

Programmable Communication Gateway

API Reference

Second Edition, April 2003

Moxa Technologies Co., Ltd.
Tel: +866-2-8919-1230
Fax: +886-2-8919-1231
www.moxa.com
support@moxa.com.tw

MOXA PCG API Reference

The software described in this manual is furnished under a license agreement and
may be used only in accordance with the terms of that agreement.

Copyright Notice

Copyright  2003 Moxa Technologies Co., Ltd.
All rights reserved.

Reproduction without permission is prohibited.

Trademarks

MOXA is a registered trademark of Moxa Technologies Co., Ltd.
All other trademarks or registered marks in this manual belong to their respective

manufacturers.

Disclaimer

Information in this document is subject to change without notice and does not
represent a commitment on the part of Moxa.

Moxa provides this document “as is,” without warranty of any kind, either
expressed or implied, including, but not limited to, its particular purpose. Moxa
reserves the right to make improvements and/or changes to this manual, or to the
products and/or the programs described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable.
However, Moxa Technologies assumes no responsibility for its use, or for any
infringements on the rights of third parties that may result from its use.

This product might include unintentional technical or typographical errors.
Changes are periodically made to the information herein to correct such errors,
and these changes are incorporated into new editions of the publication.

MOXA Internet Services

Customer satisfaction is our number one concern. To ensure that customers
receive the full benefit of our products, Moxa Internet Services has been set up to
provide technical support, driver updates, product information, and user’s manual
updates.
The following services are provided:

E-mail for technical support

address: support@moxa.com.tw

World Wide Web (WWW) site for product information

address: http://www.moxa.com
 or

 http://www.moxa.com.tw

mailto:support@moxa.com.tw
http://www.moxa.com/
http://www.moxa.com/

Table of Contents

1. Overview...1-1

Moxa API Quick Reference.. 1-2
2. SDK API Overview...2-1

Serial I/O API ... 2-2
BSD Socket API ... 2-4
Simplified Socket API .. 2-7
System Control API .. 2-9
Flash ROM Access API .. 2-10
Debug API .. 2-10

3. SDK API Reference ...3-1
3-1 Serial I/O Library Reference .. 3-1

sio_AbortRead... 3-1
sio_AbortWrite .. 3-1
sio_ActXoff ... 3-2
sio_Act_Xon.. 3-2
sio_baud .. 3-2
sio_break ... 3-3
sio_break_ex.. 3-3
sio_break_irq ... 3-3
sio_close .. 3-4
sio_cnt_irq ... 3-4
sio_data_status... 3-5
sio_DTR .. 3-5
sio_flowctrl.. 3-6
sio_flush .. 3-6
sio_getbaud.. 3-7
sio_getch.. 3-7
sio_getflow .. 3-7
sio_getmode... 3-8
sio_GetReadTimeouts ... 3-8
sio_GetWriteTimeouts... 3-8
sio_ioctl ... 3-8
sio_iqueue.. 3-10

sio_lctrl ..3-10
sio_linput ...3-11
sio_lstatus ..3-11
sio_modem_irq ..3-12
sio_ofree ..3-12
sio_open...3-12
sio_oqueue ...3-13
sio_putch..3-13
sio_read..3-14
sio_RTS..3-14
sio_SetReadTimeouts...3-15
sio_SetWriteTimeouts..3-15
sio_term_irq...3-16
sio_Tx_empty_irq..3-16
sio_Tx_hold ...3-17
sio_write ..3-17

3-2 BSD Socket Library Reference...3-18
accept ...3-18
bind ..3-19
closesocket ...3-21
connect...3-22
gethostbyname ...3-24
gethostname ...3-25
getpeername...3-25
getsockname ..3-26
getsockopt ..3-27
htonl ...3-29
htons...3-29
inet_addr ..3-30
inet_ntoa ..3-31
ioctlsocket ..3-32
listen...3-33
ntohl ...3-34
ntohs...3-34
recv ..3-35
recvfrom...3-37
select ..3-39
send..3-41
sendto...3-43

setsockopt .. 3-45
shutdown ... 3-48
socket... 3-49

3-3 Simplified Socket Library Reference ... 3-51
net_get_gateway.. 3-51
net_get_IP.. 3-51
net_get_MAC_address .. 3-51
net_get_netmask.. 3-51
tcp_close.. 3-52
tcp_connect.. 3-52
tcp_connect_nowait... 3-53
tcp_get_remote .. 3-53
tcp_iqueue ... 3-54
tcp_listen ... 3-54
tcp_listen_nowait... 3-55
tcp_listento .. 3-55
tcp_listento_nowait.. 3-56
tcp_ofree.. 3-56
tcp_open .. 3-56
tcp_recv ... 3-57
tcp_send... 3-57
tcp_state... 3-58
udp_close... 3-58
udp_iqueue .. 3-58
udp_ofree... 3-59
udp_open ... 3-59
udp_recv .. 3-59
udp_send.. 3-60

3-4 System Control Library Reference... 3-61
sys_clock_ms... 3-61
sys_clock_s.. 3-61
sys_disable_watchdog ... 3-61
sys_enable_watchdog .. 3-62
sys_exit.. 3-62
sys_get_info... 3-63
sys_get_SerialType.. 3-64
sys_get_WatchdogStatus ... 3-64
sys_restart_system... 3-64

sys_restart_UserAP..3-65
sys_Set_RegisterID..3-65
sys_set_SerialType...3-65
sys_sleep_ms ...3-66
sys_timeout ..3-66
sys_event_suspend...3-67
sys_event_resume ..3-68

3-5 Flash ROM Access Library Reference3-69
flash_erase ...3-69
flash_length..3-69
flash_read...3-69
flash_write ...3-69

3-6 Debug Library Reference..3-70
dbg_put_block ...3-70
dbg_put_doubleword ...3-70
dbg_put_doubleword_hex ...3-70
dbg_put_ch ..3-71
dbg_put_IP...3-71
dbg_put_string ...3-71
dbg_put_word ..3-72
dbg_put_word_hex ..3-72

4. External Function Calls for SDK.. 4-1

11
1. Overview

The purpose of this Moxa PCG API Reference is to give MOXA PCG
(Programmable Communication Gateway) programmers a complete reference
guide to the various function calls that are available. You may also refer to the
companion guide, MOXA Programmable Communication Gateway
Programmer’s Guide. API stands for Application Programming Interface,
which includes necessary function calls and linking libraries.

1-2

Moxa API Quick Reference
The SDK API functions are displayed in the format shown below.

Function Name Brief function introduction Function

Attributes
Language Format
 Syntax #include <header file name>
 Function call
 Arguments Variable names Brief description of variables
Description Detailed function call description.

Return Code #1 Description of return code Return Value
Return Code #2 Description of return code

To give you a specific example, we show here the function sio_oqueue, which is
from the SDK API Serial I/O library. This function reports the amount of data
that is waiting to be transmitted out through the serial port.
sio_oqueue Get the length of data in both the system’s

output buffer and the driver’s output buffer.
Port

Status
C Format
 Syntax #include <sdksio.h>
 long sio_oqueue (int port)
 Arguments port Async serial port number
Description Get the length of data not yet sent out in both the system’s

output buffer and the driver’s output buffer.
>= 0 length of data (in bytes) still remaining in the

driver’s output buffer.
Return Value

SIO_BADPORT Port was not open in advance.

22
2. SDK API Overview

SDK stands for Software Development Kit, and includes not only the SDK
APIs, but also SDK Utilities, the Windows utility used by the programmer to
communicate with PCG, plus several detailed example programs. You may also
refer to the companion guide, MOXA Programmable Communication Gateway
Programmer’s Guide for additional information about using the utility.
In order to make the SDK library easier to use, the function calls are divided into
six groups, based on their attributes. The six groups are Serial I/O API, BSD
Socket API, Simplified Socket API, System Control API, Flash ROM Access
API, and Debug API.
By keeping these 6 groups of APIs in mind, programmers can more easily
program the PCG to meet the needs of their application, and set up the PCG to
operate as needed.
In this chapter, we give a brief introduction to all function calls for each of the
six groups so that programmers can get a good overview of all of the APIs. For
detailed usage of each API, refer to the following six sections:

• Serial I/O API Overview
• BSD Socket API Overview
• Simplified Socket API Overview
• System Control API Overview
• Flash ROM Access API Overview
• Debug API Overview

2-2

Serial I/O API
In this section, we categorize the serial I/O library routines according to their
function (Port Control, Data Input, Data Output, Port Status Inquiry, Event
Control, and Miscellaneous). See Section 3-1 for a more detailed description of
these functions.
You should also note you must include the header file sdksio.h in your source
code that when calling these functions (see the example source code for details
of how to include a header file).

Port Control
This category includes functions to open serial ports, set communication
parameters, and control signal lines.
Function Name Description
sio_open Start receiving/transmitting data.
sio_close Stop receiving/transmitting data.
sio_ioct1 Set port baud rate, parity, etc.
sio_flowctrl Set port H/W and/or S/W flow control.
sio_flush Flush input and/or output buffer.
sio_DTR Set DTR state.
sio_RTS Set RTS state.
sio_lctrl Set both DTR and RTS states.
sio_baud Set baud rate using the actual speed value.

Data Input
This category includes functions to read data from the COM port.
Function Name Description
sio_getch Read one character at a time from driver's input

buffer.
sio_read Read a block of data from the driver's input buffer.
sio_SetReadTimeouts Set timeouts for sio_read().
sio_GetReadTimeouts Get timeouts for sio_read().
sio_AbortRead Abort when reading a block of data for sio_read().
sio_linput Read a block of data ending with a termination

character.

2-3

Data Output
This category includes functions to write data to the serial port.
Function Name Description
sio_putch Write one character at a time to driver's output buffer.
sio_write Write a block of data (probably only a partial

block will be written).
sio_SetWriteTimeouts Set timeouts for sio_write().
sio_GetWriteTimeouts Get timeouts for sio_write().
sio_AbortWrite Abort when writing a block of data for sio_write().

Port Status Inquiry
This category includes functions to query the communication status from the
serial port.
Function Name Description
sio_lstatus Get line status.
sio_iqueue Size of data accumulated in driver's input buffer.
sio_oqueue Size of data not yet sent out (still kept in driver's

output buffer).
sio_Tx_hold Check why data could not be transmitted.
sio_getbaud Get the baud rate setting.
sio_getmode Get the settings for parity, data bits, etc.
sio_getflow Get the H/W and S/W flow control settings.
sio_data_status Check if errors occur when receiving data.

Event Control
This category includes functions to set the communication event service
routines for the serial port.
Function Name Description
sio_term_irq Set event service routine when termination

character is received.
sio_cnt_irq Set event service routine when a certain amount of

data is received.
sio_modem_irq Set event service routine when line status is changed.
sio_break_irq Set event service routine when break signal is received.
sio_Tx_empty_irq Set event service routine when transmit buffer is

empty.

2-4

Miscellaneous
This category includes special COM port functions.
Function Name Description
sio_break Send out BREAK signal.
sio_break_ex Send out BREAK signal.
sio_ActXon Causes transmission to act as if an XON character has

been received.
sio_ActXoff Causes transmission to act as if an XOFF character has

been received.

BSD Socket API
In this section, we categorize the BSD Socket library routines according to their
function (Socket Control, Data Input/Output, Socket Status Inquiry, and
Miscellaneous). See Section 3-2 for a more detailed description of these functions.
You should also note that the header file sdksock.h must be included in your
source code when calling these functions (see the example source code for
details of how to include a header file).

Socket Control
This category includes functions to open TCP sockets, and set and retrieve
communication parameters.
Function Name Description
accept An incoming connection is acknowledged and associated

with an immediately created socket. The original socket
is returned to the listening state.

bind Assign a local name to an unnamed socket.
closesocket Remove a socket from the per-process object reference

table. Only blocks if SO_LINGER is set.
connect Initiate a connection on the specified socket.
ioctlsocket Provides control of sockets.
listen Listen for incoming connections on a specified socket.
setsockopt Store options associated with the specified socket.
shutdown Shut down part of a full-duplex connection.
socket Create an endpoint for communication and return a socket.
getsockopt Retrieve options associated with the specified socket.

