
Modbus ASCII Serial
Driver Help

© 2012 Kepware Technologies

Modbus ASCII Serial Driver Help

Table of Contents
Table of Contents 2
Modbus ASCII Serial Driver Help 4
Overview 4

Channel Setup 5

Device Setup 6
Cable Diagram 6
Modem Setup 7
Block Sizes 7
Settings 7
Variable Import Settings 10

Automatic Tag Database Generation 11
Exporting Variables from Concept 11
Exporting Variables from ProWORX 13

Data Types Description 15

Address Descriptions 16
Modbus ASCII Addressing 16
Flow Computer Addressing 17
Flow Automation Addressing 18

Error Descriptions 19
Address Validation 19

Missing address 19
Device address '<address>' contains a syntax error 20
Address '<address>' is out of range for the specified device or register 20
Device address '<address>' is not supported by model '<model name>' 20
Data Type '<type>' is not valid for device address '<address>' 20
Device address '<address>' is Read Only 20
Array size is out of range for address '<address>' 21
Array support is not available for the specified address: '<address>' 21

Serial Communications 21
COMn does not exist 21
Error opening COMn 21
COMn is in use by another application 21
Unable to set comm parameters on COMn 22
Communications error on '<channel name>' [<error mask>] 22

Device Status Messages 22
Device '<device name>' is not responding 22
Unable to write to '<address>' on device '<device name>' 23
Unable to write to address '<address>' on device '<device>': Device responded with exception code
'<code>' 23

Device Specific Messages 23
Bad address in block [<start address> to <end address>] on device '<device name>' 23
Bad array spanning ['<address>' to '<address>'] on device '<device name>' 23

www. kepware.com

2

Modbus ASCII Serial Driver Help

Automatic Tag Database Generation Messages 23
Tag import failed due to low memory resources 24
File exception encountered during tag import 24
Error parsing import file record number <record>, field <field> 24
Description truncated for import file record number <record> 24
Imported tag name '<tag name>' is invalid. Name changed to '<tag name>' 24
Tag '<tag name>' could not be imported because data type '<data type>' is not supported 25

Modbus Exception Codes 25

Index 26

www. kepware.com

3

Modbus ASCII Serial Driver Help

Modbus ASCII Serial Driver Help
Help version 1.029

CONTENTS

Overview
What is the Modbus ASCII Serial Driver?

Channel Setup
How do I configure channels for use with this driver?

Device Setup
How do I configure a device for use with this driver?

Automatic Tag Database Generation
How can I easily configure tags for the Modbus ASCII Serial driver?

Data Types Description
What data types does this driver support?

Address Descriptions
How do I address a data location on a Modbus device?

Error Descriptions
What error messages does the Modbus ASCII Serial driver produce?

Overview
The Modbus ASCII Serial Driver provides an easy and reliable way to connect Modbus ASCII Serial devices to OPC
Client applications, including HMI, SCADA, Historian, MES, ERP and countless custom applications. It is intended
for use with serial devices that support the Modbus ASCII protocol. The driver's special features provide control
over the following: the amount of data requested from a device in a single request, the word ordering of 32 bit
double register values, the byte ordering of 32 bit and 16 bit register values and address base adjustment. The
driver can also control the RTS line operation for use with radio modems that require specific RTS timing.

www. kepware.com

4

Modbus ASCII Serial Driver Help

Channel Setup
Communication Serialization
The Modbus ASCII Serial Driver supports Communication Serialization, which specifies whether data trans-
missions should be limited to one channel at a time. For more information, refer to "Channel Properties -
Advanced" in the server help file.

www. kepware.com

5

Modbus ASCII Serial Driver Help

Device Setup
Supported Devices
Modbus ASCII compatible devices
Flow Computers using the Daniels/Omni/Elliot register addressing

Communication Protocol
Modbus ASCII Protocol.

Supported Communication Parameters
Baud Rate: 1200, 2400, 9600, 19200
Parity: Odd, Even, None
Data Bits: 8
Stop Bits: 1,2

Note: Some devices may not support the listed configurations.

Maximum Number of Channels and Devices
The maximum number of channels supported by this driver is 100. The maximum number of supported devices
is 247.

Ethernet Encapsulation
This driver supports Ethernet Encapsulation, which allows the driver to communicate with serial devices
attached to an Ethernet network using a terminal server. It may be invoked through the COM ID dialog in Channel
Properties. For more information, refer to the OPC server's help file.

Device ID (PLC Network Address)
Modbus Serial devices are assigned Device IDs in the range of 1 to 247.

Flow Control
When using an RS232/RS485 converter, the type of flow control that is required depends on the needs of the con-
verter. Some converters do not require any flow control whereas others require RTS flow. Consult the converter's
documentation in order to determine its flow requirements. An RS485 converter that provides automatic flow con-
trol is recommended.

Note 1: When using the manufacturer's supplied communications cable, it is sometimes necessary to choose a
flow control setting of RTS or RTS Always under the Channel Properties.

Note 2: The Modbus ASCII Serial driver supports the RTS Manual flow control option. This selection is used to
configure the driver for operation with radio modems that require special RTS timing characteristics. For more
information on RTS Manual flow control, refer to the OPC server help file.

Cable Diagram
Cable Connections (Modbus Controller)

www. kepware.com

6

Modbus ASCII Serial Driver Help

Modem Setup
This driver supports modem functionality. For more information, please refer to the topic "Modem Support" in the
OPC Server Help documentation.

