SMARTBLOCK I/O MODULE DATASHEET

HE579MIX105

Image not model specific.

Isolated 12 DC Out, 12 DC In, 2 Analog In, 2 Analog Out

1 TECHNICAL SPECIFICATIONS

GENERAL	
Required Power (Steady State)	80mA @ 24VDC
Required Power (Inrush)	12A for 10ms @ 24VDC
Primary Power Range	10-30VDC
Relative Humidity	5 to 95\% Non-condensing
Operating Temperature	$0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Storage Temperature	$-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Altitude	Up to 2000m
Filtering	15 Hz has (noise) filter 1-128 conversion digital running average filter
Terminal Type	Clamp Type, 3.5mm Removable
Weight	11.5 oz. / 326g
Certifications (CE)	USA: https://hornerautomation.com/certifications/ Europe: https://www.hornerautomation.eu/support/certifications-2/

DIGITAL DC INPUTS		DIGITAL DC OUTPUTS	
Inputs per module	12 (6-4-2)	Outputs per Module	12
Isolated Input Commons	3	Isolated Output Commons	1
Input Voltage Range	+/-12VDC or +/-24VDC	Output Type	Sourcing / 10k Ω Pull-Down
Absolute Max. Voltage	35VDC Max.	Output Protection	Short Circuit
Input Impedance	$10 \mathrm{k} \Omega$	Output Current per Point	0.0-0.5A
Input Type	Positive / Negative Logic	Max Total Current	4A Continuous
Input Current: Upper Threshold	+/- 0.7 mA	Max Output Supply Voltage	30 VDC
Input Current: Lower Threshold	+/-0.2mA	Minimum Output Supply Voltage	10VDC
Input Voltage: Max Upper Threshold	+/- 8VDC	Max. Voltage Drop at Rated Current	0.25VDC
Input Voltage: Min Lower Threshold	+/-3VDC	Max Inrush Current	650mA per Channel
Group and BUS Isolation	500VAC / VDC	BUS Isolation	500VAC / VDC

general specifications continued...
general specifications continued...

