
Modbus Plus Driver Help

© 2012 Kepware Technologies

Modbus Plus Driver Help

Table of Contents
Table of Contents 2
Modbus Plus Driver Help 4
Overview 4

Device Setup 5
Device ID (PLC Network Address) 5
Block Sizes 8
Settings 9
Variable Import Settings 12

Automatic Tag Database Generation 13
Exporting Variables from Concept 13
Exporting Variables from ProWORX 15

Optimizing Your Modbus Plus Communications 17

Data Types Description 19

Address Descriptions 20
Modbus Addressing 20

Output Coils 20
Input Coils 20
Packed Coils 21
Internal Registers 21
Holding Registers 22
Global Data 23

TIO Module Addressing 24
Data I/O 24
Data Input - Latched 24
Module Timeout 25
Module Status 25
Module ASCII Header 25

Error Descriptions 26
Address Validation Messages 26

Address '<address> ' is out of range for the specified device or register 27
Array size is out of range for address '<address> ' 27
Array support is not available for the specified address: '<address> ' 27
Data Type '<type> ' is not valid for device address '<address> ' 27
Device address '<address> ' contains a syntax error 27
Device address '<address> ' is Read Only 27
Missing address 28

Automatic Tag Database Generation Messages 28
Description truncated for import file record number <record> 28
Error parsing import file record number <record> , field <field> 28
File exception encountered during tag import 28
Imported tag name '<tag name> ' is invalid. Name changed to '<tag name> ' 29

www. kepware.com

2

Modbus Plus Driver Help

Tag '<tag name> ' could not be imported because data type '<data type> ' is not supported 29
Tag import failed due to low memory resources 29

Device Specific Messages 29
Address block error <address> -<address> responded with exception 132 30
Bad address in block [<start address> to <end address>] on device '<device name>' 30
Bad array spanning ['<address>' to '<address>'] on device '<device name>' 30
Block address [<start address> to <end address>] on device '<device name> ' responded with exception
'<exception code> ' 30
Error opening MBPLUS path: <ID> 30
Unable to communicate with MBPLUS.VXD 31
Unable to open MBPLUS slave path 31
Unable to read from address '<address> ' on device '<device> '. Device responded with exception code
'<code> ' 31
Unable to read from address '<array address> ' on device '<device> ', board responded with exception
code '<code> ' 31
Unable to start MBPLUS.SYS device 32
Unable to write to address '<address> ' on device '<device> ': Device responded with exception code
'<code> ' 32
Unable to write to address '<array address> ' on device '<device> ', board responded with exception
code '<code> ' 32

Device Status Messages 32
Device '<device name> ' is not responding 32
Started MBPLUS.SYS device 33
Unable to write to '<address> ' on device '<device name> ' 33

Modbus Exception Codes 33
Hilscher CIF Exception Codes 34

Index 35

www. kepware.com

3

Modbus Plus Driver Help

Modbus Plus Driver Help
Help version 1.029

CONTENTS

Overview
What is the Modbus Plus Driver?

Device Setup
How do I configure a device for use with this driver?

Automatic Tag Database Generation
How can I easily configure tags for the Modbus Plus Driver?

Optimizing Your Modbus Plus Communications
How do I get the best performance from the Modbus Plus Driver?

Data Types Description
What data types does the Modbus Plus Driver support?

Address Descriptions
How do I address a data location on a Modbus Plus device?

Error Descriptions
What error messages does the Modbus Plus Driver produce?

Overview
The Modbus Plus Driver provides an easy and reliable way to connect Modbus Plus devices to OPC Client appli-
cations, including HMI, SCADA, Historian, MES, ERP and countless custom applications. It is intended for use
with a Modicon SA85 Network card or Hilscher CIF MBP Interface card. This driver does not support con-
figurations where SA85 and Hilscher CIF cards exist in the samemachine.

www. kepware.com

4

Modbus Plus Driver Help

Device Setup
SA85 Card
For this configuration, the driver requires the Modicon MBPLUS.SYS driver for Windows NT or the Modicon
MBPLUS.VXD driver for Windows 95. These drivers can be acquired from Modicon and must be installed and con-
figured before the driver will work. The SA85 card can define up to eight channels. For more information, refer to
Optimizing Your Modbus Plus Communications.

Hilscher CIF Card
For this configuration, the driver requires Hilscher's SyCon configuration software to be installed on the same
machine as the card. The card is configured and downloaded through SyCon. The Hilscher CIF card can only sup-
port one channel per adapter.

Polling Multiple Devices
The driver can poll multiple devices (PLCs) on an MBPlus network and also act as a single slave device on the
MBPlus network for other devices to poll. The driver is limited to 8192 devices and supports up to 4 adapters.
There are three modes of operations supported: Solicited, Unsolicited and Mailbox. To obtain data from the
device, refer to the method used by the driver. The mode is specified when entering the Device ID in the device's
configuration.

Note: Only Solicited Mode is supported with Hilscher CIF cards.

See Also: Device ID

Solicited Mode (DM.r1.r2.r3.r4.r5 or S.r1.r2.r3.r4.r5)
The driver will generate Read/Write requests to the device to get/put data. Output coils, input coils, internal reg-
isters and holding registers are all available addresses. Upon successful reads from the device, the data is made
available to clients of the driver. Unsuccessful reads will generate an error message and invalidate the data for
clients. Output coils and holding register addresses can be written. Input coils and internal registers are Read
Only.

Unsolicited Mode (DS.r1.r2.r3.r4.r5)
When a device is specified to use unsolicited mode, the driver acts as a virtual PLC on the network. Reads and
writes do not originate from the driver in unsolicited mode. Any client application that reads or writes from this
type of device, will read or write to a local cache allocated for the device instead of the physical device. Devices on
the network read and write to the same cache via unsolicited commands.

Note: This is not supported by Hilscher CIF cards.

Mailbox Mode (U.r1.r2.r3.r4.r5)
When a device is specified to use mailbox mode, the driver does not act like a virtual PLC on the network as does
unsolicited mode. Instead, it acts as a storage area for each and every mailbox device defined. When the driver
receives an unsolicited command, the driver detects the routing path for which the message came from and
places the data in the storage area allocated for the device. If the message comes from a device with a routing
path that has not been defined as a mailbox device, the message is not processed. Any client application that
reads from this type of device reads from the storage area contained in the driver instead of the physical device.
Writes are special in that they do write to the physical device as well as write to the local cache. Unsolicited mail-
box commands are made possible by the MSTR instruction available in certain Modicon devices. For more infor-
mation on the MSTR instruction, refer to the Modicon documentation.

Note: This is not supported by Hilscher CIF cards.

Important: For this driver, the terms Slave and Unsolicited are used interchangeably.

Device ID (PLC Network Address)
The Device ID specifies the path to a node on the network. It consists of five consecutive routing bytes in addition
to a mode designator. The mode may be Master, Slave or Mailbox.

Master Mode (Solicited)
Data Master paths start with the prefix DM or S and are used to communicate with another node on the network.
The Host PC acts as the master in conversations of this type. A DM path can identify a PLC or any other devices
that can respond to Modbus Read and Write commands, including another Host PC running the Modbus Plus
Driver. The format of a DM path is DM.r1.r2.r3.r4.r5 or S.r1.r2.r3.r4.r5.

Slave Mode (Unsolicited)

www. kepware.com

5

Modbus Plus Driver Help

A single Data Slave path can be configured per SA85 card and has the format DS.1.0.0.0.0. By defining a slave
path, users enable the Host PC running the Modbus Plus Driver to simulate a PLC device on the network capable of
responding to Read/Write requests from other devices. Other devices can communicate with this simulated
device by opening a Data Master path to it.

The simulated PLC device uses Modbus byte ordering: first word is low word of DWord for 32 bit and 64 bit
values and first DWord is low DWord for 64 bit values for Data Encoding. Therefore, the Data Encoding options
for the unsolicited device must be set to the following:

l Modbus Byte Order.
l First Word Low in 32 Bit Data Types.
l First DWord Low in 64 Bit Data Types.

Note: For more information, refer to Settings.

Addresses 1 to 65536 are implemented for output coils, input coils, internal registers and holding registers. The
driver will respond to any valid request to read or write these values from external devices (Function Codes [dec-
imal] 01, 02, 03, 04, 05, 06, 15, 16). These locations can also be accessed locally by the Host PC as tags
assigned to the slave device. Write Only access is not allowed for an unsolicited device.

