OptiLogicSeries

OptiLogic Input/Output Modules

WARNING

Thank you for purchasing industrial control products from Optimation, Inc. We want your new system to operate safely. Anyone who installs or uses this equipment should read this manual (and any other relevant publication) before installing or operating the system.

To minimize the risk of potential safety problems, you should follow all applicable local and national codes that regulate the installation and operation of your system. These include the National Fire Code, National Electric Code, and other codes of the National Electrical Manufacturer's Association (NEMA). There may be local regulatory or governmental offices that can help determine which codes and standards apply to your situation. It is your responsibility to determine which codes and should be followed, and to verify that the equipment, installation, and operation is in compliance with the latest revision of these codes. If you have any questions concerning the installation and operation of Optimation products, please call us at (256)883-3050.

All Optimation products are warranted against defects in materials and workmanship for a period of one year from the date of shipment. Warranty applies to unmodified product under normal and proper use and service. Optimation's sole obligation under this warranty shall be limited to either, at Optimation's option, repairing or replacing defective product. The cost of freight to and from Optimation will be borne by the customer. No other warranty is given or implied.

This publication is based on information that was available at the time it was printed. We constantly strive to improve our products and services, so we reserve the right to make changes to the products and/or publications at any time without notice and without any obligation. This publication may also discuss features that may not be available in certain revisions of the product.

Trademarks

This publication may contain references to products produced and/or offered by other companies. These products and company names may be trademarked and are the sole property of the respective owners. Optimation disclaims any proprietary interest in the marks and names of others.

Copyright 1999, Optimation, Inc. All rights reserved

No part of this document shall be copied, reproduced or transmitted in any way without the prior, written consent of Optimation, Inc. Optimation retains the exclusive rights to all information included in this document.

Table of Contents

Introduction 6
Digital Inputs 7
Input Isolation 7
DC Inputs 7
AC Inputs 8
Digital Input Voltage 8
I/O "Common" Terminals 8
Digital Outputs 9
Relay Outputs 9
Transistor Outputs 10
NPN Transistor Sinking Outputs 10
Solid State Relay Outputs 10
Analog Inputs 11
Isolation 11
Resolution 12
Accuracy 12
Range 12
Multiplexing 12
Single Ended Inputs 13
Differential Inputs 13
OL2104 Isolated Relay Output Module 14
OL2108 Relay Output Module 15
OL2109 DC Sinking Output Module 16
OL2111 AC Solid State Relay Module 17
OL2201 Digital Input Simulator Module 18
OL2205 Isolated AC/DC Input Module 19
OL2208 DC Digital Input Module 20
OL2211 AC Digital Input Module 21
OL2252 Dual High Speed Pulse Counter 22
OL2258 High Speed Pulse Counter 25
OL2304 4 Channel Analog Voltage Output 28
OL2408 Analog Voltage Input Module 29
OL2418 Analog Current Input Module 30

OptiLogicSeries

OL2602 Dual RS232 Module 31

Revision History

Issue	Date	Pages	Description
Original	$8 / 99$	$1-24$	Original release
1.1	$1 / 00$	$13,18,25$	Added OL2104, OL2205, OL2418
1.2	$9 / 00$	$25-28$	Added OL2258, OL2304
1.3	$04 / 01$	various	Added specs requested by UL
1.4	$09 / 02$	15	Changed wording of OL2108 voltage rating spec
1.5	$10 / 2012$	14,15	Changed voltage ratings of OL2104 and OL2108 to match UL ratings

OptiLogicInput/Output Modules

Introduction

Optimation's OptiLogic series is a flexible, modular system, designed to allow you the ability to configure an optimal solution for your exact needs. To accomplish this goal, Optimation has developed a series of I/O modules, communications modules, specialty modules and operator panels that can be plugged together in nearly any combination. This manual covers the currently available modules that plug into the card cage.

Additional I/O modules are under development. Please check our web site at optimate.com for a complete list of available modules.

Most OptiLogic modules can be installed in any card cage slot and used in any combination and quantity that will fit in the card cage. This applies to all general purpose digital and analog I/O. If you need all digital inputs plug in digital input modules only. If you need a mixture of analog and digital inputs and output select the mixture that fits your needs. Snap together modularity gives you the ability to optimize your system for your needs.

