
MAPware-7000
Getting Started Guide

Your Industrial Control Solutions Source

www.maplesystems.com

For use with the following.

• HMC7000 Series
• HMC3000 Series
• HMC2000 Series
• HMC4000 Series

Maple Systems, Inc. | 808 134th St. SW, Suite 120, Everett, WA 98204 | 425.745.3229

MAPware-7000 Getting Started Guide ii

MAPware-7000 Getting Started Guide ii

COPYRIGHT NOTICE

This manual is a publication of Maple Systems, Inc., and is provided for use by its customers
only. The contents of the manual are copyrighted by Maple Systems, Inc.; reproduction in
whole or in part, for use other than in support of Maple Systems equipment, is prohibited
without the specific written permission of Maple Systems.

WARRANTY

Warranty Statements are included with each unit at the time of purchase and are available at
www.maplesystems.com.

TECHNICAL SUPPORT

This manual is designed to provide the necessary information for trouble-free installation and
operation of Maple Systems products. However, if you need assistance, please contact Maple
Systems.

• Phone. 425-745-3229
• Email. support@maplesystems.com
• Web. www.maplesystems.com

http://www.maplesystems.com/
mailto:support@maplesystems.com
http://www.maplesystems.com/

MAPware-7000 Getting Started Guide iii

MAPware-7000 Getting Started Guide iii

Table of Contents
COPYRIGHT NOTICE..ii

WARRANTY...ii

TECHNICAL SUPPORT ...ii

Table of Contents ..iii

Introduction ...4

HMC Basics...4

Logic Editor Environment...5

Installing MAPware-7000...8

Creating a Sample Project using Native Ladder ...9

Introduction ...9

Create a New Project ...9

Configure the I/O module ..11

Add Tags to the Project..12

Ladder Logic Blocks ..16

Create Screen Objects..24

Testing the Project ...33

Review..38

Creating a Sample Project using IEC 61131-3...39

Introduction ...39

Create a New Project ...39

Add Tags to the Project..42

Logic Blocks..43

Create Screen Objects..53

Testing the Project ...55

Review..57

Introduction 4

MAPware-7000 Getting Started Guide 4

Introduction
Welcome to Maple Systems’ MAPware-7000 programming software, an easy-to-use configuration
software for our HMC and MLC products. You can use MAPware-7000 to program a powerful range of
automation and display hardware. This guide will introduce you to MAPware-7000 using two short
projects to familiarize you with the basic elements necessary to start programming.

If you are still deciding which manufacturer or product line will best suit your needs, you can follow this
guide to learn just how easy it is to produce high quality control programs with MAPware-7000. If you
are already a Maple Systems customer and are ready to begin working with your new software, use this
guide as a starting point. After you have run through the Quick Start Projects, you can use this guide as a
reference for building your own projects.

Reading This Manual

This manual is designed as a training manual and reference guide. Some previous exposure to PLC
programming and ladder logic is assumed. In this effort, the manual tries to minimize the amount of
time required to become familiar with the MAPware-7000 programming software. Additional document
resources include the HMC I/O Module Guides, Ladder Logic Guide, IEC Programming Guide, and general
MAPware-7000 Programming Manual. Additionally, help files are accessible from the Help dropdown
menu within MAPware-7000. These are a good source of information when you quickly want to research
a particular feature in the software.

Finally, our technical support staff is available by phone or by email to assist you if you run into any
problems not covered in this manual. Visit our website at www.maplesystems.com for contact
information.

HMC Basics
An HMC is a combination operator-based HMI (human machine interface) with built-in PLC
(programmable logic controller) operation and expandable I/O.

HMCs offer flexibility. Rather than using fixed I/O, the HMC employs expansion slots to customize your
I/O configuration. Maple Systems offers a wide assortment of expansion modules including combination
digital input/output modules, digital input only, digital output only, analog modules, and high-speed
counter modules. For more information on the different I/O configurations available, see the
appropriate HMC family I/O Module Guide for your model.

http://www.maplesystems.com/

Introduction 5

MAPware-7000 Getting Started Guide 5

Backing Up Projects
The MAPware-7000 configuration software does not perform automatic saves of the open project. We
recommend that you frequently save your project as you are working on it to ensure that no work is lost
in the event of a power failure or computer error. When you have completed a project, archive it to
another folder, external network drive, or storage media for safekeeping. To archive your project,
backup both the .mpl file and the corresponding file folder located in the same directory.

Although Maple Systems does provide repair support on all of our products, we cannot guarantee that
we will be able to restore a project from a damaged unit.

Logic Editor Environment
MAPware-7000 includes a full-featured set of logic editors. There are two options for configuring PLC
logic in a MAPware-7000 project: Native Ladder and IEC 61131-3. This selection is made in the
Programming Language drop down list when a project is first created.

Native Ladder Editor

The Native Ladder Logic editor is a Ladder Diagram editor. Ladder logic is a programming language that
represents a program with a graphical diagram based on the circuit diagrams of relay logic hardware.
Ladder logic is commonly used to develop software for PLCs used in industrial control applications. The
name is based on the observation that programs in this language resemble ladders, with two vertical
rails and a series of horizontal rungs between them. Each rung is executed in sequence from left to right.

The programmer can define complex logic operations by building discrete blocks of logic executed either
continuously or by function call. A large library of built-in ladder logic instructions is available to perform
common automation tasks such as math operations, timers and counters, data manipulation, feedback
loops, input scaling, and much more.

 For complete documentation on using the Native Ladder editor, refer to the MAPware-7000 Ladder
Logic Guide.

IEC 61131-3 Logic Editors

IEC 61131-3 is a section of the International Electro-Technical Committee (IEC) standard that provides a
definition for implementing PLC programming software. The goal of the standard is to give automation
professionals a familiar environment and set of tools to create PLC programs across vendor platforms.
MAPware-7000 has editors implemented for all five programming languages defined by the standard.

1. Ladder Diagram (LD) – Graphical language that simulates an electrical circuit; program
instructions are attached as discrete elements in the circuit and are executed when “energized”.
Visually and functionally similar to the Native Ladder Logic editor.

2. Function Block Diagram (FBD) – Graphical language based on logic diagrams. Functions are
represented by blocks; complex operations can be built by interconnecting function blocks.

3. Structured Text (ST) – Text-based programming language. Programs are built using keywords,
operators and function calls.

4. Instruction List (IL) – Text-based procedural programming language.
5. Sequential Function Chart (SFC) – Graphical programming language in which program execution

is modeled as a flow chart. Programs are developed by adding blocks to the flow chart.

The logic created using these languages is composed of discrete instructions or logic blocks. In addition,
the programmer can create their own User Defined Function Blocks (UDFBs) to make their logic
modular and reusable.

Introduction 6

MAPware-7000 Getting Started Guide 6

 For complete documentation on using the IEC 61131-3 logic editors, refer to the MAPware-7000 IEC
611313 Programming Guide.

Logic Blocks and Execution Style

Programs created using the above editors are organized into discrete units called Blocks. In addition to
the logic they contain, blocks are differentiated by Execution Style. Execution Style determines when
and how the block is executed. The available Execution Styles are.

• Power Up
• Main
• Subroutine
• Timer Interrupt

The current Execution Style of a logic block is indicated by the block’s
location within the Logic Blocks folder of the project tree.

Main Program Blocks
Main program blocks are the core of the user program. They are executed once during each scan.

Multiple logic blocks can be created (up to 256) and used as Main Program blocks. During execution, the
HMC starts with the first block listed. When completed, it will execute each block in sequence. The
figure below shows a typical scan sequence.

Where:

• Mode – Determines mode of operation (Run, Halt, etc.)
• I/O – Update and process all inputs and outputs
• Timer – Update all running timers
• Main Program – All logic blocks created under Main

The length of a scan is not deterministic. It depends on what blocks are executed, etc. If precise timing is
required, use a timer interrupt routine.

Power Up Blocks
If Power Up blocks are present, they are executed once at the beginning of the first scan (before main
block execution). Therefore, Power Up blocks can be used to set initial values into registers.

The figure below shows the first scan operation.

Introduction 7

MAPware-7000 Getting Started Guide 7

Subroutine Blocks
Subroutines are not executed unless specifically called by another logic block. Subroutines are useful
when you have a set of commands that should be executed only under certain conditions. A maximum
of 256 subroutines can be created (dependent upon total memory available).

Timer Interrupt Blocks
Timer interrupt logic blocks are given the highest priority when the MAPware-7000 program is executed.
The timer interrupt is enabled by going to the Define > System Parameters dialog box and checking
Timer Interrupt Interval.

When enabled, the timer interrupt routine is
executed based upon the interval selected (range is
1-1000 milliseconds).