When a Slave path is enabled, the Modbus Plus Driver will enable eight slave paths on each SA85 card. This
allows the remote PLCs and other Modbus Plus devices to access the slave memory of this driver using any of the
eight slave paths. The memory accessed is the same in all cases. In terms of an MSTR instruction, users can spec-
ify a path of 1 through 8 when defining what path to connect with on the SA85 card serviced by this driver. This
can be useful if the application has a large number of remote devices that will be sending data to the PC. If this is
the case, users can utilize the 8 slave paths to distribute the load from remote nodes. Each slave path in this
driver has its own thread of execution to ensure the highest level of performance.

If no slave device is defined in the project, the driver will ignore any unsolicited read or write requests it receives.

Note: Unsolicited mode is not supported with Hilscher CIF cards.

Mailbox Mode
A Mailbox path starts with the prefix U and provides a path to a physical device. A storage area will be provided
for this physical device in the slave device defined in the project. Although the physical device sends unsolicited
writes to this storage area, they can also be accessed locally by the Host PC as tags assigned to the slave device.
The format of a mailbox path is U.r1.r2.r3.r4.r5.

The driver always opens a slave path when receiving unsolicited mailbox data. The path the driver opens is
DS.1.0.0.0.0. Devices on the same Modbus Plus network communicate with the driver by opening the Data
Master path DM.<local node> .1.0.0.0, where the local node is the address set on the SA85 card of the Host Com-
puter. For a description of the path devices on a bridged network use, refer to Example 3.

Devices use the Modbus Plus MSTR instruction to provide data to the driver. In order for the driver to be able to
associate the data with a particular device, the Device ID path must be embedded in the first five registers of the
received data. If the first five registers of data do not match the Device ID path of the device in the project, the
received data is discarded. Only the Write command is supported for the MSTR instruction.

Notes:
1. Mailbox Mode is not supported with Hilscher CIF cards.
2. The Device ID path is embedded in the path from the Host PC to the device, not the device path to the Host PC.
3. A TIO Module device does not support a slave network address.
4. The Device ID should not be changed while clients are connected. If it is, the change will not take effect until all
clients are disconnected and then reconnected.

Example 1 - Solicited
Suppose the single network consists of four nodes such that nodes 1 and 4 are Host PCs running software that
uses the Modbus Plus Driver and nodes 2 and 3 are PLCs. The following table identifies the addressing for the net-
work as seen from each node.

From To Node 1 To Node 2 To Node 3 To Node 4
Node 1 --------------- DM.2.0.0.0.0 DM.3.0.0.0.0 DM.4.1.0.0.0
Node 2 DM.1.1.0.0.0 --------------- DM.3.0.0.0.0 DM.4.1.0.0.0
Node 3 DM.1.1.0.0.0 DM.2.0.0.0.0 --------------- DM.4.1.0.0.0
Node 4 DM.1.1.0.0.0 DM.2.0.0.0.0 DM.3.0.0.0.0 ---------------

www. kepware.com

6

Modbus Plus Driver Help

Note: In order to access the simulated device on a Host PC, the last non-zero number in the path is always one:
this indicates the slave path used by the driver.

Example 2 - Mailbox Mode Single Network
Transferring registers 40020 to 40029 from the device to locations 40001 to 40010 of the Host PC. The location
of the control block can be different.

Host PC address: 7.0.0.0.0
Device address: 3.0.0.0.0

MSTR Instruction

Control block 40001 -
Data area 40015 Start five registers early
Length 15 Five more than the actual data

Control Block

40001 1 Write operation
40002 0 Holds error code
40003 15 Number of registers to transfer
40004 1 Starting location in the Host PC (Register 40001)
40005 7 Path to Host PC
40006 1 Path to Host PC
40007 0 Path to Host PC
40008 0 Path to Host PC
40009 0 Path to Host PC

Data Area

40015 3 Path back to device from Host PC, the Device ID
40016 0 Path back to device from Host PC
40017 0 Path back to device from Host PC
40018 0 Path back to device from Host PC
40019 0 Path back to device from Host PC
40020 - Actual data start
40029 - Actual data end

The following steps are taken by the driver upon receiving an unsolicited message.

1. If the message is understood, the driver will send acknowledgement to the sending device. If messages
are received for functions other than Preset Multiple Registers, code 0x10, the driver returns a Func-
tion Not Implemented response. Preset Multiple Registers is the function code devices on the receiving
end of an MSTR instruction get. The driver returns an exception response if the message is not under-
stood or incomplete.

2. The driver will attempt to match the first five registers of data received to the Device ID path of a device in
the project. If none is found, the data will be discarded. If the data is less than six registers, it will be dis-
carded immediately.

3. The driver will copy n - 5 registers of data starting at the sixth register of the received data to the image
map maintained internally for the device (starting at the location indicated in the message). The driver
may need to allocate storage for the image map if this is the first data received for these locations.

4. The data is made available to clients of the driver. The data in this example would be referenced as tags
with addresses 40001 to 40009 of the device with Device ID U.3.0.0.0.0. The client would refer to the
device using a logical name assigned when the device was created in the project. The data could also be
referenced as an array such as 40001[10] or 40001[2][5].

Example 3 - Mailbox Mode Bridged Network

www. kepware.com

7

Modbus Plus Driver Help

If the same registers were to be transferred from the PLC to the same locations in the Host PC, the following con-
trol block and data area would be used in the MSTR instruction.

Host PC address from PLC perspective: 4.2.9.7.1
PLC address from Host PC perspective: 15.23.10.18.0 (this would be the Device ID path)

MSTR Instruction

Control block 40001 -
Data area 40015 Start five registers early
Length 15 Five more than the actual data

Control Block

40001 1 Write operation
40002 0 Holds error code
40003 15 Number of registers to transfer
40004 1 Starting location in the Host PC (Register 40001)
40005 4 Path to Host PC
40006 2 Path to Host PC
40007 9 Path to Host PC
40008 7 Path to Host PC
40009 1 Path to Host PC

Data Area

40015 15 Path back to device from Host PC, the Device ID
40016 23 Path back to device from Host PC
40017 10 Path back to device from Host PC
40018 18 Path back to device from Host PC
40019 0 Path back to device from Host PC
40020 - Actual data start
40029 - Actual data end

The message would be processed the same.

Note: At most, the Host PC can be three networks distant from a device when using this driver.

Important: For this driver, the terms Slave and Unsolicited are used interchangeably.

Block Sizes
Coil Block Sizes

www. kepware.com

8

Modbus Plus Driver Help

SA85 Card
Coils can be read from 8 to 2000 points (bits) at a time. The default setting is 512 coils.

Hilscher CIF Card
Coils can be read from 8 to 248 points (bits) at a time. The default setting is 248 coils.

Register Block Sizes
SA85 Card
Registers can be read from 1 to 120 locations (words) at a time. The default setting is 120 registers.

Hilscher CIF Card
Registers can be read from 1 to 95 locations (words) at a time. The default setting is 95 registers.

Caution: If the Register Block sizes value is set above 120 and a 32 or 64 bit data type is used for any tag, then a
"Bad address in block" error could occur. Decrease block size value to 120 to prevent the error from occurring.

Note: For a TIO Module, use this setting to inform the driver how many bytes will be returned when reading data
location 400001. For modules that return 2 bytes, set this to 1. For modules that return 3 bytes, set this to 2. The
driver uses fixed block lengths (independent from this setting) for all other data locations.

Reasons to Change the Default Block Sizes

1. The device may not support block Read/Write operations of the default size. Smaller Modicon PLCs and
non-Modicon devices may not support the maximum data transfer lengths supported by the MBPlus net-
work.

2. The device may contain non-contiguous addresses. If this is the case and the driver attempts to read a
block of data that encompasses undefined memory, the device will probably reject the request.

Perform Block Read on Strings
Check this option to block read string tags, which are normally read individually. When this option is selected,
string tags will be grouped together depending on the selected block size. Block reads can only be performed for
Modbus model string tags.

Settings
Adapter Number
This parameter specifies the adapter number that will be used by the Modbus Plus card. Valid adapter numbers
are 0 to 3. For card-specific information, refer toDevice Setup.

