GE CCM Driver Help

© 2012 Kepware Technologies

Table of Contents

Table of Contents	2
GE CCM Driver Help	4
Overview	4
Device Setup	5
Modem Setup	5
Data Types Description	7
Address Descriptions	8
311 Addressing	8
313 Addressing	9
331 Addressing	10
341 Addressing	11
731 Addressing	12
732 Addressing	13
771 Addressing	14
772 Addressing	15
781 Addressing	16
782 Addressing	17
Series Six Addressing	18
Series Five Addressing	19
Error Descriptions	21
Address Validation	21
Missing address.	21
Device address ' <address>' contains a syntax error</address>	21
Address ' <address>' is out of range for the specified device or register</address>	22
Device address ' <address>' is not supported by model '<model name="">'</model></address>	22
Data Type ' <type>' is not valid for device address '<address>'</address></type>	22
Device address ' <address>' is Read Only</address>	22
Array size is out of range for address ' <address>'</address>	22
Array support is not available for the specified address: ' <address>'</address>	23
Address ' <address>' is not valid on device '<device name="">'</device></address>	23
Serial Communications	23
COMn is in use by another application	23
Error opening COMn	23
COMn does not exist	23
Unable to set comm parameters on COMn	24
Communications error on ' <channel name="">' [<error mask="">]</error></channel>	24
Device Status Messages	24
Device ' <device name="">' not responding</device>	24

I	Unable to write to ' <address>' on device '<device name="">'</device></address>	25
ı	Unable to write to tag ' <address>' on device '<device name="">'. Invalid request</device></address>	25
I	Unable to read tag ' <address>' on device '<device name="">'. Invalid request</device></address>	25
I	Unable to read ' <count>' bytes starting at '<address>' on device '<device name="">'. Invalid request</device></address></count>	26
I	Unable to write to tag ' <address>' on device '<device name="">'. Framing error</device></address>	26
I	Unable to read tag ' <address>' on device '<device name="">'. Framing error</device></address>	26
I	Unable to read ' <count>' bytes starting at '<address>' on device '<device name="">'. Framing error</device></address></count>	27
D	evice Specific Messages	27
I	Invalid tag in block starting at ' <address>' in device '<device>'</device></address>	27
Inde	ex	28

GE CCM Driver Help

Help version 1.017

CONTENTS

Overview What is the GE CCM Driver?

Device Setup

How do I configure a device for use with this driver?

Data Types Description What data types does this driver support?

Address Descriptions How do I address a data location on a GE CCM device?

Error Descriptions

What error messages does the GE CCM driver produce?

Overview

The GE CCM Driver provides an easy and reliable way to connect GE CCM controllers to OPC Client applications, including HMI, SCADA, Historian, MES, ERP and countless custom applications. It is intended for use with GE Programmable Logic Controllers.

Device Setup

Supported Devices

Series 90-30 311/313, 331/341 Series 90-70 731/732, 771/772, 781/782 Series Six CCM2 Series Five CCM2

Communication Protocol

GE CCM (Master/Slave mode)

Note: Although the PLC device can be configured to operate in Master/Slave or Peer to Peer mode, the driver can only support Master/Slave communications.

Supported Communication Parameters

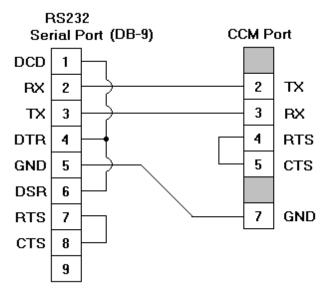
Baud Rate: 300, 600, 1200, 2400, 9600, 19200 Parity: Odd, None Data Bits: 8 Stop Bits: 1

Note: Not all devices support the listed configurations.

Ethernet Encapsulation

This driver supports Ethernet Encapsulation, which allows the driver to communicate with serial devices attached to an Ethernet network using a terminal server. It can be enabled through the COM ID dialog in Channel Properties. For more information, refer to the OPC Server's help documentation.

Device IDs


Slave Network IDs ranging from 1 to 90.

Flow Control

When using an RS232/RS485 converter, the type of flow control that is required depends on the converter's needs. Some do not require any flow control whereas others require RTS flow. Consult the converter's documentation in order to determine its flow requirements. An RS485 converter that provides automatic flow control is recommended.

Note: When using the manufacturer's supplied communications cable, it is sometimes necessary to choose a flow control setting of **RTS** or **RTS** Always under the Channel Properties.

Cable Connections

Modem Setup

This driver supports modem functionality. For more information, please refer to the topic "Modem Support" in the OPC Server Help documentation.

Data Types Description

Data Type	Description			
Boolean	Single bit			
Byte	Unsigned 8 bit value			
	bit 0 is the low bit			
	bit 7 is the high bit			
Word	Unsigned 16 bit value			
	bit 0 is the low bit			
	bit 15 is the high bit			
Short	Signed 16 bit value			
	bit 0 is the low bit			
	bit 14 is the high bit			
	bit 15 is the sign bit			
DWord	Unsigned 32 bit value			
	bit 0 is the low bit			
	bit 31 is the high bit			
Long	Signed 32 bit value			
	bit 0 is the low bit			
	bit 30 is the high bit			
	bit 31 is the sign bit			
BCD	Two byte packed BCD			
	Value range is 0-9999. Behavior is undefined for values beyond this range.			
LBCD	Four byte packed BCD			
	Value range is 0-999999999. Behavior is undefined for values beyond this range.			
Float	32 bit floating point value.			
	The driver interprets two consecutive registers as a floating point value by making the second register the high word and the first reg- ister the low word.			

Address Descriptions

Address specifications vary depending on the model in use. Select a link from the following list to obtain specific address information for the model of interest.

311
313
331
341
731
732
771
772
<u>781</u>
<u>782</u>
Series Six
Series Five

311 Addressing

The default data types are shown in **bold**.