ANALOG INPUTS, HIGH RESOLUTION			
Number of Channels	2	Thermocouple	Temperature Range
Input Ranges (Selectable)	$\begin{gathered} \text { O-10VDC } \\ 0-20 \mathrm{~mA} \\ 4-20 \mathrm{~mA} \\ 100 \mathrm{mV} \\ \text { PT100 RTD } \end{gathered}$ J, K, N, T, E, R, S, B, C Thermocouples	B / R / S	$2912^{\circ} \mathrm{F}$ to $32.0^{\circ} \mathrm{F}\left(1600^{\circ} \mathrm{C}\right.$ to $\left.0^{\circ} \mathrm{C}\right)$
		C	$4208^{\circ} \mathrm{F}$ to $32.0^{\circ} \mathrm{F}\left(2320^{\circ} \mathrm{C}\right.$ to $\left.0^{\circ} \mathrm{C}\right)$
		E	$1652^{\circ} \mathrm{F}$ to $-328^{\circ} \mathrm{F}\left(900^{\circ} \mathrm{C}\right.$ to $\left.-200^{\circ} \mathrm{C}\right)$
		T	$752.0^{\circ} \mathrm{F}$ to $-400.0^{\circ} \mathrm{F}\left(400^{\circ} \mathrm{C}\right.$ to $\left.-240^{\circ} \mathrm{C}\right)$
		J	$1382.0^{\circ} \mathrm{F}$ to $-346.0^{\circ} \mathrm{F}\left(750^{\circ} \mathrm{C}\right.$ to $\left.-210^{\circ} \mathrm{C}\right)$
		K / N	$2498.0^{\circ} \mathrm{F}$ to $-400^{\circ} \mathrm{F}\left(1370^{\circ} \mathrm{C}\right.$ to $\left.-240^{\circ} \mathrm{C}\right)$
Safe Input Voltage Range	10VDC: -0.5 V to +12 V 20mA: -0.5 V to +6 V RTD / T/C: +/-24VDC	Thermocouple Common Mode Range	+/-10V
Nominal Resolution	10V, 20mA, 100mV: 14 Bits RTD, Thermocouple: 16 Bits	Converter Type	Delta Sigma
Input Impedance (Clamped @ -0.5VDC to 12VDC)	Current Mode: 100 Ω, 35mA Max. Continuous Voltage Mode: $500 \mathrm{k} \Omega$, 35 mA Max. Continuous	Max Error at $25^{\circ} \mathrm{C}$ (*excluding zero)	$* 4-20 \mathrm{~mA}$ $+/-0.10 \%^{*}$ of full scale *0-20 mA $+/-0.10 \%^{*}$ of full scale *0-10 VDC $+/-0.10 \%^{*}$ of full scale RTD (PT100) $+/-1.00^{\circ} \mathrm{C}$ of full scale $0-100 \mathrm{mV}$ $+/-0.05 \%$ of full scale
\%AI Full Scale	$10 \mathrm{~V}, 20 \mathrm{~mA}, 100 \mathrm{mV}$: 32,00 of Full Scale RTD, T/C: 10 counts / ${ }^{\circ} \mathrm{C}$ - ${ }^{\circ} \mathrm{F}$	Max Thermocouple Error (After Warm up Time of One Hour)	$\begin{aligned} & \left.+/-0.2 \% \text { (+/-0.3\% below }-100^{\circ} \mathrm{C}\right) \\ & \text { of full scale } \end{aligned}$
Max Over-Current	35 mA	Conversion Speed, Both Channels Converted	10V, $20 \mathrm{~mA}, 100 \mathrm{mV}$: 30 Times/Second RTD, Thermocouple: 7.5 Times/Second
Open Thermocouple Detect Current	50nA	Conversion Time per Channel	10V, 20mA, 100mV: 16.7 ms RTD, Thermocouple: 66.7 ms
Analog BUS Isolation	500VAC / VDC	RTD Excitation Current	$25 \mu \mathrm{~A}$
ANALOG OUTPUTS			
Number of Channels			2
Output Ranges		0-10VDC, 0-20mA	
Nominal Resolution		14 Bits	
Update Rate		PLC Dependent	
Minimum 10V Load		500Ω	
Maximum 20 mA Load		500Ω	
Maximum Error at $25^{\circ} \mathrm{C}$ (Excluding zero)		$\begin{aligned} & \text { 0-20mA: } \\ & \text { O-10V: } \end{aligned}$	0.1\% of full scale 0.1\% of full scale
Additional Error for Temperature other than $25^{\circ} \mathrm{C}$		$\begin{aligned} & 20 \mathrm{~mA}: \\ & 0-10 \mathrm{~V} \text { : } \end{aligned}$	$\begin{aligned} & 0.000143 \% /{ }^{\circ} \mathrm{C} \\ & 0.000151 \% /{ }^{\mathrm{C}} \end{aligned}$

BUS Isolated, shares common with analog inputs

2 PORT CONNECTORS

6

1. J2 / J4 - Digital Output 1-12, Digital Input 1-6
2. CAN and Power Connector
3. Status LEDs
4. Network ID Selector Switches
5. Earth Ground
6. J1/ J3-THM/RTD/V/mA, Digital Input 1-12

3 POWER WIRING

4 CAN COMMUNICATIONS

The CAN port is provided via three connections on the CAN/Power: CAN_LOW (CL), CAN_HIGH (CH), and V- (C). It may be used to communicate with other OCS products using Horner's CsCAN protocol. A 24VDC power source will be required on the CsCAN bus in order to power the expansion I/O modules.

NOTE: $12-24 \mathrm{VDC}$ must be supplied to the network.
NOTE: For detailed wiring information, refer to CAN Manual (MANO799).

Wiring Details

- Locking Spring-Clamp
- Two-terminators per Conductor
- Torque Rating: 4.5 in -Ibs ($0.50 \mathrm{~N}-\mathrm{m}$) SHLD and $\mathrm{V}+$ pins are not internally

V- CL SH CH $\mathrm{V}+$
 connected

PWR IN

A single 5-pin connector is used to make both a network connection and power input. A quality Class 2 power supply should be used for this product. If the power is run with the network cable, care must be taken so that the voltage does not drop below the lower supply limit on longer runs.

A quality earth ground is required for safe and proper operation. The best ground is achieved by screwing the left grounding location into a grounded back plate. Alternately, a ground can be connected to the spade lug.

