. For additional information, refer to Volume 1 of the DeviceNet Specification, Chapter 9.

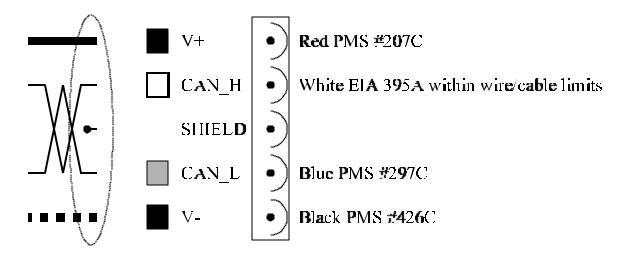


Figure 2.4

CHAPTER 3: NETWORK OVERVIEW

1.2 General

3.1.1 The DeviceNet Network Communication Option Board provides the Reliance FlexPak 3000 DC Drive with connectivity to a popular industrial network, DeviceNet. Through this option board, the FlexPak 3000 can reside on an industrial control network with a host of industrial control products. The FlexPak 3000 can, then, be easily monitored and/or controlled by a PLC through a DeviceNet Scanner module residing in a PLC. This allows a great deal of flexibility in the way that the FlexPak 3000 is controlled, and also, the amount and type of data that can be passed to and from the drive. This capability adds flexibility to the way FlexPak 3000 DC Drives can be integrated in an industrial control application.

3.2 Network Layout

3.2.1 The DeviceNet standard supports up to 64 nodes on a single network. Because DeviceNet is a master-slave network, it requires that a DeviceNet Master or Scanner be present on the network. The Scanner establishes all connections and initiates all communications with network devices.

3.2.2 In a typical industrial application, a DeviceNet network consists of a scanner and one or more DeviceNet devices which operate by manipulating PLC memory.

3.3 Network Setup

3.3.1 DeviceNet is a network consisting of four wires plus shield. Five connections are typically made to each device on the network including two for power, two for communications signals, and one for shield.

3.3.2 Each device on the network must be configured using:

- a. Data rate and node address, and
- b. Device-specific information.
- 3.3.3 There are three methods to configure the devices:
- a. Mechanical switches only,
- b. Parameter values stored in the device's memory, and
- c. Electronic data sheet files.

The option card is configured using parameter values stored in its memory. These parameter values are set from the FlexPak 3000 keypad. See Chapter 4 for details.

3.4 Network Connections

3.4.1 Types of Network Connections

3.4.1.1 When a FlexPak 3000 DC Drive (using the DeviceNet Network Communications Opton Board) is configured and resides on an active DeviceNet network, a significant amount of FlexPak 3000 data is accessible over the network. The data may be read and/or written from the drive by the DeviceNet master or scanner.

3.4.1.2 The DeviceNet data may be accessed by the master through three distinct "connections", these are:

- a. Polled connection,
- b. Explicit connection
- c. Bit-strobed connection.

3.4.2 The Polled DeviceNet Connection

3.4.2.1 The Polled DeviceNet connection provides the primary means of drive control and monitoring. The DeviceNet master establishes the polled connection and transfers OUTPUT data in poll command messages. The drive returns INPUT data in poll reply messages. Note that all of the data accessible through the poll connection is also accessible through the explicit connection.

3.4.2.2 Some applicationsl make use of a large number of drives with limited functionality connected to a single network. Only certain parameters and diagnostic information commonly used are required for network control. Complete configuration over the network is <u>not</u> a requirement for low-cost, high performance network applications. This type of poll connection is referred to as the **control only** poll connection. The network master issues a poll command that contains 4 words of data for output to the drive, and the drive returns a series of poll reply messages that contain 8 words of input data from the drive.

3.4.2.3 Other applications accept a slower network in exchange for greater drive parameter access over the network. This type of poll connection is referred to as the **control + config** poll connection. When the drive is configured in this manner, the network master issues a series of poll commands that contains 26 words of data, and the drive returns a series of poll reply messages that contains 13 words of data. Since a greater amount of network data is transferred, the network scan rate performance is adversely affected

3.4.2.4 The amount of data transferred through the polled connection is dependent on the drive configuration performed in Section 4.2. Poll command/reply data format is defined in Section 5.12.

3.4.3 The Explicit DeviceNet Connection

3.4.3.1 The Explicit DeviceNet connection is required of all DeviceNet modules. Through this connection, the DeviceNet master can:

- a. Establish communication through all 3 connections.
- b . Access DeviceNet object information

c. Access **ALL** FlexPak 3000 network parameters. (See Section 5.10 for a list of drive parameters and the method used to access them through the explicit connection).

3.4.3.1 The explicit connection is primarily used by the DeviceNet controller to initially establish communications. Once the poll and/or strobe connections are established, the controller will normally access the drive data through them.

3.4.4 The Bit-Strobed DeviceNet Connection

3.4.4.1 The bit-strobed connection allows a DeviceNet master to send one bit of information simultaneously to all devices on the network. The bit of information is used for different purposes by different devices residing on the network.

3.4.4.2 The FlexPak 3000 (with communications option board) uses the bit received in a bitstrobe connection as a start command. It allows the multiple drives to be started "simultaneously", although it may take up to 100mS. for all drives to start.

CHAPTER 4: DRIVE CONFIGURATION

1.2 General

The section describes how to configure the FlexPak 3000 controller containing the DeviceNet Network Communication Option Board for use on the DeviceNet network. Refer to the FlexPak 3000 Installation and Operation instruction manual for more information on the drive parameters described below.

4.2 Network Communication

4.2.1 The drive becomes active on the DeviceNet network after the user performs the following steps. Note that these steps should be followed in the order listed to prevent drive fault(s). (The HEC-FP3-DN Card cannot be used in conjunction with Automax card).

1. Connect the Network Option board to the network via the standard "pluggable" DeviceNet connector (See Section 2.2 for wiring information).

2. Apply power to the drive.

3. Using the keypad, access the drop number assignment parameter (NETW DROP NUMBER (P.900)) and assign a valid DeviceNet network drop number to the drive.

4. Using the keypad, access the network connection type parameter (NETW CONNECT TYPE (P.910)) and select either **Basic Drive Connection** or **Full Drive Connection**.

5. Using the keypad, access the DeviceNet Baud Rate (NETW BUAD RATE) (P.912) parameter and select **125.0 KBAUD**, **250.0 KBAUD**, **500.0KBAUD**, or **OTHER**.

6. Using the keypad, access the DeviceNet poll message type (DEVNET POLL MSG TYPE) (P.913) and select **CONTROL ONLY** or **CONTROL+CONFIG**.

7. Apply power to the DeviceNet network.

4.3 Network Connection Types

4.3.1 Two Types of Network Connections

4.3.1.1 The drive's network connection type defines the scope of data and control that the master has with the connected drive. Two types of connections are provided: BASIC drive connection and FULL drive connection. The drive's network connection type is selected with a drive parameter (NETW CONNECT TYPE (P.910)).

4.3.2 BASIC Drive Connection

4.3.2.1 Select **BASIC** drive connection if the application does not require a complete configuration of the drive over the network. Only certain parameters and diagnostic information commonly used will be controlled over the network. Selecting this option for NETW CONNECT TYPE (P.910) results in data size of 64 words.

4.3.3 FULL Drive Connection

4.3.3.1 Select **FULL** drive connection if your application requires the ability to configure the drive over the network and to have access to almost all parameters, operating variables, and diagnostic information.. Selecting this option for NETW CONNECT TYPE (P.910) results in a data size of 256 words.

4.4 Drive Response to Loss of Network Communication

4.4.1 Overview

4.4.1.1 The Network Option board will attempt to remain active on the network at all times. Whenever communication is interrupted, the board will immediately notify the drive regulator of this occurrence and then attempt to re-establish communication with the network master. To eliminate extraneous fault conditions at power-up, the drive will delay for approximately 10 seconds after power-up before indicating a fault/alarm condition. A fault/alarm condition will be indicated if network communication is not established before the 10 second power-up timer expires, or if network communications was established and then lost.

4.4.2 Fault/Alarm Conditions

a. If **CONTROL SOURCE SELECT** ((P.000) on the DCM) is not set to NETWORK (3), the loss of network communication will <u>not</u> cause a fault or alarm to occur. If CONTROL SOURCE SELECT is set to NETWORK, the drive will react to the network communication loss based on how the communication loss selection parameter (NETW COMM LOSS SELECT (P.901)) has been configured.

b. If NETW COMM LOSS SELECT (P.901) is set to FAULT (0), the drive will consider a loss of network communication a drive fault resulting in a coast/DB stop. In this case, the response to network communication loss is as follows:

1. The drive will latch a fault condition and perform a coast/DB stop.

2. A fault will be logged in the drive's fault log and will be displayed on the front-panel display ("NETWORK COMMUNICATION LOSS").

3. The text that appears over the front panel CONTROL SOURCE SELECT key ("NETWORK") will blink indicating that the network is inactive.

4. Once network communications has been re-established, a drive fault reset will be required before the drive can be re-started. (Note: A fault reset does not clear the fault log).

c. If NETW COMM LOSS SELECT is set to HOLD LAST REF (1), the drive will continue to operate using the last reference received from the network master. In this case, the response to network communication loss is as follows:

1. An alarm will be logged in the alarm log.

2. An entry will be made into the drive's error log for each active-to-inactive transition of network communication status.

3. The front-panel display will indicate that a "NETWORK COMMUNICATION LOSS" alarm has occurred.

4. The text that appears over the front panel CONTROL SOURCE SELECT key ("NETWORK") will blink indicating that the network is inactive.

5. The drive can be stopped using the hardwired stop input (coast/DB stop, CTB-8) or by pressing the front panel stop key (STOP MODE SELECT). Once stopped, the drive cannot be re-started until network communication is re-established or CONTROL SOURCE SELECT is changed.

6. If the drive is still running when network communications has been re-established, the drive will once again follow the reference and sequencing control inputs supplied by the network master.

WARNING

The controller is <u>not</u> equipped with a coast-stop push-button. The user must install a hardwired operator-accessible push-button that provides a positive interrupt and shuts down the drive. **Failure to observe this precaution could result in bodily injury.**

NOTE: When NETW COMM LOSS SELECT is set to HOLD LAST REF, it may not always be possible to stop the drive over the network after a comm loss has occurred. A <u>hardwired stop</u> must be used to stop the drive.

d. If NETW COMM LOSS SELECT (P.901) is set to USE TRMBLK REF (2), the drive will continue to operate using the selected auto reference value obtained from the terminal block inputs. In this case, the response to network communication loss is as follows:

1. An alarm will be logged in the alarm log.

2. The front-panel display will indicate that a "NETWORK COMMUNICATION LOSS" alarm has occurred.

3. The text that appears over the front panel CONTROL SOURCE SELECT key ("NETWORK") will blink indicating that the network is inactive.

4. The drive can be stopped using the hardwired stop input (coast/DB stop, CTB-8), by pressing the front panel stop key (STOP MODE SELECT), or by using the terminal block stop input (STOP MODE SELECT, CTB-3). Once stopped, the drive cannot be re-started until network communication is re-established or CONTROL SOURCE SELECT is changed.