OptiLogic I/O modules are designed to meet your needs in real world application. They are all small circuit boards with a few available points to minimize your system cost. Most module connectors are pluggable terminal strips for easy connection, and easy maintainability. The snap-together design means low labor costs - or costs on your time. Visual status indicators on digital I/O and communications modules provide a convenient means for monitoring operation. All together, the result is a cost effective, easy to use and maintain set of industrial control hardware.

This manual covers general I/O characteristics and applications first. Specific I/O boards are covered in the latter pages. The general pages should serve as a guide to selecting and installing I/O boards in your application.

Communications and specialty modules are covered in the latter pages of this manual.

It is Optimation's desire for this manual to serve as a guide in your selection of the modules appropriate for your application, as well as to provide complete information for their use.

OptiLogicSeries

Digital Inputs

Digital I/O modules are used to either monitor (input) or control (output) the "state" of something. "State" being on or off, active or inactive, open or closed - etc. In the "real world" digital I/O requirements come in a variety of shapes and sizes. Therefore, there are a variety of available modules designed to meet the variety of needs.

Typical digital inputs are connected to switches, buttons, digital outputs from other equipment, discrete level sensors, thermostats and other on/off sensing devices.

Digital status is sensed by a controller, such as an OptiLogic system, by passing current through an input sensor. When the current is on, the input state is active. When it is not there, the input state is inactive.

Input Isolation

In most cases, it is important to "isolate" the real world inputs from the internal electronics of the controller. You want to prevent some external situation from "zapping" the controller's electronics.

An effective means of providing such electrical isolation is optical isolation. The figure below illustrates the basic concepts of optical isolation of a digital input circuit. In the

figure shown, when the digital input contact closes, the circuit path is complete and current will flow. On the input module this circuit path passes through a device which emits light when current flows through it. The light emitter is in very close physical proximity to (actually in the same chip) a photo sensor, which will turn on when it senses light. In this way, a digital input module can sense whether the input device is closed (current flow) or open (no current flow) without a direct electrical connection between the external sensor and the internal electronics.

DC Inputs

DC digital inputs are typically supplied by a DC power supply. The most common DC supplies used in industry are 12 VDC and 24VDC.

Typical DC digital input circuits are shown below. As shown, the physical optical emitter on the input module is an LED (light emitting diode). OptiLogic DC inputs use bidirectional LEDs - i.e. Your inputs may either source or sink current. The top figure shows a sourcing input. The figure below it shows a sinking input. When inputs are connected to a "common" (most instances), inputs must be either all sourcing or all sinking.

AC Inputs

AC digital inputs are typically supplied either directly from line voltage or transformed down from line voltage. The most common AC inputs are 120 VAC and 24 VAC , although any voltage range is possible.

A typical AC input circuit is shown below. As shown, the physical optical emitter on the input module consists of two LEDs of opposite polarity. An AC (alternating current) connection flows current one way, then the other. Light is emitted in both cases.

There is a short period when voltage, and therefore current flow, switches from one direction to the other when no current flows. This is called zero crossover. During zero crossover, the digital input circuit must "debounce" the signal to ensure that the system does not provide a false indication that the input contact is not closed when it is, in fact, closed. OptiLogic AC digital inputs handle such zero crossover conditions.

Digital Input Voltage

Any digital input module, AC or DC, is designed to operate within an input voltage range. The input voltage directly controls the amount of current flowing through the circuit. The minimum voltage corresponds to a voltage that creates enough current to produce LED light sufficient to be sensed by the optical sensor. The
maximum voltage corresponds to the maximum current the optocoupler can handle without being damaged.

I/O "Common" Terminals

For a digital input circuit, one input terminal and one output terminal is necessary for operation. For practical application, one of these two terminals may be "common" to several circuits.

In most systems, the power source for all digital inputs is from the same supply. In such cases, connecting all of the circuit return lines together results in reduced equipment costs as well as simpler system wiring.

The example below illustrates a digital input board that has eight inputs and two commons. This can be accomplished with a 10 terminal connector block.

OptiLogicSeries

Digital Outputs

Digital outputs are used to turn "loads" on and off. "Loads" may be lights, motors, solenoids, or any type of on/off device found in the "real world".

Digital outputs in the OptiLogic series come in three types - relay, transistor and solid state relay. Each type has applications it is best suited for. The following is a general list of application characteristics for each output type.

Relay

- Low contact loss
- AC or DC
- Moderate to high current rating
- Low cost Should not be used for
- Ultra low current switching (less than 10 mA)
- Switching loads at high frequency

Transistor

- DC application only
- Low current rating
- High frequency switching
- Low cost

Solid State Relay

- AC application
- Any switching frequency
- Moderate current
- Moderate cost

Relay Outputs

Relays are basically electrically controlled mechanical switches. All current OptiLogic Relay output boards utilize form A relays - i.e. the contact is either open or closed.