CAN Port Pins		
PIN	SIGNAL	DESCRIPTION
$\mathbf{1}$	V-	CAN and Device Ground - Black
$\mathbf{2}$	CN L	CAN Data Low - Blue
$\mathbf{3}$	SHLD	Shield Ground - None
$\mathbf{4}$	CN H	CAN Data High - White
5	V+	Positive DC Voltage Input (10-28VDC) - Red

Recommended Cable		
Thick	Max Distance $=500 \mathrm{~m}$	Belden 3082A
Thin	Max Distance $=100 \mathrm{~m}$	Belden 3084A

5 DIAGNOSTIC LED INDICATORS

Diagnostic LED	State	Meaning
MS indicates fault status of the Module	Solid Red	RAM or ROM test failed
	Flashing Red	I/O test failed
	Flashing Green	Module is in power-up state, no config from OcS
Nolid Green indicates fault status of the Network	Solid Red	Module is running normally
	Flashing Red	Network Ack or Dup ID test failed
	Flashing Green	Network ID test failed

Status LED Indicators - The Power Status LED illuminates RED when power is applied to the module. There are I/O status LED indicators for each of the Digital I/O points, which illuminate RED when the I/O point is ON.

6 WIRING

J1: CA terminals are internally connected together and isolated from BUS.

J3: X has no internal connection. CB and CC terminals are isolated from each other and BUS.

20 mA Analog In - Not Self Powered

20 mA Analog In - Self Powered
O-10VDC IN

page 3 of 8

7 CSCAPE CONFIGURATION

The HE579RTD100 and HE579RTD200 SmartBlock modules are configured through the Hardware Configuration menu in Cscape. To configure module and input settings:

1. Select Controller from Cscape the top navigation bar.
2. Select Hardware Configuration from drop-down menu.
3. Select CAN1 (CsCAN) I/O tab.
4. Click on Add button.
5. Select SmartBlock tab.
6. Select HE579MIX105
7. Click OK.

Network ID	The Unique CAN ID of this device. Enter any deci- mal number between 1 and 253 here and note the translated hexadecimal value. Set the hexadecimal Network ID rotary switches on the device to trans- lated value.
I/O Mapping	These registers define how the OCS controller registers are mapped to the data to and from the SmartBlock I/O. These registers do no have to match the I/O types typically used for I/O such as \%AI, Q... Any standard controller registers may be used such as \%R, \%T and \%M.
Input Update Method	This defines how often analog data is sent from the SmartBlock to the CsCAN network. Digital data is transmitted on change of state.
Channel Config- uration	This selects how each analog channel is configured including filtering.
Timeout	This sets the time a controller will wait before assuming the host OCS is offline.

HE579MIX105 Cscape Configuration screen

8 CSCAN SMARTBLOCK I/O STATUS REGISTER DEFINITION

Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1
				Version Error	Incorrect Module	Not Configured	Offline
Bit 16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9
Send						Reconfig (Sticky)	Lifetime (Sticky)

NOTE: The Status Register, viewed in INT format, is designed to be zero if there are no faults and non-zero if faults occur. Moving a value of 0 into the status register clears faults that remain on after they have been remedied, or "sticky".

9 NETWORK DATA - Consumed Digital Data

Consumed Digital Data - This data is sent from the controller to the SmartBlock for typical applications, the Hardware Configuration setup in Cscape will automatically populate this data. For more advanced applications, NetPut functions can be used to for this data.

Bit	Description	
1-4	Analog Input 1 Type	$0=J$ thermocouple $1=\mathrm{K}$ thermocouple $2=\mathrm{N}$ thermocouple 3 = T thermocouple $4=E$ thermocouple $5=\mathrm{R}$ thermocouple $6=S$ thermocouple
5-8	Analog Input 2 Type	7 = B thermocouple $8=C$ thermocouple $11=0-10 \mathrm{~V}$ $12=0-20 \mathrm{~mA}$ $13=4-20 \mathrm{~mA}$ $14=+/-100 \mathrm{mV}$ $15=$ PT100, Alpha 0.00385 , DIN 43760
9	Analog Output 1 Type	$\begin{gathered} 0=10 \mathrm{~V} \\ 1=20 \mathrm{~mA} \end{gathered}$
10	Analog Output 2 Type	
12	Temperature Format	$0=0.1^{\circ} \mathrm{C} \quad 1=0.1^{\circ} \mathrm{F}$
13	Filtering	

10 NETWORK DATA - Produced Analog Data

Produced Analog Data - This data is sent from the controller to the SmartBlock to the controller. Normally this data is mapped into specific registers in the Hardware Configuration in Cscape. For advanced applications, NetGet functions can be used to obtain this data. Since this data is broadcast to all controllers on the network, additional controllers can use NetGet functions to obtain this data as well.

