

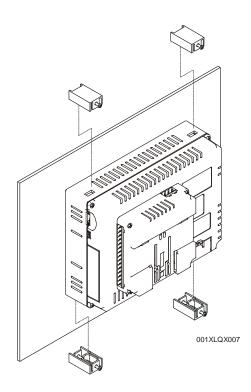
XL6/XL6e OCS Models HE-XL102-14 / HE-XL1E2-14

12 Digital DC Inputs 4 10k Thermistors 6 Digital Relay Outputs

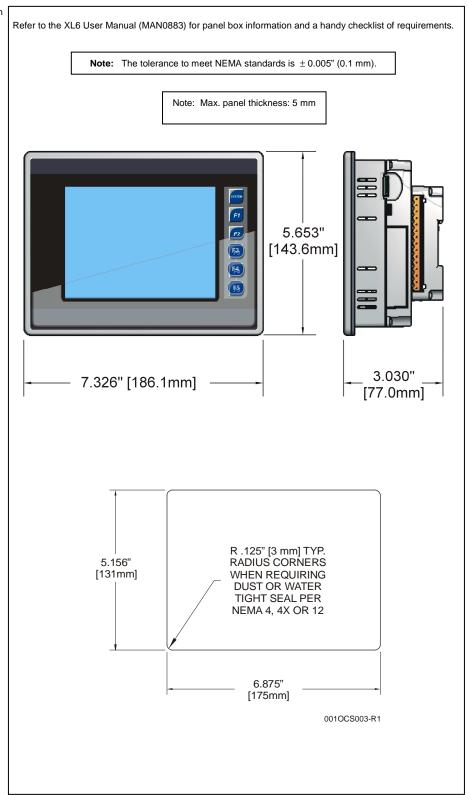
1 Specifications

Specifications				
Digital DC Inputs				
Inputs per Module		12 including 4 configurable HSC inputs		
Commons per Module		1		
Input Voltage Range		12	VDC / 24 VDC	
Absolute Max.	/oltage		35 VDC Max.	
Input Impeda			10 kΩ	
Input Current	Positive	<u>Logic</u>	Negative Logic	
Upper Threshold	0.8 m	ıΑ	-1.6 mA	
Lower Threshold	0.3 m	ıΑ	-2.1 mA	
Max Upper Thr	eshold	8 VDC		
Min Lower Thre	eshold		3 VDC	
OFF to ON Res	sponse		1 ms	
ON to OFF Res	sponse		1 ms	
			Hz Totalizer/Pulse, Edges	
HSC Max. Switch	ing Rate		z Frequency/Pulse, Width	
			kHz Quadrature	
0	Digital Rela	y Outputs		
Outputs per M			6 relay	
Commons per I			6	
Max. Output Curren			250 VAC, resistive	
Max. Total Outpu	t Current	5 A continuous		
Max. Output V	oltage	275 VAC , 30 VDC		
Max. Switched	Power	1250 VA, 150 W		
Contact Isolation to XL6 ground		1000 VAC		
Max. Voltage Drop at Rated Current		0.5 V		
Expected Life		No load: 5,000,000		
(See Derating section for chart.)		Rated load: 100,000		
Max. Switching Rate		300 CPM at no load 20 CPM at rated load		
Type		Mechanical Contact		
	ima	One update per ladder scan		
Response T			plus 10 ms	
	stor Inputs, N	/ledium R	esolution	
Number of Cha			4	
Input Rang	es	10K	OHMThermistor	
Input Impeda	ance		Half Bridge	
(Clamped @ -0.5 \		9.59K ohm pulled up to		
VDC)		4.8 VDC		
Nominal Reso	Nominal Resolution		10 Bits	
%AI at 10K Ohm		15,008 counts		
Conversion Speed		All channels converted once per ladder scan		
Max. Error at 25°C reading / ambient		±0.5♥ or ±0.3℃ Using specified linearization in ladder program		
Filtering		160 H 1-128	z hash (noise) filter scan digital running average filter	