Relay Loads

Relays are affected by the type of load that is switched. Inductive loads (solenoids, motors, etc.) tend to wear the relay much more than resistive loads (lights, heaters, etc.).

Inductive load wear is due to the fact that inductive loads will continue to conduct current for a period, even after the circuit is broken. This current flow builds up opposing polarity charges between the contact segments that just separated. This makes the two segments attract each other - making opening the contact more difficult. It also can result in arcing while the contact is being opened. Arcing, in turn, builds up carbon deposits, i.e. wear.

This situation can be improved for DC inductive circuit loads by the addition of external diode protection of the circuit. The figure below illustrates diode protection. When the contact is closed, the diode is reverse biased and no current flows through it. When the contact opens, current will continue to flow through the inductive load. The diode provides a path for current flow. The result that is the energy is dissipated in the inductive coil and not the relay contact.

Note : Do not use this circuit for AC loads.

Transistor Outputs

NPN Transistor Sinking Outputs

An NPN transistor sinking output provides a path to ground. A typical circuit is shown below.

There is a small voltage drop across the transistor in such a circuit. The voltage drop will generate heat in the transistor. Therefore NPN transistor outputs are generally limited to lower current applications.

Transistor outputs can be operated at high frequency. There is no effective wear on a transistor output from switching, as there is in a mechanical relay.

Diode protection applied to inductive loads is recommended in cases where the load current approaches the rated current limit of the output. In most cases OptiLogic outputs are designed to withstand voltages of at least twice the rated output voltage. However, diode protection like that shown above will ensure that turn off voltage spikes will never get to that level.

Solid State Relay Outputs

Solid state relays are semiconductor switches that operate very much like mechanical relays. They have an advantage over mechanical relays by virtue of the fact that they are semiconductors. Solid state relays can be switched at relatively high frequencies and they do not wear out. However they are more expensive and there is a small voltage drop across the contact.

The figure below illustrates a typical solid state relay output. OptiLogic Solid state relays are designed for AC load operation.

OptiLogicSeries

Analog Inputs

Analog inputs are used to monitor the value of some continuously variable measurement. Typical analog inputs are measurements of temperature, pressure, weight, liquid level, pH , flow rate and many other "real world" parameters.

The purpose of an analog input module is to convert the measurement into a format that is usable by the data acquisition or control system. To be usable by an computer-based system, the analog measurement must be converted to digital format. Doing so accurately and, in some cases, quickly, is the goal of the analog to digital converter module.

A good understanding of analog input modules includes an understanding of isolation, accuracy, single and differential inputs, multiplexing, resolution and range. The following paragraphs provide an overview of these subjects.

Isolation

In many applications there is a good deal of benefit to be derived from isolating the analog measurement source from the RTU's power supply. In some cases, signal inputs may contain voltages or noise signals which could adversely affect the main processor's operation. Likewise, noise on the main power bus can degrade the accuracy of the analog value measurement. Both potential problems can be solved by isolating the analog inputs from the main power supply.

Isolation involves totally isolating the analog to digital (A/D) converter from the main power bus. This can be accomplished in two ways. The A/D input module can use a separate power source input, which is isolated from the power input to the base. The A/D module can
also use the main power supply and isolated power via a switching power converter and a transformer. There are OptiLogic analog input modules in both categories. Neither is functionally superior to the other. The on-board power generation may save the cost of an additional external power supply.

The other aspect of isolation is the fact that the measured value must be transmitted from the analog to digital converter, operating on one power supply, to the main system, which is operating on another power supply. This is commonly accomplished through optical isolators.

OptiLogicSeries

Resolution

Resolution is the number of significant bits of information the A/D converter uses to express the value of the measured input. A 12-bit A/D converter uses 12 bits of information, meaning the entire range is covered by a number between 0 and ($2^{(12)}-1$) or 0 to 4095 . A 14 -bit A/D expresses the same range as a number between 0 and 16,383. In other words, the more bits used, the finer the increment. In general terms, the higher the resolution, the better.

Accuracy

Accuracy is expressed as the worst case deviation from the "ideal value" across the entire input range. For example, for a 0 to 5 V input range and a 12 -bit A / D module, a 2.0 volt input should yield a value equal to 1638 (0.4×4096). If it returns a value of 1636 , and this is the worst case error across the entire range of 0 to 5 V , the accuracy is 12 bits $+/-2$ counts.