All other operations are suspended when the timer
interrupt activates. Use this feature sparingly if you
have a continuous operation that is time-critical. Because timer interrupt routines halt all other
activities, to minimize its impact on the performance of the controller, design the interrupt routine to be
as short as possible and adjust the timer interrupt interval to the maximum setting that still meets the
requirements of your application.

Introduction 8

MAPware-7000 Getting Started Guide 8

Installing MAPware-7000
Use the following procedure to install the MAPware-7000 software from the CD-ROM.

1. Turn on power to your development computer.
2. Make sure no other application programs are running.
3. Insert the MAPware-7000 software CD into the computer’s CD-ROM drive.

 Note. if ‘Auto Play’ mode is not set for your CD-
ROM drive, double-click setup.exe on the root
directory of the CD drive using Windows Explorer.

4. The Welcome to MAPware-7000 software screen
appears.

5. Click Next to continue.

6. Select the preferred directory location on your
computer to install the MAPware-7000 software
(default is C:\Maple Systems\MAPware-7000\).

7. Then click Next.

8. Confirm that you are ready to begin installation. Click
Next.

9. Once installation is complete, click Close.

Creating a Sample Project using Native Ladder 9

MAPware-7000 Getting Started Guide 9

Creating a Sample Project using Native Ladder
Introduction
This first section will provide step by step instructions for creating a simple test project using the Native
Ladder Logic editor. The project will display and manipulate digital inputs and outputs, as well as take a
16 bit analog input and scale it to a human readable engineering value. The value will also be checked
against limits to determine if it’s within an acceptable range.

For this example, we will use the following items.

• HMC3102A-M
• HMC3-M0808Y0401T expansion module
• MAPware-7000 software running on a PC
• Micro USB configuration cable (PN 7431-0119)
• Simple test circuit attached to the I/O module to test the inputs and outputs configured in the

project.

The instructions presented here should be general enough that they can be adapted for equipment on
hand.

The project will demonstrate.

• Configuration of input and output channels
• Writing a simple Native Ladder logic block that controls I/O points
• Scaling an analog input
• Configuring a screen with objects that display HMC data
• Navigating between screens

Create a New Project
Starting a new project in MAPware-7000 is straightforward. After MAPware-7000 has started, it will
display the opening screen. This screen displays a list of recent projects and offers the ability to either
open an existing project or create a new one.

To create a new project:

1. Click the New option under the Project category, or select Project > New from the menu bar.
2. When the Select Product dialog box appears, make the following selections.

a. Product Series. HMC
b. Product. HMC3102
c. Model. HMC3102A-M
d. Programming Language. Native Ladder
e. Display Orientation. Horizontal

Creating a Sample Project using Native Ladder 10

MAPware-7000 Getting Started Guide 10

3. Click OK. At this point, MAPware-7000 will give your project a default name based on the model
number specified and open the Project Summary screen.

4. To save the project with a new name, from the menu bar, select Project > Save.
5. Select the directory where you want to store to project and enter a name for the project. We

will use QuickStartExample for our project name.
6. Click Save to save the new project.

Project Information
Window

Main Work Area

Properties Grid

Toolbars

Creating a Sample Project using Native Ladder 11

MAPware-7000 Getting Started Guide 11

Configure the I/O module
The first thing to set up in this new project is an I/O expansion module. This is done in the IO Allocation
window.

1. Expand the IO Allocation node in the Project Information Window, then click the Expansion
folder.

2. The HMC3102A-M has five expansion slots, but we will only be using one of them. This is listed

in the Main Workspace window, as shown above. Double click Slot1 in the list to open the IO
Allocation window for this slot.

3. In the IO Allocation window, select HMC3-M0808Y0401T from the Model dropdown.
4. Click the Configure button at the bottom of this window to configure the channels we will use.

5. Click the Analog tab.

6. We will use Input Channel 0 with a 0 to 5 V input range. Make sure Input Channel0 is selected in
the Channel dropdown menu and select Voltage(0-5V) in the Type dropdown menu.
Note: You must scroll down in the Type dropdown menu to find the Voltage(0-5V) option.

Creating a Sample Project using Native Ladder 12

MAPware-7000 Getting Started Guide 12

7. Click Confirm to save this selection. Note that the selection now appears in the Settings Preview
section at the bottom of the window.

8. Click Close in the Configuration window. In the IO Allocation window, check the Download
Configuration Settings checkbox.

9. Click OK in the IO Allocation window to complete the allocation.

Doing this adds the selected module to the project, allocates a set of I/O module tags in the tag
database, and sets the default values of those tags according to the selected configuration. For example,
the settings above will create a tag called Slot01-CH0_Analog_IP_Type at address MW0160 and set the
initial value of this tag to 6, which is the configuration register setting for the 0 to 5V input range. The
raw input value can then be read from the tag named Slot01-CH0_AnalogIPReg at address XW0111.

 For more information on I/O modules and associated tags, see the appropriate I/O Module Guide for
your series of product.

Add Tags to the Project
Tags are names assigned to internal memory registers of the HMC, contacts of an expansion module,
and any external PLC data registers/coils. Some system tags are predefined when you first begin a
project. Other tags are created by the programmer. For example, you must create and assign a tag to
every PLC memory address that you wish to read/write. When using the optional I/O Expansion
modules, tags are created in order to use them. The Tag Database collects and stores all tags for review
and editing.

Once a tag is assigned, you can easily link any object (i.e. bit lamp, numeric register, etc.) to the tag. Tags
have several advantages.

• Tags provide an organized method of tracking all memory addresses used in a project.
• Tags are much more descriptive of functionality than the name of the memory address.
• Tags are easily edited, should a change be required.
• Tags can be exported and imported into other MAPware-7000 projects, regardless of which

HMC/MLC unit is selected.

Creating a Sample Project using Native Ladder 13

MAPware-7000 Getting Started Guide 13

Once defined, the tag name can be used throughout the project to refer to a particular register, without
needing to remember its memory address.

In Native Ladder projects, tags are defined to a specific address in the HMC’s memory. These addresses
are grouped into different address spaces according to how a tag is intended to be used. Examples are;
D-registers (general purpose data registers for 16- or 32-bit data), B-registers (single bit internal
registers), and S/SW-registers (system tags that control how the HMC hardware functions).

In addition to the tags automatically generated for the I/O card, we will create custom tags to display
values on the HMC screen and do calculations within Ladder Logic blocks.

1. Click the Tags folder in the Project Information Window to open the Tag Database.

2. To add a tag, right-click in the list of tags and select Add from the context menu, or click the Add
Tag button up top.

3. The Add Tag window is displayed. This window is used to configure the parameters for the new
tag.

○ Node Name – Specifies the device in
which the tag is located. In this example,
there is only one Node, the HMC3102A-
M itself. If we had configured an
external device in the Network
Configuration window, such as another
PLC, it would be available to select in
this dropdown list.

○ Tag-Name – Enter a descriptive name
for the tag.

○ Register/Coil Type – Pick a memory
range to use for the tag.

○ Tag-Type – Select between a Boolean
two state tag (Coil or Bit addressed
Register), or a Register tag (i.e. a byte,
word or double word tag).

○ Register – Memory address of the tag.
○ Byte(s) – Specify the size of the tag (byte, word, or double word).

Creating a Sample Project using Native Ladder 14

MAPware-7000 Getting Started Guide 14

4. We will add the following tags to the project using the Add Tag window.

Name
Register /
Coil Type

Register
(address)

Byte(s)
(length)

Description

RawInputInt Data Registers D00000 4-Bytes Integer register to contain raw analog input
RawInputFloat Data Registers D00002 4-Bytes Floating point format tag version of RawInputInt
RawLow Data Registers D00004 4-Bytes Smallest possible value input register can have
RawHigh Data Registers D00006 4-Bytes Largest possible value input register can contain
EngLow Data Registers D00008 4-Bytes Smallest possible value of scaled input
EngHigh Data Registers D00010 4-Bytes Largest possible value of scaled input
ScaledInput Data Registers D00012 4-Bytes Scaled input value.
HighLimit Data Registers D00014 4-Bytes High limit to test ScaledInput against
LowLimit Data Registers D00016 4-Bytes Low limit to test ScaledInput against
DisableScaling Internal Coils B00000 Coil Disable (ON) / Enable(OFF) Scaling Logic
EnableLimits Internal Coils B00001 Coil Enable (ON) / Disable (OFF) limit logic

a. The Node Name is not modified, as there are no other nodes in our project and all tags are
local.

b. Type RawInputInt in the Tag-Name field and select Data Registers from the Register/Coil
Type drop down.

c. This first tag will be at Register 0, but for each following tag we will increment the address
by 2, as each tag is 4 bytes (32 bits) long, and each Data Register is 2 bytes (16 bits) in
length.

d. Select 4-Bytes(2-words) from the Byte(s) dropdown menu.
e. Click Add. The tag is added to the tag database, and the Add Tag window remains open.
f. Change the Tag-Name to RawInputFloat and increment the Register by 2.
g. Click Add again.