5. If the drive is still running when network communication has been re-established, the drive will once again follow the reference and sequencing control inputs supplied by the network master. The terminal block stop input (CTB-3) will no longer be active.

WARNING

The controller is <u>not</u> equipped with a coast-stop push-button. The user must install a hardwired operator-accessible push-button that provides a positive interrupt and shuts down the drive. **Failure to observe this precaution could result in bodily injury.**

NOTE: When NETW COMM LOSS SELECT is set to USE TRMBLK REF, it may not always be possible to stop the drive over the network after a comm loss has occurred. A <u>hardwired stop</u> must be used to stop the drive.

CHAPTER 5: PROGRAMMING

5.1 Data Types and Transfer Rates

5.1.1 General

5.1.1.1 In order to minimize regulator board CPU loading, the transfer of register data between the HEC-FP3-DN and the drive regulator board will <u>not</u> occur at all times and will <u>not</u> occur at the same rate.

5.1.1.2 The sections that follow describe the data types for input and output register data, along with typical drive information in each category. The specific register list for the FlexPak 3000 controller appears in Section 5.3.

5.2 Data Types and Transfer Rates

5.2.1 Input Data

5.2.1.1 The drive input data is categorized as one of three types: Control/reference, tunable, or configurable.

a. **Control/reference** inputs include data which require fast update rates. This includes data such as sequencing inputs (start, stop, run/jog, fwd/rev, etc.) and speed/torque reference. Control/reference inputs are transferred from the network option board to the regulator board every <u>speed loop scan period</u> (for the FlexPak 3000, every 20 milliseconds), or as often as it is required by the drive. For example, if the drive is configured to obtain its torque reference from the option port, it will read this data from the option port every <u>current minor loop scan</u>.

b. **Tunable** inputs include parameters which typically require modification or adjustment while the drive is running. Tunable data includes parameters such as accel/decel rates, min/max limits, gains or offsets, etc.

Tunable inputs are transferred from the network option board to the regulator board whenever the regulator performs the processing of new tunable parameters. This occurs approximately every 100 milliseconds while the drive is <u>running or stopped</u>.

c. **Configurable** inputs include parameters which alter the way that the drive operates in such a way that they **cannot** be modified while the drive is running. Configuration data includes parameters such as reference source selection, I/O configuration, motor/tach nameplate data, etc.

Configurable inputs are transferred from the network option board to the regulator board whenever the regulator performs processing of new configuration parameters. This occurs approximately every 100 milliseconds while the drive is stopped. Values sent from the network master while the drive is running will not be read in and used by the drive regulator until the drive is stopped.

5.2.2 Output Data

5.2.2.1 The drive output data is categorized as one of two types: Runtime signal data, or tunable, configuration and status data.

a. **Runtime signal data** includes items such as selected speed reference value, sequencing status (ready, running, etc.), drive fault flags, terminal block digital inputs state, and front-panel display mode values (RPM, Volts, Amps). The information is transferred from the regulator board to the network option board every speed loop scan period (for the FlexPak 3000, every 20 milliseconds).

b. **Tunable, configuration and status data** includes all other information provided by the drive which is not defined as runtime signal data. This would typically include all drive parameter values. When accessed via the DeviceNet explicit connection, this data provides a complete image of how the drive is configured and operating. Tunable, configuration and status data are transferred from the regulator board to the network option board whenever the regulator performs the processing of new tunable and configurable input parameters. This occurs every 100 milliseconds.

5.3 Transfer of Data from the Network Option Board to the Regulator

5.3.1 The network option must be actively communicating with the master and it must be selected as the drive control source (P.000 = Network (3) on DCM or Control Source Select Screen Set to "Network" on OIM) in order for <u>any</u> inputs to be transferred from the network option board to the drive regulator.

5.3.2 Note that the keypad can still be used to change parameter values when the drive control source is the network option. However, any changes made via the keypad will be overwritten when the next network update occurs (if the network option is configured to update the specified keypad parameter). This should be kept in mind if parameter changes need to be made while the network option is the control source for the drive.

5.3.3 In addition, a network-master-controlled tune/config input enable bit (word 32, bit 14) is provided to enable the transfer of tunable and configurable inputs from the network option board to the drive regulator. **Until this bit is set ON (1), only control/reference data are read in by the drive.** This gives the master's application program direct control over when tunable and configurable parameter values are read in by the drive, if at all.

5.3.4 <u>For example</u>, the master application program would typically initialize the tunable and configurable parameter data in the master's network card dual-port memory <u>before</u> turning on the tune/config input enable bit.

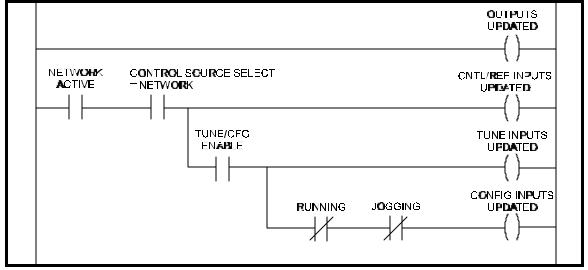
5.3.5 <u>Another example</u> would be an application which only wants to send control/reference data to the drive. In this case, the master would always leave the tune/config input enable bit OFF. The drive would then be configured locally, but start, stop, reset and reference would be sent from the network master.

5.3.6 Note that when the drive's poll connection is configured for **control only** operation, the tune/config input enable bit is forced to 0, regardless of its state in the poll command data.

5.4 Transfer of Data from the Regulator to the Network Option Board

5.4.1 All output data provided is transferred to the network option board <u>at all times.</u> The network <u>does not</u> have to be active and the network option <u>does not</u> have to be selected as the drive control source (P.000). No output enable control bit is necessary.

5.5 Tune/Config Update Synchronization Flag


5.5.1 To allow the network master's application program to determine when tunable and configurable inputs have been updated in the drive, a master write bit (Register 32, bit 15) is provided which is copied to a master write bit (Register 0, bit 7) by the drive. The drive will copy the master write bit to the master read bit <u>after</u> the drive has read in and processed all tunable and/or configurable input registers. The tune/config input enable bit must be set (1) in order for this to happen. Note that configurable type inputs are only read in by the drive while it is <u>not</u> running. This will not affect the copying of the network synchronization bit since tunable inputs will still be transferred.

5.5.2 By toggling the network synchronization bit in the master and by monitoring the copied value from the drive, the master's application program can determine when the drive has read in that data. This feature is provided for those applications which may require this type of synchronization. It is not necessary for the master's application program to use it, as it has no affect on drive operation. To determine when changes to tunable and configurable data on the drive have been completed, the master would perform the following sequence:

- Step 1. Modify the tunable and/or configurable register data in the appropriate network register(s).
- Step 2. Set the tune/config input enable flag (if not already set).
- Step 3. Toggle the network synchronization flag.
- Step 4. Monitor the loopbacked copy (read register) of the network synchronization flag until it equals the value written in step 3.

5.6 I/O Update Enable Logic Summary

5.6.1 The following logic strings summarize the output and input enable logic described above.

5.6.2 OUTPUTS UPDATED indicates when all output data is transferred from the drive regulator to the network option board memory and consequently to the master.

5.6.3 CNTL/REF INPUTS UPDATED, TUNE INPUTS UPDATED, and CONFIG INPUTS UPDATED indicate when control/ref, tunable, and configurable inputs, respectively, are transferred from the network option board memory to the drive regulator.

5.7 Parameter Processing Error Flag

5.7.1 A parameter processing error status flag (Register 0, bit 12) is provided to allow the network master to determine whether any parameter values are unacceptable to the drive. If this flag is set (1), then one or more parameters sent to the drive were rejected. If this flag is not set (0), then all parameters sent to the drive were accepted.

5.7.2 Note that the tune/config inputs enable bit must be set (1) before the drive can read in, and consequently process, any tune/config parameters. The parameter processing error flag is updated approximately every 100 milliseconds.

5.8 Data Retention Timing Requirements

5.8.1 All tunable and configuration drive input register values must be maintained by the network master's application program for at least 500 msec. to assure that they are seen by the drive. The 500 msec. is in addition to the time required by the network master to transmit this data to all the FlexPak 3000 drops (dependent on the number of devices on the network). This is particularly relevant for data which is detected by the drive only on transition.

5.8.2 Control/Reference data types do not have this 500 msec. requirement. They are scanned (read in) by the drive every 20 msec. The Run and Jog inputs and the Fault and Alarm Log Clear command input are exceptions, and are described below.

5.8.3 The Run and Jog inputs requires a 0-to-1 transition in order to start the drive. Processing the Run and Jog inputs from the network may be delayed by the drive for up to 100 msec. This is done to synchronize a drive start to the processing of new configuration data. In order for the network master to assure this 0-to-1 transition is detected by the drive, the network master must maintain both the 0 and 1 states for at least 100 msec. Values which are maintained for less time may not be detected by the drive.

5.9 Drive Ready Status Bit

5.9.1 The Drive Ready status bit (Drop 1, reg. 0 bit 0) is used to indicate that a 0-to-1 transition on the Run or Jog input will start the drive. The Drive Ready bit will be ON (1) when <u>all</u> of the following conditions are met, and OFF (0) when <u>one or more</u> are not met:

- a. No drive faults are active (Drop 1, reg. 0 bit 2 = 0)
- b. Stop input is ON (Drop 1 reg. 32 bit 1 = 1)
- c. Front -panel STOP/RESET button is <u>not</u> pressed
- d. Coast/DB Stop terminal block input is closed (Drop 1, reg. 0 bit 10 = 1)
- e. Customer Interlock terminal block input is closed (Drop 1, reg. 0, bit 11 = 1)

5.10 Network Register Organization

5.10.1 When the drive network connection type parameter (NETW CONNECT TYPE (P.910)) is configured for BASIC drive connection, the FlexPak 3000 drive will communicate its <u>first 64</u>

registers to the network communications card. Through an "Explicit" DeviceNet connection, all of this data is available to the DeviceNet master.

5.10.2 When the drive Network Connection Type is configured for FULL drive connection, the FlexPak 3000 drive will communicate <u>all 256</u> of its registers to the network communications card. Through an All of this data is available to the DeviceNet master through an "Explicit" DeviceNet connection.

Register #s	Automax References		
0-63	0-63, Drop 1 (Table A.1)		
64-127	0-63, Drop 2 (Table A.2)		
128-191	0-63, Drop 3 (Table A.3)		
192-256	0-63, Drop 4 (Table A.4)		

The complete list of FlexPak 3000 parameters are located in Tables A.1 - A.4 in Appendix A.