Range

The analog input range is the minimum and maximum voltage, or current level, measured by the A / C converter. Typical ranges are 0 to 5 volts, 0 to 10 volts, $+/-5$ volts, $+/-10$ volts, and 4 to 20 mA .

You should try to match the input range to the range of the signal that you are measuring.

Multiplexing

Analog to digital converter devices are typically quite expensive. In order to keep the cost per channel of analog inputs down, a multiplexer is commonly used.

A multiplexer switches one analog input at a time into the A / D converter. Each input is converted in sequence. The trade off is reduced sampling rate for a particular channel versus reduced cost per channel measured. In most industrial applications, the conversion rate is so fast in relation to the rate of change in the measured value, that sampling rate is not a factor.

OptiLogicSeries

Single Ended Inputs

Single ended inputs are all referenced to the same ground point. In many applications, single ended inputs produce significant advantages. Single ended inputs require only one ground connection and one signal input per measured value. The result is reduced wiring costs along with the reduced cost per channel on the analog input module.

In order to use single ended inputs, the ground connection must be very good. The measurement devices must also be capable of being referenced to a common ground.

Differential Inputs

There are cases when the individual analog inputs cannot be connected to a common ground. In those cases, a differential input A/D converter should be used.

With a differential analog input, both a positive and negative signal line must be connected for each signal. The analog input module then measures the difference between the positive and negative. The effect of one channel's signal on another channel's signal should be as little as possible. That relationship of the effect on the measured value of one channel to the value input on a second channel is called "common mode". The higher the "common mode rejection ratio (CMRR)" the better.

Analog
inputs

OL2104 Relay Output Module

Outputs	4	Card Cage Power Required	215 mA
Output Type	Mechanical relay	Contact resistance	0.1 ohm (initial)
Contact voltage rating	$0-24 \mathrm{VDC}$ $0-120 \mathrm{VAC}$	Status Indicators	Logic Side LED
Contact rating	1 A (resistive)/point @24 VDC, 1A/point $@ 120 ~ \mathrm{VAC}, 1 \mathrm{~A} /$ point	Terminal Strip	Plug In (removable)
Contact type	Form A (SPST)	Terminal Screws	Slotted (0.11̂ blade max)
Minimum load	10 mA	Maximum terminal wire gauge	18 AWG (use copper conductors)
Contact arrangement	4 isolated normally open contact relays	Terminal block torque	$2.2 \mathrm{lb}-\mathrm{in}$
Mechanical life	$10,000,000$ operations per relay (at no load)	Required Temperature rating of field installed conductors	$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$
Electrical life	100,000 operations per relay (at full load)	Weight	1.6 oz (58 g)
Type	8	Subtype	1

OL2108 Relay Output Module

OL2109 DC Sinking Output Module

Outputs	8	Card Cage Power required	140 mA
Output Type	NPN open collector transistor	Status indicators	Logic side LED
Voltage Rating	$0-40 \mathrm{VDC}$	Peak Voltage	80 VDC
On voltage drop	.75 V @ 100 mA $.95 \mathrm{~V} @ 300 \mathrm{~mA}$	Terminal strip	Plug In (removable)
Commons	2 (connected internally)	Terminal screw	Slotted (0.1" blade max)
Maximum continuous load current	300 mA	Maximum terminal wire gauge	18 AWG (use copper conductors)
Maximum surge	1.0 A for 5 seconds	Required Temperature rating of field installed conductors	$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$
Weight	$1.1 \mathrm{oz}(30 \mathrm{~g})$	Terminal block torque	$2.2 \mathrm{lb}-\mathrm{in}$
Type	9	Subtype	2

The OL2109 Transistor Output module provides eight optically isolated transistor outputs which can be used for switching small DC loads. Individual LED indicators provide visual feedback of output state.