Block Sizes
Coil Block Sizes
Coils can be read from 8 to 2000 points (bits) at a time. A higher block size means more points will be read from
the device in a single request. Block size can be reduced if data needs to be read from non-contiguous locations
within the device.

Register Block Sizes
Registers can be read from 1 to 100 locations (words) at a time. A higher block size means more register values
will be read from the device in a single request. Block size can be reduced if data needs to be read from non-con-
tiguous locations within the device.

Caution: If the Register Block Sizes value is set above 120 and a 32 or 64 bit data type is used for any tag, then
a "Bad address in block" error could occur. To prevent the error from occurring, decrease the block size value to
120.

Perform Block Read on Strings
Check this option to block read string tags, which are normally read individually. When this option is selected,
string tags will be grouped together depending on the selected block size. Block reads can only be performed for
Modbus model string tags.

Settings

----- Data Access Group -----

Zero vs. One Based Addressing
If the address numbering convention for the device starts at one as opposed to zero, users can specify it when
defining the device's parameters. By default, user entered addresses will have one subtracted from them when
frames are constructed to communicate with a Modbus device. If the device doesn't follow this convention, users
can uncheck the Use zero based addressing check box in Device Properties. For the appropriate application
that can be used to obtain information on setting device properties, refer to the online help documentation. The
default behavior follows the convention of the Modicon PLCs.

Zero vs One Based Bit Addressing within registers
Memory types that allow bits within Words can be referenced as a Boolean. The addressing notation for doing this
is as follows:

<address>.<bit>

www. kepware.com

7

Modbus ASCII Serial Driver Help

where <bit> represents the bit number within the Word. Zero Based Bit Addressing within registers provides
two ways of addressing a bit within a given Word; Zero Based and One Based. Zero Based Bit addressing within
registers simply means the first bit begins at 0. One Based addressing within registers means that the first bit
begins at 1.

Zero Based Bit Addressing within registers (Default Setting / Checked)

Data Type Bit Range
Word Bits 0–15

One Based Bit Addressing within registers (Unchecked)

Data Type Bit Range
Word Bits 1–16

Holding Register Bit Mask Writes
When writing to a bit location within a holding register, the driver should only modify the bit of interest. Some
devices support a special command to manipulate a single bit within a register (Function code hex 0x16 or dec-
imal 22). If the device does not support this feature, the driver will need to perform a Read/Modify/Write oper-
ation to ensure that only the single bit is changed.

Check this box if the device supports holding register bit access. The default setting is unchecked. If this setting
is selected, then the driver will use function code 0x16 regardless of the setting for "Use Modbus function 06 for
single register writes." If this setting is not selected, then the driver will use either function code 0x06 or 0x10
depending on the selection for "Use Modbus function 06 for single register writes."

Note:When Modbus byte order is not selected, the byte order of the masks sent in the command will be Intel
byte order.

Use Modbus Function 06 or 16
The Modbus driver has the option of using two Modbus protocol functions to write holding register data to the tar-
get device. In most cases, the driver switches between these two functions based on the number of registers
being written. When writing a single 16 bit register, the driver will in most cases use the Modbus function 06.
When writing a 32 bit value into two registers, the driver will use Modbus function 16. For the standard Modicon
PLC the use of either of these functions is not a problem. There are, however, a large number of third party
devices that have implemented the Modbus protocol. Many of these devices support only the use of Modbus func-
tion 16 to write to Holding registers regardless of the number of registers to be written.

Use Modbus function 06 can be used to force the driver to use only Modbus function 16 if needed. This selec-
tion is checked by default. It allows the driver to switch between 06 and 16 as needed. If the device requires all
writes to be done using only Modbus function 16, uncheck this selection.

Note: For bit within word writes, theHolding Register Bit Mask Writes property takes precedence over this
property (Use Modbus Function 06). If Holding Register Bit Mask Writes is selected, then function code 0x16 is
used nomatter what the selection for this property. However, if Holding Register Bit Mask Writes is not selected,
then depending upon the selection of this property either function code 0x06 or 0x10 will be used for bit within
word writes.

Use Modbus Function 05 or 15
The Modbus driver has the option of using two Modbus protocol functions to write Output coil data to the target
device. In most cases the driver switches between these two functions based on the number of coils being
written. When writing a single coil, the driver will use the Modbus function 05. When writing an array of coils,
the driver will use Modbus function 15. For the standard Modicon PLC the use of either of these functions is not a
problem. There are, however, a large number of third party devices that have implemented the Modbus protocol.
Many of these devices support only the use of Modbus function 15 to write to output coils regardless of the
number of coils to be written.

Use Modbus function 05 can be used to force the driver to use only Modbus function 15 if needed. This selec-
tion is checked by default. It allows the driver to switch between 05 and 15 as needed. If a device requires all
writes to be done using only Modbus function 15, uncheck this selection.

----- Data Encoding Group -----

Modbus Byte Order

www. kepware.com

8

Modbus ASCII Serial Driver Help

The Ethernet driver's byte order can be changed from the default Modbus byte ordering to Intel byte ordering by
using this selection. This election will be checked by default, which is the normal setting for Modbus compatible
devices. If the device uses Intel byte ordering, deselecting this selection will enable the Modbus driver to prop-
erly read Intel formatted data.