Timeout
This parameter specifies the time that the driver will wait for a response from the device before giving up and
going on to the next request. The timeout will be rounded up to the nearest half second. Longer timeouts only
affect performance if a device is not responding. The driver polls the MBPlus system driver for the device
response at 10 ms intervals.

----- Data Access Group -----
Zero vs. One Based Addressing
If the address numbering convention for the device starts at one instead of zero, users can specify so when defin-
ing the device's parameters. By default, user-entered addresses will have one subtracted when frames are con-
structed to communicate with a Modbus device. If the device doesn't follow this convention, users can uncheck
Use zero based addressing in Device Properties. For information on the appropriate application from which
details on setting device properties may be obtained, refer to the online help. The default behavior follows the con-
vention of the Modicon PLCs.

Note: Hilscher CIF cards support One Based Addressing only.

Zero vs One Based Bit Addressing within registers
Memory types that allow bits within Words can be referenced as a Boolean. The addressing notation for doing this
is as follows:

<address> .<bit>

where <bit> represents the bit number within the Word. Zero Based Bit Addressing within registers provides
two ways of addressing a bit within a given Word; Zero Based and One Based. Zero Based Bit addressing within
registers simply means the first bit begins at 0. With One Based, the first bit begins at 1.

www. kepware.com

9

Modbus Plus Driver Help

Zero Based Bit Addressing Within Registers (Default Setting /Checked)

Data Type Bit Range
Word Bits 0–15

One Based Bit Addressing Within Registers (Unchecked)

Data Type Bit Range
Word Bits 1–16

Holding Register Bit Mask Writes
When writing to a bit location within a holding register, the driver should only modify the bit of interest. Some
devices support a special command to manipulate a single bit within a register (Function code hex 0x16 or dec-
imal 22). If the device does not support this feature, the driver will need to perform a Read/Modify/Write oper-
ation to ensure that only the single bit is changed.

Check this box if the device supports holding register bit access. The default setting is unchecked. If this setting
is selected, then the driver will use function code 0x16, irrespective of the setting for Use Modbus function 06
for single register writes. If this setting is not selected, the driver will use either function code 0x06 or 0x10
depending on the selection for Use Modbus function 06 for single register writes.

Note 1: When Modbus byte order is deselected, the byte order of the masks sent in the command will be Intel
byte order.

Note 2: Hilscher CIF cards do not support Holding Register Bit Mask Writes.

Use Modbus Function 06 or 16
The Modbus driver has the option of using two Modbus protocol functions to write Holding register data to the tar-
get device. In most cases, the driver switches between these two functions based on the number of registers
being written. When writing a single 16 bit register, the driver will use the Modbus function 06. When writing a
32 bit value into two registers, the driver will use Modbus function 16. For the standard Modicon PLC, the use of
either of these functions is not a problem. There are, however, a large number of third party devices that have
implemented the Modbus protocol. Many of these devices support only the use of Modbus function 16 to write to
Holding registers regardless of the number of registers to be written.

The "Use Modbus function 06" selection is used to force the driver to use only Modbus function 16 (if needed).
This selection is checked by default, thus allowing the driver to switch between 06 and 16 as needed. If a device
requires all writes to be done using only Modbus function 16, uncheck this selection.

Note: For bit within word writes, theHolding Register Bit Mask Writes property takes precedence over Use
Modbus Function 06. If "Holding Register Bit Mask Writes" is selected, then function code 0x16 will be used no
matter what the selection for this property. If it is not selected, then the selection of this property will determine
whether function code 0x06 or 0x10 will be used for bit within word writes.

Use Modbus Function 05 or 15
The Modbus driver can use two Modbus protocol functions to write output coil data to the target device. In most
cases, the driver switches between these two functions based on the number of coils being written. When writ-
ing a single coil, the driver will use the Modbus function 05. When writing an array of coils, the driver will use
Modbus function 15. For the standard Modicon PLC, the use of either of these functions is not a problem. There
are, however, a large number of third party devices that have implemented the Modbus protocol. Many of these
devices support only the use of Modbus function 15 to write to output coils regardless of the number of coils to be
written.

The "Use Modbus Function 05" selection is used to force the driver to use only Modbus function 15 if needed.
This selection is checked by default, thus allowing the driver to switch between 05 and 15 as needed. If a device
requires all writes to be done using only Modbus function 15, uncheck this selection.

----- Data Encoding Group -----
Modbus Byte Order
The byte order used by the Modbus Plus Driver can be changed from the default Modbus byte ordering to Intel
byte ordering by using this selection. This selection is checked by default and is the normal setting for Modbus
compatible devices. If the device uses Intel byte ordering, deselecting this selection will enable the Modbus
driver to properly read Intel formatted data.

First Word Low in 32 Bit Data Types

www. kepware.com

10

Modbus Plus Driver Help

Two consecutive registers' addresses in a Modbus device are used for 32 bit data types. Users can specify
whether the driver should assume the first word is the low or the high word of the 32 bit value. The default (first
word low) follows the convention of the Modicon Modsoft programming software.

First DWord Low in 64 Bit Data Types
Four consecutive registers' addresses in a Modbus device are used for 64 bit data types. Users can specify
whether the driver should assume the first DWord is the low or the high DWord of the 64 bit value. The default
(first DWord low) follows the default convention of 32 bit data types.

Use Modicon Bit Ordering
When checked, the driver will reverse the bit order on reads and writes to registers to follow the convention of
the Modicon Modsoft programming software. For example, a write to address 40001.0/1 will affect bit 15/16 in
the device when this option is enabled. This option is disabled (unchecked) by default.

Note: For the following example, the 1st through 16th bit signifies either 0-15 bits or 1-16 bits depending on if
the driver is set at Zero Based or One Based Bit Addressing within registers.

MSB = Most Significant Bit
LSB = Least Significant Bit

Use Modicon Bit Ordering Checked

MSB LSB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Use Modicon Bit Ordering Unchecked (Default Setting)

MSB LSB
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Data Encoding Options Details
The following summarizes usage of the Data Encoding options.

l Use default Modbus byte order option sets the data encoding of each register/16 bit value.
l First word low in 32 bit data types option sets the data encoding of each 32 bit value and each double
word of a 64 bit value.

l First DWord low in 64 bit data types option sets the data encoding of each 64 bit value.

Data Types Use default Modbus byte
order Applicable

First word low in 32 bit data
types Applicable

First DWord low in 64 bit data
types Applicable

Word, Short,
BCD

Yes No No

Float, DWord,
Long, LBCD

Yes Yes No

Double Yes Yes Yes

If needed, use the following information and the particular device's documentation to determine the correct set-
tings of the Data Encoding options. The default settings are acceptable for most Modbus devices.

Use default Modbus byte order
Checked

High Byte(15..8) Low Byte(7..0)

Use default Modbus byte order
Unchecked

Low Byte(7..0) High Byte(15..8)

First word low in 32 bit data types
Unchecked

High Word(31..16)

High Word(63..48) of Double Word in 64
bit data types

Low Word(15..0)

Low Word(47..32) of Double Word in 64
bit data types

First word low in 32 bit data types
Checked

Low Word(15..0)

Low Word(47..32) of Double Word in 64
bit data types

High Word(31..16)

High Word(63..48) of Double Word in 64
bit data types

First DWord low in 64 bit data types High Double Word(63..32) Low Double Word(31..0)

www. kepware.com

11

Modbus Plus Driver Help

Unchecked

Variable Import Settings
Variable Import File
This parameter specifies the exact location of the Concept or ProWORX variable import file the driver should use
when automatic tag database generation is enabled for this device.

Display Descriptions
Check this box in order to use imported tag descriptions (if present in file).

Note: For more information on how to configure automatic tag database generation and how to create a variable
import file, refer to Automatic Tag Database Generation.

www. kepware.com

12

Modbus Plus Driver Help

Automatic Tag Database Generation
The Modbus Plus Driver utilizes the OPC server's Automatic Tag Database Generation feature, which enables driv-
ers to automatically create tags that access data points used by the device's ladder program. Although it is some-
times possible to query a device for the information needed to build a tag database, this driver must use a
Variable Import File instead. Variable import files can be generated using the Concept and ProWORX device
programming applications.

Creating the Variable Import File
The import file must be in semicolon delimited Concept .txt format, which is the default export file format of the
Concept device programming application. The ProWORX programming application can also export variable data in
this format. For application-specific information on creating the variable import file, refer to Exporting Var-
iables from Concept and Exporting Variables from ProWORX.

