& | MAPware-7000
gl | Getting Started Guide

Your Industrial Control Solutions Source

www.maplesystems.com

T
(Ml J]':
|

For use with the following.

e HMC7000 Series
e HMC3000 Series
e HMC2000 Series
e HMC4000 Series

Maple Systems, Inc. | 808 134t St. SW, Suite 120, Everett, WA 98204 | 425.745.3229

MAPware-7000 Getting Started Guide ii

COPYRIGHT NOTICE

This manual is a publication of Maple Systems, Inc., and is provided for use by its customers
only. The contents of the manual are copyrighted by Maple Systems, Inc.; reproduction in
whole or in part, for use other than in support of Maple Systems equipment, is prohibited
without the specific written permission of Maple Systems.

WARRANTY

Warranty Statements are included with each unit at the time of purchase and are available at
www.maplesystems.com.

TECHNICAL SUPPORT

This manual is designed to provide the necessary information for trouble-free installation and
operation of Maple Systems products. However, if you need assistance, please contact Maple
Systems.

e Phone. 425-745-3229
e Email. support@maplesystems.com
[] WEb www‘maplesvstems.com

MAPware-7000 Getting Started Guide ii

http://www.maplesystems.com/
mailto:support@maplesystems.com
http://www.maplesystems.com/

MAPware-7000 Getting Started Guide iii
Table of Contents
COPYRIGHT NOTICE..... ettt e e ettt e e e e e e ettt e e e e e e e e e s abebbeeteeeeeeeaesaannnneeneeeeeaeseesannnn ii
WWARRANTY -ttt ettt ettt st ettt et sa e bt e s ae e s bt e s ae e s be e sb e e sab e e beesateebeesmteenbeesnneeneenns i
TECHNICAL SUPPORT ..ottt ettt ettt sttt st ettt e sb e st b e st e b e smn e e ne e saneeneesaneeneenane s i
TabIE Of CONTENTS .eeieeiieiiie ettt sttt e et e s bt e e sab e e sateesabeeesabeesanbeeesareeas iii
INtrOdUCEION ... e 4
HIMIC BaSICS.ceiiiiiiiiieiiitiee ettt ettt e s st e e st et e e s sesba e e e e seraeeeessnaaeeessans 4
(oY ={ ol o [o Tl 5 01V T o T Y2 01T o | SR UP PR 5
INStalling MAPWaAre-7000........ccccccuiiieeieiieieeeeiiteeeeeeiteeesesteeeeessbtaeeesesstaeeessasseaeessassaeeesssssneeessnns 8
Creating a Sample Project using Native Laddercccccccceiiiiiiiiiiinnnniiiiiniiiinnnnissnn. 9
INEFOAUCTION ... s e s en e b e e s bt e e s bee e sneeesneeesnenesaneeens 9
CrEate @ NBW PrOJECT .. ciiii e s s s s s e e e e e e e e e e e e e eae e et e ee e e e e aeaeaebeesasssnsaannnnnn 9
Configure the [/O MOAUIEccvi ettt ettt et et et ste e e b e e e te e b e e teeebeeaeeeans 11
Fi¥o o I T2 o i d o [o o] [Tt SRS 12
(12T [o 1T gl o = ol - o Yol <3 USRS 16
(01N LYol =TT o K@ o] =T o1 £ PSPPI 24
TESEING the PrOJECE ... eviiiii it et e e e e te e e e e saaa e e e sentaeeeesnsaaeeeas 33
REVIBW ...ttt 38
Creating a Sample Project using IEC 61131-3........ccccceeiiiiiiiinnmnnnniiieniiinenssmsssissssiieessssssssssssssseens 39
T a oY [V 4T] o TP PUP PR 39
Create @ NEW PrOJECT .. i s s s s s e aeaeseseeenennnannen 39
Fi¥o o I =T 43 o o o [o o [Tt PRSP 42
(oY= 4ol = LYol &SSP 43
(01T Y Yol <11 o @] =T £ PUUUUPRN 53
I T =3 o o L= o o =Tt USSR 55
REVIBW ...ttt et 57
MAPware-7000 Getting Started Guide iii

Introduction 4

Introduction

Welcome to Maple Systems’ MAPware-7000 programming software, an easy-to-use configuration
software for our HMC and MLC products. You can use MAPware-7000 to program a powerful range of
automation and display hardware. This guide will introduce you to MAPware-7000 using two short
projects to familiarize you with the basic elements necessary to start programming.

If you are still deciding which manufacturer or product line will best suit your needs, you can follow this
guide to learn just how easy it is to produce high quality control programs with MAPware-7000. If you
are already a Maple Systems customer and are ready to begin working with your new software, use this
guide as a starting point. After you have run through the Quick Start Projects, you can use this guide as a
reference for building your own projects.

Reading This Manual

This manual is designed as a training manual and reference guide. Some previous exposure to PLC
programming and ladder logic is assumed. In this effort, the manual tries to minimize the amount of
time required to become familiar with the MAPware-7000 programming software. Additional document
resources include the HMC I/O Module Guides, Ladder Logic Guide, IEC Programming Guide, and general
MAPware-7000 Programming Manual. Additionally, help files are accessible from the Help dropdown
menu within MAPware-7000. These are a good source of information when you quickly want to research
a particular feature in the software.

Finally, our technical support staff is available by phone or by email to assist you if you run into any
problems not covered in this manual. Visit our website at www.maplesystems.com for contact
information.

HMC Basics

An HMC is a combination operator-based HMI (human machine interface) with built-in PLC
(programmable logic controller) operation and expandable 1/0.

What is an HMC?

=
[=]

=) e

1/0 Modules

A Graphic HMC, or Human Machine Controller, is the integration of an HMI, PLC, and 1/0 modules combined into one unit.
HMC benefits include lower costs, Class |, Division 2 support, and diverse 1/0 configurations.

HMCs offer flexibility. Rather than using fixed 1/0, the HMC employs expansion slots to customize your
I/0 configuration. Maple Systems offers a wide assortment of expansion modules including combination
digital input/output modules, digital input only, digital output only, analog modules, and high-speed
counter modules. For more information on the different I/O configurations available, see the
appropriate HMC family I/0 Module Guide for your model.

MAPware-7000 Getting Started Guide

http://www.maplesystems.com/

Introduction 5

Backing Up Projects

The MAPware-7000 configuration software does not perform automatic saves of the open project. We
recommend that you frequently save your project as you are working on it to ensure that no work is lost
in the event of a power failure or computer error. When you have completed a project, archive it to
another folder, external network drive, or storage media for safekeeping. To archive your project,
backup both the .mpl file and the corresponding file folder located in the same directory.

Although Maple Systems does provide repair support on all of our products, we cannot guarantee that
we will be able to restore a project from a damaged unit.

Logic Editor Environment

MAPware-7000 includes a full-featured set of logic editors. There are two options for configuring PLC
logic in a MAPware-7000 project: Native Ladder and IEC 61131-3. This selection is made in the
Programming Language drop down list when a project is first created.

Native Ladder Editor

The Native Ladder Logic editor is a Ladder Diagram editor. Ladder logic is a programming language that
represents a program with a graphical diagram based on the circuit diagrams of relay logic hardware.
Ladder logic is commonly used to develop software for PLCs used in industrial control applications. The
name is based on the observation that programs in this language resemble ladders, with two vertical
rails and a series of horizontal rungs between them. Each rung is executed in sequence from left to right.

The programmer can define complex logic operations by building discrete blocks of logic executed either
continuously or by function call. A large library of built-in ladder logic instructions is available to perform
common automation tasks such as math operations, timers and counters, data manipulation, feedback
loops, input scaling, and much more.

For complete documentation on using the Native Ladder editor, refer to the MAPware-7000 Ladder
Logic Guide.

IEC 61131-3 Logic Editors

IEC 61131-3 is a section of the International Electro-Technical Committee (IEC) standard that provides a
definition for implementing PLC programming software. The goal of the standard is to give automation
professionals a familiar environment and set of tools to create PLC programs across vendor platforms.
MAPware-7000 has editors implemented for all five programming languages defined by the standard.

1. Ladder Diagram (LD) — Graphical language that simulates an electrical circuit; program
instructions are attached as discrete elements in the circuit and are executed when “energized”.
Visually and functionally similar to the Native Ladder Logic editor.

2. Function Block Diagram (FBD) — Graphical language based on logic diagrams. Functions are
represented by blocks; complex operations can be built by interconnecting function blocks.

3. Structured Text (ST) — Text-based programming language. Programs are built using keywords,
operators and function calls.

4. Instruction List (IL) — Text-based procedural programming language.

5. Sequential Function Chart (SFC) — Graphical programming language in which program execution
is modeled as a flow chart. Programs are developed by adding blocks to the flow chart.

The logic created using these languages is composed of discrete instructions or logic blocks. In addition,
the programmer can create their own User Defined Function Blocks (UDFBs) to make their logic
modular and reusable.

MAPware-7000 Getting Started Guide

Introduction 6

For complete documentation on using the IEC 61131-3 logic editors, refer to the MAPware-7000 IEC
611313 Programming Guide.

Logic Blocks and Execution Style

Programs created using the above editors are organized into discrete units called Blocks. In addition to
the logic they contain, blocks are differentiated by Execution Style. Execution Style determines when

and how the block is executed. The available Execution Styles are. —I-{Z] Logic Blocks
—-{_11 Power Up

e Power Up . L] Blockd

* Main —{:I Main

e Subroutine g

. . {11 Block2

e Timer Interrupt +CI Subroufine
The current Execution Style of a logic block is indicated by the block’s {1 Timer Interrupt
location within the Logic Blocks folder of the project tree. D UDFB

Main Program Blocks

Main program blocks are the core of the user program. They are executed once during each scan.
Multiple logic blocks can be created (up to 256) and used as Main Program blocks. During execution, the
HMC starts with the first block listed. When completed, it will execute each block in sequence. The
figure below shows a typical scan sequence.

| 1 scan time |

Mode /0 Timers Main Mode /0 Timers Main
Program Program

» TiMme

Where:

e Mode — Determines mode of operation (Run, Halt, etc.)
e |/O-Update and process all inputs and outputs

o Timer — Update all running timers

e Main Program — All logic blocks created under Main

The length of a scan is not deterministic. It depends on what blocks are executed, etc. If precise timing is
required, use a timer interrupt routine.

Power Up Blocks
If Power Up blocks are present, they are executed once at the beginning of the first scan (before main
block execution). Therefore, Power Up blocks can be used to set initial values into registers.

The figure below shows the first scan operation.

Run Mode
Transition
| 1st scan 2" gean...
/0 Timers | Power- | Main Mode /0 Timers | Main
up Program Program
» Time

MAPware-7000 Getting Started Guide

Introduction 7

Subroutine Blocks

Subroutines are not executed unless specifically called by another logic block. Subroutines are useful
when you have a set of commands that should be executed only under certain conditions. A maximum
of 256 subroutines can be created (dependent upon total memory available).

1 scan time
Made Ifo Timers | Main Program Made | I/O Timers “Main
. o Program
[Main waiting) T
Subroutine Call ‘ Subroutine Call
{Input True) Subroutine Return {Input False)
¥
Subroutine Subroutine
[Not Executed)
> Time
Timer Interrupt Blocks

Timer interrupt logic blocks are given the highest priority when the MAPware-7000 program is executed.
The timer interrupt is enabled by going to the Define > System Parameters dialog box and checking
Timer Interrupt Interval.

Define System Parameters P

When enabled, the timer interrupt routine is
executed based upon the interval selected (range is Timer intemupt Interval
1-1000 milliseconds).

All other operations are suspended when the timer

interrupt activates. Use this feature sparingly if you

have a continuous operation that is time-critical. Because timer interrupt routines halt all other
activities, to minimize its impact on the performance of the controller, design the interrupt routine to be
as short as possible and adjust the timer interrupt interval to the maximum setting that still meets the
requirements of your application.

| Enable/Disable 100 = (1-1000) mS

MAPware-7000 Getting Started Guide

Introduction

Installing MAPware-7000

Use the following procedure to install the MAPware-7000 software from the CD-ROM.

1. Turn on power to your development computer.
2. Make sure no other application programs are running.

3. Insert the MAPware-7000 software CD into the computer’s CD-ROM drive.

#=7 Note. if ‘Auto Play’ mode is not set for your CD-
ROM drive, double-click setup.exe on the root
directory of the CD drive using Windows Explorer.
4. The Welcome to MAPware-7000 software screen
appears.
5. Click Next to continue.

6. Select the preferred directory location on your
computer to install the MAPware-7000 software
(default is C:\Maple Systems\MAPware-7000\).

7. Then click Next.

8. Confirm that you are ready to begin installation. Click
Next.
9. Once installation is complete, click Close.

MAPware-7000 v1.00 Installation E3

& Installation Completed!

The netalkation of

(‘?ygig;ris MAPware-7000 v1 00

wes successiuly compleled

MAPware-7000 Getting Started Guide

MAPware-7000 v1.00 Installation [E

=

I
el

Welcome to MAPware-7000
Program Setup!
Buid Corde: 13 January 2011

Thiz instalehon program wil instal
WLAPwere-TO00 w1 OO

TetslFor & Al Users
 dust e

iz 2ronghy sugpested thef eny cpen applications be
chzed before continung.

Click the Next tutton to =2arl the instalslion. You can cick
Ihe Cancel button now if you da rot weant Lo install
MAPware-TO00 v 00 o this Eme.

Thank you for choasing Mepie Systems

MAPware- 7000 v1.00 Installation P_)?_l

St

Select Destination Directory

Pleaze select the okectory whare
MAPvare-7000 ¥1 00 fles are to ba nstalad

©r, clck 1he Next button to accest the defsull setling.

CMapinSysemEAPvareTIo0 Bonwess

Dick zpaca iz bazed on the size of the files 10 nztall. &
negalhe numiber indcales thal theea iz not endugh sk
space 1o nstal the spplication to the specitied drive.