Terminal		Terminal	
1	Common	6	Out 3
2	Common	7	Out 4
3	Out 0	8	Out 5
4	Out 1	9	Out 6
5	Out 2	10	Out 7

OL2111 AC Solid State Relay Module

Outputs	8	Card Cage Power required	120 mA
Output Type	SSR (Trice)	Commons	2 (connected internally)
Voltage Rating	$12-132 \mathrm{VAC}$	Status indicators	Logic side LED
Max. load current	$.5 \mathrm{~A} /$ point @ 120VAC		Plug In (removable)
Min. load current	10 mA	Terminal Strip	Slotted (0.1" blade max.)
On state voltage drop	1 V (typical)	Terminal screws	
Peak one cycle surge	15 A	Maximum terminal wire gauge	18 AWG (use copper conductors)
AC frequency	$47-63 \mathrm{~Hz}$	Required Temperature rating of field installed conductors	$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$
Weight	$1.3 \mathrm{oz} \mathrm{(38g)}$	Terminal block torque	$2.2 \mathrm{lb}-\mathrm{in}$
Type	9	Subtype	3

The OL2111 Solid State Relay module provides eight (8) solid state relay outputs. This module is ideally suited for switching small AC loads. As a solid state device, switch wear will not be a factor. Each output is optocoupled for system isolation. Individual LED indicators provide visual feedback indicating the state that each relay is being driven.

Terminal		Terminal	
1	Common	6	Out 3
2	Common	7	Out 4
3	Out 0	8	Out 5
4	Out 1	9	Out 6
5	Out 2	10	Out 7

OL2201 Digital Input Simulator Module

Inputs	8	Card Cage Power Required	60 mA
Input Type	Toggle Switch	Status Indicators	Logic side LED
		Weight	$1.1 \mathrm{oz}(30 \mathrm{~g})$
Type	1	Subtype	3

The OL2201 Digital Input Simulator Module is designed to be an aid to program development. Use the OL2201 to simulate real world inputs during your design and debug process. The OL2201 enables the program developer to cause a change in input status at will to simulate a system action. In doing so, you are able to see the program's response. Use of the OL2201 is an aid in the process of thoroughly testing and debugging a system prior to "going live" with real hardware.

When it becomes time to move to real hardware, replace the OL2201 with the appropriate digital input module. The logic of your program will remain the same.

OL2205 AC/DC Input Module

Inputs	4	Card Cage Power Required	60 mA
Input Type	AC Optocoupled	Status Indicators	Logic Side LED
Voltage Range	$10-30 \mathrm{~V} \mathrm{AC}$ or DC	Input Impedence	2.7 K
Min. On Current (per point)	3.3 mA	Inputs	DC sinking or sourcing / or AC
Max. On Current (per point)	11 mA	Terminal Strip	Plug In (removable)
	Terminal Screws	Slotted (0.1" blade max.)	
Max. Terminal wire gauge	18 AWG (use copper conductors)	Required Temperature rating of field installed conductors	$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$
Weight	1.2 oz (34g)	Terminal block torque	$2.2 \mathrm{lb-in}$
Type	Subtype	1	

The OL2205 Digital Input module senses up to four (4) AC or DC input signals. All inputs are individually optocoupled for isolation. Inputs are also individually isolated from each other by separate terminal connections. Filtering is provided for zero crossover. Individual LED indicators provide visual feedback of current status.

OL2208 DC Digital Input Module

Inputs	8	Card Cage Power required	60 mA
Input Type	DC Optocoupled	Status Indicators	Logic side LED
Voltage Range	$10-30$ VDC	Input Impedance	2.7 K
Min. On Current (per point)	3.3 mA	Max. On Current (per point)	11 mA
Commons	2	Terminal Strip	Plug In (removable)
Max. Terminal wire gauge	18 AWG (use copper conductors)	Terminal screw	Slotted $(0.1 "$ blade max.)
	$1.2 \mathrm{oz}(34 \mathrm{~g})$	Required Temperature rating of field installed conductors	$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$
Weight	Terminal block torque	$2.2 \mathrm{lb}-\mathrm{oz}$	
Type	Subtype	1	

The OL2208 DC Digital Input module can be used in either sourcing or sinking application (all 8 inputs must be used in the same manner). Each input is optocoupled to provide system isolation. Individual LED indicators provide a visual feedback of current status.

> I module internal I circuit

Terminal		Terminal	
1	Common	6	In 3
2	Common	7	In 4
3	In 0	8	In 5
4	In 1	9	In 6
5	In 2	10	In 7

Connection diagram

OL2211 AC Digital Input Module

Inputs	8	Card Cage Power Required	60 mA
Input Type	AC Optocoupled	Status Indicators	Logic side LED
Voltage Range	$80-132 \mathrm{VAC}$	Input Impedance	47 K
Min. On Current (per point)	1.7 mA	Commons	2 (connected internally)
Max. On Current (per point)	2.8 mA	Terminal Strip	Plug In (removable)
	Terminal Screws	Slotted (0.1" blade max.)	
Max terminal wire gauge	18 AWG (use copper conductors	Required Temperature rating of field installed conductors	$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$
Weight	$1.3 \mathrm{oz}(38 \mathrm{~g})$	Terminal block torque	$2.2 \mathrm{lb-in}$
Type	1	Subtype	2

The OL2211 AC Digital input module senses up to eight (8) AC input signals. All inputs are individually optocoupled for isolation. Filtering is provided for zero crossover. Individual LED indicators provide visual feedback of current status.