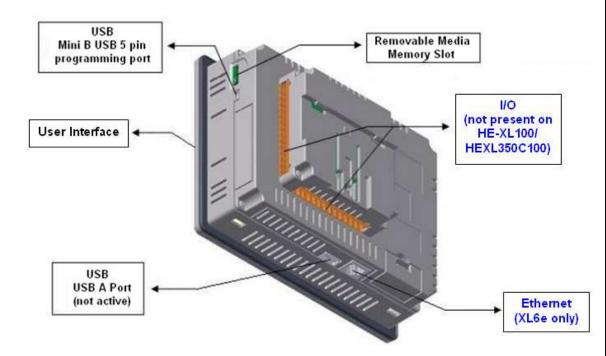
General Specifications		
Required Power (Steady State)	500 mA @ 24 VDC	
Required Power	30 A for 1 ms @ 24 VDC – DC Switched	
(Inrush)	2.5 A for 4 ms @ 24 VDC - AC Switched	
Primary Power Range	10 – 30 VDC	
Relative Humidity	5 to 95% Non-condensing	
Clask Assurasy	+/- 35 ppm maximum at 25° C	
Clock Accuracy	(+/- 1.53 Minutes per Month)	
Operating Temperature	-10°C to +60°C	
Terminal Type	Screw Type, 5 mm Removable	
Weight	26.5 oz. (.751 kg)	
CE	See Compliance Table at	
UL	http://www.heapg.com/Pages/TechSupport/ProductCert.html	
Connectivity		
Serial Ports	2 Serial Ports – RS232 & RS485	
Ethernet	10/100-Mbps (XL6e models only)	
USB	USB Networking Port for communication with PCs and programming Port	
Removable Media	Removable Media for upto 2 GB of storage for programs, data logging or	
	screen capture	
Smartstix	Remote IO modules communicating on CAN	
Note: Highest usable frequency for PWM output is 65 KHz		


HE-XL102-14/HE-XL1E2-14

2 Installation


- <u>Prior</u> to mounting, observe requirements for the panel layout design and spacing/clearances in the OCS XL6 Series Manual (MAN0883).
- 2. Cut the host panel.
- 3. Insert the OCS through the panel cutout (from the front). The gasket material needs to be between the host panel and the OCS.

Caution: Do <u>not</u> force the OCS into the panel cutout. An incorrectly sized panel cutout can damage the touch screen.


- 4. Install and tighten the mounting clips (provided with the OCS) until the gasket material forms a tight seal.
- Connect cables as needed such as communications, programming, power and CsCAN cables to the ports using the provided connectors.
- 6. Begin configuration procedures.

3 Panel Cut-Out and Dimensions

4 Ports and Connectors

To Remove I/O Cover:

Unscrew 4 screws located on the cover.

Remove cover.

CAUTION: Do not over tighten screws when replacing the back cover.

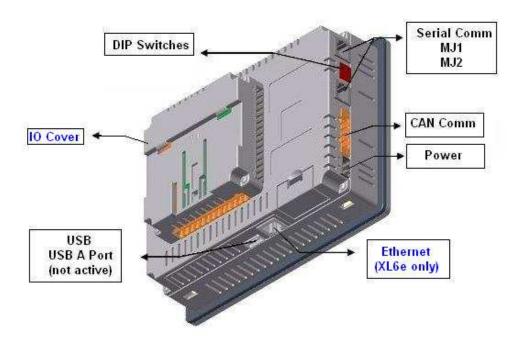
I/O Jumpers:

I/O Jumpers (**JP**) are located internally. To access, remove I/O cover of unit.

Wiring Connectors (J1 / J2) and I/O Jumpers (JP1 and JP2) are described in the Wiring and Jumpers section of this document.

Memory Slot:

Uses **Removable Memory** for data logging, screen captures, program loading and recipes.


Horner Part No.: HE-MC1

Serial Communications:

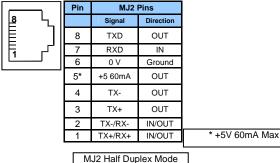
MJ1: (RS-232 / RS-485) Used for Cscape programming and Application-Defined Communications.

MJ2: (RS-232 / RS-485) Used for Application-Defined Communications.

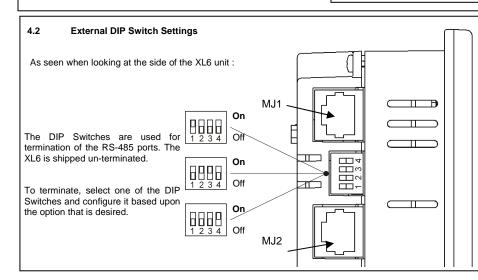
Ethernet: Used for Cscape programming and Application-Defined Communications.