2-5

Data Input/Output
This category includes functions to read/write data from the socket.

Function Name Description

recv Receive data from a connected socket.

recvfrom Receive data from either a connected or unconnected
socket.

select Perform synchronous I/O multiplexing.

send Send data to a connected socket.

sendto Send data to either a connected or unconnected socket.

Socket Status Inquiry
This category includes functions to query the communication status from the
socket.

Function Name Description

getpeername Retrieve the name of the peer connected to the
specified socket.

getsockname Retrieve the current name for the specified socket.

gethostname Retrieve the name of the local host.

gethostbyname Retrieve the name(s) and address corresponding to a
host name.

2-6

Miscellaneous
This category includes special socket functions.
Function Name Description
htonl Convert a 32-bit quantity from host byte order to

network byte order.
htons Convert a 16-bit quantity from host byte order to

network byte order.
inet_addr Convert a character string representing a number in

the Internet standard ".'' notation to an Internet address
value.

inet_ntoa Convert an Internet address value to an ASCII string
in ".'' notation (i.e., "a.b.c.d'').

ntohl Convert a 32-bit quantity from network byte order to
host byte order.

ntohs Convert a 16-bit quantity from network byte order to
host byte order.

2-7

Simplified Socket API
In this section, we categorize the Simplified Socket library routines according to
their function (Socket Control, Data Input/Output, and Socket Status
Inquiry). See Section 3-3 for a more detailed description of these functions.
You should also note that calling these functions requires that the header file
sdknet.h must be included in your source code (see the example source code for
details of how to include a header file).

Socket Control
This category includes functions to open TCP sockets, and set and retrieve
communication parameters.
Function Name Description
tcp_open Open a local TCP port.
tcp_close Close a local TCP port.
tcp_connect Connect to specific host IP and port.

tcp_listen Place a socket in a state where it is listening for an
incoming connection.

tcp_listento Listen for a specific incoming connection.
tcp_connect_nowait Connect to a specific host IP and port no wait.

tcp_listen_nowait Place a socket in a state where it is listening for an
incoming connection no wait.

tcp_listento_nowait Listen for a specific incoming connection no wait.
udp_open Open a local UDP port.
udp_close Close a local UDP port.

2-8

Data Input/Output
This category includes functions to read/data from the socket.
Function Name Description
tcp_send Send data out through a connected socket.
tcp_recv Receive data from a connected socket.
udp_send Send data to a specific destination.
udp_recv Receive data from a specific source address.

Socket Status Inquiry
This category includes functions to query the communication status of the
socket.
Function Name Description
tcp_ofree Size of free space in the TCP driver’s input buffer.

tcp_iqueue Get the size of data accumulated in the TCP
driver’s input buffer.

tcp_get_remote Get connected host IP and port.
tcp_state Get TCP state.
udp_ofree Size of free space in the UDP driver’s input buffer.

udp_iqueue Get the size of data accumulated in the UDP
driver’s input buffer.

Port Status Inquiry
This category includes functions to open TCP sockets, and set and retrieve
communication parameters.
Function Name Description
net_get_IP Get local IP address.
net_get_netmask Get local subnet mask.
net_get_gateway Get local default gateway.
net_get_MAC_address Get MAC address.

2-9

System Control API
This section presents the system information library routines, and gives a brief
description of each routine. For a more detailed description of these routines, see
Section 3-4.
You should also note that the header file sdksys.h must be included in your
source code when calling these functions (see the example source code for
details of how to include a header file).

Function Name Description
sys_clock_s Read the server’s time (in seconds), measured

from power-up.
sys_clock_ms Read the server’s time (in milliseconds)

measured from power-up.
sys_sleep_ms Task sleep time (milliseconds).
sys_timeout Set the timeout event service routine.
sys_get_info Get server’s general information.
sys_enable_watchdog Enable watchdog.
sys_disable_watchdog Disable watchdog.
sys_get_WatchdogStatus Get watchdog status.
sys_restart_system Restart system.
sys_restart_UserAP Restart user AP.
sys_set_RegisterID Set AP ID.
sys_get_SerialType Get current async port interface signal type.
sys_set_SerialType Set the async port interface signal type.
sys_event_suspend Suspend interrupt.
sys_event_resume Resume interrupt.
sys_exit Exit application.

2-10

Flash ROM Access API
This section presents the Flash Library routines, and gives a brief description of
each routine. For a more detailed description of these routines, see Section 3-5.
You should also note that the header file sdkflash.h must be included in your
source code when calling these functions (see the example source code for
details of how to include a header file).

Function Name Description
flash_erase Erase flash-ROM.
flash_length Get current data length in the flash-ROM.
flash_write Write data to the flash-ROM.
flash_read Read data from the flash-ROM.

Debug API
This section presents the Debug Library routines, and gives a brief description of
each routine. For a more detailed description of these routines, see Section 3-6.
You should also note that the header file sdkdbg.h must be included in your
source code when calling these functions (see the example source code for
details of how to include a header file).

Function Name Description
dbg_put_ch() Print out a character for debugging.
dbg_put_block() Print out a block of data for debugging.
dbg_put_word() Print out a 2-byte unsigned integer value for

debugging.
dbg_put_doubleword() Print out a 4-byte unsigned long value for

debugging.
dbg_put_word_hex() Print out a 2-byte unsigned integer value with

HEX format for debugging.
dbg_put_doubleword_hex() Print out a 4-byte unsigned long value with

HEX format for debugging.
dbg_put_IP() Print out an IP address with the a.b.c.d format

for debugging.
dbg_put_string() Print out a string for debugging.

33
3. SDK API Reference

3-1 Serial I/O Library Reference

sio_AbortRead Abort when blocked from reading a
block of data for sio_read and
sio_getch.

Data Input

Syntax #include <sdksio.h>
 int sio_AbortRead (int port)
Arguments port Async serial port number
Description Abort when blocked from reading a block of data for sio_read

and sio_getch. Calling this function will cause sio_read to
return immediately with return code of length of data read.
SIO_OK OK Return Value
SIO_BADPORT Port was not open in advance.

sio_AbortWrite Abort when blocked from writing a

block of data for sio_write and
sio_putch.

Data Output

Syntax #include <sdksio.h>
 int sio_AbortWrite (int port)
Arguments port Async serial port number
Description Abort when blocked from writing a block of data for

sio_write() or sio_putch(). Calling this function will cause
sio_write() to return immediately with return code
SIO_ABORT_WRITE.
SIO_OK OK Return Value
SIO_BADPORT Port was not already open

3-2

sio_ActXoff This function causes transmission to

act as if an XOFF character has
been received.

Misc.

Syntax #include <sdksio.h>
 int sio_ActXoff (int port)
Arguments port Async serial port number
Description This function causes transmission to act as if an XOFF

character has been received.
SIO_OK OK Return Value
SIO_BADPORT Port was not open in advance.

sio_Act_Xon This function causes transmission to

act as if an XON character has been
received.

Misc.

Syntax #include <sdksio.h>
 int sio_ActXon (int port)
Arguments port Async serial port number
Description This function causes transmission to act as if an XON

character has been received.
SIO_OK OK Return Value
SIO_BADPORT Port was not open in advance.

sio_baud Set baud rate using the actual speed

value.
Port Control

Syntax #include <sdksio.h>
 int sio_baud (int port, long speed)

port Async serial port number Arguments
speed true baud rate: e.g., 200, 1200, 9600, 19200

Description Set baud rate using the actual speed value.
SIO_OK OK Return Value
SIO_BADPORT Port was not open in advance.

3-3

sio_break Send out a break signal. Misc.
Syntax #include <sdksio.h>
 int sio_break (int port, int time)

port Async serial port number Arguments
time break time in tics (1/18.2 second)

Description This function will block until the time has expired.
SIO_OK OK
SIO_BADPORT Port was not open in advance.

Return Value

SIO_BADPARM Bad parameter

sio_break_ex Send out a break signal. Misc.
Syntax #include <sdksio.h>
 int sio_break_ex (int port, int ms)

port Async serial port number Arguments
ms break time in milliseconds

Description Sends out a break signal. This function will block
transmission until the time has expired, and is the same as
sio_break(), except that the time unit is measured in
milliseconds.
SIO_OK OK
SIO_BADPORT Port was not open in advance.

Return Value

SIO_BADPARM Bad parameter.

sio_break_irq Set an event service routine for the

case when a BREAK signal is
received.

Event Control

Syntax #include <sdksio.h>
 int sio_break_irq (int port, void (*func) (int port))

port Async serial port number
func event service routine entry

Arguments

If func is NULL, this routine will be disabled.
Description Set an event service routine for the case when a BREAK

signal is received. When a BREAK signal is encountered,
the system will call the event service routine.
SIO_OK OK Return Value
SIO_BADPORT Port was not open in advance.

3-4

sio_close Disable a serial port. Port Control
Syntax #include <sdksio.h>
 int sio_close (int port)
Arguments port Async serial port number
Description Disable a serial port so that it cannot receive/transmit

data.
SIO_OK OK Return Value
SIO_BADPORT Port was not open in advance.

sio_cnt_irq Set an event service routine for the

case when a certain amount of data
has been received.

Event Control

Syntax #include <sdksio.h>
 int sio_cnt_irq (int port, void (*func) (int port), int

count)
port Async serial port number
func event service routine entry
If func is NULL, this routine will be disabled.

Arguments

count data count
Description

Set an event service routine for the case when a certain
amount of data has been received. When there are 'count'
bytes of data received in the input buffer, the system will
call the event service routine.
SIO_OK OK Return Value
SIO_BADPORT Port was not open in advance.

3-5

sio_data_status Check if an error occurred when

receiving data. Port Status

Syntax #include <sdksio.h>
 int sio_data_status (int port)
Arguments port Async serial port number
Description Check if an error occurred when receiving data.

= 0 no error occurred
> 0 bit 0 on - parity error

bit 1 on - framing error
bit 2 on - overrun error
bit 3 on - overflow error

Return Value

SIO_BADPORT Port was not open in advance.

sio_DTR Set the DTR state of a port. Port
Control

Syntax #include <sdksio.h>
 int sio_DTR (int port, int mode)

port Async serial port number
mode 0: Turn DTR off

Arguments

 1: Turn DTR on
Description Set the DTR state of a port.

SIO_OK OK
SIO_BADPORT Port was not open in advance.

Return Value

SIO_BADPARM Bad parameter

3-6

sio_flowctrl Set hardware and/or software

flow control.
Port Control

Syntax #include <sdksio.h>
 int sio_flowctrl (int port, int mode)

port Async serial port number
bit 0: CTS flow control
bit 1: RTS flow control
bit 2: Tx XON/XOFF flow control

Arguments
mode

bit 3: Rx XON/XOFF flow control
(0 = OFF, 1 = ON)

Description Set the hardware and/or software flow control.
SIO_OK OK
SIO_BADPORT Port was not open in advance.

Return Value

SIO_BADPARM Bad parameter

sio_flush Flush the driver's input/output

buffer.
Port Control

Syntax #include <sdksio.h>
 int sio_flush (int port, int func)

port Async serial port number
func flush action
 0: flush input buffer
 1: flush output buffer

Arguments

 2: flush input & output buffer
Description Flush the driver's input/output buffer. The data will no

longer exist.
SIO_OK OK
SIO_BADPORT Port was not open in advance.

Return Value

SIO_BADPARM Bad parameter

3-7

sio_getbaud Get the serial port’s baud rate setting. Port Status
Syntax #include <sdksio.h>
 long sio_getbaud (int port)
Arguments port Async serial port number
Description Get the serial port’s baud rate setting. The return value is

the actual baud rate. For example, a return value of 9600
means 9600 bps whereas 200 means 200 bps.
> 0 the actual baud rate Return Value
SIO_BADPORT Port was not open in advance.

sio_getch Read one character from the driver's

input buffer.
Data Input

Syntax #include <sdksio.h>
 int sio_getch (int port)
Arguments port Async serial port number
Description Read one character from the driver's input buffer.

0 to 255 The ASCII code of the character received.
SIO_BADPORT Port was not open in advance.

SIO_NODATA No data to read.