5.11 FlexPak 3000 Parameters Not Accessible Over the Network

5.11.1	The following FlexPak 3000	parameters are not accessible over the network at any tir	ne.

Table 5.1 – FlexPak 300 Parameters			
FlexPak 3000 Parameter Name	Parameter #	FlexPak 3000 Parameter Name	Parameter #
CT TURNS RATIO	P.010	CML ERROR	P.398
MANUAL REF SELECT	P.106	ARMATURE DELTA	P.399
MOP ACCEL TIME	P.115	METER OUT 1 GAIN ADJ	P.400
MOP RESET ENABLE	P.116	METER OUT 2 GAIN ADJ	P.401
PRESET SPEED 1	P.117	METER OUT 1 ZERO ADJ	P.402
PRESET SPEED 2	P.118	METER OUT 2 ZERO ADJ	P.403
PRESET SPEED 3	P.119	METER OUT 1 SELECT	P.404
MOP DECEL TIME	P.120	METER OUT 2 SELECT	P.405
TORQUE REFERENCE	P.189	FLD CURRENT REGULATOR	P.586
MOP OUTPUT	P.191	FIELD DELTA HIGH LIM	P.587
ANALOG MAN REFERENCE	P.192	FIELD DELTA	P.588
DRAW PERCENTAGE OUT	P.196	J20 FIELD LOSS DETECT	P.597
SPEED RAMP INPUT TP	P.198	J21 FLD SUPPLY JUMPER	P.598
SPEED RAMP OUTPUT	P.199	J11 ANLG TACH VLT SCL	P.792
SELF TUNE FIELD RANGE	P.218	J14 ANLG TACH VLT RNG	P.793
SELF TUNE STABILITY	P.219	POWER UNIT TYPE	P.795
SELF TUNE BRIDGE	P.220	NETWORK KIT	P.796
IR COMPENSATION TP	P.290	I/O EXPANSION KIT	P.797
CURRENT COMPOUND TP	P.293	PULSE TACHOMETER KIT	P.798
JOG RAMP OUTPUT	P.294	J15 REGULATOR TYPE	P.799
SPD LOOP LAG OUTPUT	P.298	OCL REFERENCE	P.845
PHASE FIRE TEST DELTA	P.309	OCL FEEDBACK	P.847
PHASE FIRE TST BRIDGE	P.310	OCL ENABLE	P.849
A-C LINE PERIOD	P.393	NETW DROP NUMBER	P.900
J18 ARM I FB RESISTOR	P.395		
CML FEEDBACK	P.397		

5.12 Poll Connection Data Transfer Format

5.12.1 General

As described in Section 4.3.3, the DeviceNet polled connection is used in most cases to accomplish drive control. The following information illustrates the data format that is expected and returned by the drive when using the polled connection:

5.12.2 Poll Connection Command Data Format

Word#	Description
0	Drive Control
1	Speed Control
2	Network Input Reg #1
3	Field Reference Reg

(Poll connection consumption size = 8 bytes)

The following data should only be sent in the poll command message if the drive is configured to accept control + config data in the poll command message. (See Section 4.2.)

- 4 Accel Time Out
- 5 Decel Time Out
- 6 Min Speed Out
- 7 Max Speed Out
- 8 Pos Current Limit %
- 9 Neg Current Limit %
- 10 S-Čurve Rounding
- 11 Trim Range
- 12 Spd Loop PI Prop Gain
- 13 Spd Loop PI Lead Frq
- 14 CML PI Prop Gain
- 15 CML PI Lead Freq
- 16 CML Ref Rate Limit
- 17 Jog Speed
- 18 Stop Type Select
- 19 IR Compensation
- 20 Current Compounding
- 21 Ntwk Loss Action
- 22 Ntwk Out Reg #1 Sel
- 23 Ntwk Out Reg #2 Sel
- 24 Ntwk Out Reg #2 Oct
- 25 Feedback Select

(Poll connection consumption size = 52 bytes)

Word #	Description		
0	Status word		
1	Speed reference		
2	Speed reference sum		
3	Speed Feedback		
4	CML feedback		
5	Network Out Reg #1		
6	Network Out Reg #2		
7	Network Out Reg #3		

(Poll connection production size = 16 bytes)

The following data will only be returned in the poll reply message if the drive is configured to return control + config data in the poll reply message message (See Section 4.2.)

- 8 Fault Bits 1
- 9 First Fault
- 10 Alarm Bits 1
- 11 Last Alarm
- 12 Control Source

(Poll connection production size = 26 bytes)

CHAPTER 6: ELECTRONIC DATA SHEET (EDS) FILE

6.1 General

6.1.1 Provided with the option card is a diskette containing an Electronic Data Sheet . The Electronic Data Sheet is for use with the DeviceNet Manager Software. The software (which is used to configure a DeviceNet system including the DeviceNet Scanner) is typically used in PLC applications. The EDS file included with the option card provides important information to the software regarding the DeviceNet interface to the drive.

6.2 Installation

1. Before installing the EDS, the DeviceNet Manager Software must already be installed. Run the DeviceNet Manager software. From the Utilities Menu, select "Install EDS Files..".

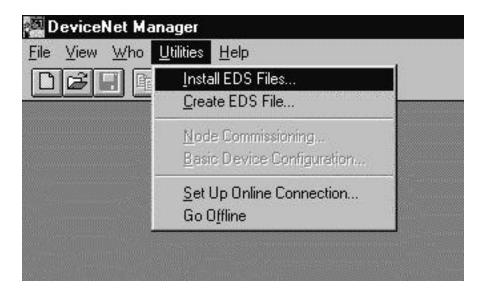


Figure 6.1

2. The following menu will appear:

Install EDS Files		×
File <u>N</u> ame: *.eds	Directories: c:\dnetmgr	OK Cancel
	c:\ dnetmgr des fp3000 gv3kdemo test	<u>H</u> elp N <u>e</u> twork
0 of 0 Selected List Files of <u>Type</u> : EDS Files (*.eds)	Drives:	Select All Unselect All
Filename:		
Catalog Num: Product Name: Major Revision:		

3. Select your diskette drive (A or B), and the following file will be listed:

Install EDS Files				×
File <u>N</u> ame: *.eds		<u>D</u> irectories: a:\		ОК
1.eds	*	🛅 a:\	۸	Cancel
				<u>H</u> elp
				N <u>e</u> twork
	v	J	×	
0 of 1	Selected			Select All
List Files of <u>Type</u> :		Dri <u>v</u> es:		
EDS Files (*.eds)	-	🗖 a:	•	Unselect All
Filename:	1.EDS			
Vendor:	Reliance			
Catalog Num:	50FR4021			
Product Name:	FlexPak 30	100 Digital DC Drive		
Major Revision:	1			

Figure 6.3

4. Information regarding the file is shown in the lower portion of the screen. Select the file named "1.eds" and press "OK". The DeviceNet Manager software will now install the EDS file to the appropriate directory on your hard disk drive.

6.3 Using the EDS File

1. Now that the EDS file is installed, the Reliance FlexPak 3000 DC Drive is added to the list of available DeviceNet products. In the example below, a project named "Press_Rm" and Network named "Blanker" is open, and the only device currently added to the network is a SLC 500 DeviceNet Scanner module.

PRESS_RM.PC1		88	
Project Hans: PRESS_RM Metwork: FLANXCR	Notwark Description Blanker Proze DeviceNat Hotward	ç	
040	Not Data Rate: 125 k	date Metwork.	
Nade Vender I	Preduct Rase 1747-SDR Scanner Module	Node Hans	

Figure 6.4

2. To add a Reliance FlexPak 3000 Variable Frequency Drive to the network, press the "Add Device" button, and a list of DeviceNet devices is recalled.

Add Device to Network				×
Network: BLANKER Device <u>Type</u>		ок	Cancel	Help
[All Product Types] AC Drive Analog Input Module Analog Output Module Barcode Scanner CNC Communication Adapter	Not	de <u>A</u> ddress: 0 de <u>N</u> ame: 0 de <u>D</u> escription:		
Product			Major	
Vendor	Product Name		Revision	
Allen-Bradley Company Allen-Bradley Company Allen-Bradley Company Allen-Bradley Company Eurotherm Controls Ltd Huron Net Works Reliance Reliance	SMP-3 2A to 10A SMP-3 40A to 180A SMP-3 70A to 304A SMP-3 8A to 37A DeviceNet X4 Slave FlexPak 3000 Digita GV3000 Variable Fro	I DC Drive	2 2 2 0 1 1 1	•
	CKE	Device Type:	SCANport Device	
Catalog Number: 1203-	ukj	Device Type.	ochipon benee	

Figure 6.5

3. The list is in alphabetical order by Vendor. Page down to the "R's" and the "Reliance FlexPak 3000 Variable Frequency Drive" item is available for selection. To add a FlexPak 3000 as Node 1, select the FlexPak 3000 item, change the Node Address to 1, and press "OK". Press "Cancel" when finished. The FlexPak 3000 will now be added to the list of devices on the BLANKER network, as shown in Figure 6.6.

Figure 6.6

7. Double-clicking on the FlexPak 3000 item brings up the "Enhanced Mode" screen, showing a detailed data listing of the FlexPak 3000 parameters. There are three groups of parameters which may be listed, *Tune/config*, *Control/ref/IO*, and *All Parameters*. The listings are just for convenience. Selecting a list with the software has no effect on how much data is sent to and from the drive. That can only be set through the FlexPak 3000 keypad, Parameter P.061.

evice C	onfiguration - Enhanced M	ode		
I	Node Name:	N	ode Address: 0	Close
	Vendor: Reliance			
Pro	oduct Name: FlexPak 300	0 Digital DC Dri	ive	<u>H</u> elp
	Description:			
Dev	ice Info			Set to <u>D</u> efaults
Det				
••				Modify Parameter
Paramet	ers		Parameter Group	
	Status: Default Va	alues		Start Monito <u>r</u>
Num	Name	Value	[All Parameters]	
1R	Drive Status	0000 000	00 0000 0000	Load from File
2R	Speed Reference	0		
3R	Speed Ref. Sum	0		Load from Device
4R	Speed Feedback	0		
5R	CML Feedback	0		Save to File
6R	Network Out Reg #1	0		
7R	Network Out Reg #2	0		Save to Device
8R	Network Out Reg #3	0		00101000000
9R	Fault Bits 1 First Fault		00 0000 0000	
10B		0		Print to Text File

Figure 6.7

8. Double-clicking on a Parameter brings up further information. Double-clicking on Drive Status brings up the following information in Figure 6.8:

Device Configuration - Modify Bit	Parameter	×
Parameter #1 READONLY Drive Status Status: Offline Configuration		OK Close
Settings Bit 0 Drive Ready 1 Drive Running 2 Fault Active 3 Jog Mode 4 Reverse 5 Stopping 6 Tune/config Ena 7 Tune/config Sync	Bit 8 Alarm Active 9 In Current Limit 10 Coast/DB Interlock 11 Customer Interlock 12 Parameter Error 13 Fwd/rev input 14 Auto/man input 15 Fault reset input	Load from Device Save to Device Start Monitor Param Help
Internal Value	Hexadecimal	<u>H</u> elp
	Select Default	

Figure 6.8

9. This is useful in interpreting all the parameters that are accessible over DeviceNet. In the case of "Drive Status" it details the meaning of each of the 16 status bits. It also shows that "Drive Status" is a Read-only parameter.