Specifications / Installation MAN0902-01-EN

4.1 **Serial Communications:**

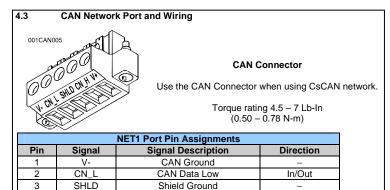

MJ1: (RS-232 / RS-485) Use for Cscape programming and Application-Defined Communications.

MJ2: (RS-232 / RS-485) Use for Application-Defined Communications.


Pin	MJ1 Pins		MJ2 Pins	
	Signal	Direction	Signal	Direction
8	TXD	OUT	TXD	OUT
7	RXD	IN	RXD	IN
6	0 V	Ground	0 V	Ground
5*	+5 60mA	OUT	+5 60mA	OUT
4	RTS	OUT	TX-	OUT
3	CTS	IN	TX+	OUT
2	RX-/TX-	IN / OUT	RX-	IN
1	RX+/TX+	IN / OUT	RX+	IN

MJ2 Pinouts in Half and Full Duplex Modes

$\neg \neg$	Pin	MJ2 Pins	
ᄾᇈᅵ		Signal	Direction
	8	TXD	OUT
/	7	RXD	IN
—	6	0 V	Ground
	5*	+5 60mA	OUT
	4	TX-	OUT
	3	TX+	OUT
	2	RX-	IN
	1	RX+	IN
	MJ2 Full Duplex Mode		


* +5V 60mA Max

SW1 -ON enables MJ2 RS485 port termination (121 Ohms). OFF disables MJ2 RS485 port termination.

SW2 & SW3 - ON places *MJ2* RS485 port in half-duplex mode. OFF places MJ2 RS485 port in full-duplex mode.

SW4 -ON enables MJ1 RS485 port termination (121 Ohms). OFF disables MJ1 RS485 port termination.

CAN Data High

No Connect

In/Out

CN_H

NC

4 5

4 Ethernet Port		
Speeds	10 BaseT Ethernet (10-Mbps)	
·	100 BaseTx Fast Ethernet (100-Mbps)	
Modes	Half or Full Duplex	
Auto-Negotiation	Both 10/100-Mbps and Half/Full Duplex	
Connector Type	Shielded RJ-45	
Cable Type (Recommended)	CAT5 (or better) UTP	
Port	Auto MDI/MDI-X	

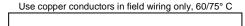
4.5 Power Port and Wiring

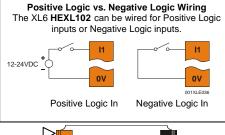
Power Connector

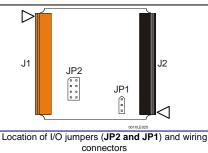
Power Up:

Connect to Earth Ground. Apply 10 - 30 VDC. Screen lights up.

Torque rating 4.5 – 7 Lb-In (0.50 – 0.78 N-m)

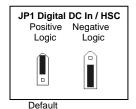

Primary Power Port Pins		
Pin	Signal	Description
1	Ground	Frame Ground
2	V-	Input Power Supply Ground
3	V+	Input Power Supply Voltage


5 Wiring and Jumpers

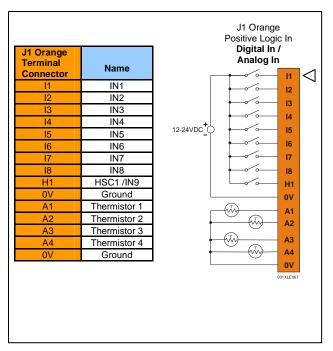

Wire according to the type of inputs / outputs used, and select the appropriate jumper option.

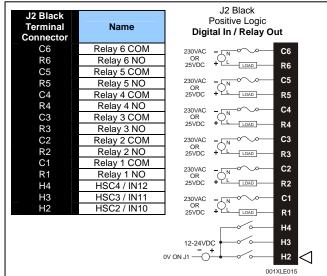
Wiring Specifications

- ◆For I/O wiring (discrete), use the following wire type or equivalent: Belden 9918, 18 AWG (0.8 mm²) or larger.
- ◆For shielded Analog I/O wiring, use the following wire type or equivalent: Belden 8441, 18 AWG (0.8 mm²) or larger.
- •For CAN wiring, use the following wire type or equivalent: Belden 3084, 24 AWG (0.2 mm²) or larger.