Return Value

SIO_BADPARM Bad parameter.

sio_getflow Get the serial port's hardware and

software flow control settings.
Port Status

Syntax #include <sdksio.h>
 int sio_getflow (int port)
Arguments port Async serial port number
Description Get the serial port's hardware and software flow control

settings. See the sio_flowctrl() function.
>=0 bit 0 = l CTS flow contro
 bit 1 = RTS flow control
 bit 2 = Tx XON/XOFF flow control
 bit 3 = Rx XON/XOFF flow control

Return Value

SIO_BADPORT Port was not open in advance.

3-8

sio_getmode Get the serial port’s mode settings. Port Status
Syntax #include <sdksio.h>
 int sio_getmode (int port)
Arguments port Async serial port number
Description Get the serial port’s mode settings. Refer to the

description of sio_ioctl() to see the mode settings.
>=0 mode (see sio_ioctl()) Return Value
SIO_BADPORT Port was not open in advance.

sio_GetReadTimeouts Get timeout values for

sio_read and sio_getch.
Data Input

Syntax #include <sdksio.h>
 int sio_GetReadTimeouts (int port, DWORD

*TotalTimeouts, DWORD *IntervalTimeouts)
port Async serial port number
TotalTimeouts Total timeout values

Arguments

IntervalTimeouts Interval timeout values

Description Get timeout values for sio_read and sio_getch.
SIO_OK OK Return Value
SIO_BADPORT Port was not open in advance.

sio_GetWriteTimeouts Get timeout values for

sio_write and sio_putch.
Data Output

Syntax #include <sdksio.h>
 int sio_GetWriteTimeouts (int port, DWORD

*TotalTimeouts)
port Async serial port number Arguments
TotalTimeouts Total timeout values

Description Get timeout values for sio_write() and sio_putch().
SIO_OK OK Return Value
SIO_BADPORT Port was not already open

sio_ioctl Control the settings of the serial

port’s I/O control register.
Port Control

3-9

Syntax #include <sdksio.h>
 int sio_ioctl (int port, int baud, int mode)

port Async serial port number
(bits/sec)
0 = 50 6 = 600 12 =

9600
1 = 75 7 = 1200 13 =

19200
2 = 110 8 = 1800 14 =

38400
3 = 134.5 9 = 2400 15 =

57600
4 = 150 10 = 4800 16 =

115200

baud

5 = 300 11 = 7200 17 =
230400

bit_cnt OR stop_bit OR parity
bit_cnt (bits 0, 1)
=

0x00 = bit_5

 0x01 = bit_6
 0x02 = bit_7
 0x03 = bit_8

stop_bit (bit 2) = 0x00 = stop_1
 0x04 = stop_2

parity (bits 3,4 5)
=

0x00 = none

 0x08 = odd
 0x18 = even
 0x28 = mark
 0x38 = space

Arguments

mode

Description Control the settings of the serial port’s I/O control register,

such as baud rate, parity, data bits, and stop bit.
SIO_OK OK
SIO_BADPORT Port was not open in advance.

Return Value

SIO_BADPARM Bad parameter

3-10

sio_iqueue Get the size of data accumulated in
the system's input buffer and driver's
input buffer.

Port Status

Syntax #include <sdksio.h>
 long sio_iqueue (int port)
Arguments port Async serial port number
Description Get the size of data accumulated in the system's input

buffer and driver's input buffer. (User must be aware of
the fact that there may be a few characters still in the
RS-232 UART chip and not yet known when sio_iqueue()
returns a zero value.)
>= 0 data in input buffer (bytes) Return Value
SIO_BADPORT Port was not open in advance.

sio_lctrl Set both the DTR and RTS states. Port Control
Syntax #include <sdksio.h>
 int sio_lctrl (int port, int mode)

port Async serial port number Arguments
mode C_DTR (bit 0) C_RTS (bit 1)

Description Set both the DTR and RTS states.
SIO_OK OK
SIO_BADPORT Port was not open in advance.

Return Value

SIO_BADPARM Bad parameter

3-11

sio_linput Read a block of data from the

driver’s input buffer .
Data Input

Syntax #include <sdksio.h>
 int sio_linput (int port, char *buf, int len, int term)

port Async serial port number
buf receive buffer pointer
len buffer length

Arguments

term terminator code
Description Read a block of data from the driver’s input buffer until

the terminator character is encountered or “len” bytes of
data are read.
> 0 length of data received
= 0 no data received
SIO_BADPORT Port was not open in advance.

Return Value

SIO_BADPARM Bad parameter.

sio_lstatus Get the status of the line. Port Status
Syntax #include <sdksio.h>
 int sio_lstatus (int port)
Arguments port Async serial port number
Description Get the status of the line.

>= 0 line status
 Bit 0 – S_CTS
 Bit 1 – S_DSR
 Bit 2 – S_RI
 Bit 3 – S_CD

Return Value

SIO_BADPORT Port was not open in advance.

3-12

sio_modem_irq Set an event service routine for

the case when the line status is
changed.

Event Control

Syntax #include <sdksio.h>
 int sio_modem_irq (int port, void (*func) (int port))

port Async serial port number
func event service routine entry

Arguments

If the func is NULL, it will disable this routine.
Description Set an event service routine for the case when the line

status has changed. When line status (CTS, DSR, CD, RI)
changes, the system will call the event service routine.
SIO_OK OK Return Value
SIO_BADPORT Port was not open in advance.

sio_ofree Get the length of free space in the

driver’s output buffer.
Port Status

Syntax #include <sdksio.h>
 long sio_ofree (int port)
Arguments port Async serial port number
Description Get the length of free space in the driver’s output buffer.

>= 0 free space in output buffer (bytes) Return Value
SIO_BADPORT Port was not open in advance.

sio_open Enable a serial port for data

transmitting/receiving.
Port Control

Syntax #include <sdksio.h>
 int sio_open (int port)
Arguments port Async serial port number for NPort-4511 is always 1.
Description Enable a serial port for data transmitting/receiving. After calling

sio_open, the initial status of this COM port is the same as the
last setting or configuration setting.
>= 0 Open action was successful, and this return value is a

descriptor referencing the port. The programmer can use
this descriptor in the select() function (from the socket
API group) to carry out a data read/write operation.

Return Value

SIO_BADPORT Port number is invalid.

3-13

sio_oqueue Get the length of data not yet sent out in
both the system’s output buffer and the
driver’s output buffer.

Port Status

Syntax #include <sdksio.h>
 long sio_oqueue (int port)
Arguments port Async serial port number
Description Get the length of data not yet sent out in both the system’s

output buffer and the driver’s output buffer.
>= 0 length of data (in bytes) still remaining in the

driver’s output buffer.
Return Value

SIO_BADPORT Port was not open in advance.

sio_putch Write a character into the driver's

output buffer.
Data Output

Syntax #include <sdksio.h>
 int sio_putch (int port, int term)

port Async serial port number Arguments
term character (0 - 255)

Description Write a character into the driver's output buffer.
SIO_OK OK
SIO_BADPORT Port was not already open
SIO_BADPARM Bad parameter
SIO_ABORT_WRITE User abort blocked write

Return Value

SIO_WRITETIMEOUT Write timeout has
occurred

3-14

sio_read Read data from the driver's input buffer Data Input
Syntax #include <sdksio.h>
 int sio_read (int port, char *buf, int len)

port Async serial port number
buf receive buffer pointer

Arguments

len buffer length
Description Read data from the driver's input buffer. If the length of

data in the driver's input buffer is less than the user's
buffer, then all data in the driver's input buffer will be
transferred to the user's buffer. Otherwise, only 'len' bytes
will be transferred to the user's buffer.

sio_set_ReadTimeout() can be used to set timeouts for
sio_read.

sio_AbortRead() can be used to abort any blocked
sio_read.
> 0 length of data received
= 0 no data received
SIO_BADPORT Port was not open in advance.

Return Value

SIO_BADPARM Bad parameter.

sio_RTS Set the RTS state of a port. Port Control
Syntax #include <sdksio.h>
 int sio_RTS (int port, int mode)

port Async serial port number
0: Turn RTS off

Arguments
mode
 1: Turn RTS on

Description Set the RTS state of a port.
SIO_OK OK
SIO_BADPORT Port was not open in advance.
SIO_BADPARM Bad parameter.

Return Value

SIO_RTS_BY_HW Can’t control the port because
it is set as auto H/W flow
control by sio_flowctrl().

3-15

sio_SetReadTimeouts Set timeout values for
sio_read and sio_getch.

Data Input

Syntax #include <sdksio.h>
 int sio_SetReadTimeouts (int port, DWORD

TotalTimeouts, DWORD IntervalTimeouts)
port Async serial port number
TotalTimeouts Total timeout values

Arguments

IntervalTimeouts Interval timeout values
Description Set timeout values for sio_read and sio_getch. The default

TotalTimeouts value is MAXDWORD and the
IntervalTimeouts value is 0, which enables sio_read to
return immediately.
SIO_OK OK Return Value
SIO_BADPORT Port was not open in advance.

sio_SetWriteTimeouts Set timeout values for

sio_write and sio_putch.
Data Output

Syntax #include <sdksio.h>
 int sio_SetWriteTimeouts (int port, DWORD

TotalTimeouts)
port Async serial port number Arguments
TotalTimeouts Total timeout values

Description Set timeout values for sio_write() and sio_putch(). The
default value is 0, which enables sio_write() to always
block until it is finished writing data.

The value 0xFFFFFFFF enables sio_write() and
sio_putch() to return immediately without blocking at all.

The value 0 enables sio_write() to always block until
finished writing data.
SIO_OK OK
SIO_BADPORT Port was not already open

Return Value

SIO_BADPARM Bad parameter

3-16

sio_term_irq Set an event service routine for the
case when the terminator character
is received.

Event Control

Syntax #include <sdksio.h>
 int sio_term_irq (int port, void (*func) (int port),

char code)
port Async serial port number
func event service routine entry
If the func is NULL, it will disable this routine.

Arguments

code terminator code
Description Set an event service routine for the case when the

terminator character is received. When the terminator
character is received, the system will call the event service
routine.
SIO_OK OK Return Value
SIO_BADPORT Port was not open in advance.

sio_Tx_empty_irq Set an event service routine

for the case when the last
character in the output buffer
was sent.

Event Control

Syntax #include <sdksio.h>
 int sio_Tx_empty_irq (int port, void (*func) (int port))

port Async serial port number
func event service routine entry

Arguments

If the func is NULL, it will disable this routine
Description Set an event service routine for the case when the last

character in the output buffer was sent. When the Tx
empty signal is encountered, the system will call the event
service routine.

Return Value SIO_OK OK
 SIO_BADPORT Port was not open in advance.

3-17

sio_Tx_hold Check why data could not be

transmitted.
Port Status

Syntax #include <sdksio.h>
 int sio_Tx_hold (int port)
Arguments port Async serial port number
Description Check the reason why data could not be transmitted.

>=0 bit 0 on; could not transmit data because CTS is
low

 bit 1 on; could not transmit data because XOFF
char received

Return Value

SIO_BADPORT Port was not open in advance.

sio_write Write a block of data to the

driver’s output buffer.
Data Output

Syntax #include <sdksio.h>
 int sio_write (int port, char *buf, int len)

port Async serial port number
buf transmit string pointer

Arguments

len transmit string length
Description Write a block of data to the driver’s output buffer. The

actual length of data written depends on the amount of
free space in the driver’s output buffer. sio_write() is
always non-block by default.
sio_set_WriteTimeout() can be used to set timeouts for
sio_write(). SIO_WRITETIMEOUT will be returned for
sio_write() when write timeouts.
sio_abort_write() can be used to abort any blocked
sio_write() with return value SIO_ABORT_WRITE.
>= 0 length of data transmitted
SIO_BADPORT Port was not already open
SIO_BADPARM Bad parameter
SIO_ABORT_WRITE User abort blocked write

Return Value

SIO_WRITETIMEOUT Write timeout has
occurred

3-18

3-2 BSD Socket Library Reference

accept Accept a connection on a socket.

#include <sdksock.h> Syntax
int accept (int s, SOCKADDR *addr, int *addrlen);
s A descriptor identifying a socket which is

listening for connections after a listen().
addr An optional pointer to a buffer that receives the

address of the connecting entity, as known to
the communications layer. The exact format of
the addr argument is determined by the address
family established when the socket was
created.