6.4 Data Mapping

6.4.1 Mapping FlexPak 3000 DeviceNet data to the DeviceNet Scanner is accomplished through the configuration of the scanner. See the documentation for your DeviceNet Scanner for details on that process.

APPENDIX A --- FLEXPAK 3000 PARAMETERS

Appendix A contains Tables A.1 – A.4 covering register assignments for DROP_1 Area through DROP_4 Area.

DeviceNet M	Master Re	ad Register	Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#			Description	Parameter #	
Runtime Sign	al Data				
0	0			Drive Status Word	
Ũ				Bit-packed word containing information on the present status of the drive.	
		0		Drive ready	
		1		Drive running	
		2		Fault active	
		3		Drive jogging	
		4		Forward/Reverse command (0=forward, 1=reverse)	
		-			
		5		Drive stopping	
		6		Tune/Config input enable loopback (0=disabled, 1=enabled)	
		7		Tune/Config update synchronization flag loopback	
		8		Alarm active	
		9		In current limit	
		10		Coast/DB interlock (0=open, 1=closed)	
		11		Customer interlock (0=open, 1=closed)	
		12		Parameter processing error (0=no errors,1=one or more	
				errors)	
		13		Terminal block forward/reverse input state (CTB5)	
		14		Terminal block auto/manual input state (CTB-6)	
		15		Terminal block fault/alarm reset input state (CTB-10)	
		15		Terminal block fault alarm teset input state (CTD 10)	
1	1		SPD SOURCE	Selected speed/voltage Loop reference value prior to any	P.193
			SELECT OUT	limiting and signal conditioning	
				(4095 at TOP SPEED)	
2	2		SPD LOOP	Speed/Voltage loop reference value after all limiting and	P.295
			REFERENCE	signal conditioning	
				(4095 at TOP SPEED)	
2	3		SPD LOOP	Dow grood/voltage Leep feedback volve ofter all seeling	P.296
3	3		FEEDBACK	Raw speed/voltage Loop feedback value after all scaling (4095 at TOP SPEED)	F.290
			TEEDBACK	(4035 at 101 51 EED)	
4	4		SPD LOOP	Speed/Voltage loop output value	P.299
•			OUTPUT	(4095 at MAXIMUM CURRENT)	
_	-				D • • • •
5	5		ARMATURE	Armature voltage feedback value after all scaling	P.289
			VOLTAGE	and prior to IR compensation	
				(4095 at MOTOR RATED ARM VOLTS)	
6	6			Current minor loop feedback averaged over 8 CML scans	
v	-			(4095 at MAXIMUM CURRENT)	
-	7			Natural Output Dovictor 1 Value of the manuscript in the	
7	7			Network Output Register 1. Value of the parameter selected	
				by NETW OUT REG1 SELECT	

DeviceNet		Read Register	Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#	Reg #	Bit #		Description	Parameter #
Runtime Sign	al Data .con	tinued)			
Kultulle Sign		unueu)			
8	8			Network Output Register 2 Value of the parameter selected by NETW OUT REG 2 SELECT	
9	9			Network Output Register 3 Value of the parameter selected by NETW OUT REG 3 SELECTTunable,	
Configuratior	n and Status	Data			
10	10			Fault Latch Bits Word #1	
10	10			Bit-packed word indicating latched faults	
		0		AC line synchronization loss	
		1		Motor shunt field current loss Sustained overload	
		2 3		Sustained overload Self-tuning fault	
		4		Motor thermostat trip	
		5		Controller thermostat trip	
		6		Blower motor starter open	
		7 8		Open armature circuit Instantaneous armature overcurrent	
		9		Overspeed/overvoltage	
		10		Open SCR	
		11		(RESERVED)	
		12		Tachometer loss	
		13 14		OIM communication loss Network communication loss	
		15		(RESERVED)	
11	11			Fault Latch Bits Word #2	
				Bit-packed word indicating latched faults (all bits reserved)	
12	12			Fault code of the first fault that occurred after the last fault reset	
13	13			Alarm Latch Bits Word	
		0		Bit-packed word containing latched alarm bits	
		01		Motor brush wear low AC line voltage < 90% of NOMINAL AC LINE VOLTS	
		2 3-15		AC line voltage > 115% of NOMINAL AC LINE VOLTS (RESERVED)	
14	14			Alarm code of the most recent alarm	
15	15		CONTROL SOURCE SELECT	Selected control source (0=terminal block, 1=keypad, 2=serial port, 3=network)	P.000
16	16		ACCELERATION RATE	Minimum time to accelerate from zero speed to TOP SPEED (seconds * 10)	P.001
17	17		DECELERATION RATE	Minimum time to decelerate from TOP SPEED to zero speed (seconds * 10)	P.002
18	18		MINIMUM SPEED	Lowest operating speed (RPM)	P.003
19	19		MAXIMUM SPEED	Highest operating speed (RPM)	P.004

DeviceNet	Master Re	ad Register	Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#	Reg #	Bit #		Description	Parameter #
Tunable, Continued)	figuration and	l Status Data			
20	20		POSITIVE CURRENT LIM	Highest level of motoring current (% of MOTOR RATED ARM AMPS)	P.005
21	21		NEGATIVE CURRENT LIM	Highest level of regenerative current (% of MOTOR RATED ARM AMPS)	P.006
22	22		TRIM RANGE	Determines how much the trim reference will affect the speed/voltage loop reference (%)	P.109
23	23		SPD LOOP PI PROP GAIN	Speed loop PI proportional gain (gain * 100)	P.211
24	24		SPD LOOP PI LEAD FREQ	Speed loop PI lead break frequency (radians/second * 100)	P.212
25	25		CML PI PROP GAIN	CML PI proportional gain (gain * 1000)	P.301
26	26		CML PI LEAD FREQ	CML PI lead break frequency (radians/second)	P.302
27	27		CML REF RATE LIMIT	Minimum time to change from zero to full load armature amps (milliseconds)	P.303
28	28		AMX NETW CONNECT TYPE	AutoMax network connection type (0=BASIC, 1=FULL)	P.910
29	29		NETW COMM LOSS SELECT	Network communication loss selection (0=fault, 1=hold last ref., 2=use terminal block ref.)	P.901
30	30		AMX NETW REF SELECT	AutoMax network reference selection (0=directed, "n"=broadcast register "n" where n=1 -8)	P.911
31	31		REGULATOR SW VERSION	Regulator board software version number	P.794
Master Write	Registers Cor	ntrol/Reference	e Data		
32	32	0 1 2 3 4 5-6 7 8		Sequencing control word Run (0 to 1 transition to run) Stop (0=stop, 1=not stop) Fault reset (0 to 1 transition to reset) Jog (0 to 1 transition to jog, 0=stop jogging) Fwd/Rev select (0=forward, 1=reverse) (RESERVED) Outer control loop enable (0=hold OCL in reset; 1=OCL enabled) Fault log clear & reset (0 to 1 transition to clear)	

DeviceNet	Master Re	ead Register	Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#	Reg #	Bit #		Description	Parameter #
Control/Refere (32)	ence Data (c (32)	ontinued) 9 10 11 12-13 14		Alarm log clear & reset (0 to 1 transition to clear) Alarm reset (0 to 1 transition to reset) Memory save (0 to 1 transition to save) (RESERVED) Tune/Config Input Enable (0 = read Control/Reference inputs only from network, 1 = read all (Cntl/Ref, Tune & Config) inputs from network)	
		15		Tune/Config Update Synchronization Flag	
33	33			Network Reference; Speed/voltage loop or CML reference value used when CONTROL SOURCE SELECT (Drop 1, reg. 15) =NETWORK and AMX NETW REF SELECT (Drop 1, reg. 30) = 0 (4095 at TOP SPEED/ MOTOR RATED ARM VOLTS or MAXIMUM CURRENT)	
34	34		NETWORK INPUT REGISTER 1	Value used when switch selection NETW IN REG 1 is chosen	
35	35		NETWORK INPUT REGISTER 2	Value used when switch selection NETW IN REG 2 is chosen	
36	36		NETWORK INPUT REGISTER 3	Value used when switch selection NETW IN REG 3 is chosen	
37	37		FIELD REF REGISTER	Field Current Loop reference value (4095 at MOTOR RATED FLD AMPS)	P.513
38 - 39	38-39			(RESERVED)	
Tunable Data 40	40		ACCELERATION RATE	Minimum time to accelerate from zero speed to TOP SPEED (seconds * 10)	P.001
41	41		DECELERATION RATE	Minimum time to decelerate from TOP SPEED to zero speed (seconds * 10)	P.002
42	42		MINIMUM SPEED	Lowest operating speed (RPM)	P.003
43	43		MAXIMUM SPEED	Highest operating speed (RPM)	P.004
44	44		POSITIVE CURRENT LIM	Highest level of motoring current (% motor full lo ad armature amps)	P.005
45	45		NEGATIVE CURRENT LIM	Highest level of regenerative current (% motor full load armature amps)	P.006
46	46		S-CURVE ROUNDING	Adjusts the amount of smoothing of the speed/voltage loop reference (%)	P.014
47	47		TRIM RANGE	Determines how much the trim reference will affect the speed/voltage loop reference (%)	P.109

DeviceNet	Master Read Register		Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#	Reg #	Bit #		Description	Parameter #
Control/Refer	ence Data (c	ontinued)			
48	48		SPD LOOP PI PROP GAIN	Speed loop PI proportional gain (gain * 100)	P.211
49	49		SPD LOOP PI LEAD FREQ	Speed loop PI lead break frequency (radians/second * 100)	P.212
50	50		CML PI PROP GAIN	CML PI proportional gain (gain * 1000)	P.301
51	51		CML PI LEAD FREQ	CML PI lead break frequency (radians/second)	P.302
52	52		CML REF RATE LIMIT	Minimum time to change from zero to full load armature amps (milliseconds)	P.303
53	53		JOG SPEED	Reference value used during jogging (RPM)	P.012
54	54		STOP MODE SELECT	0=ramp, 1=coast/dynamic break, 2=current limit	P.114
55	55		IR COMPENSATION	Armature voltage loss compensation (% full load amps)	P.206
56	56		CURRENT COMPOUNDING	Sets the level of current compounding (%)	P.209
57	57		NETW COMM LOSS SELECT	Network communication loss selection (0=fault, 1=hold last ref., 2=use terminal block ref.)	P.901
58	58		NETW OUT REG 1 SELECT	Number of the parameter whose value will be readable in Drop_1, register 7 (0=motor speed in RPM)	P.902
59	59		NETW OUT REG 2 SELECT	Number of the parameter whose value will be readable in Drop_1, register 8 (0=armature voltage in volts)	P.903
60	60		NETW OUT REG 3 SELECT	Number of the parameter whose value will be readable in Drop_1, register 9 (0=armature current in amps*10 or amps)	P.904

DeviceNet	Master R	ead Register	Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#	Reg #	Bit #		Description	Parameter #
Configuration	1 Data				
61	61		FEEDBACK SELECT	Speed/Voltage loop feedback selection (0=armature voltage, 1=DC analog tach, 2=pulsetach, 3=AC analog tach)	P.200
62	62		AMX NETW CONNECT TYPE	AutoMax network connection type (0=BASIC, 1=FULL)	P.910
63	63		AMX NETW REF SELECT	AutoMax network reference selection (0=directed, "n"=broadcast register "n" where n=1 -8)	P.911