Device Address	Range	Data Type	Access
Discrete Inputs	I1 to I512 I1 to I505 (every 8th bit) I1 to I497 (every 8th bit)	Boolean* Byte Word, Short, BCD	Read/Write
Discrete Outputs	Q1 to Q512 Q1 to Q505 (every 8th bit) Q1 to Q497 (every 8th bit)	Boolean* Byte Word, Short, BCD	Read/Write
Register References	R1 to R512 R1 to R511 R1.b to R512.b (b is bit number 0 to 15)	Word, Short, BCD DWord, Long, LBCD, Float Boolean	Read/Write

*When an array specification is given, the default data type Boolean becomes Byte.

Note: All device addresses can be prefixed with a % sign if needed (such as %R100). This can aid the conversion from other OPC servers or communications drivers.

Default Data Type Override

The default data types for each device type are shown in the table above. To override the default data type for register references, append a data type indicator to the device address. The possible data type indicators are as follows.

F = Float S = Short L = Long M = String(BCD) = BCD

Examples

R100 F = Accesses R100 as a floating point value. R300 L = Accesses R300 as a long. R400-R410 M = Accesses R400-R410 as a string with a length of 22 bytes.

Note: There must be a space between the register number and the specific data type.

String Access to Registers

Register space can be accessed as string data by appending and specifying the "M" data type. The length of the string is based on how the device address reference is entered. Examples are as follows.

R100-R120 M = Accesses Register R100 as string with a length of 42 bytes. R400 M = Accesses Register R400 as a string with a length of 4 bytes. R405-R405 M = Accesses Register R405 as a string with a length of 2 bytes.

The following data types support arrays: Byte, Word, Short, DWord, Long and Float. An array is a collection of contiguous elements of a given data type. The maximum array size is 32 DWords (Longs and Floats), 64 Words (Shorts) or 128 Bytes for a total of 1024 bits. For information on the two ways to specify an array, refer to the examples below.

Example 1

R1 [4] includes the following Word addresses: R1, R2, R3, R4

Example 2

R16 [3][4] includes the following Word addresses: R16, R17, R18, R19 R20, R21, R22, R23 R24, R25, R26, R27 3 rows x 4 columns = 12 words 12 x 16 (word) = 192 total bits

313 Addressing

The default data types are shown in **bold**.

Device Address	Range	Data Type	Access
Discrete Inputs	I1 to I512	Boolean*	Read/Write
	I1 to I505 (every 8th bit)	Byte	
	I1 to I497 (every 8th bit)	Word, Short, BCD	
Discrete Outputs	Q1 to Q512	Boolean*	Read/Write
	Q1 to Q505 (every 8th bit)	Byte	
	Q1 to Q497 (every 8th bit)	Word, Short, BCD	
Register References	R1 to R1024	Word, Short, BCD	Read/Write
	R1 to R1023	DWord, Long, LBCD, Float	
	R1.b to R1024.b	Boolean	
	(b is bit number 0 to 15)		

*When an array specification is given, the default data type Boolean becomes Byte.

Note: All device addresses can be prefixed with a % sign if needed (such as %R100). This can aid the conversion from other OPC servers or communications drivers.

Default Data Type Override

The default data types for each device type are shown in the table above. To override the default data type for register references, append a data type indicator to the device address. The possible data type indicators are as follows.

F = Float S = Short L = Long M = String(BCD) = BCD

Examples

R100 F = Accesses R100 as a floating point value. R300 L = Accesses R300 as a long. R400-R410 M = Accesses R400-R410 as a string with a length of 22 bytes.

Note: There must be a space between the register number and the data type indicator.

String Access to Registers

Register space can be accessed as string data by appending the "M" data indicator. The length of the string is based on how the device address reference is entered. Examples are as follows.

R100-R120 M = Accesses Register R100 as string with a length of 42 bytes. R400 M = Accesses Register R400 as a string with a length of 4 bytes. R405-R405 M = Accesses Register R405 as a string with a length of 2 bytes.

The following data types support arrays: Byte, Word, Short, DWord, Long and Float. An array is a collection of contiguous elements of a given data type. The maximum array size is 32 DWords (Longs and Floats), 64 Words (Shorts) or 128 Bytes for a total of 1024 bits. For information on the two ways to specify an array, refer to the examples below.

Example 1

R1 [4] includes the following Word addresses: R1, R2, R3, R4

Example 2

R16 [3][4] includes the following Word addresses: R16, R17, R18, R19 R20, R21, R22, R23 R24, R25, R26, R27 3 rows x 4 columns = 12 words 12 x 16 (word) = 192 total bits

331 Addressing

The default data types are shown in **bold**.

Device Address	Range	Data Type	Access
Discrete Inputs	I1 to I512	Boolean*	Read/Write
	I1 to I505 (every 8th bit)	Byte	
	I1 to I497 (every 8th bit)	Word, Short, BCD	
Discrete Outputs	Q1 to Q512	Boolean*	Read/Write
	Q1 to Q505 (every 8th bit)	Byte	
	Q1 to Q497 (every 8th bit)	Word, Short, BCD	
Register References	R1 to R2048	Word, Short, BCD	Read/Write
	R1 to R2047	DWord, Long, LBCD, Float	
	R1.b to R2048.b	Boolean	
	(b is bit number 0 to 15)		

*When an array specification is given, the default data type Boolean becomes Byte.

Note: All device addresses can be prefixed with a % sign if needed (such as %R100). This can aid the conversion from other OPC servers or communications drivers.

Default Data Type Override

The default data types for each device type are shown in the table above. To override the default data type for register references, append a data type indicator to the device address. The possible data type indicators are as follows.

F = Float S = Short L = Long M = String(BCD) = BCD

Examples

R100 F = Accesses R100 as a floating point value. R300 L = Accesses R300 as a long. R400-R410 M = Accesses R400-R410 as a string with a length of 22 bytes.

Note: There must be a space between the register number and the data type indicator.

String Access to Registers

Register space can be accessed as string data by appending the "M" data indicator. The length of the string is based on how the device address reference is entered. Examples are as follows.

R100-R120 M = Accesses Register R100 as string with a length of 42 bytes. R400 M = Accesses Register R400 as a string with a length of 4 bytes. R405-R405 M = Accesses Register R405 as a string with a length of 2 bytes.