5. Continue this process for the rest of the listed tags above. When adding the DisableScaling and
EnableLimits tags, the Register/Coil Type must be changed to Internal Coils.

6. Once all tags have been added, click the Close button. Any typos can be fixed by double-clicking
on the tag to open the Edit Tag dialog box.

Initializing Tags with Power-On Tasks

To perform the scaling operation in this sample project, we need to initialize the tags used to define the
input and output scales. There are two primary places available to perform initializations in MAPware-
7000.

• In a Power-On Task
• In a Power Up Logic Block

We will use a set of Power-On Tasks. Tasks are specifically predefined actions taken by the controller,
such as writing a value to a tag register, displaying a new screen, turning a bit on/off, etc. The number of
tasks is limited only by the total amount of memory available in the controller. Each task has two
fundamental components: the action taken when the task activates, and the triggering mechanism that
starts the action.

Creating a Sample Project using Native Ladder 15

MAPware-7000 Getting Started Guide 15

1. Click the Tasks folder in the Project Information Window to open the task editor.

There are two Tasks sections in this window. Power-On Tasks are executed only once when the HMC
first powers up. Global Tasks are executed continuously while the HMC is running. Notice that there is a
default Power-On Task that tells the HMC which screen to display first.

2. Make sure the Power-On Tasks radio button is selected.

3. From the Select Task dropdown list, select the Write Value to Tag task.

4. In the Tag selection, choose RawLow from the dropdown or click the button to the right of
the dropdown to open the Select Tag window.

Creating a Sample Project using Native Ladder 16

MAPware-7000 Getting Started Guide 16

5. In the Number field, enter 0.

6. Select Float from the Type dropdown list.

7. Click the Add button. The task now appears in the Power-On Tasks list.

8. Repeat this process to add Power-On Tasks that initialize the tags in the table below with the
values shown. Make sure to set the Type to Float for each task.

Tag Value Type Notes
RawLow 0 Float Minimum analog input value
RawHigh 65535 Float Maximum analog input value (16 bit resolution)
EngLow 0 Float Minimum scaled engineering value (0 Volts)
EngHigh 5.0 Float Maximum scaled engineering value (5 Volts)
HighLimit 4.5 Float Initial high limit
LowLimit 0.5 Float Initial low limit

9. When complete, the list of Power-On Tasks should look like this.

Ladder Logic Blocks
With the tags defined and initialized, it is time to put them to use in a ladder logic program.

Scaling Analog Inputs

The first rung of the logic block will scale the raw input from Analog Input Channel 0 of the
HMC3-M0808Y0401T I/O card to an engineering value of 0 to 5 volts. This is done by moving the raw
input into a local tag, converting it to a floating point number, and then using the Scale instruction to
scale the value.

1. Expand the Logic Blocks folder in the Project Information Window,
then expand the Main folder.

2. MAPware-7000 creates a default block in the Main folder called
Block 1. Click the folder for this block to open the Ladder Logic
editor.

3. Select NC (Normally Closed) Contact from the I/O Instructions
dropdown on the instruction menu, or click the icon on the
Common Objects Toolbar. Then click directly to the left of the
connection point for rung 1 to place the NC Contact.

Creating a Sample Project using Native Ladder 17

MAPware-7000 Getting Started Guide 17

4. The Default operand selection window will open. Select the DisableScaling tag, then click OK.
The button in the popup window will open the Select Tag window used in the previous
section to help you find the required tag.

Note: Tag names are truncated by default to 6 characters in the logic editor window. To get the
entire tag name to display, select Tools > Preferences > Project Global Settings from the menu
bar and increase the Number of tag name characters to be displayed in Instruction setting to
the maximum 20 characters.

This rung of logic can now be turned on and off with the DisableScaling tag. It will execute when
DisableScaling is off, and be skipped if DisableScaling is on.

Because our engineering values represent voltages from 0 to 5 volts, we will need them to be floating
point numbers. Before scaling, the raw input must be moved into a Data Register and converted to
floating point format. To move the input value into a data register, use the Move DWord instruction.

 For more information on the specific instructions used in the following steps, see the MAPware-7000
Ladder Logic Guide.

5. Select Data Transfer > Move DW from the instruction menu, then click directly to the right of
the Normally Open Contact to place the instruction. Select Slot01-CH0_AnalogIPReg as Operand
A (Source), and RawInputInt as Operand B (Destination). This will move the 16-bit resolution
raw analog input data into the tag we have created to work with the data.

6. Before placing the next instruction, we need to place a Vertical Link, also called a branch, after
the contact and before the move instruction. Click the Vertical Link icon in the Common
Objects Toolbar, then click between the NC Contact and the Move DWord instruction to place

Creating a Sample Project using Native Ladder 18

MAPware-7000 Getting Started Guide 18

the Vertical Link.

7. To the right of this link, place an Integer to Float instruction (Conversion > Integer to Float from
the instruction menu).

8. Configure Operand A with the RawInputInt tag and Operand B with the RawInputFloat tag. As
the name of the instruction implies, this will convert our raw input from an integer to a float.

9. Another vertical link is required to add a third instruction below the Integer to Float instruction.
Again, click the Vertical Link icon and then click immediately to the left of the Integer to Float
instruction.

10. To the right of this vertical link, place a Scale instruction (Functions -> Scale). Click OK to accept
the default operand selection.

Creating a Sample Project using Native Ladder 19

MAPware-7000 Getting Started Guide 19

The Scale instruction has three operands. These are used to perform a linear mapping of the input
(Operand A), to the output (Operand C). The figure below shows a graphic representation of the Scale
instruction with two data points, n=2.

The input value x (Operand A) is mapped to an output value y(x) (Operand C) using the relationship
shown. m and b, the slope and offset of y(x), are determined by four tags starting at the address
specified in Operand B. These correspond, in consecutive order according to tag address, to the
parameters. x1, x2, y1, y2, as shown in the figure.

11. In the Instruction Properties panel, the Type property will need
to be changed to Float. and the Data size property to 2 before
selecting our tags. The Data size specifies the number of points
to use in the linear mapping. This appears as n in the instruction.

12. Operand A is the input, or x in the figure. For this operand use
the output of the Integer to Float instruction (RawInputFloat).

13. Operand B is the starting address of a block of four registers.
The first of these registers defines the start of the input scale
(the x coordinate of P1 in the figure), the second register defines
the end of the input scale (the x coordinate of P2 in the figure),
the third register defines the start of the output scale (the y
coordinate of P1 in the figure), and the fourth register defines
the end of the output scale (the y coordinate of P2 in the figure).
Conveniently, we’ve already defined a block of four consecutive
tags for this purpose, starting with the tag. RawLow at address
D00004.

Tag Name Register Coordinate
RawLow D00004 x1

RawHigh D00006 x2

EngLow D00008 y1

EngHigh D00010 y2

Select RawLow as Operand B.

Creating a Sample Project using Native Ladder 20

MAPware-7000 Getting Started Guide 20

14. Operand C is the output, or y(x) in the figure. Select tag ScaledInput for Operand C.

 You must change the instruction type to Float before assigning operands, because the instruction’s
default type is a 2 byte integer. Attempting to select our previously created 4 byte float type tags before
changing the instruction’s type to float will result in duplicate tags being created.

This completes the setup of the scaling operation. If scaling has not been disabled, this rung will copy
the raw analog input into a local tag, convert the data into floating point number, and finally scale it
from a raw 16 bit binary number (range from 0 to 65535) to an engineering value (from 0 to 5 volts).

Checking Output Limits

Next we will add the high and low limit logic to control two digital outputs that will indicate when the
analog input is either too high or too low. This logic will be enabled or disabled using an enable bit
(EnableLimits) in an input contact. If the output coil instructions were placed on the same rung as this
enable contact, the outputs would be forced OFF whenever the enable bit is OFF. We would instead like
the outputs to be free to toggle states even if EnableLimits is disabled. To accomplish this, the logic will
be placed in a separate subroutine logic block, and the enable contact will be used to control whether or
not the block is called (evaluated).

Create a new Subroutine logic block.

1. Right-click the Subroutine folder and select New Logic Block from the context menu.

2. Block 2 is created and a new editor window is opened.

This subroutine will have two lines. One to check the high limit and one to check the low limit. The first
rung will be used to check if the scaled input value is above the high limit.

