
U-CON
(User-Configurable)

Driver Help

© 2012 Kepware Technologies

U-CON (User-Configurable) Driver Help

Table of Contents
Table of Contents 2
U-CON (User-Configurable) Driver Help 7
Overview 7
DemoMode 8

Device Setup 9
Modem Setup 9
Unsolicited Message Wait Time 9

Driver Configuration 11
Defining a Server Channel - Step 1 11
Defining a Server Device - Step 2 12
Defining a Device Profile - Step 3 12
Testing and Debugging the Configuration - Step 4 14
Password Protection 14

Transaction Editor 16
Tags 19
Tag Groups 20
Tag Blocks 20
Function Blocks 21
Scratch Buffers 21
Global Buffers 22
Rolling Buffer 22
Initialize Buffers 22
Event Counters 23
Buffer Pointers 23
Transaction Validation 24
Transaction Commands 24
Add Comment Command 27
Cache Write Value Command 28
Clear Rolling Buffer Command 28
Clear RX Buffer Command 28
Clear TX Buffer Command 28
Close Port Command 28
Compare Buffer Command 29
Continue Command 30
Control Serial Line Command 30
Copy Buffer Command 31
Deactivate Tag Command 32
End Command 32
Go To Command 32

www. kepware.com

2

U-CON (User-Configurable) Driver Help

Handle Escape Characters Command 33
Insert Function Block 35
Invalidate Tag Command 35
Label Command 35
Log Event Command 36
Modify Byte Command 37
Move Buffer Pointer 38
Pause Command 39
Read Response Command 40
Seek Character Command 42
Seek String Command 43
Set Event Counter Command 44
Test Bit within Byte Command 45
Test Character Command 47
Test Check Sum Command 48
Test Device ID Command 49
Test Frame Length Command 50
Test String Command 51
Transmit Command 53
Transmit Byte Command 53
Update Tag Command 53
Write Character Command 55
Write Check Sum Command 55
Write Data Command 56
Write Device ID Command 57
Write Event Counter Command 58
Write String Command 59
Unsolicited Transactions 60
Updating the Server 62

Device Data Formats 63
Dynamic ASCII Formatting 67
Format Alternating Byte ASCII String 68
Format ASCII Integer 69
Format ASCII HEX Integer 70
Format ASCII Multi-Bit Integer 71
Format ASCII Real 72
Format ASCII String 73
Format ASCII Hex String 74
Format ASCII Hex String From Nibbles 75

www. kepware.com

3

U-CON (User-Configurable) Driver Help

Format ASCII Integer (Packed 6 Bit) 76
Format ASCII Real (Packed 6 Bit) 76
Format ASCII String (Packed 6 Bit) 77
Format Multi-Bit Integer 78
Format Unicode String 79
Format UnicodeLoHi String 80
Format Date / Time 81
Check Sum Descriptions 82
ASCII Character Table 85
ASCII Character Table (Packed 6 Bit) 86

Tips and Tricks 88
Bit Fields: Using the Modify Byte and Copy Buffer commands 88
Branching: Using the conditional, Go To, Label and End commands 88
Dealing with Echoes 89
Debugging: Using the Diagnostic Window and Quick Client 89
Delimited Lists 90
Moving the Buffer Pointer 94
Scanner Applications 95
Slowing Things Down: Using the Pause command 95
Transferring Data Between Transactions: Using Scratch Buffers 95
Data Types Description 95

Address Descriptions 97
Error Descriptions 98
Address Validation 99
Missing address 99
Device address '<address>' contains a syntax error 99
Address '<address>' is out of range for the specified device or register 99
Device address '<address>' is not supported by model '<model name>' 99
Data Type '<type>' is not valid for device address '<address>' 100
Device address '<address>' is Read Only 100
Array size is out of range for address '<address>' 100
Array support is not available for the specified address: '<address>' 100
Serial Communications 100
COMn does not exist 100
Error opening COMn 101
COMn is in use by another application 101
Unable to set comm parameters on COMn 101
Communications error on '<channel name>' [<error mask>] 101
Unable to create serial I/O thread 102
Device Status Messages 102

www. kepware.com

4

U-CON (User-Configurable) Driver Help

Device <device name>' is not responding 102
Unable to write to '<address>' on device '<device name>' 102
U-CON (User-Configurable) Driver Error Messages 102
RX buffer overflow. Stop characters not received 103
RX buffer overflow. Full variable length frame could not be received 103
Unable to locate Transaction Editor executable file 104
Copy Buffer command failed for address '<address.transaction>' - <source/destination> buffer
bounds 104
Failed to load the global file 104
Go To command failed for address '<address.transaction>' - label not found 104
Mod Byte command failed for address '<address.transaction>' - write buffer bounds 104
Test Character command failed for address '<address.transaction>' - source buffer bounds 105
Test Check Sum command failed for address '<address.transaction>' - read buffer bounds 105
Test Check Sum command failed for address '<address.transaction>' - data conversion 105
Test Device ID command failed for address '<address.transaction>' - read buffer bounds 105
Test Device ID command failed for address '<address.transaction>' - data conversion 106
Test String command failed for address '<address.transaction>' - source buffer bounds 106
Update Tag command failed for address '<address.transaction>' - <read/scratch/event counter> buffer
bounds 106
Write Character command failed for address '<address.transaction>' - destination buffer bounds 107
Write Check Sum command failed for address '<address.transaction>' - write buffer bounds 107
Write Check Sum command failed for address '<address.transaction>' - data conversion 107
Write Data command failed for address '<address.transaction>' - write buffer bounds 107
Write Data command failed for address '<address.transaction>' - data conversion 108
Write Device ID command failed for address '<address.transaction>' - write buffer bounds 108
Write Device ID command failed for address '<address.transaction>' - data conversion 108
Write String command failed for address '<address.transaction>' - destination buffer bounds 108
Tag update for address '<address>' failed due to data conversion error 109
Unsolicited message receive timeout 109
Unsolicited message dead time expired 109
Move Pointer command failed for address '<address.transaction>' 110
Seek Character command failed for address '<address.transaction>' - label not found 110
Insert Function Block command failed for address '<address.transaction>' - Invalid FB 110
Unable to save password protected device profile in XML format 110
XML Errors 110
XML Loading Error: The number of unsolicited transaction keys exceeds the set key length: <key
length> 111
XML Loading Error: The two buffers of a <command> are the same. The buffers must be unique 111
XML Loading Error: The string '<string>' entered for a Write String command with format '<format>' is
invalid 111

www. kepware.com

5

U-CON (User-Configurable) Driver Help

XML Loading Error: Range exceeds source buffer size of <max buffer size> bytes for a <command> 111
Index 113

www. kepware.com

6

U-CON (User-Configurable) Driver Help

U-CON (User-Configurable) Driver Help
Help version 1.099

CONTENTS

Overview
What is the U-CON (User-Configurable) Driver?

Device Setup
How do I configure a device for use with the U-CON (User-Configurable) Driver?

Driver Configuration
How do I configure the U-CON (User-Configurable) Driver for use with a particular device?

Transaction Editor
How do I use the U-CON (User-Configurable) Driver's Transaction Editor to create a profile for a particular
device?

Tips and Tricks
Where can I see some example solutions to common driver profile development problems?

Data Types Description
What data types does the U-CON (User-Configurable) Driver support?

Address Descriptions
How do I reference a data location in a device using the U-CON (User-Configurable) Driver?

Error Descriptions
What error messages are produced the U-CON (User-Configurable) Driver?

Overview
The U-CON (User-Configurable) Driver provides an easy and reliable way to connect U-CON (User-Configurable)
Ethernet and Serial Devices to OPC Client applications, including HMI, SCADA, Historian, MES, ERP and countless
custom applications. While other drivers are designed specifically for use with a single device type, or a small
family of closely related devices, the U-CON (User-Configurable) Driver can be programmed to work with a very
wide variety of serial and Ethernet devices. Driver profiles are created using the integrated Transaction Editor.
Transaction elements are selected from context aware menus, thus eliminating the need to learn scripting lan-
guages and greatly reducing the possibility of errors.

Features
The U-CON (User-Configurable) Driver is completely integrated with the server. Custom drivers can be devel-
oped, debugged, and run from the server itself. Such tight integration with the server ensures that all of the
important features users demand from other drivers are available to the custom driver projects. These features
include full OPC 1.0 and 2.0 compliance, DDE support, tag browsing, automatic tag database generation, diag-
nostics and Event Logging. The server may also be configured to run as a Windows NT/2000/XP service.

The server's Ethernet Encapsulation feature is supported and may be used in solicited or unsolicited mode. This
feature is used to communicate with serial devices connected to a terminal server such as the Digi One RealPort
or the Lantronix CoBox over an Ethernet network. It also is used to develop driver profiles for native Ethernet
devices.

Like any other serial driver for the server, custom driver projects will have modem support, communication port
configuration and standard error handling features with configurable retries and timeouts. Furthermore, the
server's built in diagnostics display is used to easily diagnose communications problems during driver profile
development.

The U-CON (User-Configurable) Driver is based upon the same technology found in every other driver available
for the server. With the U-CON (User-Configurable) Driver, users get all of the benefits of a true multi-threaded
32-bit environment without the need to learn the intricacies of Microsoft Windows development.

System Requirements
Operating System
Windows NT
Windows 2000 (recommended)
Windows XP (recommended)

www. kepware.com

7

U-CON (User-Configurable) Driver Help

Intel Pentium class Processor
200 MHz (minimum)
400 MHz or better recommended

Memory
32 MB (minimum)
64 MB or better recommended

Recommended (For Driver Development)
VGA monitor
Mouse

Protocol Requirements
Development of a driver profile requires access to the protocol documentation of the target device; thus, a basic
understanding of device communications is highly recommended.

Engineering services
Custom enhancements and driver configuration services are available. Contact Technical Support for details.

Demo Mode
An unlicensed copy of this driver may be used for evaluation purposes. If a profile is being edited while the demo
period expires, a chance will be given to save the changes made to the work. Any new tags or tag groups created
since the last time the server was updated will not be visible in the server at this point. Save the server project.
The next time the project is opened, the new tags and groups will appear.

www. kepware.com

8

U-CON (User-Configurable) Driver Help

Device Setup
Supported Devices
The U-CON (User-Configurable) Driver can be configured to work with a wide range of serial devices.

Supported Models
NumericID
StringID

Communication Protocol
Most protocols can be accommodated.

Supported Communication Parameters*
Baud Rate: 300, 600, 1200, 2400, 9600, 19200 or 38400
Parity: None, Even or Odd
Data Bits: 5, 6, 7 or 8
Stop Bits: 1 or 2

*Not all devices support the listed configurations.

Device IDs
The NumericID model supports Device IDs in the range of 0 to 65535. The StringID model supports Device IDs
consisting of any valid string.

Note: Not all devices will recognize the entire range.

Ethernet Encapsulation
This driver supports Ethernet Encapsulation, in both solicited and unsolicited modes. Ethernet Encapsulation
allows the driver to communicate with serial devices attached to an Ethernet network using a terminal server like
the Lantronix DR1. Ethernet Encapsulation mode is invoked by selecting it from the COM ID dialog in Channel Prop-
erties. For more information, refer to the OPC Server's help documentation.

Flow Control
When using an RS232/RS485 converter, the type of flow control that is required will depend upon the needs of
the converter. Some converters do not require any flow control and others will require RTS flow. Consult the con-
verter's documentation in order determine its flow requirements. We recommend using an RS485 converted that
provides automatic flow control.

Note:When using the manufacturer's supplied communications cable, it is sometimes necessary to choose a
flow control setting of RTS or RTS Always under the Channel Properties.

Inter-Request Delay
This option is used to limit how often requests are sent to a device. It will override the normal polling frequency of
tags associated with the device, as well as one-shot reads and writes. Delays will not be used if the channel is in
unsolicited mode. This delay can be useful when dealing with devices with slow turnaround times and in cases
where network load is a concern. Be aware that configuring a delay for a device will affect communications with
all other devices on the channel. Because of this, it is recommended that any device that requires an inter-
request delay be segregated to a separate channel if possible. Users may set the inter-request delay from 0 to
300000 ms (5 minutes). The default setting of 0 disables this feature. See Also: Defining a Server Channel.

Cable Connections
Cable connections depend on the specific device being used.

Modem Setup
This driver supports modem functionality. For more information, please refer to the topic "Modem Support" in the
OPC Server Help documentation.

Unsolicited Message Wait Time
TheWait Time parameter is used to specify the time (in milliseconds) that the device should wait for unsolicited
messages before the _UnsolicitedPcktRcvdOnTime system tag is set to 1. The _UnsolicitedPcktRcvdOnTime tag,
which is displayed by the client application, indicates whether or not an unsolicited message has been received
for a given device within the amount of time that was specified in the Wait Time field.

www. kepware.com

9

U-CON (User-Configurable) Driver Help

In the client application, check the _UnsolicitedPcktRcvdOnTime tag's Value field:

l If the Value field displays 0 (zero), the message was received within the Wait Time amount.
l If the Value field displays 1, the message was not received within the Wait Time amount.
l For solicited communications, the _UnsolicitedPcktRcvdOnTime tag will always display 1 and can be
ignored.

www. kepware.com

10

U-CON (User-Configurable) Driver Help

Driver Configuration
There are four steps required to configure the U-CON (User-Configurable) Driver Driver. Users must define a
server channel, define a server device, define a device profile and then test and debug the configuration.
Although the first two steps are relatively simple, the final two steps will most likely require a significant amount
of effort and attention.

See Also:
Defining a Server Channel
Defining a Server Device
Defining a Device Profile
Test and Debug the Configuration

Defining a Server Channel - Step 1
The first step in creating any server project is to define a channel in the server. Many devices can be connected
to a single channel as long as they can all use the same protocol and Driver. In this case, run the server's Chan-
nel Creation Wizard and choose U-CON (User-Configurable) Driver from the list of installed drivers. Next,
specify the various communication parameters (such a baud rate, parity, number of data bits and so forth) that
are required by the device(s) to be specified. In the final dialog, the U-CON (User-Configurable) Driver's mode is
specified. The dialog should appear as shown below.

The U-CON (User-Configurable) Driver can operate in twomodes: normal and unsolicited. By default, the
driver will set itself up in normal mode. In normal mode, the driver will request data from each device periodically
(up to 100 or more times per second per tag). The driver ignores all data that is not in response to a request. In
unsolicited mode, the driver does not request data from the device. Instead, it waits for data to come in from the
device. The device determines which mode will be chosen. Some devices are designed to work in unsolicited
mode such as scanners and scales, while others only supply data when it is requested such as most controllers
and PLCs. Once the driver's channel mode is set, it cannot be changed: any driver configuration beyond this
point will likely be incompatible with the new mode of operation.

Note 1: It is necessary to segregate all devices that issue unsolicited data to one or more channels that are spe-
cific for unsolicited communication.

Note 2: If using Ethernet encapsulation, be sure to configure its mode of operation to match this setting. For
more information on Ethernet encapsulation, refer to the Server's help documentation.

www. kepware.com

11

U-CON (User-Configurable) Driver Help

If selecting unsolicited mode, three additional parameters must also be set: Receive timeout, Dead time and
Key length. Before setting these parameters, it should be noted how the driver handles unsolicited data. Upon
receipt of an unsolicited message, the driver must determine what user defined transaction should be used to
interpret the message. To make this possible, the user must associate each transaction definition with some prop-
erty unique to messages of a given type. For example, a device could report changes in input 1 as IN01xxxx
where xxxx is a 4-byte value, and changes in input 2 as IN02xxxx. In this case, IN01 would tell the driver to use
one transaction that updates an Input_1 tag, and IN02 would tell it to use another transaction that updates an
Input_2 tag. The driver can lookup the appropriate transaction using the first four bytes of any message from
this particular device as keys. If the protocol does not lend itself to the use of such keys, it is still possible to use
this driver by specifying a zero key length.

l The Receive Timeout is the amount of time that the driver should wait to receive the full, unsolicited
message. If a full message has not been received by this time (either due to a hardware problem or an
incorrectly defined Read Response command) the driver will assume that the next received character is
the start of another message.

l TheDead Time is necessary so that the driver may re-synchronize itself with the device(s) after receiv-
ing a message with an unknown key. If a message is unrecognizable, the driver will not know where that
message ends and the next one begins. The way the driver handles this situation is to let the entire unrec-
ognized message come in and will then wait for some period of time. This dead time must be such that it
is safe to assume that the next byte received is the beginning of another message. Reasonable values
depend upon the target device and should be as small as possible, but longer than the typical time
between bytes in a message. The time, in milliseconds, between bytes in a message is approximately
8000/baud rate. Since the dead time period is started each time a byte is received, make sure not to
define too large a value: the driver would see individual messages as a single unrecognizable stream.

l The Transaction key length tells the driver how many characters to use as transaction keys. These
characters must be the first characters in a message. In the example above, this value would be 4. The
protocol(s) used on a given channel must be such that keys of the same length can uniquely identify all
possible messages. The key length may be between 0 and 32 characters.

In cases where the protocol does not permit the use of such keys, the driver can still be used. A scanner
that sends packets starting with the raw data values would be an example. In these cases, the transaction
key length must be set to zero. This will force the driver to use the first unsolicited transaction defined on
the channel to interpret all incoming packets. Because of this, there should be only one device on the chan-
nel. Furthermore, that device should have a single block tag or a single non-block tag defined. That tag or
tag block may be placed in a group.

Note: For more information about unsolicited transactions and transaction keys, refer toUnsolicited
Transactions.

l The Log unsolicited message timeouts setting can be useful for diagnosing communications prob-
lems. When checked, a message is placed in the Event Log each time the Receive timeout period expires
while receiving an unsolicited message. Such events may be caused by data delays due to network traffic
or gateway devices, incorrectly configured transactions, or Pause commands in the transactions.

Important: It is generally necessary to place devices that use different protocols on separate channels. It is pos-
sible to mix protocols on an unsolicited channel, as long as the transaction keys can be the same length and are
unique. Remember also that the channel mode cannot be changed after the channel has been defined. This pre-
caution is necessary since any transactions that have previously been defined would likely be incompatible with
the new mode. Make sure that the channel mode being selected is the correct one. Finally, users must not mix
devices that send unsolicited data with those that do not on the same channel.

Defining a Server Device - Step 2
Next, a device must be defined. For more information, refer to the server documentation. When asked to set the
Device ID, the number will only have meaning if the transactions useWrite Device ID or Test Device ID com-
mands.

Defining a Device Profile - Step 3
The U-CON (User-Configurable) Driver requires the user to define a device profile for each target device. A device
profile includes a definition of each tag that the driver will serve as well as the sequence of commands necessary
to carry out Read and Write requests for each tag. This work is done using the Transaction Editor, which is the
graphical user interface of the U-CON (User-Configurable) Driver.

To invoke the Transaction Editor , double-click on the device and then select the Transaction Editor tab. Next,
click Launch Transaction Editor.

www. kepware.com

12

U-CON (User-Configurable) Driver Help

Note 1: The Transaction Editor can not be started if the device is in use. Before accessing, disconnect all client
applications.

Note 2: The device profile may be password protected. For more information, refer to Password Protection.

Note 3: The Transaction Editor can be used to construct groups of tags and transaction command sequences.
Its user-defined profile is shown below.

For detailed information on how to define a driver profile, refer to Transaction Editor.

Once a device profile has been created, the tag and transaction definitions can be sent to the server by clicking
Update Server on the toolbar or main menu. If the Transaction Editor is closed, users will be given the chance to
update the server. The tags and groups previously defined with the Transaction Editor will automatically be gen-
erated in the server. Remember, the changes have not been saved to file at this point: save the server project
every time one of the device profiles is edited. Device profiles are an extension of the standard server project and
are saved as part of the server project file (.opf).

www. kepware.com

13

U-CON (User-Configurable) Driver Help

At this point, the driver project may be used. Once a driver profile has been created and loaded, the U-CON
(User-Configurable) Driver should work just like any other driver plug-in for the server. Changes are made to the
profile at any time by disconnecting the device from all client applications and then invoking the Transaction
Editor. Remember to save the project in between edit sessions.

Testing and Debugging the Configuration - Step 4
Once a device profile has been created using the Transaction Editor, it should be tested. To do so, first connect
the device(s) and client application and make sure that the data can be read and written correctly. If there are
any problems, refer to the servers built in Diagnostics Window, which can be a very useful tool in debugging
the profile. For more information on debugging, refer to Tips and Tricks.

Caution: Although the U-CON (User-Configurable) Driver's run-time processor makes every reasonable effort to
trap error conditions, it is still possible for certain poorly defined configurations to cause a driver failure. For this
reason, development work should be completed on an isolated system (if possible) and the project should be
tested thoroughly before going live. It is important to save work frequently.

Password Protection
Device profiles have the option of being password protected. Password protection prevents unauthorized users
from launching the transaction editor and examining or modifying the profile. Each device profile can have its
own password.

Note: This feature is not the same as the OPC Server's User Manager tool.

To enable password protection for a device, select the Transaction Editor tab in Device Properties.

Add Password
If the device does not currently have a password associated with it, the Add Password button will be enabled.
Click this button to invoke the Add Password dialog. The server project must be saved after a password has been
added.

www. kepware.com

14

U-CON (User-Configurable) Driver Help

Note: The new password must be entered twice. Passwords are not case-sensitive and may be up to 15 char-
acters long.

Log In
Click this button in order to enter the password.

Log Out
Click this button in order to log out.

Change Password
Click this button in order to change or remove a password.

Users will be required to enter the current password and the new password twice. To disable password pro-
tection, simply leaveNew password and Confirm new blank. Passwords are not case-sensitive and may be up
to 15 characters long. Users must save the server project after a password is changed.

Launch Transaction Editor
Click this button to launch the Transaction Editor. This button will be disabled if password protection for the
device has been enabled and a user has not successfully logged in.

www. kepware.com

15

U-CON (User-Configurable) Driver Help

Transaction Editor
A transaction is a list of simple actions needed to Read data from or Write data to a device. Transactions come in
three varieties: Read,Write, and unsolicited.

l Read transactions normally consist of a series of Write commands that build up a Read request string, a
Transmit command that triggers the transmission of the request to the device, a Read Response com-
mand which waits for the expected response from the device, and an Update Tag command which
parses and reformats the desired data from the response and updates the tag's value. A Read response
may also employ other commands, including conditionals as the application dictates.

l Write transactions normally consist of a series of Write commands that build up a Write request string,
a Transmit command, and possibly a Read response and Update Tag command. One of the Write com-
mands will almost always be aWrite Data command that takes the desired Write value from the client
application and reformats it as required by the device.

l Unsolicited transactions are related to Read transactions, except that the first executable command
must be a Read Response command. Each unsolicited transaction must also have a Transaction Key
defined which will help the driver recognize what transaction should process a given message. When the
driver is in unsolicited mode, it can only have Write and unsolicited transactions. In normal mode, it can
only have Read and Write transactions. For more information on unsolicited transactions, refer toUnsolic-
ited Transactions.

Transaction Editor
Normally, a driver is developed for a specific device type or family of closely related devices. The various trans-
action steps are programmed directly into the driver which allows users to simply select a driver and go. The U-
CON (User-Configurable) Driver fills the need for a non-specific driver that can be used to communicate with a
large number of devices for which targeted drivers have not yet been developed. It is up to the user to define the
transactions necessary to communicate with the device. This work is done using the integrated Transaction
Editor application.

The Transaction Editor is the integrated development environment of the U-CON (User-Configurable) Driver. It
provides an easy and intuitive means for configuring the driver. Tags, groupings of tags, and transactions are
constructed using contextual pop-up menus. This graphical user interface approach eliminates the need to learn
a driver programming or scripting language, and provides a degree of error prevention. All that is needed is an
understanding of the particular device protocol in question.

In the OPC server main window, right-click on the desired device and then select Properties. Select the Trans-
action Editor tab, then click Launch Transaction Editor. The dialog should appear as shown below.

www. kepware.com

16

U-CON (User-Configurable) Driver Help

In the Transaction Editor main window, aDevice Profile can be both created and modified. A Device Profile
refers to tags' groupings and transactions and may be password protected. For more information, refer to Pass-
word Protection.

As shown in the image below, the left pane shows the Item View and the right pane shows the Transaction
View.

l The Item View displays the hierarchy of OPC items attached to a particular device. The fundamental item
type is the tag. Associated with each tag are one or more transactions (represented by "to" and "from"
arrow icons). These transactions can be for solicited Reads, Solicited Writes or Unsolicited Reads, and are
created automatically whenever a tag is defined. Tags may be attached to the device, placed in tag groups
(represented by plain folder icons) or in tag blocks (represented by folders with tags). A tag block is a
special kind of group where all the contained tags are updated at once with a single Read or unsolicited
transaction common to the block. Block Reads are much more efficient than the functionally equivalent
series of individual Reads and should be used whenever possible.

l When a transaction is selected in the item view, the Transaction View displays the currently defined
sequence of commands that are to take place. When something other than a transaction is selected in the
item view, the Transaction View is blank.

l The Edit Option at the top of the screen includes options for adding items, as well as options to cut,
paste, delete or show the selected item's properties. The menu options commonly used are also rep-
resented on the toolbar for quick access.

Adding and Modifying Transactions in the Transaction View
Right-click in the Transaction View to invoke a submenu that provides access to all the available transaction
commands. The dialog should appear as shown below.

www. kepware.com

17

U-CON (User-Configurable) Driver Help

For users without a mouse, individual commands can be selected from the Edit submenus with "alt-character"
combinations.

Updating the OPC Server with the Device Profile
Once all of the groups, tags and transactions have been defined, the device profile must be sent to the server.
This is initiated by clicking on the Update Server icon or by selecting File| Update Server from the main
menu. The Transaction Editor also provides a chance upon its closing.

After the device profile has been transferred, the Transaction Editor will shut itself down and the driver will auto-
matically initiate the OPC server's auto tag database generation function. All of the tags that have been defined
will instantly appear in the OPC server project.

Note: At this point, the changes have not been saved to file. Click File| Save to save. Remember to save the OPC
server project after each edit session.

Further Information
Click on any of the following links to learn more about the main help pages for the Transaction Editor.

Tags
Tag Groups
Tag Blocks
Function Blocks
Scratch Buffers
Global Buffers
Rolling Buffers
Initialize Buffers
Event Counters
Buffer Pointers
Transaction Validation
Transaction Commands
Unsolicited Transactions
Updating the Server
Device Data Formats

www. kepware.com

18

U-CON (User-Configurable) Driver Help

Check Sum Descriptions
ASCII Character Table

Tags
A tag item can be added to the device, a tag group or a tag block. A tag can be added using the main menu, an
item's pop-up menu or the toolbar. To edit an existing tag, users can either double-click on it or select it and then
access Properties from the main menu. Alternatively, users can utilize the tag's pop-up menu or the toolbar. The
dialog should appear as shown below.

l TheNamemust be set first. If the tag is new, the driver will offer a valid default name that can be
changed to any valid name. Valid namesmust start with a letter, consist of only letters, digits and under-
scores, be less than 32 characters long and be unique to the parent device, group or tag block.

l TheDescription is an optional string that will be displayed along with the tag in the server. It serves no
function other than to provide the user additional information about the tag.

l TheData Type is the representation of the data when it is exchanged between the server and client appli-
cations. The U-CON (User-Configurable) Driver allows any one of the basic data types to be chosen,
although the one that best suits the expected range of data values should be chosen.

l The Format Property determines the representation of the data as it is exchanged between the server
and device. Some formats, such as ASCII Integer, ASCII Real and ASCII String, require additional prop-
erties to be set. When this is the case, the Format Properties button will be enabled. The format deter-
mines how many data bytes will be transferred between the server and device and is shown for reference
below the Format Properties button.