Speca Required: TNk
Currert Free Disk Space. S0d11112k
Free Disk Space After nstall SO0k
<Beck |1 hets Cencel |
MAPware-7000 v1.00 Installation)

..

Ready to Install!

ouare row resdy to nstall
Ma&Pware-TO00 vi 00

hstalistion Diestory
- MepieSy sters WA Pwar 7000

Folder
Mapi= Sysiems

Registration Required

au et regietar MAPware-TO0O v1 00 In ordar 1o cortinge
Ihe ntaliation. If you do not register the softwate, the
natalation wil termirete.

Chck the Next budton bo bagin 1he Registralion snd continue

Ihe irztaliation, the Beck butlon 1o reenter 1he nstalaton
infarrmation, or the Cancal bullon 1o e«

328t Windows Detected

=Back Cancel

Creating a Sample Project using Native Ladder

Creating a Sample Project using Native Ladder

Introduction

This first section will provide step by step instructions for creating a simple test project using the Native
Ladder Logic editor. The project will display and manipulate digital inputs and outputs, as well as take a
16 bit analog input and scale it to a human readable engineering value. The value will also be checked
against limits to determine if it’s within an acceptable range.

For this example, we will use the following items.

e HMC3102A-M

e HMC3-M0808Y0401T expansion module

e MAPware-7000 software running on a PC

e Micro USB configuration cable (PN 7431-0119)

e Simple test circuit attached to the I/0O module to test the inputs and outputs configured in the
project.

The instructions presented here should be general enough that they can be adapted for equipment on
hand.

The project will demonstrate.

e Configuration of input and output channels

e Writing a simple Native Ladder logic block that controls I/O points
e Scaling an analog input

e Configuring a screen with objects that display HMC data

e Navigating between screens

Create a New Project

Starting a new project in MAPware-7000 is straightforward. After MAPware-7000 has started, it will
display the opening screen. This screen displays a list of recent projects and offers the ability to either
open an existing project or create a new one.

To create a new project:

1. Click the New option under the Project category, or select Project > New from the menu bar.
2. When the Select Product dialog box appears, make the following selections.

(Select Product [&J
Product Series : [HMC -]
Product : [Rmcaioz -] Display Orirtation

@ Horizontal

Model : [Hmcat02am -] Veriical
Frogramming |NE‘U\IE Ladder v|
Ls

a. Product Series. HMC

b. Product. HMC3102

c. Model. HMC3102A-M

d. Programming Language. Native Ladder

e. Display Orientation. Horizontal

MAPware-7000 Getting Started Guide

Creating a Sample Project using Native Ladder 10

3. Click OK. At this point, MAPware-7000 will give your project a default name based on the model

number specified and open the Project Summary screen.
E2 MAPware-7000 Softwa
Project View Tools Mode Define Help

O-FHOBE 99w - 2a0E#(F-

DEINEB* R B30+ W2 REF |« > «

Project Information Window ¥ || Project tem Total Mumber
Screens 5
Recent Projects (&) Nodes 1
=23 Al Files Tags 183
{23 Project List Languages 1
21234 HMC3102AMApp m| Alams 0
[#-{_] Base Screens Logic Blocks 1
EJ--{:I Popup Screens
{21 Templates
[#-{Z7 Logic Blocks

®-{23 10 Allocation
{27 Data Window
{7 Tasks

(3 Tags

-1 Network Configura
{23 Alarms

[#-{_] Data Logger

D Languages

{27 Access Level

4. To save the project with a new name, from the menu bar, select Project > Save.

5. Select the directory where you want to store to project and enter a name for the project. We
will use QuickStartExample for our project name.

6. Click Save to save the new project.

. . Toolbars

Project Information

Window

re-7000 Software\OffLine\HMC3102A-M\QuickStartExample.m, ic Blocks\, - [Block = |
ol Project View Tools Mode Block Define Window Help - 8 X
C-eHOBE | & ® & w0 -AOEHIV S VA WO@ KRR BEEE S| I
DENE xSRI ZE80|» %4 9% (¢ «» |k~ [44 -2 1B0aH |
I/0 Instrugtions = Data Transfer ~ Math ~ Compare - Logie™> Conversion - Timer - Counter » Program Control = Functions - Special Instructions - i
Project Information Window R + Block Properties x

>0 FARIE L
Recent Projects

y I 4 Appearance

10 Al Files » Comment Font Microsoft Sans Sesif. 10pt

BD ijECt_L‘St ir Comment Text BackGrou[_] LavenderBlush
BD QuickStart Example 44+ Comment Text Foregrour [l Blue
[E-{_]] Base Screens

4 Desi
B Screent (i Bloc::mName Block 1
#-{_7 Popup Screens Block Type Main

{1 Templates
=21 Logic Blocks .
{23 Power Up Main Work Area

Main

{17 subroutine . .
3 Timer Internup Properties Grid
-{Z3 10 Allocation)) .]
—{_7] Data Window
D Tasks
] Tags b
-2 Metwork Configurz
{1 Alarms
-{Z] Data Logger

. . . i Block Name
Il + | Specifies name of the selected screen.

L T —
3 b

-||18 B I8 S -B-A-B-5-HB < > |Statel '|In;ertMode English (United States) ~

‘ Mode: Offline ’7 Scratchpad area ’7 Screen area

MAPware-7000 Getting Started Guide

Creating a Sample Project using Native Ladder 11

Configure the I/O module

The first thing to set up in this new project is an 1/O expansion module. This is done in the 10 Allocation
window.

1. Expand the 10 Allocation node in the Project Information Window, then click the Expansion
folder.
Project Information Window X | Slot Name
Slot1 Mot Installed
Recent Projects O Slot2 Mot Installed
=23 Al Files Slot3 Not Installed
BD Project List Slotd Mot Installed
21 QuickStart Example.mpl Slot5 Not Installed
{ [-[1] Base Soreens
{21 Popup Screens
I I [Expansion
2. The HMC3102A-M has five expansion slots, but we will only be using one of them. This is listed
in the Main Workspace window, as shown above. Double click Slot1 in the list to open the 10
Allocation window for this slot.
3. Inthe 10 Allocation window, select HMC3-M0808Y0401T from the Model dropdown.
4,

Click the Configure button at the bottom of this window to configure the channels we will use.
'ug 10 Allocation @

Base Unit | Slot [Siot2 | Slot3 [Slotd [Siat5 |

Image

Model | HmC3 M208Y0401T -

Description

8 Digital inputs (2 high speed pairs), 8 Digital
outputs {2 PWM output, & Relay type), 4
Analog inputs (Voltage 0-10V, 0-5V, Curent 4

-20mA, 0-20mA, Thermocouple, RTD), 1

[F] Dewnload Configuration Settings

Add tags for X, YW and MW used for expansion modules.

5. tlick the Analog tab.

HMC3-M0808Y0401T Configuration

Digtal |Analug I

Channel [input Channell. =]

]

Type | Mot Defined -

Normalisation Factor 0 +| (0-100)

We will use Input Channel 0 with a 0 to 5 V input range. Make sure Input Channel0 is selected in
the Channel dropdown menu and select Voltage(0-5V) in the Type dropdown menu.

Note: You must scroll down in the Type dropdown menu to find the Voltage(0-5V) option.

Type Voltage(0-5V) hd

MAPware-7000 Getting Started Guide

11

Creating a Sample Project using Native Ladder 12

7. Click Confirm to save this selection. Note that the selection now appears in the Settings Preview
section at the bottom of the window.

Settings Preview

Channels Configuration
HSE Channell Not Defined

HSC Channel2 Not Defined
PWM Channell Not Defined
FWM Channel2 Not Defined
Analog Input Channel0
Anzlog Input Channel1 Not Defined

8. Click Close in the Configuration window. In the 10 Allocation window, check the Download
Configuration Settings checkbox.

we [O Allccation L

Base Unt | Slatl
Model | HMC3M080870401T -

Dascription

M’|-\':BG Configuration Seflings

o Add tags for X/, Yial and M/ used for expansion madules

Configure 0K Cancel

9. Click OK in the 10 Allocation window to complete the allocation.

Doing this adds the selected module to the project, allocates a set of /O module tags in the tag
database, and sets the default values of those tags according to the selected configuration. For example,
the settings above will create a tag called Slot01-CHO_Analog_IP_Type at address MWO0160 and set the
initial value of this tag to 6, which is the configuration register setting for the 0 to 5V input range. The
raw input value can then be read from the tag named Slot01-CHO_AnalogIPReg at address XW0111.

For more information on I/0 modules and associated tags, see the appropriate [/O Module Guide for
your series of product.

Add Tags to the Project

Tags are names assigned to internal memory registers of the HMC, contacts of an expansion module,
and any external PLC data registers/coils. Some system tags are predefined when you first begin a
project. Other tags are created by the programmer. For example, you must create and assign a tag to
every PLC memory address that you wish to read/write. When using the optional I/0 Expansion
modules, tags are created in order to use them. The Tag Database collects and stores all tags for review
and editing.

Once a tag is assigned, you can easily link any object (i.e. bit lamp, numeric register, etc.) to the tag. Tags
have several advantages.

e Tags provide an organized method of tracking all memory addresses used in a project.

e Tags are much more descriptive of functionality than the name of the memory address.

e Tags are easily edited, should a change be required.

e Tags can be exported and imported into other MAPware-7000 projects, regardless of which
HMC/MLC unit is selected.

MAPware-7000 Getting Started Guide

12

Creating a Sample Project using Native Ladder

13

Once defined, the tag name can be used throughout the project to refer to a particular register, without

needing to remember its memory address.

In Native Ladder projects, tags are defined to a specific address in the HMC’s memory. These addresses
are grouped into different address spaces according to how a tag is intended to be used. Examples are;
D-registers (general purpose data registers for 16- or 32-bit data), B-registers (single bit internal
registers), and S/SW-registers (system tags that control how the HMC hardware functions).

In addition to the tags automatically generated for the 1/O card, we will create custom tags to display
values on the HMC screen and do calculations within Ladder Logic blocks.

1. Click the Tags folder in the Project Information Window to open the Tag Database.

Project Information Window x

Tag Name
Recent Projects e
=23 AlFies TagMNo Tag Name
-0 Project List 1 Language
= Q.id(Starthample 2 Logger memory % usage
il--{_] Base Screens
?JC] Popup Screens 3 Logger memory full status
{1 Templates L) Logger memory clear status
~@Fmw 5 RTC status
#-{] Logic Blocks
1] 10 Allocation 6 COM 1 status
{1 Data Window 7 COM 2 status
EO i —
.23 Tags 8 Historical alam count
= 9 Screen trigger register
(] Alarms 10 Screen saver time
| Data Logger
+{‘3] Lanaua f;e 1 RTC day of morth

Tag Address

Tag A
2 Re
2 Re
bi Re
b Re
bit Re
bit Re
bit Re
2 Re
2 Re
2 Re

(X

Re

2. To add a tag, right-click in the list of tags and select Add from the context menu, or click the Add

Tag button up top.

3. The Add Tag window is displayed. This window is used to configure the parameters for the new

tag.

o Node Name — Specifies the device in
which the tag is located. In this example,
there is only one Node, the HMC3102A-
M itself. If we had configured an
external device in the Network
Configuration window, such as another
PLC, it would be available to select in
this dropdown list.

o Tag-Name — Enter a descriptive name
for the tag.

o Register/Coil Type — Pick a memory
range to use for the tag.

o Tag-Type — Select between a Boolean
two state tag (Coil or Bit addressed
Register), or a Register tag (i.e. a byte,
word or double word tag).

Register — Memory address of the tag.

Add Tag

Node Mame
Tag - Name
Register/Coil

Type
Tag-Type

Register

Bytels)

——————]

[[HMC31024-M] Nore (-) -
Rawlnputint Max 40 chars
Data Registers +| Read write
(@ Register (7) Coil or Bit addressed Register
Size: 4 bytes [00000-04055]
D0o00oD 0 =
[Auto Add Number of Tags 1
[4—B)ftest21vords} v]

Byte(s) — Specify the size of the tag (byte, word, or double word).

MAPware-7000 Getting Started Guide

13

Creating a Sample Project using Native Ladder

14

4. We will add the following tags to the project using the Add Tag window.

Register / Register | Byte(s) L.
Name X Description

Coil Type (address) | (length)
Rawlnputint |Data Registers |DO0000 |4-Bytes |Integer register to contain raw analog input
RawlnputFloat |Data Registers |D0O0002 |4-Bytes |Floating point format tag version of Rawlnputint
Rawlow Data Registers [D0O0004 |4-Bytes |Smallest possible value input register can have
RawHigh Data Registers |D0O0006 |4-Bytes |Largest possible value input register can contain
Englow Data Registers |DO0008 |4-Bytes |Smallest possible value of scaled input
EngHigh Data Registers |DO0010 |4-Bytes |Largest possible value of scaled input
ScaledInput Data Registers |D00012 |4-Bytes |Scaled input value.
HighLimit Data Registers |D00014 |4-Bytes |High limit to test ScaledInput against
LowLimit Data Registers |D0O0016 |4-Bytes |Low limit to test ScaledInput against
DisableScaling |Internal Coils |B00000 |Coil Disable (ON) / Enable(OFF) Scaling Logic
EnablelLimits |Internal Coils |B00001 Coil Enable (ON) / Disable (OFF) limit logic

a. The Node Name is not modified, as there are no other nodes in our project and all tags are
local.

b. Type Rawinputint in the Tag-Name field and select Data Registers from the Register/Coil
Type drop down.

c. This first tag will be at Register 0, but for each following tag we will increment the address
by 2, as each tag is 4 bytes (32 bits) long, and each Data Register is 2 bytes (16 bits) in
length.

d. Select 4-Bytes(2-words) from the Byte(s) dropdown menu.

e. Click Add. The tag is added to the tag database, and the Add Tag window remains open.

f. Change the Tag-Name to RawinputFloat and increment the Register by 2.

g. Click Add again.