Creating a Sample Project using Native Ladder 21

MAPware-7000 Getting Started Guide 21

3. Click the NO Contact icon in the common objects toolbar, then click the input to rung 1 in
the logic editor to place the contact.

4. Select the Always on (M00512) system bit. This bit is set on by the processor and will ensure
that this rung always executes.

5. Select the Greater Than instruction from the Instruction menu (Compare > Greater Than) and
click to the right of the NO Contact. Click OK to accept the default operand selection.

6. The Type property for the Greater Than instruction will need to be changed to Float before
assigning operands to ensure that duplicate tags are not created. Do this in the Instruction
Properties grid.

7. Then select ScaledInput for Operand A, and HighLimit for Operand B.

8. If the ScaledInput value is above the high limit, the logic will set an output on the I/O card. A
standard output coil instruction is used for this purpose. Click the Output icon in the
Common Objects Toolbar.

9. Click to the right of the Greater Than instruction to place the Output.

Creating a Sample Project using Native Ladder 22

MAPware-7000 Getting Started Guide 22

10. Select Slot01-OP_Coil_00002 (Y01002) as the tag controlled by this output coil and click OK.

This is the coil controlling the first relay output on the I/O card (terminal Y2).
11. To complete this subroutine, we just need to add the logic to test the lower limit. We will start

rung 2 by making a copy of rung 1. Right-click to the left of the input on rung 1. From the context
menu select Copy All Instructions > Rung.

12. Right-click rung 2. From the context menu, select Paste. This will put a copy of the instructions
from rung 1 on rung 2.

13. Click the second Greater Than instruction to select it. Then right-click to delete it or press Delete
on your keyboard.

14. Select a Less Than instruction (Compare > Less Than) to place in the open space and accept the
default tags.

15. In the Instruction Properties grid, set the Type property to Float, Operand A to ScaledInput, and
Operand B to LowLimit.

16. Change the Output instruction coil address to Slot01-OP_Coil_00003 (Y01003).

17. Because this logic block is a subroutine, it must end with a Subroutine Return instruction. From
the instruction menu, select Program Control > Subroutine return.

Creating a Sample Project using Native Ladder 23

MAPware-7000 Getting Started Guide 23

18. Click anywhere on rung 3 to place the instruction.

This completes the logic for the subroutine logic block. The completed block should look like
this:

19. Finally, we must add a rung to Block1 that will call the subroutine. Click the folder for Block1 in
the Project Information Window to reopen the Main Block 1 editor.

20. Place an NO Contact on rung 2 that can be used to enable/disable the logic rung we are about to
create.

21. Select EnableLimits to use as the tag for this contact and click OK in the tag selection window.
This will allow this rung of logic to be turned on and off during runtime.

22. Place a Subroutine call instruction (Program Control > Subroutine call) on the output of this
contact.

Creating a Sample Project using Native Ladder 24

MAPware-7000 Getting Started Guide 24

23. Make sure that the Block Name property for the subroutine call instruction is set to Block 2.

This completes the logic needed for this sample project. The completed logic block (Block 1) should now
look something like this.

This is a good time to compile and save the project to make sure there are no errors. To do this, either
click the compile icon , select Project > Compile, or hit F9. A successful compile will show a
Compilation Successful message.

If there are any compile errors, they will be listed in the output window.

Fix any errors before moving on.

Create Screen Objects
To see what the logic is doing in real time, we will create HMI screens to display information. The first
screen will be used to display the digital I/O points. It will show the current state of input channels X0
and X1 and control the outputs Y4 and Y5

1. In the Project Information Window, click to expand the Base Screens folder. By default, Screen1
is already present.

Creating a Sample Project using Native Ladder 25

MAPware-7000 Getting Started Guide 25

2. Click the Screen1 subfolder to display the work area for Screen1.

Labels

Before adding data display objects to the screen, we will add labels so that it is clear what data the
screen is displaying. There are two text objects in MAPware-7000 – Multilingual Text and Text.
Multilingual Text uses Windows fonts and supports the Languages feature, which allows you to select
up to nine languages. The Text object has more animation features, but fewer font options. We will use
Multilingual Text objects for our labels.

1. Select Drawing Tools > Multilingual Text from the Draw menu, then click in the work area to
place the Multilingual Text object.

2. This text will provide a title for the window. In the Properties grid, select the Font property and
then click the ellipsis button to the right. Change the font size to 48 point.

Creating a Sample Project using Native Ladder 26

MAPware-7000 Getting Started Guide 26

3. Change the Text property from Sample Text to Digital Inputs/Outputs.

4. Use the position boxes to expand the text object as needed to display the entire text. Use the
Center along Screen’s Horizontal toolbar icon to center the title on the screen.

5. Create a copy of this Multilingual Text object to use as a label for the input section. Right-click

the object and select Copy from the context menu. Then right-click elsewhere on the screen and
select Paste from the context menu. Click and drag the copy to a new location on the screen.

6. Change the Font Size property to 22 point and the Text property to Inputs.
7. Continue to make copies to create the following labels as shown [Inputs, Outputs, X0:, X1:, Y4:,

and Y5:].

Bit Lamps

With the labels in place, we will now add bit lamps to monitor the state of the two inputs.

1. Click the Bit Lamp icon , then click the screen to the right of the label for X0:.

Creating a Sample Project using Native Ladder 27

MAPware-7000 Getting Started Guide 27

2. In the properties grid for this Bit Lamp, change the Style property to From Picture Library.

3. Click the field for the FromPictureLibraryOFF property, then click the ellipsis button to open
the library browser. Select any of the lamps, then click OK.

Note: This will automatically select the corresponding ON image for the FromPictureLibraryON
property.

4. In the Tag Name property for the Bit Lamp object, select Slot01-IN_Coil_00000 as the tag to
use.

5. Make a copy of this bit lamp and place it to the right of the X1: label.
6. Change the Tag Name property of the new Bit Lamp object to Slot01-IN_Coil_00001.

Toggle Bit Objects

Next, we will add Toggle Bit objects to control two outputs.

1. From the Draw toolbar select Advanced Objects > Buttons > Bit Action > Toggle Bit. Click to the
right of the label for output Y4 to place the Toggle Bit button.

2. In the properties grid for this Toggle Bit object, change the Feedback Tag property to Yes. This
allows a tag to control the appearance of the Toggle Bit object on the screen. It can be set to the

Creating a Sample Project using Native Ladder 28

MAPware-7000 Getting Started Guide 28

same tag that the object is controlling, or to a different tag.

3. Select Slot01-OP_Coil_00004 for both the Feedback Tag Name property and the Tag Name
property.

4. In the Appearance - Feedback Tag On section, change the On Text property to ON.

5. Make a copy of the Toggle Bit object and place it to the right of the Y5: label.
6. In the properties for the new Toggle Bit object change both the Feedback Tag Name and Tag

Name properties to Slot01-OP_Coil_00005.

7. Use the alignment toolbar options to neaten up the
screen.

Creating a Sample Project using Native Ladder 29

MAPware-7000 Getting Started Guide 29

Duplicating a Screen

To save time setting up the next screen, we will duplicate this first screen and use it as a starting point
for the second.

1. Right-click the Screen1 folder in the Project Information Window and select Duplicate from the
context menu.

2. You should now see two screens listed in the project tree.

The editor screen has changed to the new Screen2, even though it looks exactly the same as
Screen1, because it is a duplicate.

3. Before moving on to Screen2, we need to add a navigation button to Screen1 that opens
Screen2. Click the Screen1 folder to switch back to the Screen1 editor window.

4. From the Draw toolbar, select Quick Buttons > GoTo Screen.

5. Click in the lower right of the screen to place the navigation button.
6. In the Property Grid for the GoTo Screen button, change the On Text property to Analog, and

the Screen Name property to Screen 2.

This completes Screen1. Screen2 will be used to monitor analog input channel 0, along with the scaling
and limits functionality created earlier in the logic blocks.

Creating a Sample Project using Native Ladder 30

MAPware-7000 Getting Started Guide 30

7. Click the Screen2 folder in the Project Information Window.

Screen2, looking exactly the same as Screen1 without the GoTo Screen button, will appear in
the work area.

8. To edit the text of an existing label, click the label to open its property grid. Then enter the
desired text in the Text property. Edit the title of Screen2 so that it reads Analog Inputs.

9. Change the Inputs label to Input Values, the X0: label to Raw Input:, the X1: label to Scaled
Input:, the Outputs label to Limits, the Y4: label to High Limit (Y2):, and the Y5: label to Low Limit
(Y3):. Adjust the size of the text objects as needed to display the full text.