Note:Whenever the format selection is changed, the user defined Format Properties, if any, will be reset
to default values appropriate for the format. Always check these settings when available. For more infor-
mation on formats, refer toDevice Data Formats.

By default, a tag is set with Read/Write access, although it can be changed to Read Only by using the drop list
box at the bottom of the dialog. The tag will be created with all necessary transactions. Users must, however,
define the sequence of commands necessary to carry out each transaction. The access permission can be at any
time during an edit session; however, when changing from Read/Write to Read Only, all commands defined for
the write transaction will be permanently lost.

Note: Users can create a Write Only tag by selecting Read/Write access and leaving the read transaction empty.
In unsolicited mode, tags are created with an unsolicited transaction instead of a Read. For more information,
refer toUnsolicited Transactions.

www. kepware.com

19

U-CON (User-Configurable) Driver Help

Like the server and many OPC Clients, the tag dialog can be used to browse the tags currently defined at the
selected grouping level, duplicate tags and delete tags. This is especially useful when creating many similar tags.
These functions can be accessed through the five buttons below the help button.

Note 1: The tag's properties can be changed at any time during an editing session.

Note 2: Event counter values are stored in 32 bit buffers. All tags updated from event counters must be con-
figured with 32 bit, 16 bit, or 8 bit Intel (Lo Hi) device data format. For more information, refer to Event
Counters.

Tag Groups
Tag groups are provided in order to organize tags. A tag group item can be added onto the device or onto another
group through the main menu, item pop-up menu or the toolbar. An existing group can be edited by selecting
and then clicking Properties from the main menu, the group's pop-up menu or with the toolbar.

The only user-defined property that a tag group has is its name. Although a valid default name is generated when
first creating a new group, it can be changed to any valid name. Valid names must start with a letter, consist of
only letters, digits and underscores, be less than 32 characters long and be unique to the parent item. A tag
group namemay not be the same as a tag block at the same level since the server treats blocks as groups. The
group's name can be changed at any time during the editing session. Groups may be nested up to three levels
deep.

Tag Blocks
Tag blocks are a special type of group used by the Transaction Editor to contain all tags that can be updated by
a common read or unsolicited transaction. The transaction common to all tags in the block is attached to the block
item in the editor's item view. This common transaction should contain an Update Tag command for each tag in
the group. Block tags with Read and Write client access permission will each have their own Write transaction. A
tag on group folder icon in the Transaction Editor represents tag blocks only. The server represents tag blocks
with the normal group folder icon.

A tag block item can be added to the device or a tag group. Tag blocks may be added using the main menu, the
selected item's pop-up menu, or the toolbar. Existing blocks can be edited by selecting it then clicking Prop-
erties from the main menu, the pop-up menu or the toolbar.

The only user-defined property that a tag block has is its name. Although a valid default name is generated when
first creating a new block, it can be changed to any valid name. Valid names must start with a letter, consist of
only letters, digits and underscores, be less than 32 characters long and be unique to the parent item. A tag
block namemay not be the same as a tag group at the same level since the server treats blocks as groups. The
block's name can be changed at any time during an editing session. Groups and blocks may be nested up to three
levels deep.

www. kepware.com

20

U-CON (User-Configurable) Driver Help

Function Blocks
Function blocks can be used to define a series of commands that can be shared by any number of transactions,
thus making projects more compact and easier to maintain. Function blocks reside in the U-CON global data
store, and may be referenced by any device on any U-CON channel. To create a Function Block, follow the instruc-
tions below.

1. Invoke the Transaction Editor for any device on a U-CON channel. Select the _Global item.

2. Next, select New Function Block from the Edit menu or toolbar.

Note: The Function Block dialog should appear as shown below.

Descriptions of the parameters are as follows.

l Name: Valid names must start with a letter, consist of only letters, digits and underscores, be less than
32 characters long and be unique.

l Description: An optional description of the function block can be entered here.

3. ClickOK to create the new function block. A new function block item will appear under the _Global node (item
view, left pane). "FBTransaction item" will be displayed under the new function block. Select the transaction item
and enter the function block command in the Transaction View as would be done for any other transaction type.
For more information, refer to Insert Function Block Command.

Note 1: Update Tag and Insert Function Block commands cannot be used in a function block. Update Tag
commands can only be used in Read, Write and Unsolicited transactions that are explicitly associated to a par-
ticular tag or block of tags. Function blocks can not be used within function blocks.

Note 2: Be cautious when including Go To and Label commands in function blocks, as infinite loops can be
created. When a Go To command is executed, the driver will scan all commands in the current Read, Write, or
Unsolicited transaction from top to bottom looking for a matching Label. Commands in function blocks referenced
in the transaction will be scanned in the order in which they appear.

Scratch Buffers
Each device has 256 scratch buffers associated with it. These buffers can be used to exchange information
between transactions defined for that device. Data cannot be copied to a scratch buffer associated with a dif-
ferent device. Data stored in a scratch buffer will exist as long as the OPC server project is running or until the
scratch buffer is overwritten in a transaction. See Also: Global Buffers.

When updating a tag from a scratch buffer, be aware that the value used will be the last value stored in the
buffer. Depending on how the transaction is defined, this data may not necessarily represent the current state of
a device. If no data has been stored in the scratch buffer at the time the Update Tag command is executed, the
tag will be given a value of zero. See Also: Update Tag Command.

www. kepware.com

21

U-CON (User-Configurable) Driver Help

No special measures are taken when a Copy Buffer Command is executed when the buffer in question has not
yet been initialized. If there is no data in the buffer, no bytes will be copied.

Note 1: For more information (and examples of how to use scratch buffers) refer to Tips and Tricks.

Note 2: For instructions on how to initialize a scratch buffer, refer to Initialize Buffers.

Global Buffers
Global buffers can be used to exchange information among devices. There are 256 global buffers. Each global
buffer is associated with all devices under every channel. This is different from a scratch buffer, which is asso-
ciated with only one device.

Important: Global buffers should be used with caution because they are associated with all devices for all chan-
nels. To exchange device-specific information (e.g., to make device-specific changes), use scratch buffers.

Note: For instructions on initializing a global buffer, refer to Initialize Buffers.

Rolling Buffer
Rolling buffers are similar to scratch buffers but differ in that writes append data rather than replace it. Rolling
buffers can be used to exchange information between transactions defined for that device. Data cannot be copied
to a rolling buffer associated with a different device. Data stored in a rolling buffer will exist as long as the OPC
server project is running or until the rolling buffer is overwritten in a transaction. Each device has an associated
Rolling Buffer.

When updating a tag from a rolling buffer, be aware that the value used will be the last value stored in the buffer.
Depending on how the transaction is defined, this data may not necessarily represent the current state of a
device. If no data has been stored in the rolling buffer at the time the Update Tag command is executed, the tag
will be given a value of zero. See Also: Update Tag Command.

Initialize Buffers
A preset value for any scratch buffer and/or global buffer can be defined. The buffers will be loaded with
these preset values on driver startup. To define buffer presets, follow the instructions below.

1. Click Edit | Initialize Scratch and Global Buffers or click on the toolbar icon as shown below.

2. The buffer initialization dialog should appear as shown below.

www. kepware.com

22

U-CON (User-Configurable) Driver Help

Descriptions of the parameters are as follows.

l Buffer: This parameter is used to specify the buffer for which a preset will be defined.
l Display mode: This parameter is used to specify how the preset data to be displayed in the edit box at
the bottom of the dialog. In Hex mode, the hexadecimal value of each byte is displayed. When editing,
each byte value must be entered as 2 hex digits (1-9, A-F) with a space separating each byte. If wishing
to preset a buffer with an ASCII string, users will find it easier to work in ASCII mode where each data
byte is displayed as the equivalent ASCII character. Users will not be able to view or edit preset data that
contains non-printable characters in ASCII mode.

l ASCII characters: This scrolling list includes all data byte values in decimal (0-255) and hexadecimal
(00 – FF), as well as the ASCII character mapped to each value. Users may utilize this as a reference.
Items may be double-clicked in order to insert the byte into the preset data field at the bottom of the
dialog.

l Selected buffer will contain this data on startup: This parameter displays the preset value for the
selected buffer. It can be edited.

l Save: Clicking this button will save the preset value for the selected buffer without closing the dialog.
l OK: Clicking this button will save the preset value for the selected buffer and close the dialog.

Event Counters
Each transaction configured in the project automatically keeps track of how many times it is executed. These
numbers are stored in special 32 bit buffers called Event Counters. All counter values are initialized to zero when
a UCON project is first loaded. Counter values can reach 4294967295, at which point they wrap around back to
0. Tags from event counters can also be updated. Transaction Event Counters can be especially useful in
scanner applications. For more information on their usage, refer to Scanner Applications.

Note: Event counter values are stored in 32 bit buffers. All tags updated from event counters must be configured
with 32 bit, 16 bit, or 8 bit Intel (Lo Hi) device data format.

See Also: Set Event Counter Command and Update Tag command.

Buffer Pointers
The read buffer,write buffer, scratch buffer and global buffer each have an individual associated buffer
pointer. The pointer is used to store the index or position of a byte in the associated buffer. Pointers can be
moved to different bytes by using the Seek Character and Move Buffer Pointer commands. The Update Tag
command has an option where data for a tag can be parsed starting at the current buffer pointer position. Buffer
pointers are necessary when processing delimited lists. For an example, refer to Tips and Tricks: Delimited
Lists.

For convenience, the read and write buffers are automatically reset to the first byte position at the start of each
transaction. Since a major use of scratch and global buffers is to exchange data between transactions, scratch
buffer pointers and global buffer pointers are not reset. Because of this, use care with relative moves of scratch
and global buffer pointers.

www. kepware.com

23

U-CON (User-Configurable) Driver Help

Transaction Validation
The Transaction Editor performs a cursory inspection of the transaction after each edit is applied. Obvious errors
are flagged with a yellow warning icon.

If Verbose Transaction Validation mode (located under the Transaction Editor's Tools option) is selected, a
message box with a brief explanation of the problem will be shown. For the example above, the message would
look a shown below.

It should be emphasized that the Transaction Editor will only look for the most obvious problems. The absence of
warnings is not a guarantee that the transaction definition will work. For more information on diagnosing prob-
lems, refer to Tips and Tricks: Debugging.

Transaction Commands
Each transaction must be defined so that the driver knows how to exchange data with a device. This is accom-
plished by constructing a list of commands that the driver should execute during a transaction. There are com-
mands to construct request strings to be sent to the device, receive and store devices responses, validate
responses, parse data from responses, convert data formats and update tag values (among others).

To define a transaction, first select the desired transaction in the Transaction Editor's item view. Any currently
defined steps will be shown in the Transaction View. To add a command, right-click on the Transaction View.
This will invoke a pop-up menu, as shown in the following screen sample.

www. kepware.com

24

U-CON (User-Configurable) Driver Help

If the mouse pointer is on a blank portion of the Transaction View when right-clicking, the new command will be
added to the end of the list. If right-clicking on an existing command step, a new command will be inserted at
that step. Alternatively, users can also use Edit to add commands.

Most commands have properties that must be specified. If this is the case, a command dialog will be presented
before the new command is inserted into the transaction step list. To edit existing commands, users can double-
click on them or select them and then click Properties. If users need to define other transactions that require
similar command sequences, simply select and copy the commands of one transaction and paste them into the
other.

For detailed information on a specific command, refer to the following links and information.

Write Commands
Write Device ID Command
Gets the Device ID set on the server's device property page, reformats it if needed, and places the result on the
Write buffer.

Write Event Counter Command
Appends the value of the event counter to the Write buffer, which makes it possible to use of the event count
value as a transaction ID in serial communication packets.

Write Character Command
Places a specified character on the Write buffer.

Write String Command
Places the specified string of characters on the Write buffer.

Write Data Command
Gets the Write value sent down from the client, reformats it if needed, and places the result on the Write buffer.

Write Check Sum Command
Computes the check sum, reformats it if needed, and places the result on the Write buffer.

Close Port Command
Closes the COM port associated with the current transaction.

Copy Buffer Command
Copies a portion of the Read buffer to the Write buffer.

Modify Byte Command
Sets one or more bits in a byte that was previously placed on the buffer, using the Write value sent down from the
client. This is used to modify a byte in the Read, Write or scratch buffer.

www. kepware.com

25

U-CON (User-Configurable) Driver Help

Pause Command
Delays the execution of next command.

Control Serial Line
Controls the RTS and DTR lines to assert/de-assert the line manually.

Transmit Command
Sends the contents of the Write buffer to devices attached to channel.

Cache Write Value Command
Caches the value written in the client.

Read Commands
Read Response
Stores incoming data in Read buffer.

Update Tag Command
Parses data from Read buffer, reformats it if needed and updates the tag value accordingly.

Conditional Commands
Continue Command
The Continue command is one of several conditional actions available under the five test commands (Test String,
Test Character, Test Device ID, Test Bit Within Byte, Test Check Sum, Test Frame Length). Continue tells the
driver to do nothing as a result of the test, and proceed to the next command in the transaction. The Continue
command has no user defined properties.

Test Device ID Command
Gets the Device ID set on the server's device property page, reformats it if needed and compares it with the
Device ID in Read buffer. Executes different commands depending on the result.

Test Character Command
Compares a character in the Read or Write buffer with a specified character. Executes different commands
depending on the result.

Test Bit within Byte Command
Compares a bit within a specified byte from the Read or Write buffer and compare it with a set value. Various
actions can be taken depending on the result of the comparison.

Test Check Sum Command
Computes the check sum on portion of Read buffer, reformats it if needed, and compares it with the check sum in
Read buffer. Executes different commands depending on the result.

Test String Command
Instructs the driver to parse a string from a buffer and compare it with a test value.

Test Frame Length Command
Instructs the driver to compare the length of the received frame with a test value.

Compare Buffer Command
Instructs the driver to compare two buffers. Executes different commands depending on the result.

Processing Commands
Clear Rolling Buffer Command
Sets all bytes in the rolling buffer to 0x00 and the length of the received frame to 0.

Clear RX Buffer Command
Sets all bytes in the Read buffer to 0x00 and the length of the received frame to 0.

Clear TX Buffer Command
Sets all bytes in the transmit butter to 0x00 and the current length of the Write frame to 0.

Set Event Counter Command
Sets the event counter of the current transaction to any valid number specified.

Deactivate Tag Command
Deactivates the tag. The transaction will not be executed again.

www. kepware.com

26

U-CON (User-Configurable) Driver Help

End Command
Terminates the transaction.

Go To Command
Processes the commands following the specified label command.

Invalidate Tag Command
Sets the tag's data as invalid. Client will report "bad quality" for tag data.

Label Command
Marks a transaction step for Go To commands.

Add Comment Command
Inserts a comment or a blank line in the Transaction Editor.

Log Event Command
Writes a message in the server's Event Log.

Seek Character Command
Instructs the driver to search for a given character in a specified buffer.

Move Buffer Pointer Command
Instructs the driver to change the current position of one of the buffer pointers. Pointers can be moved forward
or backward.

Handle Escape Characters Command
Defines special handling of specific escape characters; for example, to add duplicate escape characters to Writes
and to remove duplicates from Reads.

Serial Line Control Commands
Control Serial Line Command
Controls the RTS and DTR lines to assert/de-assert the line manually.

Edit Menu Commands
Insert Function Block Command
Inserts a previously defined function block into a Read, Write or Unsolicited transaction.

Add Comment Command
The Add Comment command can be used to insert a comment or a blank line in the Transaction View. For
example, the screen shown below shows a blank line inserted above Step 3.

To add a Add Comment command, right-click on the desired step in the Transaction View and then select
Processing Commands | Add Comment from the pop-up menu. Alternatively, select Edit | Add Comment
from the main menu. The comment (or blank line) will be inserted above the current step in the Transaction View.
Comment lines have a maximum of 64 characters.

www. kepware.com

27

U-CON (User-Configurable) Driver Help

Note: In order to insert a blank line in the Transaction View, leave the Add Comments dialog field blank and
simply clickOK.

Cache Write Value Command
The Cache Write Value command tells the driver to cache the value entered in a Write Data command. It has no
user defined properties.

To add a Cache Write Value command, right-click on the desired step in the Transaction View and then select
Write Commands | Cache Write Value. Alternatively, click Edit | New Write Command. Then, select Cache
Write Value from the main menu.

Caution: This command should be used for devices that are Write Only.

Clear Rolling Buffer Command
The Clear Rolling Buffer command tells the driver to set all bytes in the rolling buffer to 0x00 and the length of
the received frame to 0. The command has no user-defined properties.

To add a Clear Rolling Buffer command, right-click on the desired step in the Transaction View and then select
Processing Commands | Clear Rolling Buffer from the resulting pop-up menu. Alternatively, click Edit |
New Processing Command | Clear Rolling Buffer from the main menu.

Caution: It is the user's responsibility to call the Clear Rolling Buffer Command. Failure to do so could result in
buffer overflows.

Clear RX Buffer Command
The Clear RX Buffer command tells the driver to set all bytes in the read buffer to 0x00 and the length of the
received frame to 0. The command has no user-defined properties.

To add a Clear RX Buffer command, right-click on the desired step in the Transaction View and then select
Processing Commands | Clear RX Buffer from the resulting pop-up menu. Alternatively, click Edit | New
Processing Command and then select Clear RX Buffer from the main menu.

Note 1: The Clear RX Buffer command does not clear the COM buffer. It only clears the data that has been read
by a Read Response Command.

Note 2: The RX buffer is automatically cleared before each Read Response command is processed.

Clear TX Buffer Command
The Clear TX Buffer command tells the driver to set all bytes in the transmit buffer to 0x00 and the current
length of the write frame to 0. The command has no user-defined properties.

To add a Clear TX Buffer command, right-click on the desired step the Transaction View and then select Proc-
essing Commands | Clear TX Buffer from the resulting pop-up menu. Alternatively, click Edit | New Proc-
essing Command and then select Clear TX Buffer from the main menu.

Note: The TX buffer is automatically cleared at the beginning of each transaction and after each Transmit and
Read Response command.

Close Port Command
The Close Port command tells the driver to close the COM port associated with the current transaction. The port
will be reopened automatically the next time something is written out that port. The Close Port command has no
user defined properties.

www. kepware.com

28

U-CON (User-Configurable) Driver Help

To add a Close Port command, right-click on the desired step in the Transaction View and then selectWrite
Commands | Close Port from the resulting pop-up menu. Alternatively, click Edit | New Write Command and
then select Close Port from the main menu.

Compare Buffer Command
The Compare Buffer command tells the driver to compare specified sections of bytes in two buffers. Various
actions can be taken depending on the result of that comparison.

To add a Compare Buffer command, right-click on the desired step in the Transaction View and then select Con-
ditional Commands | Compare Buffer. Alternatively, click Edit | New Conditional Command and then
select Compare Buffer from the main menu. The dialog should appear as shown below.

Descriptions of the parameters are as follows:

l The Read buffer,Write buffer, Scratch buffer or Global buffer may be compared. When selecting the
Scratch or Global buffer options, users must also specify the buffer indexes, data source buffers and also

www. kepware.com

29

U-CON (User-Configurable) Driver Help

the Start byte within each buffer. The Start byte is the 1-based index of the first character to be parsed
from the buffer. When Use Current Buffer Position is checked, the current position for the specified
buffer will be used in the test.

l Number of bytes to compare: This control is used to specify the total number of bytes to compare from
each buffer.

l True Action: This parameter is used to specify the action that will occur if the parse bytes from Buffer A
equal the parsed bytes from Buffer B.

l False Action: This parameter specifies the action that will occur if the bytes do not agree.
l Action properties: If the specified action requires that additional properties be defined, this button will
become activated.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very useful when reviewing the
transaction definition later.

Note: The TX buffer is automatically cleared at the beginning of each transaction and after each Transmit and
Read Response command. Following any of these conditions, the TX buffer must be copied to either a scratch
buffer or a global buffer before being used in a comparison.

Continue Command
The Continue command is one of several conditional actions available under the five test commands (Test
String, Test Character, Test Device ID, Test Bit Within Byte, and Test Check Sum). Continue tells the driver to do
nothing as a result of the test, and proceed to the next command in the transaction. The Continue command has
no user defined properties.

Control Serial Line Command
The Control Serial Line command allows for manual control of the RTS and DTR lines.

To add a Control Serial Line command, right-click on the desired step in the Transaction View and then
selectWrite Commands | Control Serial Line from the resulting pop-up menu. Alternatively, click Edit | New
Write Command and then select Control Serial Line from the main menu. The dialog should appear as shown
below.

Important: This command should be used with caution. Before setting the RTS or DTR line high or low, be sure
to set the line's default setting before the start of any transaction. Set the line back to default when the trans-
action completes and whenever there is a failure.

Descriptions of the parameters are as follows:

l Line: These options are used to specify either RTS or DTR. Users must select only one at a time. After
completing this dialog window for one line, it can be accessed again to select the other line.

l Check to Assert and uncheck to De-Assert:When checked, the line will be asserted. When
unchecked, the line will be de-asserted.

www. kepware.com

30

U-CON (User-Configurable) Driver Help

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Copy Buffer Command
The Copy Buffer command tells the driver to copy a number of bytes from one buffer to another buffer. Bytes
copied to the read, write or rolling buffers are placed after any data currently in that buffer. Scratch buffers
and global buffers are flushed before new data is placed in them.

This command is normally used in conjunction with aModify Byte command to construct a bit field or to store
off data from a Read Response that will be used in subsequent transactions. Be careful that the selected source
buffer will have valid data when using this command. For more information, refer to Tips and Tricks.

To add a Copy Buffer command, right-click on the desired step in the Transaction View and then selectWrite
Commands | Copy Buffer from the resulting pop-up menu. Alternatively, select Edit | New Write Command
| Copy Buffer from the main menu. The dialog should appear as shown below.

Descriptions of the parameters are as follows:

l Data source: These options are used to specify the data source. Options include Read buffer, Write
buffer, Scratch buffer, Global buffer, or Rolling Buffer.

Note: If either the scratch or global buffer is selected, the buffer index must be specified. If there are not

www. kepware.com

31

U-CON (User-Configurable) Driver Help

enough bytes of data in the buffer, this command will be aborted and the transaction will fail. An error
message will also be placed in the OPC server's Event Log. Users should be cautious of this when using
scratch, global or rolling buffers as the data source.

l Start byte: This control is used to tell the driver what byte in the source buffer to start the copy oper-
ation. The byte positions are addressed using a 1-based index.

l Copy to end: This control is used to tell the driver to copy all of the data from the specified start byte to
the last byte of data currently stored in the source buffer.

l Number of bytes to copy: This control is used to tell the driver the total number of bytes to copy from
the source buffer.

l Data destination: These options specify the destination buffer. Options include Read buffer, Write
buffer, Scratch buffer, Global buffer, or Rolling buffer.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Deactivate Tag Command
TheDeactivate Tag command tells the driver to set the tag's data quality to bad and to perform nomore read or
writes for that tag. It has no user-defined properties. Once a tag has been deactivated, it will stay deactivated. To
reactivate a tag, the server project must be restarted, so use this command with care.

To add a Deactivate Tag command, right-click on the desired step in the Transaction View and then select Proc-
essing Commands | Deactivate Tag from the resulting pop-up menu. Alternatively, select Edit | New Proc-
essing Command | Deactivate Tag from the main menu.

Note: A Deactivate Tag command does not end the current transaction. The tag will remain active until the trans-
action has completed, thus giving users the chance to do any clean-up work such as logging a message or writ-
ing additional information to the device. To terminate the transaction at the time as tag deactivation, place an End
command immediately after the Deactivate Tag command.

End Command
The End command tells the driver to stop processing the current transaction, and is generally used in con-
junction with Go To and Label commands. A typical use of the end command is to prevent the driver from execut-
ing steps in a transaction that should only be executed as the result of a conditional command with a Go To. For
more information, refer to the "Branching" section in Tips and Tricks. This command has no user-defined prop-
erties.

To add an End command, right-click on the desired step in the Transaction View and then select Processing
Commands | End from the resulting pop-up menu. Alternatively, select Edit | New Processing Command |
End from the main menu.

Go To Command
The Go To command tells the driver to search for the specified Label command in the current transaction and
proceed from there. See the "Branching" section in Tips and Tricks for more information.

To add a Go To command, right-click on the desired step in the Transaction View and then select Processing
Commands | Go To from the resulting pop-up menu. Alternatively, select Edit | New Processing Command |
Go To from the main menu. The dialog should appear as shown below.

Descriptions of the parameters are as follows:

www. kepware.com

32

U-CON (User-Configurable) Driver Help

l Label: This parameter identifies the Label command the driver will search for upon encountering this
command. If the Label command is not found, an error message will be logged and the transaction will ter-
minate.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Note: Go To commands should be used with caution. It is possible to set up "infinite loops" which will cause the
driver to become stuck in a transaction. A simple example of an infinite loop would be as follows.

1. Label "Jump to here".
2. Go To "Jump to here".

It may be necessary to terminate the server in this event by pressing the "Ctrl-Alt-Del" key combination. Make
sure that any transaction that uses a Go To command will always terminate, either by running to the last defined
command step or to an End command.

Handle Escape Characters Command
TheHandle Escape Characters command is used to provide data transparency as required by some binary pro-
tocols. Some protocols assign a special meaning to certain character sequences. For example, the end of a var-
iable length frame may be indicated by the sequence DLE ETX (0x10 0x03). A potential problem would exist if the
data value 4099 (0x1003) must be transmitted in one of these frames. The receiving application would not know
whether these two bytes are part of the data payload or indicate the end of the frame.

This type of ambiguity would typically be resolved or made "transparent" by doubling all occurrences of the DLE
character within the data portion of the frame. Throughout the frame, DLE acts as an "escape" character, and
must be interpreted in the context of what follows. In the example above, the value 4099 would be encoded as
DLE DLE ETX. The receiving application would then interpret all doubled DLE characters as a single data byte
with the value 0x10. The Handle Escape Characters command allows the U-CON (User-Configurable) Driver to
add escape characters to outgoing frames, and remove them from received frames.

To add a Handle Escape Characters command, right-click on the desired step in the Transaction View and then
select Processing Commands | Handle Escape Characters from the resulting pop-up menu. Alternatively,
select Edit | New Processing Command | Handle Escape Characters from the main menu. The dialog should
appear as shown below.