(J1 and J2).

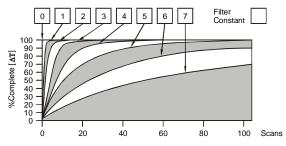

5.1 I/O Jumpers Settings (JP1)



Note:

The Cscape Module Setup configuration must match the selected I/O (JP) jumper settings.

5.2 Wiring Examples



6 Analog Conditioning

6.1 Filter

Filter Constant sets the level of digital filtering according to the following chart.

Digital Filtering. The illustration above demonstrates the effect of digital filtering (set with Filter Constant) on module response to a temperature change.

It is recommended that the filter constant for the HE-XL102-14/HE-XL1E2-14 be set to a value of 7. This will minimize noise and jitter, improve effective resolution, and provide adequate speed for most temperature monitor and control applications.

6.2 Thermistor Linearization

Thermistors are measured using a half-bridge circuit that exhibits variable resolution and the associated increased measurement range.

Temperature, degrees C	Resolution, degrees C
-55	1.05
-35	0.36
-15	0.17
5	0.11
25	0.1
45	0.13
65	0.22
85	0.30
105	0.55
125	0.85
145	1.35

Best resolution is at 25 °C, 77 °F. With a constant 0.1 °C resolution circuit, the measurement range would only extend from -26 °C to +76 °C.

Linearization must be performed by the user in the ladder application code, using 26 internal %R registers per channel. The example below uses %R1-26 to linearize one channel - %Al1. Linearization consists of the following example steps.

 Load the desired linearization coefficients into a table on First Scan using a Move Constant Data block.

Registers (Real)	Degrees C	Degrees F
R0011	-1.94454e-028	-3.50017e-028
R0013	2.40268e-023	4.32483e-023
R0015	-1.24101e-018	-2.23381e-018
R0017	3.46655e-014	6.23979e-014
R0019	-5.69403e-010	-1.02493e-009
R0021	5.62368e-006	1.01226e-005
R0023	-0.0353121	-0.0635617
R0025	163.878	326.981

- 2) Load %Al0001 into %R0001 as a Real.
- 3) Perform the Real Math Expression
- 4) R3 = (((R11*R1+R13)*R1+R15)*R1+R15)*R1+R17)
- 5) Perform the Real Math Expression %R5 = (((%R3*%R1+%R19)*%R1+%R21)*%R1+%R23)*%R1+%R25
- Load %R0005 result into another register such as %R0007 to save the temperature value.
- 7) Steps 2 though 5 can be on a single rung.

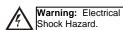
The expression rung may be copied, substituting %Al0002 and %R00011 for %Al0001 and %R0007, and used to linearize the second channel. Contact Horner APG Technical Support for an example file containing the above program.

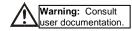
6.3 Thermistor Types

The HE-XL102-14/HE-XL1E2-14 with the given example ladder code supports Kele Engineering Precon Type III, 10 K Ω thermistors. It also directly supports the following 10 K Ω (Beta=3574) thermistors from Yellow Springs Instruments (YSI).

44006 46006 44106 46031 44406 46041 44031 44907 45006 44908

7 Derating


I/O Register Map


R

Registers	Description	
%l1 to %l24	Digital Inputs	
%l32	Output Fault	
%I25 to %I31	Reserved	
%Q1 to %Q16	Digital outputs	
%Q17	Clear HSC1 accumulator to 0	
%Q18	Totalizer: Clear HSC2 Quadrature 1-2: Accumulator 1 Reset to max – 1	
%Q19	Clear HSC3 Accumulator to 0	
%Q20	Totalizer: Clear HSC4 Quadrature 3-4: Accumulator 3 Reset to max – 1	
%Q21 to %Q32	Reserved	
%AI1 to %AI4	Analog inputs	
%AI5, %AI6	HSC1 Accumulator	
%AI7, %AI8	HSC2 Accumulator	
%AI9, %AI10	HSC3 Accumulator	
%AI11, %AI12	HSC4 Accumulator	
%AQ1, %AQ2	PWM1 Duty Cycle	
%AQ3, %AQ4	PWM2 Duty Cycle	
%AQ5, %AQ6	PWM Prescale	
%AQ7, %AQ8	PWM Period	
%AQ9 to %AQ14	Analog outputs	
Note: Not all XL6 units contain the I/O listed in this table.		