10. Copy and paste to create four more new labels. Set the text to Scaling, Eng. High:, Eng. Low:,
and Enable Limits:.

11. Move around your labels, Bit Lamps, and Toggle Bit objects to the approximate locations shown
below.

Numeric Displays

Next we will configure Numeric Display objects to show the raw input value and the scaled input value.

1. From the Common Objects toolbar, click the Numeric Display icon , then click to the right of
the Raw Input: label.

2. In the properties grid for this Numeric Display object, set the Font property to 10 x 14 and the
Tag Name property to Slot01-Ch0_AnalogIPReg. In the Format section, change the Number Of

Creating a Sample Project using Native Ladder 31

MAPware-7000 Getting Started Guide 31

Digits to 5.

3. Create a copy of this Numeric Display object and paste it directly below to use as the Scaled
Input: display.

4. In the properties grid for the Scaled Input: numeric display, change the Format > Digits After
Decimal property to 2, the Data Type property to Float, and the Tag Name property to
ScaledInput.

Numeric Entry

Next we will place two Numeric Entry objects next to the Eng. High: and Eng. Low: labels. The Numeric
Display object simply displays a register value. The Numeric Entry object displays a register value and
allows the user to modify the register value. These two Numeric Entry objects will allow the user to
modify the engineering scale during runtime.

Creating a Sample Project using Native Ladder 32

MAPware-7000 Getting Started Guide 32

1. From the Common Objects toolbar, click the Numeric Entry icon , then click to the right of the
Eng. High: label.

2. In the properties grid for the Numeric Entry object, set the Font property to 10 x 14, the Tag
Name to EngHigh, the Data Type to Float, the Format > Number Of Digits to 5, and the Format
> Digits After Decimal Point to 2.

3. Create a copy of this Numeric Input object and paste it directly below the original to create a
Numeric Input for EngLow:. Change the Tag Name property from EngHigh to EngLow.

The last section of Screen2 will display the limit indicators controlled by the ladder logic program. The
existing Bit Lamp and Toggle Bit objects will be modified for this section. Two Numeric Entry objects will
be added, allowing the limits to be adjusted.

4. Change the Tag Name property for the HighLimit bit lamp from Slot01-IN_Coil_00000 to Slot01-
OP_Coil_00002. Change the Tag Name and Feedback Tag Name properties for the HighLimit
toggle switch from Slot01-OP_Coil_00004 to Slot01-OP_Coil_00002 as well.

5. Change the Tag Name property in the LowLimit bit lamp from Slot01-IN_Coil_00001 to Slot01-
OP_Coil_00003. Change the Tag Name and Feedback Tag Name properties for the LowLimit
toggle switch from Slot01-OP_Coil_00005 to Slot01-OP_Coil_00003.

6. Copy and paste one of the toggle bit objects and place it next to the Enable Limits: label.

Creating a Sample Project using Native Ladder 33

MAPware-7000 Getting Started Guide 33

7. Change both the Feedback Tag Name and Tag Name properties in the Enable Limits: toggle bit
object to EnableLimits.

8. Create a copy of the Eng. High: Numeric Entry object and paste it to the right of the High Limit

(Y2): Toggle Button object. Change the Tag Name property in this new Numeric Entry object
from EngHigh to HighLimit. Repeat to create a LowLimit Numeric Entry object.

9. To complete the second screen, add a GoTo Screen button allowing the operator to navigate
back to Screen1. Select Quick Buttons > GoTo Screen from the Draw toolbar. Click in the lower
right corner of the screen to place the button.

10. In the property grid for the new button, set the On Text property to Digital and the Screen
Name property to Screen1.

This completes the set up for the second screen. Save and Compile to check for errors. The project is
now complete and ready to be downloaded to the HMC hardware.

Testing the Project

Test Hardware Setup

Install the HMC3-M0808Y0401T expansion module into the expansion slot of the HMC3102A-M.
Connect the HMC3102A-M to a 24VDC power supply. Connect the 0 and 24VDC connectors on the
HMC3-M0808Y0401T to the 24VDC power supply.
 See the HMC3000 I/O Guide and appropriate Quick Start Guide for more detail on how to install the
expansion module.

A simple test circuit to control the inputs and view the outputs is shown below.

Creating a Sample Project using Native Ladder 34

MAPware-7000 Getting Started Guide 34

If indicator LEDs or lamps are not available, the continuity function on a digital multi-Meter can be used
to test the state of the relay outputs. For outputs Y2, Y3, and Y4, test continuity between C1 and the
output pin. For output Y5 test continuity between C2 and Y5. Do not connect 24V to C1 and C2 in this
case.

Downloading the Project

This step assumes that you are using a USB download cable. You may also download to the HMC via
Ethernet, but additional steps are required to ensure that your computer and HMC are on the same IP
Subnet.

 See the MAPware-7000 Programming Manual for more detail on downloading via Ethernet.

To download the project.

1. Connect a Micro USB download cable (PN. 7431-0019) between your programming computer
and the HMC USB Slave Port.

Creating a Sample Project using Native Ladder 35

MAPware-7000 Getting Started Guide 35

2. Click Project > Transfer > Download to display the Download to device dialog box.

a. Under Download Options, check Firmware.
b. Under Project, check Application and Ladder.
c. Under Device Settings, check Automatically put unit in halt mode and Automatically put

unit in run mode.

3. Click the Download button.

Note: You can check the Do not show this message again box to hide this warning message on
future downloads during the current session.

4. Click OK. The file will begin downloading.

5. When complete, the HMC3102A-M will reinitialize and display the application.

Creating a Sample Project using Native Ladder 36

MAPware-7000 Getting Started Guide 36

Running the Application

Application test procedure:

1. Toggle the output toggle bit buttons. Verify the corresponding outputs come on.
2. The bit lamp indicators should change state when the corresponding input switch is closed.
3. On the analog screen, vary the input voltage and watch the raw and scaled values change.
4. Enable the High/Low limits and vary the input voltage to see Y2 and Y3 toggle on and off at each

limit.
5. Verify the toggle switches for Y2 & Y3 work when the Enable Limits toggle is off, and do nothing

when the Enable Limits toggle is on.
6. Touch the High and Low limit numeric entry objects to change the values on the fly and verify

that Y2 and Y3 toggle on and off at the new limits.
7. Do the same for the Eng. High and Eng. Low to change the output scale of the scaling

instruction.

Online Monitoring

The HMI screen provides a window into what is happening in the HMC; however, for a complicated
project with many logic blocks, it is often not enough to debug the logic. Online Monitoring allows the
programmer to view the logic in real time, and modify data directly in logic blocks. With the project
running in the HMC and the USB download cable still attached, MAPware-7000 can be used to monitor
logic block execution in real time.

To begin an online monitoring session:

1. Open the editor for Block 1
2. Select Tools > Preferences > Online Communications Mode to select the communication

method used for online monitoring.

Note: For Ethernet mode, the IP address of the device must be entered in this window. The IP address
here should match what is configured on the Ethernet tab of the Project Properties dialog. The address
of the device is only updated when the Ethernet Settings box is checked in the Download window. The

Creating a Sample Project using Native Ladder 37

MAPware-7000 Getting Started Guide 37

current IP address is shown on the HMI screen when the device is booting up. Here we assume USB is
selected.

There are three options for initiating an online monitoring session.

• With Download – The currently open project will be downloaded to the device before the
online monitoring session begins.

• Without Upload – The online session will begin with the project that is open and with the
project that is in the device. This assumes that the currently open project is the same as the
project on the device.

• With Upload – The currently open project will be closed. The project on the device is uploaded
and opened, before the online session begins. This is the only option available when no project
is opened.

These options are available by selecting Mode > Go Online from the menu. Note. clicking the online icon
 is equivalent to selecting Without Upload form the Go Online menu option.

3. Because we already have our project open, select Mode > Online > Without Upload from the
menu bar.

The logic block will be shown with the current values above the operands.

Contacts and coils are color coded according to their current state. Contacts are red when open (off),
and green when closed (on).

Output coils are green when energized (on), and red when not energized (off).

Values can be changed from within the logic block editor. Double click the contact or operand to be
changed, then enter the state or value as needed.

Creating a Sample Project using Native Ladder 38

MAPware-7000 Getting Started Guide 38

 For more information on using online monitoring or debugger mode, refer the MAPware-7000
Ladder Logic Guide.

Review
Before moving on to IEC 61131-3 programming, let’s review what has been learned in this section.
Consider what has been accomplished:

• A new project was created and configured for an HMC model, including setting up and
configuring an expansion module.