5. Continue this process for the rest of the listed tags above. When adding the DisableScaling and
EnablelLimits tags, the Register/Coil Type must be changed to Internal Coils.

6. Once all tags have been added, click the Close button. Any typos can be fixed by double-clicking
on the tag to open the Edit Tag dialog box.

Initializing Tags with Power-On Tasks

To perform the scaling operation in this sample project, we need to initialize the tags used to define the
input and output scales. There are two primary places available to perform initializations in MAPware-
7000.

e InaPower-On Task
e |naPower Up Logic Block

We will use a set of Power-On Tasks. Tasks are specifically predefined actions taken by the controller,
such as writing a value to a tag register, displaying a new screen, turning a bit on/off, etc. The number of
tasks is limited only by the total amount of memory available in the controller. Each task has two
fundamental components: the action taken when the task activates, and the triggering mechanism that
starts the action.

MAPware-7000 Getting Started Guide

14

Creating a Sample Project using Native Ladder 15

1. Click the Tasks folder in the Project Information Window to open the task editor.

Praject Information Window x Select Task Tasks

Recent Projects | Goto Screen - @ PowerOn Tasks

=3 Al Files Goto Screen 1
& %{ijj::tiﬁ:.‘ial&aqﬂem Sereen Operations
{1 Base Screens
-3 Screent
{1 Popup Screens
-{{7] Templates
am S e
=-{21 Logic Blocks
i-{Z] Power Up
=3 Main Screen Name: T -
i L7 Block 1
{-[1] subroutine
(2] Timer Interrupt () Global Tasks
=-{11 10 Allocation
i-{7] Base

B0

(x][*]®)

{21 Network Configuration
-{7] Alarms
[

Help e

Software Help Ipdate Help
There are two Tasks sections in this window. Power-On Tasks are executed only once when the HMC
first powers up. Global Tasks are executed continuously while the HMC is running. Notice that there is a
default Power-On Task that tells the HMC which screen to display first.

2. Make sure the Power-On Tasks radio button is selected.
Tasks

(@ Power-On Tasks

3. From the Select Task dropdown list, select the Write Value to Tag task.
Select Task

Wiitte Value to T |
Goto Screen

Add a Constant Value to a Tag
Subtract a Constant Value from a Tag
Add Tag Bto Tag A

4. Inthe Tag selection, choose RawLow from the dropdown or click the [-) button to the right of
the dropdown to open the Select Tag window.

Tag Operations
Tag: [D00004 (RawLow) -0
[Select Tag . =]
Tag Name Rawlow Tag Address DODD04
Data Type Attribute Port Node Category
Register ReadOnly Com1 HMC3102A-M || Defautt
bEsERenTEE Register-Bt || WitsOnly || Com2 User Defined
Coil ReadWrite || Ethemet
[Hide Unused Tags
No Tag Name Tag Address Data Type Aitribute Port Node Category
1 Rawinputint D00000 Register ReadWite - HMC3102A-M User Defined L
2 RawlinputFoat DooD02 Redgister ReadWite - HMC3102A-M User Defined
3 Rawlow DOo0004 Register ReadWite - HMC3102A-M User Defined
4 RawHigh D00006 Register ReadWrite - HMC3102A-M User Defined
5 Englow DO00008 Register ReadWite - HMC3102A-M User Defined
6 EngHigh Dooo10 Register ReadWite - HMC3102A-M User Defined
7 Scaledinput Doon12 Redgister ReadWite - HMC3102A-M User Defined
8 HighLimit Do0014 Register ReadWite - HMC3102A-M User Defined
9 LowLimit D00016 Register ReadWrite - HMC3102A-M User Defined
10 Slet01-CH1_HSC_CorfigReg MW0100 Register ReadWite - HMC3102A-M User Defined
< n] »

MAPware-7000 Getting Started Guide

15

Creating a Sample Project using Native Ladder 16

5. In the Number field, enter 0.
Number: O 0-4294367295

6. Select Float from the Type dropdown list.
Type: Float -
7. Click the Add button. The task now appears in the Power-On Tasks list.

Tasks

@ Power-On Tasks

Goto Screen 1
Write Oto Tag RawlLow

8. Repeat this process to add Power-On Tasks that initialize the tags in the table below with the
values shown. Make sure to set the Type to Float for each task.

Tag Value Type Notes
Rawlow 0 Float Minimum analog input value
RawHigh 65535 Float Maximum analog input value (16 bit resolution)
Englow 0 Float Minimum scaled engineering value (0 Volts)
EngHigh 5.0 Float Maximum scaled engineering value (5 Volts)
HighLimit 4.5 Float Initial high limit
LowLimit 0.5 Float Initial low limit

9. When complete, the list of Power-On Tasks should look like this.
Tasks

@ PowerOn Tasks

Goto Screen 1

Write Oto Tag Rawlow
Write 65535 to Tag RawHigh
Write Oto Tag Englow
Write Sto Tag EngHigh
Write 4.5to Tag HighLimit
Write 0.5to Tag LowLimit

Ladder Logic Blocks

With the tags defined and initialized, it is time to put them to use in a ladder logic program.
Scaling Analog Inputs

The first rung of the logic block will scale the raw input from Analog Input Channel 0 of the
HMC3-M0808Y0401T I/O card to an engineering value of 0 to 5 volts. This is done by moving the raw
input into a local tag, converting it to a floating point number, and then using the Scale instruction to
scale the value.

1. Expand the Logic Blocks folder in the Project Information Window, -{:l Logic Blocks
then expand the Main folder. ; g ;:‘ner P
2. MAPware-7000 creates a default block in the Main folder called

L5 Block 1
Block 1. Click the folder for this block to open the Ladder Logic : {1 subroutine
editor. Pl

{:l Timer Interrupt

3. Select NC (Normally Closed) Contact from the I/O Instructions [kl -
dropdown on the instruction menu, or click the it icon on the —
Common Objects Toolbar. Then click directly to the left of the ! —
connection point for rung 1 to place the NC Contact. Lt
p g p . BOO000
{1

MAPware-7000 Getting Started Guide

16

Creating a Sample Project using Native Ladder 17

4. The Default operand selection window will open. Select the DisableScaling tag, then click OK.

The L] button in the popup window will open the Select Tag window used in the previous
section to help you find the required tag.

Default operand selection [&J
Operand A
Address BODOOD —
MName DisableScaling I B m—
. . BO00DD
Do not show this again and use default operand addresses 1
Cancel DisableScaling

—d a o~

Note: Tag names are truncated by default to 6 characters in the logic editor window. To get the
entire tag name to display, select Tools > Preferences > Project Global Settings from the menu
bar and increase the Number of tag name characters to be displayed in Instruction setting to
the maximum 20 characters.

This rung of logic can now be turned on and off with the DisableScaling tag. It will execute when
DisableScaling is off, and be skipped if DisableScaling is on.

Because our engineering values represent voltages from 0 to 5 volts, we will need them to be floating
point numbers. Before scaling, the raw input must be moved into a Data Register and converted to
floating point format. To move the input value into a data register, use the Move DWord instruction.

For more information on the specific instructions used in the following steps, see the MAPware-7000
Ladder Logic Guide.

5.

6.

Select Data Transfer > Move DW from the instruction menu, then click directly to the right of
the Normally Open Contact to place the instruction. Select Slot01-CHO_AnaloglPReg as Operand
A (Source), and Rawinputint as Operand B (Destination). This will move the 16-bit resolution
raw analog input data into the tag we have created to work with the data.

-

23 o

0 0
1 X0 MOV-DW DO0000 ad
DisabieScaling Slot01-CHO_AnaloglPR Rawinputin
n o — - — — o
4 Operand A(Source)
Type Register
Address X0
Comment (A)
Name Slot01-CHO_AnaloglPReg
Tag Index Type None
4 Operand B (Destination)
Address DO0000
Comment (B)
Name Rawinput Int
Tag Index Type None

Before placing the next instruction, we need to place a Vertical Link, also called a branch, after
the contact and before the move instruction. Click the Vertical Link icon [in the Common
Objects Toolbar, then click between the NC Contact and the Move DWord instruction to place

MAPware-7000 Getting Started Guide

17

Creating a Sample Project using Native Ladder 18

the Vertical Link.
[y

|

1F
.M.
1}
End

11+

7. To the right of this link, place an Integer to Float instruction (Conversion > Integer to Float from
the instruction menu).

8. Configure Operand A with the Rawinputint tag and Operand B with the RawinputFloat tag. As
the name of the instruction implies, this will convert our raw input from an integer to a float.

Detutoperandseection S 8
Operand A
Address DO000D E]
Name Rawlnputint
Operand B
Address pO0D02
Name RawlnputFloat E
Do not show this again and use default operand addresses

9. Another vertical link is required to add a third instruction below the Integer to Float instruction.
Again, click the Vertical Link icon and then click immediately to the left of the Integer to Float
instruction.

10. To the right of this vertical link, place a Scale instruction (Functions -> Scale). Click OK to accept
the default operand selection.

MAPware-7000 Getting Started Guide 18

Creating a Sample Project using Native Ladder 19
The Scale instruction has three operands. These are used to perform a linear mapping of the input
(Operand A), to the output (Operand C). The figure below shows a graphic representation of the Scale
instruction with two data points, n=2.
y axis = output scale
; P
y(x)=mx+b
S SO OO N S
X axis = input scale
® p(
W
The input value x (Operand A) is mapped to an output value y(x) (Operand C) using the relationship
shown. m and b, the slope and offset of y(x), are determined by four tags starting at the address
specified in Operand B. These correspond, in consecutive order according to tag address, to the
parameters. x,, X,, Y1, V2, as shown in the figure.
11. In the Instruction Properties panel, the Type property will need Instructicn Propertics
to be changed to Float. and the Data size property to 2 before B2 L
selecting our tags. The Data size specifies the number of points S D o
to use in the linear mapping. This appears as n in the instruction. _ : _ Finis fs) forgive
12. Operand A is the input, or x in the figure. For this operand use ot —
the output of the Integer to Float instruction (RawinputFloat).) 3':._“
13. Operand B is the starting address of a block of four registers. Type Register
The first of these registers defines the start of the input scale e o
(the x coordinate of P, in the figure), the second register defines 'T:;rﬁm - mmnu
the end of the input scale (the x coordinate of P, in the figure), 4 OperandB
the third register defines the start of the output scale (the y *;;jrfri’r ?::;W
coordinate of P, in the figure), and the fourth register defines Name Rawlow
the end of the output scale (the y coordinate of P, in the figure). ‘ E,?.:a:'dc DOO012
Conveniently, we’ve already defined a block of four consecutive et f_:::‘ﬂ_
tags for this purpose, starting with the tag. RawLow at address Tag Indest Type None

D00004.

Tag Name Register Coordinate
Rawlow D00004 X1
RawHigh D00006 X2
Englow D00008 V1
EngHigh D00010 V2

Select RawLow as Operand B.

MAPware-7000 Getting Started Guide

4 Size

19

Creating a Sample Project using Native Ladder 20

14. Operand C is the output, or y(x) in the figure. Select tag ScaledInput for Operand C.

#=7 You must change the instruction type to Float before assigning operands, because the instruction’s
default type is a 2 byte integer. Attempting to select our previously created 4 byte float type tags before
changing the instruction’s type to float will result in duplicate tags being created.

This completes the setup of the scaling operation. If scaling has not been disabled, this rung will copy
the raw analog input into a local tag, convert the data into floating point number, and finally scale it
from a raw 16 bit binary number (range from 0 to 65535) to an engineering value (from 0 to 5 volts).

i]
BO0000 0 0
—| /| X011 MOV-Dif D000 -
DisableScaling| Siet01-CHO_AnsloglPR Rawlnputin
0 0
1+ 1 00000 INT - » FLOAT D00002 =
Rawlnputin RawlnputFloa
o = o
00
000002 { RawlnputFloat) L
- H 0.0 Seale-F 000012 Lo
' (n=2) Sealedinput
DO0004 { Rawlow)
= n o i o -

Checking Output Limits

Next we will add the high and low limit logic to control two digital outputs that will indicate when the
analog input is either too high or too low. This logic will be enabled or disabled using an enable bit
(EnableLimits) in an input contact. If the output coil instructions were placed on the same rung as this
enable contact, the outputs would be forced OFF whenever the enable bit is OFF. We would instead like
the outputs to be free to toggle states even if EnableLimits is disabled. To accomplish this, the logic will
be placed in a separate subroutine logic block, and the enable contact will be used to control whether or
not the block is called (evaluated).

Create a new Subroutine logic block.

1. Right-click the Subroutine folder and select New Logic Block from the context menu.

(] Logic Blocks
L) Power Up
L] Main

(] Blod: 1

3 |
(] Timer Inter Mew Logic Block]
(] IO Allacabon - i

2. Block 2 is created and a new editor window is opened.
= -I_7 Logic Blocks

{:l Power Up
—{:l Main
D Block 1

— {:l Subroutine

{:l Timer Interrupt

This subroutine will have two lines. One to check the high limit and one to check the low limit. The first
rung will be used to check if the scaled input value is above the high limit.

MAPware-7000 Getting Started Guide

20

Creating a Sample Project using Native Ladder

21

Click the NO Contacticon 1F inthe common objects toolbar, then click the input to rung 1 in
the logic editor to place the contact.

=) u |u)
BOODOD
o o

Select the Always on (M00512) system bit. This bit is set on by the processor and will ensure

that this rung always executes.
(Default operand selection [ﬁj

Operand A

Address MDD512

L]

Name Aways on
Do not show this again and use default operand addresses
oK Cancel

Select the Greater Than instruction from the Instruction menu (Compare > Greater Than) and
click to the right of the NO Contact. Click OK to accept the default operand selection.

MO0512 1] 1]
DO0D0D > DO0002 -
Always on T-D0 T-D2

The Type property for the Greater Than instruction will need to be changed to Float before
assigning operands to ensure that duplicate tags are not created. Do this in the Instruction
Properties grid.
Then select Scaledinput for Operand A, and HighLimit for Operand B.