See Also: Transaction View

www. kepware.com

33

U-CON (User-Configurable) Driver Help

Descriptions of the parameters are as follows:

l Add/Remove escape characters: This parameter is used to add or remove escape characters. Select
Add escape characters to add escape characters as needed to the specified section of an outgoing
frame. Select Remove escape characters to remove escape characters from the specified section of a
received frame. Once the escape characters have been removed from a received frame, data values may
be parsed by subsequent calls to the Update Tag command.

l Data buffer: This parameter is used to specify the buffer in which the frame will be processed by this
command is stored. The Handle Escape Characters operation is done "in place." If choosing the Scratch
or Global Buffer option, specify the buffer index in the box to the right.

l ASCII characters and Control characters: These parameters are used to specify the control char-
acters by selecting entries in the ASCII characters box and then clicking Add>. If multiple control char-
acters are selected, they will be processed independently: they will not be added or removed as a
sequence. Users may select up to five control characters, although multiple Handle Escape Characters
commands can be included in the transactions for protocols that require more.

l Escape character: This parameter is used to specify either Duplicate control character or Selected
ASCII character.

l Start (bytes from frame start): This parameter is used to specify the position of the first byte, relative
to the start of the frame, of data to be processed by this command. The byte positions are addressed

www. kepware.com

34

U-CON (User-Configurable) Driver Help

using a 1-based index. For example, specify 0 to include the first byte, specify 1 to skip the first byte, and
so forth.

l End (bytes from current frame end): This parameter is used to specify the position of the last byte
(relative to the end of the frame) of data to be processed by this command. The byte positions are address
using a 1-based index. For example, specify 0 to include the last byte, specify 1 to process up to but not
including the last byte, and so forth.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Descriptions are optional, but can be very helpful when reviewing the transaction
definition later.

Insert Function Block
Use the Insert Function Block command to include the commands defined in a previously defined function block
in a Read, Write, or Unsolicited transaction.

To add an Insert Function Block command, right-click on the desired step in the Transaction View and then
select Insert Function Block from the resulting pop-up menu. Alternatively, select Edit | Insert Function
Block from the main menu. The dialog should appear as shown below.

Description of the parameters are as follows:

l Function block: This drop-down list is used to select from the previously defined function blocks. For
more information, refer to Function Blocks.

l Description: This parameter is used to enter a notation that will be displayed next to the command type
in the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Important: Use caution when including Go To and Label commands in function blocks, as infinite loops can be
created. When a Go To command is executed, the driver will scan all commands in the current Read, Write, or
Unsolicited transaction from top to bottom looking for a matching Label. Commands in function blocks referenced
in the transaction will be scanned in the order in which they appear.

Invalidate Tag Command
The Invalidate Tag command tells the driver to set the tag's data quality to bad. This command has no user-
defined properties.

To add an Invalidate Tag command, right-click on the desired step in the Transaction View and then select
Processing Commands | Invalidate Tag from the resulting pop-up menu. Alternatively, select Edit | New
Processing Command | Invalidate Tag from the main menu.

Note 1: An Invalidate Tag command does not end a transaction. In order to terminate the transaction when the
tag is invalidated, place an End command immediately after the Invalidate Tag command.

Note 2: The Invalidate Tag command is intended for use in a read transaction only. If an Invalidate Tag com-
mand is included in a write transaction, it will have no effect on the quality of the tag.

Label Command
The Label command is used in conjunction with the Go To command. It does nothing other than serve as a tar-
get for Go To commands. For more information, refer to the "Branching" section in Tips and Tricks.

www. kepware.com

35

U-CON (User-Configurable) Driver Help

To add a Label command, right-click on the desired step in the Transaction View and then select Processing
Commands | Label from the resulting pop-up menu. Alternatively, select Edit | New Processing Command |
Label from the main menu. The dialog should appear as shown below.

Descriptions of the parameters are as follows:

l Label: This parameter is used to specify the identifier that Go To commands can search for.
l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Note: The Transaction Editor will not allow duplicate labels to be created in a transaction.

Log Event Command
The Log Event command tells the driver to send a message to the server's Event Log.

To add a Log Event command, right-click on the desired step in the Transaction View and then select Proc-
essing Commands |Log Event from the resulting pop-up menu. Alternatively, select Edit | New Processing
Command | Log Event from the main menu. The dialog should appear as shown below.

Descriptions of the parameters are as follows:

l Message: This parameter is used to specify the text that the driver will write to the Event Log. The fol-
lowing special values may be entered in the Message field:

<tag> <tag> will output the value of the tag
<RBuffer> <RBuffer> will output the data in the read buffer
<WBuffer> <WBuffer> will output the data in the write buffer

l Event Type: This parameter is used to set the message-type icon, which will be associated with the mes-
sage in the Event Log.

www. kepware.com

36

U-CON (User-Configurable) Driver Help

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Modify Byte Command
TheModify Byte command tells the driver to modify a number of bits within a byte in the read buffer, write
buffer, a scratch buffer, or a global buffer without changing the state of the other bits. The modified byte must
have been placed in the buffer by a previous command in the transaction. The modified bits are set to zero or one
depending on the write value sent down from the client (see example explanation below).

This command can be used in conjunction with the Copy Buffer command. The Copy Buffer and Modify Byte
commands are used to change device settings that are represented by bit fields. For more information, refer to
the "Bit Fields" section of Tips and Tricks.

To add aModify Byte command, right-click on the desired step in the Transaction View and then selectWrite
Commands | Modify Byte from the resulting pop-up menu. Alternatively, select Edit |Write Commands |
Modify Byte from the main menu. The dialog should appear as shown below.

Descriptions of the parameters are as follows:

l Data source: These options are used to select the data source. Options include Read buffer, Write
buffer, Scratch buffer, or Global buffer. If either scratch or global buffer is chosen, the buffer index must
also be specified.

l Byte position: This control is used to specify what byte in the buffer will be modified. Byte positions are
addressed using a 1-based index.

l Start bit: This control is used to set the index of the first bit to modify. As is customary, bits are num-
bered such that the least significant bit has index 0, and the most significant bit has index 7.

l Number of bits: This control is used to set the number of bits that can be modified by this command.
l Format: This parameter is used to modify binary or data in ASCII Hex data. If Binary is selected, this com-
mand will modify a single byte in the transmit buffer. If ASCII Hex is selected, two characters (assumed to

www. kepware.com

37

U-CON (User-Configurable) Driver Help

be ASCII Hex "0" - "9", "A" - "F") are taken from the transmit buffer, converted to their binary equivalent,
modified, then converted back to two ASCII Hex characters and copied back into the transmit buffer.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Note: Bits are changed to zero or one depending on the write value sent down from the client. The bits are set to
the binary representation of the write value. If the write value exceeds the maximum value that can be rep-
resented by that number of bits, all changeable bits will be set to 1.

Example 1 (Binary data)
For this example, Byte position points to a byte in the write buffer with an initial value of 10110110, Start bit is
1 and Number of bits is 2. The table below shows what the byte value would be after this command is executed
for various write values.

Initial byte value Write value Final byte value
10110110 0 10110000
10110110 1 10110010
10110110 2 10110100
10110110 3 or greater 10110110

Example 2 (ASCII Hex data)
For this example, Byte position points to the first of 2 ASCII hex characters in the write buffer with an initial
value of "B6", Start bit is 1 and Number of bits is 2. The table below shows what the value would be after this
command is executed for various write values. The actual ASCII Hex data in the transmit buffer is in quotes, the
binary equivalent is in parenthesis.

Initial value Write value Final value
"B6" (10110110) 0 "B0" (10110000)
"B6" (10110110) 1 "B2" (10110010)
"B6" (10110110) 2 "B4" (10110100)
"B6" (10110110) 3 or greater "B6" (10110110)

Move Buffer Pointer
Each buffer has its own, independent pointer which can be used to reference a particular byte in data processing
commands such as Update Tag. See Also: Buffer Pointers.

TheMove Buffer Pointer command tells the driver to change the current position of one of the buffer pointers.
Pointers can be moved forward or backward.

The read and write buffer pointers are automatically reset to 1 at the start of each transaction. Scratch and global
buffer pointers do not get reset automatically. The pointer position will not be changed if the specified move
would place it beyond the current data content of the buffer. This command is especially useful for parsing delim-
ited lists of variables. See Also: Tips and Tricks: Delimited Lists.

To add aMove Buffer Pointer command, right-click on the desired step in the Transaction View and then
select Processing Commands | Move Buffer Pointer from the resulting pop-up menu. Alternatively, select
Edit | New Processing Command | Move Buffer Pointer from the main menu. The dialog should appear as
shown below.

www. kepware.com

38

U-CON (User-Configurable) Driver Help

Descriptions of the parameters are as follows:

l Data source: These options are used to specify the data source. Options include Read buffer, Write
buffer, Scratch buffer or Global buffer. If selecting the Scratch or Global buffer option, users must also
specify the buffer index in the box to the right.

l Move Type: There are two types of moves: Relative and Absolute. A relative move is a specified
number of bytes from the current pointer position. The default direction is forward. If Backward is
checked, the pointer will move backward. An absolute move places the buffer pointer at the specified
byte position, where the first byte is number 1, and so forth.

l Number of bytes: This parameter is used to specify the number of bytes to advance the pointer in a rel-
ative move or the byte position in an absolute move.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

See Also: Moving the Buffer Pointer

Important: Use care with scratch and global buffer pointers. Unlike the read and write buffer pointers, scratch
and global buffer pointers are not automatically reset at the start of each transaction.

Pause Command
The Pause command tells the driver to wait a specified period of time before processing the next command,
which can be invaluable when communicating with slower devices. Normally, the Pause command is used in mul-
tiple Write Character/Transmit/Pause combinations. For more information on this technique, refer to the "Slowing
Things Down" section of Tips and Tricks.

To add a Pause command, right-click on the desired step in the Transaction View and then selectWrite Com-
mands | Pause from the resulting pop-up menu. Alternatively, select Edit | New Write Command | Pause
from the main menu. The dialog should appear as shown below.

www. kepware.com

39

U-CON (User-Configurable) Driver Help

Descriptions of the parameters are as follows:

l Pause: This parameter is used to specify the number of milliseconds that the driver will wait before proc-
essing the next command. Any value between 10 and 1000 ms (in 10 ms increments) can be selected.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Caution: The Pause command should not be used with Unsolicited UDP.

Read Response Command
The Read Response command tells the driver to receive data from the device and place it in the read buffer. The
driver will continue to wait for data until either the user specified termination criteria has been met or the device
timeout period (as set in the server's device property page) has elapsed.

To add a Read Response command, right-click on the desired step in the Transaction View and then select
Read Commands | Read Response from the resulting pop-up menu. Alternatively, select Edit | New Read
Command | Read Response from the main menu. The dialog should appear as shown below.

www. kepware.com

40

U-CON (User-Configurable) Driver Help

The driver must know when the last byte of the message has been received. There are three different frame type
options which are distinguished by their receive termination methods: Frame has known length, Frame is
terminated by stop charactersand Frame contains data length field.

l When choosing the Frame has known length frame type, make sure to enter the correct Number of
bytes the driver should wait for. Note that the amount of time the driver will wait for the specified number
of bytes is set in the server's device property page under Request timeout. If the request times out, the
driver will execute the transaction again up to the number of attempts that was specified in Device Prop-
erties. Any bytes in excess to that specified will be ignored.

l When choosing the Frame is terminated by stop charactersframe type, make sure to define the char-
acter sequence that will mark the end of a response using the ASCII characters box and Add > button.
The driver will wait until the specified stop character sequence is received or the request times out
(whichever occurs first).

l When choosing the Frame contains data length field frame type, make sure to specify where in the
frame the data length field is located and what bytes are included in that count. The driver will try to
receive bytes up to the end of the frame length field and then calculate how many more bytes to expect
after that. TheData length start position is the 1-based byte position of the first byte in the data
length field. The Data length format drop list box provides format options available for the data length
field. The String length is the total number of characters in the selected data length field. The Data
start position is the 1-based byte position of the first data byte to include in the count. This will often be

www. kepware.com

41

U-CON (User-Configurable) Driver Help

the first byte after the data length field. TheNumber of trailing bytes is the number of bytes the driver
should expect after the indicated number of data bytes has been received. This might be used to handle
cases where the check sum bytes are not included in the data length.

TheDescription box is used to enter notations that will be displayed next to the command type in the Trans-
action View. Although descriptions are optional, they can also be very helpful when reviewing the transaction def-
inition later.

By default, this command will automatically clear the read buffer before it accepts the next incoming byte. There
are situations where this is not desired. The Clear RX buffer before read box can be used to disable this behav-
ior. For example, say that a user needs to receive a frame that contains a variable number of data bytes, followed
by an ETX byte that marks the end of the data, and a check sum byte. Such a frame must be received in two
steps. First, issue a read response command configured to wait for an ETX stop character, and clear the RX
buffer before read. This would get every thing except the check sum byte. To receive the check sum and append
it to the read buffer, issue a second read response command configured to wait for a single byte, and not clear RX
buffer before read.

In some cases, a device will occasionally produce responses shorter than expected. Such a condition may occur if
the device is in an error state, or if the protocol allows for headers of non-uniform length. The driver will timeout
when attempting to read these short responses and will place a message to that effect in the server's Event Log.
Over time, these messages can fill up the Event Log and obscure other log entries that may be of more interest.
When in such a situation, suppress the logging of timeout errors by deselecting the Log timeout errors box at
the bottom of the dialog. This should only be done when users understand why the timeouts occur and can show
that they are relatively rare and insignificant.

Seek Character Command
Each buffer has its own, independent pointer that can be used to reference a particular byte in data processing
commands such as the Update Tag command. The Seek Character command tells the driver to search for a
given character in the specified buffer. The search will begin at the current buffer pointer position. The buffer
pointer position will be relocated to the next instance of the specified character, if the character is found. If the
character is not found, the pointer will not be changed. An optional Go To label may be executed on failure. See
Also: Buffer Pointers.

Note: This command is especially useful for parsing delimited lists of variables. For more information, refer to
Tips and Tricks: Delimited Lists.

To add a Seek Character command, right-click on the desired step in the Transaction View and then select
Processing Commands | Seek Character from the resulting pop-up menu. Alternatively, select Edit | New
Processing Command | Seek Character from the main menu. The dialog should appear as shown below.

www. kepware.com

42

U-CON (User-Configurable) Driver Help

Descriptions of the parameters are as follows:

l Data source: These options are used to select the data source. Options include Read buffer, Write
buffer, Scratch buffer or Global buffer. If either the Scratch or Global buffer options are selected, the
buffer index must also be specified.

l Character: This drop-down menu can be used to specify what character to search for. Any ASCII char-
acter 0x00 to 0xFF may be specified.

l Search for character in ASCII Hex format: This check box can be used to specify if the data is in
ASCII (default) or ASCII Hex format. For example, a comma in ASCII format will be a single byte with value
0x2C (","). A comma in ASCII Hex format will be two bytes with values 0x32 ("2") 0x43 ("C").

Note:When searching for a character in ASCII Hex format, users must make sure that the search starts
from the first byte of a string of ASCII Hex characters or an even number of bytes preceding them. The
Move Buffer Pointer command may need to be used in order to initialize the pointer.

l Goto on failure: This parameter is used to specify a label that execution should proceed to if the spec-
ified characters are not found. This parameter is optional. If no label is specified, the buffer pointer will be
left unchanged on seek failure and the driver will execute the next command in the transaction. If a label
is specified but not found on seek failure, the current transaction will be aborted. The Transaction Editor
will warn users of this condition. For more information, refer to Label Command.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

See Also: Moving the Buffer Pointer

Important: Use care with scratch and global buffer pointers. Unlike the read and write buffer pointers, scratch
and global buffer pointers are not automatically reset at the start of each transaction.

Seek String Command
Each buffer has its own independent pointer that can be used to reference a particular byte in data processing
commands (such as the Update Tag command). The Seek String command tells the driver to search for a given
string in the specified buffer. The search will begin at the current buffer pointer position. If the string is found,
the buffer pointer position will be relocated to the first character in next instance of the specified character. If the
string is not found, the pointer will not be changed. An optional Go To label may be executed on failure.

See Also: Buffer Pointers

www. kepware.com

43

U-CON (User-Configurable) Driver Help

To add a Seek String command, right-click on the desired step in the Transaction View and then select Proc-
essing Commands | Seek String from the resulting pop-up menu. Alternatively, select Edit | New Proc-
essing Command | Seek String from the main menu. The dialog should appear as shown below.

Descriptions of the parameters are as follows:

l Data Source: These options are used to select the data source. Options include Read buffer, Write
buffer, Scratch buffer, or Global buffer. If either the Scratch or Global buffer options are selected, the
buffer index must also be specified. The default setting is Read buffer.

l String: This parameter is used to specify the String that will be searched. Any ASCII characters can be
specified.

l Format: This drop-down menu is used to select the string format. Options include ASCII String, ASCII
Hex String, Alternating Byte ASCII, Unicode String, and Unicode String with Lo Hi Byte Order. The default
setting is ASCII String.

l Case sensitive: When checked, the string comparison will be case sensitive. When unchecked, the
string comparison will not be case sensitive. The default setting is checked.

l Goto on failure: This parameter is used to specify a label that execution should proceed to if the spec-
ified characters are not found. This parameter is optional. If no label is specified, the buffer pointer will be
left unchanged on seek failure and the driver will execute the next command in the transaction. If a label
is specified but not found on seek failure, the current transaction will be aborted. The Transaction Editor
will warn users of this condition. For more information, refer to Label Command.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

See Also: Moving the Buffer Pointer

Important: Use care with scratch and global buffer pointers. Unlike the read and write buffer pointers, scratch
and global buffer pointers are not automatically reset at the start of each transaction.

Set Event Counter Command
The Set Event Counter command is used to reset the value for the event counter of the current transaction.

www. kepware.com

44

U-CON (User-Configurable) Driver Help

To add a Set Event Counter command, right-click on the desired step in the Transaction View and then
select New Processing Commands | Set Event Counter from the resulting pop-up menu. Alternatively,
select Edit | New Processing Command | Set Event Counter from the main menu. The dialog should appear
as shown below.

Descriptions of the parameters are as follows:

l Set event counter to: This parameter is used to specify a number. The event counter of the current
transaction will be reset to that number.

l Set block event counter: The Set Event Counter command can reset the event counter of the trans-
action that the command is used in, or the counter of the read/unsolicited transaction of its parent block.
Event counters are typically used in tag blocks, where one or more tags are updated from received data,
and another tag is updated from the block's read or unsolicited transaction's event counter.

When unchecked, the counter of the transaction that the command is used in will be reset to the number
that was entered.
When checked, the counter of the read/unsolicited transaction of the parent block will be reset.

Note: This checkbox should be checked when the Set Event Counter Command is used in the event
counter tag's write transaction. If this checkbox is left unchecked, the Set Event Counter Command will
reset the write transaction's event counter.

In the example shown below, the tag is within a parent block (Block_1). Set block event counter should be
checked so that the event counter of Block_1's unsolicited transaction will be reset (i.e., the counter of
the parent block transaction is reset).

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

See Also: Event Counters andWrite Event Counter Command.

Test Bit within Byte Command
The Test Bit within Byte command tells the driver to parse a bit within a specified byte from the read or write
buffer (or one of the scratch or global buffers) and compare the bit value with a test value. Various actions can be
taken depending on the result of that comparison. This command is useful for detecting communication errors in
read transactions or for issuing different commands based on a write value in write transactions.

www. kepware.com

45

U-CON (User-Configurable) Driver Help

To add a Test Bit within Byte command, right-click on the desired step in the Transaction View and then
select Conditional Commands | Test Bit within Byte from the resulting pop-up menu. Alternatively, select
Edit | New Conditional Command | Test Bit within Byte from the main menu. The dialog should appear as
shown below.

Descriptions of the parameters are as follows:

l Test Value: This parameter is used to specify 0 or 1. The test value will be compared with a bit within
byte in the data source.

l Data Source: This parameter is used to select the data source. Options include Read buffer, Write
buffer, Scratch buffer or Global buffer. The Byte Position and Bit Position within that buffer must also
be specified.
Note: If either the Scratch or Global buffer options are selected, the buffer index must also be specified.

l Use Current Buffer Position:When checked, the current position for the specified buffer will be used
in the test. This parameter overrides the Start Byte parameter.

l True Action: This parameter is used to specify the action that will occur if the parsed bit within byte is
the same as the test value.

l False Action: This parameter is used to specify the action that will occur when the values do not agree.
l Action properties: This button will be activated for actions that require additional properties to be
defined.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can be very helpful when reviewing the
transaction definition later.

www. kepware.com

46

U-CON (User-Configurable) Driver Help

Test Character Command
The Test Character command tells the driver to parse a character/byte from the read or write buffer, a scratch
or a global buffer, and compare the character/byte with a test value. Various actions can be taken depending on
the result of that comparison. This command is useful for detecting communication errors in read transactions or
for issuing different commands based on a write value in write transactions.

To add a Test Character command, right-click on the desired step in the Transaction View and then select
Conditional Commands | Test Character from the resulting pop-up menu. Alternatively, select Edit | New
Conditional Command | Test Character from the main menu. The dialog should appear as shown below.

Descriptions of the parameters are as follows:

l Test value: This drop-down menu provides the complete list of characters that may be added. The
choices are listed with the decimal value, followed by the hex equivalent, and may be followed by the key-
board equivalent and mnemonic if applicable. Users may drop the list and select an item from it or take
advantage of the auto-complete feature. The auto-complete feature is used to type in a decimal or hex
value (in 0x?? format), or a character, and the indicated item will be selected from the list automatically.
Clear the entry by pressing Delete or Backspace on the keyboard.

l Data Source: This parameter is used to specify the data source. The Test value may be compared with
characters in the Read buffer,Write buffer, Scratch buffer or Global buffer. If either the Scratch or
Global buffer options are selected, the buffer index must also be specified. In addition to the data source
buffer, the Position within that buffer must also be specified. This is the 1-based index of the character
to be parsed from the buffer.

l True action: This parameter is used to specify the action that will occur if the parsed byte is the same as
the standard value.

l Use Current Buffer Position:When checked, the current position for the specified buffer will be used
in the test. This parameter overrides the Start Byte parameter.

www. kepware.com

47

U-CON (User-Configurable) Driver Help

l False action: This parameter is used to specify the action that will occur list define what the driver
should do if the bytes do not agree.

l Action properties: This button will become activated for actions that require additional properties to be
defined.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Test Check Sum Command
The Test Check Sum command tells the driver to compute the check sum for a range of bytes in the read buffer,
reformat it if necessary, and compare the result with the check sum value in the read buffer. Various actions can
be taken depending on the result of that comparison. This command is useful for detecting communication
errors.

To add a Test Check Sum command, right-click on the desired step in the Transaction View, and select Con-
ditional Commands | Test Check Sum from the resulting pop-up menu. Alternatively, select Edit | New Con-
ditional Command | Test Check Sum from the main menu. The dialog should appear as shown below.

Descriptions of the parameters are as follows:

l Type: This drop-down menu provides the complete list of supported check sum algorithms. For more
information on the check sum options, refer to Check Sum Descriptions.

l Format: This drop-down menu provides the format options available for the selected check sum type. For
a complete discussion of formats, refer toDevice data formats. The Format Properties button will
become enabled if the selected format has properties that must be set. Clicking this button will display the
appropriate format configuration dialog.

l Start (bytes from frame start) and End (bytes from frame end): These parameters are used to tell
the driver what bytes to include in the check sum calculation. The start value is given as a number of
bytes from the beginning of the received frame. The end value is given as a number of bytes from the end

www. kepware.com

48

U-CON (User-Configurable) Driver Help

of received frame. Generally, the check sum value will immediately follow the last byte included in the cal-
culation, but not necessarily.

Note: The end value here has a different meaning than in theWrite Check Sum command. In this case,
it is defined relative to the frame end to allow for processing of variable length frames.

l Start at Current Position:When checked, the check sum calculation will begin at the current read
buffer position. This parameter overrides the Start (bytes from frame start) parameter.

l End at Current Position:When checked, the check sum calculation will complete at the current read
buffer position. This parameter overrides the End (bytes from frame end) parameter.

l Result offset: This parameter is used to indicate how many bytes are between the last byte included in
the calculation and the check sum value.

l True action: This parameter is used to specify what actions will occur if the received check sum is the
same as the calculated value.

l False action: This parameter is used to specify what actions will occur if the check sum values do not
agree.

l Action properties: This button will be activated for actions that require additional properties to be set.
l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Example
Test the check sum in a received frame with the following structure:

[SOH] [Data 1] [Data 2] … [Data N] [ETX] [BCC].

This frame contains an unknown number of data bytes, but has an ETX byte to mark the end of the data. The BCC
is a single byte XOR check sum that includes just the data bytes, not the SOH and ETX characters. To test the BCC
byte, users would configure a test check sum command to use the following:

Parameter Setting
Type XOR (8-bit)
Format 8-bit Intel
Format Properties N/A
Start 1 (skip the SOH at start of frame)
End 2 (skip ETX and BCC at end of frame)
Result offset 1 (skip ETX between Data N and BCC)
True action Action to take if calculated XOR of Data 1 to Data N is the same as received BCC.
Action properties (true) Depends on True action selection.
False action Action to take if calculated XOR of Data 1 to Data N is not the same as received BCC.
Action properties (false) Depends on False action.
Description Comment

Test Device ID Command
The Test Device ID command tells the driver to get the Device ID set in the server's device property page, refor-
mat it if needed, and compare the result with the Device ID value in the read buffer. Various actions can be taken
depending on the result of that comparison. This command is useful for detecting communication and physical
device configuration errors.

To add a Test Device ID command, right-click on the desired step in the Transaction View and then select
Conditional Commands | Test Device ID from the resulting pop-up menu. Alternatively, select Edit | New
Conditional Command | Test Device ID from the main menu. The dialog should appear as shown below.

www. kepware.com

49

U-CON (User-Configurable) Driver Help

Descriptions of the parameters are as follows:

l Format: This drop-down menu provides a list of the format options available. For a complete discussion
of available formats, refer toDevice Data Formats.

l Format Properties: This button will become enabled if the selected format has properties that must be
set.

l Use Current Buffer Position:When checked, the current position for the specified buffer will be used
in the test. This parameter overrides the Start Byte parameter.

l Start Byte: This value tells the driver where in the read buffer the Device ID begins. This number is a 1-
based index. The number of bytes parsed is based on the format specification.

l True action: This parameter is used to specify what actions will occur if the Parsed ID is the same as the
correct value.

l False action: This parameter is used to specify what actions will do if the IDs do not agree.
l Action properties: This button will be activated for actions that require additional properties to be set.
l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Test Frame Length Command
The Test Frame Length command tells the driver to compare the length of the received frame with a test value.
Various actions can be taken depending on the result of that comparison. This command is especially useful
when the incoming frame was received based on a sequence of stop characters.