• The tag database was used to create new tags using internal HMC memory as well as I/O
module registers.

• Two screens were created using data display, data entry, and navigation objects.
• The project showed how to create a simple ladder logic program using Logic Blocks, including a

subroutine block.
• The project was saved, compiled, and downloaded into the HMC.
• Online monitoring mode was used to view the application as it executed.

The next section of this guide will explore the IEC 61131-3 programming environment.

Creating a Sample Project using IEC 61131-3 39

MAPware-7000 Getting Started Guide 39

Creating a Sample Project using IEC 61131-3
Introduction
This section guides you through the steps needed to create and run a simple IEC 61131-3 project. It will
use a common engineering task, mapping a value from one scale to another, to demonstrate how the
features of the IEC editor can be used to develop solutions. The sample project demonstrates:

• Use of the Structured Text (ST), Ladder Diagram (LD) and Function Block Diagram (FBD) editors
• How to define a User Defined Function Block (UDFB)
• The difference between a Function Block and a Function Block Instance
• Passing an instance of a Function Block as a parameter to another Function Block

Like the previous Native Ladder Sample Project, this sample project will map an input value linearly to
produce an output value on a different scale, only this time, we will create the logic that does the
scaling. We will scale values from Celsius to Fahrenheit and from a raw input value to an engineering
value (i.e. from a 12 bit raw input to a voltage). The solution should be general enough so that the
Function Blocks created can be re-used for any linear scaling operation. We also want the calculation to
be as efficient as possible. The task of scaling a number can be broken down into two parts.

1. Calculate the slope and offset
2. For a given input calculate the output

We could do both of these operations in one function block, but that would mean that every time the
value is scaled, the slope and offset are recalculated. Instead we will create two function blocks; one to
calculate the slope and offset given maximum and minimum values, and one to actually do the scaling as
the input changes.

Creating User Defined Function Blocks to accomplish the task eliminates the need for multiple logic
blocks that do the same thing, making the project easier to maintain. Edits can be made in one place and
take effect throughout the project.

Create a New Project
We will use the same HMC3102A-M that we used in the previous Native Ladder sample project. Once a
project has been created in either Native Ladder or IEC 61131-3, it cannot be converted to use the other
programming language, so we will create a new project for this example.

1. To create the project, select Project > New. The Select Product window is displayed.
2. Select the Product Series, Product, and Model.
3. Leave the Display Orientation as Horizontal.
4. Native Ladder is the default Programming Language and for this sample project must be

changed. Click the drop down to select IEC61131-3.

5. Click OK. A new project is created with a default name.
6. Select Project > Save to save the project with a unique name.

Creating a Sample Project using IEC 61131-3 40

MAPware-7000 Getting Started Guide 40

The Editor Window

Let’s take a quick tour of some of the aspects of MAPware-7000 that are unique to an IEC 61131-3
project. Clicking the folder for Block1 in the Project Information Window displays the editor for that
block. The default logic block uses the Ladder Diagram editor, so the Ladder Diagram editor is displayed
when the Block1 folder is selected.

• Block Properties – This area displays the execution type and name of the logic block.
• Instruction List – Lists all the available instructions for the project. Instructions are categorized

according to functionality. Expand the node for a given category to see individual instructions.
To add a particular instruction, click and drag it into the editor window. Subroutines and UDFBs
(Function Blocks that users create) will appear under the Project folder of the Instruction List
once they are defined. Information on how to configure and use a given function block is
available in the help file. To access the help file entry for any of the blocks in the Instruction List,
simply double-click the instruction.

• Editor Window – This is where the logic is defined. It displays the graphical or text
representation of the logic program.

• Quick Select Menu – The options available on this menu depend on the editor in use but
provide quick access to common program elements. Click the location in the editor where you
want to place the element then click the element in the quick select menu to place it in the
editor.

• UDFB Folder – This folder contains the definitions for User Defined Function Blocks further
described below. To add or edit a UDFB, click the block name in this folder. To use a UDFB in
another logic block, select it in the Project folder of the Instruction List.

• Function Block Instance Folder – This folder contains a list of all the Function Block Instances in
the project further described below. Each block can have multiple instances, and each instance

Creating a Sample Project using IEC 61131-3 41

MAPware-7000 Getting Started Guide 41

will have its own private set of data to work with. Thus, one type of function block can be
utilized for multiple purposes in the project.

IEC Specific Logic Blocks and Execution Style

In addition to the Power Up, Main, Subroutine, and Timer Interrupt execution styles available in the
Native Ladder Editor, the IEC programming mode also allows you to create User Defined Function Blocks
and Function Block Instances.

The current Execution Style of a logic block is indicated by the block’s location within the Logic Blocks
folder of the project tree.

Subroutines
In IEC mode, when a block is created as a Subroutine block, it will appear in the Instruction List under
the Project folder as a function block that can be used within logic blocks.

User Defined Function Block (UDFB)
A User Defined Function Block (UDFB) operates similarly to a subroutine. It is a logic procedure defined
by the user that can be executed as a component in another block. The UDFB also allows the user to
define input and output parameters, making the block easy to reuse throughout the project. Once
defined, the UDFB is also available to select from the Instruction List under the Project folder. We will
create two UDFBs in this sample project.

Function Block Instances
One of the major advantages of the IEC61131-3 editor is the ability to modularize and reuse
functionality through the use of Function Blocks. Once the logic in a UDFB or Subroutine is defined, it
can be used to create Function Block Instances.

• A Function Block Instance contains all of the logic defined in the Function Block as well as its
own set of data to operate on.

Creating a Sample Project using IEC 61131-3 42

MAPware-7000 Getting Started Guide 42

• The Function Block can be thought of as a cookie cutter and the Function Block Instance is the
cookie that the cutter creates.

• Multiple instances of the same block can be defined and each will have its own set of data to
work with. The same block can be used for multiple purposes.

• Function Block Instances can be passed as parameters to other Function Blocks.
• Instances can be defined using the built in Function Blocks or User Defined Function Blocks.

The Function Block Instance folder, in the Project Information Window, is used to create Function Block
Instances and contains a list of all the instances in the project. We will create multiple Function Block
Instances in our sample project.

Add Tags to the Project
Tags are handled somewhat differently in IEC 61131-3 projects vs. Native Ladder projects. In IEC mode
projects, tags are not assigned explicit addresses. Instead they are given a name and a type, and
MAPware-7000 is responsible for allocating and tracking a memory address for the tag.

Tag Scope
In addition to Global scope tags, tags can be associated with a Function Block Instance. UDFBs can have
input, output, and internal tags. When an instance of the UDFB or built in function block is added to the
project, it will have a copy of each of the tags. Internal tags can be defined from the Tag Database by
setting the Scope to Local and the Block Type to the Function Block Instance the tag is associated with.

Input and output tags are defined by right-clicking the UDFB’s folder in the project tree and selecting the
Edit Parameters option. Once defined, Function Block Tags will appear in the Tag Database as <Function
Block Name>\<Tag Name>. For example, GenericFB\FB_tag is a tag internal to the GenericFB function
block named FB_tag.

 For more information on creating and using tags, refer to the MAPware-7000 Programming Manual.

1. Open the Tag Database by clicking the Tags folder in the Project Information Window.
2. Use the Add Tag window to create the following tags.

Tag Name Type Scope Description
Temp1C INT Global Simulated Temp input 1 [C]
Temp2C INT Global Simulated Temp input 2 [C]
Temp1F REAL Global Scaled Temp output 1 [F]
Temp2F REAL Global Scaled Temp output 2 [F]
RawInput INT Global Simulated IO card input
Voltage REAL Global Input scaled to a voltage value

Creating a Sample Project using IEC 61131-3 43

MAPware-7000 Getting Started Guide 43

Logic Blocks

Create a User Defined Function Block (UDFB)

Next we want to create our own User Defined Function Block (UDFB). This block performs the scale
operation. We will use the Function Block Diagram (FBD) editor to define this block.

1. Expand the Logic Blocks folder in the Project Information Window
2. Right-click the UDFB subfolder and select New Logic Block
3. In the New Program window name the function Scale and select FBD – Function Block Diagram

as the Programming Language and UDFB as the Execution Style
4. Click OK to create the Logic Block
5. A new block called Scale appears in the UDFB folder of the Project Information Window, and a

new instruction called Scale appears in the Project folder of the Instruction List.

6. Before creating the logic for this block we need to define the inputs and outputs so that other
logic blocks can pass data to it. Right-click the Scale folder in the Project Information Window
and select Edit Parameters.