9 Safety

When found on the product, the following symbols specify:

This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D or Non-hazardous locations only

WARNING – EXPLOSION HAZARD – Do not disconnect equipment unless power has been switched off or the area is known to be non-hazardous.

AVERTISSEMENT - RISQUE D'EXPLOSION - AVANT DE DECONNECTOR L'EQUIPMENT, COUPER LE COURANT OU S'ASSURER QUE L'EMPLACEMENT EST DESIGNE NON DANGEREUX.

WARNING: To avoid the risk of electric shock or burns, always connect the safety (or earth) ground before making any other connections.

WARNING: To reduce the risk of fire, electrical shock, or physical injury it is strongly recommended to fuse the voltage measurement inputs. Be sure to locate fuses as close to the source as possible.

WARNING: Replace fuse with the same type and rating to provide protection against risk of fire and shock hazards.

WARNING: In the event of repeated failure, do <u>not</u> replace the fuse again as a repeated failure indicates a defective condition that will <u>not</u> clear by replacing the fuse.

WARNING – EXPLOSION HAZARD – Substitution of components may impair suitability for Class I, Division 2.

AVERTISSEMENT - RISQUE D'EXPLOSION - LA SUBSTITUTION DE COMPOSANTS PEUT RENDRE CE MATERIAL INACCEPTABLE POUR LES EMPLACEMENTS DE CLASSE 1, DIVISION 2.

WARNING - The USB parts are for operational maintenance only. Do not leave permanently connected unless area is known to be non-hazardous.

WARNING – EXPLOSION HAZARD - BATTERIES MUST ONLY BE CHANGED IN AN AREA KNOWN TO BE NON-HAZARDOUS

AVERTISSEMENT - RISQUE D'EXPLOSION - AFIN D'EVITER TOUT RISQUE D'EXPLOSION, S'ASSURER QUE L'EMPLACEMENT EST DESIGNE NON DANGEREUX AVANT DE CHANGER LA BATTERIE.

WARNING - Battery May Explode If Mistreated. Do Not Recharge, Disassemble or Dispose Of In Fire

WARNING: Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install, adjust, operate, or service this equipment. Read and understand this manual and other applicable manuals in their entirety before proceeding. Failure to observe this precaution could result in severe bodily injury or loss of life.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference.
- This device must accept any interference received, including interference that may cause undesired operation.

Radiated Emission Compliance: For compliance requirement, a ferrite (Horner P/N FBD006 supplied with the unit) needs to be placed on the AC/DC line with one loop.

- All applicable codes and standards need to be followed in the installation of this product.
- Adhere to the following safety precautions whenever any type of connection is made to the module:
- Connect the safety (earth) ground on the power connector first before making any other connections.
- When connecting to electric circuits or pulse-initiating equipment, open their related breakers.
- Do not make connections to live power lines.
- Make connections to the module first; then connect to the circuit to be monitored.
- Route power wires in a safe manner in accordance with good practice and local codes.
- Wear proper personal protective equipment including safety glasses and insulated gloves when making connections to power circuits.
- Ensure hands, shoes, and floors are dry before making any connection to a power line.
- Make sure the unit is turned OFF before making connection to terminals.
- Make sure all circuits are de-energized before making connections.
- Before each use, inspect all cables for breaks or cracks in the insulation. Replace immediately if defective.
- Use Copper Conductors in Field Wiring Only, 60/75° C.

10 Technical Support

For assistance and manual updates, contact Technical Support at the following locations:

North America: Europe:

Tel: 317 916-4274 Tel: +353-21-4321266 Fax: 317 639-4279 Fax: +353-21-4321826

"WARNING: EXPOSURE TO SOME CHEMICALS MAY DEGRADE THE SEALING PROPERTIES OF MATERIALS USED IN THE Tyco relay PCJ

Cover / case & base: Mitsubishi engineering Plastics Corp. 5010GN6-30 or 5010GN6-30 M8 (PBT)
Sealing Material: Kishimoto 4616-50K (I part epoxy resin)

It is recommended to periodically inspect the relay for any degradation of properties and replace if degradation is found

No part of this publication may be reproduced without the prior agreement and written permission of Horner APG, Inc. Information in this document is subject to change without notice.