First Word Low in 32 Bit Data Types
Two consecutive registers' addresses in a Modbus device are used for 32 bit data types. Users can specify
whether the driver should assume the first word is the low or the high word of the 32 bit value. The default, first
word low, follows the convention of the Modicon Modsoft programming software.

First DWord Low in 64 Bit Data Types
Four consecutive registers' addresses in a Modbus device are used for 64 bit data types. Users can specify
whether the driver should assume the first DWord is the low or the high DWord of the 64 bit value. The default,
first DWord low, follows the default convention of 32 bit data types.

Use Modicon Bit Ordering
When checked, the driver will reverse the bit order on reads and writes to registers to follow the convention of
the Modicon Modsoft programming software. For example, a write to address 40001.0/1 will affect bit 15/16 in
the device when this option is enabled. This option is disabled (unchecked) by default.

Note: For the following example, the 1st through 16th bit signifies either 0-15 bits or 1-16 bits depending on if
the driver is set at Zero Based or One Based Bit Addressing within registers.

MSB = Most Significant Bit
LSB = Least Significant Bit

Use Modicon Bit Ordering Checked

MSB LSB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Use Modicon Bit Ordering Unchecked (Default Setting)

MSB LSB
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Data Encoding Options Details
The following summarizes usage of the Data Encoding options.

l Use default Modbus byte order option sets the data encoding of each register/16 bit value.
l First word low in 32 bit data types option sets the data encoding of each 32 bit value and each double
word of a 64 bit value.

l First DWord low in 64 bit data types option sets the data encoding of each 64 bit value.

Data Types Use default Modbus byte
order Applicable

First word low in 32 bit data
types Applicable

First DWord low in 64 bit data
types Applicable

Word, Short,
BCD

Yes No No

Float, DWord,
Long, LBCD

Yes Yes No

Double Yes Yes Yes

If needed, use the following information and the particular device's documentation to determine the correct set-
tings of the Data Encoding options.

Note: The default settings are correct for the majority of Modbus devices.

Data Encoding Group Option Data Encoding
Use default Modbus byte order
Checked

High Byte (15..8) Low Byte (7..0)

Use default Modbus byte order
Unchecked

Low Byte (7..0) High Byte (15..8)

First word low in 32 bit data types High Word (31..16) Low Word (15..0)

www. kepware.com

9

Modbus ASCII Serial Driver Help

Unchecked
High Word(63..48) of Dou-
ble Word
in 64 bit data types

Low Word (47..32) of Double Word in 64
bit data types

First word low in 32 bit data types
Checked

Low Word (15..0)

Low Word (47..32) of Dou-
ble Word
in 64 bit data types

High Word (31..16)

High Word (63..48) of Double Word in 64
bit data types

First DWord low in 64 bit data types
Unchecked

High Double Word
(63..32)

Low Double Word (31..0)

First DWord low in 64 bit data types
Checked

Low Double Word (31..0) High Double Word (63..32)

Variable Import Settings
Variable Import File
This parameter specifies the exact location of the Concept or ProWORX variable import file that the driver should
use when Automatic Tag Database Generation is enabled.

Display Descriptions
Check in order to use imported tag descriptions (if present in file).

Note: For more information on how to both configure the Automatic Tag Database Generation feature and create
a variable import file, refer to Automatic Tag Database Generation.

www. kepware.com

10

Modbus ASCII Serial Driver Help

Automatic Tag Database Generation
The Modbus ASCII driver makes use of the OPC Server's Automatic Tag Database Generation feature. This enables
drivers to automatically create tags that access data points used by the device's ladder program. While it is some-
times possible to query a device for the information needed to build a tag database, this driver must use a Var-
iable Import File instead. Variable import files can be generated using the Concept and ProWORX device
programming applications.

Creating the Variable Import File
The import file must be in semicolon delimited Concept .TXT format, which is the default export file format of the
Concept device programming application. The ProWORX programming application can also export variable data in
this format. For application specific information on creating the variable import file, refer to Exporting Variables
from Concept and Exporting Variables from ProWORX.

OPC Server Configuration
The automatic tag database generation feature can be customized to fit the application's needs. The primary con-
trol options can be set during the Database Creation step of the Device Wizard or later by selecting the Device
Properties | Database Creation. For more information, refer to the OPC Server's help documentation.

This driver requires specialized settings in addition to the basic settings that are common to all drivers that sup-
port automatic tag database generation. These specialized settings include the name and location of the variable
import file. This information can be specified during the Variable Import Settings step of the Device Wizard or
later by selecting the Device Properties | Variable Import Settings. For more information, refer to Variable
Import Settings.

Operation
Depending on the configuration, tag generation may start automatically when the OPC Server project starts or be
initiated manually at some other time. The OPC Server's event log will show when the tag generation process
started, any errors that occurred while processing the variable import file and when the process completed.

Exporting Variables from Concept
As the ladder program is created, symbolic names can be defined for the various data points referenced using
the Variable Editor. Additional symbols and constants that are not used by the ladder program can also be
defined.

Note: Though Concept can be used to define variable names that begin with an underscore, such names are not
allowed by the OPC server. The driver will modify invalid imported tag names as needed and will inform the user
of any such name changes in the server’s event log.

www. kepware.com

11

Modbus ASCII Serial Driver Help

User defined data types are not currently supported by this driver. Records in the export file containing ref-
erences to such types will be ignored. The following simple data types are supported:

Concept Data Type Generated Tag Data Type
Bool Boolean
Byte Word
Dint Long
Int Short
Real Float
Time DWord
Udint DWord
Uint Word
Word Word

Note 1: Unlocated variables, which do not correspond to a physical address in the device, will be ignored by the
driver.