OPC Server Configuration
Automatic Tag Database Generation can be customized to fit the application's needs. The primary control options
can be set either during the Database Creation step of the Device Wizard or later by selecting the Database Cre-
ation tab in Device Properties. For more information, refer to the OPC server's help documentation.

Modbus Plus requires other settings in addition to the basic settings common to all drivers that support automatic
tag database generation. Such specialized settings include the requiring the name and location of the variable
import file. This information can be specified either during the Variable Import Settings step of the Device Wizard
or later by selecting the Variable Import Settings tab in Device Properties. For more information, refer to Variable
Import Settings.

Operation
Depending on the specific configuration, tag generation may either start automatically when the OPC Server
project starts or be initiated manually at some other time. The OPC server's Event Log will show when the tag gen-
eration process started, any errors that occurred while processing the variable import file and when the process
completed.

Exporting Variables from Concept
As the ladder program is created, symbolic names for the various data points referenced can be defined using
the Variable Editor. Additional symbols and constants that are not used by the ladder program can also be
defined.

Note: Although Concept can define variable names that begin with an underscore, such names are not allowed
by the OPC server. The driver will modify invalid imported tag names as needed and note all name changes in the
server's Event Log.

www. kepware.com

13

Modbus Plus Driver Help

User defined data types are not currently supported by this driver. Records in the export file containing ref-
erences to such types will be ignored. The following simple data types are supported:

Concept Data Type Generated Tag Data Type
Bool Boolean
Byte Word
Dint Long
Int Short
Real Float
Time DWord
Udint DWord
Uint Word
Word Word

Note 1: Unlocated variables, which do not correspond to a physical address in the device, will be ignored by the
driver.

Note 2: Comments are allowed and may be included as the generated tag descriptions. For more information,
refer to Variable Import Settings.

Exporting Variables From Concept
Once the variables have been defined, the data must be exported from the Concept. To do so, follow the instruc-
tions below.

1. Select File | Export. Then select the Variables: Text delimited format.

2. ClickOK. Next, specify the filter and separator settings.

Note: Although any filter settings can be chosen, this driver will only be able to read the exported data if the
default semicolon separator is used.

3. ClickOK to generate the file.

www. kepware.com

14

Modbus Plus Driver Help

Exporting Variables from ProWORX
In order for ProWORX to export the necessary variable information, check the Symbols option under File | Pref-
erences. Symbolic names for various data points referenced can be defined by using the Document Editor.

Note: ProWORX does not place many restrictions on variable names. The OPC Server, however, requires that tag
names consist of only alphanumeric characters and underscores, and that the first character not be an under-
score. The driver will modify invalid imported tag names as needed will inform when any name changes in the
server's Event Log.

ProWORX will also assign a data type of either BOOL or INT to the exported variables. The driver will create tags of
type Boolean and Short respectively. In order to generate tags with other data types, manually edit the exported
file and use any of the supported Concept data types. For a list of supported types, refer to Exporting Variables
from Concept.

Exporting Variables From ProWORX
Once the variables have been defined, they must be exported from ProWORX. To do so, follow the instructions
below.

1. Select File | Utilities | Import/Export.

2. Select the Export and the Concept .TXT file format.

www. kepware.com

15

Modbus Plus Driver Help

Note: Descriptors are allowed and can be included as the generated tag descriptions. For more information,
refer to Variable Import Setting.

3. ClickOK to generate the file.

www. kepware.com

16

Modbus Plus Driver Help

Optimizing Your Modbus Plus Communications
The following optimizations apply to the SA85 card only. Hilscher CIF card configurations only support 1 channel
per adapter.

The Modbus Plus Driver has been redesigned to provide better throughput and take full advantage of the SA85
card. Previously, the Modbus Plus Driver restricted users to configuring a single channel in the OPC Server
project and required that all Modbus Plus devices that would be accessed be defined under this channel. This
meant that the driver had to move between devices one at a time in order to make requests. Since the OPC Server
was already designed to be efficient, the single channel scheme provided enough performance for most appli-
cation. With the advent of OPC as an enabling technology, however, the size of projects has increased dra-
matically. In order to maintain a high level of performance, the Modbus Plus Driver has been redesigned to
operate at a new level of efficiency and performance.

Note: Before beginning these changes, users should back up the OPC Server project directory in order to
quickly return to previous settings if needed.

In this project, there is only one Modbus Plus
channel defined. All devices that need to be
accessed are defined under that one channel.
Thus, the Modbus Plus Driver must move
from one device to the next as quickly as pos-
sible to gather information at an effective
rate. As more devices are added or more infor-
mation is requested from a single device, the
update rate begins to suffer.

The latest version of the Modbus Plus Driver uses multiple channel definitions in order to boost the application's
performance. In this configuration, each channel in the OPC Server represents a separate path of execution. By
adding up to 8 additional channels, the application's work load is spread across the new channels. This creates
multiple paths of execution that run independently, and results in a significant increase in performance. The
image below shows the same application reconfigured to use multiple channels.

Each device has now been defined under its
own channel. In this new configuration, the
OPC Server can dedicate a single path of
execution to the task of gathering data from a
single device because each has its own ded-
icated channel. If the application has 8 or
less devices it can be optimized as displayed.

Even if the application has more than 8
devices, there will still be a gain. While 8 or
less devices may be ideal, the application will
still benefit from additional channels.
Although this means that within a given chan-
nel the server must move from device to
device, it can now do so with less devices to
process on a single path.

Note: The 8 channel limit matches the multi-
path limitations of the SA85 and Hilscher
card as set by the manufacturer.

www. kepware.com

17

Modbus Plus Driver Help

The application can be redesigned to support multiple channels easily even if there are a large number of tags
defined under each device. For more information, follow the instructions below.

1. In the existing OPC Server project that is still single channel-based, click Channels | Add Channel and
then name it as desired.

Note: In this example, it has been named "NewModbusPlus".

2. Next, cut PLC2 from theModbusPlus channel.

3. Paste it under the NewModbusPlus channel. The cut and paste functions quickly modify the application
to take advantage of the new Modbus Plus Driver.

These examples highlight the most obvious optimizations that are now possible with the new Modbus Plus Driver.
Other possible optimizations include dedicating a single channel to just Global data. To do so, simply define a
new set of device names for each device whose global data will be accessed under that new channel. Remember
to only access Global data from these newly defined device names. There are many possible configurations that
may benefit the application; the new Modbus Plus Driver gives users the opportunity to investigate them.

www. kepware.com

18

Modbus Plus Driver Help

Data Types Description

Data Type Description
Boolean Single bit
Word Unsigned 16 bit value

bit 0 is the low bit
bit 15 is the high bit

Short Signed 16 bit value

bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

DWord Unsigned 32 bit value

bit 0 is the low bit
bit 31 is the high bit

Long Signed 32 bit value

bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

BCD Two byte packed BCD

Value range is 0-9999. Behavior is undefined for values beyond this
range.

LBCD Four byte packed BCD

Value range is 0-99999999. Behavior is undefined for values beyond
this range.

String Null terminated ASCII string

Supported on Modbus Model, includes Hi-Lo Lo-Hi byte order selec-
tion.

Double* 64 bit floating point value

The driver interprets four consecutive registers as a double pre-
cision value by making the last two registers the high DWord and the
first two registers the low DWord.

Double example If register 40001 is specified as a double, bit 0 of register 40001
would be bit 0 of the 64 bit data type and bit 15 of register 40004
would be bit 63 of the 64 bit data type.

Float* 32 bit floating point value

The driver interprets two consecutive registers as a single precision
value by making the last register the high word and the first register
the low word.

Float example If register 40001 is specified as a float, bit 0 of register 40001 would
be bit 0 of the 32 bit data type and bit 15 of register 40002 would be
bit 31 of the 32 bit data type.

*The descriptions assume the default first DWord low data handling of 64 bit data types, and first word low data
handling of 32 bit data types.

www. kepware.com

19

Modbus Plus Driver Help

Address Descriptions
Address specifications vary depending on the model in use. Select a link from the following list to obtain specific
address information for the model of interest.

Modbus
TIO Module

Modbus Addressing
The driver supports the following addresses.