Instruction Properties

EAMENEE N

4 Design

4+ Data Properbes

4 Operand A
Type Register
Address D0oo12
Commaent {A)
MName Scaledinput
4 Operand B
Type Register
Address DD0014
Comment (B)
Name HighLimit

If the Scaledinput value is above the high limit, the logic will set an output on the I/O card. A
standard output coil instruction is used for this purpose. Click the Output 1} icon in the
Common Objects Toolbar.

Click to the right of the Greater Than instruction to place the Output.
e — - = = :A—B—' o
BO0OO1

0 0
DO0012 > DO0014 b———+h
Sealedinpu HighLimi

o o o

MAPware-7000 Getting Started Guide

21

Creating a Sample Project using Native Ladder 22

10.

11.

12.

13.

14.

15.

16.

17.

Select Slot01-OP_Coil_00002 (Y01002) as the tag controlled by this output coil and click OK.
—8—

Default operand selection

Operand A
Address YD1002

=

Name Slot01-OP_Coil_00002

Do nat show this again and use default operand addresses
(5] [coma)

This is the coil controlling the first relay output on the 1/0O card (terminal Y2).

To complete this subroutine, we just need to add the logic to test the lower limit. We will start

rung 2 by making a copy of rung 1. Right-click to the left of the input on rung 1. From the context

menu select Copy All Instructions > Rung.

MO0512 0
1 — DO0OT2 >
Al ~n

Scaledinpu

1 Duplicate Block
Delete Block
Close Block

| Copy All Instructions 3 || Rung |

[, Paste Ctrl+V Line
Right-click rung 2. From the context menu, select Paste. This will put a copy of the instructions
from rung 1 on rung 2.

Click the second Greater Than instruction to select it. Then right-click to delete it or press Delete
on youDr keyboard.

0

MO0512

Always on

0
Doooi2
ScaledInpu

0
D0ooo14
HighLimi

Sl

Y01002
—O—
ot01-0P_Coil_00002

0
MO0512

Always on

1]
01002
O

SlotD1-0P_Coil 00002

Select a Less Than instruction (Compare > Less Than) to place in the open space and accept the

default tags.
0 0
MO0512 0 0 Y1002
1 000012 > Do0014 ——
Always on Scaledinpu Highlimi g4oi01-0P_Coil_00002
0 0
MO0512 0 0 Y01002
2 000000 < 000002 ——
Always on T-00 T-02 Shot01-OP_Coil_00002

In the Instruction Properties grid, set the Type property to Float, Operand A to Scaledinput, and
Operand B to LowLimit.
Change the Output instruction coil address to Slot01-OP_Coil_00003 (Y01003).

Because this logic block is a subroutine, it must end with a Subroutine Return instruction. From

the instruction menu, select Program Control > Subroutine return.
bl o=] AR+ 1R 123 B A

limer = Counter = | Pregram Contral =| Functions = Sp
G Subroutine call
E] Subroutine return

ForR FOR

MAPware-7000 Getting Started Guide 22

Creating a Sample Project using Native Ladder 23

18. Click anywhere on rung 3 to place the instruction.

E * -

This combletes fhe Iogic forrthe sdbroutrine Iogic blotk. The combleted bIock shoulrd look like

this:
Block 2
]]
MO0512 0 0 Yo1002
1 D00012 5 DO0D14 —C—
Always on Scaledinpu Highlimi 540401-0P_Coil_00002
0 - = = = = . 0
MO0512 0 0 Y01003
2 D00012 < DO001S
Always on Scaledinpu Lowlimi glot01-0P_Coil_00003
3

19. Finally, we must add a rung to Block1 that will call the subroutine. Click the folder for Block1 in
the Project Information Window to reopen the Main Block 1 editor.

—{:l Logic Blocks
¢ o~{20 Power Up

D Subroutine
{23 Block 2

20. Place ;;n NO Contact on rung 2 that can be used to enable/disable the logic rung we are about to

create.
flu

. o
500000
— |——=

21. Select EnableLimits to use as the tag for this contact and click OK in the tag selection window.

This will allow this rung of logic to be turned on and off during runtime.
Default operand selection I.&J

Operand A

Ty

Address BOD0DO1

G

Name EnableLimits

Do not show this again and use default operand addresses

oK Cancel
22. Place a Subroutine call instruction (Program Control > Subroutine call) on the output of this
contact.
‘imer » Counter = | Prograrn Centrel =| Functions = Sp
——————————————— u
n:cl.‘: @ Subroutine call BOO001
Scales CALL L
q T Subroutine retum 2 e bielinits { Block 2)
z ableLimi
ram AR

MAPware-7000 Getting Started Guide

23

Creating a Sample Project using Native Ladder 24

23. Make sure that the Block Name property for the subroutine call instruction is set to Block 2.
[Instruction Properties

3|41 0w O

4 De=zign
+ Subroutine Name _

Block Namea Block 2

This completes the logic needed for this sample project. The completed logic block (Block 1) should now
look something like this.

0

BODODO 0
T a0 11 MOV-Dw 000000 -
DisableScaling Slot01-CHO_AnaloglPR Rawlnputin
0 0
1+ H Dooooo INT - = FLOAT Doooo2 -
Rawlnputin RawlnputFloa
T
0
- || 000000 (T-D0) Scale-5W/ 000002 -
v (n=1) T-D2
_ 0 . 000001 (T- D_1)
BOD001 CALL
._| Sl .
2 o (Block 2)
EnableLimits

This is a good time to compile and save the project to make sure there are no errors. To do this, either
click the compile icon ‘§§‘, select Project > Compile, or hit F9. A successful compile will show a
Compilation Successful message.

Information ==
0 Compilation Successful

If there are any compile errors, they will be listed in the output window.

Errors and Warnings °2 Errors AO Warning

5. No. Block Mame Rung Mumber Emor Description
1 Block 1 3 Open circuit for Instruction.
2 Block 1 3 Open circuit for Instruction.

Fix any errors before moving on.

Create Screen Objects

To see what the logic is doing in real time, we will create HMI screens to display information. The first
screen will be used to display the digital I/0 points. It will show the current state of input channels X0
and X1 and control the outputs Y4 and Y5

1. Inthe Project Information Window, click to expand the Base Screens folder. By default, Screenl
is already present.

MAPware-7000 Getting Started Guide

Creating a Sample Project using Native Ladder 25

2. Click the Screenl subfolder to display the work area for Screen1.
Drawing Toels = Quick Buttons + Show Data = Edit Data ~ Advanced Objects = Clock Objects ~ @j e g e

Project Information Window X

Recent Projects 8]

=] Al Files -
=1 Project List
-] QuickStart Example mpl

=-{_1] Base Screens
]
D Screen2
{21 Popup Screens
{7 Templates

m

JEEl R - >0®®=9 W/~

Labels

Before adding data display objects to the screen, we will add labels so that it is clear what data the
screen is displaying. There are two text objects in MAPware-7000 — Multilingual Text and Text.
Multilingual Text uses Windows fonts and supports the Languages feature, which allows you to select
up to nine languages. The Text object has more animation features, but fewer font options. We will use
Multilingual Text objects for our labels.

1. Select Drawing Tools > Multilingual Text from the Draw menu, then click in the work area to
place the Multilingual Text object.

ﬂ MAPware-7000 Software\OffLine\HMC3043A-M\QuickStartExample. mpl\Base Screens\Screenl - [Screen [1 : Screenl
o Project View Edit Screen Toels Mede Draw Layout Define Window Help
O-FHOBE &% S wo -APS® PN B0 @
DENERxEE RaD|» % P «» PR ETF L2
Drawing Tools =| Quick Buttons = Show Data = Edit Data = Advanced Objects = Clock Objects - @J e € &

Selector ® f\j
Line

©

Sample Text
Rectangle 0
Ellipse o
Rounded Rectangle ole mol
Multilingual Text |
Picture

Tet

SH>eedss

»l®®<o @ i

2. This text vﬁvi_l_l-"r;tr-(-)vide a title for the window. In the Properties grid, select the Font property and
then click the ellipsis button to the right. Change the font size to 48 point.

Fent - l b g
FEI Font atle Sae
- Reguiar %
= . | 5| o
Baskerville Old Fuce Narrew Bald e J
Bavhaus 95 Narrow B itai = |23
Multilingual Text Properties Bell MT Bold %
‘Berin Sars FB -| morgrane - = -
EEPYINSIE JO -
4 Animation r—]
Visibility Animstion No (IEEE AaBbYyZ:
« Appearance ! —
Background Colour [] 26 || Viesem .
Border No i
Border Calor [] |
Flzsh Mo Hash
> [T Avial. 26250t @]
Language English (United States)
Text Sample Text
Text Alianment Center

MAPware-7000 Getting Started Guide

25

Creating a Sample Project using Native Ladder

26

3. Change the Text property from Sample Text to Digital Inputs/Outputs.

Multilingual Text Properties

EANENE N

4 Animation
Visibility Animation Neo

4 Appearance
Background Colour [26
Border No
Baorder Color o
Flash No Aash
Font Adial, 26 25pt

I Text Digitial Inputs / Outputs I

TERT ATQTRTT TEwer

4. Use the position boxes to expand the text object as needed to display the entire text. Use the

Center along Screen’s Horizontal toolbar icon = to center the title on the screen.

Digital Inputs/Outputs

5. Create a copy of this Multilingual Text object to use as a label for the input section. Right-click
the object and select Copy from the context menu. Then right-click elsewhere on the screen and

select Paste from the context menu. Click and drag the copy to a new location on the screen.

6. Change the Font Size property to 22 point and the Text property to Inputs.

7. Continue to make copies to create the following labels as shown [Inputs, Outputs, X0:, X1:, Y4:,

and Y5:].
Digital Inputs/Outputs
Inputs Outputs
XO0: Y4:
X1: ¥Y5:
Bit Lamps

With the labels in place, we will now add bit lamps to monitor the state of the two inputs.

1. Click the Bit Lamp icon [‘:'J , then click the screen to the right of the label for X0..

B\

a [[

¢ Digital
; Inputs
T

XO: : Onn

Jen]

MAPware-7000 Getting Started Guide

26

Creating a Sample Project using Native Ladder 27

2. Inthe properties grid for this Bit Lamp, change the Style property to From Picture Library.

Bit Lamp Properties X

4 Animation
Visibility Animation No
4 Appearance

Border Yes
Language English {United States)
4 Design

Id 1
Mame EBit Lamp

4 Lamp Properties
FremFictureLibraryOFF Nelmage.bmp
FremPFictureLibraryON Nolmagebrrp
Simulation

Style | From Picture Library I
Tag Address
Tag Name DefaultCoil

4 Layout

3. Click the field for the FromPictureLibraryOFF property, then click the ellipsis button L] to open

the I|brary browser Select any of the lamps, then click OK.
Picture Libeary ot

II

9 @ R Digital

(‘ (\ (\ 4 Lamp Properties

_. _ Nolmage bmp =
3) FromPictureLibraryON Nolmage bmp InPUtS
Simulation On

il.!.i | xo. @l

Cancel. Hew

Note: This will automatically select the corresponding ON image for the FromPictureLibraryON

property.
4. Inthe Tag Name property for the Bit Lamp object, select Slot01-IN_Coil_00000 as the tag to
use.
Tag Address X01000
Tag Mame Slot 01-IN_Coil _00000

5. Make a copy of this bit lamp and place it to the right of the X1: label.
6. Change the Tag Name property of the new Bit Lamp object to Slot01-IN_Coil_00001.

Toggle Bit Objects

Next, we will add Toggle Bit objects to control two outputs.

1. From the Draw toolbar select Advanced Objects > Buttons > Bit Action > Toggle Bit. Click to the
right of the label for output Y4 to place the Toggle Bit button.

Digital Inputs / Outputs

Inputs Outputs

o -]

X0 @ o Toggle

2. Inthe properties grid for this Toggle Bit object, change the Feedback Tag property to Yes. This
allows a tag to control the appearance of the Toggle Bit object on the screen. It can be set to the

MAPware-7000 Getting Started Guide

Creating a Sample Project using Native Ladder

same tag that the object is controlling, or to a different tag.
4 Button Properties

Button Style Generic Square
Enable Control Bit No
Feedback Tag Yes >
Feedback Tag Address S00011
Feedback Tag Name DefaultCoil
3. Select Slot01-OP_Coil_00004 for both the Feedback Tag Name property and the Tag Name
property.
4 Button Properties
Button Style Generic Square
Enable Control Bit No
Feedback Tag Yes

Feedback Tag Address YO1004
Feedback Tag Name | Siot01-OP_Coil_00004 |

Simulation On
ask Toagle
4 Design
Id 1
Name Toaggle
Layout
4 TagProperties
Tag Address YO01004
Tag Name Slot01-OP_Coil_00004

4. Inthe Appearance - Feedback Tag On section, change the On Text property to ON.

a ﬁnmram-Fwﬁka
On Text m
On Text Background Colowr [19

On Text Border Style Raized
On Text Colour o

» O Text Fant Adal, 12pt
On Text Pattern Jo

Dn Text Pattern Colour o

5. Make a copy of the Toggle Bit object and place it to the right of the Y5: label.
6. Inthe properties for the new Toggle Bit object change both the Feedback Tag Name and Tag

Name properties to Slot01-OP_Coil_00005.
4 Button Properties

Button Style Generic Square
Enable Control Bit No
Feedback Tag Yes

Feedback Tag Address YO1005

Feedback Tag Name ISIotm-OP_Coil_DOOOﬁ I

Simulation On
Task Toggle
4 Design
Id 2
Name Togale
- Layout
4 TagProperties
Tag Address Y01005
Tag Name [Siot01-0P_Coil_00005 |
== 1| -O
7. Use the alignment toolbar options | = 07 0o | & 0o 8= & Bk & to neaten up the
screen.
Digital Inputs/Outputs
Inputs Outputs
X0: Y4 o]
x1: (@) Y5 o]

MAPware-7000 Getting Started Guide

Creating a Sample Project using Native Ladder

Duplicating a Screen

To save time setting up the next screen, we will duplicate this first screen and use it as a starting point

for the second.