Terminal		Terminal	
1	Common	6	In 3
2	Common	7	In 4
3	In 0	8	In 5
4	In 1	9	In 6
5	In 2	10	In 7

80-132VAC

OL2252 Dual High Speed Pulse Counter

Inputs (all)	8	Card Cage Power Required	100 mA
Pulse Inputs	2	Status Indicators	Logic side LED
Input Voltage	$10-30 \mathrm{VDC}$	Input Impedance	2.7 K ohms
Input frequency (on pulse inputs)	15 KHz maximum	Commons	2
Min. On Current (per point)	3.3 mA	Terminal Strip	Plug In (removable)
Max. On Current (per point)	11 mA	Terminal Screws	Slotted $(0.1 "$ blade max. $)$
Max terminal wire gauge	18 AWG	Required Temperature rating of field installed conductors	$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$
Weight	$1.2 \mathrm{oz} \mathrm{(34g)}$	Terminal block torque	$2.2 \mathrm{lb}-\mathrm{in}$
Type	80	Subtype	1

The OL2252 module provides two independent high speed pulse counter inputs. Each input counter will accurately count pulse inputs up to 15 KHz . Inputs may be sourcing or sinking type There are a number of operating options available with the OL2252. The six remaining inputs can be used as predefined control signals or as general purpose inputs. These options are detailed in the following pages.

Terminal		Terminal	
1	Common	6	Reset 2
2	Common	7	Enable 1
3	Pulse 1	8	Enable 2
4	Pulse 2	9	In 6
5	Reset 1	10	In 7

OL2252 Dual Pulse Counter cont'd

The OL2252 Dual Pulse input module is designed to provide two independent pulse counting inputs. Each input is independent of the other. There are also a number of configuration options available.

The following is a list of the input connections.

Terminal	Label	Description
1	Common	Sourcing or sinking return line
2	Common	Sourcing or sinking return line
3	Pulse 1	Square wave input up to 15 KHz
4	Pulse 2	Square wave input up to 15 KHz
5	Reset 1	If configured as "reset" input , will clear the pulse 1 count when activated. If not configured as "reset" input, can be used as a general purpose input.
6	Reset 2	If configured as "reset" input , will clear the pulse 2 count when activated. If not configured as "reset" input, can be used as a general purpose input.
7	Enable 1	If configured as an "enable" input, enables the pulse 1 counter when active. If not configured as an "enable" input, can be used as a general purpose input.
8	Enable 2	If configured as an "enable" input, enables the pulse 2 counter when active. If not configured as an "enable" input, can be used as a general purpose input.
9	Input 6	General purpose input
10	Input 7	General purpose input

Theory of Operation

The OL2252 Pulse Counter has two independent pulse counter inputs. These pulse counter inputs will accurately count pulses between 0 and 15 KHz .

All counts begin at zero and count up to the maximum number the counter can hold $(4,294,967,295)$. If the count should ever get that high, it will roll over to zero.

In order to count, the count input must be enabled. A message with an enable must come from the host PC. The module can also be set up to use the local hardware input enable (in addition to the enable message). If you are using Think \& Do, all of this set up and signaling is part of your Think \& Do program. If you are using Visual Basic or C, please refer to the interface software manual.

The count can be reset to 0 at any time. Again there is both a reset message that can be sent from the PC and an optional hardware reset signal.

Whether the hardware "reset" and "enable" are used is set up from the host PC via a configuration message. Think \& Do will take care of the details. Visual Basic and C users can also easily send this message as part ot their application program.

OL2252 Pulse Input cont'd

Input Signal

The input pulse train is a repetitive square wave input that looks something like the following.

If you know the maximum frequency of the pulse train, you can configure the pulse counter to count pulse up to that pulse rate. In doing so, the counter will consider anything above the maximum rate that you have defined to be noise and will ignore it.