Arguments

addrlen An optional pointer to an integer that contains
the length of the address addr.

Description This routine extracts the first connection on the queue of
pending connections on s, creates a new socket with the
same properties as s and returns a handle to the new
socket. If no pending connections are present on the
queue, and the socket is not marked as non-blocking,
accept() blocks the caller until a connection is present. If
the socket is marked non-blocking and no pending
connections are present on the queue, accept() returns an
error as described below. The accepted socket may not be
used to accept more connections. The original socket
remains open.
The argument addr is a result parameter that is filled in
with the address of the connecting entity, as known to the
communications layer. The exact format of the addr
parameter is determined by the address family in which
the communication is occurring. The addrlen is a
value-result parameter; it should initially contain the
amount of space pointed to by addr; on return it will
contain the actual length (in bytes) of the address
returned. This call is used with connection-based socket
types such as SOCK_STREAM. If addr and/or addrlen
are equal to NULL, then no information about the remote
address of the accepted socket is returned.

3-19

Return Value If no error occurs, accept() returns a value of type int
which is a descriptor for the accepted packet. Otherwise, a
value of -1 is returned, and the global variable errno
contains one of the following values.
The integer referred to by addrlen initially contains the
amount of space pointed to by addr. On return it will
contain the actual length in bytes of the address returned.

EBADF The first argument does not

specify a valid descriptor.
EOPNOTSUPP The socket is not of type

SOCK_STREAM.
EFAULT The pointer in argument is

invalid.
EWOULDBLOCK The socket is marked

non-blocking and no
connections are waiting to be
accepted.

Error Codes

EFILE The initial system file table is
full.

See Also bind(), connect(), listen(), select(), socket()
Warnings

bind Associate a local address with a socket.

#include <sdksock.h> Syntax
int bind (int s, SOCKADDR *name, int namelen);
s A descriptor identifying an unbound socket
name The address to assign to the socket.

Arguments

namelen The length of the name.
Description This routine is used on an unconnected datagram or

stream socket, before subsequent connect()’s or listen()’s.
When a socket is created with socket(), it exists in a name
space (address family), but it has no name assigned.
bind() establishes the local association (host address/port
number) of the socket by assigning a local name to an
unnamed socket.

3-20

In the Internet address family, a name consists of several
components. For SOCK_DGRAM and SOCK_STREAM,
the name consists of three parts: a host address, the
protocol number (set implicitly to UDP or TCP,
respectively), and a port number which identifies the
application. If an application does not care what address is
assigned to it, it may specify an Internet address equal to
INADDR_ANY, a port equal to 0, or both. If the Internet
address is equal to INADDR_ANY, any appropriate
network interface will be used; this simplifies application
programming in the presence of multi-homed hosts. If the
port is specified as 0, the Windows Sockets
implementation will assign a unique port to the
application with a value between 1024 and 30000. The
application may use getsockname() after bind() to learn
the address that has been assigned to it, but note that
getsockname() will not necessarily fill in the Internet
address until the socket is connected, since several
Internet addresses may be valid if the host is
multi-homed.

Return Value If no error occurs, bind() returns 0. Otherwise, it
returns –1, and the global variable errno contains one of
the following values.
EFAULT The namelen argument is too small (less than

the size of a SOCKADDR) or the name
argument pointer is invalid.

EINVAL The socket is already bound to an address.

Error Codes

EBADF The descriptor is not a socket.
See Also connect(), listen(), getsockname(), setsockopt(), socket().

3-21

closesocket Close a socket.

#include <sdksock.h> Syntax
int closesocket (int s);

Arguments s A descriptor identifying a socket.
This function closes a socket. More precisely, it releases
the socket descriptor s, so that further references to s will
fail with the error EBADF. If this is the last reference to
the underlying socket, the associated naming information
and queued data are discarded.

The semantics of closesocket() are affected by the socket
options SO_LINGER and SO_DONTLINGER as follows:

Option Interval Type of

close
Wait for
close?

SO_DONTLINGER Don't
care

Graceful No

SO_LINGER Zero Hard No
SO_LINGER Non-

zero
Graceful Yes

Description

If SO_LINGER is set (i.e., the l_onoff field of the linger
structure is non-zero) with a zero timeout interval
(l_linger is zero), closesocket() is not blocked even if
queued data has not yet been sent or acknowledged. This
is called a "hard" or "abortive" close, because the socket's
virtual circuit is reset immediately, and any unsent data is
lost.
If SO_LINGER is set with a non-zero timeout interval,
the closesocket() call blocks until the remaining data has
been sent or until the timeout expires. This is called a
graceful disconnect.

3-22

connect

If SO_DONTLINGER is set on a stream socket (i.e. the
l_onoff field of the linger structure is zero), the
closesocket() call will return immediately. However, any
data queued for transmission will be sent if possible
before the underlying socket is closed. This is also called
a graceful disconnect. Note that in this case the Windows
Sockets implementation may not release the socket and
other resources for an arbitrary period, which may affect
applications which expect to use all available sockets.

Return Value If no error occurs, closesocket() returns 0. Otherwise, it
returns -1, and the global variable errno contains one of
the following values.

Error Codes EBADF The descriptor is not a socket.
See Also accept(), socket(), ioctlsocket(), setsockopt().

Establish a connection to a peer.
#include <sdksock.h> Syntax
int connect (int s, SOCKADDR *name, int
namelen);
s A descriptor identifying an unconnected

socket.
name The name of the peer to which the socket

is to be connected.

Arguments

namelen The length of the name.
Description This function is used to create a connection to the

specified foreign association. The parameter s specifies an
unconnected datagram or stream socket. If the socket is
unbound, unique values are assigned to the local
association by the system, and the socket is marked as
bound. Note that if the address field of the name structure
is all zeroes, connect() will return the error
EADDRNOTAVAIL.

For stream sockets (type SOCK_STREAM), an active
connection is initiated to the foreign host using name (an
address in the name space of the socket). When the socket
call completes successfully, the socket is ready to
send/receive data.

For a datagram socket (type SOCK_DGRAM), a default
destination is set, which will be used on subsequent send()
and recv() calls.

3-23

Return Value If no error occurs, connect() returns 0. Otherwise, it
returns -1, and the global variable errno contains one of
the following values.

On a blocking socket, the return value indicates success or
failure of the connection attempt.

On a non-blocking socket, if the return value is -1 an
application should check the errno. If this indicates an
error code of EINPROGRESS, then your application can
use select() to determine the completion of the connection
request by checking if the socket is writeable.

EINPROGRESS (TCP only) The socket is

nonblocking and a
connection attempt would
block.

EADDRNOTAVAIL The specified address is not
available

EADDRINUSE The specified address
already in use

ECONNREFUSED (TCP only) The attempt to
connect was forcefully
rejected by the remote
machine.

EISCONN The socket is already
connected.

EBADF The descriptor is not a
socket.

Error Codes

ETIMEDOUT (TCP only) Attempt to
connect timed out without
establishing a connection.
Current time out value is 30
seconds.

See Also accept(), bind(), getsockname(), socket(), select().

3-24

gethostbyname Get host information corresponding to a hostname.

#include <sdksock.h> Syntax
struct hostent *gethostbyname (char *name);

Arguments name A pointer to the name of the host.
gethostbyname() returns a pointer to the following
structure which contains the name(s) and address which
correspond to the given address.

Description

struct hostent {
 char * h_name;
 char ** h_aliases;
 short h_addrtype;
 short h_length;
 char * * h_addr_list;
};
The members of this structure are:
Element Usage
h_name server name of local system
h_aliases A NULL-terminated array of alternate

names, unused currently.
h_addrtype The type of address being returned; this is

always AF_INET.
h_length The length, in bytes, this is always 4
h_addr_list A NULL-terminated list of addresses for

the host. Addresses are returned in
network byte order.

The pointer returned points to a structure that is allocated
by NPort Server. The application must not modify this
structure or free any of its components.

Return Value If no error occurs, gethostbyname() returns a pointer to
the hostent structure described above. Otherwise it returns
a NULL pointer.

See Also gethostname()

3-25

gethostname Return the standard host name for the local machine.

#include <sdksock.h> Syntax
int gethostname (char *name, int namelen);
name A pointer to a buffer that will receive the host

name.
Arguments

namelen The length of the buffer.
Description This routine returns the name of the local host into the

buffer specified by the name parameter. The host name is
returned as a null-terminated string. The form of the host
name is dependent on the sockets implementation—it is a
simple host name. However, it is guaranteed that the name
returned will be successfully parsed by gethostbyname().

Return Value If no error occurs, gethostname() returns 0. Otherwise, it
returns –1, and the global variable errno contains one of
the following values.

Error Codes WSAEFAUL The namelen parameter is too small or
the name argument pointer is invalid.

See Also gethostbyname()

getpeername Get the address of the peer to which a socket is

connected.
#include <sdksock.h> Syntax
int getpeername (int s, SOCKADDR *name, int
*namelen);
s A descriptor identifying a connected socket.
name The structure which is to receive the name

of the peer.

Arguments

namelen A pointer to the size of the name structure.
Description getpeername() retrieves the name of the peer connected to

the socket s and stores it in the SOCKADDR identified by
name. It is used on a connected datagram or stream
socket.

On return, the namelen argument contains the actual size
of the name returned in bytes.

3-26

Return Value If no error occurs, getpeername() returns 0. Otherwise, it
returns –1, and the global variable errno contains one of
the following values.
EFAULT The name argument pointer is invalid

or namelen argument is not large
enough.

ENOTCONN The socket is not connected.

Error Codes

EBADF The descriptor is not a socket.
See Also bind(), socket(), getsockname().

getsockname Get the local name for a socket.

#include <sdksock.h> Syntax
int getsockname (int s, SOCKADDR *name, int
*namelen);
s A descriptor identifying a bound socket.
name Receives the address (name) of the socket.

Arguments

namelen The size of the name buffer.
Description getsockname() retrieves the current name for the specified

socket descriptor in name. It is used on a bound and/or
connected socket specified by the s parameter. The local
association is returned. This call is especially useful when
a connect() call has been made without first doing a
bind(); this call provides the only means by which you
can determine the local association which has been set by
the system.

On return, the namelen argument contains the actual size
of the name returned in bytes.

If a socket was bound to INADDR_ANY, indicating that
any of the host's IP addresses should be used for the
socket, getsockname() will not necessarily return
information about the host IP address, unless the socket
has been connected with connect() or accept().

3-27

Return Value If no error occurs, getsockname() returns 0. Otherwise, it
returns -1, and the global variable errno contains one of
the following values.
EFAULT The address of name or namelen

argument is not large enough.
Error Codes

EBADF The descriptor is not a socket.
See Also bind(), socket(), getpeername()

getsockopt Retrieve a socket option.

#include <sdksock.h> Syntax
int getsockopt (int s, int level, int optname, char
*optval, int *optlen);
s A descriptor identifying a socket.
level The level at which the option is defined; the

only supported levels are SOL_SOCKET.
optname The socket option for which the value is to be

retrieved.
optval A pointer to the buffer in which the value for

the requested option is to be returned.

Arguments

optlen A pointer to the size of the optval buffer.
Description getsockopt() retrieves the current value for a socket

option associated with a socket of any type, in any state,
and stores the result in optval. Options may exist at
multiple protocol levels, but they are always present at
the uppermost “socket’’ level. Options affect socket
operations, such as whether an operation blocks or not,
the routing of packets, out-of-band data transfer, etc.

The value associated with the selected option is returned
in the buffer optval. The integer pointed to by optlen
should originally contain the size of this buffer; on return,
it will be set to the size of the value returned. For
SO_LINGER, this will be the size of a struct linger; for
all other options it will be the size of an integer.

If the option was never set with setsockopt(), then
getsockopt() returns the default value for the option.

3-28

The following options are supported for getsockopt(). The
Type identifies the type of data addressed by optval.
Supported socket options are:
Value Type Meaning

SO_DONTLINGER BOOL

If true, the
SO_LINGER
option is
disabled.

SO_KEEPALIVE BOOL Keepalives are
being sent.

SO_LINGER LINGER*
Returns the
current linger
options.