Table A.1 - Register Assignments for DROP_1 Area

D	Table A.2 – FlexPak Parameters (64 – 127) Master Read Register Parameter Name FlexPak 3000							
DeviceNet		0	Parameter Name	FlexPak 3000	FlexPak 3000			
Atttibute#	Reg #	Bit #		Description	Parameter #			
Runtime Sign	al Data							
64	0		ANALOG AUTO REFERENCE	Analog auto reference input value after all scaling (4095 at TOP SPEED)	P.188			
65	1			(RESERVED)				
66	2		ANALOG MAN TRIM REF	Analog manual trim reference input value after all scaling (4095 at TOP SPEED)	P.194			
67-74	3-10			(RESERVED)				
Tunable, Con	figuration, and	d Status Data						
75	11		OCL RAMP OUTPUT	Outer Control Loop reference value after all limiting (4095)	P.845			
76	12		OCL OUTPUT	Outer Control Loop output value (RPM)	P.848			
77	13		TOP SPEED	Highest operating speed (RPM)	P.011			
78	14		JOG SPEED	Reference value used while jogging (RPM)	P.012			
79	15		JOG ACCEL/ DECEL RATE	Minimum accel and decel time used while jogging (seconds * 10)	P.013			
80	16		S-CURVE ROUNDING	Adjusts the amount of smoothing of the speed/voltage loop reference (%)	P.014			
81	17	0	REVERSE DISABLE	Prevents speed/voltage loop reference from generating a negative value 0=bipolar ref, 1=positive ref	P.015			
82	18		ANLG AUTO SIGNAL TYPE	Selects the type of analog auto reference signal for proper scaling	P.100			
83	19		ANLG AUTO GAIN ADJ	(0=0-10 V, 1=+/-10 V, 2=4-20 mA, 3=10-50 mA) Analog auto reference gain adjust	P.101			
84	20		ANLG AUTO ZERO ADJ	Analog manual reference (and analog manual trim reference) gain adjust	P.102			
85	21		AUTO REFERENCE SELECT	Selects the type of auto ref. (0= analog, 1= frequency)	P.103			
86	22		ANLG MAN REF GAIN ADJ	Analog manual reference (and analog manual trim reference) gain adjust	P.104			
87	23		ANLG MAN REF ZERO ADJ	Analog manual reference (and analog manual trim reference) zero adjust	P.105			
88	24		TRIM REF REGISTER	Trim reference value (% TOP SPEED * 10)	P.107			

DeviceNet	Master Re	ead Register	Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#	Reg #	Bit #		Description	Parameter #
Tunable, Continued)	figuration, an	d Status Data			
89	25		T RIM REFERENCE SELECT	Trim reference select (0=register; 1=analog manual; 2= analog in 1; 3=netw in reg 1; 4=analog in 2; 5,6=netw in reg 2,3)	P.108
90	26		TRIM MODE SELECT	Trim mode select (0=no trim, 1=incremental, 2=proportional)	P.110
91	27		AUTO MODE MIN BYPASS	Minimum speed limit bypass while in auto mode	P.111
		0	211125	0=min speed applied, 1=min speed bypassed	
92	28		AUTO MODE RAMP BYPASS	Rate limit block bypass while in auto mode	P.112
		0		0=rate limit applied, 1=rate limit bypassed	
93	29		STOP SPEED THRESHOLD	Speed at which the main contactor will drop out during a controlled stop (RPM)	P.113
94	30		STOP MODE SELECT	Stop mode select (0=ramp, 1=coast/dynamic braking, 2=current limit)	P.114
95	31		TRIM OUTPUT	Actual signal used to trim the selected speed/voltage loop reference (4095 at TOP SPEED)	P.197
Master Write	Registers				
Control/Refer	ence Data			(NONE)	
Tunable Data					
96	32			(RESERVED)	
97	33		NORMALIZED INERTIA	Combined inertia of motor and load (seconds*10)	P.222
98	34		OCL REF REGISTER	Outer Control Loop reference used when OCL REFERENCE SELECT= REGISTER (4095)	P.801
99	35		OCL REF RAMP TIME	Minimum amount of time for OCL reference to change from 0 to 4095 and 4095 to 0 (seconds*10)	P.802
100	36		OCL REF ROUNDING	Adjusts the amount of smoothing of the Outer Control Loop reference (%)	P.803
101	37		OCL LEADLAG SELECT	Outer Control Loop lead/lag block select (0=lead/lag; 1=bypassed; 2=lag/lead)	P.805

DeviceNet	Master Read Register		Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#	Reg #	Bit #		Description	Parameter #
Tunable Data	(continued)				
102	38		OCL LEADLAG LOW FREQ	Outer Control Loop lead/lag block low break frequency (radians/second*100)	P.806
103	39		OCL LEADLAG RATIO	Specifies the ratio of lag to lead or lead to lag break frequencies	P.807
104	40		JOG ACCEL/ DECEL TIME	Minimum accel and decel time used while jogging (seconds * 10)	P.013
105	41		ANLG AUTO GAIN ADJ	Analog auto reference gain adjust	P.101
106	42		ANLG AUTO ZERO ADJ	Analog auto reference zero adjust	P.102
107	43		AUTO REFERENCE SELECT	Selects the type of auto reference (0=analog, 1=frequency)	P.103
108	44		ANLG MAN REF GAIN ADJ	Analog manual reference (and analog manual trim reference) gain adjust	P.104
109	45		ANLG MAN REF ZERO ADJ	Analog manual reference (and analog manual trim reference) zero adjust	P.105
110	46		TRIM REFERENCE SELECT	Trim reference select (0=analog manual, 1=analog trim, 2=trim register, 3=network trim from Drop 1, reg. 34)	P.108
111	47		TRIM MODE SELECT	Trim mode select (0=no trim, 1=incremental, 2=proportional)	P.110
112	48		AUTO MODE MIN BYPASS	Minimum speed limit bypass while in auto mode,	P.111
		0		0=min speed applied, 1=min speed bypassed	
113	49		AUTO MODE RAMP BYPASS	Rate limit block bypass while in auto mode,	P.112
		0		0=rate limit applied, 1=rate limit bypassed	
114	50		STOP SPEED THRESHOLD	Speed at which the main contactor will drop out during a controlled stop (RPM)	P.113
115	51		OCL PI PROP GAIN	Outer Control Loop PI block proportional gain (gain*100)	P.808
116	52		OCL PI LEAD FREQ	Outer Control Loop PI block lead break frequency (radians/second*100)	P.809

DeviceNet	Master Re	ad Register	Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#	Reg #	Bit #		Descri ption	Parameter #
Tunable Data (continued)					
117	53		OCL PI POSITIVE LIMIT	Outer Control Loop PI block positive limit (%)	P.810
118	54		OCL PI NEGATIVE LIMIT	Outer Control Loop PI block negative limit (%)	P.811
119	55		OCL TRIM RANGE	Percent control OCL output will have on Speed/Voltage Loop reference (%*10)Configuration Data	P.812
120	56		INERTIA COMP SELECT	Inertia compensation select (0=none; 1=internal; 2,3=analog in 1,2; 4,5,6=netw in reg 1,2,3)	P.221
121	57		POS CURRENT LIM SEL	Selects positive current limit source (0=register; 1,2=analog in 1,2; 3,4,5=netw in reg 1,2,3)	P.223
122	58		NEG CURRENT LIM SEL	Selects negat ive current limit source (0=register; 1,2=analog in 1,2; 3,4,5=netw in reg 1,2,3)	P.224
123	59		OCL REFERENCE SELECT	Selects OCL reference source (0=register; 1,2=analog in 1,2; 3=frequency in; 4,5,6=netw in reg 1,2,3)	P.800
124	60		OCL FEEDBACK SELECT	Selects OCL feedback source (0=CML feedback; 1,2=analog in 1,2)	P.804
125	61		TOP SPEED	Highest operating speed (RPM)	P.011
126	62	0	REVERSE DISABLE	Prevents Speed/Voltage loop reference from generating a negative value 0=bipolar ref, 1=positive ref	P.015
127	63		ANLG AUTO SIGNAL TYPE	Selects the type of analog auto reference signal for proper scaling (0=0 -10 V, 1=+/-10 V, 2=4 -20 mA)	P.100

Table A.2 - Register Assignments for DROP_2 Area

		Table A.3 – FlexF	Pak 3000 Parameters (128 – 191)	
DeviceNet	Master Read Register	Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#	Reg # Bit #		Description	Parameter #
Runtime Sign	al Data			
128	0	ANALOG TACH FEEDBACK	Analog tachometer feedback signal after all scaling (4095 at TOP SPEED)	P.291
129	1	PULSE TACH FEEDBACK	Pulse tachometer feedback signal (4095 at TOP SPEED)	P.292
130	2	SPD LOOP ERROR	Speed/Voltage loop error value	P.297
131	3	CML REFERENCE	Current minor loop reference value after all limiting (4095 at MAXIMUM CURRENT)	P.396
132	4	FIELD REFERENCE	(4095 at MOTOR RATED FLD AMPS)	P.590
133	5	FIELD FEEDBACK	Field current feedback value (4095 at MOTOR RATED FLD AMPS)	P.589
134-139	6-11		(RESERVED)	
Tunable, Con	figuration and Status Data			
140	12	MAXIMUM CURRENT	Highest amount of current, eitherpositive or negative (% MOTOR RATED ARMATURE AMPS)	P.007
141	13	MOTOR RATED ARM AMPS	Rated armature amps from motor nameplate (amps * 10)	P.008
142	14	MOTOR RATED ARM VOLTS	Rated armature voltage from motor nameplate (volts DC)	P.009
143	15	FEEDBACK SELECT	Speed/Voltage loop feedback selection (0=armature voltage, 1=DC analog tach, 2=pulsetach, 3=AC analog tach)	P.200
144	16	ANALOG TACH GAIN ADJ	Analog tachometer feedback gain adjust	P.201
145	17	ANALOG TACH ZERO ADJ	Analog tachometer feedback zero adjust	P.202
146	18	ANLG TACH VOLTS/1000	Rated volts per 1000 RPM from the analog tachometer nameplate (volts * 10)	P.203
147	19	ARM VOLTAGE GAIN ADJ	Armature voltage feedback gain adjust	P.204
148	20	ARM VOLTAGE ZERO ADJ	Armature voltage feedback zero adjust	P.205
149	21	IR COMPENSATION	Armature voltage loss compensation (% full load amps)	P.206