Output Coils
Input Coils
Packed Coils
Internal Registers
Holding Registers
Global Data

Output Coils
Decimal Addressing
Address Range Data Type Access Function Code
0xxxxx 1-65536 Boolean Read/Write 01, 05, 15

Hexadecimal Addressing
Address Range Data Type Access
H0yyyyy 1-10000 Boolean Read/Write

Mailbox Mode
Only Holding Registers are supported in Mailbox Mode.

Array Support
Arrays are supported for output coil addresses. The syntax for declaring an array (using decimal addressing) is
as follows:

0xxxx[cols] with assumed row count of 1
or 0xxxx[rows][cols].

The base address + (rows * cols) cannot exceed 65536. The total number of coils being requested cannot
exceed the output coil block size that was specified for this device.

Example:
The 255'Th output coil would be addressed as '0255' using decimal addressing or 'H0FF' using hexadecimal
addressing.

Input Coils
Decimal Addressing
Address Range Data Type Access Function Code
1xxxxx 1-65536 Boolean Read Only 02

Hexadecimal Addressing
Address Range Data Type Access
H1yyyyy 1-10000 Boolean Read Only

Mailbox Mode
Only Holding Registers are supported in Mailbox Mode.

Array Support
Arrays are supported for input coil addresses. The syntax for declaring an array (using decimal addressing) is as
follows:

1xxxx[cols]

www. kepware.com

20

Modbus Plus Driver Help

with assumed row count of 1 or 1xxxx[rows][cols].

The base address + (rows * cols) cannot exceed 65536. The total number of coils being requested cannot
exceed the input coil block size that was specified for this device.

Example:
The 127'Th input coil would be addressed as '10127' using decimal addressing or 'H107F' using hexadecimal
addressing.

Packed Coils
The Packed Coil address type allows access to multiple consecutive coils as an analog value. This feature is avail-
able for the Modbus model in Master mode only. The only valid data type is Word. The syntax is as follows:

Output coils: 0xxxxx#nn Word Read/Write
Input coils: 1xxxxx#nn Word Read Only

where xxxxx is the address of the first coil (decimal and hex values allowed), and nn is the number of coils to be
packed into an analog value (1-16, decimal only).

Note: The bit order will be such that the start address will be the LSB (least significant bit) of analog value.

Internal Registers
The default data types are shown in bold.

Decimal Addressing
Address Range Data Type Access Function Code
3xxxxx 1-65536 Word, Short, BCD Read

Only*
04

3xxxxx.bb 3xxxxx.0/1-3xxxxx.15/16** Boolean Read
Only*

04

3xxxxx 1-65535 Float, DWord, Long,
LBCD

Read
Only*

04

3xxxxx 1-65533 Double Read
Only*

04

Internal Registers As
String with HiLo Byte
Order

300001.2H-365536.240H

.Bit is string length, range
2 to 240 bytes.

String Read Only 04

Internal Registers As
String with LoHi Byte
Order

300001.2L-365536.240L

.Bit is string length, range 2 to 240 bytes.

String Read Only 04

*For slave devices, these locations are Read/Write.
**For more information, refer to "Zero Vs. One-Based Addressing" in Settings.

Hexadecimal Addressing
Address Range Data Type Access
H3yyyyy 1-10000 Word, Short, BCD Read

Only*
H3yyyyy.cc H3yyyyy.0/1-

H3yyyyy.F/10
Boolean Read

Only*
H3yyyy 1-FFFF Float, DWord, Long,

LBCD
Read
Only*

H3yyyy 1-FFFD Double Read
Only*

Internal Registers
As
String with HiLo
Byte
Order

H300001.2H-
H3FFFF.240H

.Bit is string length,
range 2 to 240 bytes.

String Read Only

Internal Registers
As

H300001.2L-
H3FFFF.240L

String Read Only

www. kepware.com

21

Modbus Plus Driver Help

String with LoHi
Byte
Order

.Bit is string length,
range 2 to 240 bytes.

*For slave devices, these locations are Read/Write.

Mailbox Mode
Only Holding Registers are supported in Mailbox Mode. Double data type is not supported.

Array Support
Arrays are also supported for the internal register addresses. The syntax for declaring an array (shown using
decimal addressing) is as follows:

3xxxx[cols] with assumed row count of 1
3xxxx[rows][cols]

For Word, Short and BCD arrays, the base address + (rows * cols) cannot exceed 65536.

For Float, DWord, Long and Long BCD arrays, the base address + (rows * cols * 2) cannot exceed 65536.

For all arrays, the total number of registers being requested cannot exceed the internal register block size that
was specified for this device.

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

Holding Registers
The default data types are shown in bold.

Decimal Addressing

Address Range Data Type Access Function
Code

4xxxxx 1-65536 Word, Short, BCD Read/Write 03, 06, 16
4xxxxx.bb 4xxxxx.0/1-4xxxxx.15/16* Boolean Read/Write 03, 06, 16, 22
4xxxxx 1-65535 Float, DWord, Long,

LBCD
Read/Write 03, 06, 16

4xxxxx 1-65533 Double Read/Write 03, 06, 16
Holding Registers As
String with HiLo
Byte
Order

400001.2H-465536.240H

.Bit is string length, range 2 to 240
bytes.

String Read/Write 03, 16

Holding Registers As
String with LoHi
Byte
Order

400001.2L-465536.240L

.Bit is string length,
range 2 to 240 bytes.

String Read/Write 03, 16

*For more information, refer to "Zero Vs. One-Based Addressing" in Settings.

Hexadecimal Addressing
Address Range Data Type Access
H4yyyyy 1-10000 Word, Short, BCD Read/Write
H4yyyyy.c H4yyyyy.0/1-

H4yyyyy.F/10
Boolean Read/Write

H4yyyy 1-FFFF Float, DWord, Long, LBCD Read/Write
H4yyyy 1-FFFD Double Read/Write
Holding Registers As
String with HiLo Byte
Order

H400001.2H-
H4FFFF.240H

.Bit is string length,
range 2 to 240 bytes.

String Read/Write

Holding Registers As
String with LoHi Byte
Order

H400001.2L-
H4FFFF.240L

.Bit is string length,

String Read/Write

www. kepware.com

22

Modbus Plus Driver Help

range 2 to 240 bytes.

Write Only Access
All Read/Write addresses may be set as Write Only by prefixing a "W" to the address such as "W40001", which
will prevent the driver from reading the register at the specified address. Any attempts by the client to read a
Write Only tag will result in obtaining the last successful write value to the specified address. If no successful
writes have occurred, then the client will receive 0/NULL for numeric/string values for an initial value.

Caution: Setting the "Client access" privileges of Write Only tags to Read Only will cause writes to these tags to
fail and the client to always receive 0/NULL for numeric/string values.

Mailbox Mode
Only Holding Registers are supported in Mailbox Mode. When read from a client, the data is read locally from a
cache, not from a physical device. When written to from a client, the data is written to both the local cache and
also the physical device as determined by the Device ID routing path. For more information, refer toMailbox
Mode.

Note: The Double data type is not supported.

String Support
The Modbus model supports reading and writing holding register memory as an ASCII string. When using hold-
ing registers for string data, each register will contain two bytes of ASCII data. The order of the ASCII data within
a given register can be selected when the string is defined. The length of the string can be from 2 to 240 bytes
and is entered in place of a bit number. The length must be entered as an even number. Appending either an "H"
or "L" to the address specifies the byte order.

String Examples
1. To address a string starting at 40200 with a length of 100 bytes and Hi-Lo byte order, enter:
40200.100H

2. To address a string starting at 40500 with a length of 78 bytes and Lo-Hi byte order, enter:
40500.78L

Note: The string length may be limited by the maximum size of the write request that the device will allow. If the
an error message "Unable to write to address <address> on device<device> : Device responded with exception
code 3" is received in the server event window while utilizing a string tag, the device did not like the string's
length. If possible, try shortening the string.

Array Support
Arrays are also supported for the holding register addresses. The syntax for declaring an array (using decimal
addressing) is as follows:

4xxxx[cols] with assumed row count of 1
4xxxx[rows][cols]

For Word, Short and BCD arrays, the base address + (rows * cols) cannot exceed 65536.

For Float, DWord, Long and Long BCD arrays, the base address + (rows * cols * 2) cannot exceed 65535.

For all arrays, the total number of registers being requested cannot exceed the holding register block size that
was specified for this device.