The following data types support arrays: Byte, Word, Short, DWord, Long and Float. An array is a collection of contiguous elements of a given data type. The maximum array size is 32 DWords (Longs and Floats), 64 Words (Shorts) or 128 Bytes for a total of 1024 bits. For information on the two ways to specify an array, refer to the examples below.

Example 1

R1 [4] includes the following Word addresses: R1, R2, R3, R4

Example 2

R16 [3][4] includes the following Word addresses: R16, R17, R18, R19 R20, R21, R22, R23 R24, R25, R26, R27 3 rows x 4 columns = 12 words 12 x 16 (word) = 192 total bits

341 Addressing

The default data types are shown in **bold**.

Device Address	Range	Data Type	Access
Discrete Inputs	I1 to I512	Boolean*	Read/Write
	I1 to I505 (every 8th bit)	Byte	
	I1 to I497 (every 8th bit)	Word, Short, BCD	
Discrete Outputs	Q1 to Q512	Boolean*	Read/Write
	Q1 to Q505 (every 8th bit)	Byte	
	Q1 to Q497 (every 8th bit)	Word, Short, BCD	
Register References	R1 to R9999	Word, Short, BCD	Read/Write
	R1 to R9998	DWord, Long, LBCD, Float	
	R1.b to R9999.b	Boolean	
	(b is bit number 0 to 15)		

*When an array specification is given, the default data type Boolean becomes Byte.

Note: All device addresses can be prefixed with a % sign if needed (such as %R100). This can aid the conversion from other OPC servers or communications drivers.

Default Data Type Override

The default data types for each device type are shown in the table above. To override the default data type for register references, append a data type indicator to the device address. The possible data type indicators are as follows.

F = Float S = Short L = Long M = String(BCD) = BCD

Examples

R100 F = Accesses R100 as a floating point value. R300 L = Accesses R300 as a long. R400-R410 M = Accesses R400-R410 as a string with a length of 22 bytes.

Note: There must be a space between the register number and the data type indicator.

String Access to Registers

Register space can be accessed as string data by appending the "M" data indicator. The length of the string is based on how the device address reference is entered. Examples are as follows.

R100-R120 M = Accesses Register R100 as string with a length of 42 bytes. R400 M = Accesses Register R400 as a string with a length of 4 bytes. R405-R405 M = Accesses Register R405 as a string with a length of 2 bytes.

The following data types support arrays: Byte, Word, Short, DWord, Long and Float. An array is a collection of contiguous elements of a given data type. The maximum array size is 32 DWords (Longs and Floats), 64 Words (Shorts) or 128 Bytes for a total of 1024 bits. For information on the two ways to specify an array, refer to the examples below.

Example 1

R1 [4] includes the following Word addresses: R1, R2, R3, R4

Example 2

R16 [3][4] includes the following Word addresses: R16, R17, R18, R19 R20, R21, R22, R23 R24, R25, R26, R27 3 rows x 4 columns = 12 words 12 x 16 (word) = 192 total bits

731 Addressing

The default data types are shown in **bold**.

Device Address	Range	Data Type	Access
Discrete Inputs	I1 to I512	Boolean*	Read/Write
	I1 to I505 (every 8th bit)	Byte	
	I1 to I497 (every 8th bit)	Word, Short, BCD	
Discrete Outputs	Q1 to Q512	Boolean*	Read/Write
	Q1 to Q505 (every 8th bit)	Byte	
	Q1 to Q497 (every 8th bit)	Word, Short, BCD	
Register References	R1 to R16384	Word, Short, BCD	Read/Write
	R1 to R16383	DWord, Long, LBCD, Float	
	R1.b to R16384.b	Boolean	
	(b is bit number 0 to 15)		

*When an array specification is given, the default data type Boolean becomes Byte.

Note: All device addresses can be prefixed with a % sign if needed (such as %R100). This can aid the conversion from other OPC servers or communications drivers.

Default Data Type Override

The default data types for each device type are shown in the table above. To override the default data type for register references, append a data type indicator to the device address. The possible data type indicators are as follows.

F = Float S = Short L = Long M = String(BCD) = BCD

Examples

R100 F = Accesses R100 as a floating point value. R300 L = Accesses R300 as a long. R400-R410 M = Accesses R400-R410 as a string with a length of 22 bytes.

Note: There must be a space between the register number and the data type indicator.

String Access to Registers

Register space can be accessed as string data by appending the "M" data indicator. The length of the string is based on how the device address reference is entered. Examples are as follows.

R100-R120 M = Accesses Register R100 as string with a length of 42 bytes. R400 M = Accesses Register R400 as a string with a length of 4 bytes. R405-R405 M = Accesses Register R405 as a string with a length of 2 bytes.

The following data types support arrays: Byte, Word, Short, DWord, Long and Float. An array is a collection of contiguous elements of a given data type. The maximum array size is 32 DWords (Longs and Floats), 64 Words (Shorts) or 128 Bytes for a total of 1024 bits. For information on the two ways to specify an array, refer to the examples below.

Example 1

R1 [4] includes the following Word addresses: R1, R2, R3, R4

Example 2

R16 [3][4] includes the following Word addresses: R16, R17, R18, R19 R20, R21, R22, R23 R24, R25, R26, R27 3 rows x 4 columns = 12 words 12 x 16 (word) = 192 total bits

732 Addressing

The default data types are shown in **bold**.

Device Address	Range	Data Type	Access
Discrete Inputs	I1 to I512	Boolean*	Read/Write
	I1 to I505 (every 8th bit)	Byte	
	I1 to I497 (every 8th bit)	Word, Short, BCD	
Discrete Outputs	Q1 to Q512	Boolean*	Read/Write
	Q1 to Q505 (every 8th bit)	Byte	
	Q1 to Q497 (every 8th bit)	Word, Short, BCD	
Register References	R1 to R16384	Word, Short, BCD	Read/Write
	R1 to R16383	DWord, Long, LBCD, Float	
	R1.b to R16384.b	Boolean	
	(b is bit number 0 to 15)		

*When an array specification is given, the default data type Boolean becomes Byte.

Note: All device addresses can be prefixed with a % sign if needed (such as %R100). This can aid the conversion from other OPC servers or communications drivers.