To add a Test Frame Length command, right-click on the desired step in the Transaction View and then
select Conditional Commands | Test Frame Length from the resulting pop-up menu. Alternatively, select
Edit | New Conditional Command | Test Frame Length from the main menu. The dialog should appear as
shown below.

www. kepware.com

50

U-CON (User-Configurable) Driver Help

Descriptions of the parameters are as follows:

l Enter Frame Length: This parameter is used to specify the value that will be tested against.
l True action: This parameter is used to specify what actions will occur if the received frame length is the
same as the entered frame length value.

l False action: This parameter is used to specify what the driver should do if the comparison fails.
l Action properties: This button will be activated for actions that require additional properties to be set.
l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Test String Command
The Test Stringcommand tells the driver to parse a string from a buffer and compare it with a test value. Various
actions can be taken depending on the result of that comparison. This command is useful for detecting com-
munication errors in read transactions or for issuing different commands based on a write value in write trans-
actions.

To add a Test String command, right-click on the desired step in the Transaction View and then select Con-
ditional Commands | Test String from the resulting pop-up menu. Alternatively, select Edit | New Con-
ditional Command | Test String from the main menu. The dialog should appear as shown below.

www. kepware.com

51

U-CON (User-Configurable) Driver Help

Descriptions of the parameters are as follows:

l Test Value: This parameter is used to specify the value that the string will be tested for. This string may
be up to 64 characters in length. The test value may be compared with characters in the Read buffer,
Write buffer, Global buffer or any Scratch buffer associated with the device. If the Scratch or Global
buffer options are selected, the buffer index must also be specified.

Note: In addition to the data source buffer, the Start position within that buffer must also be specified.
The Start position is the 1-based index of the first character to be parsed from the buffer. The number of
characters parsed from the buffer will be the number of characters specified in the Test Value. If the
buffer does not contain the required number of characters, the transaction will fail and an error message
will be posted in the server's Event Log.

l Use Current Buffer Source:When checked, the current position for the specified buffer will be used in
the test. This parameter overrides the Start Byte parameter.

l Search whole string:When checked, the entire string will be tested or searched. This option ignores
the value in the Start Position so that the whole string is tested for a string that matches the Test Value.

l Format: This drop-down menu is used to select the string format. Options include ASCII String, ASCII
Hex String, Alternating Byte ASCII, Unicode String, Unicode String with Lo Hi Byte Order, ASCII Hex String
From Nibbles, and ASCII String (packed 6-bit). The default setting is ASCII String.

www. kepware.com

52

U-CON (User-Configurable) Driver Help

l Case sensitive:When checked, the string comparison will be case sensitive. When unchecked, the
string comparison will not be case sensitive. The default setting is checked.

l True Action: This parameter is used to specify the action that will occur if the string parsed from the
buffer is the same as the Test value.

l False Action: This parameter is used to specify the action that will occur if the strings are not the same.
l Action properties: If the specified action requires that additional properties be defined, this button will
become activated.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Transmit Command
The Transmit command tells the driver to output the contents of the write buffer. The Transmit command has
no user defined properties.

To add a Transmit command, right-click on the desired step in the Transaction View, and selectWrite Com-
mands | Transmit from the resulting pop-up menu. Alternatively, select Edit | New Write Command | Trans-
mit from the main menu.

Transmit Byte Command
The Transmit Byte command tells the driver to output a single byte from the write buffer. Only the byte trans-
mitted is removed from the buffer: any other bytes will remain in the write buffer. The Transmit Byte command
has no user-defined properties.

To add a Transmit Byte command, right-click on the desired step in the Transaction View and then selectWrite
Commands | Transmit Byte from the resulting pop-up menu. Alternatively, click Edit | New Write Command
| Transmit Byte from the main menu.

Note: The write buffer is not cleared after a transmit byte command.

Update Tag Command
The Update Tag command tells the driver to parse the data value from a read buffer, scratch buffer, global
buffer, cache, the transaction's event counter or the rolling buffer. It then reformats as needed and updates
the tag value accordingly.

To add an Update Tag command, right-click on the desired step in the Transaction View and then select Read
Commands | Update Tag. Alternatively, select Edit | New Read Command | Update Tag from the main
menu. The dialog should appear as shown below.

www. kepware.com

53

U-CON (User-Configurable) Driver Help

Note: If the transaction belongs to a tag block member, the tag must be selected to update from the Tag drop
list. Otherwise, the transaction's parent tag will automatically be selected.

Descriptions of the parameters are as follows:

l Data Source: This parameter is used to select the data source. Options include Read Buffer (default),
Scratch Buffer, Global Buffer, Cache, Event Counter or Rolling Buffer. If the scratch or global buffer option
is selected, users must specify which buffer index using the spin control to the right of the radio button.
If no data has been stored in the scratch or global buffer when this command is executed, the tag value
will be set to zero or a null string. If the event counter option is selected, the tag will be updated with the
transaction's current event count. If the cache option is selected, the tag will be updated with the last
value written to the tag.

l Data starts at current buffer pointer: This checkbox should be selected if the data for the selected
tag begins at the current pointer position of the selected data source. The pointer must have been set
prior to the execution of this command with either Move Buffer Pointer or Seek Character commands.
For more information, refer to Buffer Pointers and Tips and Tricks: Delimited Lists.

Note: If unchecked, use the Data start byte parameter.
l Data start byte: This parameter is used to specify where the tag's data begins. The first byte in the
buffer is number 1.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can be very helpful when reviewing the
transaction definition later.

Note: The format of the data to be parsed is taken from the selected tag's definition. For example, if the device
data format 16 bit Intel [lo hi] was specified for the selected tag, the driver will attempt to parse two bytes from
the specified source buffer and construct a 16 bit integer value from those bytes. The low byte of the integer will
be the byte pointed to or given by the Data start bytesetting . The high byte will be the following byte in the
source buffer. This integer will then be converted to the tag's data type and stored. The stored value will be sent
up to the client application as called.

Caution: The cache option should only be selected for Write Only applications.

See Also: Tags and Device Data Formats.

www. kepware.com

54

U-CON (User-Configurable) Driver Help

Write Character Command
The Write Character command tells the driver to append a single byte character to the write, read, scratch or
global buffer. The character need not be a printable ASCII character such as a letter, number, or punctuation
mark. Anything with a binary equivalent of 0 to 255 is acceptable. If needing to write a sequence of printable char-
acters, it may be easier to use theWrite String command instead.

To add a Write Character command, right-click on the desired step in the Transaction View and then select
Write Commands |Write Character from the resulting pop-up menu. Alternatively, select Edit | New Write
Command |Write Character from the main menu. The dialog should appear as shown below.

Descriptions of the parameters are as follows:

l Value: This drop-down menu provides a complete list of characters that may be added. Each entry in the
list provides the ASCII character code in decimal followed by its hex equivalent. Some entries may have a
third and forth column giving the keyboard equivalent and mnemonic when applicable. Users may drop
the list and select an item from it. They can also take advantage of the auto-complete feature. The auto-
complete feature is used to type in a decimal or hex value (in 0x?? format), or a character, and the indi-
cated item will be selected from the list automatically. The entry can be cleared by pressing Delete or Back-
space on the keyboard.

l Data destination: This parameter is used to select the data destination. Options include Read buffer,
Write buffer, Scratch buffer, or Global buffer. If the Scratch or Global buffer options are selected, users
must also specify the buffer index in the box to the right. If there are not enough bytes of data in the
buffer, this command will be aborted and the transaction will fail, and an error message will be placed in
the OPC server's Event Log.

Note: Data will be appended to TX and RX buffers, but not scratch or global buffers. To append data to
the current contents of a scratch or global buffer, copy that data to either the RX or TX buffer, append
that buffer, then copy the contents back to the scratch or global buffer. For more information, refer to
Copy Buffer Command.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Write Check Sum Command
The Write Check Sum command tells the driver to compute a check sum, reformat it if needed and append the
result to the write buffer. There are several choices for common check sum types and device data formats.

To add aWrite Check Sum command, right-click on the desired step in the Transaction View and then select
Write Commands |Write Check Sum from the resulting pop-up menu. Alternatively, select Edit | New Write
Command| Write Check Sum from the main menu. The dialog should appear as shown below.

www. kepware.com

55

U-CON (User-Configurable) Driver Help

Descriptions of the parameters are as follows:

l Data Destination: These options are used to specify the destination. Options include Read buffer, Write
buffer, Scratch buffer, and Global buffer.

Note: If the Scratch or Global buffer options are selected, users must also specify the buffer index. If
there are not enough bytes of data in the buffer, the command will be aborted and the transaction will fail.
An error message will also be placed in the OPC server's Event Log.

l Check Sum Type: This drop-down menu provides a complete list of algorithms supported. For more
information, refer to Check Sum Descriptions.

l Format: This drop-down menu is used to define the format of the selected check sum type. If the
selected format has properties that must be set, the Format Properties button will become enabled. For
a complete discussion of available formats, refer toDevice Data Formats.

All check sum calculations are performed over a range of bytes in a message frame. The Start and End
fields are used to tell the driver what bytes to include in the calculation. The start value is given as a
number of bytes from the beginning of the frame. The end value is given as a number of bytes from the
current end of the frame, i.e. the last byte placed on the write frame before the Write Check Sum com-
mand is processed. (Note that the end value here has a slightly different meaning than in the Test Check
Sum command.) The Start and End values will almost always be zero. For example, suppose the trans-
action consists of aWrite String command followed by a Write Check Sum and a Transmit. Suppose the
string is "0123456789ABC", and users need to compute a check sum over all of the characters in the
string and place the result after the "C". In this case, both the Start and End values would have to be zero.
Or, if the check sum calculation needs to go from the "1" to "9" inclusively, then the Start value must be 1
and the End value must be 3. Any additional characters added to the frame by commands placed after the
Write Check Sum command cannot be included in the calculation.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Write Data Command
The Write Data command tells the driver to get the write value sent down from the client application, convert it to
the specified device data format and do any of the following:

www. kepware.com

56

U-CON (User-Configurable) Driver Help

l Append the write buffer with the result.
l Store the result in a scratch buffer (the scratch buffer will be cleared first).
l Store the result in a global buffer (the global buffer will be cleared first).

or
l Any combination of the above actions.

To add aWrite Data command, right-click on the desired step in the Transaction View and then selectWrite
Commands |Write Data from the resulting pop-up menu. Alternatively, select Edit | New Write Command |
Write Data from the main menu. The dialog should appear as shown below.

Descriptions of the parameters are as follows:

l Write buffer: This check box tells the driver to append the write buffer with the formatted write value.
The default setting is checked. Click the Scratch buffer or Global buffer checkbox to place the for-
matted write value in a scratch or global buffer. The buffer index is selected with the spin control to the
right of the check box. The scratch or global buffer chosen will be cleared before the formatted write
value is stored.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Write Device ID Command
The Write Device ID command tells the driver to get the ID number set in the server's device property page, refor-
mat it if needed, and append the result to the write buffer.

To add a Write Device ID command, right-click on the desired step in the Transaction View and then select
Write Commands |Write Device ID from the resulting pop-up menu. Alternatively, select Edit | New Write
Command |Write Device ID from the main menu. The dialog should appear as shown below.

www. kepware.com

57

U-CON (User-Configurable) Driver Help

Descriptions of the parameters are as follows:

l Data Destination: These options are used to specify the destination. Options include Read buffer, Write
buffer, Scratch buffer, and Global buffer.

Note: If the Scratch or Global buffer options are selected, users must also specify the buffer index. If
there are not enough bytes of data in the buffer, the command will be aborted and the transaction will fail.
An error message will also be placed in the OPC server's Event Log.

l Format: This drop-down menu is used to define the device data format in which the ID will be written. If
the selected format has properties that must be set, the Format Properties button will become enabled.
For a complete discussion of available formats, refer toDevice Data Formats.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

Note: Users may hard code a Device ID usingWrite Character orWrite String commands; however, those
Device IDs would not be dynamic. If aWrite Device ID command is used in all of the transactions, changing a
Device ID is as simple as bringing up the server's Device Properties and changing the ID. The change will auto-
matically take effect in all transactions associated with the device.

Write Event Counter Command
TheWrite Event Counter command tells the driver to append the value of the event counter to the write buffer.
This makes possible the use of the event count value as a Transaction ID in serial communication packets.

To add aWrite Event Counter command, simply right-click on the desired step in the Transaction View and
then selectWrite Commands | Write Event Counter from the resulting pop-up menu. Alternatively, select
Edit | New Write Command |Write Event Counter from the main menu. The dialog should appear as shown
below.

www. kepware.com

58

U-CON (User-Configurable) Driver Help

Descriptions of the parameters are as follows:

l Data Destination: These options are used to specify the destination. Options include Read buffer, Write
buffer, Scratch buffer, and Global buffer.

Note: If the Scratch or Global buffer options are selected, users must also specify the buffer index. If
there are not enough bytes of data in the buffer, the command will be aborted and the transaction will fail.
An error message will also be placed in the OPC server's Event Log.

l Format: This drop-down menu is used to define the format of the Event Counter. If the selected format
has properties that must be set, the Format Properties button will become enabled. For a complete dis-
cussion of available formats, refer toDevice Data Formats.

l Write block event counter: This checkbox should be selected if the event counter is from a block trans-
action. It should be left unchecked if the event counter is from a regular transaction.

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can also be very helpful when reviewing
the transaction definition later.

See Also: Event Counters and Set Event Counter Command.

Write String Command
The Write String command tells the driver to append a string of ASCII characters to the write buffer, read buffer,
a scratch buffer or a global buffer. Printable characters, such as letters, number and punctuation marks may be
used only. To add a control-character or some other non-printable character, use theWrite Character com-
mand.

To add a Write String command, right-click on the desired step in the Transaction View and then selectWrite
Commands |Write String from the resulting pop-up menu. Alternatively, select Edit | New Write Command
|Write String from the main menu. The dialog should appear as shown below.

www. kepware.com

59

U-CON (User-Configurable) Driver Help

Descriptions of the parameters are as follows:

l Value: This parameter is used to append a series of characters to be appended to the buffer. The string
may be of any length. A NULL terminator will not be assumed; only the characters explicitly entered will
be appended to the buffer.

l Data destination: These options are used to select the destination. Options include Read buffer, Write
buffer, Scratch buffer or Global buffer.

Note 1: If the Scratch or Global buffer options are selected, users must also specify the buffer index in
the box to the right. If there are not enough bytes of data in the buffer, this command will be aborted and
the transaction will fail, and an error message will be placed in the OPC Server's Event Log.

Note 2: Data will be appended to TX and RX buffers, but not scratch or global buffers. To append data to
the current contents of a scratch or global buffer, copy that data to either the RX or TX buffer. Then
append that buffer and copy the contents back to the scratch or global buffer. For more information, refer
to Copy Buffer Command.

l Format: This drop-down menu is used to select the string format. Options include ASCII String, ASCII
Hex String, Alternating Byte ASCII, Unicode String, Unicode String with Lo Hi Byte Order, ASCII Hex String
From Nibbles, and ASCII String (packed 6-bit). The default setting is ASCII String.*

l Description: This parameter is used to enter notations that will be displayed next to the command type in
the Transaction View. Although descriptions are optional, they can be very helpful when reviewing the
transaction definition later.

*For ASCII Hex String From Nibbles, only even numbers of characters are allowed. Furthermore, only hex char-
acters ('0'-'9' and ''A'-'F') are allowed. Characters 'a'-'f' are automatically converted to valid hex 'A'-'F' by the
Driver.

Unsolicited Transactions
An unsolicited transaction is a set of commands that is to be carried out when the driver receives a particular type
of unsolicited message. (The driver will ignore unsolicited data unless it is configured to be in unsolicited mode.)
Unlike with normal query/receive transactions, the driver does not have the benefit of knowing ahead of time
what device and tag it is dealing with. Instead, the driver must determine from the message itself what device it
came from and what tag the data should be sent to. To facilitate this, the user must define unsolicited trans-
action keys.

Unsolicited Transaction Keys
An unsolicited transaction key is a series of ASCII characters (or binary bytes) that match the first few characters
of the message type the transaction is intended for. It is the user's responsibility to ensure that there is a one-to-

www. kepware.com

60

U-CON (User-Configurable) Driver Help

one relationship between all of the transaction keys and all of the possible message types associated with a given
channel.

For example, assume two devices are on a channel dedicated to unsolicited communication. Further, assume that
these devices use the same, simple protocol. Suppose our hypothetical protocol has two possible unsolicited mes-
sage types of the form:

[@] [A] [Device ID high digit] [Device ID low digit] [data] [data] [data] [data] [^M]
[@] [B] [Device ID high digit] [Device ID low digit] [data] [data] [^M]

where each character is surrounded with square brackets for notational clarity. If the two devices are configured
as device 01 and 02, we have four possible message types that could be received on this channel:

[@] [A] [0] [1] [data] [data] [data] [data] [^M]
[@] [B] [0] [1].[data] [data] [^M]
[@] [A] [0] [2].[data] [data] [data] [data] [^M]
[@] [B] [0] [2].[data] [data] [^M]

To process all four possible message types, we need to define a channel using the U-CON (User-Configurable)
Driver in unsolicited mode. Next, we need to add two devices to that channel. The transaction editor must be
used to create two tags for each device, one tag for the @Amessages and another for the @Bmessages. Each of
these tags will be created with an unsolicited transaction that must be defined by the user. The complete def-
inition of an unsolicited transaction consists of two things, the transaction key, and the series of commands that
are required to receive and process the message. We will consider the transaction keys first.

For this hypothetical protocol, we need to look at the first four bytes of an incoming message to know which trans-
action should be used to process it. Thus, the four transaction keys need to be assigned as:

DEVICE TAG KEY
--
01 A @A01
01 B @B01
02 A @A02
02 B @B02

If we made our keys only three characters long in this example, there would be an ambiguous message-to-trans-
action relationship. The driver would have no way of knowing which device the data came from since this is indi-
cated by the fourth character in the messages. If we made one of the keys longer than four bytes, it would extend
into the variable data portion of some (in this case all) of the messages. Such a key would only be matched by
pure coincidence depending on the data value.

With normal (not unsolicited) communication, it is generally not possible to place devices using different pro-
tocols on the same channel. It is possible to mix protocols on an unsolicited channel, so long as the transaction
keys are of the same length and are unique.

In practice, a tag and its unsolicited transaction does not need to be defined for every possible message on a
channel. The only constraint is that defined tags' unsolicited transactions have keys that are specific enough to
match only the message types that users want to process.

To define the unsolicited transaction key, bring up the Transaction Editor and double-click on the unsolicited
transaction item (or select the transaction and then select properties from the main menu, the transaction's pop-
up menu, or the toolbar). The unsolicited transaction key editor should then appear as shown below.

www. kepware.com

61

U-CON (User-Configurable) Driver Help

To define the transaction key, simply double-click on the desired ASCII character in the left ASCII characters
box or select it and click Add >. The key character sequence will appear in the right Key characters box. If a
mistake is made, the< Remove button can be used to remove selected items in key characters box. The number
of characters that must be entered was set when the channel was defined. All unsolicited transaction associated
with a given channel must have the same key length. See Also: Configuration.

Note: In the case of multiple unsolicited devices on a single channel, the Device ID must be hard coded into the
transaction key. Therefore, the Device ID as set in the server's device property page has no bearing on how
incoming data is sorted out to the various tags. Make sure that the IDs configured in the physical devices match
the corresponding fields in the transaction keys at all times.

In cases where the protocol does not lend itself to use of such keys, this driver can still be used. A scanner that
sends packets starting with the raw data values would be an example. In these cases, the transaction key length
must be set to zero. This will force the driver to use the first unsolicited transaction defined on the channel to
interpret all incoming packets. Because of this, there should be only one device on the channel. Furthermore, that
device should have a single block tag or a single non-block tag defined. That tag or tag block may be placed in a
group.

All tags belonging to an unsolicited channel will have an initial value of zero. Client applications will see this initial
value until the first unsolicited update for that tag is received by the driver.

Commands in Unsolicited Transactions
Although an unsolicited transaction may start with comments and/or insert function block, the first executable
command must be a Read Response command. This is so the driver will know where the end of the current mes-
sage should be. After the Read Response command, almost any other command type can be placed. However, a
second Read Response should not be issued in an unsolicited transaction, because it would imply that users
know what the next message received on the channel will be. This is generally a bad assumption when dealing
with unsolicited communications.

See Also: "Unsolicited Message Wait Time" in Device Setup.

Updating the Server
Once all work within the Transaction Editor is finished, users must transfer the updates to the server. To do so,
select the Transaction Editor's main menu option File | Update Server. Alternatively, click on the Update
Server icon on the toolbar. Users will be given a chance to update the server when the Transaction Editor is
closed. After the server has received the device profile updates, it will automatically invoke the tag database gen-
eration feature. All of the new tags and groups will instantly appear on the server. Any tags and groups removed
during the transaction edit session will be removed from the server. At this point, the Transaction Editor will shut
itself down. To resume communication, reconnect the client application to the device.

www. kepware.com

62

U-CON (User-Configurable) Driver Help

Device Data Formats
The U-CON (User-Configurable) Driver offers a large set of device data format options which describe how data
values will be transmitted between the driver and the device. This should not be confused with the data type,
which describes the binary format of data as transmitted between the client and server applications. The device
and protocol determine the device data format. Care should be taken to choose a compatible tag data type. The
combination of data type and format determines the range of values that can be transmitted. Truncation errors
are possible with many combinations.

Binary Formats
ASCII Formats
ASCII Hex Formats
Date/Time
Legend

Binary Formats
Format Data Length Notes
8-bit Intel [hi] 1 Example: The value 10 (0x0A) would be encoded as a single byte 0x0A.
16 bit Intel [lo hi] 2 Example: The value 258 (0x0102) would be encoded as two bytes 0x02 0x01.
16 bit Motorola [hi lo] 2 Example: The value 258 (0x0102) would be encoded as two bytes 0x01 0x02.
24-bit Motorola [Hilo LOhi
Lolo]

3 Example: The value 66051 (0x010203) would be encoded as three bytes
0x01 0x02 0x03.

32-bit Intel [LOlo LOhi
HIlo HIhi]

4 Example: The value 16909060 (0x01020304) would be encoded as four bytes
0x04 0x03 0x02 0x01.

32-bit Intel (word swap)
[HIlo HIhi LOlo LOhi]

4 Example: The value 16909060 (0x01020304) would be encoded as four bytes
0x02 0x01 0x04 0x03.

32-bit Motorola [HIhi HIlo
LOhi LOlo]

4 Example: The value 16909060 (0x01020304) would be encoded as four bytes
0x01 0x02 0x03 0x04.

32-bit Motorola (word
swap) [LOhi LOlo HIhi
HIlo]

4 Example: The value 16909060 (0x01020304) would be encoded as four bytes
0x03 0x04 0x01 0x02.

32-bit IEEE float 4 Also known as single precision real.

Example: The value 1.23456 would be encoded as four bytes 0x3F 0x9E 0x06
0x10

32-bit IEEE float (byte
swap)

4 Similar to 32-bit IEEE float, but in byte swapped order.

Example: The value 1.23456 would be encoded as four bytes 0x9E 0x3F 0x10
0x06

32-bit IEEE float (word
swap)

4 Similar to 32-bit IEEE float, but in word swapped order.

Example: The value 1.23456 would be encoded as four bytes 0x06 0x10 0x3F
0x9E

32-bit IEEE float
(reversed)

4 Similar to 32-bit IEEE float, but with bytes in reverse order (word and byte
swap).

Example: The value 1.23456 would be encoded as four bytes 0x10 0x06 0x9E
0x3F

64-bit IEEE float 8 Also known as double precision real

Example: The value 1.234567 would be encoded as eight bytes 0x0A 0x4A
0xD1 0xCA 0xBD 0xC0 0xF3 0x3F

1-byte packed BCD 1 Integers between 0-99 are encoded as Binary Coded Digits data. Behavior is
undefined for values beyond this range.

Example: The value 12 would be encoded as a single byte 0x12.
2 byte packed BCD 2 Integers between 0-9999 are encoded as Binary Coded Digits data. Behavior is

undefined for values beyond this range.

Example: The value 1234 would be encoded as two bytes 0x12 0x34.
2 byte packed BCD (byte
swap)

2 Similar to 2 byte packed BCD, but in byte swapped order.

Example: The value 1234 would be encoded as two bytes 0x34 0x12.

www. kepware.com

63

U-CON (User-Configurable) Driver Help

4 byte packed BCD 4 Integers between 0-99999999 are encoded as Binary Coded Digits data. Behav-
ior is undefined for values beyond this range.

Example: The value 12345678 would be encoded as four bytes 0x12 0x34
0x56 0x78.

4 byte packed BCD (byte
swap)

4 Similar to 4 byte packed BCD, but in byte swapped order.

Example: The value 12345678 would be encoded as four bytes 0x34 0x12
0x78 0x56.

4 byte packed BCD (word
swap)

4 Similar to 4 byte packed BCD, but in word swapped order.

Example: The value 12345678 would be encoded as four bytes 0x56 0x78
0x12 0x34.

4 byte packed BCD
(reversed)

4 Similar to 4 byte packed BCD, but with bytes in reverse order (word and byte
swap).

Example: The value 12345678 would be encoded as four bytes 0x78 0x56
0x34 0x12.

Bit 0 from byte
[00000001]

Bit 1 from byte
[00000010]

Bit 2 from byte
[00000100]

Bit 3 from byte
[00001000]

Bit 4 from byte
[00010000]

Bit 5 from byte
[00100000]

Bit 6 from byte
[01000000]

Bit 7 from byte
[10000000]

1 When reading, a whole byte is received from the device. The state (0 or 1) of
the specified bit is then passed to the tag.

When writing, a whole byte is sent to the device. The specified bit is set if the
write value is non-zero, all other bits will be zero.

Example: Receive the byte 0x01, would cause a tag with Bit 0 format take a
value of 1 or TRUE. Tags with any other bit format would take a value of 0 or
FALSE.

Example:Write the value 1 (or any other non-zero value), would result in the
byte 0x01 being sent if Bit 0 format, 0x02 if Bit 1 format, and so forth.

Multi-Bit Integer 1, 2, or 4 When reading, a whole 8, 16, or 32 bit integer is received from the device. The
equivalent integer value of a subset of the bits within this data is then passed to
the tag.

When writing, a whole 8, 16, or 32 bit integer is sent to the device. The spec-
ified bits will be set to the binary equivalent of the write value, with all other
bits set to zero. If the write value exceeds the maximum value that can be rep-
resented by the specified number of bits, the specified bits will all be set to
one.

For Boolean data types, all specified bits are set to one if the write value is non-
zero with all other bits being a zero.

See Also: Format Multi-Bit Integer

ASCII Formats
Format Data Length Notes
ASCII Integer [+ddd] F/V/D Integer values encoded as ASCII strings.

See Also: Format ASCII Integer
ASCII Integer Hex [hhh] F/V/D Integer values encoded as ASCII hex strings.

See Also: Format ASCII HEX Integer

www. kepware.com

64

U-CON (User-Configurable) Driver Help

ASCII Real
[+ddd.dddE+ddd]

F/V/D Real (or floating point) values encoded as ASCII strings.

See Also: Format ASCII Real
ASCII String [ccc...] F/V/D Strings encoded as ASCII characters.

