Pownte

Controller

Pointe Controller
User Guide

Nematron Corporation
February 2003

Nematron, OpenControl, Pointe Controller, PointeControl, Optimation, and OptilLogic are trademarks
of Nematron Corporation. All other trademarks are the property of their respective holders.

Information in this document is subject to change without notice and does not represent a commitment
on the part of Nematron Corporation. No part of this manual may be reproduced or transmitted in any
form or by any means for any purpose without the express written permission of Nematron
Corporation.

Document 5.60.00 (2/3/2003 draft)

NEMATRON CORPORATION
5840 Interface Drive

Ann Arbor, M| 48103-9515
United States

Tel: 734-214-2000
Fax: 734-994-8074

NEMATRON, LTD.

1 The Briars

Waterberry Drive
Waterlooville, Hampshire
PO7 7YH

United Kingdom

Tel: +44 23 9226 8080
Fax: +44 23 9226 8081

OPTIMATION, INC.

2800 Bob Wallace Avenue, Suite L3
Huntsville, AL 35805-4157

United States

Tel: 256-883-3050
Fax: 256-883-3070

www.nematron.com

Pointe Controller User Guide Table of Contents

Chapter 1:

Chapter 2:

Chapter 3:

Introducing the Pointe Controller..........cooimimimiiii e, 13
1.1 The Node Controller CONCEPL ... s 14
LI Y/ o 1T =1 VY o o] af= 1 4 o L3 17
1.3 ArChiteCture OPtiONS ..ottt sttt sttt ee s 18

1.3.1 Stand-alone OPEratioN ... e 18

1.3.2 MASEr CONTIOIIEN ettt 18

1.3.3 NEtWOIK NOGE ... s 19
1.4 Available Parts and ACCESSOTIEScoiururirirerireeeieerereseei et ss e es s ssseessasans 20
Initial SetUP....c s s e 22
2.1 Getting to Know the Pointe Controller Base........crrrreeiseesee e e 23
2.2 Supplying Power to the Pointe CONtroller ... 24
2.3 Installing the PointeControl SOftWare ... 25
2.4 Configuring the Controller's Network SETtiNgSsovrerrirerenerererenene et 26
2.5 Installing I/O Modules in the CONTroller.......ieerereerirer et 30
2.6 Connecting the Controller to YOUr PC....... sttt sseseesans 31
L0 TUTTl [=T o o =T ot 32
3.1 STArting @ NEW ProOJECT ...ttt ettt et et et 33
3.2 Defining Input, Output, and MemOry TAgs ... ssssens 34

20 B D 7Y T oY g Yo T o TU 3 o 34

3.2.2 Defining OULPUL DIt ..o 36

3.2.3 Defining MeMOIY TagS ..o nenen 37
3.3 Associating Tags With /O POINTS......cccwrrrrrrrrrcrsssssss s 38
3.4 Creating Your First FIOW Chart ... 42
3.5 Inserting a Second DeciSion BIOCK.......cccurrrrrrrrrrrrrs s 47
3.6 ASSIGNING OUTPUTS ...ttt ettt et e et e e b et se st e et 48
3 A o Lo [T o = T T o <IN 1] 53
3.8 Checking the Chart INtEGIity ... s 55
3.9 Building the Project RUNTIME ... 56
3.10 Downloading and RUNNING YOUI Programrrsnssssssssssssssssssssssssssssssanns 59
3.11 Monitoring Your Program Whil@ It RUNS........ccccrrrrrrrrrnssss s 63

Table of Contents Pointe Controller User Guide

3.12 Setting BreakPOints ... en 66
Chapter 4: System Design and Installation...........ooeimimimiiii e 70
O Y Y LY G0 1T =1 11 1= 71
4.2 Getting to Know the Pointe Controller Base ... 73
4.2.1 PTC-5800 Pointe Controller Technical Descriptionc.cocovverererenenereneneneneneserenens 74

4.3 Supplying Power to the Pointe CoONtroller....... e 76
4.4 Installing the PointeControl SOftWAre ... e 77
4.5 Addressing the Pointe CoONtroller ... e 78
S B N o [YOOV 78

4.5.2 MOADUS AGAIESS....cooeeiererecceeresieeise ettt se e b e s st ee s 82

4.6 Overview Of OPtiLOGIC /O ... e 83
ST B T 3 =Y I g o U 3 84
ST A T 3 =Y N T 1 o 11 87

V2 ST T AN =1 Fo Yo TN T o U 3 89

4.7 Determining YOUT /O NEEAS......ccccrrrrrrrrersisisesssses s ss s s s s s s s s sssssnas 93
4.7.1 AVailable 1/O MOAUIES........coeeerire ettt 93