Word	Function	
Word 1	INT	Analog Input 1
Word 2	INT	Analog Input 2

11 NETWORK DATA - Consumed Analog Data

Consumed Analog Data - This data is sent from the controller to the SmartBlock for typical applications, the Hardware Configuration setup in Cscape will automatically populate this data. For more advanced applications, NetPut functions can be used to for this data.

Word	Function	
Word 1	INT	Analog Output 1
Word 2	INT	Analog Output 2

12 SETTING ID SWITCHES

Configure SmartBlock in Cscape before this step, then use the hexadecimal number converted during Cscape configuration.

CsCAN Network IDs are set using the hexadecimal number system from 01 to FD. The decimal equivalent is $1-253$. Refer to the Conversion Table below, which shows the decimal equivalent of hexadecimal numbers. Set a unique Network ID by inserting a small Phillips screwdriver into the two identical switches.

Network ID Switches

NOTE: The CsCAN Baud Rate for SmartBlock I/O is fixed at 125kBd.

Setting ID Switches - Conversion Chart

Dec	Hex																									
		Lo		Hi	Lo								Hi	Lo												
1	0	1	29	1	D	57	3	9	85	5	5	113	7	1	141	8	D	169	A	9	197	C	5	225	E	1
2	0	2	30	1	E	58	3	A	86	5	6	114	7	2	142	8	E	170	A	A	198	C	6	226	E	2
3	0	3	31	1	F	59	3	B	87	5	7	115	7	3	143	8	F	171	A	B	199	C	7	227	E	3
4	0	4	32	2	0	60	3	C	88	5	8	116	7	4	144	9	0	172	A	C	200	C	8	228	E	4
5	0	5	33	2	1	61	3	D	89	5	9	117	7	5	145	9	1	173	A	D	201	C	9	229	E	5
6	0	6	34	2	2	62	3	E	90	5	A	118	7	6	146	9	2	174	A	E	202	C	A	230	E	6
7	0	7	35	2	3	63	3	F	91	5	B	119	7	7	147	9	3	175	A	F	203	C	B	231	E	7
8	0	8	36	2	4	64	4	0	92	5	C	120	7	8	147	9	4	176	B	0	204	C	C	232	E	8
9	0	9	37	2	5	65	4	1	93	5	D	121	7	9	149	9	5	177	B	1	205	C	D	233	E	9
10	0	A	38	2	6	66	4	2	94	5	E	122	7	A	150	9	6	178	B	2	206	C	E	234	E	A
11	0	B	39	2	7	67	4	3	95	5	F	123	7	B	151	9	7	179	B	3	207	C	F	235	E	B
12	0	C	40	2	8	68	4	4	96	6	0	124	7	C	152	9	8	180	B	4	208	D	0	236	E	C
13	0	D	41	2	9	69	4	5	97	6	1	125	7	D	153	9	9	181	B	5	209	D	1	237	E	D
14	0	E	42	2	A	70	4	6	98	6	2	126	7	E	154	9	A	182	B	6	210	D	2	238	E	E
15	0	F	43	2	B	71	4	7	99	6	3	127	7	F	155	9	B	183	B	7	211	D	3	239	E	F
16	1	0	44	2	C	72	4	8	100	6	4	128	8	0	156	9	C	184	B	8	212	D	4	240	F	0
17	1	1	45	2	D	73	4	9	101	6	5	129	8	1	157	9	D	185	B	9	213	D	5	241	F	1
18	1	2	46	2	E	74	4	A	102	6	6	130	8	2	158	9	E	186	B	A	214	D	6	2412	F	2
19	1	3	47	2	F	75	4	B	103	6	7	131	8	3	159	9	F	187	B	B	215	D	7	243	F	3
20	1	4	48	3	0	76	4	C	104	6	8	132	8	4	160	A	0	188	B	C	216	D	8	244	F	4
21	1	5	49	3	1	77	4	D	105	6	9	133	8	5	161	A	1	189	B	D	217	D	9	245	F	5
22	1	6	50	3	2	78	4	E	106	6	A	134	8	6	162	A	2	190	B	E	218	D	A	246	F	6
23	1	7	51	3	3	79	4	F	107	6	B	135	8	7	163	A	3	191	B	F	219	D	B	247	F	7
24	1	8	52	3	4	80	5	0	108	6	C	136	8	8	164	A	4	192	C	0	220	D	C	248	F	8
25	1	9	53	3	5	81	5	1	109	6	D	137	8	9	165	A	5	193	C	1	221	D	D	249	F	9
26	1	A	54	3	6	82	5	2	110	6	E	138	8	A	166	A	6	194	C	2	222	D	E	250	F	A
27	1	B	55	3	7	83	5	3	111	6	F	139	8	B	167	A	7	195	C	3	223	D	F	251	F	B
28	1	C	56	3	8	84	5	4	112	7	0	140	8	C	168	A	8	196	C	4	224	E	0	252	F	C
																								253	F	D