OL2258 High Speed Pulse Counter

Inputs (all)	4	Card Cage Power Required	100 mA
Pulse Inputs	2	Status Indicators	Logic side LED
Input signal type	Sinking, sourcing or differential	Input Impedance	2.0 K ohms nominal
Input frequency (on pulse inputs)	$80 / 160 \mathrm{KHz}$ maximum	Count value	32 bit signed integer
Min. Input On Voltage (or differential)	4.00 V	Frequency data	16 bit signed integer (Configurable for 1 second or 200 mS count)
Max. Input Off Voltage	3.00 V	Counting Modes	Pulse \& Direction Up/Down Count
(or differential)			

The OptiLogic OL2258 High Speed Pulse Counter module provides for direct pulse counting for a variety of high speed pulse interface applications. Typical applications include motion control, metering and velocity measurement. The OL2258 contains on board intelligence necessary for processing and counting pulse information as well as automatically triggering control outputs.

The OL2258 can be configured configured to operate in one of three pulse counting modes. These modes are 1) Pulse \& Direction, 2)Up/Down Count and 3) Quadrature . Pulse \& Direction and Up/Down count will operate at up to 80 KHz input pulse rates. Quadrature inputs count each quadrature state transitions at up to 160 KHz . Additionally, the OL2258 will return frequency information.

OL2258 High Speed Pulse Counter cont'd

Interfacing the OL2258

The OL2258 High Speed Pulse counter is designed to interface to a variety of standard pulse encoder devices. The electrical interface is shown on the right.

Differential, sourcing, or sinking type inputs can be interfaced to the OL2258. The figures across the bottom of this page illustrate connections for each type of encoder.

General Overview

The OL2258 is configurable. It can be used with pulse \& direction, up/down count or quadrature type pulse encoders. These signals may come from shaft encoders, flow meters or any other signal source that produces a pulse train output. When operating, the OL2258 maintains a current cummulative count as a 32 bit integer value. It also makes available frequency snapshot data as the most recent count over either 1 second or 200 milliseconds. The Z and LS inputs can be used to automatically reset the count to a user defined value. Each transistor output can be configured to turn on when the count value is within its related count range.

Term	Label	Description
1	A1	Pulse input A(quadrature)/ Pulse input (pulse \& direction)/ Up pulse (up/down count)
2	A2	
3	B1	Pulse input B(quadrature)/ Direction (pulse \& direction)/ Down pulse (up/down count)
4	B2	
5	Z1	Z input (optional)
6	Z2	
7	LS	Limit switch input (optional)
8	Com	Common for limit switch and two outputs
9	Out1	Open collector output 1
10	Out2	Open collector output 2

OL2258 High Speed Pulse Counter cont'd

Pulse and Direction

In this configuration, pulses are input to "A". The counter direction is controlled by input "B". The operation is illustrated below.

Pulse \& Direction Count

Quadrature Encoder Input

The counting process for quadrature type encoding is determined by the phase angle between input A and input B . If A leads B , the counter increments. If B leads A, the counter decrements. The count is incremented or decremented on each pulse transition as shown below.

Up/Down Count

For this type of configuration, the count increments on pulses input to "A" and decrements on pulses input to " B ". This is illustrated in the figure below.

Z and LS Presetting

The count can be preset to a value that you define based on either or both inputs LS and Z. It can also be forced to a preset value on command via a message.

Through the configuration message, the counter can be set up to force a preset value when Z is active, LS is active, both Z and LS are active or on software command.

Output Control

The two open collector outputs can each be progammed to trigger within a programmable (via an ethernet message) count range. This range can be changed at any time via a "Send Output Range" message, effectively providing and unlimited number of ranges, under user program control.

Outputs will trigger within immediately, when the count enters the related range.

Frequency Measurement

Frequency data can be read back as a 16 bit signed integer value. The value will correspond to the most recent 1 second or 200 millisecond (configurable) pulse count.

OL2304 Four Channel Voltage Output

Outputs	4	Card Cage Power required	700 mA
Output Ranges	$\begin{aligned} & 0-5 \mathrm{~V}, 0-10 \mathrm{~V},+/-5 \mathrm{~V},+/-10 \mathrm{~V} \\ & \text { (individual channel } \\ & \text { configurable) } \end{aligned}$	External Power required	none
Resolution	12 bit (1 in 4096)	Output current	$+/-5 \mathrm{~mA}$
Output type	Single ended, 1 common	Short circuit current	+/-15mA
Offset calibration error	$\begin{aligned} & +/-8 \text { counts @ }+/-10 \mathrm{~V} \\ & +/-16 \text { counts } @+-15 \mathrm{~V} \\ & +/-16 \text { counts @ } 0-10 \mathrm{~V} \\ & +-32 \text { counts @ } 0-5 \mathrm{~V} \end{aligned}$	Max terminal wire gauge	18 AWG (use copper conductors)
Nonlinearity	+/-1 count	Terminal strip	Plug In (removable)
Load impedence	2Kohm mimimum	Terminal screws	Slotted (0.1" blade max)
Terminal block torque	$2.2 \mathrm{lb-in}$	Required Temperature rating of field installed conductors	$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$
Type	25	Subtype	1