Default Data Type Override

The default data types for each device type are shown in the table above. To override the default data type for register references, append a data type indicator to the device address. The possible data type indicators are as follows.

F = Float S = Short L = Long M = String(BCD) = BCD

Examples

R100 F = Accesses R100 as a floating point value. R300 L = Accesses R300 as a long. R400-R410 M = Accesses R400-R410 as a string with a length of 22 bytes.

Note: There must be a space between the register number and the data type indicator.

String Access to Registers

Register space can be accessed as string data by appending the "M" data indicator. The length of the string is based on how the device address reference is entered. Examples are as follows.

R100-R120 M = Accesses Register R100 as string with a length of 42 bytes. R400 M = Accesses Register R400 as a string with a length of 4 bytes. R405-R405 M = Accesses Register R405 as a string with a length of 2 bytes.

The following data types support arrays: Byte, Word, Short, DWord, Long and Float. An array is a collection of contiguous elements of a given data type. The maximum array size is 32 DWords (Longs and Floats), 64 Words (Shorts) or 128 Bytes for a total of 1024 bits. For information on the two ways to specify an array, refer to the examples below.

Example 1

R1 [4] includes the following Word addresses: R1, R2, R3, R4

Example 2

R16 [3][4] includes the following Word addresses: R16, R17, R18, R19 R20, R21, R22, R23 R24, R25, R26, R27 3 rows x 4 columns = 12 words 12 x 16 (word) = 192 total bits

771 Addressing

The default data types are shown in **bold**.

Device Address	Range	Data Type	Access
Discrete Inputs	I1 to I2048 I1 to I2041 (every 8th bit) I1 to I2033 (every 8th bit)	Boolean* Byte Word, Short, BCD	Read/Write
Discrete Outputs	Q1 to Q2048 Q1 to Q2041 (every 8th bit) Q1 to Q2033 (every 8th bit)	Boolean* Byte Word, Short, BCD	Read/Write
Register References	R1 to R16384 R1 to R16383 R1.b to R16384.b (b is bit number 0 to 15)	Word, Short, BCD DWord, Long, LBCD, Float Boolean	Read/Write

*When an array specification is given, the default data type Boolean becomes Byte.

Note: All device addresses can be prefixed with a % sign if needed (such as %R100). This can aid the conversion from other OPC servers or communications drivers.

Default Data Type Override

The default data types for each device type are shown in the table above. To override the default data type for register references, append a data type indicator to the device address. The possible data type indicators are as follows.

F = Float S = Short L = Long M = String(BCD) = BCD

Examples

R100 F = Accesses R100 as a floating point value. R300 L = Accesses R300 as a long. R400-R410 M = Accesses R400-R410 as a string with a length of 22 bytes.

Note: There must be a space between the register number and the data type indicator.

String Access to Registers

Register space can be accessed as string data by appending the "M" data indicator. The length of the string is based on how the device address reference is entered. Examples are as follows.

R100-R120 M = Accesses Register R100 as string with a length of 42 bytes. R400 M = Accesses Register R400 as a string with a length of 4 bytes. R405-R405 M = Accesses Register R405 as a string with a length of 2 bytes.

The following data types support arrays: Byte, Word, Short, DWord, Long and Float. An array is a collection of contiguous elements of a given data type. The maximum array size is 32 DWords (Longs and Floats), 64 Words (Shorts) or 128 Bytes for a total of 1024 bits. For information on the two ways to specify an array, refer to the examples below.

Example 1

R1 [4] includes the following Word addresses: R1, R2, R3, R4

Example 2

R16 [3][4] includes the following Word addresses: R16, R17, R18, R19 R20, R21, R22, R23 R24, R25, R26, R27 3 rows x 4 columns = 12 words 12 x 16 (word) = 192 total bits

772 Addressing

The default data types are shown in **bold**.

Device Address	Range	Data Type	Access
Discrete Inputs	I1 to I2048	Boolean*	Read/Write
	I1 to I2041 (every 8th bit)	Byte	
	I1 to I2033 (every 8th bit)	Word, Short, BCD	
Discrete Outputs	Q1 to Q2048	Boolean*	Read/Write
	Q1 to Q2041 (every 8th bit)	Byte	
	Q1 to Q2033 (every 8th bit)	Word, Short, BCD	
Register References	R1 to R16384	Word, Short, BCD	Read/Write
	R1 to R16383	DWord, Long, LBCD, Float	
	R1.b to R16384.b	Boolean	
	(b is bit number 0 to 15)		

*When an array specification is given, the default data type Boolean becomes Byte.

Note: All device addresses can be prefixed with a % sign if needed (such as %R100). This can aid the conversion from other OPC servers or communications drivers.

Default Data Type Override

The default data types for each device type are shown in the table above. To override the default data type for register references, append a data type indicator to the device address. The possible data type indicators are as follows.

F = Float S = Short L = Long M = String(BCD) = BCD

Examples

R100 F = Accesses R100 as a floating point value. R300 L = Accesses R300 as a long. R400-R410 M = Accesses R400-R410 as a string with a length of 22 bytes.

Note: There must be a space between the register number and the data type indicator.

String Access to Registers

Register space can be accessed as string data by appending the "M" data indicator. The length of the string is based on how the device address reference is entered. Examples are as follows.

R100-R120 M = Accesses Register R100 as string with a length of 42 bytes. R400 M = Accesses Register R400 as a string with a length of 4 bytes. R405-R405 M = Accesses Register R405 as a string with a length of 2 bytes.

The following data types support arrays: Byte, Word, Short, DWord, Long and Float. An array is a collection of contiguous elements of a given data type. The maximum array size is 32 DWords (Longs and Floats), 64 Words (Shorts) or 128 Bytes for a total of 1024 bits. For information on the two ways to specify an array, refer to the examples below.

Example 1

R1 [4] includes the following Word addresses: R1, R2, R3, R4

Example 2

R16 [3][4] includes the following Word addresses: R16, R17, R18, R19 R20, R21, R22, R23 R24, R25, R26, R27 3 rows x 4 columns = 12 words 12 x 16 (word) = 192 total bits

781 Addressing

The default data types are shown in **bold**.