DeviceNet		ad Register	Parameter Name	FlexPak 3000 Description	FlexPak 3000 Parameter #
Atttibute #	Reg #	Bit #			
Tunable, Con (continued)	figuration and	Status Data			
150	22		PULSE TACH PPR	Pulses per revolution from the pulse tachometer nameplate	P.207
151	23		PULSE TACH QUADRATURE	Pulse tachometer quadrature decode enable	P.208
		0	QUADRATURE	0=non-quad. decode, 1=quad. decode	
152	24		CURRENT COMPOUNDING	Sets the level of current compounding (%)	P.209
153	25		SPD LEADLAG RATIO	Specifies the ratio of lag to lead or lead to lag break frequencies	P.213
154	26		SPD LEADLAG LOW FREQ	Speed/Voltage loop lead/lag block low break frequency (radians/second * 100)	P.214
155	27		SPD LOOP LAG FREQ	Speed/Voltage loop lag block break frequency (radians/second * 100)	P.215
156	28		SPD LEADLAG SELECT	Speed/Voltage loop lead/lag block select (0=lead/lag, 1=bypassed, 2=lag/lead)	P.216
157	29		SPD LOOP LAG BYPASS	Speed/Voltage loop lag block bypass	P.217
		0	LAU BIFASS	0=not bypassed, 1=bypassed	
158	30		CML FEEDBACK GAIN ADJ	CML feedback gain adjust	P.300
159	31		ARMATURE BRIDGE POL	Active armature bridge	P.394
		0	DRIDGETGE	0=forward, 1=reverse	
Master Write	Registers				
Control/Refe	rence Data			(NONE)	
Tunable data					
160	32			(RESERVED)	
161	33		FIELD ECONOMY REF	Field economy current level (% of MOTOR RATED FLD AMPS)	P.511
162	34		FIELD PI PROP GAIN	Field Current Loop PI block proportional gain (gain*100)	P.514
163	35		FIELD PI LEAD FREQ	Field Current Loop PI block lead frequency (radians/second*100)	P.515
164	36		FLD FEEBACK GAIN ADJ	Field current feedback gain adjust (gain*1000)	P.516

DeviceNet	Master Re	ad Register	Parameter Name	FlexPak 3000	FlexPak 3000 Parameter #
Atttibute#	Reg #	Bit #		Description	
Tunable data (continued)					
165	37		FLD WEAKEN THRESHOLD	Armature voltage or CEMF at which field current begins to automatically weaken (volts DC)	P.518
166	38		FLD WEAKEN PROP GAIN	Field weaken PI block proportional gain (gain*100)	P.519
167	39		FLD WEAKEN LEAD FREQ	Field weaken PI block lead break frequency (radians/second*100)	P.520
168	40		ANALOG TACH GAIN ADJ	Analog tachometer feedback gain adjust	P.201
169	41		ANALOG TACH ZERO ADJ	Analog tachometer feedback zero adjust	P.202
170	42		ARM VOLTAGE GAIN ADJ	Armature voltage feedback gain adjust	P.204
171	43		ARM VOLTAGE ZERO ADJ	Armature voltage feedback zero adjust	P.205
172	44		SPD LEADLAG RATIO	Specifies the ratio of lag to lead or lead to lag break frequencies	P.213
173	45		SPD LEADLAG LOW FREQ	Speed/Voltage loop lead/lag block low break frequency (radians/second * 100)	P.214
174	46		SPD LOOP LAG FREQ	Speed/Voltage loop lag block break frequency (radians/second * 100)	P.215
175	47		SPD LEADLAG SELECT	Speed/Voltage loop lead/lag block select (0=lead/lag, 1=bypassed, 2=lag/lead)	P.216
176	48		SPD LOOP LAG BYPASS	Speed/Voltage loop lag block bypass	P.217
		0		0=not bypassed, 1=bypassed)	
177	49		CML FEEDBACK GAIN ADJ	CML feedback gain adjust	P.300
178 - 182	50-54			(RESERVED)	

	Master Re	ad Register	Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#	Reg #	Bit #		Description	Parameter #
Configuration	data				
183	55		MOTOR HOT FLD AMPS	Rated hot field current from motor nameplate (amps*100)	P.510
184	56		FIELD LOSS THRESHOLD	Field current level at which a field loss fault is generated (% of MOTOR RATED FLD AMPS)	P.512
185	57	0	FIELD AUTO WEAKEN	Enables/disables auto field current weakening circuit (0=disable; 1=enable)	P.517
186	58		MAXIMUM CURRENT	Highest amount of current, either positive or negative (% MOTOR RATED ARM AMPS)	P.007
187	59		MOTOR RATED ARM AMPS	Rated armature current from motor nameplate (amps * 10)	P.008
188	60		MOTOR RATED ARM VOLTS	Rated armature voltage from motor nameplate (volts DC)	P.009
189	61		ANLG TACH VOLTS/1000	Rated volts per 1000 RPM from the analog tachometer nameplate (volts * 10)	P.203
190	62		PULSE TACH PPR	Pulses per revolution from the pulse tachometer nameplate	P.207
191	63	0	PULSE TACH QUADRATURE	Pulse tachometer quadrature decode enable 0=non-quad. decode, 1=quad. decode	P.208

Table A.3 - Register Assignments for DROP_3 Area

DeviceNet	Master Re	ad Register	Parameter Name	exPak Parameters (192 – 255) FlexPak 3000	FlexPak 3000
Atttibute#	Reg #	Bit #		Description	Parameter #
Runtime Sign	nal Data				
192	0			I/O Expansion Digital Ins Bit packed word indicating state of I/O Exp Kit digital inputs (bits 0-4; state of digital input 1-5)	
193	1		ANLG IN 1	I/O Exp Kit analog input #1 value after all scaling (4095 full scale)	P.492
194	2		ANLG IN 2	I/O Exp Kit analog input #2 value after all scaling (4095 full scale)	P.493
195	3		FREQ IN	I/O Exp Kit frequency input value after all scalin g (4095 full scale)	P.491
196 - 212	4-20			(RESERVED)	
Tunable, Con	figuration and	l Status Data			
213	21	0 1		Level Dectector Bit-packed word indicating state of Outputs Level Detect outputs Level Detector 1 output Level Detector 2 output	
214	22	0 1 2 3 4 5 6 7 8 9 10-15		Stop cause word; Bit-packed word indicating the reason why the drive stopped Stop asserted or Run negated Jog de-asserted for > 1 second Internal stop request Current limit stop Ramp stop Coast/DB stop Fault stop (or Self-Tuning completed) Customer interlock opened Coast/DB interlock opened Main contactor opened (RESERVED)	
215	23		NOMINAL AC LINE FREQ	Nominal A-C line frequency (Hz)	P.306
216	24		NOMINAL AC LINE VOLTS	Nominal A-C line voltage (volts RMS)	P.307
217	25		PLL MAXIMUM ERROR	Maximum change in line synchronization PLL output per AC line cycle (msec)	P.308
218	26		AC LINE VOLTAGE	Measured A-C line voltage (volts RMS)	P.392
219	27		ENHANCED FLD VOLT ADJ	Enhanced field supply voltage adjust parameter	P.500

DeviceNet	Master Re	ad Register	Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#	Reg #	Bit #		Description	Parameter #
Tunable, Cont (continued)	figuration and	l Status Data			
220	28		FIELD ECONOMY DELAY	Amount of time between stopping and reducing field output to economy level (minutes)	P.501
221	29		FIELD ECONOMY ACTIVE	Flag indicating whether or not drive is in field economy state	P.599
		0	ACTIVE	0=full field output, 1=field economy active	
222	30		OPEN SCR SENSITIVITY	Open SCR detection sensitivity adjustment	P.600
223	31		OPEN SCR TRIP THRESH	Open SCR detection trip threshold	P.601
Master Write	Registers				
Control/Refer	ence Data			(NONE)	
Tunable Data					
224	32		ANLG IN 1 ZERO ADJ	I/O Exp Kit analog input #1 zero adjust	P.414
225	33		ANLG IN 1 GAIN ADJ	I/O Exp Kit analog input #1 gain adjust (gain*1000)	P.415
226	34		ANLG IN 2 ZERO ADJ	I/O Exp Kit analog input #2 zero adjust	P.416
227	35		ANLG IN 2 GAIN ADJ	I/O Exp Kit analog input #2 gain adjust (gain*1000)	P.417
228	36		LEVEL DETECT 1 THRESH	Level Detector circuit #1 threshold (%*10)	P.603
229	37		LEVEL DETECT 1 DELAY	Level Det ector circuit #1 delay time (seconds*10)	P.604
230	38		LEVEL DETECT 2 THRESH	Level Detector circuit #2 threshold (%*10)	P.606
231	39		LEVEL DETECT 2 DELAY	Level Detector circuit #2 delay time (seconds*10)	P.607
232	40		PLL MAXIMUM ERROR	Maximum change in line synchronization PLL output per AC line cycle (msec)	P.308
233	41		ENHANCED FLD VOLT ADJ	Enhanced field supply voltage adjust parameter	P.500
234	42		FIELD ECONOMY DELAY	Time between stopping and reducing reducing field supply output to economy level (minutes)	P.501

DeviceNet	Master Rea	ad Register	Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#	Reg #	Bit #		Description	Parameter #
Tunable Data	(continued)				
235	43		OPEN SCR SENSITIVITY	Open SCR detection sensitivity adjustment	P.600
236	44		OPEN SCR TRIP THRESH	Open SCR detection trip threshold	P.601
237	45		ANLG OUT 1 GAIN ADJ	I/O Exp Kit analog output #1 gain adjust (gain*1000)	P.420
238	46		ANLG OUT 2 GAIN ADJ	I/O Exp Kit analog output #2 gain (gain*1000)	P.422
239	47			(RESERVED)	
Configuration	1 Data				
240	48		DIG OUT 1 SELECT	 I/O Exp Kit digital output #1 source 0=LEVEL DETECT 1 OUTPUT; 1=LEVEL DETECT 2 OUTPUT; 2=in current limit; 3=drive ready; 4=NETW COMM STATUS; 5=bit n-1 of Network Input Register 1, where n=digital output number (1 or 2); 6=bit n-1 of Network Input Register 2, where n=digital output number (1 or 2); 7=bit n-1 of Network Input Register 3, where n=digital output number (1 or 2)) 	P.409
241	49		DIG OUT 2 SELECT	 I/O Exp Kit digital output #2 source 0=LEVEL DETECT 1 OUTPUT; 1=LEVEL DETECT 2 OUTPUT; 2=in current limit; 3=drive ready; 4=NETW COMM STATUS; 5=bit n-1 of Network Input Register 1, where n=digital output number (1 or 2); 6=bit n-1 of Network Input Register 2 where n=digital output number (1 or 2); 7=bit n-1 of Network Input Register 3, where n=digital output number (1 or 2)) 	P.411
242	50	0	DIG OUT 1 CONTACT TYP	I/O Exp Kit digital output #1 contact type (0=normally open; 1=normally closed)	P.410
		1	DIG OUT 2 CONTACT TYP	I/O Exp Kit digital output #2 contact type (0=normally open; 1=normally closed)	P.412
243	51		ANLG IN 1 SIG TYP	I/O Exp Kit analog input #1 signal type (0=0-10V; 1=+/-10V; 2=4-20mA)	P.413