The OL2304 analog output module is range configurable, on a channel by channel basis, to any of four common output ranges. Each channel can be configured, via software for either $0-5 \mathrm{~V}, 0-10 \mathrm{~V},+/-5 \mathrm{~V}$ or $+/-10 \mathrm{~V}$ ranges. The module generates its own isolated output power supply, eliminating any need for an outside source.

Terminal		Terminal	
1	Common	5	Common
2	Out 1	6	Out 3
3	Common	7	Common
4	Out 2	8	Out 4

OL2408 Analog Voltage Input Module

Inputs	8	Power required	700 mA
Input Type	$0-5 \mathrm{VDC}$ or $0-10 \mathrm{VDC}$	Conversion Type	Successive approximation
Resolution	14 bit (1 in 16384)	Full Scale Calibration Error	$+/-15$ counts max. $+/-5$ counts typical
Input Impedance	10 MOhm	Offset Calibration error	$+/-2$ counts max.
Maximum Voltage Input	$+/-15 \mathrm{VDC}$	Max. Terminal wire gauge	18 AWG (use copper conductors)
Linearity error	$+/-1.25$ count max	Terminal Strip	Plug In (removable)
Input stability	$+/-2$ counts	Terminal Screws	Slotted (0.1" blade max.)
Terminal block torque	2.2 lb-in	Required Temperature rating of field installed conductors	$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$
Type	Subtype	1	

The OL2408 comes set up for 0-5VDC input range. If you need 0-10VDC input range, you must remove the plastic module cover by lifting the board latches over the retainer hooks on the PC board. Then, place the jumper on both pins of $\mathbf{J} 2$ and replace the plastic module cover. To change back to $0-5 \mathrm{VDC}$ range, repeat the process and remove the jumper. Having the cover over the range selector jumper ensures that it will not be inadvertantly changed.

OL2418 Analog Current Input Module

Inputs	8	Card Cage Power Required	700 mA
Input Type	$4-20 \mathrm{~mA}$	Conversion Type	Successive approximation
Resolution	14 bit (1 in 16384)	Full Scale Calibration Error	+/- 15 counts max. $+/-5$ counts typical
Input Impedence	250 ohm +/- 0.05%	Offset Calibration Error	+/- 2 counts max.
Power Isolation	Transformer	Signal Isolation	Optical
		Max. Terminal Wire Gauge	18 AWG (use copper conductors)
Linearity error	$+/-1.25$ counts	Terminal Strip	Plug In (removable)
Input Stability	$+/-2$ counts	Terminal Screws	Slotted (0.1" blade max.)
Terminal block	2.2 lb-in	Required Temperature rating of field installed conductors	$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$
torque	18	Subtype	2
Type			

Optimation, Inc.

OL2602 Dual RS232 Module

Communication Ports	2	Card Cage Power Required	110 mA
Type	RS232C	Status Indicators	LEDs for TX and RX
Baud Rates	$1200,2400,4800$, $9600,19,200$ (selectable)	System limitations	*See below
Parity	Even, odd or none	Max. Terminal Wire gauge	18 AWG (use copper conductors)
Data bits	7 or 8	Terminal Strip	Plug In (removable)
Transmit buffer	48 bytes	Terminal Screws	Slotted $(0.1 "$ blade maximum)
Receive buffer	48 bytes	Required Temperature rating of field installed conductors	$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$
Weight	1 oz (29g)	Terminal block torque	$2.2 \mathrm{lb}-\mathrm{in}$
Type	112	Subtype	1

* For OL4058 ethernet base a maximum of one OL2602 modules may be used. It must be placed in slot 0 . For the OL4054 ethernet base, a maximum of two OL2602 may be used. They must be placed in slots 0 and 1.

Terminal (each port)	
1	Signal ground
2	Transmit
3	Receive

Optimation, Inc.

OptiLogicSeries