Note 2: Comments are allowed. Users can choose whether or not to include these as the generated tag descrip-
tions. For more information, refer to Variable Import Settings.

Exporting Data from Concept
Once the variables have been defined, the data must be exported from Concept. To do so, follow the instructions
below.

1. Click File | Export and select the Variables: Text delimited format.

2. ClickOK. Next, specify the Filter Setting and Separator Setting.

www. kepware.com

12

Modbus ASCII Serial Driver Help

Note: Although any filter settings may be chosen, this driver will only be able to read the exported data if
the default semicolon separator is used.

3. ClickOK to generate the file.

Exporting Variables from ProWORX
In order for ProWORX to export the necessary variable information, make sure that the Symbols option is
checked under File | Preferences.

As the ladder program is created, symbolic names can be defined for the various data points referenced using
the Document Editor.

Note 1: Although ProWORX does not place many restrictions on variable names, the OPC Server requires that tag
names consist of alphanumeric characters and underscores, and that the first character not be an underscore.
The driver will modify invalid imported tag names as needed, and inform of any such name changes in the
server’s event log.

Note 2: ProWORX will assign a data type of either BOOL or INT to the exported variables. The driver will create
tags of type Boolean and Short respectively. To generate tags with other data types, users should manually edit
the exported file and use any of the supported Concept data types. For a list of supported types, refer to Export-
ing Variables from Concept.

Exporting Datas from ProWORX
Once the variables have been defined, the data must be exported from ProWORX. To do so, follow the instructions
below.

1. Click File | Utilities | Import/Export.

2. Select the Export and the Concept .TXT file format.

www. kepware.com

13

Modbus ASCII Serial Driver Help

3. Note: Descriptors are allowed and can be included as the generated tag descriptions or not. For more
information, refer to Variable Import Settings.

4. ClickOK to generate the file.

www. kepware.com

14

Modbus ASCII Serial Driver Help

Data Types Description

Data Type Description
Boolean Single bit
Word Unsigned 16 bit value

bit 0 is the low bit
bit 15 is the high bit

Short Signed 16 bit value

bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

DWord Unsigned 32 bit value

bit 0 is the low bit
bit 31 is the high bit

Long Signed 32 bit value

bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

BCD Two byte packed BCD

Value range is 0-9999. Behavior is undefined for values beyond this
range.

LBCD Four byte packed BCD

Value range is 0-99999999. Behavior is undefined for values beyond
this range.

String Null terminated ASCII string

Supported on Modbus Model, includes Hi-Lo Lo-Hi byte order selec-
tion.

Double* 64 bit floating point value

The driver interprets four consecutive registers as a double precision
value by making the last two registers the high DWord and the first
two registers the low DWord.

Double Example If register 40001 is specified as a double, bit 0 of register 40001
would be bit 0 of the 64 bit data type and bit 15 of register 40004
would be bit 63 of the 64 bit data type.

Float* 32 bit floating point value

The driver interprets two consecutive registers as a single precision
value by making the last register the high word and the first register
the low word.

Float Example If register 40001 is specified as a float, bit 0 of register 40001 would
be bit 0 of the 32 bit data type and bit 15 of register 40002 would be
bit 31 of the 32 bit data type.

*The descriptions above assume the default settings; that is, first DWord low data handling of 64 bit data types
and first word low data handling of 32 bit data types.

www. kepware.com

15

Modbus ASCII Serial Driver Help

Address Descriptions
Address specifications vary depending on the model in use. Select a link from the following list to obtain specific
address information for the model of interest.

Modbus ASCII Addressing
Flow Computer Addressing
Flow Automation Addressing

Modbus ASCII Addressing
The default data types for dynamically defined tags are shown in bold. For notes and restrictions, refer to
Packed Coil Tags, String Support, and Array Support.

Address Range Data Type Access
Output Coils

Function Codes (decimal): 01, 05, 15]*

000001-065536
000001#1-065521#16

Boolean
Word (Packed Coil Tag)

Read/Write

Input Coils

[Function Code (decimal): 02]*

100001-165536
100001#1-165521#16

Boolean
Word (Packed Coil Tag)

Read Only

Internal Registers

[Function Code (decimal): 04]

300001-365536
300001-365535
300001-365533

3xxxxx.0/1-3xxxxx.15/16**

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

Read Only

Internal Registers As String
with HiLo Byte Order

[Function Codes (decimal): 04]

300001.2H-365536.240H

.Bit is string length, range 2
to 240 bytes.

String Read Only

Internal Registers As String
with LoHi Byte Order

[Function Codes (decimal): 04]

300001.2L-365536.240L

.Bit is string length, range 2
to 240 bytes.

String Read Only

Holding Registers

[Function Codes (decimal): 03, 06,
16]

[Function Codes (decimal): 03, 06,
16, 22]

400001-465536
400001-465535
400001-465533

4xxxxx.0/1-4xxxxx.15/16**

Word, Short, BCD
Float, DWord, Long, LBCD
Double

Boolean

Read/Write

Holding Registers As String
with HiLo Byte Order

[Function Codes (decimal): 03, 16]

400001.240H-465536.2H

.Bit is string length,
range 2 to 240 bytes.