Calling getsockopt() with an unsupported option will
result in an error code of ENOPROTOOPT.

Return Value If no error occurs, getsockopt() returns 0. Otherwise, it
returns –1, and the global variable errno contains one of
the following values.
EFAULT The optlen argument was invalid.
ENOPROTOOPT The option is unknown or

unsupported

Error Codes

EBADF The descriptor is not a socket
See Also setsockopt(), socket()

3-29

htonl Convert an unsigned long from host to network byte

order.
#include <sdksock.h> Syntax
u_long htonl (u_long hostlong);

Arguments hostlong A 32-bit number in host byte order.
Description This routine takes a 32-bit number in host byte order and

returns a 32-bit number in network byte order.
Return Value htonl() returns the value in network byte order.
See Also htons(), ntohl(), ntohs().

htons Convert an unsigned short from host to network byte

order.

#include <sdksock.h>

Syntax

u_short htons (u_short hostshort);
Arguments hostshort A 16-bit number in host byte order.

Description This routine takes a 16-bit number in host byte order and

returns a 16-bit number in network byte order.

Return Value htons() returns the value in network byte order.

See Also htonl(), ntohl(), ntohs().

3-30

inet_addr Convert a string containing a dotted address into an

in_addr.
#include <sdksock.h> Syntax
unsigned long inet_addr (char *cp);

Arguments cp A character string representing a number
expressed in the Internet standard “.’’ notation.

Description This function interprets the character string specified by
the cp parameter. This string represents a numeric Internet
address expressed in the Internet standard “.’’ notation.
The value returned is a number suitable for use as an
Internet address. All Internet addresses are returned in
network order (bytes ordered from left to right).

Internet Addresses

Values specified using the “.’’ notation take the following
forms:

a.b.c.d

When four parts are specified, each is interpreted as a
byte of data and assigned, from left to right, to the four
bytes of an Internet address. Note that when an Internet
address is viewed as a 32-bit integer quantity on the Intel
architecture, the bytes referred to above appear as
“d.c.b.a’’. That is, the bytes on an Intel processor are
ordered from right to left.

Note: The following notations are only used by Berkeley,
and nowhere else on the Internet. In the interests of
compatibility with their software, they are supported as
specified.

3-31

Return Value If no error occurs, inet_addr() returns an unsigned long
containing a suitable binary representation of the Internet
address given. If the passed-in string does not contain a
legitimate Internet address, for example if a portion of an
“a.b.c.d” address exceeds 255, inet_addr() returns the
value INADDR_ANY.

See Also inet_ntoa()

inet_ntoa Convert a network address into a string in dotted

format.
#include <sdksock.h> Syntax
char *inet_ntoa (unsigned long in);

Arguments in An Internet host address.
Description This function takes an Internet address specified by the in

parameter. It returns an ASCII string representing the
address in “.’’ notation as “a.b.c.d’’. Note that the string
returned by inet_ntoa() resides in memory which is
allocated by the sockets implementation. The application
should not make any assumptions about the way in which
the memory is allocated. The data is guaranteed to be
valid until the next sockets API call within the same
thread, but no longer.

Return Value If no error occurs, inet_ntoa() returns a char pointer to a
static buffer containing the text address in standard “.’’
notation. Otherwise, it returns NULL. The data should be
copied before another Windows Sockets call is made.

See Also inet_addr().

3-32

ioctlsocket Control the mode of a socket.

#include <sdksock.h> Syntax
int ioctlsocket (int s, long cmd, u_long *argp);
s A descriptor identifying a socket.
cmd The command to perform on the socket s.

Arguments

argp A pointer to a parameter for cmd.
Description This routine may be used on any socket in any state. It is

used to get or retrieve operating parameters associated
with the socket, independent of the protocol and
communications subsystem. The following commands are
supported:
Command Semantics
FIONBIO Enable or disable non-blocking mode on

the socket s. argp points to an unsigned
long, which is non-zero if non-blocking
mode is to be enabled and zero if it is to be
disabled. When a socket is created, it
operates in blocking mode (i.e.,
non-blocking mode is disabled). This is
consistent with BSD sockets.

Compatibility This function is a subset of ioctl() as used in Berkeley
sockets.

Return Value Upon successful completion, the ioctlsocket() returns 0.
Otherwise, it returns –1, and the global variable errno
contains one of the following values.
EINVAL cmd is not a valid command, or argp is not

an acceptable parameter for cmd, or the
command is not applicable to the type of
socket supplied.

Error Codes

EBADF The descriptor s is not a socket.
See Also socket(), setsockopt(), getsockopt().

3-33

listen - Establish a socket to listen for incoming connection.

#include <sdksock.h> Syntax
int listen (int s, int backlog);
s A descriptor identifying a bound, unconnected

socket.
Arguments

backlog The maximum length to which the queue of
pending connections may grow.

Description To accept connections, a socket is first created with
socket(), a backlog for incoming connections is specified
with listen(), and then the connections are accepted with
accept(). listen() applies only to sockets that support
connections, i.e., those of type SOCK_STREAM. The
socket s is put into “passive’’ mode where incoming
connections are acknowledged and queued pending
acceptance by the process.

listen() attempts to continue to function rationally when
there are no available descriptors. It will accept
connections until the queue is emptied. If descriptors
become available, a later call to listen() or accept() will
refill the queue to the current or most recent “backlog’’ if
possible, and then resume listening for incoming
connections.

Compatibility backlog is currently limited (silently) to 5. As in 4.3BSD,
illegal values (less than 1 or greater than 5) are replaced
by the nearest legal value.

Return Value If no error occurs, listen() returns 0. Otherwise, it
returns –1, and the global variable errno contains one of
the following values.
EBADF The descriptor is not a socket. Error Codes
EOPNOTSUPP The referenced socket is not of a

type that supports the listen()
operation.

See Also accept(), connect(), socket().

3-34

ntohl Convert an unsigned long from network to host byte
order.
#include <sdksock.h> Syntax
u_long ntohl (u_long netlong);

Arguments netlong A 32-bit number in network byte order.
Description This routine takes a 32-bit number in network byte order

and returns a 32-bit number in host byte order.
Return Value ntohl() returns the value in host byte order.
See Also htonl(), htons(), ntohs().

ntohs Convert an unsigned short from network to host byte

order.
#include <sdksock.h> Syntax
u_short ntohs (u_short netshort);

Arguments netshort A 16-bit number in network byte order.
Description This routine takes a 16-bit number in network byte order

and returns a 16-bit number in host byte order.
Return Value ntohs() returns the value in host byte order.
See Also htonl(), htons(), ntohl().

3-35

recv Receive data from a socket.

#include <sdksock.h> Syntax
int recv (int s, char *buf, int len, int flags);
s A descriptor identifying a connected socket.
buf A buffer for the incoming data.
len The length of buf.

Arguments

flags Specifies the way in which the call is made.
Description This function is used on connected datagram or stream

sockets specified by the s parameter and is used to read
incoming data.

For sockets of type SOCK_STREAM, as much
information as is currently available up to the size of the
buffer supplied is returned.

For datagram sockets, data is extracted from the first
enqueued datagram, up to the size of the buffer supplied.
If the datagram is larger than the buffer supplied, the
buffer is filled with the first part of the datagram, and the
excess data is lost.

If no incoming data is available at the socket, the recv()
call waits for data to arrive unless the socket is
non-blocking. In this case a value of –1 is returned with
the error code set to EWOULDBLOCK. The select() calls
may be used to determine when more data arrives.

If the socket is of type SOCK_STREAM and the remote
side has shut down the connection gracefully or the
connection has been reset, a recv() will complete
immediately with 0 bytes received.

flags may be used to influence the behavior of the
function invocation beyond the options specified for the
associated socket. That is, the semantics of this function
are determined by the socket options and the flags
parameter. The latter is constructed by “or-ing” any of the
following values:

3-36

Value Meaning
MSG_OOB Read out-of-band data
(SOCK_STREAM only)

Return Value If no error occurs, recv() returns the number of bytes
received. If the connection has been closed, it returns 0.
Otherwise, it returns –1, and the global variable errno
contains one of the following values.
EBADF The descriptor is not a socket.
EFAULT The buf argument pointer is

invalid.
EOPNOTSUPP MSG_OOB was specified, but the

socket is not of type
SOCK_STREAM.

ESHUTDOWN The socket has been shutdown; it
is not possible to recv() on a socket
after shutdown() has been invoked
with how set to 0 or 2.

EWOULDBLOCK The socket is marked as
non-blocking and the receive
operation would block.

EIO MSG_OOB was specified, but has
not received out-of-band data.

Error Codes

ELENZERO The length argument is zero.
See Also recvfrom(), read(), ,recv(), send(), select(), socket()

3-37

recvfrom Receive a datagram and store the source address.

#include <sdksock.h> Syntax
int recvfrom (int s, char *buf, int len, int flags,
SOCKADDR *from, int *fromlen);
s A descriptor identifying a bound socket
buf A buffer for the incoming data.
len The length of buf.
flags Specifies the way in which the call is made.
from An optional pointer to a buffer which will hold

the source address upon return.

Arguments

fromlen An optional pointer to the size of the from
buffer.

Description This function is used to read incoming data on a (possibly
connected) socket and capture the address from which the
data was sent.

For sockets of type SOCK_STREAM, as much
information as is currently available up to the size of the
buffer supplied is returned. The from and fromlen
parameters are ignored for SOCK_STREAM sockets.

For datagram sockets, data is extracted from the first
enqueued datagram, up to the size of the buffer supplied.
If the datagram is larger than the buffer supplied, the
buffer is filled with the first part of the message, and the
excess data is lost.

If from is non-zero, and the socket is of type
SOCK_DGRAM, the network address of the peer which
sent the data is copied to the corresponding SOCKADDR.
The value pointed to by fromlen is initialized to the size of
this structure, and is modified on return to indicate the
actual size of the address stored there.

If no incoming data is available at the socket, the
recvfrom() call waits for data to arrive unless the socket is
non-blocking. In this case a value of -1 is returned with
the error code set to EWOULDBLOCK. The select() calls

3-38

may be used to determine when more data arrives.

If the socket is of type SOCK_STREAM and the remote
side has shut down the connection gracefully or the
connection has been reset, a recvfrom() will complete
immediately with 0 bytes received.

flags may be used to influence the behavior of the
function invocation beyond the options specified for the
associated socket. That is, the semantics of this function
are determined by the socket options and the flags
parameter. The latter is constructed by “or-ing” any of the
following values:

Value Meaning
MSG_OOB Read out-of-band data
(SOCK_STREAM only)

Return Value If no error occurs, recvfrom() returns the number of bytes
received. If the connection has been closed, it returns 0.
Otherwise, it returns -1, and the global variable errno
contains one of the following values.
EBADF The descriptor is not a socket.
EFAULT The buf argument pointer is

invalid.
EOPNOTSUPP MSG_OOB was specified, but

the socket is not of type
SOCK_STREAM.

ESHUTDOWN The socket has been shut down;
it is not possible to recvfrom()
on a socket after shutdown()
has been invoked with how set
to 0 or 2.

EWOULDBLOCK The socket is marked as
non-blocking and the receive
operation would block.

EIO MSG_OOB was specified, but
has not received out-of-band
data.

Error Codes

ELENZERO The length argument is zero.
See Also recv(), send(), socket().

3-39

select Determine the status of one or more sockets, waiting if

necessary.
#include <sdksock.h> Syntax
int select (int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);
nfds This argument is ignored and included only

for the sake of compatibility.
readfds An optional pointer to a set of sockets to be

checked for readability.
writefds An optional pointer to a set of sockets to be

checked for writeability
exceptfds An optional pointer to a set of sockets to be

checked for errors.

Arguments

timeout The maximum time for select() to wait, or
NULL for blocking operation.

Description This function is used to determine the status of one or more
sockets. For each socket, the caller may request information
on read, write or error status. The set of sockets for which a
given status is requested is indicated by an fd_set structure.
Upon return, the structure is updated to reflect the subset of
these sockets which meet the specified condition, and
select() returns the number of sockets meeting the
conditions. A set of macros is provided for manipulating an
fd_set. These macros are compatible with those used in the
Berkeley software, but the underlying representation is
completely different.