Global Data
Global data is not supported for the slave device. The default data types are shown in bold.

Decimal Addressing
Address Range Data Type Access
Gxx 1-32 Word, Short, BCD Read/Write
Gxx.0/1 - Gxx.15/16* 1-32 Boolean Read Only
Gxx 1-31 Float, DWord, Long, LBCD Read/Write
Gxx 1-29 Double Read/Write

*For more information, refer to "Zero Vs. One-Based Addressing" in Settings.

Hexadecimal Addressing

www. kepware.com

23

Modbus Plus Driver Help

Address Range Data Type Access
HGyy 1-20 Word, Short, BCD Read/Write
HGyy.0/1-HGyy.F/10 1-20 Boolean Read Only
HGyy 1-1F Float, DWord, Long, LBCD Read/Write
HGyy 1-1D Double Read/Write

Write Only Access
All Read/Write addresses may be set as Write Only by prefixing a "W" to the address such as "WG01", which will
prevent the driver from reading the register at the specified address. Any attempts by the client to read a Write
Only tag will result in obtaining the last successful write value to the specified address. If no successful writes
have occurred, then the client will receive 0/NULL for numeric/string values for an initial value.

Mailbox Mode
Only Holding Registers are supported in Mailbox Mode.

Array Support
Arrays are also supported for global data. The syntax for declaring an array (shown using decimal addressing) is
as follows:

Gxx[cols] with assumed row count of 1.
Gxx[rows][cols]

For Word, Short and BCD arrays, the base address + (rows * cols) cannot exceed 32.

For Float, DWord, Long and Long BCD arrays, the base address + (rows * cols * 2) cannot exceed 32.

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

TIO Module Addressing
The driver supports the following addresses:

Data I/O
Data Input - Latched
Module Timeout
Module Status
Module ASCII Header

Note: Mailbox Mode is not supported for this model.

Data I/O
The default data types are shown in bold.

Decimal Addressing
Address Range Data Type Access
400001 N/A Word, Short Read/Write
400001.bb 400001.0/1-400001.15/16* Boolean Read/Write

*For more information, refer to "Zero Vs. One-Based Addressing" in Settings.

Hexadecimal Addressing
Address Range Data Type Access
H40001 N/A Word, Short Read/Write
H40001.cc H40001.0/1-H40001.F/10 Boolean Read/Write

Note: The value read from this location comes from the module's input register. When writing to this location,
the value sent modifies the module's output register. Therefore, the value read at this location does not cor-
respond to the value previously written to this location.

Data Input - Latched
The default data types are shown in bold.

Decimal Addressing

www. kepware.com

24

Modbus Plus Driver Help

Address Range Data Type Access
400257 N/A Word, Short Read Only
400257.bb 400257.0/1-400257.15/16* Boolean Read Only

*For more information, refer to "Zero Vs. One-Based Addressing" in Settings.

Hexadecimal Addressing
Address Range Data Type Access
H40101 N/A Word, Short Read Only
H40101.cc H40101.0/1-40101.F/10 Boolean Read Only

Module Timeout
The default data types are shown in bold.

Decimal Addressing
Address Range Data Type Access
461441 N/A Word, Short Read/Write
461441.bb 461441.0/1-461441.15/16* Boolean Read/Write

*For more information, refer to "Zero Vs. One-Based Addressing" in Settings.

Hexadecimal Addressing
Address Range Data Type Access
H4F001 N/A Word, Short Read/Write
H4F001.cc H4F001.0/1-H4F001.F/10 Boolean Read/Write

Module Status
The default data types are shown in bold.

Decimal Addressing
Address Range Data Type Access
4xxxxx 463489-463497 Word, Short Read Only
4xxxxx.bb 4xxxxx.0/1-4xxxxx.15/16* Boolean Read Only

*For more information, refer to "Zero Vs. One-Based Addressing" in Settings.

Hexadecimal Addressing
Address Range Data Type Access
H4yyyy H4F801-H4F809 Word, Short Read Only
H4yyyy.cc H4yyyy.0/1-H4yyyy.F/10 Boolean Read Only

Module ASCII Header
Decimal Addressing
Address Range Data Type Access
464513 N/A String Read Only

Hexadecimal Addressing
Address Range Data Type Access
H4FC01 N/A String Read Only

www. kepware.com

25

Modbus Plus Driver Help

Error Descriptions
The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation Messages
Address '<address> ' is out of range for the specified device or register
Array size is out of range for address '<address> '
Array support is not available for the specified address: '<address> '
Data Type '<type> ' is not valid for device address '<address> '
Device address '<address> ' contains a syntax error
Device address '< address> ' is Read Only
Missing address

Automatic Tag Database Generation Messages
Description truncated for import file record number <record>
Error parsing import file record number <record> , field <field>
File exception encountered during tag import
Imported tag name '<tag name> ' is invalid. Name changed to '<tag name> '
Tag '<tag name> ' could not be imported because data type '<data type> ' is not supported
Tag import failed due to low memory resources

Device Specific Messages
Address block error address address responded with exception 132
Bad address in block [<start address> to <end address>] on device '<device name> '
Bad array spanning ['<address>' to '<address>'] on device '<device name>'
Block address [<start address> to <end address>] on device '<device name> ' responded with
exception '<exception code> '
Error opening MBPLUS path: <ID>
Unable to communicate with MBPLUS.VXD
Unable to open MBPLUS slave path
Unable to read from address '<address> ' on device '<device> '. Device responded with exception
code '<code> '
Unable to read from address '<array address> ' on device '<device> ', board responded with excep-
tion code '<code> '
Unable to start MBPLUS.SYS device
Unable to write to address '<address> ' on device '<device> '. Device responded with exception
code '<code> '
Unable to write to address '<array address> ' on device '<device> ', board responded with excep-
tion code '<code> '

Device Status Messages
Device '<device name> ' is not responding
Started MBPLUS.SYS device
Unable to write to '<address> ' on device '<device name> '

Exception Codes
Modbus Exception Codes
Hilscher CIF Exception Codes

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

Address Validation Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation
Address '<address> ' is out of range for the specified device or register
Array size is out of range for address '<address> '
Array support is not available for the specified address: '<address> '
Data Type '<type> ' is not valid for device address '<address> '
Device address '<address> ' contains a syntax error

www. kepware.com

26

Modbus Plus Driver Help

Device address '< address> ' is Read Only
Missing address

Address '<address> ' is out of range for the specified device or register
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically references a location that is beyond the range of supported loca-
tions for the device.

Solution:
Verify that the address is correct; if it is not, re-enter it in the client application.

Array size is out of range for address '<address> '
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically is requesting an array size that is too large for the address type or
block size of the driver.

Solution:
Re-enter the address in the client application to specify a smaller value for the array or a different starting point.

Array support is not available for the specified address: '<address> '
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically contains an array reference for an address type that doesn't sup-
port arrays.

Solution:
Re-enter the address in the client application to remove the array reference or correct the address type.

Data Type '<type> ' is not valid for device address '<address> '
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has been assigned an invalid data type.

Solution:
Modify the requested data type in the client application.

Device address '<address> ' contains a syntax error
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically contains one or more invalid characters.

Solution:
Re-enter the address in the client application.

Device address '<address> ' is Read Only
Error Type:
Warning

www. kepware.com

27

Modbus Plus Driver Help

Possible Cause:
A tag address that has been specified statically has a requested access mode that is not compatible with what the
device supports for that address.

Solution:
Change the access mode in the client application.

Missing address
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has no length.

Solution:
Re-enter the address in the client application.

Automatic Tag Database Generation Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

Automatic Tag Database Generation Messages
Description truncated for import file record number <record>
Error parsing import file record number <record> , field <field>
File exception encountered during tag import
Imported tag name '<tag name> ' is invalid. Name changed to '<tag name> '
Tag '<tag name> ' could not be imported because data type '<data type> ' is not supported
Tag import failed due to low memory resources

Description truncated for import file record number <record>
Error Type:
Warning

Possible Cause:
The tag description given in specified record is too long.

Solution:
The driver will truncate the description as needed. To prevent this error in the future, edit the variable import file
to change the description if possible.

Error parsing import file record number <record> , field <field>
Error Type:
Serious

Possible Cause:
The specified field in the variable import file could not be parsed because it is longer than expected or invalid.

Solution:
Edit the variable import file to change the offending field if possible.

