"Energy Management Solutions"

Electrical Sub-metering Strategies for Energy Efficiency and Cost Reduction

by

John Stratford - Measurlogic Inc.

Outline

- Measurlogic overview
- Sub-metering
 - Reasons to sub-meter
 - Who needs to sub-meter
 - What & Where to sub-meter
 - Installation considerations
 - ➢ Key features of a electrical sub-meter
- Visualization of the data
- Power Quality its impact on costs

Measurlogic Overview

- Based in Centennial, Colorado where the DTS product family of AC and DC electrical sub-meters are manufactured and supported.
- Complies with "Buy American Requirement" of the American Recovery & Reinvestment Act (ARRA).
- Have been in the US market for over 12 years
- Over 30 years of experience in electrical measurement and its associated markets

Utility Charges

> Utility Costs:

- Continue to rise
- Used to be an overhead expense now an operating cost

MEASURLOGIC

➤ Utility Bill:

Energy Efficiency

equipment

- kWh charge
- Demand charge (15 minute data)
- Time of use tariffs
- Power factor performance / penalty

What is a Sub-meter

YOU CAN'T CONTROL / MANAGE / REDUCE UNTIL YOU CAN MEASURE !!

A "SUB-METER" is any measuring device deployed inside a facility to provide data from one or more measuring points.

Cost reduction strategies

➢ Billing

- Revenue grade bills to tenants, common space and other utilities
- Cost Allocation
 - Divide energy bill per area, cost center, line or even an individual piece of plant
- Measurement and Verification
 - Track savings after installation of energy savings solution / initiative
 - LEED requirements
 - Shadow" utility meter to see real-time data rather than after the fact utility bill

Cost reduction strategies - cont

Demand side management

- Reduce demand charges
- Identify load peaks
- Optimize use of electrical tariffs
- > Net metering
 - Renewable resources (wind or solar)
 - Identify the utility credit for power returned to the grid
- Aggregation
 - Negotiating of lower power rates based on volume in a deregulated market

> Owner Occupied Properties/Facilities

- Integration into BMS/EMS or SCADA
 - Detailed Energy accountability
 - Process optimization
 - Load control and shedding
- Cost allocation
 - > Departmental
 - Process
 - Production line
- Energy Conservation
 - Base lining
 - Identify "low-hanging" energy savings opportunities
 - Ongoing analysis of existing Energy Initiatives
- LEED Points credits
 - Measurement & Verification

Property Management

- Integration into BMS
- Cost allocation
- Tenant Billing
- Common Area management
- Equipment Monitoring
- Preventative maintenance strategy
- After Hours Energy usage
- "Green" Building Initiatives
- Measurement & Verification
- Confirm performance of similar building types in portfolio

Educational Institutions

- Integration into BMS/EMS
 - Detailed Energy accountability
 - Load control and shedding
- Building Monitoring
 - > Departmental
 - Special Events
 - Student housing / dormitories
- State/ Local Government
 - State Policies can dictate compliance to "green" building standards in order to get funding
- LEED Points credits
- Education
 - Todays kids are tomorrows' green advocates

Healthcare Facilities

- 24/7 operation with unique requirements on power delivery and consumption
- > \$5.3 billion annual energy bill for this sector
- Uses 2.7x more energy than typical office building
- "Green" Building Initiatives
- Cost allocation
- Energy conservation
- ≻ M & V

What to sub-meter?

Service Entrance

- Check meter to the single utility meter
- Provides real-time date
- Individual Buildings
- ➤ Feeder sub-panels
- Process lines
- Departments
- Individual loads

Installation Considerations

Energy Efficiency Equipment

➤ Where ?

- Existing control cabinet
- Stand-alone surface mount enclosure
 - Indoor
 - > Outdoor

MEASURLOGIC

Installation Considerations

Current Transformers - Type

- Solid core new installations
- Split Core retro fit applications
- Flexible RopeCTs large bundles
- Current Transformers Output
 - > 5A traditional utility style output
 - "Safe" millivolt output
- Keep distance between CT and DTS meters as short as possible
- Secondary wires should be twisted and run in separate conduit

Communication Considerations

Energy Efficiency Equipment

- Pulse output for kWh
- Serial communications
 - Modbus
 - > BACnet
 - LonWorks
- Ethernet Communications

MEASURLOGIC

- Modbus
- BACnet
- > SNMP
- > DNP3

AC Sub metering – key features

- "Revenue" Grade
 - > ANSI C12.1 Class 0.5 Energy Meter
- Flexible Measurement Interface
 - Must be able to interface with any power system
 - Must be able to interface to 5A, millivolt and flexible RopeCTs
- Multiple Remote Communications options
 - Modbus, BACnet, LonWorks & SNMP
- Various I/O configurations
 - Allows interface of other utility meters such as water, steam, gas etc.
- Net metering renewable applications

What can you Monitor ?

- Utilities
 - electrical energy
 - water
 - gas
- Solar systems
 - AC & DC measurements
- Other
 - Weather data
 - steam

Energy - TOU

When, Where & how much?

🐚 Student Services - PowerStudio Deluxe	5 🖸
Options Views General	
Community College-	Electrical Energy Report
Meter Location Start Date	End Date Days in Period Report Created on
Student Services 04/01/2010	05/01/2010 30 04/30/2010
Service Voltage	Average Values During Period
208V Service Amperage	Voltage: 210.7 V
1600A	Current: 174.52 A
<u>Cost Per kWh</u>	Power Factor: 0.972
\$0.08	Downey Cd. INV
Cost Per kW of Demand	Power: 61 KW
\$9.75	Daily Energy Use: 1436.41 kWh
70 - 62 - 54 - 48 - 38 -	Energy Use and Cost During Period Energy Consumed: 43092.261 kWh \$3447.381
1,500 - ∯ 1,100 -	Peak Demand: 108.229 kW \$1055.233
700 - 1 3 5 7 9 11 13 15 17 19 21 23 25 Apr. 2010 Date	Total Cost of Period: \$4502.61
Historic Demand(kW) and Energy(k	Wh)
G Back 💿 Next 🛅 Go to 🧐 Grouped by 💽 Zoom	
<u></u>	

Energy Efficiency Equipment

MEASURLOGIC

Verify your Savings

Energy Allocation

Educational / Information Kiosks

Customizable Kiosks and/or informational flat screen monitors are ideal ways to inform customers and/or employees of performance targets and energy reduction goals achieved

Power Quality – Voltage Sags

➤ Natural

Lightning Snow storms Line Faults Overgrown Vegetation Flash-overs Animals

Artificial

Heavy load switching Internally generated s/c Automatic reclosing

Power Quality

Power disturbances (voltage sags)

- From the utility side
- ➤ 1 -30 cycles in duration
- Processes are now "Digital"
- Cost the US economy billions in lost productivity annually

Harmonics

- Caused internally thru non-sinusoidal loads like VFD's, electronic ballasts, CFLs, PCs etc.
- Shorten transformer life or cause de-rating
- Overheat equipment

Contact Details

Toll-free Telephone Facsimile e-mail Website Mailing Address +1 (877) PQ-SOLNS (777-6567)
+1 (303) 805 5252
+1 (425) 799 4780
john@measurlogic.com
www.measurlogic.com
7334 S. Alton Way, Suite 14M
Centennial, CO 80112