See Also: Format ASCII String
ASCII Multi-Bit Integer
[xxxxxxxx]

8 The 8 bits in a byte value are represented as a string of 8 ASCII "0" or "1" char-
acters.

See Also: Format ASCII Multi-bit Integer
ASCII String - Alternating
Byte [0 c 0 c]

F/V/D Strings encoded as ASCII characters where each of the characters is preceded
by a character containing 0 (zero). For example, the string "TEST" will be 0x00
0x54 0x00 0x45 0x00 0x53 0x00 0x54 in this format.

See Also: Format Alternating Byte ASCII String
ASCII Hex String From
Nibbles [hh hh hh...]

F/V/D Nibbles encoded as ASCII hex strings.

See Also: Format ASCII Hex String From Nibbles
Unicode String
[u1u2u3u4...]

F/V/D Strings encoded in the Unicode format.

See Also: Format Unicode String
Unicode String with Lo Hi
Byte Order
[u2u1u4u3...]

F/V/D Strings encoded in the Unicode format with the order reversed – Lo Hi (Least
significant byte first).

See Also: Format UnicodeLoHi String
Byte from 2 Offset Nibble
chars

2 The value is represented as two ASCII characters with values: [low nibble +
0x30] [high nibble + 0x40].

Example: The value 168 (0xA8) is represented as the characters "8J". (Low
nibble = 0x08, 0x08 + 0x30 = 0x38 = "8". High nibble = 0x0A, 0x0A + 0x40
= 0x4A = "J".)

Float from 8 Offset Nibble
chars

8 The value is represented as an IEEE float with reversed byte order, where each
byte is encoded using the "Byte from 2 Offset Nibble chars" format described
above.

Example: The value 1.23456, which is 0x3F9E0610 in normal IEEE form and
0x10069E3F in reversed byte order form, would be encoded as the characters
"0A6@>I?C". (Low nibble of first byte = 0x00, 0x00 + 0x30 = 0x30 = "0".
High nibble of first byte = 0x01, 0x01 + 0x40 = 0x41 = "A". The other three
bytes are encoded in a similar manner.)

Use dynamic ASCII for-
mat table

V This format option is provided for devices that represent values as a fixed
number of ASCII digits and a format character that specifies the decimal place-
ment and sign. To use this option, the user must define a table of format char-
acters.

See Also: Dynamic ASCII Formatting
ASCII String (packed 6
bit) [cccc...]

F/V Strings encoded as ASCII (packed 6 bit) characters.

See Also: Format ASCII String (packed 6 bit)
ASCII Integer (packed 6
bit) [+dddd...]

F/V Strings encoded as ASCII (packed 6 bit) characters.

See Also: Format ASCII Integer (packed 6 bit)
ASCII Real (packed 6 bit)
[+ddd.dddE+ddd]

F/V Strings encoded as ASCII (packed 6 bit) characters.

See Also: Format ASCII Real (packed 6 bit)

ASCII Hex Formats
Format Data Length Notes
NIBBLE from 1 ASCII Hex
char [h]

1 Example: The value 10 (0x0A) would be sent as a single ASCII Hex character
"A" (0x41).

Byte from 2 ASCII Hex
chars [hh]

2 Example: The value 26 (0x1A) would be sent as two ASCII Hex characters "1A"
(0x31 0x41).

www. kepware.com

65

U-CON (User-Configurable) Driver Help

Byte from 2 ASCII Hex
chars (LC) [hh]

2 Example: The value 26 (0x1A) would be sent as two lower-case ASCII Hex char-
acters "1a" (0x31 0x61).

Word from 4 ASCII Hex
chars [hh hh]

4 Example: The value 4666 (0x123A) would be sent as four ASCII Hex char-
acters "123A" (0x31 0x32 0x33 0x41).

Word from 4 ASCII Hex
chars (LC BS) [hh hh]

4 Example: The value 4666 (0x123A) would be sent as four lower-case ASCII
Hex characters with bytes swapped "3a12" (0x33 0x61 0x31 0x32).

DWORD from 8 ASCII Hex
chars [hh hh hh hh]

8 Example: The value 305419898 (0x1234567A) would be sent as eight ASCII
Hex characters "1234567A" (0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x41).

ASCII Hex String [hh hh
hh...]

F/V/D Strings encoded as ASCII Hex values.

Example: The string "AB12" would be sent as eight ASCII Hex characters
"AB12" (0x34 0x31 0x34 0x32 0x30 0x31 0x30 0x32).

See Also: Format ASCII Hex String
Bit 0 from 2 ASCII Hex
chars [hh]

Bit 1 from 2 ASCII Hex
chars [hh]

Bit 2 from 2 ASCII Hex
chars [hh]

Bit 3 from 2 ASCII Hex
chars [hh]

Bit 4 from 2 ASCII Hex
chars [hh]

Bit 5 from 2 ASCII Hex
chars [hh]

Bit 6 from 2 ASCII Hex
chars [hh]

Bit 7 from 2 ASCII Hex
chars [hh]

2 When reading, two ASCII Hex values are received from the device. They are con-
verted to a Byte, and the state (0 or 1) of the specified bit is sent to the tag.

When writing, the specified bit in a Byte is set if the write value is non-zero, all
other bits will be zero. The Byte is converted to 2 ASCII Hex characters and sent
to the device.

Example: Receive the bytes 0x30 0x31 (the binary value 0x01), would cause a
tag with Bit 0 format take a value of 1 or TRUE. Tags with any other bit format
would take a value of 0 or FALSE.

Example:Write the value 1 (or any other non-zero value), would result in the
bytes 0x30 0x31 (the binary value 0x01) being sent if Bit 0 format, 0x30 0x32
(the binary value 0x02) if Bit 1 format, and so forth.

ASCII coded IEEE float
[hh hh hh hh]

8 This format option is provided for devices that encode each nibble of a 32-bit
IEEE float value as an ASCII Hex character.

Example: The binary representation of 1.0 is 0x3F800000. This value would
be encoded as an 8 character string "3F800000". This value would be sent as
eight ASCII Hex characters "3F800000" (0x33 0x46 0x38 0x30 0x30 0x30
0x30 0x30).

This format is not to be confused with "ASCII Real" described above which
would send this value as a 3 character string "1.0".

ASCII coded IEEE float
(LC)
[hh hh hh hh]

8 This is the same as ASCII Coded IEEE float, except lower-case ASCII hex char-
acters are used.

Example: The value 1.0 (0x3F800000) would be sent as: "3f800000" (0x33
0x66 0x38 0x30 0x30 0x30 0x30 0x30).

ASCII coded IEEE float
(Rev)
[hh hh hh hh]

8 This is the same as ASCII Coded IEEE float, except the byte order is reversed.

Example: The value 1.0 (0x3F800000) would be sent as: "0000803F" (0x30
0x30 0x30 0x30 0x38 0x30 0x33 0x46).

ASCII coded IEEE float
(LC Rev)
[hh hh hh hh]

8 This is the same as above, except lower-case ASCII hex characters are used,
and the byte order is reversed.

Example: The value 1.0 (0x3F800000) would be sent as: "0000803f" (0x30
0x30 0x30 0x30 0x38 0x30 0x33 0x66).

Date/Time
Short Date [MM/DD/YYYY]

www. kepware.com

66

U-CON (User-Configurable) Driver Help

Short Date [MM/DD/YY]
Short Date [DD/MM/YYYY]
Short Date [DD/MM/YY]
Short Date [YY/MM/DD]
Short Date [YYYY/MM/DD]
Time [HH:MM:SS]
Standard [DD/MM/YY hh:mm:ss]
Standard [DD/MM/YYYY hh:mm:ss]
Standard [MM/DD/YY hh:mm:ss]
Standard [MM/DD/YYYY hh:mm:ss]
Standard [YY/MM/DD hh:mm:ss]
Standard [YYYY/MM/DD hh:mm:ss]

Note: The length of the formats are variable.

See Also: Format Date Time

LEGEND
h = ASCII Hex digit ("0" to "F")
d = ASCII decimal digit ("0" to "9")
x = ASCII binary digit ("0" or "1")
c = ASCII character
LO = Low Word
lo = Low byte in a Word
HI = High Word
hi = High byte in a Word
0 = low binary bit
1 = high binary bit
+ = Optional sign ("+" or "-")
F = Fixed data length support
V = Variable data length support
D = Delimited list support

See Also: Delimited lists.

Dynamic ASCII Formatting
Many ASCII devices utilize a formatting scheme where values are represented by a fixed number of ASCII digits
and a format character. No decimal point or sign characters are used. Instead, the format character determines
decimal placement and sign. For example, a device may represent the value -12.3 as 0123D where D means mul-
tiply the transmitted integer value, 123 in this case, by -0.1. The format character is dynamic, meaning that it
could be different for each read and write transaction, depending on the data value.

The Use Dynamic ASCII Format Table device data format option tells the driver to use this type of for-
matting. By clicking on the Format Properties button on the tag dialog, the following dialog will come up.

In this dialog, users can specify how many digits to the right of the decimal point should be used when writing to
the device. Most devices that utilize this type of formatting, zero digits are expected for integer types, and a spe-
cific non-zero number is expected for real types. For example, the value 1.2 could possibly be represented as
1200A, 0120B, or 0012C, where A means multiply by 0.001, B 0.01, and C 0.1. However, the device may only
accept 0012C for a particular register. In this case, users would set the number of digits to right of decimal to 1
to force the driver to choose the C format. In general, if the device is expecting an integer, this value should be 0.
When attempting a read, the value has no significance. The driver simply parses the format character from the
read buffer, looks up its corresponding multiplier and then converts the data digits accordingly.

In order for this option to work, the user must also define a table of format characters and their corresponding
multipliers. Such a table must be defined for each device that uses this format option. To edit the table, click on

www. kepware.com

67

U-CON (User-Configurable) Driver Help

the Edit Format Table button, or select Edit Dynamic ASCII Format Table from the main menu or device
pop-up menu.

TheDynamic ASCII Format Table editor, shown below, includes a list of formats currently defined for the
device. Clicking on a table entry will select it; double-clicking will bring up a dialog that can be used to edit the for-
mat item. To the left of the format list are three buttons. The top one is used to add a new format to the table. The
middle and bottom ones allow users to edit or delete the selected format item respectively. There must be a one-
to-one relationship between each format character and multiplier. In addition to the format characters, users
must specify the number of data characters the device uses and whether the format character will precede or fol-
low the data.

Table entries are edited using the following dialog.

Format Alternating Byte ASCII String
The Alternating Byte ASCII String device data format option can be used to define the format of string data. For
example, when the Alternating Byte ASCII String [0 c 0 c] format is selected, the Format Properties
button in the tag dialogwill become enabled. After clicking this button, the dialog should appear as shown
below.

www. kepware.com

68

U-CON (User-Configurable) Driver Help

The Fixed length check box determines whether string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length strings, the String length must be set. The number entered sets the total number of
characters (two bytes per character) that will be written to or read from the device. Null characters are
not added to the end of strings written to the device, however: they are added to strings read from the
device and passed to the client application.

l For fixed length strings, the Pad typemust also be specified. Pad characters are used to fill out the
string for values that do not require the full string length. Unlike ASCII strings, each pad character is
encoded as two ASCII bytes (high byte 0). For example, if the string length was set to 8 and Spaces was
chosen as the pad type, writing the string ABC would cause the driver to send 0x00 0x41, 0x00 0x42,
0x00 0x43, 0x00, 0x20. There are many options for pad characters: spaces (0x00 0x20), zeros (0x00
0x30), and NULL (0x00 0x00). The pad character option applies to writes only: the driver can read any
valid ASCII hexadecimal string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing an Update Tag command. Either of the following can be used for variable length ASCII data:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the tag's
data will be marked by a known character, as would be the case in a delimited list of values. For more infor-
mation, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delimiter drop down
list will be enabled. An ASCII character from 0x00 to 0xFF may be chosen. The driver will search for this
character as ASCII hexadecimal data. For example, the two bytes 0x00 0x20 would be considered a space
character.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

Format ASCII Integer
The ASCII integer device data format option allows the user to specify how ASCII integer data should be for-
matted. For example, when a format of ASCII Integer [+ddd] is selected, the Format Properties button in the
tag dialogwill become enabled. After clicking this button, the dialog should appear as shown below.

www. kepware.com

69

U-CON (User-Configurable) Driver Help

The Fixed length check box determines whether string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length ASCII integer strings, the String length must be specified. As its name suggests, this
sets the total number of characters (one byte per character) that will be written to or read from the
device. A minus sign counts as one character.

l For fixed length ASCII integer strings, the Pad typemust be specified. Pad characters are used to fill out
the string for integer values that do not require the full string length. For example, if the string length
was set to 4, and a value of 12 is to be written to the device, the driver will create a string consisting of
two pad characters, followed by 1 then 2. There are many options for pad characters: spaces (0x20),
zeros (0x30), and NULL (0x00). The pad character option applies to writes only: the driver can read any
valid ASCII integer string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing an Update Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the tag's
data will be marked by a known character, as would be the case in a delimited list of values. For more infor-
mation, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delimiter drop down
list will be enabled. An ASCII character from 0x00 to 0xFF can be chosen.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

ROUND OFF:When writing values that require more characters than allotted by String length, the driver will
write the largest positive or smallest negative value that can be expressed in the allotted space. For example, if
string length is set to 4, then writing 12345 results in the string 9999 and writing -1234 results in the string -
999.

Format ASCII HEX Integer
The ASCII Hex Integer device data format option allows the user to specify how ASCII hex integer data should
be formatted. For example, when a format of ASCII Hex Integer [hhh] is selected, the Format Properties
button in the tag dialogwill become enabled. After clicking this button, the dialog should appear as shown
below.

www. kepware.com

70

U-CON (User-Configurable) Driver Help

The Fixed length check box determines if the string data is fixed or variable length. This box must be checked if
a device will only accept strings of a given length in write transactions. If the length of a string returned from a
read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length ASCII hex integer strings, the String length must be specified. As its name suggests,
this sets the total number of characters (one byte per character) that will be written to or read from the
device. A minus sign counts as one character.

l For fixed length ASCII hex integer strings, the Pad typemust be specified. Pad characters are used to fill
out the string for integer values that do not require the full string length. For example, if the string length
was set to 4 and a value of 12 is to be written to the device, the driver will create a string consisting of two
pad characters, followed by 1 then 2. There are many options for pad characters: spaces (0x20), zeros
(0x30), and NULL (0x00). The pad character option applies to writes only: the driver can read any valid
ASCII integer string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing an Update Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the tag's
data will be marked by a known character, as would be the case in a delimited list of values. For more infor-
mation, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delimiter drop down
list will be enabled. An ASCII character from 0x00 to 0xFF can be chosen.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

ROUND OFF:When writing values that require more characters than allotted by String length, the driver will
write the largest positive or smallest negative value that can be expressed in the allotted space. For example, if
string length is set to 4, then writing 12345 results in the string FFFF and writing -1234 results in the string
FFFF.

Format ASCII Multi-Bit Integer
The ASCII Multi-Bit Integer device data format option reads or writes a specified number of bit characters rep-
resented in an ASCII multi-bit integer. An ASCII multi-bit integer is an 8 character long string, where each char-
acter can be either 0 or 1. This format option requires the user to specify two Format Properties, the start bit, and
number of bits. For example, when a format of ASCII Multi-Bit Integer [xxxxxxxx] is selected, the Format
Properties button in the tag dialogwill become enabled. After clicking this button, the dialog should appear as
shown below.

www. kepware.com

71

U-CON (User-Configurable) Driver Help

l The Start bit control sets the index of the first bit that the driver will read from or write to. As is standard
practice, the least significant bit (LSB) is referred to as bit index 0, and the most significant bit (MSB) has
a bit index of 7.

l TheNumber of bits control sets how many bits to read or write, starting at the start bit index.

If a value is to be written that exceeds the maximum value that the can be represented by the specified
number of bits, then all of the specified bits will be set to one. All bits other than those specified by this
format will be set to zero in writes. If this format is used with a Boolean data type, then all specified bits
are set to one, if the write value is non-zero. If wishing to set a number of bits in a predefined byte, pre-
serving the state of the other bits, use another device data format and theModify Byte command.

Read Example
Say the device returns 11001010, and this format specifies a start bit of 3 and number of bits of 4. The value
returned to the tag is 9 decimal (1001 binary).

Write Example
Say a value of 1 is to be written, and this format specifies a start bit of 3 and number of bits of 2. The value sent
to the device will be 00001000. If a value of 3 or greater is to be written using the same Format Properties, then
the value sent to the device will be 00011000.

Format ASCII Real
The ASCII Real device data format option allows the user to specify how ASCII Real data should be formatted.
For example, when a format of ASCII Real [+ddd.dddE+ddd] is selected, the Format Properties button in the
tag dialogwill become enabled. After clicking this button, the dialog should appear as shown below.

www. kepware.com

72

U-CON (User-Configurable) Driver Help

Precision sets the number of digits to the right of the decimal point. The precision property applies to writes
only: the driver can read any valid ASCII real value of the specified length. When Use decimal comma in place
of decimal point is checked, a comma will be used as the decimal separator.

The Fixed length check box determines if string data is fixed or variable length. This box must be checked if a
device will only accept strings of a given length in write transactions. If the length of a string returned from a
read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length ASCII real strings, the String length must be specified. As its name suggests, this sets
the total number of characters (one byte per character) that will be written to or read from the device. The
decimal point and possible minus sign each count as one character.

l For fixed length ASCII real strings, the Pad typemust also be specified. Pad characters are used to fill
out the left hand side of the string for real values that do not require the full string length. Zeros are
added as needed to fill out the specified precision. For example, if the string length was set to 8, and the
precision was set to 3, and a value of 12.3 is to be written to the device, the driver will create a string con-
sisting of two pad characters, followed by "12.300". There are many options for pad characters: spaces
(0x20), zeros (0x30), and NULL (0x00). The pad character option applies to writes only: the driver can
read any valid ASCII real string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing an Update Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the tag's
data will be marked by a known character, as would be the case in a delimited list of values. For more infor-
mation, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delimiter drop down
list will be enabled. An ASCII character from 0x00 to 0xFF can be chosen.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

ROUND OFF:When writing values that require more characters than allotted by String length, the driver will
write the largest positive or smallest negative value that can be expressed in the allotted space. For example, if
string length is set to 6 and the precision is set to 2, then writing 1234.567 results in the string "999.99" and
writing -123.456 results in the string "-99.99".

Format ASCII String
The ASCII String device data format option allows the user to specify how string data should be formatted.
When a format of ASCII String [ccc...] is selected, in the tag dialog for example, the Format Properties but-
ton will become enabled. After clicking this button, the dialog should appear as shown below.

The Fixed length check box determines whether string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

www. kepware.com

73

U-CON (User-Configurable) Driver Help

l For fixed length strings, the String length must be set. The number entered here sets the total number
of characters (one byte per character) that will be written to or read from the device. Null characters are
not added to the end of strings written to the device, however: they are added to strings read from the
device and passed to the client application.

l For fixed length strings, the Pad typemust also be specified. Pad characters are used to fill out the
string for values that do not require the full string length. Unlike ASCII integer and ASCII real formats, the
pad characters are added as needed to the right. For example, if the string length was set to 4, and a
value of ABC is to be written to the device, the driver will create a string consisting of the characters,
ABC, followed by one pad character. There are many options for pad characters: spaces (0x20), zeros
(0x30), and NULL (0x00). The pad character option applies to writes only: the driver can read any valid
ASCII string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing an Update Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the tag's
data will be marked by a known character, as would be the case in a delimited list of values. For more infor-
mation, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delimiter drop down
list will be enabled. An ASCII character from 0x00 to 0xFF can be chosen.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

See Also: Tips and Tricks: Delimited Lists

Format ASCII Hex String
The ASCII Hex String device data format option allows the user to specify how string data should be formatted.
For example, when a format of ASCII Hex String [hh hh hh...] is selected, the Format Properties button in
the tag dialogwill become enabled. After clicking this button, the dialog should appear as shown below.

The Fixed length check box determines whether string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length strings, the String length must be set. The number entered sets the total number of
characters (two bytes per character) that will be written to or read from the device. Null characters are
not added to the end of strings written to the device, however: they are added to strings read from the
device and passed to the client application.

l For fixed length strings, the Pad typemust also be specified. Pad characters are used to fill out the
string for values that do not require the full string length. Unlike ASCII strings, each pad character is
encoded as two ASCII Hex bytes. For example, if the string length was set to 8 and Spaces was chosen as
the pad type, writing the string ABC would cause the driver to send eight bytes 0x34 0x31 0x34 0x32

www. kepware.com

74

U-CON (User-Configurable) Driver Help

0x34 0x33 0x32 0x30. There are many options for pad characters: spaces (0x32 0x30), zeros (0x33
0x30), and NULL (0x30 0x30). The pad character option applies to writes only: the driver can read any
valid ASCII Hex string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing an Update Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the tag's
data will be marked by a known character, as would be the case in a delimited list of values. For more infor-
mation, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delimiter drop down
list will be enabled. An ASCII character from 0x00 to 0xFF can be chosen. The driver will search for this
character as ASCII hexadecimal data. For example, the two bytes 0x32 0x30 would be considered a space
character.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

Format ASCII Hex String From Nibbles
The ASCII Hex String From Nibbles device data format option allows the user to specify how string data should
be formatted. For example, when a format of ASCII Hex String From Nibbles [hh hh hh...] is selected, the
Format Properties button in the tag dialogwill become enabled. After clicking this button, the dialog should
appear as shown below.

The Fixed length check box determines if string data is fixed or variable length. This box must be checked if a
device will only accept strings of a given length in write transactions. If the length of a string returned from a
read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length strings, the String length must also be set. The number entered sets the total number of
bytes (one byte per two characters) that will be written to or read from the device. Only even lengths are
allowed. Null characters are not added to the end of strings written to the device, however: they are
added to strings read from the device and passed to the client application.

l For fixed length strings, when writing through a client, the driver adds pad character ('0':0x30) at the
end of the string up to the set length. For example, if the string length was set to 8, writing the string
ABC would cause the driver to send four bytes 0xAB 0xC0 0x00 0x00 (for a driver recreated string
ABC00000). The pad character option applies to writes only: the driver can read any valid ASCII Hex
string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing an Update Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the tag's
data will be marked by a known character, as would be the case in a delimited list of values. For more infor-
mation, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delimiter drop down
list will be enabled. An ASCII character from 0x00 to 0xFF can be chosen.

www. kepware.com

75

U-CON (User-Configurable) Driver Help

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame. For variable length strings, when
writing through a client, the driver adds a single pad character ('0':0x30) at the end of the string if the
length of the string is odd. For example, writing the string ABC would cause the driver to send two bytes
0xAB 0xC0 (for a driver recreated string ABC0).

Note:When writing through a client only hex characters ('0'-'9' and ''A'-'F') are allowed. Characters 'a'-'f' are
automatically converted to valid hex 'A'-'F' by the driver.

Format ASCII Integer (Packed 6 Bit)
The ASCII integer (packed 6 bit) device data format option can be used to specify how ASCII integer data
should be formatted. For example, when a format of ASCII Integer (packed 6 bit) [+dddd] is selected, the
Format Properties button in the tag dialogwill become enabled. After clicking this button, the dialog should
appear as shown below.

The Fixed length check box determines whether the string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length ASCII integer (packed 6 bit) strings, the String length must be specified. As its name
suggests, this sets the total number of characters (one byte per character) prior to conversion that will be
written to or read from the device. A minus sign counts as one character. The number of bytes sent over
the wire is equal to three fourths the String length.

l For fixed length ASCII integer (packed 6 bit) strings, the Pad typemust also be specified. Pad characters
are used to fill out the string for integer values that do not require the full string length. For example, if
the string length was set to 4 and a value of 12 is to be written to the device, the driver will create a string
consisting of two pad characters followed by 1 then 2. There are many options for pad characters: spaces
(0x20) and zeros (0x30). The pad character option applies to writes only: the driver can read any valid
ASCII integer (packed 6 bit) string of the specified length.

For variable length ASCII integer (packed 6 bit) data, the driver must have some way of knowing where a
tag's data ends when executing an Update Tag command. This is accomplished by specifying an end point rel-
ative to the frame end. The Read up to xxx bytes from frame end box can be used to define the end of a tag's
data field relative to the end of a frame.

ROUND OFF:When writing values that require more characters than allotted by String length, the driver will
write the largest positive or smallest negative value that can be expressed in the allotted space. For example, if
string length is set to 4, then writing 12345 results in the string 9999 and writing -1234 results in the string -
999.

Note: Due to packing, ASCII (packed 6 bit) data uses a reduced ASCII (packed 6 bit) Character Table.
Attempting to use characters not in the ASCII (packed 6 bit) Character Table will result in data conversion
failures.

Format ASCII Real (Packed 6 Bit)
The ASCII Real (Packed 6 Bit) device data format option can be used to specify how ASCII Real data should be
formatted. For example, when a format of ASCII Real (packed 6 bit) [+ddd.dddE+ddd] is selected, the For-

www. kepware.com

76

U-CON (User-Configurable) Driver Help

mat Properties button in the tag dialogwill become enabled. After clicking this button, the dialog should
appear as shown below.

Precision sets the number of digits to the right of the decimal point. The precision property applies to writes
only: the driver can read any valid ASCII real (packed 6 bit) value of the specified length. When checked, Use
decimal comma in place of decimal point allows a comma to be used as a decimal.

The Fixed length check box determines whether the string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length ASCII real (packed 6 bit) strings, the String length must be specified. As its name sug-
gests, this sets the total number of characters (one byte per character) prior to conversion that will be
written to or read from the device. The decimal point and possible minus sign each count as one char-
acter. The number of bytes sent over the wire is equal to three fourths the string length.

l For fixed length ASCII real (packed 6 bit) strings, the Pad typemust also be specified. Pad characters
are used to fill out the left hand side of the string for real values that do not require the full string length.
Zeros are added as needed to fill out the specified precision. For example, if the string length is set to 8,
the precision is set to 3, and a value of 12.3 is to be written to the device, the driver will create a string
consisting of two pad characters followed by 12.300. There are many options for pad characters: spaces
(0x20) and zeros (0x30). The pad character option applies to writes only: the driver can read any valid
ASCII real (packed 6 bit) string of the specified length.

For variable length ASCII real (packed 6 bit) data, the driver must have some way of knowing where a
tag's data ends when executing an Update Tag command. This is accomplished by specifying an end point rel-
ative to the frame end. The Read up to xxx bytes from frame end box can be used to define the end of a tag's
data field relative to the end of a frame.

ROUND OFF:When writing values that require more characters than allotted by String length, the driver will
write the largest positive or smallest negative value that can be expressed in the allotted space. For example, if
string length is set to 6 and the precision is set to 2, then writing 1234.567 results in the string 999.99 and writ-
ing -123.456 results in the string -99.99.

Note: Due to packing, ASCII (packed 6 bit) data uses a reduced ASCII (packed 6 bit) Character Table.
Attempting to use characters not in the ASCII (packed 6 bit) Character Table will result in data conversion
failures.