4.7.2 Available Operator Panels..... s sesesesesesssesesesessssssnes 94

4.7.3 Calculating Your POWEr BUAQEt ..o seseseseseseseseseseenes 94

4.8 Installing I/O Modules in the CoONTroller ... e 96
V702 0 Y o [0 o1 o Y=Y T g Ve 96

V22 A [1 &= 11 [o TN 1Y, oo U] =T 97

4.9 MoUNtING GUIEIINEScueeereeeeeeeeerrtrs s 98
v T B |V Fo YUY o a1 o I o g L= = 1= Y 98

4.9.2 Mounting the Controller Base to an Operator Panelcccoovvvnnnencnenenencnenes 99

4.10 Connecting the Pointe Controller to Your Network.......cevccccsececceeeeeeeeeee 101
4.10.1 Point-to-Point CONNECTION ...t 101
4.10.2 Single Hub and Switched CoNNECtiONS ... 102

4.11 Ethernet CoNNECLiON GUIAEc.cccerereecrrcesrs s s 103
4.11.1 UTP Cable CharacteriStics. ...coomrenirerercneeereserensiseseseesesesees e sss e ssssesssnsees 103
4.11.2 Cable CONNECLOIS ...ttt sttt 103
4.11.3 10BaSE-T CONNECLIONS ...cuiirireeeereeeeeere et st see et ses et e e e st st se et s e et ane 104
4.11.4 Straight-through Patch Cable...... s 104
4.11.5 Crossover Patch Cable...... sttt 104

Pointe Controller User Guide Table of Contents

Chapter 5: Developing Controller Programsccieimimeimeirmirmrnesnasennsnes 105
5.1 Basic Concepts in POINTECONTIOL. ... e 106
5.1.1 Multiple Programming LaNQUAagESccccerrrrrrrsssssssssssssssssssssssssssaens 106

5.1.2 Memory Allocation and ACCESS......ccmrrrrrrrrrrsssss s s s s s snaens 106

T 0. T I o T Y et= I =S 107

5.2 The Visual Framework EQitOr (WFE) ...t se s ss s s s ss s s s s s s s s snsnnan 108
5.2.1 The Framework Editor t00olbar ...t 109

5.2.2 The Project WOrkSPace Pane....... s s s s s s s s s sssssanas 109

5.2.3 The Object EAitOr PAN@ ... 110

5.2.4 The MESSAgES PANEcucurerererererirererenaresssssssssssasssassssssssssassasas 110

5.3 Managing PointeCoNtrol ProjeCts......o s 111
5.3.1 Creating and opening ProjeCts ... rrrrrrrrrssss s snaens 111

5.3.2 Importing and eXporting Projects.........nrrereneeeresesenssesesesessesesesessssesesens 111

5.3.3 Documenting YOUT PrOjJECE......ccuiireeererereeeesereeesssseseese e 112

5.4 Defining Variables in LOGiC MEMOIY ... 113
5.4.1 Java reSErved WOIAS......oocoiurirereeeerireneeisesesee e sse st et ss et s st s s eeseas 113

5.4.2 Defining Input, Memory, and Output tagsccccoeorrrrrirrierscrieee e 114

5.4.3 Defining strings in LOGIC MEMOTYccciriirecererereesireeeeese e sesesee s sseseens 116
5.4.4 Defining timers in LOGiC ME@MOTIYccciiiriiiirirerecrireeeeese et 117