Three independent sets of descriptors are watched. Those
listed in readfds will be watched to see if characters
become available for reading, those in writefds will be
watched to see if it is OK to immediately write on them,
and those in exceptfds will be watched for exceptions. On
exit, the sets are modified in place to indicate which
descriptors actually changed status.

Any of readfds, writefds, or exceptfds may be given as
NULL if no descriptors are of interest.

3-40

Four macros are defined in the header file sdksock.h for
manipulating the descriptor sets. The variable
FD_SETSIZE determines the maximum number of
descriptors in a set (the default value of FD_SETSIZE is
32). Internally, an fd_set is represented as an array of
SOCKET’s. The macros are:

FD_CLR(s, *set) Removes the descriptor s from set.

FD_ISSET(s, *set) Nonzero if s is a member of the set,
zero otherwise.

FD_SET(s, *set) Adds descriptor s to set.

FD_ZERO(*set) Initializes the set to the NULL set.

 The parameter timeout controls how long the select() may
take to complete. If timeout is a null pointer, select() will
block indefinitely until at least one descriptor meets the
specified criteria. Otherwise, timeout points to a struct
timeval which specifies the maximum time that select()
should wait before returning. If the timeval is initialized to
{0, 0}, select() will return immediately; this is used to
“poll” the state of the selected sockets.

Return Value select() returns the total number of descriptors which are
ready and contained in the fd_set structures, 0 if the time
limit has expired. Otherwise, it returns –1, and the global
variable errno contains one of the following values.
EINVAL The refds, wrfds and exfds are all NULL. Error Codes
EBADF One of the descriptor sets contains an entry

which is not a socket.
See Also accept(), connect(), recv(), recvfrom(), send()

3-41

send Send data on a connected socket.

#include <sdksock.h> Syntax
int send (int s, const char *buf, int len, int flags);
s A descriptor identifying a connected socket.
buf A buffer containing the data to be transmitted.
len The length of the data in buf.

Arguments

flags Specifies the way in which the call is made
Description send() is used on connected datagram or stream sockets and

is used to write outgoing data on a socket. For datagram
sockets, care must be taken not to exceed the maximum IP
packet size of the underlying subnets.

Note that the successful completion of a send() does not
indicate that the data was successfully delivered.

If no buffer space is available within the transport system to
hold the data to be transmitted, send() will block unless the
socket has been placed in a non-blocking I/O mode. On
non-blocking SOCK_STREAM sockets, the number of
bytes written may be between 1 and the requested length,
depending on buffer availability on both the local and
foreign hosts. The select() call may be used to determine
when it is possible to send more data.

Flags may be used to influence the behavior of the function
invocation beyond the options specified for the associated
socket. That is, the semantics of this function are
determined by the socket options and the flags parameter.
The latter is constructed by “or-ing” any of the following
values:

Value Meaning
MSG_OOB Send out-of-band data

Return Value If no error occurs, send() returns the total number of
characters sent (note that this may be less than the number
indicated by len.). Otherwise, it returns -1, and the global
variable errno contains one of the following values.

3-42

EFAULT The buf argument is not in a
valid part of the user address
space.

ENOTCONN The socket is not connected.
EBADF The descriptor is not a socket.
EOPNOTSUPP MSG_OOB was specified, but

the socket is not of type
SOCK_STREAM.

ESHUTDOWN The socket has been shut down;
it is not possible to send() on a
socket after shutdown() has been
invoked with how set to 1 or 2.

EWOULDBLOCK The socket is marked as
non-blocking and the requested
operation would block.

Error Codes

EFBIG Data written exceeds system
capacity.

See Also recv(), recvfrom(), socket(), sendto().

3-43

sendto Send data to a specific destination.

#include <sdksock.h> Syntax
int sendto (int s, char *buf, int len, int flags,
SOCKADDR *to, int tolen);
s A descriptor identifying a socket
buf A buffer containing the data to be transmitted.
len The length of the data in buf.
flags Specifies the way in which the call is made.
to An optional pointer to the address of the target

socket

Arguments

tolen The size of the address in to.
Description sendto() is used on datagram or stream sockets and is used

to write outgoing data on a socket.

Note that the successful completion of a sendto() does not
indicate that the data was successfully delivered.

sendto() is normally used on a SOCK_DGRAM socket to
send a datagram to a specific peer socket identified by the
to parameter. On a SOCK_STREAM socket, the to and
tolen parameters are ignored; in this case the sendto() is
equivalent to send().

To send a broadcast (on a SOCK_DGRAM only), the
address in the to parameter should be constructed using
the special IP address INADDR_BROADCAST (defined
in sdksock.h) together with the intended port number. It is
generally inadvisable for a broadcast datagram to exceed
the size at which fragmentation may occur, which implies
that the data portion of the datagram (excluding headers)
should not exceed 512 bytes.

If no buffer space is available within the transport system
to hold the data to be transmitted, sendto() will block
unless the socket has been placed in a non-blocking I/O
mode. On non-blocking SOCK_STREAM sockets, the
number of bytes written may be between 1 and the
requested length, depending on buffer availability on both
the local and foreign hosts. The select() call may be used
to determine when it is possible to send more data.

3-44

flags may be used to influence the behavior of the
function invocation beyond the options specified for the
associated socket. That is, the semantics of this function is
determined by the socket options and the flags parameter.
The latter is constructed by “or-ing” any of the following
values:

Value Meaning
MSG_OOB Send out-of-band data
(SOCK_STREAM only)

Return Value If no error occurs, sendto() returns the total number of
characters sent (note that this may be less than the number
indicated by len). Otherwise, it returns –1, and the global
variable errno contains one of the following values.
EFAULT The buf or to parameters are not part

of the user address space, or the to
argument is too small (less than the
size of a SOCKADDR)

ENOBUFS The system had insufficient resources
to perform the operation.

ENOTCONN The socket is not connected
(SOCK_STREAM only).

EBADF The descriptor is not a socket.
EOPNOTSUPP MSG_OOB was specified, but the

socket is not of type
SOCK_STREAM.

ESHUTDOWN The socket has been shutdown; it is
not possible to sendto() on a socket
after shutdown() has been invoked
with how set to 1 or 2.

EWOULDBLOCK The socket is marked as non-blocking
and the requested operation would
block.

Error Codes

EINVAL The socket has not been bound with
baind().

See Also recv(), recvfrom(), socket(), send().

3-45

setsockopt Set a socket option.

#include <sdksock.h> syntax
int setsockopt
(int s, int level, int optname, char *optval, int optlen);
s A descriptor identifying a socket.
level The level at which the option is

defined; the only supported level is
SOL_SOCKET.

optname The socket option for which the value is
to be set.

optval A pointer to the buffer in which the
value for the requested option is
supplied.

Arguments

optlen The size of the optval buffer.
Description setsockopt() sets the current value for a socket option

associated with a socket of any type, in any state.
Although options may exist at multiple protocol levels,
this specification only defines options that exist at the
uppermost "socket'' level. Options affect socket
operations, such as whether expedited data is received in
the normal data stream, whether broadcast messages may
be sent on the socket, etc.

There are two types of socket options: Boolean options
that enable or disable a feature or behavior, and options
which require an integer value or structure. To enable a
Boolean option, optval points to a nonzero integer. To
disable the option optval points to an integer equal to
zero. optlen should be equal to sizeof(int) for Boolean
options. For other options, optval points to the an integer
or structure that contains the desired value for the option,
and optlen is the length of the integer or structure.

3-46

SO_LINGER controls the action taken when unsent data
is queued on a socket and a closesocket() is performed.
See closesocket() for a description of the way in which
the SO_LINGER settings affect the semantics of
closesocket(). The application sets the desired behavior by
creating a struct linger (pointed to by the optval argument)
with the following elements:

struct linger {
 int l_onoff;
 int l_linger;
}

To enable SO_LINGER, the application should set
l_onoff to a non-zero value, set l_linger to 0 or the desired
timeout (in seconds), and call setsockopt(). The timeout
value should be in the interval between 0 to10 (in
seconds). To enable SO_DONTLINGER (i.e., disable
SO_LINGER) l_onoff should be set to zero and
setsockopt() should be called.

 By default, a socket may not be bound (see bind()) to a
local address which is already in use. On occasion,
however, it may be desirable to "re-use" an address in this
way. Since every connection is uniquely identified by the
combination of local and remote addresses, there is no
problem with having two sockets bound to the same local
address as long as the remote addresses are different. To
inform the Windows Sockets implementation that a bind()
on a socket should not be disallowed because the desired
address is already in use by another socket, the
application should set the SO_REUSEADDR socket
option for the socket before issuing the bind(). Note that
the option is interpreted only at the time of the bind(); it is
therefore unnecessary (but harmless) to set the option on a
socket which is not to be bound to an existing address,
and setting or resetting the option after the bind() has no
effect on this or any other socket.

3-47

An application may request that the Sockets
implementation enable the use of "keep-alive" packets on
TCP connections by turning on the SO_KEEPALIVE
socket option. A Sockets implementation need not support
the use of keep-alives; if it does, the precise semantics are
implementation-specific, but should conform to section
4.2.3.6 of RFC 1122.
The following options are supported for setsockopt(). The
Type identifies the type of data addressed by optval.
Value Type Meaning
SO_DONTLINGER BOOL Don't block close

waiting for unsent data
to be sent. Setting this
option is equivalent to
setting SO_LINGER
with l_onoff set to zero.

SO_KEEPALIVE BOOL Send keepalives

SO_LINGER LINGER
*

Linger on close if
unsent data is present

Return Value If no error occurs, setsockopt() returns 0. Otherwise, it
returns -1, and the global variable errno contains one of
the following values.
EFAULT optval is not in a valid part of

the process address space.
EINVAL level is not valid, or the

information in optval is not
valid.

ENOPROTOOPT The option is unknown or
unsupported.

Error Codes

EBADF The descriptor is not a socket.
See Also bind(), getsockopt(), ioctlsocket(), socket().

3-48

shutdown Disable sends and/or receives on a socket.

#include <sdksock.h> Syntax
int shutdown (int s, int how);
s A descriptor identifying a socket. Arguments
how A flag that describes what types of operation will

no longer be allowed.
Description shutdown() is used on all types of sockets to disable

reception, transmission, or both.

If how is 0, subsequent receives on the socket will be
disallowed. This has no effect on the lower protocol layers.
For TCP, the TCP window is not changed and incoming
data will be accepted (but not acknowledged) until the
window is exhausted. For UDP, incoming datagrams are
accepted and queued.

If how is 1, subsequent sends are disallowed. For TCP
sockets, a FIN will be sent.

Setting how to 2 disables both sends and receives as
described above.

Note that shutdown() does not close the socket, and
resources attached to the socket will not be freed until
closesocket() is invoked.

Comments shutdown() does not block regardless of the SO_LINGER
setting on the socket.

An application should not rely on being able to re-use a
socket after it has been shut down. In particular, a Sockets
implementation is not required to support the use of
connect() on such a socket.

Return Value If no error occurs, shutdown() returns 0. Otherwise, it
returns –1, and the global variable errno contains one of
the following values.
EINVAL how is not valid
ENOTCONN The socket is not connected

(SOCK_STREAM only).

Error Codes

EBADF The descriptor is not a socket
See Also connect(), socket().

3-49

socket Create a socket.
#include <sdksock.h> Syntax
int socket (int af, int type, int protocol);
af An address format specification. The only

format currently supported is AF_INET,
which is the ARPA Internet address format.

type A type specification for the new socket.

Arguments

protocol A particular protocol to be used with the
socket, or 0 if the caller does not wish to
specify a protocol.

Description socket() allocates a socket descriptor of the specified
address family, data type and protocol, as well as related
resources. If a protocol is not specified (i.e., equal to 0),
the default for the specified connection mode is used.

Only a single protocol exists to support a particular socket
type using a given address format. The protocol number
to use is particular to the "communication domain'' in
which communication is to take place.

The following type specifications are supported:

Type Explanation

SOCK_STREAM
Provides sequenced, reliable, two-way, connection-based
byte streams with an out-of-band data transmission
mechanism. Uses TCP for the Internet address family.