Device Address	Range	Data Type	Access
Discrete Inputs	I1 to I12288	Boolean*	Read/Write
	I1 to I12281 (every 8th bit)	Byte	
	I1 to I12273 (every 8th bit)	Word, Short, BCD	
Discrete Outputs	Q1 to Q12288	Boolean*	Read/Write
	Q1 to Q12281 (every 8th bit)	Byte	
	Q1 to Q12273 (every 8th bit)	Word, Short, BCD	
Register References	R1 to R16384	Word, Short, BCD	Read/Write
	R1 to R16383	DWord, Long, LBCD, Float	
	R1.b to R16384.b	Boolean	
	(b is bit number 0 to 15)		

*When an array specification is given, the default data type Boolean becomes Byte.

Note: All device addresses can be prefixed with a % sign if needed (such as %R100). This can aid the conversion from other OPC servers or communications drivers.

Default Data Type Override

The default data types for each device type are shown in the table above. To override the default data type for register references, append a data type indicator to the device address. The possible data type indicators are as follows.

F = Float S = Short L = Long M = String(BCD) = BCD

Examples

R100 F = Accesses R100 as a floating point value. R300 L = Accesses R300 as a long. R400-R410 M = Accesses R400-R410 as a string with a length of 22 bytes.

Note: There must be a space between the register number and the data type indicator.

String Access to Registers

Register space can be accessed as string data by appending the "M" data indicator. The length of the string is based on how the device address reference is entered. Examples are as follows.

R100-R120 M = Accesses Register R100 as string with a length of 42 bytes. R400 M = Accesses Register R400 as a string with a length of 4 bytes. R405-R405 M = Accesses Register R405 as a string with a length of 2 bytes.

The following data types support arrays: Byte, Word, Short, DWord, Long and Float. An array is a collection of contiguous elements of a given data type. The maximum array size is 32 DWords (Longs and Floats), 64 Words (Shorts) or 128 Bytes for a total of 1024 bits. For information on the two ways to specify an array, refer to the examples below.

Example 1

R1 [4] includes the following Word addresses: R1, R2, R3, R4

Example 2

R16 [3][4] includes the following Word addresses: R16, R17, R18, R19 R20, R21, R22, R23 R24, R25, R26, R27 3 rows x 4 columns = 12 words 12 x 16 (word) = 192 total bits

782 Addressing

The default data types are shown in **bold**.

Device Address	Range	Data Type	Access
Discrete Inputs	I1 to I12288	Boolean*	Read/Write
	I1 to I12281 (every 8th bit)	Byte	
	I1 to I12273 (every 8th bit)	Word, Short, BCD	
Discrete Outputs	Q1 to Q12288	Boolean*	Read/Write
	Q1 to Q12281 (every 8th bit)	Byte	
	Q1 to Q12273 (every 8th bit)	Word, Short, BCD	
Register References	R1 to R16384	Word, Short, BCD	Read/Write
	R1 to R16383	DWord, Long, LBCD, Float	
	R1.b to R16384.b	Boolean	
	(b is bit number 0 to 15)		

*When an array specification is given, the default data type Boolean becomes Byte.

Note: All device addresses can be prefixed with a % sign if needed (such as %R100). This can aid the conversion from other OPC servers or communications drivers.

Default Data Type Override

The default data types for each device type are shown in the table above. To override the default data type for register references, append a data type indicator to the device address. The possible data type indicators are as follows.

F = Float S = Short L = Long M = String(BCD) = BCD

Examples

R100 F = Accesses R100 as a floating point value. R300 L = Accesses R300 as a long. R400-R410 M = Accesses R400-R410 as a string with a length of 22 bytes.

Note: There must be a space between the register number and the data type indicator.

String Access to Registers

Register space can be accessed as string data by appending the "M" data indicator. The length of the string is based on how the device address reference is entered. Examples are as follows.

R100-R120 M = Accesses Register R100 as string with a length of 42 bytes. R400 M = Accesses Register R400 as a string with a length of 4 bytes. R405-R405 M = Accesses Register R405 as a string with a length of 2 bytes.

The following data types support arrays: Byte, Word, Short, DWord, Long and Float. An array is a collection of contiguous elements of a given data type. The maximum array size is 32 DWords (Longs and Floats), 64 Words (Shorts) or 128 Bytes for a total of 1024 bits. For information on the two ways to specify an array, refer to the examples below.

Example 1

R1 [4] includes the following Word addresses: R1,R2,R3,R4

Example 2

R16 [3][4] includes the following Word addresses: R16,R17,R18,R19 R20,R21,R22,R23 R24,R25,R26,R27 3 rows x 4 columns = 12 words 12 x 16 (word) = 192 total bits

Series Six Addressing

The default data types are shown in **bold**.

Device Address	Range	Data Type	Access
Discrete Inputs	I1 to I12288	Boolean*	Read/Write
	I1 to I1017 (every 8th bit)	Byte	
	I1 to I1009 (every 8th bit)	Word, Short, BCD	
	I1025 to I12273 (every 16th bit)	Word, Short, BCD	
Discrete Outputs	Q1 to Q12288	Boolean*	Read/Write
	Q1 to Q1017 (every 8th bit)	Byte	
	Q1 to Q1009 (every 8th bit)	Word, Short, BCD	
	Q1025 to Q12273 (every 16th bit)	Word, Short, BCD	
Register References	R1 to R16384	Word, Short, BCD	Read/Write
	R1 to R16383	DWord, Long, LBCD, Float	
	R1.b to R16384.b	Boolean	
	(b is bit number 0 to 15)		
Expanded I/O Inputs	Ih+n	Boolean	Read/Write
	(h = hex 0-F)		
	(n = decimal 1-1024)**		
	Ih-n		
	(h = hex 0-F)		
	(n = decimal 1-1024)		
Expanded I/O Outputs	Qh+n	Boolean	Read/Write
	(h = hex 0-F)		
	(n = decimal 1-1024)**		
	Oh-n		
	(h = hex 0-F)		
	(n = decimal 1-1024)		

*When an array specification is given, the default data type Boolean becomes Byte.