String Read/Write

Holding Registers As String
with LoHi Byte Order

[Function Codes (decimal): 03, 16]

400001.2L-465536.240L

.Bit is string length,
range 2 to 240 bytes.

String Read/Write

*For more information, refer to Packed Coil Tags.
**For more information, refer to the "Use Zero-Based Bit Addressing Within Registers" subtopic in Settings.

Write Only Access
All Read/Write addresses may be set as Write Only by prefixing a "W" to the address such as "W40001", which
will prevent the driver from reading the register at the specified address. Any attempts by the client to read a
Write Only tag will result in obtaining the last successful write value to the specified address. If no successful
writes have occurred, then the client will receive 0/NULL for numeric/string values for an initial value.

www. kepware.com

16

Modbus ASCII Serial Driver Help

Caution: Setting the Client Access privileges of Write Only tags to Read Only will cause writes to these tags to fail
and the client to always receive 0/NULL for numeric/string values.

Packed Coil Tags
The Packed Coil address type allows access to multiple consecutive coils as an analog value. This feature is avail-
able for the Modbus ASCII model only. The only valid data type is Word. The syntax is as follows.

Output coils: 0xxxxx#nn Word Read/Write
Input coils: 1xxxxx#nn Word Read Only

where xxxxx is the address of the first coil, and nn is the number of coils to be packed into an analog value (1-
16).

The bit order will be such that the start address will be the LSB (least significant bit) of analog value.

String Support
The Modbus model supports reading and writing holding register memory as an ASCII string. When using hold-
ing registers for string data, each register will contain two bytes of ASCII data. The order of the ASCII data within
a given register can be selected when the string is defined. The length of the string can be from 2 to 240 bytes
and is entered in place of a bit number. The length must be entered as an even number. The byte order is spec-
ified by appending either a "H" or "L" to the address.

Note: For information on how to perform block read on string tags for the Modbus model, refer to Block Sizes.

String Examples
1. To address a string starting at 40200 with a length of 100 bytes and HiLo byte order, enter:
40200.100H

2. To address a string starting at 40500 with a length of 78 bytes and LoHi byte order, enter:
40500.78L

Note: The string length may be limited by the maximum size of the write request that the device will allow. If the
error message "Unable to write to address <address> on device <device>: Device responded with exception
code 3" is received while utilizing a string tag, the device did not like the string's length. If possible, try short-
ening the string.

Normal Address Examples
1. The 255'th output coil would be addressed as '0255' using decimal addressing.

2. Some documentation refers to Modbus addresses by function code and location. For instance, function code 3;
location 2000 would be addressed as '42000' (the leading '4' represents holding registers or function code 3).

3. Some documentation refers to Modbus addresses by function code and location. For instance, setting function
code 5 location 100 would be addressed as '0100' (the leading '0' represents output coils or function code 5).
Writing 1 or 0 to this address would set or reset the coil.

Array Support
Arrays are supported for internal and holding register locations for all data types except for Boolean and strings.
Arrays are also supported for input and output coils (Boolean data types). There are twomethods of addressing
an array. Examples are given using holding register locations.

4xxxx [rows] [cols]
4xxxx [cols] this method assumes rows is equal to one

For arrays, rows multiplied by cols cannot exceed the block size that has been assigned to the device for the reg-
ister/coil type. For register arrays of 32 bit data types, rows multiplied by cols multiplied by 2 cannot exceed the
block size.

Flow Computer Addressing
The default data types for dynamically defined tags are shown in bold.

Address Range Data Type Access
Output Coils 000001-065536 Boolean Read/Write
Input Coils 100001-165536 Boolean Read Only

www. kepware.com

17

Modbus ASCII Serial Driver Help

Internal Registers 300001-365536
300001-365535

Word, Short, BCD
Float, DWord, Long, LBCD

Read Only

Holding Registers 400001-465536
400001-465535

Word, Short, BCD*
Float, DWord, Long, LBCD

Read/Write

Flow Computer Registers 405000-406800
407000-407800

Long, DWord, LBCD
Float, Long, DWord

Read/Write

*Address ranges 405000 to 406800 and 407000 to 407800 are 32 bit registers. Addresses in the range of
405000 to 406800 use a default data type of Long. Addresses in the range of 407000 to 407800 use a default
data type of Float. Since these address registers are 32 bit, only Float, DWord, Long or LBCD data types are
allowed. Arrays are not allowed for these special address ranges.

Arrays
Arrays are supported for internal and holding register locations for all data types except for Boolean. There are
twomethods of addressing an array. Examples are given using holding register locations.

4xxxx [rows] [cols]
4xxxx [cols] this method assumes rows is equal to one

Rows multiplied by cols cannot exceed the block size that has been assigned to the device for the register type.
For arrays of 32 bit data types, rows multiplied by cols multiplied by 2 cannot exceed the block size.

Flow Automation Addressing
The default data types for dynamically defined tags are shown in bold.