DeviceNet	Master R	ead Register	Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute #	Reg #	Bit #		Description	Parameter #
Configuration	n Data (contin	(beu			
Configuration	ii Data (Contin	lucu)			
244	52		ANLG OUT 1 SELECT	 I/O Exp Kit analog output #1 source select 0=CML FEEDBACK; 1=CML REFERENCE; 2=CML ERROR; 3=SPD LOOP FEEDBACK; 4=SPD LOOP REFERENCE; 5=SPD LOOP OUTPUT; 7=SPEED RAMP OUTPUT; 8=SPEED RAMP OUTPUT; 8=SPEED RAMP INPUT TP; 9=SPD SOURCE SELECT OUT; 10=TRIM OUTPUT; 11=ARMATURE VOLTAGE; 12=ANALOG TACH FEEDBACK; 13=PULSE TACH FEEDBACK; 14=ZERO; 15=FULL SCALE; 16=POWER OUTPUT; 17=OCL REFERENCE 18=OCL RAMP OUTPUT; 19=OCL FEEDBACK; 20=OCL OUTPUT; 21=FIELD REFERENCE; 22=FIELD FEEDBACK 23=NETW IN REG 1; 40=MENDEDEACE 	P.418
				24=NETW IN REG 2; 25=NETW IN REG 3)	
245	53		ANLG OUT 1 SIG TYPE	I/O Exp Kit analog output #1 signal type (0=0-10V; 1+/-10V; 2=4-20 mA)	P.419
246	54		ANLG OUT 2 SELECT	 I/O Exp Kit analog output #2 source select 0=CML FEEDBACK; 1=CML REFERENCE; 2=CML ERROR; 3=SPD LOOP FEEDBACK; 4=SPD LOOP REFERENCE; 5=SPD LOOP OUTPUT; 7=SPEED RAMP OUTPUT; 8=SPEED RAMP INPUT TP; 9=SPD SOURCE SELECT OUT; 10=TRIM OUTPUT; 11=ARMATURE VOLTAGE; 12=ANALOG TACH FEEDBACK; 13=PULSE TACH FEEDBACK; 14=ZERO; 15=FULL SCALE; 	P.421

DeviceNet	Master R	ead Register	Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#	Reg #	Bit #		Description	Parameter #
Configuration	Data (aguti				
Configuration	Data (contri	iiiiiii		16=POWER OUTPUT; 17=OCL REFERENCE 18=OCL RAMP OUTPUT; 19=OCL FEEDBACK; 20=OCL OUTPUT; 21=FIELD REFERENCE; 22=FIELD FEEDBACK 23=NETW IN REG 1; 24=NETW IN REG 2; 25=NETW IN REG 3)	
247	55		FREQ IN ZERO	I/O Exp Kit frequency that corresponds to digital zero (kHz*100)	P.423
248	56		FREQ IN FULL SCALE	I/O Exp Kit frequency input frequency that corresponds to digital 4095 (kHz*100)	P.424
249	57		FREQ OUT SELECT	 I/O Exp Kit analog output source select 0=CML FEEDBACK; 1=CML REFERENCE; 2=CML ERROR; 3=SPD LOOP FEEDBACK; 4=SPD LOOP REFERENCE; 5=SPD LOOP OUTPUT; 7=SPEED RAMP OUTPUT; 8=SPEED RAMP INPUT TP; 9=SPD SOURCE SELECT OUT; 10=TRIM OUTPUT; 11=ARMATURE VOLTAGE; 12=ANALOG TACH FEEDBACK; 13=PULSE TACH FEEDBACK; 14=ZERO; 15=FULL SCALE; 16=POWER OUTPUT; 17=OCL REFERENCE 18=OCL RAMP OUTPUT; 19=OCL FEEDBACK; 20=OCL OUTPUT; 21=FIELD REFERENCE; 22=FIELD FEEDBACK 23=NETW IN REG 1; 24=NETW IN REG 3) 	P.425
250	58		FREQ OUT ZERO	I/O Exp Kit frequency output frequency that corresponds to digital zero (kHz*100)	P.426

DeviceNet	Master Re	ad Register	Parameter Name	FlexPak 3000	FlexPak 3000
Atttibute#	Reg #	Bit #		Description	Parameter #
Configuration (continued)	n Data				
251	59		FREQ OUT FULL SCALE	I/O Exp Kit frequency output that corresp onds to digital 4095 (kHz*100)	P.427
252	60		LEVEL DETECT 1 SELECT	Level Detector #1 source (0=CML fdbk; 1=spd fdbk; 2=spd ramp out; 3=spd ram in; 4=spd source select out)	P.602
253	61.		LEVEL DETECT 2 SELECT	Level Detector #2 source (0=CML fdbk; 1=spd fdbk; 2=spd ramp out; 3=spd ram in; 4=spd source select out)	P.605
254	62		NOMINAL AC LINE FREQ	Nominal A-C line frequency (Hz)	P.306
255	63		NOMINAL AC LINE VOLTS	Nominal A-C line voltage (volts RMS)	P.307

Table A.4 - Register Assignments for DROP_4 Area

APPENDIX B: POLL CONNECTION DATA FORMAT

		Table B.1 – Poll Connection Command Data Format	 ✓ - Param availab X - Paran not a 	ole
Output Word	Bit Number	Description	Control	Control + Config
0	0-15	Sequence Control Word		1
	0	Run (0-to-1 transition to run)		
	1	Stop (0=stop)		
	2	Fault reset (0-to-1 transition to reset)		
	3	Jog (0-to-1 transition to jog, $0 = \text{stop jog}$)		
	4	Forward/Reverse (0 = Forward)		
Ļ	5	Reserved		
Ļ	6	Reserved		
Ļ	7	Outer Control Loop Enable (1=enabled)		
ŀ	8	Fault Log Clear and Reset (0-to-1 transition to clear) Alarm Log Clear and Reset (0-to-1 transition to clear)		
	<u> </u>	Alarm Reset (0-to-1 transition to clear)		
F	10	Memory Save (0-to-1 transition to save)	-	
F	11	reserved		
F	13	Reserved		
F	14	Tune/Cfg Input Enable (0 = read Control/Reference from network;		
	••	1= Read Control/Reference, Tune, and Cfg from network)		
F	15	Tune/Cfg Update Synchronization Flag		
1	0-15	Speed Control	-	
2	0-15	Network Input Reg #1		-
3	0-15	Field Reference Reg		-
4	0-15	Acceleration Time	×	1
5	0-15	Deceleration tim e	×	1
6	0-15	Min Speed Out	×	1
7	0-15	Max Speed Out	×	-
8	0-15	Positive Current Limit %	×	-
9	0-15	Negative Current Limit %	×	-
10	0-15	S-Curve Rounding	×	-
11	0-15	Trim Range	×	1
12	0-15	Speed Loop PI Prop Gain	×	1
13	0-15	Speed Loop PI Lead Frequency	×	1
14	0-15	CML PI Prop Gain	×	1
15	0-15	CML PI Lead Frequency	*	1
16	0-15	CML Reference Rate Limit	*	1
17	0-15	Jog Speed	*	1
18	0-15	Stop Type Select	×	-
19	0-15	IR Compensation	*	1
	0-15	Current Compounding	*	
20 T				
20	0-15	Network Loss Action	X	
21	0-15	Network Loss Action Network Out Register #1 Select	X	-
21 22	0-15	Network Out Register #1 Select	*	1
21				-

Table B.1 contains the format for Poll Connection Command Data.

Input Word				ameter available
	Bit Number	Description	Control	Control + Config
0	0-15	Status Word	1	7
	0	Drive Ready		
	1	Drive Running		
-	2	Fault Active		
-	3	Drive Jogging		
-	4	Forward/Reverse (0=Forward)		
-	5	Drive Stopping Tune/Cfg Enable Feedback (1=enabled)	_	
-	6		_	
-	7 8	Tune/Cfg Synchronization Feedback Alarm Active		
-	9	Current Limit		
-	10	Coast /DB Interlock (1=closed)		
ŀ	10	Customer Interlock (1=closed)		
-	12	Parameter processing error(s)	_	
-	13	terminal Block Forward/Reverse (CTB-5)		
-	13	Terminal Block Auto/Manual (CTB6)		
-	15	Terminal Block Fault/Alarm (CTB-10)		
1	0-15	Speed reference		
2	0-15	Speed Reference Sum	-	1
3	0-15	Speed Feedback	-	
4	0-15	CML Feedback	-	
5	0-15	Network Out Reg #1	-	-
6	0-15	Network Out Reg #2	-	
7	0-15	Network Out Reg #3	-	-
8	0-15	Fault Bits Latch Word #1	×	-
	0	AC Line Synchronization Loss		
	1	Motor Shunt Field Current Loss		
	2	Sustained Overload		
	3	Self-tune fault		
	4	Motor Thermostat Tripped		
	5	Controller Thermostat Tripped		
	6	Blower Motor Starter Open		
	7	Open Armature Circuit		
·	8	Instantaneous Armature Overcurrent	_	
	9	Over Speed / Over Voltage		
-	10	Open SCR		
-	11	reserved		
-	<u>12</u> 13	Tachometer Loss OIM Communication Loss		
-	13	Network Communication Loss		
-	14	Reserved		
9	0-15	First Fault	*	
10	0-15	Alarm Bits Latch Word #1	×	
10		Motor Brush Wear Low	-	
-	0	AC Line Voltage < 90% of nominal		
-	2	AC Line Voltage < 90% of nominal AC Line Voltage > 115% of nominal		
	3-15	Reserved		
	515			-
11	0-15	Last Alarm	×	

Table B.2 contains the format for Poll Connection Reply Data.

APPENDIX C: EXPLICIT MESSAGING FOR THE HEC-FP3-DN

1.1 General

1.1.1 The HEC-FP3-DN supports the DeviceNet "Explicit Messaging" features to reach those parameters not available through the Polled Connection. Those parameters that are available in the Polled Connection are also available with the Explicit Messaging features.

1.1.2 Note that Explicit Messaging is inherently slow, as only one Explicit Message is allowed per pass through the Scan List. Explicit Messaging is not intended for continuous, high-speed update of parameters, and should be used only for infrequent or periodic updating of certain less-than-critical parameters.

1.2 Explicit Message Format

1.2.1	Each Explicit Message take	es the following format:
-------	----------------------------	--------------------------

Table C.1 – Explicit Message Format				
Byte Number	Description	Example (Value in HEX)		
0	MACID	As Needed		
1	Service Code	10 or E0		
2	Class ID	BA		
3	Instance #	01		
4	Attribute #	As Needed		
-		XX		
-	Optional Data	XX		
n		XX		

1.2.2 In many cases this byte-wise (8 bit) data will need to be formatted into word-wise (16-bit) format. Conversion of this information will be dependent on the PLC used.

1.2.3 Below is a typical word-wise (16 bit) message format used by GE Fanuc:

Table C.2 – 16-Bit Message (Example)				
Word Offset	Value (Examples in HEX)			
%R1	0E01			
%R2	01BA			
%R3	xx04			
-				
-				
n				

1.2.4 The methods for sending and receiving Explicit Messages from any specific DeviceNet Master or (Scanner) will be peculiar to that device. Please refer to the Owners' Manual supplied with the DeviceNet Master (Scanner) device used to generate the messages.