1. Right-click the Screenl folder in the Project Information Window and select Duplicate from the

contexfc menu.

() GuickStart Examy @ ‘

—-{_] Base Soeens

Jj@ | & Hi
-] Popup Sere Close
! '—I Templates Delete

L1 FmP
=-{L1 Logic Block| Duplicate
: :_l Poweer Rename

=1 Main ° T L T | Fa o s |]

You should now see two screens listed in the project tree.
=] QuickStart Examy
Ela Base Screens

: I:| Screend

I:| Screen2

e

The editor screen has changed to the new Screen2, even though it looks exactly the same as
Screenl, because it is a duplicate.

Before moving on to Screen2, we need to add a navigation button to Screenl that opens
Screen2. Click the Screenl folder to switch back to the Screenl editor window.

From the Draw toolbar, select Quick Buttons > GoTo Screen.

Umwlng Tools = | Quick Buttons = | Show Data = Edit Dat

Project Infarmatig|» | GeTo Screen
*4 GoToMext Screen
I Recent Projec| £ GoTo Previous Screen
Click in the lower right of the screen to place the navigation button.

In the Property Grid for the GoTo Screen button, change the On Text property to Analog, and
the Screen Name property to Screen 2.

Goto Screen Properties

224 N
4 Animation
Visibility Animation No
4 Appearance
Language Englizh (United States) H H
+ Ropetance- Fooluck T Digital Inputs/Outputs
On Text
On Text Background Color L] 19
On Text Border Style Raised Inputs Outputs
On Text Color o
On Text Font Adial, 12pt
On Text Pattern o xo: @ Y4 oN
On Text Patiern Color o =) J
4 Button Properfies
Button Style Generic Square - 18 .
Enable Coniral Bit No X1: Y5 ﬂ
Feedback Tag No
Sereen Nome

Screen Number

This completes Screenl. Screen2 will be used to monitor analog input channel 0, along with the scaling

naog |

and limits functionality created earlier in the logic blocks.

MAPware-7000 Getting Started Guide

29

Creating a Sample Project using Native Ladder 30

7.

8.

10.

11.

Click the Screen2 folder in the Project Information Window.

Project Information Window X

Recent Projects (8]
=+{1 AllFiles
-] Project List
—D QuickStart Example
H= D Base Screens

H = - R Srreene
Screen2, looking exactly the same as Screenl without the GoTo Screen button, will appear in
the work area.
To edit the text of an existing label, click the label to open its property grid. Then enter the
desired text in the Text property. Edit the title of Screen2 so that it reads Analog Inputs.
Change the Inputs label to Input Values, the XO0: label to Raw Input:, the X1: label to Scaled
Input:, the Outputs label to Limits, the Y4: label to High Limit (Y2):, and the Y5: label to Low Limit
(Y3):. Adjust the size of the text objects as needed to display the full text.
Copy and paste to create four more new labels. Set the text to Scaling, Eng. High:, Eng. Low:,
and Enable Limits:.
Move around your labels, Bit Lamps, and Toggle Bit objects to the approximate locations shown
below.

Analog Inputs

Input Values Limits
Raw Input: High Limit (Y2): ﬂ,
Scaled Input: Low Limit (Y3): il
Scaling Enable Limits:
Eng. High:
Eng. Low:

Numeric Displays

Next we will configure Numeric Display objects to show the raw input value and the scaled input value.

1.

From the Common Objects toolbar, click the Numeric Display icon & , then click to the right of
the Raw Input: label.

,\3
m

; Ana
®

: Input Values
i Rawv Input:
Scaled Input:

E

In the properties grid for this Numeric Display object, set the Font property to 10 x 14 and the
Tag Name property to Slot01-Ch0_AnaloglIPReg. In the Format section, change the Number Of

MAPware-7000 Getting Started Guide

30

Creating a Sample Project using Native Ladder

31

Digits to 5.

Register Value DisplayData Properties

Bl E % wa

4 Animation
Colour Animation No
Flash Animation No
Visibility Animation Neo

4 Appearance
Background Colour [_] 26
Border None:
Flash No Hash
Fent

4 Format 0

Digits After Decir O
Number O Digi: 3
Text Colour 0
4 Design

Dizplay Data I'-'eqﬂ'ies-

Data Type Unsigned [0 To 4294967295]
Display Leading Zerc No
Hide Data No
Tag Address XW0111
4 Layout

3. Create a copy of this Numeric Display object and paste it directly below to use as the Scaled

Input: display.

4. In the properties grid for the Scaled Input: numeric display, change the Format > Digits After
Decimal property to 2, the Data Type property to Float, and the Tag Name property to

Scaledinput.

Register Value DisplayData Properties

=4l «x & &

Input Values

Raw Input 99999
Scaled Input; Ei99§ . 99-:

Numeric Entry

Animation
Celour Animation No
Flash Animation No
Visibility Animation No
rance
Background Colowr [26
Border
Flash
Font
Format
Digits After Deci
Numbes Of Digat
Text Colour
Design

Display Data Propegy

Data Type
Display Leading Zero WO

Hide Data No

Tag Address D00012

S—

Next we will place two Numeric Entry objects next to the Eng. High: and Eng. Low: labels. The Numeric
Display object simply displays a register value. The Numeric Entry object displays a register value and
allows the user to modify the register value. These two Numeric Entry objects will allow the user to
modify the engineering scale during runtime.

MAPware-7000 Getting Started Guide

31

Creating a Sample Project using Native Ladder

32

1. From the Common Objects toolbar, click the Numeric Entry icon &, then click to the right of the

Eng. High: label.

Ana

Input Values

Raw Input: 99999
Scaled Input: *999.99

Scaling
Eng. High:

H—mnzEa~rIee=e d/,

2. Inthe properties grid for the Numeric Entry object, set the Font property to 10 x 14, the Tag

Name to EngHigh, the Data Type to Float, the Format > Number Of Digits to 5, and the Format

> Digits After Decimal Point to 2.

. Register Data Entry Properties

EEPINE NN

4 Animation
Visibility Animation No
2 Appearance
Background Colour 126
Border None
4 Format 52
Digits After Decimal Point 2
MNumber Of Digits 5
Text Colour o
4 Data Entry Properties
Enzble Control Bit No
Hide Data No
Keypad Yes
Maximum Value 999999999
Minimum Value -999999999
Screen Name Numeric Keypad
Screen Number 65001
Tag Address DO00010
Tag Name
4 Desian

3. Create a copy of this Numeric Input object and paste it directly below the original to create a

Numeric Input for EngLow:. Change the Tag Name property from EngHigh to EnglLow.

The last section of Screen2 will display the limit indicators controlled by the ladder logic program. The

existing Bit Lamp and Toggle Bit objects will be modified for this section. Two Numeric Entry objects will

be added, allowing the limits to be adjusted.

4. Change the Tag Name property for the HighLimit bit lamp from Slot01-IN_Coil_00000 to Slot01-

OP_Coil_00002. Change the Tag Name and Feedback Tag Name properties for the HighLimit

toggle switch from Slot01-OP_Coil_00004 to Slot01-OP_Coil_00002 as well.

5. Change the Tag Name property in the LowLimit bit lamp from Slot01-IN_Coil_00001 to Slot01-

OP_Coil_00003. Change the Tag Name and Feedback Tag Name properties for the LowLimit

toggle switch from Slot01-OP_Coil_00005 to Slot01-OP_Coil_00003.

6. Copy and paste one of the toggle bit objects and place it next to the Enable Limits: label.

MAPware-7000 Getting Started Guide

32

Creating a Sample Project using Native Ladder 33

7. Change both the Feedback Tag Name and Tag Name properties in the Enable Limits: toggle bit
object to EnableLimits.

Genefic Square
Enable Contrel Bit No
Feedback Tag Yes

Limits e
Feedback Tag Addres: BOOOO1
Feedback Tag Mame

High Limit (Y2):
Low Limit (Y3): =

Layout
4 Tag Properfies

-
Enable Limits: on | T s
8. Create a copy of the Eng. High: Numeric Entry object and paste it to the right of the High Limit
(Y2): Toggle Button object. Change the Tag Name property in this new Numeric Entry object
from EngHigh to HighLimit. Repeat to create a LowLimit Numeric Entry object.
Limits
High Limit (Y2): [@)] [on| ts9s.99
Low Limit (Y3): [@) on] 995.95
Enable Limits: on

9. To complete the second screen, add a GoTo Screen button allowing the operator to navigate
back to Screenl. Select Quick Buttons > GoTo Screen from the Draw toolbar. Click in the lower
right corner of the screen to place the button.

10. In the property grid for the new button, set the On Text property to Digital and the Screen
Name property to Screenl.

gnldl e o i
Larguage English [United Ste
Analog Inputs e L
Input Values Limits O Teoct Backpr Ll TH
O Tt Border © Risimsd
Raw Input: 99999 High Limit (Y2): [on] 999,99 AT :ﬂum

Scaled Input: 999.99 . _ T P p
Low Limit (Y3): [N 2999.99 | OnTen Faties E D

Scaling Enable Limits: on|
Eng. High: +99s,99
Eng. Low: +£999.99

Bulton Properbes
Bution Style Genevic Squars
Enable Control E Mo

Feadback Tag No
Screen e [Scrmen]
Digital %u'rn'-' Mlumkar]

This completes the set up for the second screen. Save and Compile to check for errors. The project is
now complete and ready to be downloaded to the HMC hardware.

Testing the Project

Test Hardware Setup

Install the HMC3-M0808Y0401T expansion module into the expansion slot of the HMC3102A-M.
Connect the HMC3102A-M to a 24VDC power supply. Connect the 0 and 24VDC connectors on the
HMC3-M0808Y0401T to the 24VDC power supply.

See the HM(C3000 I/0 Guide and appropriate Quick Start Guide for more detail on how to install the
expansion module.

A simple test circuit to control the inputs and view the outputs is shown below.

MAPware-7000 Getting Started Guide

Creating a Sample Project using Native Ladder

34

L1
L2

HMC30434-M

24y
v

GHD

Fower_Supply

L1 [25V |
12 gy |

Variable Power_Supply

r—— Vout
T

av |

VO —x
=
*

=
a3
<

HMC3_MOBOEYO40LT

V2+
N2+
N2-
12—
Va-
AGHD
Wi+
N3+
H3—
15

AGND

If indicator LEDs or lamps are not available, the continuity function on a digital multi-Meter can be used

to test the state of the relay outputs. For outputs Y2, Y3, and Y4, test continuity between C1 and the
output pin. For output Y5 test continuity between C2 and Y5. Do not connect 24V to C1 and C2 in this

case.

Downloading the Project

This step assumes that you are using a USB download cable. You may also download to the HMC via
Ethernet, but additional steps are required to ensure that your computer and HMC are on the same IP

Subnet.

See the MAPware-7000 Programming Manual for more detail on downloading via Ethernet.

To download the project.

1. Connect a Micro USB download cable (PN. 7431-0019) between your programming computer

and the HMC USB Slave Port.

MAPware-7000 Getting Started Guide

34

Creating a Sample Project using Native Ladder

35

2. Click Project > Transfer > Download to display the Download to device dialog box.

Download to device

Mode: Serial Settings
Serial
USB
Ethemet
Dowrload Options
Firmware { Firmware download is necessarv if new protocol on Network
Configuration is added or changed
Project
Application [Data
Ladder [E] Fent [] Ethernet Settings
Device Settings
Automatically put unit in halt mode before download
Automatically put unit in run mode after download
[Initialize kesp memery are sfter download
[Initialize 3l device registers except keep memory after download
| 0%
< [ama] v
Ready

L

a. Under Download Options, check Firmware.

b. Under Project, check Application and Ladder.

c. Under Device Settings, check Automatically put unit in halt mode and Automatically put

unit in run mode.

Click the pgyvnload button.

Warning =

The device will be stopped and the existing application in the device will be overwritten
Are you sure you want to continue with the download?

[F] Do not show this message again

7/

0%

Note: You can check the Do not show this message again box to hide this warning message on

future downloads during the current session.
Click OK. The file will begin downloading.

66%

[(Options <<] [Dowrlozd | [Abet][Close

<« [Cm] v

| Downloading application |

When complete, the HMC3102A-M will reinitialize and display the application.

Digital Inputs/Outputs

Inputs Outputs
X0: Y4: off
X1: @ Y5: off

Analog Inputs

Input Values Limits
Raw Input: o High Limit (Y2):
Scaled Input: .
caled Inpu ®% ow Limit (Y3):
Scaling Enable Limits:
Eng. High: 5.80
Eng. Low: .08

4.08

0.60

o]

MAPware-7000 Getting Started Guide

35

Creating a Sample Project using Native Ladder 36

Running the Application

Digital Inputs/Outputs Analog Inputs
Inputs Outputs Input Values Limits
Raw Input: e High Limit (Y2): 4.00
X0: Y4: off Scaled Input: T8 Low Limit (Y3): .80
. Scaling Enable Limits: | or
X1: [@) Y5: o Eng. High: s.ee
Eng. Low: .89
Analog M

Application test procedure:

1. Toggle the output toggle bit buttons. Verify the corresponding outputs come on.

2. The bit lamp indicators should change state when the corresponding input switch is closed.

3. On the analog screen, vary the input voltage and watch the raw and scaled values change.

4. Enable the High/Low limits and vary the input voltage to see Y2 and Y3 toggle on and off at each
limit.

5. Verify the toggle switches for Y2 & Y3 work when the Enable Limits toggle is off, and do nothing
when the Enable Limits toggle is on.

6. Touch the High and Low limit numeric entry objects to change the values on the fly and verify
that Y2 and Y3 toggle on and off at the new limits.