7. In the Program Parameters window, click ‘Add Input Parameter’ under Inputs.

Creating a Sample Project using IEC 61131-3 44

MAPware-7000 Getting Started Guide 44

8. The Add Parameters pop-up window allows you to specify a name and data type for a new input
parameter. This block contains only one input parameter imaginatively named Input. Set the
type to INT then click OK.

9. Next click ‘Add Output Parameter’ under Outputs to create the output. It is named Output
and has type REAL.

10. Once complete, the Program Parameters window should appear as shown below. Click OK to
create the Parameters.

Both tags should now appear in the tag database with the Function Block/Local Tag format we talked
about earlier.

Logic can now be entered into the block to define its functionality. The first thing we want the Scale logic
block to do is convert the input to floating point (real) format.

Creating a Sample Project using IEC 61131-3 45

MAPware-7000 Getting Started Guide 45

11. In the Instruction List at the bottom right of the editor window, expand the Conversions folder
and locate the any_to_real instruction. Click the instruction and drag it into the editor window.

12. The input to this instruction will be the UDFB’s Input parameter. Double-click the instruction’s
input area and type Input into the pop up box.

Note: Notice that because Input is an input parameter for this UDFB, it shows up in the context
list with an input icon .

13. For the output, we want to define a new tag that will be local to the Scale function block.
Double-click the output area of the any_to_real instruction and type rInput into the pop up and
hit enter.

14. Because a tag with this name does not exist yet, MAPware-7000 will display a dialog box that
can be used to define the tag.

Set the type to REAL and Where to Scale. This sets the scope of the variable to the Scale
function block.

15. Click Yes to create the new variable.

Creating a Sample Project using IEC 61131-3 46

MAPware-7000 Getting Started Guide 46

16. Now that the input is in the correct format, all we have to do is multiply by the slope and add
the offset. Expand the Arithmetic folder in the Instruction List and drag a * (*Multiply*)
instruction to the editor window.

17. The first input here will be the rInput tag created in the last step. Double-click in the first input
and type rInput into the pop up window. Notice that rInput is now in the list as a local variable.

18. The second input will be a local variable called rSlope. This tag doesn’t exist yet, so click the
second input and type rSlope to create the new tag.

19. Set Type to REAL and Where to Scale using the context window as described above.
20. We will write the result of the multiplication back to the rInput variable. Select rInput for the

output (Q) of the instruction.
21. The last step is to add the offset. Drag an + (*Addition*) instruction from the Instruction List

into the editor window.

22. The first input for this instruction will again be the rInput variable. Double-click the first input
and select rInput from the tag list.

23. The second input will be a new local variable called rOffset. Type rOffset in the box for the
second input and create a new tag. Make sure the Type is REAL and Where is set to Scale.

24. Finally, the output will be the previously created output parameter of the function block. Select
Output from the menu for the output (Q) tag. Notice that it will have an output icon () in
the tag list.

Creating a Sample Project using IEC 61131-3 47

MAPware-7000 Getting Started Guide 47

25. Here is what the Scale function block should look like when complete (some comments were
added for clarity).

This is a good time to compile (Project > Compile) and save the project to make sure there are no errors
before moving on.

Create a Second UDFB to Initialize Instances of the Scale Function Block

Before we can use the Scale function block, we have to initialize the offset and slope parameters. These
are calculated from maximum and minimum values for the input value and the scaled value. We will
create a new UDFB to do this calculation and initialize the function block instances. This new block will
use the ST - Structured Text editor.

Structured Text is a text based programming language in which program instructions are entered as
discrete statements in a text source file. This programming method is similar to other high level
programming languages such as C or Visual Basic.

The basic unit of a structured text program is a statement. A statement is an instruction for the
processor to perform some set of actions. Structured Text programs are simply lists of statements.

1. Right-click the UDFB folder in the project information window and select New Logic Block.
2. Name this block ScaleInit, and select ST - Structured Text for the Programming Language.
3. Click OK to create the block.

Creating a Sample Project using IEC 61131-3 48

MAPware-7000 Getting Started Guide 48

4. Next, we will define the input parameters for the ScaleInit function block. Right-click the block’s
folder in the Project Information Window and select Edit Parameters from the context menu to
open the Program Parameters window.

5. This block will have no outputs. Enter the following inputs.
Parameter Name Type Description
InputMax INT Maximum value for the input
InputMin INT Minimum input value
OutputMax INT Maximum value of output
OutputMin INT Minimum value of input
fbScale Scale Function block instance to be initialized

Note: The last parameter is of type Scale. This means that a Scale function block instance will be passed
into the function block. The function block can then operate on the data specific to that function block
instance. The input parameters should look something like this when finished.

Now we can start entering code for the ScaleInit function block. This block will contain several local
variables to perform the calculation. In the Structured Text Editor, when enter is pressed at the end of a
statement or line of code, the editor will validate all of the parameters in that line. If it finds parameters
that don’t exist, a dialog box will pop up allowing new variables to be defined, just as in the Function
Block Diagram editor. Below is a table of all the local variables to be defined.

Parameter Name Type Scope Description
rInputMax REAL ScaleInit Floating point version of InputMax
rInputMin REAL ScaleInit Floating point version of InputMin
rOutputMax REAL ScaleInit Floating point version of OutputMax
rOutputMin REAL ScaleInit Floating point version of OutputMin

Creating a Sample Project using IEC 61131-3 49

MAPware-7000 Getting Started Guide 49

Below is the code to be entered into the ScaleInit function block. The first four lines use the any_to_real
function to convert our input tags into real numbers. Then next line calculates the slope from the given
range, and places it into the internal rSlope variable of the fbScale function block instance. The last line
calculates the offset and places it in the internal rOffset tag of fbScale.

// Convert inputs to floating point numbers
rInputMax := any_to_real (InputMax);
rInputMin := any_to_real (InputMin);
rOutputMax := any_to_real (OutputMax);
rOutputMin := any_to_real (OutputMin);

// Calculate slope
fbScale.rSlope := (rOutputMax - rOutputMin) / (rInputMax - rInputMin);

// Calculate offset
fbScale.rOffset := rOutputMax - (fbScale.rSlope * rInputMax);

Note: The green lines beginning with “//” are comments and provide context, but are optional and have
no effect on the code.

6. Copy the first statement above, rInputMax := any_to_real (InputMax);, and paste it into the
Structured Text Editor. Hit the Enter button on your keyboard.

7. A popup window to define rInputMax appears. Set the Type to REAL and Where to ScaleInit.
Click Yes.

8. Copy the rest of the code into the Structured Text Editor one line/statement at a time, pressing
Enter after each line to define the local tags. Each tag should be of type REAL and local to
ScaleInit.

9. After all the code has been entered, compile (Project > Compile) and save the project to verify
that there are no errors, and fix any typos as needed.

Note: If you copy and paste the code in its entirety from here into the editor, tags will not be created for
the internal variables because the code was not entered one statement at a time. You must manually
enter each tag into the database in this case.

 For more information on Structured Text commands and formatting, see the MAPware-7000 IEC
61131 Programming Guide.

Use the UDFBs in Ladder Diagram Blocks

Now that the function blocks have been created, they can be put to use in other parts of the project. We
want to use the ScaleInit function block in a power up routine to initialize two Scale function block
instances.

Creating a Sample Project using IEC 61131-3 50

MAPware-7000 Getting Started Guide 50

1. Right-click the Power Up folder and select New Logic Block. This block will be called Init and will
be a LD - Ladder Diagram block.

2. Expand the Project node in the Instruction List. The Scale and ScaleInit function blocks should
appear there.

3. Click the ScaleInit instruction and drag it to the top rung of the Ladder Diagram.

Notice the ‘???’ at the top of the block. This indicates the function block instance has not been
selected.

4. Double-click the question marks and enter fbScaleInit in the tag selection window. Click the
Accept icon and declare the new variable as type ScaleInit and Global scope.

This defines a new instance of the ScaleInit Function Block called fbScaleInit. This instance will
now be listed in the Function Block Instance folder in the Project Information Window along
with the previously created fbScale instance of Scale defined earlier, local to ScaleInit.

Creating a Sample Project using IEC 61131-3 51

MAPware-7000 Getting Started Guide 51

5. Next we will specify the input parameters. For this sample, we will use literal number values for
the maxes and minimums. Double click to the left of each of the first four inputs and type in the
following values.

Input Parameter Name Value Description
InputMax 100 Celsius input maximum
InputMin 0 Celsius input minimum
OutputMax 212 Fahrenheit equivalent to 100C (Max F)
OutputMin 32 Fahrenheit equivalent to 0C (Min F)

6. The last parameter is the Scale function block instance to be initialized. In this case it will be a
new instance called C2F (Celsius to Fahrenheit). Double-click the fbScale input and type C2F into
the selection box.