Address Range Data Type Access
Flow Computer Registers 40001-465535 Float Read/Write

The Flow Automation Flow Computer treats all data as a 32 bit floating point value. All addresses in the holding
register space of the device will be read as 32 bit floating point numbers. A complete memory map of the flow
automation control is provided in the custom report section of the flow automation manual.

www. kepware.com

18

Modbus ASCII Serial Driver Help

Error Descriptions
The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation
Missing address
Device address '<address>' contains a syntax error
Address '<address>' is out of range for the specified device or register
Device address '<address>' is not supported by model '<model name>'
Data Type '<type>' is not valid for device address '<address>'
Device address '<address>' is Read Only
Array size is out of range for address '<address>'
Array support is not available for the specified address: '<address>'

Serial Communications
COMn does not exist
Error opening COMn
COMn is in use by another application
Unable to set comm parameters on COMn
Communications error on '<channel name>' [<error mask>]

Device Status Messages
Device '<device name>' is not responding
Unable to write to '<address>' on device '<device name>'
Unable to write to address '<address>' on device '<device>': Device responded with exception code
'<code>'
Modbus Exception Codes

Device Specific Messages
Bad address in block [<start address> to <end address>] on device '<device name>'
Bad array spanning ['<address>' to '<address>'] on device '<device name>'

Automatic Tag Database Generation Messages
Tag import failed due to low memory resources
File exception encountered during tag import
Error parsing import file record number <record>, field <field>
Description truncated for import file record number <record>
Imported tag name '<tag name>' is invalid. Name changed to '<tag name>'.
Tag '<tag name>' could not be imported because data type '<data type>' is not supported

See Also:
Modbus Exception Codes

Address Validation
The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation
Missing address
Device address '<address>' contains a syntax error
Address '<address>' is out of range for the specified device or register
Device address '<address>' is not supported by model '<model name>'
Data Type '<type>' is not valid for device address '<address>'
Device address '<address>' is Read Only
Array size is out of range for address '<address>'
Array support is not available for the specified address: '<address>'

Missing address
Error Type:
Warning

Possible Cause:

www. kepware.com

19

Modbus ASCII Serial Driver Help

A tag address that has been specified statically has no length.

Solution:
Re-enter the address in the client application.

Device address '<address>' contains a syntax error
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically contains one or more invalid characters.

Solution:
Re-enter the address in the client application.

Address '<address>' is out of range for the specified device or register
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically references a location that is beyond the range of supported loca-
tions for the device.

Solution:
Verify that the address is correct; if it is not, re-enter it in the client application.

Device address '<address>' is not supported by model '<model name>'
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically references a location that is valid for the communications protocol
but not supported by the target device.

Solution:
Verify that the address is correct; if it is not, re-enter it in the client application. Also verify that the selected
model name for the device is correct.

Data Type '<type>' is not valid for device address '<address>'
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has been assigned an invalid data type.

Solution:
Modify the requested data type in the client application.

Device address '<address>' is Read Only
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has a requested access mode that is not compatible with what the
device supports for that address.

Solution:
Change the access mode in the client application.

www. kepware.com

20

Modbus ASCII Serial Driver Help

Array size is out of range for address '<address>'
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically is requesting an array size that is too large for the address type or
block size of the driver.

Solution:
Re-enter the address in the client application to specify a smaller value for the array or a different starting point.

Array support is not available for the specified address: '<address>'
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically contains an array reference for an address type that doesn't sup-
port arrays.

Solution:
Re-enter the address in the client application to remove the array reference or correct the address type.

Serial Communications
The following error/warning messages may be generated. Click on the link for a description of the message.

Serial Communications
COMn does not exist
Error opening COMn
COMn is in use by another application
Unable to set comm parameters on COMn
Communications error on '<channel name>' [<error mask>]

COMn does not exist
Error Type:
Fatal

Possible Cause:
The specified COM port is not present on the target computer.

Solution:
Verify that the proper COM port has been selected.

Error opening COMn
Error Type:
Fatal

Possible Cause:
The specified COM port could not be opened due an internal hardware or software problem on the target com-
puter.

Solution:
Verify that the COM port is functional and may be accessed by other Windows applications.

COMn is in use by another application
Error Type:
Fatal

Possible Cause:
The serial port assigned to a device is being used by another application.

www. kepware.com

21

Modbus ASCII Serial Driver Help

Solution:
1. Verify that the correct port has been assigned to the channel.
2. Verify that only one copy of the current project is running.

Unable to set comm parameters on COMn
Error Type:
Fatal

Possible Cause:
The serial parameters for the specified COM port are not valid.

Solution:
Verify the serial parameters and make any necessary changes.

Communications error on '<channel name>' [<error mask>]
Error Type:
Serious

Error Mask Definitions:
B = Hardware break detected.
F = Framing error.
E = I/O error.
O = Character buffer overrun.
R = RX buffer overrun.
P = Received byte parity error.
T = TX buffer full.

Possible Cause:
1. The serial connection between the device and the Host PC is bad.
2. The communications parameters for the serial connection are incorrect.

Solution:
1. Verify the cabling between the PC and the PLC device.
2. Verify that the specified communications parameters match those of the device.

Device Status Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

Device Status Messages
Device '<device name>' is not responding
Unable to write to '<address>' on device '<device name>'
Unable to write to address '<array address>' on device '<device>': Device responded with excep-
tion code

Device '<device name>' is not responding
Error Type:
Serious

Possible Cause:
1. The serial connection between the device and the Host PC is broken.
2. The communications parameters for the serial connection are incorrect.
3. The named device may have been assigned an incorrect Network ID.
4. The response from the device took longer to receive than the amount of time specified in the "Request Timeout"
device setting.