**I0+n maps to In and Q0+n maps to Qn, where n = 1 to 1024.

Note: All device addresses can be prefixed with a % sign if needed (such as %R100). This can aid the conversion from other OPC servers or communications drivers.

Default Data Type Override

The default data types for each device type are shown in the table above. To override the default data type for register references, append a data type indicator to the device address. The possible data type indicators are as follows.

F = FloatS = Short L = Long M = String (BCD) = BCD

Examples

R100 F = Accesses R100 as a floating point value. R300 L = Accesses R300 as a long. R400-R410 M = Accesses R400-R410 as a string with a length of 22 bytes.

Note: There must be a space between the register number and the data type indicator.

String Access to Registers

Register space can be accessed as string data by appending the "M" data indicator. The length of the string is based on how the device address reference is entered. Examples are as follows.

R100-R120 M = Accesses Register R100 as string with a length of 42 bytes. R400 M = Accesses Register R400 as a string with a length of 4 bytes. R405-R405 M = Accesses Register R405 as a string with a length of 2 bytes.

Note: The maximum string length is 128 bytes.

Array Support

The following data types support arrays: Byte, Word, Short, DWord, Long and Float. An array is a collection of contiguous elements of a given data type. The maximum array size is 32 DWords (Longs and Floats), 64 Words (Shorts) or 128 Bytes for a total of 1024 bits. For information on the two ways to specify an array, refer to the examples below.

Example 1

R1 [4] includes the following Word addresses: R1, R2, R3, R4

Example 2

R16 [3][4] includes the following Word addresses: R16, R17, R18, R19 R20, R21, R22, R23 R24, R25, R26, R27 3 rows x 4 columns = 12 words 12 x 16 (word) = 192 total bits

Series Five Addressing

The default data types are shown in **bold**.

Device Address	Range	Data Type	Access
Discrete Inputs	I1 to I1024 I1 to I1017 (every 8th bit) I1 to I1009 (every 8th bit)	Boolean* Byte Word, Short, BCD	Read/Write
Discrete Outputs	Q1 to Q1024 Q1 to Q1017 (every 8th bit) Q1 to Q1009 (every 8th bit)	Boolean* Byte Word, Short, BCD	Read/Write
Register References	R1 to R16384 R1 to R16383 R1.b to R16384.b (b is bit number 0 to 15)	Word, Short, BCD DWord, Long, LBCD, Float Boolean	Read/Write

*When an array specification is given, the default data type Boolean becomes Byte.

Note: All device addresses can be prefixed with a % sign if needed (such as %R100). This can aid the conversion from other OPC servers or communications drivers.

Default Data Type Override

The default data types for each device type are shown in the table above. To override the default data type for register references, append a data type indicator to the device address. The possible data type indicators are as follows.

F = FloatS = Short L = Long M = String (BCD) = BCD

Examples

R100 F = Accesses R100 as a floating point value. R300 L = Accesses R300 as a long. R400-R410 M = Accesses R400-R410 as a string with a length of 22 bytes.

Note: There must be a space between the register number and the data type indicator.

String Access to Registers

Register space can be accessed as string data by appending the "M" data indicator. The length of the string is based on how the device address reference is entered. Examples are as follows.

R100-R120 M = Accesses Register R100 as string with a length of 42 bytes. R400 M = Accesses Register R400 as a string with a length of 4 bytes. R405-R405 M = Accesses Register R405 as a string with a length of 2 bytes.

Note: The maximum string length is 128 bytes.

Array Support

The following data types support arrays: Byte, Word, Short, DWord, Long and Float. An array is a collection of contiguous elements of a given data type. The maximum array size is 32 DWords (Longs and Floats), 64 Words (Shorts) or 128 Bytes for a total of 1024 bits. For information on the two ways to specify an array, refer to the examples below.

Example 1

R1 [4] includes the following Word addresses: R1, R2, R3, R4

Example 2

R16 [3][4] includes the following Word addresses: R16, R17, R18, R19 R20, R21, R22, R23 R24, R25, R26, R27 3 rows x 4 columns = 12 words 12 x 16 (word) = 192 total bits

Error Descriptions

The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation

Missing address Device address '<address>' contains a syntax error Address '<address>' is out of range for the specified device or register Device address '<address>' is not supported by model '<model name>' Data Type '<type>' is not valid for device address '<address>' Device address '<address>' is Read Only Array size is out of range for address '<address>' Array support is not available for the specified address: '<address>'

Serial Communications

COMn does not exist Error opening COMn COMn is in use by another application Unable to set comm parameters on COMn Communications error on '<channel name>' [<error mask>]

Device Status Messages

Device '<device name>' is not responding Unable to write to '<address>' on device '<device name> Unable to write to tag '<address>' on device '<device name>'. Invalid request Unable to read tag '<address>' on device '<device name>'. Invalid request Unable to read '<count>' bytes starting at '<address>' on device '<device name>'. Invalid request Unable to write to tag '<address>' on device '<device name>'. Framing error Unable to read tag '<address>' on device '<device name>'. Framing error Unable to read tag '<address>' on device '<device name>'. Framing error Unable to read '<count>' bytes starting at '<address>' on device '<device name>'. Framing error

Device Specific Messages

Invalid tag in block starting at '<address>' in device '<device>'

Address Validation

The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation

Missing address Device address '<address>' contains a syntax error Address '<address>' is out of range for the specified device or register Device address '<address>' is not supported by model '<model name>' Data Type '<type>' is not valid for device address '<address>' Device address '<address>' is Read Only Array size is out of range for address '<address>' Array support is not available for the specified address: '<address>'

Missing address

Error Type: Warning

warning

Possible Cause: A tag address that has been specified dynamically has no length.

Solution:

Re-enter the address in the client application.

Device address '<address>' contains a syntax error

Error Type: Warning

Possible Cause:

A tag address that has been specified dynamically contains one or more invalid characters.

Solution:

Re-enter the address in the client application.

Address '<address>' is out of range for the specified device or register

Error Type:

Warning

Possible Cause:

A tag address that has been specified dynamically references a location that is beyond the range of supported locations for the device.