7. Set the Type to Scale and Where to GLOBAL in the popup window and click Yes to create the
C2F instance.

The C2F instance is created, added to the Function Block Instance Folder and selected as the
fbScale input parameter.
This is what the instruction should look like now.

Next we want to initialize a different Scale function block instance called Input2Volts. This instance will
be used to convert from a raw input to a voltage. The process is the same as above, but with a different
function block instance as the input parameter and with different maximum and minimum values.

8. We will use the same instance of the ScaleInit function block. Drag a new ScaleInit instruction to
rung 2 from the Instruction List.

9. Click the ‘???’ above the block and again enter fbScaleInit in the popup window. This time, the
fbScaleInit instance will appear in the variable list since it was already defined.

Creating a Sample Project using IEC 61131-3 52

MAPware-7000 Getting Started Guide 52

10. Enter the following values for the input parameters.
Input Parameter Name Value Description
InputMax 65535 16 bit analog maximum input
InputMin 0 16 bit analog minimum input
OutputMax 5 0-5V maximum
OutputMin 0 0-5V minimum

This sets up the Input2Volts function block to convert from a 16 bit input to a 0 to 5 V output.

11. Enter Input2Volts for the fbScale input.
12. The Input2Volts function block instance will need to be defined. Set the Type to Scale and

Where to GLOBAL as before.

This will add a new Scale function block instance called Input2Volts to the Function Block
Instance folder. Here is what the Init function block should look like when complete:

Define the Main Routine Block 1

The final piece of logic in the sample project uses C2F and Input2Volts instances to continuously convert
our simulated inputs to the desired output values as the inputs change over time. We can use the ladder
diagram block automatically created by MAPware-7000 to do this.

1. Click the Block1 folder under Logic Blocks / Main in the Project Information Window to edit the
block.

Creating a Sample Project using IEC 61131-3 53

MAPware-7000 Getting Started Guide 53

2. Click and drag three Scale blocks from the Instruction List into the editor.

3. Next click the ‘???’ in each block to specify the function block instance to be used. The first two
will use C2F and the last one will use Input2Volts.

4. Specify the input and output parameters for each instruction. We will use the tags created at
the beginning of this section.

○ Rung 1 converts Temp1C to Temp1F
○ Rung 2 converts Temp2C to Temp2F
○ Rung 3 converts RawInput to Voltage.

5. That’s it for the logic. Check that the project compile (Project > Compile) and save the project to
verify that there are no errors. Fix any typos as needed.

Create Screen Objects
We will create a very simple screen to control the inputs and observe how the outputs change. This
section will not go into great detail on creating the objects needed, for they were covered in the
previous Native Ladder section. The screen should eventually look something like this:

Creating a Sample Project using IEC 61131-3 54

MAPware-7000 Getting Started Guide 54

1. Navigate to Screen1 under the Base Screens folder in the Project Information Window.
2. Create the Text object labels shown above [Celsius, Fahrenheit, Raw Input, Voltage, Temp1:,

Temp2:, and Input1:].
3. Create three Numeric Entry objects (Draw > Input Objects > Data Entry > Numeric Entry), to

display and write to the three inputs; Temp1C, Temp2C and RawInput.
4. Change the Font for these objects to 10 x 14 to make them easier to read, and select the

appropriate tag in the Tag Name property.
5. For the Temp1C and Temp2C objects set the Data Type format to Signed [-32768 To 32767] to

allow negative temperatures to be displayed correctly.
6. Next we will use Multi-Task Single-state buttons (Draw > Buttons > Multi-Task Single-state) to

create the increment and decrement buttons that control the input tags. Place a button next to
the first Numeric Entry object.

7. For the increment button, change the On Text property to “+”.
8. Click the Tasks property, then on the button to configure a task for the button.
9. Before selecting the task, click the Pressed Task radio button. This means that the value will

increment while the button is pressed.
10. Select the Add a Constant Value to Tag task from the Select Task list. Select Temp1C for the Tag

and enter 1 for the Number to add.
11. Click the Add button. The task should appear under Pressed Tasks.

12. Click OK to save the task.
13. Make a copy of the increment button to use as the starting point for the decrement button.
14. Change the On Text to “-“.
15. Change the Task to a Subtract a Constant Value from Tag task that subtracts 1 form Temp1C.

16. Once you have increment and decrement buttons controlling Temp1C, make copies of them to
control Temp2C and RawInput. You can update the task with the correct tag by clicking the task
in the Pressed Tasks list. When changing the tag, make sure the number is re-entered, and don’t
forget to click Update and OK to save the changes. For RawInput, you may want to change the
add/subtract numbers to 10 or 100 so that the value changes faster.

17. Finally add three Numeric Display objects to display Temp1F, Temp2F and Voltage. These are
floating point numbers so, after you select the tag, change the Data Type property to Float
[Max 9 digits].

Creating a Sample Project using IEC 61131-3 55

MAPware-7000 Getting Started Guide 55

18. Compile and save the project one last time. It is ready to download and run on the HMC
hardware.

Testing the Project
Download the project to the HMC3102A-M using the same procedure described before. Then use the
increment and decrement buttons we created to change the inputs and verify that the outputs change
to the correct scaled value.

Online Monitoring

Installing the Virtual Com Port driver
In IEC 61131-3 mode, MAPware-7000 requires an additional communication driver, the virtual com port
driver, be installed before starting an Online Monitoring session using over USB. To install the driver go
to Tools > Install Virtual Driver.

This driver will add several ports in the development PC’s Device Manager.

Going Online
With the drivers in place, the HMC/MLC can be monitored with MAPware-7000 while it is executing a
program. Select the USB mode from Tools > Preferences > Online Communication Mode and then click
the icon to go online.

Selecting Logic Blocks and Function Block Instances
Once the online session begins, any open logic blocks will have variables loaded with their real time
values.

Logic blocks can be opened for monitoring by selecting them in the project tree.

Creating a Sample Project using IEC 61131-3 56

MAPware-7000 Getting Started Guide 56

When opening a Function Block that has multiple instances, MAPware-7000 needs to know which
instance to open. Thus when a UDFB that has multiple instances is selected, a popup window will appear
listing the available instances of that function block to monitor.

Once the selection is made the function block will be loaded with the real time data for the selected
instance.

Manipulating Data
To change the value of a parameter simply double-click the parameter.

Creating a Sample Project using IEC 61131-3 57

MAPware-7000 Getting Started Guide 57

The popup window allows you to force and or Lock / Unlock the value of the parameter. When a
parameter is forced it is written to once. If some other logic writes to the parameter after it is forced the
forced value will be overwritten. If the value is locked, MAPware will prevent any other logic in the block
from overwriting the forced value. Parameters that are locked will appear in double square brackets.

Note: The lock only prevents logic blocks from writing to the value. The value can still be changed by a
task or by entering data in a numeric object on an HMI screen.

Review
Let’s review some important points about how this sample project is structured that will allow you to
take full advantage of IEC 61131-3 features. Although not all of the features available in MAPware-7000
or the HMC Series have been covered, we have taken our first steps in using this software and becoming
familiar with device operation.

First, notice how we used multiple instances of a User Defined Function Block. We are scaling three
inputs, but have defined our scaling logic in only one place, the Scale UDFB. If something needs to be
changed, it only needs to be changed in one place, and it isn’t necessary to hunt through the project to
make sure the logic is updated everywhere it is used. We reused a single instance of the function block
to scale two different inputs and used a separate instance to scale another input on a totally different
scale. We could have many more channels and many more scales, but still only need one UDFB. If there
was a radically different scaling operation that needed to be done, such as a lookup table, then we
would need to create a different UDFB.

Next, note that three different editors were used, and it is possible to call the logic created in one editor
from logic created in another. The different languages each have their own strengths. Ladder Diagram
provides a clear graphical representation of the logic flow, Function Block Diagram is great for
combining operations in a simple to read structure, and Structured Text can be used for more involved
operations that might look quite complicated in one of the graphical editors. By combining logic from
the different editors we are able to take advantage of the strengths of each.

Finally, note that we were able to separate the logic for initializing the scale block (UDFB-ScaleInt) and
actually performing the scale operation (UDFB-Scale) into two separate operations. We did this by
passing a UDFB instance as a parameter to another UDFB. This keeps the scaling operation, which occurs
frequently while the project is running, as simple and quick as possible. Breaking complex operations
into simple building blocks is another way to make a project more maintainable.

AW10101057 Rev. 00

Maple Systems, Inc. | 808 134th St. SW, Suite 120, Everett, WA 98204 | 425.745.3229

Your Industrial Control Solutions Source

www.maplesystems.com