Format ASCII String (Packed 6 Bit)
The ASCII String (Packed 6 Bit) device data format option allows the user to specify how string data should be
formatted. For example, when a format of ASCII String (packed 6 bit) [cccc...] is selected, the Format Prop-
erties button in the tag dialogwill become enabled. After clicking this button, the dialog should appear as
shown below.

www. kepware.com

77

U-CON (User-Configurable) Driver Help

The Fixed length check box determines whether string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length strings, the string length must also be set. The number entered sets the total number of
characters (one byte per character) prior to conversion that will be written to or read from the device. The
number of bytes sent over the wire is equal to three fourths the string length. Null characters are not
added to the end of strings written to the device, however: they are added to strings read from the device
and passed to the client application.

l For fixed length strings, the Pad typemust also be specified. Pad characters are used to fill out the
string for values that do not require the full string length. Unlike ASCII integer (packed 6 bit) and ASCII
real (packed 6 bit) formats, the pad characters are added as needed to the right. For example, if the
string length was set to 4 and a value of ABC is to be written to the device, the driver will create a string
consisting of the characters ABC, followed by one pad character. There are many options for pad char-
acters: spaces (0x20), and zeros (0x30). The pad character option applies to writes only: the driver can
read any valid ASCII (packed 6 bit) string of the specified length.

For variable length ASCII (packed 6 bit) string data, the driver must have some way of knowing where a
tag's data ends when executing an Update Tag command. This is accomplished by specifying an end point rel-
ative to the frame end. The Read up to xxx bytes from frame end box can be used to define the end of a tag's
data field relative to the end of a frame.

Note: Due to packing, ASCII (packed 6 bit) data uses a reduced ASCII (packed 6 bit) Character Table.
Attempting to use characters not in the ASCII (packed 6 bit) Character Table will result in data conversion
failures.

Format Multi-Bit Integer
The Multi-Bit Integer device data format option is used to associate the tag with a subset of bits in a longer
integer value which is read from or written to the hardware. The tag's data type will determine how the integer
equivalent of these bits will be communicated to or from the client application. For example, when a format of
Multi-Bit Integer is selected, the Format Properties button in the tag dialogwill become enabled. After click-
ing this button, the dialog should appear as shown below.

www. kepware.com

78

U-CON (User-Configurable) Driver Help

l The Raw data format control can be used to specify the length and byte order of the integer data as
read from or written to the device. The quantity will be represented by one or more of the bits within this
integer.

l The Start bit control sets the index of the first bit of interest with the integer. As is standard practice, the
least significant bit (LSB) is referred to as bit index 0.

l TheNumber of bits control sets how many bits are within the integer, starting at the start bit index.

Read example
Say we have a device that measures an analog quantity which can range in value from 1 to 63. This value is
reported by the device as the first 6 bits in a byte. The seventh bit in this byte indicates the status of the asso-
ciated sensor, and the remaining bit is not used. We could create a tag block with a value tag using this Multi Bit
Integer format, and a status tag using one of the single bit within byte formats. Both tags could be updated from
a single block read transaction. For the value tag, set the Raw data format to 8-bit Intel, Start bit to 0, and
Number of bits to 6. If the device returned [01100111], the value tag would then be updated with a value of 39
(binary 100111).

Write example
Assume we have a tag using this format with Raw data format set to 8-bit Intel, Start bit set to 3, and Number of
bits set to 2. If a value of 1 is written to the tag, the device will receive the byte [00001000]. If a value of 3 or
greater is written, the device will receive the byte [00011000].

Boolean Data types
The above examples assume the tag's data type is one of the integer types, Byte, Char, Word, and so forth. Bool-
ean tags behave a bit differently. On reads, if any of the specified bits is set, the tag will receive a value of TRUE.
All of the specified bits will be set if TRUE is written, and all bits will be cleared if FALSE is written.

Format Unicode String
The Unicode String device data format option allows the user to specify how string data should be formatted.
For example, when Unicode String [u1u2u3u4...] is selected, the Format Properties button in the tag
dialogwill become enabled. Click Format Properties to display the Unicode String Format Properties dialog
box, as shown below.

The Fixed length check box determines whether string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length strings, the String length must be set. The number entered here sets the total number
of characters (two bytes per character) that will be written to or read from the device. Null characters are
not added to the end of strings written to the device, however: they are added to strings read from the
device and passed to the client application.

www. kepware.com

79

U-CON (User-Configurable) Driver Help

l For fixed length strings, the Pad typemust also be specified. Pad characters are used to fill out the
string for values that do not require the full string length. Unlike ASCII integer and ASCII real formats, the
pad characters are added as needed to the right. For example, if the string length was set to 4 and a
value of ABC is to be written to the device, the driver will create a string consisting of the characters, ABC
in Unicode form, followed by one pad character. There are many options for pad characters: spaces
(0x00 0x20), zeros (0x00 0x30), and NULL (0x00 0x00). The pad character option applies to writes only:
the driver can read any valid ASCII string of the specified length.

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing an Update Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the tag's
data will be marked by a known character, as would be the case in a delimited list of values. For more infor-
mation, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delimiter drop down
list will be enabled. An ASCII character from 0x00 to 0xFF may be chosen.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

Format UnicodeLoHi String
The Unicode String device data format option allows the user to specify how string data should be formatted.
For example, when Unicode String with Lo Hi Byte Order (u2u1u4u3...) is selected, the Format Prop-
erties button in the tag dialogwill become enabled. Click Format Properties to display the UnicodeLoHi
String Format Properties dialog box, as shown below.

The Fixed length check box determines whether string data is a fixed or variable length. This box must be
checked if a device will only accept strings of a given length in write transactions. If the length of a string
returned from a read transaction cannot be anticipated, then this box should be unchecked.

l For fixed length strings, the String length must be set. The number entered here sets the total number
of characters (two bytes per character) that will be written to or read from the device. Null characters are
not added to the end of strings written to the device, however: they are added to strings read from the
device and passed to the client application.

l For fixed length strings, the Pad typemust also be specified. Pad characters are used to fill out the
string for values that do not require the full string length. Unlike ASCII integer and ASCII real formats, the
pad characters are added as needed to the right. For example, if the string length was set to 4 and a
value of ABC is to be written to the device, the driver will create a string consisting of the characters, ABC
in Unicode form, followed by one pad character. There are many options for pad characters: spaces
(0x20 0x00), zeros (0x30 0x00), and NULL (0x00 0x00). The pad character option applies to writes only:
the driver can read any valid ASCII string of the specified length.

www. kepware.com

80

U-CON (User-Configurable) Driver Help

For variable length ASCII data, the driver must have some way of knowing where a tag's data ends when
executing an Update Tag command. This can be accomplished in one of two ways:

l Specify a delimiter character. Check the Parse to next delimiter if present box if the end of the tag's
data will be marked by a known character, as would be the case in a delimited list of values. For more infor-
mation, refer to Tips and Tricks: Delimited Lists. When this box is checked, the Delimiter drop down
list will be enabled. An ASCII character from 0x00 to 0xFF may be chosen. The driver will search for this
character as ASCII hexadecimal data. For example, the two bytes 0x32 0x30 would be considered a space
character.

l Give an end point relative to the frame end. The Read up to xxx bytes from frame end box can be
used to define the end of a tag's data field relative to the end of a frame.

Format Date / Time
The Date device data format option allows the user to specify how date or date/time data will be formatted.
When Date is selected, the Format Properties button in the tag dialogwill become enabled. Click Format Prop-
erties to display theDate Format Properties dialog box as shown below.

First, select theDate Data Format. The default setting is Binary Data. Options are as follows:

l Binary Data:When selected, the date value will be sent as a binary value. For example, if no separators
or delimiters are selected and the Date/Time format is set to Standard [MM/DD/YY hh:mm:ss], the value
"09-11-09 02:15:50" would be sent as "09 0B 09 02 0F 32".

l ASCII Data:When selected, the date value will be sent as an ASCII string (including separators and
delimiters). With the example shown for Binary Data above, if the Date delimiter is set to "-", the Time
delimiter is set to ":", and the separating delimiter is set to <space>, the value would be sent as "30 39
2D 31 31 2D 30 39 20 30 32 3A 31 35 3A 35 30".

l ASCII Hex Data:When selected, the binary data will be sent so that each hex byte's nibble is sent as a
printable ASCII character. With the example shown for Binary Data above with no separators or delimiters
selected, the value would be sent as "30 39 30 42 30 39 30 32 30 46 33 32".

The remaining options in the dialog box can be used to further refine the date format.

www. kepware.com

81

U-CON (User-Configurable) Driver Help

l Date Delimited:When checked, delimiters will be included in the date value. Use the Date Delimiter
drop-down menu to select the delimiter character. The default setting is None.

l Time Delimited:When checked, delimiters will be included in the time value. Use the Time Delimiter
drop-down menu to select the delimiter character. The default setting is None.

l Separating Delimiter:When checked, a separating delimiter will be included in the date or date/time
value. Use the Separating Delimiter drop-down menu to select the delimiter character. The default set-
ting is None.

l Year Prefix: This parameter is used to specify a 99 year range. Users can manually type the range or
use the slider to resolve date/time data to the correct millennium. For example, if the year prefix range is
set to 1970 to 2069, year values between "00" and "69" would resolve to 2000 and 2069. Year values
between "70" and "99" would resolve to 1970 and 1999. This setting is only enabled for date/time for-
mats that contain 1-byte binary years, 2 character ASCII years, or 2-byte Hex ASCII years.

Check the Followed by AM/PM? box in order to have the value be followed by "AM" or "PM". The default setting
is unchecked.

Check Sum Descriptions
The U-CON (User-Configurable) Driver offers a variety of check sum options. Here is a brief description of each.
Custom check sums can be created for a small fee. For more information, refer to Technical Support.

2's Complemented sum (8 bit)
The checksum is the 2's complement of the data received. The checksum is 8 bit.

2's Complemented sum (16 bit)
Same as 2's Complemented sum (8 bit) except the checksum is 16 bit.

CRC-CCITT (16 bit)
Cyclical Redundancy Check using: X^16 + X^12 + X^5 + 1 generator polynomial. Commonly used in XMODEM
protocol.

CRC-CCITT-INITO (16 bit) (Reflected in/out)
Same as CRC-CCITT (16 bit) except input and output bytes are reflected and CRC is initialized to 0.

CRC-CCITT-INIT-0xFFFF
Same as CRC-CCITT (16 bit) except that the initialization = 0xFFFF.

CRC-CCITT-INIT-0xFFFF (16 bit)(Reflected)
Same as CRC-CCITT (16 bit) except input and output bytes are reflected and CRC is initialized to 0xFFFF.

CRC-16 (16 bit)
For more information, refer to Custom #3 (16 bit).

CRC-16 (16 bit)(Reflected)
Cyclical Redundancy Check using: X^16 + X^15 + X^2 + 1 generator polynomial. Commonly used in MODBUS
protocol.

CRC-16-INIT1 (16 bit) (Reflected)
Same as CRC-16 (16 bit) except that the initialization = 1.

CRC-32 (32 bit)
Cyclic Redundancy Check using x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 +
x^5 + X^4 + x^2 + x^1 + 1 generator polynomial (Modbus "CRC-32" version)

CRC-32 (32 bit) (Reflected)
Same as CRC-32 (32 bit) except it uses reflected* polynomial.

LRC (8 bit)
Longitudinal Redundancy Check - two's complement of modulus 0xFF sum of all bytes.

LRC ASCII (8 bit)
Like LRC, but for ASCII Hex data. Pairs of bytes, assumed to be ASCII Hex values, are converted to their binary
equivalent before being added to the modulus 0xFF sum.

www. kepware.com

82

U-CON (User-Configurable) Driver Help

MLEN (8 bit)
Adds the number of bytes in the message. The checksum is 8 bit.

MLEN (16 bit)
Same as MLEN (8 bit) except the checksum is stored in 16 bit. For example, if a message is received that has 4
bytes, MLEN (16 bit) would be 4 and it would be stored in a 16 bit field as 0x00 0x04 or 0x04 0x00 (depending
on the format, Hi-Lo or Lo-Hi).

MLEN_INCL (8 bit)
Adds the number of bytes in the message including itself which is 1-byte long (8 bit). For example, if a message
is received that has 4 bytes, then MLEN_INCL would be 4 + 1 = 5.

MLEN_INCL (16 bit)
Same as MLEN_INCL (8 bit) except the checksum is stored in 16 bit. For example, if a message of 4 bytes is
received, MLEN_INCL (16 bit) would be 4 + 2 = 6. MLEN_INCL (16 bit) would be stored as 0x00 0x06 or 0x06
0x00 (depending on the format, Hi-Lo or Lo-Hi).

SUM (7 bit)
Adds the least 7 bits from each byte. The checksum is 8 bit.

SUM (8 bit)
Modulus 0xFF sum of all bytes.

SUM (16 bit)
Modulus 0xFFFF sum of all bytes.

Sum of [Hi Lo] Word Data (16 bit)
Modulus 0xFFFF sum of all words. Words are read in 16 bit Motorola [hi lo] format.

XOR (8 bit)
Bit wise exclusive OR of all bytes.

*CRC Reflected:When reflected polynomials are used, the CRC is computed by processing data from the least
significant bit to the most significant bit. Reflected or reciprocal polynomials are reversed. For example, if the reg-
ular polynomial is:

 x^16 + x^15 + x^2 + 1 (0x8005) which in binary is 1000 0000 0000 0101

then the reflected polynomial will be:

1010 0000 0000 0001 x^16 + x^15 + x^13 + 1

Custom #1 (8 bit)
The C code used to calculate this custom check sum is as follows:

Byte CheckSumCustom_1 (Byte *pData, int nLength)
{
Byte byCS = 0xFF;

for (int nByte = 0; nByte < nLength; nByte ++)
 {
 Byte byTemp = pData [nByte];

 byCS = byCS ^ byTemp;
 byTemp = byCS;
 byTemp = (byTemp > 3) & 0x1F;
 byCS = byCS ^ byTemp;
 byTemp = (byTemp > 3) & 0x1F;
 byCS = byCS ^ byTemp;
 byTemp = byCS;
 byTemp = byTemp < 5;
 byCS = byCS ^ byTemp;
 }

return (byCS);
}

www. kepware.com

83

U-CON (User-Configurable) Driver Help

Custom #2 (8 bit)
This is a variation of the LRC (8 bit) check sum type - binary complement of the modulus 0xFF sum of all bytes.
This can be expressed as:

byCS = ~bySum, or

byCS = 0xFF - bySum,

where byCS is the result and bySum is the modulus 0xFF sum of all bytes.

Custom #3 (16 bit)
This is a variation of the CRC-16 (16 bit) check sum type. Here, the sum is initialized to 0x0000, instead of
0xFFFF as it is in CRC-16 (16 bit)(Reflected).

Custom #4 (16 bit)
This is a variation of the CRC-16 (16 bit) check sum type. Here, the sum is initialized to 0x0000, instead of
0xFFFF as it is in CRC-16. Also, this check summethod searches the frame for a start sequence and end
sequence. DLE characters are used for data transparency.

When using this check summethod, make sure that the whole frame is included in the calculation range. This
driver will search for the start and end sequence within the frame. If the end points are not located, a check sum
of 0x00 0x00 will be used.

The check sum calculation begins after <DLE><SOH> or <DLE><STX>. The characters of the start sequence
are not included in the calculation. The calculation ends after <DLE><ETB>, <DLE><ETX>, or <DLE><ENQ>.
The DLE characters in the end sequence are not included in the calculation.

Character Sequence Included in CRC Not Included in CRC
<DLE><SYN> - <DLE><SYN>
<DLE><SOH> - <DLE><SOH>
<DLE><STX>* - <DLE><STX>
<DLE><STX>** <STX> <DLE>
<DLE><ETB> <ETB> <DLE>
<DLE><ETX> <ETX> <DLE>
<DLE><DLE> <DLE> <DLE> (one)

*If not preceded in same block by transparent header data.
**If preceded in same block by transparent header data.

Custom #5 (8 bit)
This is a variation of the LRC (8 bit) check sum type. Here, control characters (0x00 - 0x1F) are not included in
the summation.

Custom #6 (8 bit)
This is a variation of the SUM (8 bit) check sum type. Here, the raw data is assumed to be in lower-case ASCII Hex
format (0 - 9, a - f). Each pair of ASCII Hex characters is converted to a byte value and summed modulus 0xFF.
Users will typically want to select the "Byte from 2 ASCII Hex chars (lower-case) [hh]" device data format so
that the resulting byte value is placed in lower-case ASCII Hex format.

Custom #7 (16 bit)
The C code used to calculate this custom check sum is as follows:

Word CheckSumCustom_7 (Byte *pData, int nLength)
{
C. CRC and checksum calculation
Use, including checksum:
void CheckSumCustom_7(unsigned char MessageOut[28])
{
unsigned char i;
Word wCRCNChkSum = 0;
MessageOut[26] = 0xFF;
for (i = 0; i < 26; i ++)
 MessageOut[26] = CRC_Byte(MessageOut[26],
 MessageOut[i]);
 MessageOut[27] = 0;

www. kepware.com

84

U-CON (User-Configurable) Driver Help

 for (i = 0; i < 27; i ++)
 MessageOut[27] += MessageOut[i]);

wCRCNChkSum = MessageOut [26];

wCRCNChkSum <= 8;

wCRCNChkSum |= MessageOut [27];

return (wCRCNChkSum);

}
CRC algorithm:
unsigned char CRC_Byte(unsigned char Seed, unsigned char Data)
{
unsigned char j;
for (j = 0; j < 8; j++)
{
 if (((Data ^ Seed) & 1)!= 0)
 {
 Seed ^= 0x18;
 Seed >= 1;
 Seed |= 0x80;
 }
 else Seed >= 1;
 Data >= 1;
}
return (Seed);
}

Caution: If using a variable length data format, this custom check sum command requires an extra byte posi-
tion for the CRC byte in the checksum field. Therefore, while setting up this check sum in the Transaction Editor,
users must specify double the data length in the checksum data length field.

Custom #8 (16 bit)
This is a variation of the SUM (8 bit) check sum type where the output is 2 bytes: [0x30 + high nibble of sum]
[0x30 + low nibble of sum]. For example, the 8 bit sum of the frame [1B 43 30 31] is 0xBF. Thus, the Custom #8
check sum of this frame would be [3B 3F].

Custom #9 (8 bit)
Takes the modulus 255 sum of data bytes, and bitwise OR's the result with 0x80. For example, set the most sig-
nificant bit to 1.

Custom #10 (16 bit)
16 bit version of LRC. Takes the modulus 0xFFFF sum of the data bytes, and returns the 2's complement of result.

Custom #11 (8 bit)
This is a variation of the XOR (8 bit) check sum. With this Custom #11, the intermediate result of each XOR oper-
ation is rotated left by 1 bit.

Custom #12 (8 bit)
This is a variation on the Sum (8 bit) check sum. Input data is assumed to be in ASCII Hex. The data is converted
to hex before the sum, which is then subtracted from 0xFF.

ASCII Character Table

Dec Hex ASCII Key Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII
0 0x00 NUL Ctrl-@ 32 0x20 Space 64 0x40 @ 96 0x60 `
1 0x01 SOH Ctrl-A 33 0x21 ! 65 0x41 A 97 0x61 a
2 0x02 STX Ctrl-B 34 0x22 " 66 0x42 B 98 0x62 b
3 0x03 ETX Ctrl-C 35 0x23 # 67 0x43 C 99 0x63 c
4 0x04 EOT Ctrl-D 36 0x24 $ 68 0x44 D 100 0x64 d
5 0x05 ENQ Ctrl-E 37 0x25 % 69 0x45 E 101 0x65 e

www. kepware.com

85

U-CON (User-Configurable) Driver Help

6 0x06 ACK Ctrl-F 38 0x26 & 70 0x46 F 102 0x66 f
7 0x07 BEL Ctrl-G 39 0x27 ' 71 0x47 G 103 0x67 g
8 0x08 BS Ctrl-H 40 0x28 (72 0x48 H 104 0x68 h
9 0x09 HT Ctrl-I 41 0x29) 73 0x49 I 105 0x69 i
10 0x0A LF Ctrl-J 42 0x2A * 74 0x4A J 106 0x6A j
11 0x0B VT Ctrl-K 43 0x2B + 75 0x4B K 107 0x6B k
12 0x0C FF Ctrl-L 44 0x2C , 76 0x4C L 108 0x6C l
13 0x0D CR Ctrl-M 45 0x2D - 77 0x4D M 109 0x6D m
14 0x0E SO Ctrl-N 46 0x2E . 78 0x4E N 110 0x6E n
15 0x0F SI Ctrl-O 47 0x2F / 79 0x4F O 111 0x6F o
16 0x10 DLE Ctrl-P 48 0x30 0 80 0x50 P 112 0x70 p
17 0x11 DC1 Ctrl-Q 49 0x31 1 81 0x51 Q 113 0x71 q
18 0x12 DC2 Ctrl-R 50 0x32 2 82 0x52 R 114 0x72 r
19 0x13 DC3 Ctrl-S 51 0x33 3 83 0x53 S 115 0x73 s
20 0x14 DC4 Ctrl-T 52 0x34 4 84 0x54 T 116 0x74 t
21 0x15 NAK Ctrl-U 53 0x35 5 85 0x55 U 117 0x75 u
22 0x16 SYN Ctrl-V 54 0x36 6 86 0x56 V 118 0x76 v
23 0x17 ETB Ctrl-W 55 0x37 7 87 0x57 W 119 0x77 w
24 0x18 CAN Ctrl-X 56 0x38 8 88 0x58 X 120 0x78 x
25 0x19 EM Ctrl-Y 57 0x39 9 89 0x59 Y 121 0x79 y
26 0x1A SUB Ctrl-Z 58 0x3A : 90 0x5A Z 122 0x7A z
27 0x1B ESC Ctrl-[59 0x3B ; 91 0x5B [123 0x7B {
28 0x1C FS Ctrl-\ 60 0x3C < 92 0x5C \ 124 0x7C |
29 0x1D GS Ctrl-] 61 0x3D = 93 0x5D] 125 0x7D }
30 0x1E RS Ctrl-^ 62 0x3E > 94 0x5E ^ 126 0x7E ~
31 0x1F US Ctrl-_ 63 0x3F ? 95 0x5F _ 127 0x7F Del

ASCII Character Table (Packed 6 Bit)

Dec Hex ASCII Dec Hex ASCII
0 00 @ 32 20 Space
1 01 A 33 21 !
2 02 B 34 22 ‘
3 03 C 35 23 #
4 04 D 36 24 $
5 05 E 37 25 %
6 06 F 38 26 &
7 07 G 39 27 ‘
8 08 H 40 28 (
9 09 I 41 29)
10 0A J 42 2A *
11 0B J 43 2B +
12 0C L 44 2C ,
13 0D M 45 2D -
14 0E N 46 2E .
15 0F O 47 2F /
16 10 P 48 30 0
17 11 Q 49 31 1
18 12 R 50 32 2
19 13 S 51 33 3
20 14 T 52 34 4
21 15 U 53 35 5
22 16 V 54 36 6
23 17 W 55 37 7
24 18 X 56 38 8

www. kepware.com

86

U-CON (User-Configurable) Driver Help

25 19 Y 57 39 9
26 1A Z 58 3A :
27 1B [59 3B ;
28 1C \ 60 3C <
29 1D \ 61 3D =
30 1E ^ 62 3E >
31 1F _ 63 3F ?

www. kepware.com

87

U-CON (User-Configurable) Driver Help

Tips and Tricks
For more information, select a link from the list below.

Bit Fields: Using the Modify Byte and Copy Buffer commands
Branching: Using the conditional, Go To, Label and End commands
Dealing with Echoes
Debugging: Using the Diagnostic Window and Quick Client
Delimited Lists
Moving the Buffer Pointer
Scanner Applications
Slowing Things Down: Using the Pause command
Transferring Data Between Transactions: Using Scratch Buffers

Bit Fields: Using the Modify Byte and Copy Buffer commands
For efficiency, sometimes protocols pack several device settings into a single byte, sometimes called a bit field.
For example, consider a process control device that has four outputs R0, R1, R2, and R3. Each of these outputs
can operate in either alarmmode or proportional control mode. It is typical for such devices to allow the mode of
all four outputs to be read using a single command that returns all four settings in a single byte bit field. For
example, bit 0 may represent output R0, bit 1 represents R1, and so forth. If a bit is 0, then the output is in alarm
mode, and if the bit is 1 the output is in proportional mode. Likewise, the mode of all four outputs is usually set
with a single command that takes a bit field as an argument.

To read the mode of each output, users should create a tag block with four tags: Mode_R0, Mode_R1, Mode_R2,
and Mode_R3. These tags should have Read/Write access and have a data type of Boolean. The device data for-
mats should be "Bit 0 from byte (00000001)" for Mode_R0, "Bit 1 from byte (00000010)" for Mode_R1, and so
forth. The block read transaction must issue the appropriate read command and then update all four tags. All
four of the update tag commands must have the same data "start position" which points to the byte containing
the output mode settings.

Setting the mode of a single output requires a bit more work. Since our hypothetical set output mode function
takes a bit field that sets the mode of all four outputs, users need to know what mode the other three outputs are
in. This way, users can construct the bit field used in the set output mode command such that all other outputs
are unchanged. For example, to be able to set the mode of output R0, users define the write transaction attached
to the Mode_R0 tag. The first thing that must occur in this transaction is to issue the get output mode command
string and receive the response. The current output mode settings are encoded somewhere in the RX buffer and
are available to users for the remainder of the transaction. After this read response, users need to construct the
set output mode command string in the TX buffer. Somewhere in that command string users will need to place
the output mode bit field. Users get this by issuing a Copy Buffer command that will copy the current settings
from the RX buffer to the TX buffer. Next, users need to modify bit 0 of this byte to set the mode of output R0. The
"Modify Byte" function does just that. It will take the value to be written to the device and modify a bit or set of
bits in the specified byte accordingly. In this case, users can use it to modify bit 0 of the byte by specifying the
bit mask "00000001". Writing 0 to the Mode_R0 tag then results in bit 0 being set to 0, setting R0 to alarmmode.
Writing 1 results in bit 0 being set to 1, setting R0 to proportional control mode. All other bits remain unchanged,
and therefore outputs R1, R2, and R3 remain in the samemode.

Branching: Using the conditional, Go To, Label and End commands
The U-CON (User-Configurable) Driver is used to create transactions that branch off and execute different sets of
commands depending on the data received from a device. Error handling is the most common use for branching.
If data is judged to be good, one set of commands will be executed; if it is judged to be bad, another set of com-
mands will be executed. In the example below, the device is sent a read request of some sort. The device will
return an error code of 0x00 or 0x01. If the error code is 0x00, the device successfully processed the read
request but requires the driver to send back the acknowledgement code 0x06. If the error code is 0x01, the
device failed to process the request. In the example transaction, the error code is examined, the tag is updated
and the acknowledgment is sent if the read request succeeds. If it fails, the request is repeated. If it fails a sec-
ond time, the tag is invalidated and requests are stopped.