7. Do the same for the Eng. High and Eng. Low to change the output scale of the scaling
instruction.

Online Monitoring

The HMI screen provides a window into what is happening in the HMC; however, for a complicated
project with many logic blocks, it is often not enough to debug the logic. Online Monitoring allows the
programmer to view the logic in real time, and modify data directly in logic blocks. With the project
running in the HMC and the USB download cable still attached, MAPware-7000 can be used to monitor
logic block execution in real time.

To begin an online monitoring session:

1. Open the editor for Block 1
2. Select Tools > Preferences > Online Communications Mode to select the communication

method used for online monitoring.
On Line Communication Settings S

Mode
@ Use
Serial

Ethernet

COM Port

COM1

Cancel

Note: For Ethernet mode, the IP address of the device must be entered in this window. The IP address
here should match what is configured on the Ethernet tab of the Project Properties dialog. The address
of the device is only updated when the Ethernet Settings box is checked in the Download window. The

MAPware-7000 Getting Started Guide

36

Creating a Sample Project using Native Ladder 37

current IP address is shown on the HMI screen when the device is booting up. Here we assume USB is
selected.

There are three options for initiating an online monitoring session.

e With Download — The currently open project will be downloaded to the device before the
online monitoring session begins.

e Without Upload — The online session will begin with the project that is open and with the
project that is in the device. This assumes that the currently open project is the same as the
project on the device.

e With Upload — The currently open project will be closed. The project on the device is uploaded
and opened, before the online session begins. This is the only option available when no project
is opened.

These options are available by selecting Mode > Go Online from the menu. Note. clicking the online icon
i is equivalent to selecting Without Upload form the Go Online menu option.

3. Because we already have our project open, select Mode > Online > Without Upload from the

menu bar.
The logic block will be shown with the current values above the operands.
0
BO000D 0
X111 MOV-Dw DO000D -

DisableScalin Slotd1-CHO_AnaloglPR Rawlinputin

0 00
1+ DO000D INT - » FLOAT D00002 -
Rawlnputin RawlnputFlez 1 0
_ _ _ _ i . MO0512 00 25 Y01002
oo 1 B DO0012 > D004
) Scaled! HighL

| DO0002 (RawlnputFloat) Seale-F Doz L Alvays e aledinpu 'Ghiml - Stotd1-0P_Coil_0000

0o (n=2) Scaledinput 1 1) - - = - - 0
D000 (Rawlow) MO0512 00 05 Y01003
] 0 ’ * *))) T2 B DO0012 < DO0016
E0000 \ Avayso Scaledinpu Lowdimi sioi01-0P_Coil_0000
2 cALL L -
(Block 2) ™ : : :
EnableLimit

Contacts and coils are color coded according to their current state. Contacts are red when open (off),
and green when closed (on).

0 1
BOODO1 BOODO1
Enablelimit EnableLimit

Output coils are green when energized (on), and red when not energized (off).
T —
Y01002 Y01002

Slet01-OF_Coil_0000 SjotD1-OP_Coil_0D00

Values can be changed from within the logic block editor. Double click the contact or operand to be
changed, then enter the state or value as needed.

a u
DO [Hawlow
30031 23 Yo1002 i = =
P —
Dooo12 = (T 4B et value L=
Set Value (| EnableLimit
A
20021 TRUE FaLSE
Booo12 | ooz 300 (34E-38-2.4E-38) -
e — ‘
= = Do0014 (48 (34E-33-2.4E:38) I
CALL BO0002
(Block 2) 33—
EnablelOFoll

MAPware-7000 Getting Started Guide

37

Creating a Sample Project using Native Ladder

38

5]l For more information on using online monitoring or debugger mode, refer the MAPware-7000
Ladder Logic Guide.

Review

Before moving on to IEC 61131-3 programming, let’s review what has been learned in this section.
Consider what has been accomplished:

A new project was created and configured for an HMC model, including setting up and
configuring an expansion module.

The tag database was used to create new tags using internal HMC memory as well as I/O
module registers.

Two screens were created using data display, data entry, and navigation objects.

The project showed how to create a simple ladder logic program using Logic Blocks, including a
subroutine block.

The project was saved, compiled, and downloaded into the HMC.

Online monitoring mode was used to view the application as it executed.

The next section of this guide will explore the IEC 61131-3 programming environment.

MAPware-7000 Getting Started Guide

38

Creating a Sample Project using IEC 61131-3 39

Creating a Sample Project using IEC 61131-3

Introduction

This section guides you through the steps needed to create and run a simple IEC 61131-3 project. It will
use a common engineering task, mapping a value from one scale to another, to demonstrate how the
features of the IEC editor can be used to develop solutions. The sample project demonstrates:

e Use of the Structured Text (ST), Ladder Diagram (LD) and Function Block Diagram (FBD) editors
e How to define a User Defined Function Block (UDFB)

e The difference between a Function Block and a Function Block Instance

e Passing an instance of a Function Block as a parameter to another Function Block

Like the previous Native Ladder Sample Project, this sample project will map an input value linearly to
produce an output value on a different scale, only this time, we will create the logic that does the
scaling. We will scale values from Celsius to Fahrenheit and from a raw input value to an engineering
value (i.e. from a 12 bit raw input to a voltage). The solution should be general enough so that the
Function Blocks created can be re-used for any linear scaling operation. We also want the calculation to
be as efficient as possible. The task of scaling a number can be broken down into two parts.

1. Calculate the slope and offset
2. For agiven input calculate the output

We could do both of these operations in one function block, but that would mean that every time the
value is scaled, the slope and offset are recalculated. Instead we will create two function blocks; one to
calculate the slope and offset given maximum and minimum values, and one to actually do the scaling as
the input changes.

Creating User Defined Function Blocks to accomplish the task eliminates the need for multiple logic
blocks that do the same thing, making the project easier to maintain. Edits can be made in one place and
take effect throughout the project.

Create a New Project

We will use the same HMC3102A-M that we used in the previous Native Ladder sample project. Once a
project has been created in either Native Ladder or IEC 61131-3, it cannot be converted to use the other
programming language, so we will create a new project for this example.

1. To create the project, select Project > New. The Select Product window is displayed.

2. Select the Product Series, Product, and Model.

3. Leave the Display Orientation as Horizontal.

4. Native Ladder is the default Programming Language and for this sample project must be
changed. Click the drop down to select IEC61131-3.

Select Product L_Ji:h
Product Series : |HMC h |
Display Crientati
Product [Hmc3102 2 i
@) Haorizental
Mode - [HMC3102AM - Vertical
Programming ||IEC~E‘I131-3 '||
Language

5. Click OK. A new project is created with a default name.
6. Select Project > Save to save the project with a unique name.

MAPware-7000 Getting Started Guide

39

Creating a Sample Project using IEC 61131-3 40

The Editor Window

Let’s take a quick tour of some of the aspects of MAPware-7000 that are unique to an IEC 61131-3
project. Clicking the folder for Block1 in the Project Information Window displays the editor for that
block. The default logic block uses the Ladder Diagram editor, so the Ladder Diagram editor is displayed
when the Block1 folder is selected.

tware’ OHFLime HIMK T BA-MEC_Sample mph Biockl - | . N |
4@ Boect Yew Gge Joch Mode Hlock Define Window | EAitOr Window .8 x
FEEB0OBE FRE w -1 =k] : 2 .
JGDEB &R LE - > «»

s) = Block Propertie: »

Project Indoemation Window

a2l - ¥ 0
5 E Demign
¥ Bliock Nase ok 1
Block Type Wy
Blook Type

Dragirys Se Logee Block Type

UDFB Folder

o
¥ Block Properties ‘

X JPropect]
i) Teers
7l COmOQarE
41) Courters
a1) Arvevan
4l) Advarced
A) Comreone
41) Bockears
41) Regaters
a1) Selectors
41 1) Seandard
R
053 P
a1 M
4] Mecelareaus

Function Block
Instance Folder

) metwar Corvhguration
) Narws

‘ Instruction List ‘

Bocka

A
TepletX: |TepleM: [Wilh: |Hoght:

e Block Properties — This area displays the execution type and name of the logic block.

e Instruction List — Lists all the available instructions for the project. Instructions are categorized
according to functionality. Expand the node for a given category to see individual instructions.
To add a particular instruction, click and drag it into the editor window. Subroutines and UDFBs
(Function Blocks that users create) will appear under the Project folder of the Instruction List
once they are defined. Information on how to configure and use a given function block is
available in the help file. To access the help file entry for any of the blocks in the Instruction List,
simply double-click the instruction.

e Editor Window — This is where the logic is defined. It displays the graphical or text
representation of the logic program.

e Quick Select Menu — The options available on this menu depend on the editor in use but
provide quick access to common program elements. Click the location in the editor where you
want to place the element then click the element in the quick select menu to place it in the
editor.

e UDFB Folder — This folder contains the definitions for User Defined Function Blocks further
described below. To add or edit a UDFB, click the block name in this folder. To use a UDFB in
another logic block, select it in the Project folder of the Instruction List.

e Function Block Instance Folder — This folder contains a list of all the Function Block Instances in
the project further described below. Each block can have multiple instances, and each instance

MAPware-7000 Getting Started Guide

40

Creating a Sample Project using IEC 61131-3 41

will have its own private set of data to work with. Thus, one type of function block can be
utilized for multiple purposes in the project.

IEC Specific Logic Blocks and Execution Style

In addition to the Power Up, Main, Subroutine, and Timer Interrupt execution styles available in the
Native Ladder Editor, the IEC programming mode also allows you to create User Defined Function Blocks
and Function Block Instances.

The current Execution Style of a logic block is indicated by the block’s location within the Logic Blocks
folder of the project tree.
=-{Z7 Logic Blocks

S
5 D Black?
+-{_7] Subroutine

----- l:l Timer Interrupt

Subroutines
In IEC mode, when a block is created as a Subroutine block, it will appear in the Instruction List under
the Project folder as a function block that can be used within logic blocks.

Recent Projects O
=1 Al Files -
-D PijTg(::LiSt o =10 Project
(1 1EC_Sample. > S [EE
+D Screens +D Timers
({1 Templates +-{] Compare
=1-{_] Logic Blocks 5 @&c
+- ounters

-7 Arithmetic
-] Advanced
= +D Conversions
+-{_]] Booleans
+D Registers
+-{_]] Selectors
+-/771 Standard

D Timer Interrupt

D UDFEB

(L7 Function Block Instance
-1 10 Allocation

‘{Z] Data Window

User Defined Function Block (UDFB)

A User Defined Function Block (UDFB) operates similarly to a subroutine. It is a logic procedure defined
by the user that can be executed as a component in another block. The UDFB also allows the user to
define input and output parameters, making the block easy to reuse throughout the project. Once
defined, the UDFB is also available to select from the Instruction List under the Project folder. We will
create two UDFBs in this sample project.

Function Block Instances

One of the major advantages of the IEC61131-3 editor is the ability to modularize and reuse
functionality through the use of Function Blocks. Once the logic in a UDFB or Subroutine is defined, it
can be used to create Function Block Instances.

e A Function Block Instance contains all of the logic defined in the Function Block as well as its
own set of data to operate on.

MAPware-7000 Getting Started Guide 41

Creating a Sample Project using IEC 61131-3 42

e The Function Block can be thought of as a cookie cutter and the Function Block Instance is the
cookie that the cutter creates.

e Multiple instances of the same block can be defined and each will have its own set of data to
work with. The same block can be used for multiple purposes.

e Function Block Instances can be passed as parameters to other Function Blocks.

e Instances can be defined using the built in Function Blocks or User Defined Function Blocks.

The Function Block Instance folder, in the Project Information Window, is used to create Function Block
Instances and contains a list of all the instances in the project. We will create multiple Function Block
Instances in our sample project.

Add Tags to the Project

Tags are handled somewhat differently in IEC 61131-3 projects vs. Native Ladder projects. In IEC mode
projects, tags are not assigned explicit addresses. Instead they are given a name and a type, and
MAPware-7000 is responsible for allocating and tracking a memory address for the tag.

Tag Scope
In addition to Global scope tags, tags can be associated with a Function Block Instance. UDFBs can have
input, output, and internal tags. When an instance of the UDFB or built in function block is added to the
project, it will have a copy of each of the tags. Internal tags can be defined from the Tag Database by
setting the Scope to Local and the Block Type to the Function Block Instance the tag is associated with.
Add Tag |

Node Neme ([HMCT0434-M | None (-} -

Tag - Name FB_tagl Max 255 chars
_}R:;ste{;‘ﬁul B0] Read vite
|
Auto Add Mumber of Tage |1
Global Initial Valve 0
Retentive | Block Type | GenencFB - |

| @ Local | Length 1 Max 255
I— — J
Input and output tags are defined by right-clicking the UDFB’s folder in the project tree and selecting the
Edit Parameters option. Once defined, Function Block Tags will appear in the Tag Database as <Function

Block Name>\<Tag Name>. For example, GenericFB\FB_tag is a tag internal to the GenericFB function
block named FB_tag.

For more information on creating and using tags, refer to the MAPware-7000 Programming Manual.

1. Open the Tag Database by clicking the Tags folder in the Project Information Window.
2. Use the Add Tag window to create the following tags.

Tag Name Type Scope Description

TemplC INT Global Simulated Temp input 1 [C]
Temp2C INT Global Simulated Temp input 2 [C]
TemplF REAL Global Scaled Temp output 1 [F]
Temp2F REAL Global Scaled Temp output 2 [F]
Rawinput INT Global Simulated 10 card input
Voltage REAL Global Input scaled to a voltage value

MAPware-7000 Getting Started Guide

42

Creating a Sample Project using IEC 61131-3

Logic Blocks
Create a User Defined Function Block (UDFB)

e .
New Program =
Prograes
Hemre Scofe
Prararrany Lavguigs
— b1l LD - Lsdder Diagram
‘=] Logc Blodes FED - Function Block: Diagn
] Power Up ET - Smuctured Tee
IL - Ingtructice Lit
#-_] Main SFC - Sequantial Function Chist
—J Subroutine
] Timer Inten &
E= Juoee! Exacution Shyle
T Fune New Logic Block Fowse Lip Subroutine
a3 10 .uo.:.:‘#‘_'_-j—[_— Min & UDFE
Tomer Inborruph
Child of
Lok || Coecs

Next we want to create our own User Defined Function Block (UDFB). This block performs the scale
operation. We will use the Function Block Diagram (FBD) editor to define this block.