5.4.5 Importing and exporting databases..........cccurnrrerenenririnenenere e 118

5.5 Associating Tags With /0O POINtS ... 121
5.5.1 Specifying your installed hardware..........rreccrrcee s 121

5.5.2 Configuring I/O MOUIES ..o s 127

5.5.3 Configuring operator Panels.......... s 128

5.5.4 Configuring additional OptiLOgiC RTUSccccerrrrrrrrrreees e 128

5.6 Building and Editing FIOW Charts ... 129
5.6.1 Creating @ NeW FIOW Chart ... 131

5.6.2 Navigating the Flow Chart @ditor ... 132

5.6.3 Placing and configuring Flow Chart blocks........cccccerieiececceeeeee 135

5.6.4 Building 10gical @XPressions........cccrrrrrrrrrssss s 136

5.6.5 Moving, resizing, and deleting blocks in a Flow Chart......cccovoinicieiescccnne. 143

5.6.6 Adding comments 1o @ FIOW Chart.......coorrrrrrccccee s 145

5.6.7 Logging changes in @ FIOW Chart........corrrrrccc e 146

5.6.8 Making a Flow Chart a reusable Subchart..........cccooooroeveieieieeeceeeee e 147

Table of Contents

Pointe Controller User Guide

5.7 Types of FIOW Chart BIOCKS........covrririririrerinininisinenisisesesesesesesesesssesessssssssssssssssssssssssssssssssssnsnsess 151
5.7.1 ProceSss BIOCK. ..ottt ettt ss sttt 151
5.7.2 Terminator BIOCKottt 154
5.7.3 Condition (If/TNEN/EISE) BIOCK.......cooioeeeeeeeeeeeeeeeeeeteeee et 156
RePeAt/UNtil LOOP BIOCK ... s 158
5.7.5 WHhile/DO LOOP BIOCK......ciuiirerireeeirireesiseri et se e se e ss e ss e sss s 159
5.7.6 SUDCNAIt BIOCK ..ottt ettt 161
5.8 Building and Editing Ladder Diagrams........c.cuerrnernenenesenesesesesesesessssssssssssssssssssssssssssess 163
5.8.1 Creating a new Ladder Diagram.......cc s ss s s ssens 163
5.8.2 Navigating the Ladder Diagram €ditorccoonnrnenenesenesesese e 164
5.8.3 Adding new rungs and branches to a Ladder Diagramccccoceeeevevenenesesesecnes 166
5.8.4 Placing and configuring a Ladder Diagram blockccooonnenenenrseseseseieeees 167
5.8.5 Moving, copying, and deleting elements in a Ladder Diagram........c.cccccoevuu.... 168
5.8.6 Adding comments to a Ladder Diagram ... 169
5.8.7 Making a Ladder Diagram a reusable Sub-Ladder ... 170
5.9 Types of Ladder Diagram BIOCKS........cceveriririririninininininenesesisesesesesssesesesesssssessssssssssnsssssssssnsnss 171
TR I R (=T PV T Vo o 11 3 171
5.9.2 Timer and Counter BIOCKS. ...ttt 172
5.9.3 Math BIOCKS ...ttt ettt 172
5.9.4 CoOMPAriSON BlOCKS ..o e s s 173
5.9.5 Logical and Bit Shift BIOCKS ..o 174
5.9.6 SElECtiON BIOCKSereiueeirerecceirireeeise ettt ettt 174
TR 07 T T T 23 oY < 175
5.9.8 FIOW CONTIOl BIOCKS ...ttt se e 176
5.9.9 Miscellan@ous BIOCKS ..ottt sss s 176
5.10 Other Framework EAitor TOOIS........oooririrererire et sssses 177
5.10.1 Finding and replacing teXtcc s 177
5.10.2 Zooming in and out 0N @ Chart ... e 177
5.10.3 Viewing tag Cross referenCes ... 178
5.11 Compliing your POinteControl Project....... e nnnnnisinsisesssesesesesesesesesesessssssssssnsnens 179
5.11.1 Configuring your project's Chart LiStcccouoorrrrnrnenrnrrrsrseseese s 179
5.11.2 Setting your project's scan interval...... e 180
5.11.3 Checking your project’s chart int@gritycccooeeeersenesesesesesesese e 181
5.11.4 Building your project's runtime module ... 181
5.11.5 Activating the PointeControl Monitor ... 182

Pointe Controller User Guide Table of Contents

Chapter 6: Downloading to the Controller.........couimimimiii e 183
6.1 Launching the PointeControl MONItOrccrreeereriseee ettt sesesenens 184
6.2 Selecting and Attaching @ CONtIOIIEN ...ttt 185

6.2.1 Detaching from @ CONtroller... . 186
6.3 Downloading a Project to the CONtroller ...t 187
(79 7 I U 1o FoY=Ye [o = TN 1 o) [T et 00 187
6.4 Starting and Stopping a Loaded ProjecCt.......cernnrnennsininesisesesesesesesesssesesesessssssssnenens 188
6.4.1T STOPPING @ PrOJECT ...uiiirireeeererie ettt ettt et e e e et e et e et eeae e 188
6.4.2 Restarting a stopped ProjeCt ... s 188
6.4.3 Enabling and disabling I/O ... e 189
6.5 Assigning a Password t0 the CONtroller....... ettt seeeseeens 190
LT I O 1V7T g g Te [T 0o IE= T o =133V o o B 191
6.6 Saving a Project from the CONtroller ...t 192
Chapter 7: Monitoring and Debuggingccoeimiiiimiimimireirrmr s e 193
7.1 Monitoring @ RUNNING ProjJeCT ...ttt et e 194
71T The Charts Tab. .ttt st 194
7.1.2 The Browser Tab ...ttt 195
7.1.3 The CONSOIE TaD ...ttt st 198
/2% I S N o TR @Y oY { o [=T ol I Yo [N 1= o 3 201
7.2 Checking System PerformanCe.... ettt esesestseseses s tsssestsssesessssssssssnsnsns 202
7.2.T SCANNING ettt ittt e s e e et b et s ae et d e se e e b e b e et b eb e e et ebeae et et enenaeas 202
/2827 W Y- To 1 o Vo S 203
0 T =1 o] £ OO 204
7.3 Viewing and Debugging Chartsccveeeerirrnnniesisesesesesesesesesesesesesessssssssssssssssssssssssssssnens 205
7.3.1 The Debugger WINAOW ... s sss s s s s s s s s 206
7.3.2 Zooming In and Out 0N @ Chart ... s 207
7.3.3 Viewing Subcharts within @ Chart ... 207
7.3.4 Enabling Logic FIOW iN @ Chart ... 208
7.3.5 Enabling Debug Trace in @ Chart ... 208
7.3.6 Inserting Breakpoints in @ Chart......oo e 210
7.3.7 Continuing Execution after a Breakpoint.......ccoooooeneneneseseseseseecesee e 211
7.3.8 FOrcing NEW Tag ValUES ... s s ss s s s s s 212
7.3.9 Additional Tools for Flow Charts ONlY ... 215