Solution:
1. Verify the cabling between the PC and the PLC device.
2. Verify that the specified communications parameters match those of the device.
3. Verify that the Network ID given to the named device matches that of the actual device.
4. Increase the Request Timeout setting so that the entire response can be handled.

www. kepware.com

22

Modbus ASCII Serial Driver Help

Unable to write to '<address>' on device '<device name>'
Error Type:
Serious

Possible Cause:
1. The serial connection between the device and the Host PC is broken.
2. The communications parameters for the serial connection are incorrect.
3. The named device may have been assigned an incorrect Network ID.

Solution:
1. Verify the cabling between the PC and the PLC device.
2. Verify that the specified communications parameters match those of the device.
3. Verify that the Network ID given to the named device matches that of the actual device.

Unable to write to address '<address>' on device '<device>': Device
responded with exception code '<code>'
Error Type:
Warning

Possible Cause:
SeeModbus Exception Codes for a description of the exception code.

Solution:
SeeModbus Exception Codes.

Device Specific Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

Device Specific Messages
Bad address in block [<start address> to <end address>] on device '<device name>'
Bad array spanning ['<address>' to '<address>'] on device '<device name>'

Bad address in block [<start address> to <end address>] on device '<device
name>'
Error Type:
Serious

Possible Cause:
An attempt has been made to reference a nonexistent location in the specified device.

Solution:
Verify the tags assigned to addresses in the specified range on the device and eliminate ones that reference
invalid locations.

Bad array spanning ['<address>' to '<address>'] on device '<device name>'
Error Type:
Fatal

Possible Cause:
An array of addresses was defined that spans past the end of the address space.

Solution:
Verify the size of the device's memory space and then redefine the array length accordingly.

Automatic Tag Database Generation Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

Automatic Tag Database Generation Messages
Tag import failed due to low memory resources

www. kepware.com

23

Modbus ASCII Serial Driver Help

File exception encountered during tag import
Error parsing import file record number <record>, field <field>
Description truncated for import file record number <record>
Imported tag name '<tag name>' is invalid. Name changed to '<tag name>'
Tag '<tag name>' could not be imported because data type '<data type>' is not supported

Tag import failed due to low memory resources
Error Type:
Serious

Possible Cause:
The driver could not allocate memory required to process variable import file.

Solution:
Shutdown all unnecessary applications and retry.

File exception encountered during tag import
Error Type:
Serious

Possible Cause:
The variable import file could not be read.

Solution:
Regenerate the variable import file.

Error parsing import file record number <record>, field <field>
Error Type:
Serious

Possible Cause:
The specified field in the variable import file could not be parsed because it is longer than expected or invalid.

Solution:
Edit the variable import file to change the offending field if possible.

Description truncated for import file record number <record>
Error Type:
Warning

Possible Cause:
The tag description given in specified record is too long.

Solution:
The driver will truncate the description as needed. To prevent this error in the future, edit the variable import file
to change the description if possible.

Imported tag name '<tag name>' is invalid. Name changed to '<tag name>'
Error Type:
Warning

Possible Cause:
The tag name encountered in the variable import file contained invalid characters.

Solution:
The driver will construct a valid name based on the one from the variable import file. To prevent this error in the
future, and to maintain name consistency, change the name of the exported variable if possible.

www. kepware.com

24

Modbus ASCII Serial Driver Help

Tag '<tag name>' could not be imported because data type '<data type>' is not
supported
Error Type:
Warning

Possible Cause:
The data type specified in the variable import file is not one of the types supported by this driver.

Solution:
If possible, change the data type specified in variable import file to one of the supported types. If the variable is
for a structure, manually edit file to define each tag required for the structure, or manually configure the
required tags in the OPC Server.

See Also:
Exporting Variables from Concept

Modbus Exception Codes
From Modbus Application Protocol Specifications documentation:

Code Dec/Hex Name Meaning
01/0x01 ILLEGAL FUNC-

TION
The function code received in the query is not an allowable action for the server (or
slave). This may be because the function code is only applicable to newer devices,
and was not implemented in the unit selected. It could also indicate that the server
(or slave) is in the wrong state to process a request of this type, for example
because it is unconfigured and is being asked to return register values.

02/0x02 ILLEGAL DATA
ADDRESS

The data address received in the query is not an allowable address for the server
(or slave). More specifically, the combination of reference number and transfer
length is invalid. For a controller with 100 registers, a request with offset 96 and
length 4 would succeed, a request with offset 96 and length 5 will generate excep-
tion 02.

03/0x03 ILLEGAL DATA
VALUE

A value contained in the query data field is not an allowable value for server (or
slave). This indicates a fault in the structure of the remainder of a complex
request, such as that the implied length is incorrect. It specifically does NOT mean
that a data item submitted for storage in a register has a value outside the expec-
tation of the application program, since the MODBUS protocol is unaware of the sig-
nificance of any particular value of any particular register.

04/0x04 SLAVE DEVICE
FAILURE

An unrecoverable error occurred while the server (or slave) was attempting to per-
form the requested action.

05/0x05 ACKNOWLEDGE The slave has accepted the request and is processing it, but a long duration of
time will be required to do so. This response is returned to prevent a timeout error
from occurring in the master. The master can next issue a Poll Program Complete
message to determine if processing is completed.