1.
2.
3.

Expand the Logic Blocks folder in the Project Information Window

Right-click the UDFB subfolder and select New Logic Block

In the New Program window name the function Scale and select FBD — Function Block Diagram
as the Programming Language and UDFB as the Execution Style

Click OK to create the Logic Block

A new block called Scale appears in the UDFB folder of the Project Information Window, and a
new instruction called Scale appears in the Project folder of the Instruction List.

{2 Timer Inten|=

— . =I-{_] Project
=-{_] UDFB = Scale
| Scale + _J Timers
i
) {1 Function Bl : &= cgmmt:res

Before creating the logic for this block we need to define the inputs and outputs so that other
logic blocks can pass data to it. Right-click the Scale folder in the Project Information Window
and select Edit Parameters.

-1 himer Interrupt

{21 UDFe
a

{23 Functio

10 Allocatior

Data Windo
Tasks

(] Alarms

7. In the Program Parameters window, click + ‘Add Input Parameter’ under Inputs.

Close
Delete
Duplicate

Rename

Program Parameters

Edit Paramneters

R

P

Inputs Iput Parameters C

#

#

3
Add Parameters =
Name jnput o)
Type [INT - [Cancat |

FIINOUT [Auto Add 1
5
[oK [Cancel

Note: Masximum limit for number of Inputs and Outputs is 256,

MAPware-7000 Getting Started Guide

Creating a Sample Project using IEC 61131-3 44

8. The Add Parameters pop-up window allows you to specify a name and data type for a new input
parameter. This block contains only one input parameter imaginatively named Input. Set the
type to INT then click OK.

9. Next click = ‘Add Output Parameter’ under Outputs to create the output. It is named Output
and has type REAL.

10. Once complete, the Program Parameters window should appear as shown below. Click OK to
create the Parameters.

1 Program Parameters =
Inpuls Input Parsmeters \\.\

Pt £ INT [+
£
¥

Parameter)
. .
-+
@
#+
™

Both tags should now appear in the tag database with the Function Block/Local Tag format we talked
about earlier.

Tag Name Tag Address
Block Diata Type Attribute Port Mode Category
[Hide System Tags Global BOOL [||ReadOnly ||Coml ||HMC31022 || Defauit
[F] Hide Unused Tags Retertive BYTE WriteOnly || Com2 Lser Defined
Block1 DINT ReadWrite || Ethemet

[T Selected Export Tags Scale IZIE:IV_OFED i
TagMo Tag Name Data Type Attribute Tag Address ~ Port Node Ethemet Node Name Tag Category Export Tag
1 Temp2C INT Read Write 0 HMC31024-M User Defined Tag =
2 TempliC INT Read Write I} HMC3102A-M User Defined Tag [}
3 Temp1F REAL Read Wite 0 HMC31024-M User Defined Tag (=]
4 Temp2F REAL Read Wiite - - 0 HMC31024-M User Defined Tag =]
5 Rawlnput INT Read Wite o HMC31024-M User Defined Tag (=]
[Voltage REAL Read Wite o HMC31024-M User Defined Tag =]
7 Scale/Input INT (L) Read Write i) HMC31024-M User Defined Tag [}
8 Scale/Output REAL (L) Read Write i} HMC31024-M User Defined Tag =

Logic can now be entered into the block to define its functionality. The first thing we want the Scale logic
block to do is convert the input to floating point (real) format.

MAPware-7000 Getting Started Guide

Creating a Sample Project using IEC 61131-3 45

11. In the Instruction List at the bottom right of the editor window, expand the Conversions folder

and locate the any_to_real instruction. Click the instruction and drag it into the editor window.
EID Project -

[j--D Timers

[j--D Compare

-] Counters

-2 Arithmetic

-1 Advanced

=-{Z1 Conversions

(21 any_to_boal (*Convert to boolean®)

(21 any_to_dint (*Convert to 32 bit integer®)

(27 any_to_int (*Convert to 16 bitinteger®)
=Ty o s Ccomvertio real)

{7 any_to_lreal (*Convert to Ireal®)

{23 any_to_sint (*C{ any_to_real (*Convert to real™)
-7 any_to_time (*d
-7 any_to_udint { ITN' ANY

{17 any_to_uint (*C{ ___ o
(27 any_to_usint (%] oUT

[0 any_to_string (§ Q:REAL

T hed ta hin (ReL T
12. The input to this instruction will be the UDFB’s Input parameter. Double-click the instruction’s

input area and type Input into the pop up box.

m

anmy_to_real
LAY RS ES R .
Inpist NN Q ”r
CEP TR E R TR w R g g g . . . B . .
-
|In|:uut v X

------- By HMI_Subnet_Mask_MS_By =
By Hour_change_status

=T lnput

By Invalid key beeper control ™

LI} F
|'v ariables: [al] |

[Local variables only
[Hide FB instances

Note: Notice that because Input is an input parameter for this UDFB, it shows up in the context
list with an input icon *CF.

13. For the output, we want to define a new tag that will be local to the Scale function block.
Double-click the output area of the any_to_real instruction and type rinput into the pop up and
hit enter.

14. Because a tag with this name does not exist yet, MAPware-7000 will display a dialog box that
can be used to define the tag.

any_to_real

o é’ ’rlﬁm’ﬁ o Thiz symbol does naot exist. Do vou want ta:
i

i .
trpd 7 B % Declare a new vanable

By Popup_screen_number -
iRy Popup_screen_trigger

Q Rawlnput T}'DE: |HEAL ﬂ
By Real_and_histaorical_slarm_ -

‘ i » where: | Scale ﬂ

[ariables: (all -

7 Local vanables only
[Hide FB instances Tes | MNa Cancel |

Set the type to REAL and Where to Scale. This sets the scope of the variable to the Scale
function block.
15. Click Yes to create the new variable.

MAPware-7000 Getting Started Guide 45

Creating a Sample Project using IEC 61131-3

46

16.

17.

18.

19.
20.

21.

22.

23.

24,

Now that the input is in the correct format, all we have to do is multiply by the slope and add
the offset. Expand the Arithmetic folder in the Instruction List and drag a * (*Multiply*)
instruction to the editor window.

The first input here will be the rinput tag created in the last step. Double-click in the first input

Fiawlnput "
Real_and_historical_alarm_
Refresh_histarical_trend

f tlput

B RTC_battery_status

B RTC dav of manth X
€ 1 3

|\u"anables. [all) j

™ Local variables orly
I Hide FB instances

second input and type rSlope to create the new tag.

Set Type to REAL and Where to Scale using the context window as described above.

We will write the result of the multiplication back to the rinput variable. Select rinput for the
output (Q) of the instruction.

The last step is to add the offset. Drag an + (*Addition*) instruction from the Instruction List
into the editor window.

The first input for this instruction will again be the rinput variable. Double-click the first input
and select rinput from the tag list.

The second input will be a new local variable called rOffset. Type rOffset in the box for the
second input and create a new tag. Make sure the Type is REAL and Where is set to Scale.

Finally, the output will be the previously created output parameter of the function block. Select

Output from the menu for the output (Q) tag. Notice that it will have an output icon (e)in
the tag list.

MAPware-7000 Getting Started Guide

46

Creating a Sample Project using IEC 61131-3 47

25. Here is what the Scale function block should look like when complete (some comments were
added for clarity).

onvert Input form INT to

-.'--.ary_m_raal..--..
Input —al Q 4 rinput

rinput AN Q] rinput
rSiope i o
Add the of fsat to get the
=zult
+
rinput AN Q] Outpart
rOffzet = 1 T

This is a good time to compile (Project > Compile) and save the project to make sure there are no errors
before moving on.

Create a Second UDFB to Initialize Instances of the Scale Function Block

Before we can use the Scale function block, we have to initialize the offset and slope parameters. These
are calculated from maximum and minimum values for the input value and the scaled value. We will
create a new UDFB to do this calculation and initialize the function block instances. This new block will
use the ST - Structured Text editor.

Structured Text is a text based programming language in which program instructions are entered as
discrete statements in a text source file. This programming method is similar to other high level
programming languages such as C or Visual Basic.

The basic unit of a structured text program is a statement. A statement is an instruction for the
processor to perform some set of actions. Structured Text programs are simply lists of statements.

1. Right-click the UDFB folder in the project information window and select New Logic Block.
2. Name this block Scalelnit, and select ST - Structured Text for the Programming Language.

3. Click OK to create the block.
New Program Li_E-J

Program

Name Scalelnit

Programming Language
LD - Ladder Diagram

FBD - Function Block Diagram
ST - Structured Text

IL - Instruction List
SFC - Sequential Function Chart

Execution Style
Power Up Subroutine
Main @ UDFB
Timer Interrupt
Child of :

MAPware-7000 Getting Started Guide

47

Creating a Sample Project using IEC 61131-3

48

4. Next, we will define the input parameters for the Scalelnit function block. Right-click the block’s
folder in the Project Information Window and select Edit Parameters from the context menu to
open the Program Parameters window.

5. This block will have no outputs. Enter the following inputs.

Parameter Name Type Description

InputMax INT Maximum value for the input

InputMin INT Minimum input value

OutputMax INT Maximum value of output

OutputMin INT Minimum value of input

fbScale Scale Function block instance to be initialized

Note: The last parameter is of type Scale. This means that a Scale function block instance will be passed
into the function block. The function block can then operate on the data specific to that function block
instance. The input parameters should look something like this when finished.

Program Parameters

Now we can start entering code for the Scalelnit function block. This block will contain several local

28
it Pk b

Inputs Input Parameters A
InputMas: : INT +|
InputMin - INT =
OutputMa : INT @
OutputMin : INT

i
Outputs Output Parameter L L

‘Iil

variables to perform the calculation. In the Structured Text Editor, when enter is pressed at the end of a
statement or line of code, the editor will validate all of the parameters in that line. If it finds parameters

that don’t exist, a dialog box will pop up allowing new variables to be defined, just as in the Function

Block Diagram editor. Below is a table of all the local variables to be defined.

Parameter Name Type Scope Description

rinputMax REAL Scalelnit Floating point version of InputMax
rinputMin REAL Scalelnit Floating point version of InputMin
rOutputMax REAL Scalelnit Floating point version of OutputMax
rOutputMin REAL Scalelnit Floating point version of OutputMin

MAPware-7000 Getting Started Guide

48

Creating a Sample Project using IEC 61131-3 49

Below is the code to be entered into the Scalelnit function block. The first four lines use the any_to_real
function to convert our input tags into real numbers. Then next line calculates the slope from the given
range, and places it into the internal rSlope variable of the fbScale function block instance. The last line
calculates the offset and places it in the internal rOffset tag of fbScale.

// Convert inputs to floating point numbers

rInputMax := any to real (InputMax);
rInputMin := any to real (InputMin);
rOutputMax := any to real (OutputMax) ;

rOutputMin := any to real (OutputMin);

// Calculate slope
fbScale.rSlope := (rOutputMax - rOutputMin) / (rInputMax - rInputMin);

// Calculate offset
fbScale.rOffset := rOutputMax - (fbScale.rSlope * rInputMax);

Note: The green lines beginning with “//” are comments and provide context, but are optional and have
no effect on the code.

6. Copy the first statement above, rinputMax := any to real (InputMax);, and paste it into the
Structured Text Editor. Hit the Enter button on your keyboard.

7. A popup window to define rinputMax appears. Set the Type to REAL and Where to Scalelnit.
Click Yes.

8. Copy the rest of the code into the Structured Text Editor one line/statement at a time, pressing
Enter after each line to define the local tags. Each tag should be of type REAL and local to
Scalelnit.

9. After all the code has been entered, compile (Project > Compile) and save the project to verify
that there are no errors, and fix any typos as needed.

Note: If you copy and paste the code in its entirety from here into the editor, tags will not be created for
the internal variables because the code was not entered one statement at a time. You must manually
enter each tag into the database in this case.

For more information on Structured Text commands and formatting, see the MAPware-7000 IEC
61131 Programming Guide.

Use the UDFBs in Ladder Diagram Blocks

Now that the function blocks have been created, they can be put to use in other parts of the project. We
want to use the Scalelnit function block in a power up routine to initialize two Scale function block
instances.

MAPware-7000 Getting Started Guide

49

Creating a Sample Project using IEC 61131-3 50

1. Right-click the Power Up folder and select New Logic Block. This block will be called Init and will
be a LD - Ladder Diagram block.
Mew Program @1

Program

Name Init|

Programming Language

LD - Ladder Diagra
FBD - Function Block Diagram

5T - Structured Text
IL - Instruction List
SFC - Sequential Function Chart

Execution Style
@ Power Up () Subroutine
© Main ©) UDFB

() Timer Interrupt

Child of :

2. Expand the Project node in the Instruction List. The Scale and Scalelnit function blocks should
appear there.

3. Click the Scalelnit instruction and drag it to the top rung of the Ladder Diagram.

| —— | 1
772
R1 En Scalemd Eno 1
Inputidax
+fInputhlin r
=)-{_] Project
OutputMax D Scale
1 Scalelnit
4 OutputMin - u
+)-{_] Timers
bScale +-071 Comnare

Notice the ‘???’ at the top of the block. This indicates the function block instance has not been
selected.

4. Double-click the question marks and enter fbScalelnit in the tag selection window. Click the
Accept icon ¥ and declare the new variable as type Scalelnit and Global scope.

|becaIeInit v X

fbScalelnit B9

This syrbol does not exizt. Do you want to:
o~

{* Declare a new varable

Tupe: |Scalelnit j
=l

‘where: |GLOBAL

Yes | Mo | Cancel |

J

This defines a new instance of the Scalelnit Function Block called fbScalelnit. This instance will
now be listed in the Function Block Instance folder in the Project Information Window along
with the previously created fbScale instance of Scale defined earlier, local to Scalelnit.