SOCK_DGRAM
Supports datagrams, which are connectionless, unreliable
buffers of a fixed (typically small) maximum length. Uses
UDP for the Internet address family.

3-50

Sockets of type SOCK_STREAM are full-duplex byte
streams. A stream socket must be in a connected state
before any data may be sent or received on it. A
connection to another socket is created with a connect()
call. Once connected, data may be transferred using
send() and recv() calls. When a session has been
completed, a closesocket() must be performed.
Out-of-band data may also be transmitted as described in
send() and received as described in recv().

The communications protocols used to implement a
SOCK_STREAM to ensure that data is not lost or
duplicated.

SOCK_DGRAM sockets allow sending and receiving of
datagrams to and from arbitrary peers using sendto() and
recvfrom(). If such a socket is connect()’ed to a specific
peer, datagrams may be sent to that peer using send() and
may be received from (only) this peer using recv().

Return Value If no error occurs, socket() returns a descriptor
referencing the new socket. Otherwise, it returns -1, and
the global variable errno contains one of the following
values.

Error Codes EMFILE No more file descriptors are
available.

 EPROTONOSUPPO
RT

The specified address family or
protocol is not supported.

See Also accept(), bind(), connect(), getsockname(), getsockopt(),
setsockopt(), listen(), recv(), recvfrom(), select(), send(),
sendto(), shutdown(), ioctlsocket().

3-51

3-3 Simplified Socket Library Reference

net_get_gateway Get local default gateway.

#include <sdknet.h> Syntax
u_long net_get_gateway (void);

Arguments N/A
Description Get local default gateway.
Return Value default gateway IP address.

net_get_IP Get local IP address.

#include <sdknet.h> Syntax
u_long net_get_IP (void);

Arguments N/A
Description Get local IP address.
Return Value local IP address

net_get_MAC_address Get MAC address.

#include <sdknet.h> Syntax
void net_get_MAC_address (u_char *mac);

Arguments mac Get MAC address data buffer pointer.

Description Get MAC address.
Return Value System copies the host MAC address to the mac input

buffer.

net_get_netmask Get local subnet mask.

#include <sdknet.h> Syntax
u_long net_get_netmask (void);

Arguments N/A
Description Get local subnet mask.
Return Value local netmask.

3-52

tcp_close Close a local TCP port.

#include <sdknet.h> Syntax
int tcp_close (int handle);

Arguments handle the value returned from tcp_open().
Description Close a local TCP port.
Return Value 0 O.K
 -1 error handle number.
See Also

tcp_connect Connect to specific host IP and port.

#include <sdknet.h> Syntax
int tcp_connect
(int handle, u_long rip, int rport, long tout);
handle the value return from tcp_open().
rip remote host IP address that user wants to link.
rport remote host TCP port no.
tout wait for TCP connection time out value: ms.

Arguments

 0 will wait for OK or fail.
Description Connect to specific host IP and port.

1 connect OK
0 connect fail.
-1 error handle number.
-2 error argument.
-3 timeout counter reached.
-4 error state; already connected.

Return Value

-5 the rip:rport already in use.

3-53

tcp_connect_nowait Connect to specific host IP and port no wait.

#include <sdknet.h> Syntax
int tcp_connect_nowait
(int handle, u_long rip, int rport);
handle the value returned from tcp_open()
rip remote host IP address that user wants to

link to.

Arguments

rport remote host’s TCP port No.
Description Connect to specific host’s IP and port no wait.

0 start to connect.
-1 error handle number
-2 error argument
-3 error state; already connected.

Return Value

-4 the rip:rport is already in use.
See Also

tcp_get_remote Get connected host’s IP and port.

#include <sdknet.h> Syntax
int tcp_get_remote
(int handle, u_long *rip, int *rport)
handle the value returned from tcp_open()
rip connected host’s IP address pointer.

Arguments

rport connected host’s TCP port number pointer.
Description Get connected host’s IP and port.

0 get OK
-1 error handle.
-2 error argument

Return Value

-3 No connection.
See Also

3-54

tcp_iqueue Get the size of data accumulated in TCP driver’s input

buffer.
#include <sdknet.h> Syntax
int tcp_iqueue (int handle)

Arguments handle the value returned from tcp_open()
Description Get the size of data accumulated in TCP driver’s input

buffer.
Return Value >=0 TCP input buffer queued data size.
 -1 error handle number.
 -2 This is not a TCP handle.
 -3 TCP not connected.

tcp_listen Places a socket in a state where it is listening for an

incoming connection.
#include <sdknet.h> Syntax
int tcp_listen (int handle, long tout);
handle the value return from tcp_open().
tout wait for listen time out value, unit is ms.

Arguments

 0 for wait for someone to connect.
Description Places a socket a state where it is listening for an

incoming connection.
1 connect OK or already connected.
0 connect fail.
-1 error handle number.
-2 this handle was opened by tcp_open().
-3 timeout counter reached.

Return Value

-4 error state; already connected.

3-55

tcp_listen_nowait Places a socket in a state where it is listening for an

incoming connection no wait.
#include <sdknet.h> Syntax
int tcp_listen_nowait (int handle);

Arguments handle the value returned from tcp_open()
Description Places a socket a state where it is listening for an

incoming connection no wait.
0 start to listen.
-1 error handle number
-2 this handle was opened by tcp_open().

Return Value

-3 error state; already connected.

tcp_listento Listen for a specific incoming connection.

#include <sdknet.h> Syntax
int tcp_listento
(int handle, u_long rip, int rport, long tout);
handle the value returned from tcp_open()
rip remote host IP address that user wants to link

to.
 0 indicates don’t case remote IP address.
rport remote host TCP port No. 0 indicates don’t

case
 the TCP port number.

Arguments

tout wait for listen timeout value; unit is ms.
Description Listen for a specific incoming connection.

1 connect OK or already connected.
0 connect fail.
-1 error handle number.
-2 this handle was opened by tcp_open().
-3 timeout counter reached.

Return Value

-4 error state; already connected.

3-56

tcp_listento_nowait Listen for a specific incoming connection no wait.

#include <sdknet.h> Syntax
int tcp_listento_nowait
(int handle, u_long rip, int rport);
handle the value returned from tcp_open()
rip remote host IP address that user wants to link

to.
 0 indicates don’t case remote IP address.
rport remote host’s TCP port No. 0 indicates don’t

case

Arguments

 the TCP port number.
Description Listen for a specific incoming connection no wait.

0 start to listen.
-1 error handle number
-2 this handle was opened by tcp_open().

Return Value

-3 error state; already connected.

tcp_ofree Size of free space in TCP driver’s input buffer.

#include <sdknet.h> Syntax
int tcp_ofree (int handle)

Arguments handle the value returned from tcp_open()
Description Size of free space in TCP driver’s input buffer.
Return Value >=0 TCP output buffer’s free size.
 -1 error handle number.
 -2 This is not a TCP handle.
 -3 TCP not connected.

tcp_open Open a local TCP port.

#include <sdknet.h> Syntax
int tcp_open (int port);

Arguments port local TCP port number.
Description Open a local TCP port.

>=0 open handle Return Value
-1 open fail.

3-57

tcp_recv Receives data from a connected socket.

#include <sdknet.h> Syntax
int tcp_recv (int handle, char *buffer, int len);
handle the value returned from tcp_open()
buffer the receiveed data buffer pointer.

Arguments

len buffer length
Description Receives data from a connected socket.

>=0 received data length.
-1 error handle number.
-2 error argument.

Return Value

-3 TCP not connected.

tcp_send Sends data on a connected socket.

#include <sdknet.h> Syntax
int tcp_send (int handle, char *buffer, int len);
handle the value return from tcp_open()
buffer the send out data buffer pointer.

Arguments

len data length
Description Sends data on a connected socket.

>=0 send out data length.
-1 error handle number.
-2 error argument.

Return Value

-3 TCP not connected.

3-58

tcp_state Get TCP state.

#include <sdknet.h> Syntax
int tcp_state (int handle)

Arguments handle the value returned from tcp_open()
Description Get TCP state.

0 TCP closed.
1 TCP listen.
2 TCP connecting.
3 TCP connected.
4 TCP close wait (remote closed).
5 TCP closing
-1 error handle.

Return Value

-2 This handle is not a TCP handle.

udp_close Close a local UDP port.

#include <sdknet.h> Syntax
int udp_close (int handle);

Arguments handle The value return from udp_open().
Description Close a local UDP port.

0 close OK Return Value
-1 error handle number.

udp_iqueue Get the size of data accumulated in UDP driver’s input

buffer.
#include <sdknet.h> Syntax
int udp_iqueue (int handle)

Arguments handle the value returned from udp_open()
Description Get the size of data accumulated in UDP driver’s input

buffer.
Return Value >=0 UDP input buffer queued data size.
 -1 error handle number.
 -2 this is not a UDP handle.

3-59

udp_ofree Size of free space in UDP driver’s input buffer.

#include <sdknet.h> Syntax
int udp_ofree (int handle)

Arguments handle the value returned from udp_open()
Description Size of free space in UDP driver’s input buffer.
Return Value >=0 UDP output buffer free size.
 -1 error handle number.
 -2 this is not a UDP handle.

udp_open Open a local UDP port.

#include <sdknet.h> Syntax
int udp_open (int port)

Arguments port the local UDP port number
Description Open a local UDP port.

>=0 open handle. Return Value
-1 open fail.

udp_recv Receives data from a specific source address.

#include <sdknet.h> Syntax
int udp_recv
(int handle, u_long *rip, int *rport, char *buf, int len);
handle the value return from udp_open().
rip recv from host IP address pointer.
rport recv from host UDP port number pointer.
buf recv data buffer pointer.

Arguments

len recv data buffer length.
Description Receives data from a specific source address.
Return Value >= 0 recv data length.
 -1 recv failed.

3-60

udp_send Sends data to a specific destination.

#include <sdknet.h> Syntax
int udp_send (int handle, u_long rip, int rport, char
*buf, int len);
handle the value returned from udp_open().
rip send to host IP address.
rport send to host UDP port number.
buf send data buffer pointer.

Arguments

len send data length
Description Sends data to a specific destination.

>= 0 sent out data length. Return Value
-1 send failed.

3-61

3-4 System Control Library Reference
sys_clock_ms Read the server’s time (milliseconds) count from

power-up.
#include <sdksys.h> Syntax
unsigned long sys_clock_ms (void);

Arguments N/A
Description Read the server’s time (milliseconds) count from

power-up.
Return Value This function returns server’s time counter in

milliseconds.
See Also sys_clock_s()

sys_clock_s Read the server’s time (seconds) count from power-up.

#include <sdksys.h> Syntax
unsigned long sys_clock_s (void);

Arguments N/A
Description Read the server’s time (seconds) count from power-up.
Return Value This function returns server’s time counter in seconds.
See Also sys_clock_ms()

sys_disable_watchdog Disable watchdog.

#include <sdksys.h> Syntax
void sys_watchdog_disable(void);

Arguments N/A
Description Disable watchdog.
Return Value N/A

3-62

sys_enable_watchdog Enable watchdog.
Syntax int sys_enable_watchdog (int mode);

1 watch-dog reset timeout value is 335ms.
2 watch-dog reset timeout value is 419ms.
3 watch-dog reset timeout value is 671ms.
4 watch-dog reset timeout value is 838ms.
5 watch-dog reset timeout value is 1.34s.
6 watch-dog reset timeout value is 1.68s.
7 watch-dog reset timeout value is 2.68s.

Arguments mode

8 watch-dog reset timeout value is 3.35s.
Description Enable watchdog.
Return Value 0 OK
 -1 error argument.

sys_exit Exit application.

#include <sdksys.h> Syntax
Void sys_exit (void);

Arguments N/A
Description To exit user application and return to kernel. It will let

the user application stop it.
Return Value N/A
See Also N/A

3-63

sys_get_info Get server general information.