C

13 INSTALLATION DIMENSIONS AND SAFETY

The SmartBlock modules are suitable for use in the Class I, Division 2, Groups A, B, C and D Hazardous Locations, or nonhazardous locations only.

WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.
ATTENTION - RISQUE D'EXPLOSION - NE DÉBRANCHEZ PAS L'ÉQUIPEMENT SAUF SI L'ALIMENTATION A ÉTÉ COUPÉE OU SI LA ZONE N'EST PAS DANGEREUSE.

Device shall be installed into an enclosure that is only accessible with the use of a tool.

INSTALLATION PROCEDURE

1. The SmartBlock modules conveniently mount on a DIN rail.
2. Be sure the DIN rail is in a horizontal position before installing the unit.
3. The orientation shown to the right is necessary to prevent the unit from slipping off the DIN rail.
4. Align the unit on the DIN rail then push the DIN rail clip until it clicks into place. Check to ensure that the unit is secure on the DIN rail.
5. Do NOT mount the unit on its side as this may cause the unit from slipping off the DIN rail.

NOTE: The spade connector for grounding and the DIN rail clip add to the overall measurements. The CAN/PWR and LAN connectors also add to the measurements.

WARNINGS

1. To avoid the risk of electric shock or burns, always connect the safety (or earth) ground before making any other connections.
2. To reduce the risk of fire, electrical shock, or physical injury, it is strongly recommended to fuse the voltage measurement inputs. Be sure to locate fuses as close to the source as possible.
3. Replace fuse with the same type and rating to provide protection against risk of fire and shock hazards.
4. In the event of repeated failure, do NOT replace the fuse again as repeated failure indicates a defective condition that will NOT clear by replacing the fuse.
5. Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install, adjust, operate, or service this equipment. Read and understand this manual and other applicable manuals in their entirety before proceeding. Failure to observe this precaution could result in severe bodily injury or loss of life.

FCC COMPLIANCE

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

1. This device may not cause harmful interference
2. This device must accept any interference received, including interference that may cause undesired operation

PRECAUTIONS

All applicable codes and standards need to be followed in the installation of this product. Adhere to the following safety precautions whenever any type of connection is made to the module:

1. Connect the safety (earth) ground on the power connector first before making any other connections.
2. When connecting to the electric circuits or pulse-initiating equipment, open their related breakers.
3. Do NOT make connection to live power lines.
4. Make connections to the module first; then connect to the circuit to be monitored.
5. Route power wires in a safe manner in accordance with good practice and local codes.
6. Wear proper personal protective equipment including safety glasses and insulated gloves when making connections to power circuits.
7. Ensure hands, shoes, and floor are dry before making any connection to a power line.
8. Make sure the unit is turned OFF before making connection to terminals.
9. Make sure all circuits are de-energized before making connections.
10. Before each use, inspect all cables for breaks or cracks in the insulation. Replace immediately if defective.
11. Use copper conductors in Field Wiring only, $60 / 75^{\circ} \mathrm{C}$.

14 PART NUMBER

The global part number is HE579MIX105.

15 TECHNICAL SUPPORT

For assistance and datasheet updates, contact Technical Support at the following locations:

North America

+1 (317) 916-4274
www.hornerautomation.com
techsppt@heapg.com

Europe

+353 (21) 4321-266
www.hornerautomation.eu
technical.support@horner-apg.com