06/0x06 SLAVE DEVICE
BUSY

The slave is engaged in processing a long-duration program command. The
master should retransmit the message later when the slave is free.

07/0x07 NEGATIVE
ACKNOWLEDGE

The slave cannot perform the program function received in the query. This code is
returned for an unsuccessful programming request using function code 13 or 14
decimal. The master should request diagnostic or error information from the slave.

08/0x08 MEMORY PARITY
ERROR

The slave attempted to read extended memory, but detected a parity error in the
memory. The master can retry the request, but service may be required on the
slave device.

10/0x0A GATEWAY PATH
UNAVAILABLE

Specialized use in conjunction with gateways, indicates that the gateway was
unable to allocate an internal communication path from the input port to the output
port for processing the request. This usually means that the gateway is mis-
configured or overloaded.

11/0x0B GATEWAY TARGET
DEVICE FAILED TO
RESPOND

Specialized use in conjunction with gateways, indicates that no response was
obtained from the target device. Usually means that the device is not present on
the network.

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

www. kepware.com

25

Modbus ASCII Serial Driver Help

Index

A

Address '<address>' is out of range for the specified device or register 20
Address Descriptions 16
Address Validation 19
Array size is out of range for address '<address>' 21
Array support is not available for the specified address:'<address>' 21
Automatic Tag Database Generation 11
Automatic Tag Database Generation Messages 23

B

Bad address in block [<start address> to <end address>] on device '<device name>' 23
Bad array spanning ['<address>' to '<address>'] on device '<device name>' 23
BCD 15
Block Sizes 7
Boolean 15

C

Cable Diagram 6
Channel Setup 5
Communications error on '<channel name>' [<error mask>] 22
COMn does not exist 21
COMn is in use by another application 21
Concept 11
Concept Data Type 12

D

Data Type '<type>' is not valid for device address '<address>' 20
Data Types Description 15
Description truncated for import file record number <record> 24
Device '<device name>' is not responding 22
Device address '<address>' contains a syntax error 20
Device address '<address>' is not supported by model '<model name>' 20
Device address '<address>' is Read Only 20
Device ID 6
Device Setup 6
Device Specific Messages 23
Device Status Messages 22
DWord 15

www. kepware.com

26

Modbus ASCII Serial Driver Help

E

Error Descriptions 19
Error opening COMn 21
Error parsing import file record number <record>, field <field> 24
Exporting Variables from Concept 11
Exporting Variables from ProWORX 13

F

File exception encountered during tag import 24
Float 15
Flow Automation Addressing 18
Flow Computer Addressing 17
Framing 22

G

Generated Tag Data Type 12

I

Imported tag name '<tag name>' is invalid. Name changed to '<tag name>' 24

L

LBCD 15
Long 15

M

Mask 22
Missing address 19
Modbus ASCII Addressing 16
Modbus Exception Codes 25
Modem Setup 7

www. kepware.com

27

Modbus ASCII Serial Driver Help

N

Network 6

O

Overrun 22
Overview 4

P

Packed Coil Tags 17
Parity 22
ProWORX 11
ProWORX programming application 11

S

Serial Communications 21
Settings 7
Short 15
String 15

T

Tag '<tag name>' could not be imported because data type '<data type>' is not supported 25
Tag import failed due to low memory resources. 24

U

Unable to set comm parameters on COMn 22
Unable to write to '<address>' on device '<device name>' 23
Unable to write to address '<address>' on device '<device>': Device responded with excep-
tion code '<code>'

23

www. kepware.com

28

Modbus ASCII Serial Driver Help

V

Variable Import File 11
Variable Import Settings 10-11

W

Word 15

www. kepware.com

29

	Table of Contents
	Modbus ASCII SerialDriver Help
	Overview

	Channel Setup
	Device Setup
	Cable Diagram
	Modem Setup
	Block Sizes
	Settings
	Variable Import Settings

	Automatic Tag Database Generation
	Exporting Variables from Concept
	Exporting Variables from ProWORX

	Data Types Description
	Address Descriptions
	Modbus ASCII Addressing
	Flow Computer Addressing
	Flow Automation Addressing

	Error Descriptions
	Address Validation
	Missing address
	Device address '<address>' contains a syntax error
	Address '<address>' is out of range for the specified device or register
	Device address '<address>' is not supported by model '<model name>'
	Data Type '<type>' is not valid for device address '<address>'
	Device address '<address>' is Read Only
	Array size is out of range for address '<address>'
	Array support is not available for the specified address: '<address>'

	Serial Communications
	COMn does not exist
	Error opening COMn
	COMn is in use by another application
	Unable to set comm parameters on COMn
	Communications error on '<channel name>' [<error mask>]

	Device Status Messages
	Device '<device name>' is not responding
	Unable to write to '<address>' on device '<device name>'
	Unable to write to address '<address>' on device '<device>': Device responded...

	Device Specific Messages
	Bad address in block [<start address> to <end address>] on device '<device na...
	Bad array spanning ['<address>' to '<address>'] on device '<device name>'

	Automatic Tag Database Generation Messages
	Tag import failed due to low memory resources
	File exception encountered during tag import
	Error parsing import file record number <record>, field <field>
	Description truncated for import file record number <record>
	Imported tag name '<tag name>' is invalid. Name changed to '<tag name>'
	Tag '<tag name>' could not be imported because data type '<data type>' is not...

	Modbus Exception Codes

	Index