#include <sdksys.h> Syntax
int sys_get_info (struct sdk_sysinfo *info);

Arguments info A pointer to a buffer that will receive the server
general information.

struct sdk_version {
unsigned short ext_version;
unsigned char sub_version;
unsigned char main_version;
};
e.g., Ver 1.20.3, the main version is 1, sub_version is 20
and ext_version is 3.
struct sdk_sysinfo {
struct sdk_version firmware_version; /* Server’s

firmware
version. */

unsigned long serial_no;

/* Server’s serial
number */

unsigned short product_id; /* Server’s
product ID */

unsigned char MAC_addr[6]; /* Server
Ethernet MAC
address */

struct sdk_version ap_version; /* User’s AP
version */

unsigned short ap_date_year; /* Date of AP:
A.D. e.g. 2002 */

unsigned char ap_date_month; /* Range: 1 - 12
*/

unsigned char ap_date_day; /* Range: 1 - 31
*/

unsigned char ap_time_hour; /* Range: 0 - 23
*/

unsigned char ap_time_minute; /* Range: 0 - 59
*/

Description

};

3-64

Return Value sys_get_info() returns the buffer data length of the
information structure. Return of 0 indicates the
argument is invalid.

sys_get_SerialType Get async port interface signal type.

#include <sdksys.h> Syntax
sys_get_SerialType (int port);

Arguments port Async serial port number
Description Get async port interface signal type.

0 RS-232
1 RS-422
2 RS-485 (2w)
3 RS-485 (4w)

Return Value

-1 Bad port

sys_get_WatchdogStatus Get watchdog status.

#include <sdksys.h> Syntax
int sys_get_WatchdogStatus (void);

Arguments N/A
Description Get watchdog status.

0 watch-dog timer is disabled.
1 watch-dog reset timeout value is 335ms.
 (refer to sys_watchdog_enable())

Return Value

8 watch-dog reset timeout value is 3.35s.

sys_restart_system Restart system.

#include <sdksys.h> Syntax
Void sys_restart_system (void);

Arguments N/A
Description Restart system.
Return Value N/A

3-65

sys_restart_UserAP Restart user AP.

#include <sdksys.h> Syntax
void sys_restart_UserAP (void);

Arguments N/A
Description Restart user AP.
Return Value N/A

sys_Set_RegisterID Set Application ID.

#include <sdksys.h> Syntax
void sys_Set_RegisterID (u_long id);

Arguments id Application ID.
Description It let user the application ID.

User can get by DSCI. And 0x80000000 to
0xFFFFFFFF is reversed for MOXA only.
User just can use 0x00000000 to 0x7FFFFFFF. Your
application starts to run to need first to call it.

Return Value N/A
See Also N/A

sys_set_SerialType Set async port interface signal type.

#include <sdksys.h> Syntax
sys_set_SerialType (int port, int type);

Arguments port Async serial port number
 0 RS-232
 1 RS-422
 2 RS-485 (2w)
 3 RS-485 (4w) Note: Not supported by

NPort 4511.
Description Set async port interface signal type.
Return Value 0 Set OK
 -1 Bad port
 -2 Bad parameter (Cannot set this interface type)

3-66

sys_sleep_ms Task sleep time (milliseconds).

#include <sdksys.h> Syntax
int sys_sleep_ms (long time_ms);

Arguments time_ms Task sleep time in milliseconds.
Description Task sleep time (milliseconds).
Return Value This function always returns 0.
See Also sys_clock_s(), sys_clock_ms()

sys_timeout Set the timeout event service routine.

#include <sdksys.h> Syntax
int sys_timeout (void (*func)(), long time_ms);
func The timeout event service routine. Arguments
time_ms Timeout value in milliseconds.

Description Set the timeout event service routine.
0 No errors.
EINVAL The isr argument event function

pointer is invalid.

Return Value

ENOBUFS No resources.

See Also sys_clock_s(), sys_clock_ms(), sys_sleep_ms()..

3-67

sys_event_suspend Suspend interrupt

#include <sdksys.h> Syntax
void sys_event_suspend(int type, u_long args);
type interrupt type

0 sys_timeout
1 sio_term_irq
2 sio_cnt_irq
3 sio_modem_irq
4 sio_break_irq
5 sio_tx_Empty_irq

Arguments

args If “type” is 0, “args” is the timeouts
interrupt subroutine.
If “type” is not 0, “args” is the serial port
number. Eq. 1 for NPort 4511’s serial
port.

Description This function suspends the specific interrupt when the
subroutine is called not, from specific interrupt,
preventing unpredictable situations from occurring. This
function is usually called at the beginning of a
subroutine.

For example, suppose brk_isr() is sio_break_irq()
interrupt subroutine (ISR). If it is called from the main
program instead of a break interrupt, this function will
prevent unpredictable results.
0 OK Return Value
-1 Fail

See Also sys_event_resume

3-68

sys_event_resume Resume interrupt

#include <sdksys.h> Syntax
void sys_event_resume(int type, u_long args);
type interrupt type

0 sys_timeout
1 sio_term_irq
2 sio_cnt_irq
3 sio_modem_irq
4 sio_break_irq
5 sio_tx_Empty_irq

Arguments

args If “type” is 0, “args” is the timeouts
interrupt subroutine.
If “type” is not 0, “args” is the serial port
number. Eq. 1 for NPort 4511’s serial
port.

Description This will resume the interrupt that is suspended by
sys_event_suspend in subroutine.

This function is usually called at the end of the
subroutine.
0 OK Return Value
-1 Fail

See Also sys_event_suspend

3-69

3-5 Flash ROM Access Library Reference
flash_erase Erase flash-ROM.

#include <sdkflash.h> Syntax
int flash_erase (void)

Arguments N/A
Description Erase flash-ROM.

0 OK Return Value
-1 fail.

flash_length Get current data length at the flash-ROM.

#include <sdkflash.h> Syntax
long flash_length (void)

Arguments N/A
Description Get current data length at the flash-ROM
Return Value >=0 Current data length at the flash-ROM.

0 after calling sys_flash_erase().
Max. length is 65536. (64 KB).

flash_read Read data from the flash-ROM.

#include <sdkflash.h> Syntax
Long flash_read
(long offset, char *buffer, long size);

Arguments buffer: read buffer pointer.
 size buffer size.
Description Read data from the flash-ROM.
Return Value >=0 read data size.
 -1 read failed.

flash_write Write data to the flash-ROM.

#include <sdkflash.h> Syntax
long flash_write (char *buffer, long size);
buffer write data buffer pointer. Arguments
size: write data size from 1 to 65536

Description Write data to the flash-ROM.
>0 write length.
-1 write failed

Return Value

-2 Need to erase the flash-ROM first.

3-70

3-6 Debug Library Reference
dbg_put_block Print out a block of data for debugging

#include <sdkdbg.h> Syntax
int dbg_put_block (char *buf, int len);
buf The print out debugging data buffer pointer.
len length of the debugging data buffer.
Print out a block of data for debugging.

See Also

#include <sdkdbg.h>

Arguments

Description
Return Value This function returns the length of print out messages.

dbg_put_ch(), dbg_put_word(), dbg_put_doubleword(),
dbg_put_word_hex(), dbg_put_doubleword_hex(),
dbg_put_IP(), dbg_put_string.

dbg_put_doubleword Print out a 4-byte unsigned long value for
debugging.

Syntax
int dbg_put_doubleword (unsigned long value);

Arguments value
Print out a 4-byte unsigned long value for debugging.

See Also dbg_put_ch(), dbg_put_block(), dbg_put_word(),
dbg_put_word_hex(), dbg_put_doubleword_hex(),
dbg_put_IP(), dbg_put_string().

Print out a 4-byte unsigned long value with
HEX format for debugging.

The printed out unsigned long value.
Description
Return Value This function returns the length of print out messages

dbg_put_doubleword_hex

#include <sdkdbg.h> Syntax
int dbg_put_doubleword_hex (unsigned long value);

Arguments value The printed out unsigned long value.
Description Print out a 4-byte unsigned long value with HEX format for

debugging.
Return Value This function returns the length of print out messages.
See Also dbg_put_ch(), dbg_put_block(), dbg_put_word(),

dbg_put_doubleword(), dbg_put_word_hex(), dbg_put_IP(),
dbg_put_string().

3-71

dbg_put_ch Print out a character for debugging.

#include <sdkdbg.h> Syntax
int dbg_put_ch (char ch);

Arguments ch The character value that will be printed out
Description Print out a character for debugging.

#include <sdkdbg.h>

Return Value This function returns the length of the printed out
messages.

See Also dbg_put_block(), dbg_put_word(),
dbg_put_doubleword(), dbg_put_word_hex(),
dbg_put_doubleword_hex(), dbg_put_IP(),
dbj_put_string().

dbg_put_IP Print out an IP address in the a.b.c.d format for

debugging.
Syntax

int dbg_put_IP (unsigned long ipaddr);
Arguments The printed out Internet host’s IP address.

Return Value

dbg_put_string
#include <sdkdbg.h>

ipaddr
Description Print out an IP address in the a.b.c.d format for

debugging.
This function returns the length of print out messages.

See Also dbg_put_ch(), dbg_put_block(), dbg_put_word(),
dbg_put_doubleword(), dbg_put_word_hex(),
dbg_put_doubleword_hex(), dbg_put_string().

Print out a string for debugging.

Syntax
int dbg_put_string (char *buf);

Arguments buf The printed out debugging data buffer’s pointer.
Description Print out a string for debugging.
Return Value This function returns the length of print out messages.
See Also dbg_put_ch(), dbg_put_block(), dbg_put_word(),

dbg_put_doubleword(), dbg_put_word_hex(),
dbg_put_doubleword_hex(), dbg_put_IP().

3-72

dbg_put_word Print out a 2-byte unsigned integer value for

debugging.
#include <sdkdbg.h> Syntax

Print out a 2-byte unsigned integer value with
HEX format for debugging.

int dbg_put_word (unsigned short value);
Arguments value The printed out unsigned short value.
Description Print out a 2-byte unsigned integer value for debugging.
Return Value This function returns the length of print out messages.
See Also dbg_put_ch(), dbg_put_block(), dbg_put_doubleword(),

dbg_put_word_hex(), dbg_put_doubleword_hex(),
dbg_put_IP(), dbg_put_string().

dbg_put_word_hex

#include <sdkdbg.h> Syntax
int dbg_put_word_hex (unsigned short value);

Arguments value The print out unsigned short value.
Description Print out a 2-byte unsigned integer value with HEX

format for debugging.
Return Value This function returns the length of print out messages.
See Also dbg_put_ch(), dbg_put_block(), dbg_put_word(),

dbg_put_doubleword(), dbg_put_doubleword_hex(),
dbg_put_IP(), dbg_put_string().

44
4. External Function Calls for SDK

We have tested the following standard Turbo C string functions with SDK, and
have verified that they can be used without any problem.

Function Name Description
strcat() Append a string.
strchr() Find a character in a string.
strcmp() Compare strings.
strcpy() Copy a string.
strlwr() Convert a string to lowercase.
strupr() Convert a string to uppercase.
strlen() Get the length of a string.
atoi() Convert strings to integer.
atol() Convert strings to long.
itoa() Convert an integer to a string.
ltoa() Convert a long integer to a string.

Note that to use these string functions, you must link to the cs.lib library file,
with a tlink command similar to the one shown here.

%path:>tlink /t /s c0sdk+ap, ap, ap,
moxa_sdk+c:\tc\lib\cs.lib

NOTE It is important to keep in mind that you must use the complete
path to link to the to the cs.lib library file.

4-2

If you would like to use other Turbo C standard functions, we cannot guarantee
that they will work with SDK. (When using Borland C, use the same method as
for Turbo C.)

NOTE There are several types of function calls that must not be used
in programs for NPort-4511. They are:

 System I/O: such as printf()
 System Interrupt: open()
 System Memory Allocate: malloc()

	Title Page
	Copyright Notice
	Disclaimer
	MOXA Internet Services
	Table of Contents
	Chapter 1. Overview
	Chapter 2. SDK API Overview
	Serial I/O API
	BSD Socket API
	Simplified Socket API
	System Control API
	Flash ROM Access API
	Debug API

	Chapter 3. SDK API Reference
	3-1 Serial I/O Library Reference
	3-2 BSD Socket Library Reference
	3-3 Simplified Socket Library Reference
	3-4 System Control Library Reference
	3-5 Flash ROM Access Library Reference
	3-6 Debug Library Reference

	Chapter 4. External Function Calls for SDK