File exception encountered during tag import
Error Type:
Serious

Possible Cause:
The variable import file could not be read.

Solution:
Regenerate the variable import file.

www. kepware.com

28

Modbus Plus Driver Help

Imported tag name '<tag name> ' is invalid. Name changed to '<tag name> '
Error Type:
Warning

Possible Cause:
The tag name encountered in the variable import file contained invalid characters.

Solution:
The driver will construct a valid name based on the one from the variable import file. To prevent this error in the
future, and to maintain name consistency, change the name of the exported variable if possible.

Tag '<tag name> ' could not be imported because data type '<data type> ' is
not supported
Error Type:
Warning

Possible Cause:
The data type specified in the variable import file is not one of the types supported by this driver.

Solution:
If possible, change the data type specified in variable import file to one of the supported types. If the variable is
for a structure, manually edit the file to define each tag required for the structure. Alternatively, manually con-
figure the required tags in the OPC Server.

See Also:
Exporting Variables from Concept

Tag import failed due to low memory resources
Error Type:
Serious

Possible Cause:
The driver could not allocate memory required to process variable import file.

Solution:
Shutdown all unnecessary applications and retry.

Device Specific Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

Device Specific Messages
Address block error address address responded with exception 132
Bad address in block [<start address> to <end address>] on device '<device name> '
Bad array spanning ['<address>' to '<address>'] on device '<device name>'
Block address [<start address> to <end address>] on device '<device name> ' responded with
exception '<exception code> '
Error opening MBPLUS path: <ID>
Unable to communicate with MBPLUS.VXD
Unable to open MBPLUS slave path
Unable to read from address '<address> ' on device '<device> '. Device responded with exception
code '<code> '
Unable to read from address '<array address> ' on device '<device> ', board responded with excep-
tion code '<code> '
Unable to start MBPLUS.SYS device
Unable to write to address '<address> ' on device '<device> '. Device responded with exception
code '<code> '
Unable to write to address '<array address> ' on device '<device> ', board responded with excep-
tion code '<code> '

www. kepware.com

29

Modbus Plus Driver Help

See Also: Modbus Exception Codes

Address block error <address> -<address> responded with exception 132
Error Type:
Fatal

Possible Cause:
The requested node did not respond.

Solution:
Check the cabling, wiring and pinning.

See Also:
Hilscher CIF Exception Codes

Bad address in block [<start address> to <end address>] on device '<device
name>'
Error Type:
Serious

Possible Cause:
An attempt has been made to reference a nonexistent location in the specified device.

Solution:
Verify the addresses of all tags assigned to the device and eliminate ones that reference invalid locations.

Bad array spanning ['<address>' to '<address>'] on device '<device name>'
Error Type:
Fatal

Possible Cause:
An array of addresses was defined that spans past the end of the address space.

Solution:
Verify the size of the device's memory space and then redefine the array length accordingly.

Block address [<start address> to <end address>] on device '<device name>
' responded with exception '<exception code> '
Error Type:
Fatal

Possible Cause:
The requested node did not respond.

Solution:
Check the cabling, wiring and pinning.

See Also:
Hilscher CIF Exception Codes

Error opening MBPLUS path: <ID>
Error Type:
Serious

Possible Cause:
1. The MBPLUS.SYS driver for Windows NT or the MBPLUS.VXD driver for Windows 95 has not been properly con-
figured.
2. The driver cannot open a path on the specified adapter.

www. kepware.com

30

Modbus Plus Driver Help

Solution:
1. Follow the instructions for installing and configuring the MBPLUS driver.
2. Verify that no more than eight channels are assigned the same adapter number.

Unable to communicate with MBPLUS.VXD
Error Type:
Fatal

Possible Cause:
1. The MBPLUS.VXD driver was not properly configured.
2. The MBPLUS.VXD driver was not installed.

Solution:
Install or setup the MBPLUS.VXD properly before running the driver.

Note:
To check for proper configuration, use the test programs that come with the VXD driver.

Unable to open MBPLUS slave path
Error Type:
Fatal

Possible Cause:
The driver was unable to open a slave path with the MBPLUS.SYS driver on Windows NT (or the MBPLUS.VXD
driver on Windows 95). The MBPLUS driver is not properly installed.

Solution:
1. Verify that the MBPLUS device can be started and stopped manually using the Control Panel | Devices
applet. When the MBPLUS.SYS driver is started manually, the modbus_unsolicited.dll driver will also be able to
start the driver.
2. Install or setup the MBPLUS.VXD properly before running the driver.

Note:
To check for proper configuration, use the test programs that come with the VXD driver.

Unable to read from address '<address> ' on device '<device> '. Device
responded with exception code '<code> '
Error Type:
Warning

Possible Cause:
SeeModbus Exception Codes for a description of the exception code.

Solution:
SeeModbus Exception Codes.

Unable to read from address '<array address> ' on device '<device> ', board
responded with exception code '<code> '
Error Type:
Warning

SA85 Card
N/A

Hilscher CIF Card
Code -1, -33

Possible Cause:
1. The adapter may not exist.
2. Depends on error.

www. kepware.com

31

Modbus Plus Driver Help

Solution:
1. Verify that the proper adapter number has been chosen in Channel Properties. Use SyCon to determine adapter
ordering.
2. Refer to the SyCon User Manual.

Unable to start MBPLUS.SYS device
Error Type:
Fatal

Possible Cause:
The MBPLUS.SYS driver was not properly configured.

Solution:
Verify that that the MBPLUS device can be started and stopped manually using the Control Panel | Devices
applet. When the MBPLUS.SYS driver is started manually, the modbus_unsolicited.dll driver will also be able to
start the driver.

Unable to write to address '<address> ' on device '<device> ': Device
responded with exception code '<code> '
Error Type:
Warning

Possible Cause:
SeeModbus Exception Codes for a description of the exception code.

Solution:
SeeModbus Exception Codes.

Unable to write to address '<array address> ' on device '<device> ', board
responded with exception code '<code> '
Error Type:
Warning

SA85 Card
N/A

Hilscher CIF Card
Code -1, -33

Possible Cause:
1. The adapter may not exist.
2. Depends on error.

Solution:
1. Verify that the proper adapter number has been chosen in Channel Properties. Use SyCon to determine adapter
ordering.
2. Refer to the SyCon User Manual.

Device Status Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

Device Status Messages
Device '<device name> ' is not responding
Started MBPLUS.SYS device
Unable to write to '<address> ' on device '<device name> '

Device '<device name> ' is not responding
Error Type:
Serious

www. kepware.com

32

Modbus Plus Driver Help

Possible Cause:
1. The PLC network card may not be correctly installed in the Host PC.
2. The named device may not be connected to the PLC network.
3. The named device may have been assigned an incorrect Network ID.
4. The driver cannot open a path on the specified adapter.
5. The response from the device took longer to receive than the amount of time specified in the "Request Timeout"
device setting.

Solution:
1. Verify the network card installation using the supplied utility software.
2. Check the PLC network connections.
3. Verify that the Network ID given to the named device matches that of the actual device.
4. Verify that no more than eight channels are assigned the same adapter number.
5. Increase the Request Timeout setting so that the entire response can be handled.

Started MBPLUS.SYS device
Error Type:
Information

Possible Cause:
This message is posted by the driver when the MBPLUS.SYS device driver is started successfully. This is a Win-
dows NT only message and will not be seen if the MBPLUS.SYS driver is already running when the driver starts.

Solution:
N/A

Unable to write to '<address> ' on device '<device name> '
Error Type:
Serious

Possible Cause:
1. The PLC network card may not be correctly installed in the Host PC.
2. The named device may not be connected to the PLC network.
3. The named device may have been assigned an incorrect Network ID.

Solution:
1. Verify the network card installation using the supplied utility software.
2. Check the PLC network connections.
3. Verify the Network ID given to the named device matches that of the actual device.

Modbus Exception Codes
The data shown below is from the Modbus Application Protocol Specifications documentation.

Code Dec/Hex Name Meaning
01/0x01 ILLEGAL FUNCTION The function code received in the query is not an allowable action

for the server (or slave). This may be because the function code
is only applicable to newer devices, and was not implemented in
the unit selected. It could also indicate that the server (or slave)
is in the wrong state to process a request of this type, for exam-
ple, because it is not configured and is being asked to return reg-
ister values.