STEP COMMAND COMMAND PARAMS DESCRIPTION
1 Write String AB1 Place read request string in TX buffer
2 Transmit Send the request
3 Read Response Wait for terminator 0x0D Get response from device
4 Test Character Position = 4

Test Character = 0x00
Ack receipt of good data or retry

www. kepware.com

88

U-CON (User-Configurable) Driver Help

TRUE action = Go To "Good"
FALSE action = Continue

5 Log Event "Retrying AB1 command" Post message to server's Event Log
6 Transmit Send the last command again
7 Read Response Wait for terminator 0x0D Get response from device
8 Test Character Position = 4

Test Character = 0x00
TRUE action = Go To "Good"
FALSE action = Invalidate Tag

Ack receipt of good data or invalidate tag and give up.

9 End Do not proceed into next section
10 Label Label = Good Marks beginning of good data processing section
11 Update Tag Tag = This tag Update tag with good data
12 Write Character 0x06 Place acknowledgement code in TX buffer
13 Transmit Send acknowledgement

Note: Steps 10-13 are executed only when the device returns an error code of 0x00 (success).

Dealing with Echoes
Some devices operate in echo mode, which is when every byte sent to it is echoed back. Unless told otherwise,
the U-CON (User-Configurable) Driver will ignore such echoes. It is usually perfectly okay to ignore these echoes.
However, some devices will not accept the next byte sent to it until it has sent back the previous character. To
make sure that the driver and device remain in sync in these cases, users must process each echoed byte. For
example, if the command string "AB1" needs to be sent to such a device, it should then send a nine-character
response. A transaction would need to be created like as is shown below.

STEP COMMAND COMMAND PAR-
AMS DESCRIPTION

1 Write Char-
acter

A Place "A" in TX buffer

2 Transmit Send the "A"
3 Read

Response
Wait for 1 char-
acter

Wait for echoed "A"

4 Write Char-
acter

B Place "B" in TX buffer

5 Transmit Send the "B"
6 Read

Response
Wait for 1 char-
acter

Wait for echoed "B"

7 Write Char-
acter

1 Place "1" in TX buffer

8 Transmit Send the "1"
9 Read

Response
Wait for 10 char-
acters

Wait for echoed "1" and nine character command response

10 Update Tag This tag Parse response, accounting for echoed "1" at the beginning of the RX buffer,
and update tag

Note: The reason some devices echo is to provide a means of error checking. To actually perform such error
checking, a Test Character command will need to be included after each Read Response command to make
sure that the returned character is what it is supposed to be. If it is not, users could "Go To" an error handling
section of the transaction. Keep in mind that additional transaction commands will decrease the performance of
the driver.

Debugging: Using the Diagnostic Window and Quick Client
The server's Diagnostic Window and the Quick Client application are indispensable tools for debugging trans-
actions. The Diagnostic Window shows users exactly what was sent and received by the driver during a trans-
action. Common errors (such as a Read Response command configured to receive an incorrect number of bytes
or an incorrect device data format selection) are apparent with the Diagnostic Window. The Quick Client is tightly
integrated with the server, so that users invoke a powerful test client with all of the tags automatically loaded with
one click. With the Quick Client, users can manually control the execution of each transaction.

Follow the instructions below for the recommended method of debugging a new transaction. Note that the server
project should be saved after each edit session.

www. kepware.com

89

U-CON (User-Configurable) Driver Help

1. Double-click on the desired channel in the server and make sure that the Enable diagnostics box is
checked.

2. Next, click on theQuick Client icon on the server's toolbar.

3. Disable all tags in the Quick Client except for the ones in the "_System" and "_Statistics" groups. By doing
this, the Diagnostic Window will not fill up with data from transactions that users are not interested in.

Note: If users have a lot of tags, it may be easier to launch the Quick Client directly fromWindows instead
of from the server. This way, users can manually add the tags they want to test and also specify when
they are tested.

4. Return to the server and right-click on the channel. Select the Diagnostics item to bring up the Diag-
nostics Window. Then, return to the Quick Client and right-click on the tag to which the transaction
belongs.

5. Issue a read or write request, depending on what type of transaction is being tested. The Diagnostic Win-
dow will show users the bytes the driver sent to the device and any response.

Note: For more information, refer to the "Diagnostic Window" help topic in the OPC Server's help doc-
umentation.

Important: If a change must be made to the transaction, users must disconnect the Quick Client from
the server before invoking the Transaction Editor.

6. Next, minimize the Quick Client and perform the edits. Close the dialog only in order to disable the tags
again.

7. After all changes have been made, users can bring the previous instance of the Quick Client back up and
reconnect. The tags should not all need to be disabled again.

8. Check the transaction as before by issuing an asynchronous read or write.

Delimited Lists
Many protocols provide data for multiple values in a list format, generally providing a separate tag for each value.
In these cases, it makes sense to create a Tag Block. A tag block will have a single, common read transaction
that can be used to read data for all its member tags in a single shot. This read transaction will contain a number
of Update Tag commands, one for each of its member tags. If the number of bytes of each data field are fixed,
then parsing the frame is easy. Users must specify the data start byte in each Update Tag command and the
data length in the tag definition. It is more complicated if the length of the data fields is variable: in these cases,
the protocol must provide some sort of delimiter character to mark the end of one field and the beginning of the
next. The U-CON (User-Configurable) Driver driver provides Buffer Pointers and associated command options
to aid in parsing delimited lists. See Also: Tags and Device Data Formats.

Example
For example, users expect the response to a read request to be of the form:

[STX] [value 1 bytes], [value 2 bytes], [value 3 bytes] [ETX]

where the values are ASCII integers of unknown length and the values could range from -100 to 1000.

1. Start by creating a tag block with three tags in it: Tag_1, Tag_2, and Tag3 for values 1, 2, and 3 respectively.
Choose a data type of short for each tag since its range is sufficient to cover the expected range of values. Next,
select the ASCII Integer device data format for each tag. For more information, refer to Tags and Tag Blocks.

Some of the specialized options of the ASCII Integer device data format must be used in this case. For Tag_1 and
Tag_2, choose the Parse to next delimiter format option and then choose the comma (0x2C) as the delimiter.
The Format Properties should appear as shown below.

www. kepware.com

90

U-CON (User-Configurable) Driver Help

2. Since value 3 does not precede a comma, it must have a different termination method. Two equally good
options exist here: users can choose to parse to the next delimiter, where this time the delimiter would be the end
ETX character. Or, users could leave the "Parse to next delimiter" box unchecked and specify "Read up to..." 1
byte from frame end.

3. Next, define the block read transaction. The first set of commands in the transaction will build the read request
in the write buffer. The details of the request are not important for this example. Following these commands will
be a Transmit command to send the write buffer to the device.

4. Next, define a Read Response command to gather the response and store it in the read buffer. In this exam-
ple, users do not know how many bytes to expect but they do know that the response will end with the ETX char-
acter. The command properties will look as shown below.

www. kepware.com

91

U-CON (User-Configurable) Driver Help

5. Once the response has been received and copied into the read buffer, commands must be added to parse the
data and send the result to the appropriate tag. The Update Tag command does just that. There must be an
Update Tag command for each tag in the block. For Tag_1, users know the data starts at byte 2 in the read
buffer. The device data format defined for Tag_1 tells the driver to parse up to the next comma. The command
properties for Tag_1 will look as shown below.

6. Users cannot predict what byte the data for Tag_2 will start on because of the variable length ASCII values, but
they do know value 2 will follow the first comma in the frame. This is where buffer pointers come into play. The
objective is to move the read buffer pointer to the start of value 2. This is done in two steps, the first of which is
accomplished with a Seek Character command. This command is used to move the pointer to the first comma in
the frame.

7. If there was some question of where the delimiter will be found, users can specify a "Go To on failure" Label to
handle the situation.

www. kepware.com

92

U-CON (User-Configurable) Driver Help

8. Next, move the pointer past the comma to the first byte of value 2. This is done using aMove Buffer Pointer
command. In this case, users should perform a relative move one byte from the current position.

9. If users expected values to be separated by a comma space, then they would have entered 2 in Number of
bytes. Now the read buffer pointer points to the first byte of value 2. The Update Tag command for Tag_2 should
appear as shown below.

10. To parse value 3, issue another Seek Character, Mover Buffer Pointer and Update Tag sequence just
like what was done for Tag_2. The full read transaction should appear as shown below.

www. kepware.com

93

U-CON (User-Configurable) Driver Help

Moving the Buffer Pointer
Many devices send data packets that contain multiple pieces of variable length data delimited with some char-
acters.

Example
A read transaction receives the string "01,0010,1.5" with a start byte of 0x02 and an end byte of 0x03. The trans-
action places it into the Read Buffer.

1. If no other buffer pointer operations have been performed, the pointer will point to 0x02 (the first byte).
This is displayed as Packet 02, Byte 1 in the table below.

2. A Seek Character Command searching for a comma would place the read buffer pointer at byte 4. A sec-
ond, identical Seek Character Command (which did not move the buffer pointer forward by 1 byte) would
result in the pointer remaining on byte 4. This is displayed as Packet ',' Byte 4 in the table below.

3. A Move Buffer Command relative 1 would place the buffer pointer at byte 5. This is displayed as Packet 0,
Byte 5 in the table below.

4. A Move Buffer Command relative 1 with the negative box checked (after the Seek Character Command)
would place the puffer pointer at byte 3. This is displayed as Packet 1, Byte 3 in the table below.

5. A Move Buffer Command absolute places the buffer pointer at the absolute byte referenced. This differs
from the relative movement, which adds or subtracts the specified number of bytes to/from the current
buffer location.

a. A Move Buffer Command absolute 8 would place the buffer pointer on byte 8 regardless of the pointer's
current location. This is displayed as Packet 0, Byte 8 in the table below.

b. A Move Buffer Command relative 8 on byte 1 would place the buffer pointer on byte 9. This is displayed
as Packet ',' Byte 9 in the table below.

Packet 02 0 1 , 0 0 1 0 , 1 . 5 03
Byte 1 2 3 4 5 6 7 8 9 10 11 12 13

Note:When working with Read and Write buffers, the buffer pointer will always start at byte 1. When working
with Scratch and Global buffers, the buffer pointer will start where it was left after the last interaction with the
buffer. Users should always move the buffer to byte 1 before starting anything with those Scratch or Global buff-
ers.

Important: Users should be careful when changing the position of the buffer pointer. A buffer bounds error will
occur if the buffer pointer is moved past the beginning or end of the buffer.

www. kepware.com

94

U-CON (User-Configurable) Driver Help

Scanner Applications
Transaction event counters can be especially useful in scanner applications. Typically, scanners will issue a
notification each time an item is scanned – they are not usually designed to be polled. The UCON can be con-
figured to receive and process this sort of data with an unsolicited transaction. The primary function of this
transaction would be to parse the data of interest from amessage and update a tag with it.

This simple design works fine, unless it is possible for the same item or code to be scanned multiple times. The
client will get no indication that multiple scans have occurred. All it knows is that the tag's value has not changed
since the last timestamp. To get around this issue, event counters were introduced into the UCON. Each time an
item is scanned, the unsolicited transaction that was defined for that scanner will be triggered and its event
counter incremented. Users should update two tags in the transaction: one with the data parsed from the unsolic-
ited message and the other with the transaction's event counter value. These tags must belong to a tag block.
The client application will see the event counter tag change each time an item is scanned.

Note: Event counter values are stored in 32 bit buffers. All tags updated from event counters must be configured
with 32 bit, 16 bit, or 8 bit Intel (Lo Hi) device data format.

Slowing Things Down: Using the Pause command
Users may encounter devices that are not capable of operating at the same speed as the server. In these cases,
Pause commands can be added to the transactions to slow things up. In the example below, the device requires
a short pause between each character in the read request "AB1":

STEP COMMAND COMMAND PARAMS DESCRIPTION
1 Write Character "A"
2 Transmit Send first character
3 Pause Time = 50 ms Wait before sending next character
4 Write Character "B"
5 Transmit Send second character
6 Pause Time = 50 ms Wait before sending next character
7 Write Character "1"
8 Transmit Send third and last character of request
9 Read Response Wait for 10 characters Wait for 10 character response to AB1 command
10 UpdateTag Tag = This tag Parse response and update tag

Note: Omitting the Transmit commands in steps 2 and 5 would not produce the desired effect. In that case, the
U-CON (User-Configurable) Driver would slowly build up the TX buffer internally, and then send all three char-
acters in the usual rapid succession.

Transferring Data Between Transactions: Using Scratch Buffers
Some protocols require that a special type of Device Identifier be used in all requests. This Identifier can be
read directly from the device using a special command. A read transaction could be defined to issue this Get
Device Identifier command, and store the returned value in a scratch buffer. All other transactions defined for
that device could copy this value from the scratch buffer to the write buffer. The client application would have to
make sure that the Get Device Identifier tag be read before any other read or write transaction takes place.

Scratch buffers can also be used inWrite Only tags. The U-CON (User-Configurable) Driver does not support
Write Only tags as such, but a tag can be created with both read and write transactions, where only the write
transaction makes a request of the physical device. If the read transaction is empty, the client will report bad data
quality for that tag. A better situation would be for the read transaction to return the last value written to the
device. To do this, select both theWrite buffer and a Scratch buffer in the write transaction'sWrite Data
command. In the read transaction, simply use an Update Tag command with the data source being the scratch
buffer. Keep in mind that this is not a value just read from the device, it is the last value written to the device. If
an Update Tag command is executed before any data has been saved in the scratch buffer, the tag value will be
set to zero.

Important: Unlike a scratch buffer which is associated with one device only, a global buffer is associated with
multiple devices and should be used with caution.

Data Types Description
The U-CON (User-Configurable) Driver can be used to represent a tag's data as any one of the basic types
described below. Choose a data type that is recognized by the client application and will accommodate the

www. kepware.com

95

U-CON (User-Configurable) Driver Help

expected range of data values.

Data Type Description
Boolean Single bit
Byte Unsigned 8 bit value

bit 0 is the low bit
bit 7 is the high bit

Char Signed 8 bit value

bit 0 is the low bit
bit 6 is the high bit
bit 7 is the sign bit

Word Unsigned 16 bit value

bit 0 is the low bit
bit 15 is the high bit

Short Signed 16 bit value

bit 0 is the low bit
bit 14 is the high bit
bit 15 is the sign bit

DWord Unsigned 32 bit value

bit 0 is the low bit
bit 31 is the high bit

Long Signed 32 bit value

bit 0 is the low bit
bit 30 is the high bit
bit 31 is the sign bit

BCD Two byte packed BCD

Value range is 0-9999. Behavior is undefined for values beyond this
range.

LBCD Four byte packed BCD

Value range is 0-99999999. Behavior is undefined for values beyond
this range.

Float 32 bit floating point value.

The driver interprets two consecutive 16 bit registers as a floating
point value by making the second register the high word and the first
register the low word.

Double 64 bit floating point value
String Zero terminated character array

Note: "Data Type" refers to the representation of data values that the server and client applications exchange.
Data exchanged between the server and a device can be formatted in a wide variety of ways, depending on the
data type. For more information, refer toDevice Data Formats.

www. kepware.com

96

U-CON (User-Configurable) Driver Help

Address Descriptions
The U-CON (User-Configurable) Driver does not use the tag address in the usual manner. Normally, a driver
"knows" how to interpret an address string specified by the user, and build read and write requests accordingly.
This is not possible with the U-CON (User-Configurable) Driver since it was not developed for a specific device. It
is up to the user to properly encode an address in each transaction defined in the driver profile. (In many devices
a command code is sufficient, in others, a command code and memory location are required to access a given
piece of data.) The U-CON (User-Configurable) Driver uses the "address" to describe the path relationship
between the tag and device as defined in the Transaction Editor. "Group dot tag" notation is used.

Example
An address of "Group_1.Registers.Register_1" means the tag "Register_1" is in the group "Registers", which is
in a group called "Group_1". "Group_1" is attached to the device. Thus, a user can manually add a tag to the
server, so long as it was previously defined with the Transaction Editor and the path is known. However, this is
generally not necessary since the Transaction Editor automatically invokes the server's auto-tag database gen-
eration feature.

www. kepware.com

97

U-CON (User-Configurable) Driver Help

Error Descriptions
The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation
Missing address
Device address '<address>' contains a syntax error
Address '<address>' is out of range for the specified device or register
Device address '<address>' is not supported by model '<model name>'
Data Type '<type>' is not valid for device address '<address>'
Device address '<address>' is Read Only
Array size is out of range for address '<address>'
Array support is not available for the specified address: '<address>'

Serial Communications
COMn does not exist
Error opening COMn
COMn is in use by another application
Unable to set comm parameters on COMn
Communications error on '<channel name>' [<error mask>]
Unable to create serial I/O thread

Device Status Messages
Device '<device name>' is not responding
Unable to write to '<address>' on device '<device name>'

U-CON (User-Configurable) Driver Error Messages
RX buffer overflow. Stop characters not received
RX buffer overflow. Full variable length frame could not be received
Unable to locate Transaction Editor executable file
Copy Buffer command failed for address '<address.transaction>' - <source/destination> buffer
bounds
Failed to load the global file
Go To command failed for address '<address.transaction>' - label not found
Mod Byte command failed for address '<address.transaction>' - write buffer bounds
Test Character command failed for address '<address.transaction>' - source buffer bounds
Test Check Sum command failed for address '<address.transaction>' - read buffer bounds
Test Check Sum command failed for address '<address.transaction>' - data conversion
Test Device ID command failed for address '<address.transaction>' - read buffer bounds
Test Device ID command failed for address '<address.transaction>' - data conversion
Update Tag command failed for address '<address.transaction>' - <read/scratch/event counter>
buffer bounds
Write Character command failed for address '<address.transaction>' - write buffer bounds
Write Check Sum command failed for address '<address.transaction>' - write buffer bounds
Write Check Sum command failed for address '<address.transaction>' - data conversion
Write Data command failed for address '<address.transaction>' - write buffer bounds
Write Data command failed for address '<address.transaction>' - data conversion
Write Device ID command failed for address '<address.transaction>' - write buffer bounds
Write Device ID command failed for address '<address.transaction>' - data conversion
Write String command failed for address '<address.transaction>' - write buffer bounds
Tag update for address '<address>' failed due to data conversion error
Unsolicited message receive timeout
Unsolicited message dead time expired
Move Pointer command failed for address '<address.transaction>'
Seek Character command failed for address '<address.transaction>' - label not found
Insert Function Block command failed for address '<address.transaction>' - Invalid FB
Unable to save password protected device profile in XML format

XML Errors
XML Loading Error: The number of unsolicited transaction keys exceeds the set key length: <key
length>
XML Loading Error: The two buffers of a <command> are the same. The buffers must be unique

www. kepware.com

98

U-CON (User-Configurable) Driver Help

XML Loading Error: The string '<string>' entered for a Write String command with format '<for-
mat>' is invalid
XML Loading Error: Range exceeds source buffer size of <max buffer size> bytes for a <command>

Address Validation
The following error/warning messages may be generated. Click on the link for a description of the message.

Address Validation
Missing address
Device address '<address>' contains a syntax error
Address '<address>' is out of range for the specified device or register
Device address '<address>' is not supported by model '<model name>'
Data Type '<type>' is not valid for device address '<address>'
Device address '<address>' is Read Only
Array size is out of range for address '<address>'
Array support is not available for the specified address: '<address>'

Missing address
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has no length.

Solution:
Re-enter the address in the client application.

Device address '<address>' contains a syntax error
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically contains one or more invalid characters.

Solution:
Re-enter the address in the client application.

Address '<address>' is out of range for the specified device or register
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically references a location that is beyond the range of supported loca-
tions for the device.

Solution:
Verify the address is correct; if it is not, re-enter it in the client application.

Device address '<address>' is not supported by model '<model name>'
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically references a location that is valid for the communications protocol
but not supported by the target device.

Solution:
Verify that the address is correct; if it is not, re-enter it in the client application. Verify that the selected model
name for the device is correct.

www. kepware.com

99

U-CON (User-Configurable) Driver Help

Data Type '<type>' is not valid for device address '<address>'
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has been assigned an invalid data type.

Solution:
Modify the requested data type in the client application.

Device address '<address>' is Read Only
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically has a requested access mode that is not compatible with what the
device supports for that address.

Solution:
Change the access mode in the client application.

Array size is out of range for address '<address>'
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically is requesting an array size that is too large for the address type or
block size of the driver.

Solution:
Re-enter the address in the client application to specify a smaller value for the array or a different starting point.

Array support is not available for the specified address: '<address>'
Error Type:
Warning

Possible Cause:
A tag address that has been specified statically contains an array reference for an address type that doesn't sup-
port arrays.

Solution:
Re-enter the address in the client application to remove the array reference or correct the address type.

Serial Communications
The following error/warning messages may be generated. Click on the link for a description of the message.

Serial Communications
COMn does not exist
Error opening COMn
COMn is in use by another application
Unable to set comm parameters on COMn
Communications error on '<channel name>' [<error mask>]
Unable to create serial I/O thread

COMn does not exist
Error Type:
Fatal

Possible Cause:

www. kepware.com

100

U-CON (User-Configurable) Driver Help

The specified COM port is not present on the target computer.

Solution:
Verify that the proper COM port has been selected in the Channel Properties.

Error opening COMn
Error Type:
Fatal

Possible Cause:
The specified COM port could not be opened due to an internal hardware or software problem on the target com-
puter.

Solution:
Verify that the COM port is functional and may be accessed by other Windows applications.

COMn is in use by another application
Error Type:
Fatal

Possible Cause:
The serial port assigned to a channel is being used by another application.

Solution:
1. Verify that the correct port has been assigned to the channel.
2. Close the other application that is using the requested COM port.

Unable to set comm parameters on COMn
Error Type:
Fatal

Possible Cause:
The serial parameters for the specified COM port are not valid.

Solution:
Verify the serial parameters and make any necessary changes.

Communications error on '<channel name>' [<error mask>]
Error Type:
Warning

Error Mask Definitions:
B = Hardware break detected.
F = Framing error.
E = I/O error.
O = Character buffer overrun.
R = RX buffer overrun.
P = Received byte parity error.
T = TX buffer full.

Possible Cause:
1. The serial connection between the device and the host PC is bad.
2. The communication parameters for the serial connection are incorrect.
3. There is a noise source disrupting communications somewhere in the cabling path between the PC and the
device.

Solution:
1. Verify the cabling between the PC and the device.
2. Verify that the specified communication parameters match those of the device.
3. Reroute cabling to avoid sources of electrical interference such as motors, generators or high voltage lines.

www. kepware.com

101

U-CON (User-Configurable) Driver Help

Unable to create serial I/O thread
Error Type:
Warning

Possible Cause:
The OPC Server process has no more resources available to create new threads.

Solution:
Remember that each tag group takes up a thread, and that the typical limit for a single process is about 2000
threads. Reduce the number of tag groups in the project.

Device Status Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

Device Status Messages
Device '<device name>' is not responding
Unable to write to '<address>' on device '<device name>'

Device <device name>' is not responding
Error Type:
Serious

Possible Cause:
1. The serial connection between the device and the host PC is broken.
2. The communication parameters for the serial connection are incorrect.
3. The named device may have been assigned an incorrect Network ID.
4. One or more transactions are not configured properly.
5. The response from the device took longer to receive than the amount of time specified in the "Request Timeout"
device setting.

Solution:
1. Verify the cabling between the PC and the device.
2. Verify that the specified communication parameters match those of the device.
3. Verify that the Network ID given to the named device matches that of the actual device.
4. Check that all Read Response command properties are correct. A very common cause for "Device not respond-
ing" errors from this driver is a Read Response command set to wait for more bytes that the device actually
sends. It may also be necessary to place a pause command at the end of transactions that write to the device but
do not get a response. In such cases, the device may need a short period of time to process the write before it will
accept the next request from the driver.
5. Increase the Request Timeout setting so that the entire response can be handled.

Unable to write to '<address>' on device '<device name>'
Error Type:
Serious

Possible Cause:
1. The serial connection between the device and the host PC is broken.
2. The communication parameters for the serial connection are incorrect.
3. The named device may have been assigned an incorrect Network ID.

Solution:
1. Verify the cabling between the PC and the device.
2. Verify that the specified communication parameters match those of the device.
3. Verify that the Network ID given to the named device matches that of the actual device.

U-CON (User-Configurable) Driver Error Messages
The following error/warning messages may be generated. Click on the link for a description of the message.

U-CON (User-Configurable) Driver Error Messages
RX buffer overflow. Stop characters not received
RX buffer overflow. Full variable length frame could not be received

www. kepware.com

102

U-CON (User-Configurable) Driver Help

Unable to locate Transaction Editor executable file
Copy Buffer command failed for address '<address.transaction>' - <source/destination> buffer
bounds
Failed to load the global file
Go To command failed for address '<address.transaction>' - label not found
Mod Byte command failed for address '<address.transaction>' - write buffer bounds
Test Character command failed for address '<address.transaction>' - source buffer bounds
Test Check Sum command failed for address '<address.transaction>' - read buffer bounds
Test Check Sum command failed for address '<address.transaction>' - data conversion
Test Device ID command failed for address '<address.transaction>' - read buffer bounds
Test Device ID command failed for address '<address.transaction>' - data conversion
Test String command failed for address '<address.transaction' - source buffer bounds
Update Tag command failed for address '<address.transaction>' - <read/scratch/event counter>
buffer bounds
Write Character command failed for address '<address.transaction>' - destination buffer bounds
Write Check Sum command failed for address '<address.transaction>' - write buffer bounds
Write Check Sum command failed for address '<address.transaction>' - data conversion
Write Data command failed for address '<address.transaction>' - write buffer bounds
Write Data command failed for address '<address.transaction>' - data conversion
Write Device ID command failed for address '<address.transaction>' - write buffer bounds
Write Device ID command failed for address '<address.transaction>' - data conversion
Write String command failed for address '<address.transaction>' - destination buffer bounds
Tag update for address '<address>' failed due to data conversion error
Unsolicited message receive timeout
Unsolicited message dead time expired
Move Pointer command failed for address '<address.transaction>'
Seek Character command failed for address '<address.transaction>' - label not found
Insert Function Block command failed for address '<address.transaction>' - Invalid FB
Unable to save password protected device profile in XML format

RX buffer overflow. Stop characters not received
Error Type:
Serious

Possible Cause:
The read buffer filled to capacity while waiting for the stop characters specified in the transaction's Read
Response command.

Solution:
Make sure that the correct stop characters are specified in the Read Response command. If the receive frame is of
known length, use the "Wait for Number of Bytes" command option instead.

See Also:
Read Response Command

RX buffer overflow. Full variable length frame could not be received
Error Type:
Serious

Possible Cause:
The read buffer filled to capacity while receiving a frame containing a data length field described in the trans-
action’s Read Response command.

Solution:
Make sure that the data length start position, format, and trailing bytes specified in the Read Response command
are correct.