Solution:

Verify that the address is correct; if it is not, re-enter it in the client application.

Device address '<address>' is not supported by model '<model name>'

Error Type:

Warning

Possible Cause:

A tag address that has been specified dynamically references a location that is valid for the communications protocol but not supported by the target device.

Solution:

Verify that the address is correct; if it is not, re-enter it in the client application. Also verify that the selected model name for the device is correct.

Data Type '<type>' is not valid for device address '<address>'

Error Type:

Warning

Possible Cause:

A tag address that has been specified dynamically has been assigned an invalid data type.

Solution:

Modify the requested data type in the client application.

Device address '<address>' is Read Only

Error Type: Warning

warning

Possible Cause:

A tag address that has been specified dynamically has a requested access mode that is not compatible with what the device supports for that address.

Solution:

Change the access mode in the client application.

Array size is out of range for address '<address>'

Error Type: Warning

Possible Cause:

A tag address that has been specified dynamically is requesting an array size that is too large for the address type or block size of the driver.

Solution:

Re-enter the address in the client application to specify a smaller value for the array or a different starting point.

Array support is not available for the specified address: '<address>'

Error Type:

Warning

Possible Cause:

A tag address that has been specified dynamically contains an array reference for an address type that doesn't support arrays.

Solution:

Re-enter the address in the client application to remove the array reference or correct the address type.

Address '<address>' is not valid on device '<device name>'

Error Type:

Warning

Possible Cause:

A device model name has been changed such that the specified address is no longer valid.

Solution:

Either choose another model that supports the specified address or modify (remove) the invalid address.

Serial Communications

The following error/warning messages may be generated. Click on the link for a description of the message.

Serial Communications

COMn does not exist Error opening COMn COMn is in use by another application Unable to set comm parameters on COMn Communications error on '<channel name>' [<error mask>]

COMn is in use by another application

Error Type:

Fatal

Possible Cause:

The serial port assigned to a device is being used by another application.

Solution:

Verify that the correct port has been assigned to the channel.

Error opening COMn

Error Type:

Fatal

Possible Cause:

The specified COM port could not be opened due an internal hardware or software problem on the target computer.

Solution:

Verify that the COM port is functional and may be accessed by other Windows applications.

COMn does not exist

Error Type: Fatal

Possible Cause:

The specified COM port is not present on the target computer.

Solution:

Verify that the proper COM port has been selected.

Unable to set comm parameters on COMn

Error Type:

Fatal

Possible Cause:

The serial parameters for the specified COM port are not valid.

Solution:

Verify the serial parameters and make any necessary changes.

Communications error on '<channel name>' [<error mask>]

Error Type:

Serious

Error Mask Definitions:

- **B** = Hardware break detected.
- **F** = Framing error.
- $\mathbf{E} = I/O \text{ error}.$
- **O** = Character buffer overrun.
- $\mathbf{R} = \mathsf{RX}$ buffer overrun.
- **P** = Received byte parity error.
- $\mathbf{T} = \mathsf{TX}$ buffer full.

Possible Cause:

- 1. The serial connection between the device and the Host PC is bad.
- 2. The communications parameters for the serial connection are incorrect.

Solution:

- 1. Verify the cabling between the PC and the PLC device.
- 2. Verify that the specified communications parameters match those of the device.

Device Status Messages

The following error/warning messages may be generated. Click on the link for a description of the message.

Device Status Messages

Device '<device name>' is not responding Unable to write to '<address>' on device '<device name>' Unable to write to tag '<address>' on device '<device name>'. Invalid request Unable to read tag '<address>' on device '<device name>'. Invalid request Unable to read '<count>' bytes starting at '<address>' on device '<device name>'. Invalid request Unable to write to tag '<address>' on device '<device name>'. Framing error Unable to read tag '<address>' on device '<device name>'. Framing error Unable to read tag '<address>' on device '<device name>'. Framing error Unable to read '<count>' bytes starting at '<address>' on device '<device name>'. Framing error

Device '<device name>' not responding

Error Type:

Serious

Possible Cause:

- 1. The serial connection between the device and the Host PC is broken.
- 2. The communications parameters for the serial connection are incorrect.
- 3. The named device may have been assigned an incorrect Network ID.

4. The response from the device took longer to receive than the amount of time specified in the "Request Timeout" device setting.

Solution:

1. Verify the cabling between the PC and the PLC device.

- 2. Verify the specified communications parameters match those of the device.
- 3. Verify that the Network ID given to the named device matches that of the actual device.
- 4. Increase the Request Timeout setting so that the entire response can be handled.

Unable to write to '<address>' on device '<device name>'

Error Type:

Serious

Possible Cause:

- 1. The serial connection between the device and the Host PC is broken.
- 2. The communications parameters for the serial connection are incorrect.
- 3. The named device may have been assigned an incorrect Network ID.

Solution:

- 1. Verify the cabling between the PC and the PLC device.
- 2. Verify the specified communications parameters match those of the device.
- 3. Verify that the Network ID given to the named device matches that of the actual device.

Unable to write to tag '<address>' on device '<device name>'. Invalid request

Error Type:

Serious

Possible Cause	Solution
The Device ID in packet does not match the ID of the device.	Verify that the correct Device ID has been specified in Device Properties.
Invalid memory type.	 Verify that the memory type for the address in question is correct for the spec- ified model. Consult the device manufacturer's help documentation for memory types/ranges.
 Invalid address for specified memory type. Transfer across a memory boundary. 	 Verify that the offset for the address in question is correct for the specified model. Verify that no request exceeds the range for that memory type. Consult the device manufacturer's help documentation for memory types/ranges.
 Incorrect header checksum. Missing or invalid start of header (SOH) or end transmission block (ETB). Invalid header character. Invalid address for specified memory type. 	 Check all hardware (including cabling) for faults, loose connections and proximity to noisy sources. Verify proper communication settings (such as parity, flow control, baud rate and stop bits). Correct the settings in Channel Properties accordingly.

Unable to read tag '<address>' on device '<device name>'. Invalid request.