02/0x02 ILLEGAL DATA ADDRESS The data address received in the query is not an allowable
address for the server (or slave). More specifically, the com-
bination of reference number and transfer length is invalid. For a
controller with 100 registers, a request with offset 96 and length
4 would succeed, a request with offset 96 and length 5 will gen-
erate exception 02.

03/0x03 ILLEGAL DATA VALUE A value contained in the query data field is not an allowable value
for server (or slave). This indicates a fault in the structure of the
remainder of a complex request, such as that the implied length
is incorrect. It specifically does NOT mean that a data item sub-
mitted for storage in a register has a value outside the expec-

www. kepware.com

33

Modbus Plus Driver Help

tation of the application program, since the MODBUS protocol is
unaware of the significance of any particular value of any par-
ticular register.

04/0x04 SLAVE DEVICE FAILURE An unrecoverable error occurred while the server (or slave) was
attempting to perform the requested action.

05/0x05 ACKNOWLEDGE The slave has accepted the request and is processing it, but a
long duration of time will be required to do so. This response is
returned to prevent a timeout error from occurring in the master.
The master can next issue a Poll Program Complete message to
determine if processing is completed.

06/0x06 SLAVE DEVICE BUSY The slave is engaged in processing a long-duration program
command. The master should retransmit the message later
when the slave is free.

07/0x07 NEGATIVE ACKNOWLEDGE The slave cannot perform the program function received in the
query. This code is returned for an unsuccessful programming
request using function code 13 or 14 decimal. The master
should request diagnostic or error information from the slave.

08/0x08 MEMORY PARITY ERROR The slave attempted to read extended memory, but detected a
parity error in the memory. The master can retry the request,
but service may be required on the slave device.

10/0x0A GATEWAY PATH UNAVAILABLE Specialized use in conjunction with gateways, indicates that the
gateway was unable to allocate an internal communication path
from the input port to the output port for processing the
request. This usually means that the gateway is misconfigured
or overloaded.

11/0x0B GATEWAY TARGET DEVICE
FAILED TO RESPOND

Specialized use in conjunction with gateways, indicates that no
response was obtained from the target device. Usually means
that the device is not present on the network.

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

Hilscher CIF Exception Codes
The data below is from the Modbus Application Protocol Specifications documentation.

CIF Code Name Meaning
111 ILLEGAL FUNC-

TION
The function code received in the query is not an allowable action for the server (or
slave). This may be because the function code is only applicable to newer devices, and
was not implemented in the unit selected. It could also indicate that the server (or slave)
is in the wrong state to process a request of this type, for example because it is uncon-
figured and is being asked to return register values.

114 SLAVE DEVICE
FAILURE

An unrecoverable error occurred while the server (or slave) was attempting to perform
the requested action.

Note: For this driver, the terms Slave and Unsolicited are used interchangeably.

www. kepware.com

34

Modbus Plus Driver Help

Index

A

Address '<address> ' is out of range for the specified device or register 27
Address block error <address> -<address> responded with exception 132 30
Address Descriptions 20
Address Validation 26
Array size is out of range for address '<address> ' 27
Array support is not available for the specified address: '<address> ' 27
Automatic Tag Database Generation 13
Automatic Tag Database Generation Messages 28

B

Bad address in block [<start address> to <end address>] on device '<device name>' 30
Bad array spanning ['<address>' to '<address>'] on device '<device name>' 30
BCD 19
Block address [<start address> to <end address>] on device '<device name> ' responded
with exception '<exception> '

30

Block Sizes 8
Boolean 19

D

Data I/O 24
Data Input - Latched 24
Data Type '<type> ' is not valid for device address '<address> ' 27
Data Types Description 19
Description truncated for import file record number <record> 28
Device '<device name> ' is not responding 32
Device address '<address> ' contains a syntax error 27
Device address '<address> ' is Read Only 27
Device ID(PLC Network Address) 5
Device Setup 5
Device Specific Messages 29
Device Status Messages 32
DWord 19

E

Error Descriptions 26
Error opening MBPLUS path: <ID> 30
Error parsing import file record number <record> field <field> 28
Exporting Variables from Concept 13

www. kepware.com

35

Modbus Plus Driver Help

Exporting Variables from ProWORX 15

F

File exception encountered during tag import 28
Float 19

G

Global Data 23

H

Hilscher 6, 9
Hilscher CIF Card 4
Hilscher CIF Exception Codes 34
Holding Register 22

I

Imported tag name <tag name> is invalid. Name changed to <tag name> 29
Input 20
Input Coil 20
Internal Register 21

L

LBCD 19
Long 19

M

Mailbox 5
Master 5
Missing address 28
Modbus Addressing 20
Modbus Byte Order 10
Modbus Exception Codes 33
Modicon SA85 Network Card 4
Module ASCII Header 25

www. kepware.com

36

Modbus Plus Driver Help

Module Status 25
Module Timeout 25
MSTR 6

O

Optimizing Your Modbus Plus Communicaitons 17
Output 20
Output Coil 20

P

Packed Coils 21

S

Settings 9
Short 19
Slave 5
Slave Path (Unsolicited) 5
Solicited 5
Started MBPLUS.SYS device 33

T

Tag <tag name> could not be imported because data type <data type> is not supported 29
Tag import failed due to low memory resources 29
TIO Module Addressing 24

U

Unable to communicate with MBPLUS.VXD 31
Unable to open MBPLUS slave path 31
Unable to read from address '<address> ' on device '<device> '. Device responded with
exception code '<code> '

31

Unable to read from address '<array address> ' on device '<device> ', board responded with
exception code '<code> '

31

Unable to start MBPLUS.SYS device 32
Unable to write to '<address> ' on device '<device name> ' 33
Unable to write to address '<address> ' on device '<device> '. Device responded with excep-
tion code '<code> '

32

Unable to write to address '<array address> ' on device '<device> ', board responded with 32

www. kepware.com

37

Modbus Plus Driver Help

exception code '<code> '
Unsolicited 4
Use Modicon Bit Ordering 11

V

Variable Import Settings 12

W

Word 19

www. kepware.com

38

	Table of Contents
	Modbus Plus Driver Help
	Overview

	Device Setup
	Device ID (PLC Network Address)
	Block Sizes
	Settings
	Variable Import Settings

	Automatic Tag Database Generation
	Exporting Variables from Concept
	Exporting Variables from ProWORX

	Optimizing Your Modbus Plus Communications
	Data Types Description
	Address Descriptions
	Modbus Addressing
	Output Coils
	Input Coils
	Packed Coils
	Internal Registers
	Holding Registers
	Global Data

	TIO Module Addressing
	Data I/O
	Data Input - Latched
	Module Timeout
	Module Status
	Module ASCII Header

	Error Descriptions
	Address Validation Messages
	Address '<address> ' is out of range for the specified device or register
	Array size is out of range for address '<address> '
	Array support is not available for the specified address: '<address> '
	Data Type '<type> ' is not valid for device address '<address> '
	Device address '<address> ' contains a syntax error
	Device address '<address> ' is Read Only
	Missing address

	Automatic Tag Database Generation Messages
	Description truncated for import file record number <record>
	Error parsing import file record number <record> , field <field>
	File exception encountered during tag import
	Imported tag name '<tag name> ' is invalid. Name changed to '<tag name> '
	Tag '<tag name> ' could not be imported because data type '<data type> ' is n...
	Tag import failed due to low memory resources

	Device Specific Messages
	Address block error <address> -<address> responded with exception 132
	Bad address in block [<start address> to <end address>] on device '<device n...
	Bad array spanning ['<address>' to '<address>'] on device '<device name>'
	Block address [<start address> to <end address>] on device '<device name> ' ...
	Error opening MBPLUS path: <ID>
	Unable to communicate with MBPLUS.VXD
	Unable to open MBPLUS slave path
	Unable to read from address '<address> ' on device '<device> '. Device respon...
	Unable to read from address '<array address> ' on device '<device> ', board r...
	Unable to start MBPLUS.SYS device
	Unable to write to address '<address> ' on device '<device> ': Device respond...
	Unable to write to address '<array address> ' on device '<device> ', board re...

	Device Status Messages
	Device '<device name> ' is not responding
	Started MBPLUS.SYS device
	Unable to write to '<address> ' on device '<device name> '

	Modbus Exception Codes
	Hilscher CIF Exception Codes

	Index