See Also:
Read Response Command

www. kepware.com

103

U-CON (User-Configurable) Driver Help

Unable to locate Transaction Editor executable file
Error Type:
Serious

Possible Cause:
The Transaction Editor executable file is not in the expected location.

Solution:
Make sure that the Transaction Editor executable (UserConfigDrv_GUI_u.exe) is located in the server's "utilities"
subdirectory. Reinstall the driver if not.

Copy Buffer command failed for address '<address.transaction>' -
<source/destination> buffer bounds
Error Type:
Serious

Possible Cause:
The combination of "start byte" and "number of bytes" properties of the Copy Buffer command have caused to
driver to attempt to access non-existent source buffer elements.

Solution:
Make sure that the Copy Buffer command property settings are correct and that the source buffer contains valid
data when the offending Copy Buffer command is executed.

Failed to load the global file
Error Type:
Serious

Possible Cause:
Driver was unable to create or open a temporary file used to transfer function block data between driver and
Transaction Editor. The file may have become corrupted or was removed while driver was running.

Solution:
Restart the server and retry the last edits with the Transaction Editor.

Note:
Contact Technical Support if error occurs again.

Go To command failed for address '<address.transaction>' - label not found
Error Type:
Serious

Possible Cause:
The specified label does not exist in the present transaction.

Solution:
Make sure the transaction has a Label command of exactly the same name as that of the Go To command's label
property. Labels are case sensitive.

See Also:
Label Command
Go To Command

Mod Byte command failed for address '<address.transaction>' - write buffer
bounds
Error Type:
Serious

Possible Cause:

www. kepware.com

104

U-CON (User-Configurable) Driver Help

The byte position property of the Mod Byte command is not within the current bounds of the write buffer.

Solution:
This command can only operate on bytes placed on the write buffer prior to the execution of this command. Make
sure that the byte position setting is within this range of bytes.

See Also:
Mod Byte Command

Test Character command failed for address '<address.transaction>' - source
buffer bounds
Error Type:
Serious

Possible Cause:
The "Position" property of the Test Character command is not within the current bounds of the source buffer.

Solution:
This command can only operate on bytes received by the last Read Response command when the data source is
specified as the read buffer. Make sure that the position value is not larger than the number of bytes received.

See Also:
Read Response Command
Test Character Command

Test Check Sum command failed for address '<address.transaction>' - read
buffer bounds
Error Type:
Serious

Possible Cause:
The start byte or number of bytes properties of the Test Check Sum command are incorrect and have caused to
driver to attempt to access non-existent read buffer elements.

Solution:
This command can only operate on bytes received by the last Read Response command. Make sure that the sum
of start byte and number of bytes does not exceed the number of bytes received.

See Also:
Read Response Command
Test Check Sum

Test Check Sum command failed for address '<address.transaction>' - data con-
version
Error Type:
Serious

Possible Cause:
A necessary data format conversion failed.

Solution:
If the problem is persistent, try to find another compatible data format. If dynamic ASCII formatting is used, make
sure all necessary format characters are present in the table.

See Also:
Dynamic ASCII Formatting

Test Device ID command failed for address '<address.transaction>' - read
buffer bounds
Error Type:

www. kepware.com

105

U-CON (User-Configurable) Driver Help

Serious

Possible Cause:
The "start byte" property of the Test Device ID command is incorrect and has caused to driver to attempt to
access non-existent read buffer elements.

Solution:
This command can only operate on bytes received by the last Read Response command. Make sure that the start
byte value does not exceed the number of bytes received.

See Also:
Test Device ID
Read Response Command

Test Device ID command failed for address '<address.transaction>' - data con-
version
Error Type:
Serious

Possible Cause:
A necessary data format conversion failed.

Solution:
If the problem is persistent, try to find another compatible data format. If dynamic ASCII formatting is used, make
sure all necessary format characters are present in the table.

See Also:
Dynamic ASCII Formatting

Test String command failed for address '<address.transaction>' - source buffer
bounds
Error Type:
Serious

Possible Cause:
The data source buffer does not currently contain enough characters to perform the string comparison described
in a Test String command.

Solution:
Verify that the transaction has been properly configured and that the driver is receiving the data as expected.

See Also:
Test String Command

Update Tag command failed for address '<address.transaction>' -
<read/scratch/event counter> buffer bounds
Error Type:
Serious

Possible Cause:
The combination of "data start byte" property of the Update Tag command and tag data size have caused to driver
to attempt to access non-existent source buffer elements.

Solution:
This command can only operate on bytes received by the last Read Response command, previously stored in a
Scratch buffer or global buffer, or the 16 bit values stored in event counter buffers. Make sure the sum of data
start byte and the data length (2 for word, 4 for float, and so forth) does not exceed the number of bytes in the
source buffer.

See Also:
Update Tag

www. kepware.com

106

U-CON (User-Configurable) Driver Help

Read Response Command
Scratch Buffer
Global Buffer
Event Counter

Write Character command failed for address '<address.transaction>' - des-
tination buffer bounds
Error Type:
Serious

Possible Cause:
The command caused the driver to attempt to write past the maximum destination buffer limit of 8192 bytes.

Solution:
1. The destination buffer should be of ample size for all but the most unusual circumstance. Ensure that the byte
count of the message being constructed is less than 8192 bytes. If it is, examine the command properties in the
offending transaction. The most common cause of this sort of error is an incorrect Start Byte, End Byte or
Number of Bytes value.
2. Make sure that the number of bytes written by a Write Data command are considered. This is set by the tag's
device data format specification.

Write Check Sum command failed for address '<address.transaction>' - write
buffer bounds
Error Type:
Serious

Possible Cause:
The command caused the driver to attempt to write past the maximumwrite buffer limit of 8192 bytes.

Solution:
1. The write buffer should be of ample size for all but the most unusual circumstance. Ensure that the byte count
of the message being constructed is less than 8192 bytes. If it is, examine the command properties in the offend-
ing transaction. The most common cause of this sort of error is an incorrect Start Byte, End Byte or Number of
Bytes value.
2. Make sure that the number of bytes written by a Write Data command are considered. This is set by the tag's
device data format specification.

Write Check Sum command failed for address '<address.transaction>' - data
conversion
Error Type:
Serious

Possible Cause:
A necessary data format conversion failed.

Solution:
If the problem is persistent, try to find another compatible data format. If dynamic ASCII formatting is used, make
sure all necessary format characters are present in the table.

See Also:
Dynamic ASCII Formatting

Write Data command failed for address '<address.transaction>' - write buffer
bounds
Error Type:
Serious

Possible Cause:
The command caused the driver to attempt to write past the maximumwrite buffer limit of 8192 bytes.

www. kepware.com

107

U-CON (User-Configurable) Driver Help

Solution:
1. The write buffer should be of ample size for all but the most unusual circumstance. Ensure that the byte count
of the message being constructed is less than 8192 bytes. If it is, examine the command properties in the offend-
ing transaction. The most common cause of this sort of error is an incorrect Start Byte, End Byte or Number of
Bytes value.
2. Make sure that the number of bytes written by a Write Data command are considered. This is set by the tag's
device data format specification.

Write Data command failed for address '<address.transaction>' - data con-
version
Error Type:
Serious

Possible Cause:
A necessary data format conversion failed.

Solution:
If the problem is persistent, try to find another compatible data format. If dynamic ASCII formatting is used, make
sure all necessary format characters are present in the table.

See Also:
Dynamic ASCII Formatting

Write Device ID command failed for address '<address.transaction>' - write
buffer bounds
Error Type:
Serious

Possible Cause:
The command caused the driver to attempt to write past the maximumwrite buffer limit of 8192 bytes.

Solution:
1. The write buffer should be of ample size for all but the most unusual circumstance. Ensure that the byte count
of the message being constructed is less than 8192 bytes. If it is, examine the command properties in the offend-
ing transaction. The most common cause of this sort of error is an incorrect Start Byte, End Byte or Number of
Bytes value.
2. Make sure that the number of bytes written by a Write Data command are considered. This is set by the tag's
device data format specification.

Write Device ID command failed for address '<address.transaction>' - data
conversion
Error Type:
Serious

Possible Cause:
A necessary data format conversion failed.

Solution:
If the problem is persistent, try to find another compatible data format. If dynamic ASCII formatting is used, make
sure all necessary format characters are present in the table.

See Also:
Dynamic ASCII Formatting

Write String command failed for address '<address.transaction>' - destination
buffer bounds
Error Type:
Serious

Possible Cause:

www. kepware.com

108

U-CON (User-Configurable) Driver Help

The command caused the driver to attempt to write past the maximum destination buffer limit of 8192 bytes.

Solution:
1. The destination buffer should be of ample size for all but the most unusual circumstance. Ensure that the byte
count of the message being constructed is less than 8192 bytes. If it is, examine the command properties in the
offending transaction. The most common cause of this sort of error is an incorrect Start Byte, End Byte or
Number of Bytes value.
2. Make sure that the number of bytes written by a Write Data command are considered. This is set by the tag's
device data format specification.

Tag update for address '<address>' failed due to data conversion error
Error Type:
Serious

Possible Cause:
A necessary data format conversion failed.

Solution:
If the problem is persistent, try to find another compatible data format. If dynamic ASCII formatting is used,
make sure all necessary format characters are present in the table.

Unsolicited message receive timeout
Error Type:
Warning

Possible Cause:
The unsolicited mode "Receive timeout" expired while the channel was receiving a message. This could be caused
by a delay in part of the message due to network traffic or gateway device, the data source, or an incorrectly con-
figured transaction.

Solution:
Verify that the driver has been configured correctly for the expected messages. In particular, make sure the Read
Response command at the beginning of each unsolicited transaction is set to terminate correctly. The use of
Pause commands in the unsolicited transactions must be accounted for in the timeout setting. If the problem is
due to wire time or hardware issues, increase the "Receive timeout" period accordingly. These messages can only
be seen if the "Log unsolicited message timeouts" setting is checked.

See Also:
Define a Server Channel
Read Response Command
Pause Command

Unsolicited message dead time expired
Error Type:
Warning

Possible Cause:
This is caused when the driver receives an unsolicited message with an unknown key. Once the driver has
received an unknown key, it waits one dead time period for the remainder of the message to come in.

Solution:
This is not necessarily a problem unless the driver was expected to process the message that caused this warn-
ing. If this is the case, users should check that the unsolicited transaction keys are properly defined. If choosing
to ignore messages of this type, be aware that the driver will ignore all other incoming data for one dead time
period after receiving each unhandled message. These messages can only be seen if the "Log unsolicited mes-
sage timeouts" setting is checked.

See Also:
Unsolicited Transactions
Define a Server Channel

www. kepware.com

109

U-CON (User-Configurable) Driver Help

Move Pointer command failed for address '<address.transaction>'
Error Type:
Serious

Possible Cause:
An attempt was made to move a buffer pointer past the current frame bounds.

Solution:
Check the transaction definition.

Seek Character command failed for address '<address.transaction>' - label not
found
Error Type:
Serious

Possible Cause:
The specified character was not found, and the given "Go to on failure" label was not found.

Solution:
Check the transaction definition. Make sure the label specified in the "Seek Character" command has been
defined in that transaction.

Insert Function Block command failed for address '<address.transaction>' -
Invalid FB
Error Type:
Serious

Possible Cause:
The function block inserted into the specified transaction may have since been deleted or renamed.

Solution:
Use the Transaction Editor to recreate the function block if necessary or to correct the name of the function block
referenced in the transaction.

Unable to save password protected device profile in XML format
Error Type:
Serious

Possible Cause:
The device profile of one or more devices is password protected.

Solution:
The purpose of the password is to restrict unauthorized users from viewing and editing a device profile. Saving a
project as XML will expose the information. Thus, save the project as an .opf file or remove all passwords in order
to save as an XML file.

See Also:
Transaction Editor

XML Errors
The following error/warning messages may be generated. Click on the link for a description of the message.

XML Errors
XML Loading Error: The number of unsolicited transaction keys exceeds the set key length: <key
length>
XML Loading Error: The two buffers of a <command> are the same. The buffers must be unique
XML Loading Error: The string '<string>' entered for a Write String command with format '<for-
mat>' is invalid
XML Loading Error: Range exceeds source buffer size of <max buffer size> bytes for a <command>

www. kepware.com

110

U-CON (User-Configurable) Driver Help

XML Loading Error: The number of unsolicited transaction keys exceeds the set
key length: <key length>
Error Type:
Serious

Possible Cause:
1. The key length is incorrect.
2. There are extra unsolicited transaction keys in the XML.

Solution:
1. Verify that the key length is valid.
2. Verify that the keys are valid.

Note:
The project will not load.

XML Loading Error: The two buffers of a <command> are the same. The buffers
must be unique
Error Type:
Serious

Possible Cause:
A buffer is being used twice in a single command.

Solution:
Verify that the buffers are unique.

Note:
The project will not load.

XML Loading Error: The string '<string>' entered for a Write String command
with format '<format>' is invalid
Error Type:
Serious

Possible Cause:
1. Invalid ASCII Hex String from Nibble string.
2. Invalid ASCII String (packed 6 bit) string.

Solution:
1. For ASCII Hex String from Nibble string, only hex characters ('0' - '9' and 'A' - 'F') are allowed in the string.
The string must be an even number of characters.
2. For ASCII String (packed 6 bit) string, the string must consist of characters supported in the ASCII Packed 6
bit table. The string length must be a multiple of four.

Note:
The project will not load.

XML Loading Error: Range exceeds source buffer size of <max buffer size>
bytes for a <command>
Error Type:
Serious

Possible Cause:
The start byte plus the number of bytes exceeds the max buffer size.

Solution:
Verify that the sum of the start byte and the number of bytes is less than the max buffer size.

www. kepware.com

111

U-CON (User-Configurable) Driver Help

Note:
The project will not load.

www. kepware.com

112

U-CON (User-Configurable) Driver Help

Index

_

_UnsolicitedPcktRcvdOnTime 9

1

1-based 32

A

Add 47
Add Comment Command 27
Address <address> is out of range for the specified device or register 99
Address Descriptions 97
Address Validation 98-99
Alternating Byte ASCII String 68
Array size is out of range for address '<address>' 100
Array support is not available for the specified address: '<address>' 100
ASCII 71
ASCII Character Table 85
ASCII Character Table (Packed 6 Bit) 86
ASCII Multi-Bit Integer 71

B

BCD 96
Bit Fields: Using the Modify Byte and Copy Buffer commands 88
Boolean 96
Branching: Using the conditional Go To Label and End commands 88
Buffer Pointers 23

www. kepware.com

113

U-CON (User-Configurable) Driver Help

C

Cache Write Value Command 28
Check Sum Descriptions 82
Clear Rolling Buffer Command 28
Clear RX Buffer Command 28
Clear TX Buffer Command 28
Close Port Command 28
Communications error on '<channel name>' [<error mask>] 101
COMn does not exist 100
COMn is in use by another application 101
Compare Buffer Command 29
Configurable Driver Help 7
Configuration 11, 49
CONTENTS 7
Continue Command 30
Control Serial Line Command 30
Copy Buffer 37
Copy Buffer Command 31
Copy Buffer command failed for address '<address.transaction>' - <source/des-
tination> buffer bounds

100,
104

D

Data Types Description 95
Deactivate Tag Command 32
Dealing with Echoes 89
Debugging Using the Diagnostic Window and Quick Client 89
DEFINE A DEVICE PROFILE 12
DEFINE A SERVER CHANNEL 11
DEFINE A SERVER DEVICE 12
Delimited Lists 90
Demo Mode 8
Device '<device name>' is not responding 102
Device address '<address>' contains a syntax error 99
Device address '<address>' is not supported by model '<model name>' 99
Device address '<address>' is Read Only 100
Device Data Formats 63

www. kepware.com

114

U-CON (User-Configurable) Driver Help

Device ID 9, 25
Device Profile 17
Device Setup 9
Device Status Messages 102
DWord 96
Dynamic Ascii Formatting 67

E

End Command 32
Error Descriptions 98
Error opening COMn 101
Event Counters 23

F

Failed to load the global file 104
False 48-49
Fixed 70
Float 96
Format Alternating Byte ASCII String 68
Format ASCII Hex Integer 70
Format ASCII Hex String 74
Format ASCII Hex String From Nibbles 75
Format ASCII Integer 69
Format ASCII Integer (Packed 6 Bit) 76
Format ASCII Multi-Bit Integer 71
Format ASCII Real 72
Format ASCII Real (Packed 6 Bit) 76
Format ASCII String 73
Format ASCII String (Packed 6 Bit) 77
Format Date / Time 81
Format Multi-Bit Integer 78
Format Properties 69, 72
Format Unicode String 79
Format UnicodeLoHi String 80
Framing 101
Function Blocks 21, 35

www. kepware.com

115

U-CON (User-Configurable) Driver Help

G

Global buffer 22, 52
Go To 27, 32
Go To Command 32
Go To command failed for address '<address.transaction>' - label not found 104

H

Handle Escape Characters Command 33-34

I

Initialize Buffers 22
Insert Function Block 35
Insert Function Block command failed for address '<address.transaction>' - Invalid FB 110
Invalidate Tag 35
Invalidate Tag Command 35

J

Jump 33

L

Label Command 33, 35
LBCD 96
Log Event Command 36
Long 96
LSB 72

M

Mask 101

www. kepware.com

116

U-CON (User-Configurable) Driver Help

Missing address 99
Mod Byte command failed for address '<address.transaction>' - write buffer bounds 104
Modem Setup 9
Modify Byte Command 37
Move Buffer Pointer Command 38
Move Pointer command failed for address '<address.transaction>' 110
Moving the Buffer Pointer 94
MSB 72

N

Network 9, 102
Network ID 102
NULL 73
Number 71

O

Overrun 101
Overview 7

P

Parity 101
Password Protection 14
Pause Command 39

Q

Query/receive 60

R

Read Buffer 31
Read Resonse Command 40

www. kepware.com

117

U-CON (User-Configurable) Driver Help

Read Response
add 40

Rolling Buffer 22
RX buffer overflow 103
RX buffer overflow. Stop characters not received 103
RX buffer overflow. Full variable length frame could not be received 103

S

Scanner Applications 95
Scratch Buffer 21, 31
Seek Character Command 42
Seek Character command failed for address '<address.transaction>' - label not found 110
Seek String Command 43
Serial Communications 98, 100
Set Event Counter Command 44
Short 96
Slowing Things Down 39
Slowing Things Down Using the Pause command 95
Start 32, 71
String 96
System 7
Operating 7

T

Tag Blocks 20
Tag Groups 20
Tag update for address '>'address>' failed due to data conversion error 109
Tags 19
TEST AND DEBUG YOUR CONFIGURATION 14
Test Bit within Byte Command 45
Test Character
add 47

Test Character Command 47
Test Character command failed for address '>'address.transaction>' - source buffer 105
Test Check Sum Command 48, 105
Test Check Sum command failed for address '>'address.transaction>' - data conversion 105
Test Check Sum command failed for address '>'address.transaction>' - read buffer bounds 105

www. kepware.com

118

U-CON (User-Configurable) Driver Help

Test Device ID Command 49
Test Device ID command failed for address '>'address.transaction>' - data conversion 106
Test Device ID command failed for address '>'address.transaction>' - read buffer bounds 105
Test Frame Length Command 50
Test String Command 51
Test String command failed for address '>'address.transaction' - source buffer bounds 106
Tips and Tricks 88
Transaction Commands 24
Transaction Editor 7, 16
Transaction Validation 24
Transaction View 17
Transferring 88
Data Between Transactions 88

Transferring Data Between Transactions Using Scratch Buffers 95
Transmit Byte Command 53
Transmit Command 53
True 49

U

U-CON (User-Configurable) Driver 7, 16
U-CON (User-Configurable) Driver Device Driver Error Messages 102
Unable to create serial I/O thread 102
Unable to locate Transaction Editor executable file 104
Unable to save password protected device profile in XML format 110
Unable to set comm parameters on COMn 101
Unable to write tag '>'address>' on device '>'device name>' 102
Unsolicited message dead time expired 109
Unsolicited message receive timeout 109
Unsolicited Message Wait Time 9
Unsolicited Transaction Keys 60
Unsolicited Transactions 60
UnsolicitedPcktRcvdOnTime 9
Update Server 18, 62
Update Tag Command 53
Update Tag command failed for address '>'address.transaction>' - >'read/scratch> buffer
bounds

106

Updating the Server 62
Using Scratch Buffers 88

www. kepware.com

119

U-CON (User-Configurable) Driver Help

W

Word 96
Write Buffer 32
Write Character Command 55
Write Character command failed for address '>'address.transaction>' - destination buffer
bounds

107

Write Character/Transmit/Pause 39
Write Check Sum Command 55
Write Check Sum command failed for address '>'address.transaction>' - data conversion 107
Write Check Sum command failed for address '>'address.transaction>' - write buffer
bounds

107

Write Data Command 56
Write Data command failed for address '>'address.transaction>' - data conversion 108
Write Data command failed for address '>'address.transaction>' - write buffer bounds 107
Write Device ID Command 57
Write Device ID command failed for address '>'address.transaction>' - data conversion 108
Write Device ID command failed for address '>'address.transaction>' - write buffer bounds 108
Write Event Counter Command 58
Write String Command 59
Write String command failed for address '>'address.transaction>' - destination buffer
bounds

108

X

XML Loading Error: Range exceeds source buffer size of <max buffer size> bytes for a
<command>

111

XML Loading Error: The number of unsolicited transaction keys exceeds the set key
length: <key length>

111

XML Loading Error: The string '<string>' entered for a Write String command with format
'<format>' is invalid

111

XML Loading Error: The two buffers of a <command> are the same. The buffers must be
unique

111

www. kepware.com

120

	Table of Contents
	U-CON (User-Configurable) Driver Help
	Overview
	Demo Mode

	Device Setup
	Modem Setup
	Unsolicited Message Wait Time

	Driver Configuration
	Defining a Server Channel - Step 1
	Defining a Server Device - Step 2
	Defining a Device Profile - Step 3
	Testing and Debugging the Configuration - Step 4
	Password Protection

	Transaction Editor
	Tags
	Tag Groups
	Tag Blocks
	Function Blocks
	Scratch Buffers
	Global Buffers
	Rolling Buffer
	Initialize Buffers
	Event Counters
	Buffer Pointers
	Transaction Validation
	Transaction Commands
	Add Comment Command
	Cache Write Value Command
	Clear Rolling Buffer Command
	Clear RX Buffer Command
	Clear TX Buffer Command
	Close Port Command
	Compare Buffer Command
	Continue Command
	Control Serial Line Command
	Copy Buffer Command
	Deactivate Tag Command
	End Command
	Go To Command
	Handle Escape Characters Command
	Insert Function Block
	Invalidate Tag Command
	Label Command
	Log Event Command
	Modify Byte Command
	Move Buffer Pointer
	Pause Command
	Read Response Command
	Seek Character Command
	Seek String Command
	Set Event Counter Command
	Test Bit within Byte Command
	Test Character Command
	Test Check Sum Command
	Test Device ID Command
	Test Frame Length Command
	Test String Command
	Transmit Command
	Transmit Byte Command
	Update Tag Command
	Write Character Command
	Write Check Sum Command
	Write Data Command
	Write Device ID Command
	Write Event Counter Command
	Write String Command

	Unsolicited Transactions
	Updating the Server

	Device Data Formats
	Dynamic ASCII Formatting
	Format Alternating Byte ASCII String
	Format ASCII Integer
	Format ASCII HEX Integer
	Format ASCII Multi-Bit Integer
	Format ASCII Real
	Format ASCII String
	Format ASCII Hex String
	Format ASCII Hex String From Nibbles
	Format ASCII Integer (Packed 6 Bit)
	Format ASCII Real (Packed 6 Bit)
	Format ASCII String (Packed 6 Bit)
	Format Multi-Bit Integer
	Format Unicode String
	Format UnicodeLoHi String
	Format Date / Time
	Check Sum Descriptions
	ASCII Character Table
	ASCII Character Table (Packed 6 Bit)

	Tips and Tricks
	Bit Fields: Using the Modify Byte and Copy Buffer commands
	Branching: Using the conditional, Go To, Label and End commands
	Dealing with Echoes
	Debugging: Using the Diagnostic Window and Quick Client
	Delimited Lists
	Moving the Buffer Pointer
	Scanner Applications
	Slowing Things Down: Using the Pause command
	Transferring Data Between Transactions: Using Scratch Buffers
	Data Types Description

	Address Descriptions
	Error Descriptions
	Address Validation
	Missing address
	Device address '<address>' contains a syntax error
	Address '<address>' is out of range for the specified device or register
	Device address '<address>' is not supported by model '<model name>'
	Data Type '<type>' is not valid for device address '<address>'
	Device address '<address>' is Read Only
	Array size is out of range for address '<address>'
	Array support is not available for the specified address: '<address>'

	Serial Communications
	COMn does not exist
	Error opening COMn
	COMn is in use by another application
	Unable to set comm parameters on COMn
	Communications error on '<channel name>' [<error mask>]
	Unable to create serial I/O thread

	Device Status Messages
	Device <device name>' is not responding
	Unable to write to '<address>' on device '<device name>'

	U-CON (User-Configurable) Driver Error Messages
	RX buffer overflow. Stop characters not received
	RX buffer overflow. Full variable length frame could not be received
	Unable to locate Transaction Editor executable file
	Copy Buffer command failed for address '<address.transaction>' - <source/dest...
	Failed to load the global file
	Go To command failed for address '<address.transaction>' - label not found
	Mod Byte command failed for address '<address.transaction>' - write buffer bo...
	Test Character command failed for address '<address.transaction>' - source ...
	Test Check Sum command failed for address '<address.transaction>' - read buff...
	Test Check Sum command failed for address '<address.transaction>' - data conv...
	Test Device ID command failed for address '<address.transaction>' - read buff...
	Test Device ID command failed for address '<address.transaction>' - data conv...
	Test String command failed for address '<address.transaction>' - source buf...
	Update Tag command failed for address '<address.transaction>' - <read/scrat...
	Write Character command failed for address '<address.transaction>' - destin...
	Write Check Sum command failed for address '<address.transaction>' - write ...
	Write Check Sum command failed for address '<address.transaction>' - data con...
	Write Data command failed for address '<address.transaction>' - write buffe...
	Write Data command failed for address '<address.transaction>' - data conversion
	Write Device ID command failed for address '<address.transaction>' - write ...
	Write Device ID command failed for address '<address.transaction>' - data con...
	Write String command failed for address '<address.transaction>' - destinati...
	Tag update for address '<address>' failed due to data conversion error
	Unsolicited message receive timeout
	Unsolicited message dead time expired
	Move Pointer command failed for address '<address.transaction>'
	Seek Character command failed for address '<address.transaction>' - label n...
	Insert Function Block command failed for address '<address.transaction>' - ...
	Unable to save password protected device profile in XML format

	XML Errors
	XML Loading Error: The number of unsolicited transaction keys exceeds the set...
	XML Loading Error: The two buffers of a <command> are the same. The buffers m...
	XML Loading Error: The string '<string>' entered for a Write String command w...
	XML Loading Error: Range exceeds source buffer size of <max buffer size> byte...

	Index