Error Type:

Serious

Possible Cause	Solution
The Device ID in packet does not match the ID of the device.	Verify that the correct Device ID has been specified in Device Properties.
Invalid memory type.	 Verify that the memory type for the address in question is correct for the spec- ified model. Consult the device manufacturer's help documentation for memory types/ranges.
 Invalid address for specified memory type. Transfer across a memory boundary. 	 Verify that the offset for the address in question is correct for the specified model. Verify that no request exceeds the range for that memory type. Consult the device manufacturer's help documentation for memory types/ranges.
 Incorrect header checksum. Missing or invalid start of header (SOH) or end transmission block (ETB). Invalid header character. 	 Check all hardware (including cabling) for faults, loose connections and prox- imity to noisy sources. Verify proper communication settings (such as parity, flow control, baud rate and stop bits). Correct the settings in Channel Properties accordingly.

Unable to read '<count>' bytes starting at '<address>' on device '<device name>'. Invalid request

Error Type:

Serious

Possible Cause	Solution
The Device ID in packet does not match the ID of the device.	Verify that the correct Device ID has been specified in Device Properties.
Invalid memory type.	 Verify that the memory type for the address in question is correct for the spec- ified model. Consult the device manufacturer's help documentation for memory types/ranges.
 Invalid address for specified memory type. Transfer across a memory boundary. 	 Verify that the offset for the address in question is correct for the specified model. Verify that no request exceeds the range for that memory type. Consult the device manufacturer's help documentation for memory types/ranges.
 Incorrect header checksum. Missing or invalid start of header (SOH) or end transmission block (ETB). Invalid header character. Invalid address for specified memory type. 	 Check all hardware (including cabling) for faults, loose connections and proximity to noisy sources. Verify proper communication settings (such as parity, flow control, baud rate and stop bits). Correct the settings in Channel Properties accordingly.

Unable to write to tag '<address>' on device '<device name>'. Framing error

Error Type:

Serious

Possible Cause:

- 1. Misalignment of packets due to connection/disconnection between PC and device.
- 2. Faulty hardware and/or cables.
- 3. Incorrect communication settings.

Solution:

1. Check all hardware (including cabling) for faults, loose connections and proximity to noisy sources.

2. Verify proper communication settings (such as parity, flow control, baud rate and stop bits). Correct the settings in Channel Properties accordingly.

Note:

Framing errors occur when a frame of incorrect size is received or when the received frame doesn't pass a validity (checksum) test.

Unable to read tag '<address>' on device '<device name>'. Framing error

Error Type:

Serious

Possible Cause:

- 1. Misalignment of packets due to connection/disconnection between PC and device.
- 2. Faulty hardware and/or cables.
- 3. Incorrect communication settings.

Solution:

1. Check all hardware (including cabling) for faults, loose connections and proximity to noisy sources.

2. Verify proper communication settings (such as parity, flow control, baud rate and stop bits). Correct the settings in Channel Properties accordingly.

Note:

Framing errors occur when a frame of incorrect size is received or when the received frame doesn't pass a validity (checksum) test.

Unable to read '<count>' bytes starting at '<address>' on device '<device name>'. Framing error

Error Type:

Serious

Possible Cause:

- 1. Misalignment of packets due to connection/disconnection between PC and device.
- 2. Faulty hardware and/or cables.
- 3. Incorrect communication settings.

Solution:

Check all hardware (including cabling) for faults, loose connections and proximity to noisy sources.
 Verify proper communication settings (such as parity, flow control, baud rate and stop bits). Correct the settings in Channel Properties accordingly.

Note:

Framing errors occur when a frame of incorrect size is received or when the received frame doesn't pass a validity (checksum) test.

Device Specific Messages

The following error/warning messages may be generated. Click on the link for a description of the message.

Device Specific Messages

Invalid tag in block starting at '<address>' in device '<device>'

Invalid tag in block starting at '<address>' in device '<device>'

Error Type:

Warning

Possible Cause:

The driver has attempted to access a tag that is not supported in the current device.

Solution:

Check that the memory register tables in the device programming software for the range of registers of the type <address> that are supported in the current device. Verify that all tags of this type entered in the client application are valid.

Index

3

311 Addressing	. 8
313 Addressing	. 9
331 Addressing	. 10
341 Addressing	. 11

7

731 Addressing	12
732 Addressing	13
771 Addressing	14
772 Addressing	15
781 Addressing	
782 Addressing	17

Α

Address ' <address>' is not valid on device '<device name="">'</device></address>	23
Address ' <address>' is out of range for the specified device or register</address>	22
Address Descriptions	8
Address Validation	21
Array size is out of range for address ' <address>'</address>	22
Array support is not available for the specified address: ' <address>'</address>	

В

Boolean	7
Byte	7

С

Communications error on ' <channel name="">' [</channel>	<pre><error mask="">]</error></pre>
--	-------------------------------------

D

Data Type ' <type>' is not valid for device address '<address>'</address></type>	
Data Types Description	7
Device ' <device name=""> not responding</device>	24
Device address ' <address>' contains a syntax error</address>	21
Device address ' <address>' is not supported by model '<model name="">'</model></address>	22
Device address ' <address>' is Read Only</address>	
Device ID.	5
Device Setup	5
Device Specific Messages	27
Device Status Messages	24

Ε

Error Descriptions	. 21
Error opening COMn	. 23

F

Framing	24
---------	----

G

GE CCM

I

Μ

Missing address	. 2	21
Modem Setup		5

Ν

Network	 	 5

0

Overrun	24
Overview	

Ρ

Parity	 24

S

Serial Communications	23
Series Five Addressing	. 19
Series Six Addressing	18
Short	. 7

U

Unable to read ' <count>' bytes starting at '<address>' on device '<device name="">'. Framing . Error</device></address></count>	
Unable to read ' <count>' bytes starting at '<address>' on device '<device name="">'. Invalid Request</device></address></count>	
Unable to read tag ' <address>' on device '<device name="">.' Invalid Request</device></address>	
Unable to read tag ' <address>' on device '<device name="">'. Framing Error</device></address>	26

W

Word	7
------	---