4

Project Information Window X | Srno | Name Data Type Block
- T S
Becent; P":’je“:h e 12 fbScale Scale Scalelnit
i =1 uorB

{1 Scale

{27 Scalelnit
-£23 Function Elock Instance
{11 10 Allocation

m

-

MAPware-7000 Getting Started Guide

Creating a Sample Project using IEC 61131-3 51

5. Next we will specify the input parameters. For this sample, we will use literal number values for
the maxes and minimums. Double click to the left of each of the first four inputs and type in the
following values.

Input Parameter Name Value Description

InputMax 100 Celsius input maximum

InputMin 0 Celsius input minimum

OutputMax 212 Fahrenheit equivalent to 100°C (Max °F)
OutputMin 32 Fahrenheit equivalent to 0°C (Min °F)

6. The last parameter is the Scale function block instance to be initialized. In this case it will be a
new instance called C2F (Celsius to Fahrenheit). Double-click the fbScale input and type C2F into
the selection box.

7. Set the Type to Scale and Where to GLOBAL in the popup window and click Yes to create the
C2F insta nce.

|fb5c:ale
Lo Bt

C2F e |

This symbal does not exist. Do pou want ta:
~

‘C2F v X

@+ Declare a new varable

s No | Cancel |

ot po
e ———————————————————————
The C2F instance is created, added to the Function Block Instance Folder and selected as the
fbScale input parameter.

This is what the instruction should look like now.

fhScaleinit
R En Scalent Eng |

INT#1 00 Inputhax

INT#0 4 InputMin

INT#212 | Outputhax

INT#32 | OutputMin

C2F | fbScale

Next we want to initialize a different Scale function block instance called Input2Volts. This instance will
be used to convert from a raw input to a voltage. The process is the same as above, but with a different
function block instance as the input parameter and with different maximum and minimum values.

8. We will use the same instance of the Scalelnit function block. Drag a new Scalelnit instruction to
rung 2 from the Instruction List.

9. Click the ‘???" above the block and again enter fbScalelnit in the popup window. This time, the
fbScalelnit instance will appear in the variable list since it was already defined.

MAPware-7000 Getting Started Guide

51

Creating a Sample Project using IEC 61131-3

52

10. Enter the following values for the input parameters.

Input Parameter Name Value Description

InputMax 65535 16 bit analog maximum input
InputMin 0 16 bit analog minimum input
OutputMax 5 0-5V maximum

OutputMin 0 0-5V minimum

This sets up the Input2Volts function block to convert from a 16 bit input to a 0 to 5 V output.

11. Enter Input2Volts for the fbScale input.

12. The Input2Volts function block instance will need to be defined. Set the Type to Scale and

Where to GLOBAL as before.

| fbScale

|Input2\u"0|ts

Ba Likdl 100 A, L D

| Input2Volts

.

Thiz symbol does not exist. Do you want to:

{* Declare a new variable

Type: | Scale

pression or function call exp

1ent expected 4
pression or function call exp

ument expected W
pression or function call exp r ‘e

where: |GLOBAL

| Mo

iment expected
expy wl

wec‘ted

This will add a new Scale function block instance called Input2Volts to the Function Block
Instance folder. Here is what the /nit function block should look like when complete:

foScalelnit
Scalelnit Eno

R1 En
INT#100-] InputMax
INT#0 4 Inputhin
INT#212 Outputh...
INT#32 Qutputhtin
C2F | fhScale

foScalelnit
Scalelnit Eno

R2 En

INT#EE535] InputMax

INT#0 Inputhdin

INT#5{ Qutputh...

INT#0 4 Outputhin

Input2Volts | fbScale

Define the Main Routine Block 1

The final piece of logic in the sample project uses C2F and Input2Volts instances to continuously convert
our simulated inputs to the desired output values as the inputs change over time. We can use the ladder
diagram block automatically created by MAPware-7000 to do this.

1. Click the Block1 folder under Logic Blocks / Main in the Project Information Window to edit the

block.

MAPware-7000 Getting Started Guide

52

Creating a Sample Project using IEC 61131-3 53

2. Click and drag three Scale blocks from the Instruction List into the editor.

777
R1 En Scale Eno 1

{_] Project

‘ Scale
] ScaleInit
-] Timers
+-{_] Compare
+|-{_] Counters

e N——.

Inpy uiput
777
R2 En Scale Eno I

Input _ Quiput
7?7
R3 En Scale Eno |

Input __ Ouiput
3. Next click the “???’ in each block to specify the function block instance to be used. The first two
will use C2F and the last one will use Input2Volts.

I I I
C2F

R1 En Scale Enu|
Input _ Qutput]
C2F
Input __ Qutput]
InputZVolts
R3 En Scale Enn|
Input __ Output]
4. Specify the input and output parameters for each instruction. We will use the tags created at
the beginning of this section.

o Rung 1 converts TemplCto TemplF
o Rung 2 converts Temp2Cto Temp2F
o Rung 3 converts Rawlinput to Voltage.

1 I
C2F
R1 En Scale Eno

Temp1C-{input Cutput} Temp1F
C2F
R2 En Scale Eno

Temp2C-{input _ Qutput]- Temp2F

InputZVolis.
R3 En Scale Eno

Rawinput-{input _ OQutput}-Voltage

5. That’s it for the logic. Check that the project compile (Project > Compile) and save the project to
verify that there are no errors. Fix any typos as needed.

Create Screen Objects

We will create a very simple screen to control the inputs and observe how the outputs change. This
section will not go into great detail on creating the objects needed, for they were covered in the
previous Native Ladder section. The screen should eventually look something like this:

MAPware-7000 Getting Started Guide

[IEC 61131-3 Sample ProJect|
Celsius Fahrenheit
Templ: +99999 4' + 1999.99
Temp2: +99999 _| + +999.99
Raw InPut Uoltage
Inputl: 95999 _| + +999.99

53

Creating a Sample Project using IEC 61131-3 54

o

10.

11.

12.
13.
14.
15.

16.

17.

Navigate to Screenl under the Base Screens folder in the Project Information Window.

Create the Text object labels shown above [Celsius, Fahrenheit, Raw Input, Voltage, Temp1:,
Temp2:, and Inputl:].

Create three Numeric Entry objects (Draw > Input Objects > Data Entry > Numeric Entry), to
display and write to the three inputs; Temp1C, Temp2C and Rawinput.

Change the Font for these objects to 10 x 14 to make them easier to read, and select the
appropriate tag in the Tag Name property.

For the Temp1C and Temp2C objects set the Data Type format to Signed [-32768 To 32767] to
allow negative temperatures to be displayed correctly.

Next we will use Multi-Task Single-state buttons (Draw > Buttons > Multi-Task Single-state) to
create the increment and decrement buttons that control the input tags. Place a button next to
the first Numeric Entry object.

For the increment button, change the On Text property to “+”.

Click the Tasks property, then on the ..e) button to configure a task for the button.

Before selecting the task, click the Pressed Task radio button. This means that the value will
increment while the button is pressed.

Select the Add a Constant Value to Tag task from the Select Task list. Select Temp1C for the Tag
and enter 1 for the Number to add.

Click the Add button. The task should appear under Pressed Tasks.

Touch Screen Tasks List [P [
Select Task Tasks
Add a Constant Value to a Tag - Press Tasks
#]
Tog Operatons)
x
Tag Temp1C ~| [
2 L @ Pressed Tasks
Add Tto Tag Temp1C @
Mumber 1 (D10 £5535))
%]

Type: Unsigned -

Tag + Number

Released Tasks

x|«

OK | [Cancel |[Hep |

Click OK to save the task.

Make a copy of the increment button to use as the starting point for the decrement button.
Change the On Text to “-“.

Change the Task to a Subtract a Constant Value from Tag task that subtracts 1 form Temp1C.

@ Pressed Tasks

Subtract 1from Tag Temp1C

iy

Once you have increment and decrement buttons controlling Temp1C, make copies of them to
control Temp2C and Rawlinput. You can update the task with the correct tag by clicking the task
in the Pressed Tasks list. When changing the tag, make sure the number is re-entered, and don’t
forget to click Update and OK to save the changes. For RawInput, you may want to change the
add/subtract numbers to 10 or 100 so that the value changes faster.

Finally add three Numeric Display objects to display Temp1F, Temp2F and Voltage. These are
floating point numbers so, after you select the tag, change the Data Type property to Float
[Max 9 digits].

E Display Data Properties
Data Type Hoat [Max 9 digits]

MAPware-7000 Getting Started Guide

54

Creating a Sample Project using IEC 61131-3 55

18. Compile and save the project one last time. It is ready to download and run on the HMC
hardware.

Testing the Project

Download the project to the HMC3102A-M using the same procedure described before. Then use the
increment and decrement buttons we created to change the inputs and verify that the outputs change
to the correct scaled value.

Online Monitoring

Installing the Virtual Com Port driver

In IEC 61131-3 mode, MAPware-7000 requires an additional communication driver, the virtual com port
driver, be installed before starting an Online Monitoring session using over USB. To install the driver go
to Tools > Install Virtual Driver.

Tecls | Mode Define Window Dati
Application Memory Status...
Display Logged Data...

T

Convert Application...

Preferences 3
—l Install Virtual Driver

Web server Configuration
is Generate USB Stick Application

(= rav —

This driver will add several ports in the development PC’'s Device Manager.

a - comlcom - serial port emulators

: 7" comlcom - bus for serial port pair emulator
7" comlcom - serial port emulator

7" comlcom - serial port emulator

Going Online

With the drivers in place, the HMC/MLC can be monitored with MAPware-7000 while it is executing a
program. Select the USB mode from Tools > Preferences > Online Communication Mode and then click
the ¥ icon to go online.

Selecting Logic Blocks and Function Block Instances
Once the online session begins, any open logic blocks will have variables loaded with their real time
values.

Blockd

C2F
R1 En Scale Eno I

1 Temp1C = 0-{input Cutput}-Temp1F = 32.0
C2F
R2 En Scale Eno I

1 Temp2C = 0 Input Cutput}- Temp2F = 32.0
Input2\olts
R3 En Scale Eno I

1 Rawinput = 0{input Output}-Voltage = 0.0

Logic blocks can be opened for monitoring by selecting them in the project tree.

MAPware-7000 Getting Started Guide

55

Creating a Sample Project using IEC 61131-3 56

When opening a Function Block that has multiple instances, MAPware-7000 needs to know which
instance to open. Thus when a UDFB that has multiple instances is selected, a popup window will appear
listing the available instances of that function block to monitor.

-
Select Instance &J
Input 2Valts
ScalelnitfbScale

Once the selection is made the function block will be loaded with the real time data for the selected
instance.

\

Convert Input form INT to

REAL

rinput = 0.0 = (TN op— rinput = 0.0
=1t e S R

rinput = 0.0 = (TN op— Output =32.0
Offset = 32.0 AN
4 +
Manipulating Data
To change the value of a parameter simply double-click the parameter.
Blockl
| 1 | |
C2F
L R1 En Scale Eno |
1 Temp1C = 04Input Qutput)Temp1F = 32.0
C2F
1 R2 En Scale Enop—— TemplF @
i Temp2C = 23| Input Output)-Ten |3zn
Input2\olts
L R3 En Scale Enoj—+ Foice |
L Rawinput = 0| Input Output}-Velf | = Lock |
- Unlock |

MAPware-7000 Getting Started Guide

56

Creating a Sample Project using IEC 61131-3 57

The popup window allows you to force and or Lock / Unlock the value of the parameter. When a
parameter is forced it is written to once. If some other logic writes to the parameter after it is forced the
forced value will be overwritten. If the value is locked, MAPware will prevent any other logic in the block
from overwriting the forced value. Parameters that are locked will appear in double square brackets.

el
En Scale Eno

Temp1C = 0 Input Qutput} Temp1F = [[32.0]

Note: The lock only prevents logic blocks from writing to the value. The value can still be changed by a
task or by entering data in a numeric object on an HMlI screen.

Review

Let’s review some important points about how this sample project is structured that will allow you to
take full advantage of IEC 61131-3 features. Although not all of the features available in MAPware-7000
or the HMC Series have been covered, we have taken our first steps in using this software and becoming
familiar with device operation.

First, notice how we used multiple instances of a User Defined Function Block. We are scaling three
inputs, but have defined our scaling logic in only one place, the Scale UDFB. If something needs to be
changed, it only needs to be changed in one place, and it isn’t necessary to hunt through the project to
make sure the logic is updated everywhere it is used. We reused a single instance of the function block
to scale two different inputs and used a separate instance to scale another input on a totally different
scale. We could have many more channels and many more scales, but still only need one UDFB. If there
was a radically different scaling operation that needed to be done, such as a lookup table, then we
would need to create a different UDFB.

Next, note that three different editors were used, and it is possible to call the logic created in one editor
from logic created in another. The different languages each have their own strengths. Ladder Diagram
provides a clear graphical representation of the logic flow, Function Block Diagram is great for
combining operations in a simple to read structure, and Structured Text can be used for more involved
operations that might look quite complicated in one of the graphical editors. By combining logic from
the different editors we are able to take advantage of the strengths of each.

Finally, note that we were able to separate the logic for initializing the scale block (UDFB-Scalelnt) and
actually performing the scale operation (UDFB-Scale) into two separate operations. We did this by
passing a UDFB instance as a parameter to another UDFB. This keeps the scaling operation, which occurs
frequently while the project is running, as simple and quick as possible. Breaking complex operations
into simple building blocks is another way to make a project more maintainable.

MAPware-7000 Getting Started Guide

57

Your Industrial Control Solutions Source

www.maplesystems.com

AW10101057 Rev. 00

Maple Systems, Inc. | 808 134t St. SW, Suite 120, Everett, WA 98204 | 425.745.3229