1.3 Explicit Message Response Format

Table C.3 – Acknowledged Message (Example)				
Byte Number	Description	Example (values in HEX)		
0	Number of	06		
1	bytes received	00		
2	MACID	01		
3	Service Code	90	Previously sent Service Code (0x10) + 0x80	
4	Optional Data	ХХ		
-	Optional Data	XX		
-		xx		
n		XX		

1.3.1 The normal, expected response from an Explicit Message is the Acknowledge Message:

1.3.2 Note that the Most Significant Bit of the Service Code byte is used as a Response Bit, thus indicating that the command was properly received. [Service Code 0x10 + Response Bit 0x80 = 0x90] If any extra data needs to be returned, that data will be placed into subsequent bytes.

1.4 Explicit Message Error Format

1.4.1 In the case that an Explicit Message requests a function that can not be performed by the addressed unit, an Explicit Message Error will be returned in the Receive Buffer

NOTE: This should not be confused with an Explicit Message that fails during transmission. These will be returned as Network Errors.

	Table C.4 – Explicit Error Message				
Byte Number	Description	Example (Values in HEX)	Word Offset	Value (From example)	
0	Number of	06	%R1	0006	
1	bytes received	00	%R2	9401	
2	MACID	01	%R3	XXXX	
3	Service Code (Error)	94			
4	General Error Code	xx			
5	Additional Error Code	xx			

1.4.2 An Explicit Error Message takes the following form:

1.4.3 Like a "normal" response, the Service Code byte has the Most Significant Bit set as the Response Bit. Therefore, the actual Error Code is 0x14; with the Response Bit set the received code is 0x94. Code 0x14 indicates a Parameter Error has occurred – the requested action could not be performed by the addressed device.

1.4.4 The General Error Code is one of a number of codes supported by DeviceNet. See Table C.5 for a list of General Error Codes.

1.4.5 The Additional Error Code is generated by the answering device. This code, if available, will depend on the answering device.

1.4.1.1 Components of an Explicit Error Message (See Table C.4)

a. MACID

This is the Network ID of the unit to be controlled.

b. SERVICE CODE

Each Explicit Message requires a SERVICE CODE. There are two possible Service Codes for the HEC-FP3-DN:

Service Code 0x0E -- Get Parameter Each Get Parameter request will require 0 (zero) bytes of additional data. The returned messages will require one *word* (two *bytes*) of additional data

Service Code 0x10 -- Set Parameter Each Set Parameter request will require one *word* (two *bytes*) of additional data to be sent. The returned message will require 0 (zero) bytes of additional data.

c. CLASS ID

Each Explicit Message requires a CLASS ID. The Class ID for the HEC-FP3-DN is 0xBA (decimal 186).

d. INSTANCE ID

Each Explicit Message requires an INSTANCE ID, which identifies one of a group of identical controls in any attached unit. In the HEC-FP3-DN, there is only one "instance" in the controller, so the Instance Number is always "01".

e. ATTRIBUTE NUMBER

This is the identifying number of the parameter inside the drive to be read or written.

The HEC-FP3-DN has 256 possible parameters. These are arranged in four (4) "drops" (1-4) of sixty-four (64) parameters (0-63) each. [See Tables A.1 through A.4, above). Therefore, to figure the INSTANCE ID for a particular parameter the following formula is used:

INSTANCE ID = ((DROP - 1) * 64) + REG#

1.5 Error Codes

The following General Error Codes are supported by DeviceNet devices. Any additional error code is supplied by the device generating the error.

Table C.5 – Error Codes			
Error Code (hex)	Description		
00 - 01	Reserved		
02	Resource Unavailable		
03 – 07	Reserved		
08	Service Not Supported		
09	Invalid Attribute Data Detected		
0A	Reserved		
0B	Already in requested Mode/State		
0C	Object State Confilct		
0D	Reserved		
0E	Attribute Not Settable		
0F	Privledge Violation		
10	Device State Confilct		
11	Reply Data Too Large		
12	Reserved		
13	Not Enough Data		
14	Attribute Not Supported		
15	Too Much Data		
16	Object does not exist		
17	Reserved		
18	No stored attribute data		
19	Store operation failure		
1A – 1E	Reserved		
1F	Vendor specific error		
20	Invalid Parameter		
21 – CF	Reserved for Future Extensions		
D0 – FF	Reserved for Object Class and Service errors		

1.6 Using Explicit Messages and Polling with the Same Device

1.6.1 The potential for confusion and problems with device operation exists when both Polled Messaging (by default) and Explicit Messaging (under program control) are used together. *It is best to <u>not</u> use Explicit Messaging for any registers controlled through the Polled Message system*

1.6.2 Regarding Read Registers (Status, Speed Reference, etc), the information is available from the Polled Message. The information is updated continuously and automatically. Accessing any of the registers through an Explicit Message is possible, but the information is already available from the Polled Message.

1.6.3 Regarding Write Registers (Sequence Control, Speed Control, etc), the problem is potentially more serious. The registers inside the HEC-FP3-DN are updated constantly by the Polled Messages. *Any data written to the registers by an Explicit Message will be overwritten almost immediately by the next Polled Message.*

1.6.4 If data is being overwritten, the problem manifests itself as either bits and controls that appear "intermittent" or completely inoperative. The problem occurs when the Explicit Message data is being over-written by the Polled Message data which violates the Data Retention Times specified in Section 5.8.

07 May 1999

Revision pages for Horner Electric's DeviceNet[™] Network Communication Option Board for use with Reliance Electric FlexPak 3000 DC Drive User Manual

HEC-FP3-DN, Fourth Edition

Attached to this cover page is a revision for the <u>Horner Electric DeviceNet[™] Network</u> <u>Communication Option Board for use with Reliance Electric FlexPak 3000 DC Drive</u> <u>User Manual dated 25 February 1998 (MAN0086-04).</u>

THESE REVISED REQUIREMENTS ARE NOW IN EFFECT.

New and revised pages may be issued periodically. For user manual updates, please contact Horner Electric Advanced Products Group, Technical Support Division, at (317) 916-4274 or visit our website at <u>www.heapg.com</u>.

Revision Key

Changes to text, tables or graphics contained in the attached revision are indicated as follows:

- 1. Added text is <u>underlined.</u>
- 2. Deleted text is lined through.
- 3. New, revised, or deleted items are specified as such in ().

List of Effective Pages

The most current user manual consists of the following list of effective pages <u>including</u> the attached revision pages: * Denotes new or revised pages

Page

Date

Front Cover	Contained in MAN0086-04 dated 25 Feb 1998
2 – 16	Contained in MAN0086-04 dated 25 Feb 1998
*17	Revision Pages dated 07 May 1998
18-25	Contained in MAN0086-04 dated 25 Feb 1998
*26	Revision Pages dated 07 May 1999
27 -59	Contained in MAN0086-04 dated 25 Feb 1998

CHAPTER 4: DRIVE CONFIGURATION

(NEW)

WARNING: Risk of severe bodily injury or equipment damage exists. The drive restarts if the START and STOP bits in the control word are maintained high, and the PLC is switched from **Program** to **Run** mode. Precautions need to be taken to ensure that these mode switches do NOT create a hazard of bodily injury or equipment damage.

(Warning added 07 May 1999)

(REVISED) 1.2 <u>4.1</u> General

(Heading revised 07 May 1999)

The section describes how to configure the FlexPak 3000 controller containing the DeviceNet Network Communication Option Board for use on the DeviceNet network. Refer to the FlexPak 3000 Installation and Operation instruction manual for more information on the drive parameters described below.

4.2 Network Communication

4.2.1 The drive becomes active on the DeviceNet network after the user performs the following steps. Note that these steps should be followed in the order listed to prevent drive fault(s). (The HEC-FP3-DN Card cannot be used in conjunction with Automax card).

1. Connect the Network Option board to the network via the standard "pluggable" DeviceNet connector (See Section 2.2 for wiring information).

2. Apply power to the drive.

3. Using the keypad, access the drop number assignment parameter (NETW DROP NUMBER (P.900)) and assign a valid DeviceNet network drop number to the drive.

4. Using the keypad, access the network connection type parameter (NETW CONNECT TYPE (P.910)) and select either **Basic Drive Connection** or **Full Drive Connection**.

5. Using the keypad, access the DeviceNet Baud Rate (NETW BUAD RATE) (P.912) parameter and select **125.0 KBAUD**, **250.0 KBAUD**, **500.0KBAUD**, or **OTHER**.

6. Using the keypad, access the DeviceNet poll message type (DEVNET POLL MSG TYPE) (P.913) and select **CONTROL ONLY** or **CONTROL+CONFIG**.

7. Apply power to the DeviceNet network.

4.3 Network Connection Types

4.3.1 Two Types of Network Connections

4.3.1.1 The drive's network connection type defines the scope of data and control that the master has with the connected drive. Two types of connections are provided: BASIC drive connection and FULL drive connection. The drive's network connection type is selected with a drive parameter (NETW CONNECT TYPE (P.910)).

4.3.2 BASIC Drive Connection

4.3.2.1 Select **BASIC** drive connection if the application does not require a complete configuration of the drive over the network. Only certain parameters and diagnostic information commonly used will be controlled over the network. Selecting this option for NETW CONNECT TYPE (P.910) results in data size of 64 words.

5.12 Poll Connection Data Transfer Format

(NEW)

WARNING: Risk of severe bodily injury or equipment damage exists. The drive restarts if the START and STOP bits in the control word are maintained high, and the PLC is switched from **Program** to **Run** mode. Precautions need to be taken to ensure that these mode switches do NOT create a hazard of bodily injury or equipment damage.

(Warning added 07 May 1999)

5.12.1 General

As described in Section 4.3.3, the DeviceNet polled connection is used in most cases to accomplish drive control. The following information illustrates the data format that is expected and returned by the drive when using the polled connection:

5.12.2 Poll Connection Command Data Format

Word#	Description
0	Drive Control
1	Speed Control
2	Network Input Reg #1
3	Field Reference Reg

(Poll connection consumption size = 8 bytes)

The following data should only be sent in the poll command message if the drive is configured to accept control + config data in the poll command message. (See Section 4.2.)

- 4 Accel Time Out
 5 Decel Time Out
 6 Min Speed Out
 7 Max Speed Out
 8 Pos Current Limit %
 9 Neg Current Limit %
- 10 S-Curve Rounding
- 11 Trim Range
- 12 Spd Loop PI Prop Gain
- 13 Spd Loop PI Lead Frq
- 14 CML PI Prop Gain
- 15 CML PI Lead Freq
- 16 CML Ref Rate Limit
- 17 Jog Speed
- 18 Stop Type Select
- 19 IR Compensation
- 20 Current Compounding
- 21 Ntwk Loss Action
- 22 Ntwk Out Reg #1 Sel
- 22 Ntwk Out Reg #1 Sel 23 Ntwk Out Reg #2 Sel
- 24 Ntwk Out Reg #2 Sel
- 25 Feedback Select
- 25 Feedback Select

(Poll connection consumption size = 52 bytes)