Table of Contents Pointe Controller User Guide

Chapter 8: Networked Operationsc..coiciiimiiiriirire s e 216
8.1 Networking via OptiLogic REMOLE /O ... seenen 217
8.2 Networking via Modbus Data Mappingc.cceerrrrererereneneneneresesesesesesesesesesesesesesesesesesesssenes 218

8.2.T MOADUS AQUIESSccuiererenecerereeeisesisee s sesees s ses s st s s s bbb s s ee s 219
8.2.2 Types Of MOADUS atacccceeuririririririeinieisirieisisis ettt sttt e sesesessesnsneas 220
8.2.3 Enabling the ModbUS dIiVEr ...ttt sesesesssessnsnens 221
8.2.4 Mapping variables to Modbus addresses.........cccurenerereneneseneseneneeneresesesesesenenns 222

Chapter 9: Troubleshooting........cc.ciiiiiiiiiiir e 227
9.1 LED BOOt INAICATONSvieirerericceriee sttt sttt 228
9.2 HArdWare RESEL ...ttt sttt st 230

Appendix A: OptiLogic Technical Specificationsc..covciiiiiciniiircinccnrenen, 231
A.1 OL2104 Relay OUtPpUt MOAUIE ... 232

A.1.1 OL2104 Configuration OPtioNScceeeererererererererereresesesereseseseseseseseseseseseseseseseseenes 233
A.2 OL2108 Relay OUtPUL MOAUIE ..o s 235
A.2.1 OL2108 Configuration OPtioNScccerererererererererererereseresereseseseseseseseseseseseseseseseseenes 236
A.3 0OL2109 DC Sinking OUtpUt MOUIE ... e 239
A.3.1 OL2109 Configuration OPtioNScccevererererererererererereseenes 240
A4 OL2111 ACSolid State Relay MOAUIE........c.coirerieerireeeeere et sse e 243
A.41 OL2111 Configuration OPtioNSceeeeerererererererererererereseresesesesese s seseseseenes 244
A.5 0L2201 Digital Input Simulator ModUIe ... 247
A.5.1 OL2201 Configuration OPtioNScccevrererererereserenerererenesesesesesesesesesesesesesesesesesessenes 248
A6 OL2205 AC/DC INPUL MOQUIE......cuiirireecrereeesise sttt es e 249
A.6.1 OL2205 Configuration OPtioNSccevererererereresererereseseresesesesesesesese s seseseseseseseseenes 250
A.7 0L2208 DC Digital INpuUt MOAUIEereeeeser ettt 252
A.7.1 OL2208 Configuration OPtioNSc.ccerrerererererererererereseresesesesesesesesesesesesesesesesesessenes 254
A.8 0L2211 AC Digital INPUt MOAUIE ... e 255
A.8.1 OL2211 Configuration OPtioNScceeverererererererererererereresesesesesesesese s sesesesesesesesesenes 256
A9 OL2252 DUl PUISE COUNTENcoiiiuirirericeirereeesises e sise e s et e et ss st ssssessasans 258
A.9.1T OL2252 Configuration OPtioNs......ccecererereneenerereneseseseesiseseses e essseees 261
A.10 OL2258 High Speed PUISE COUNTEN ...ttt et sse e ss e sseseseasans 264
A.10.1 OL2258 Configuration OPtioNSccerrerererererenererenereseresesesesesesesesesesesesesesesesesesssenes 268
A.11 OL2304 Analog Voltage Output MOdUIE ... 273

Pointe Controller User Guide Table of Contents

A.11.1 OL2304 Configuration OPtioNS.........cceeerrririnenisnineneniresssesesesesesssesesssessssssssssssssnes 275

A.12 OL2408 ANalog VOItage INPUL ..o senen 276
A.12.1 OL2408 Configuration OPLioNs.......ccccreereneurerenenesiresesesiseseeese e sssesesesssseseesans 277

A.13 OL2418 ANAlOg CUITENT INPUL...cciieceeceeeeeeesees s enen 279
A.13.1 OL2418 Configuration OPtioNS.........cceerrrrrnerrninenenesesesesesesesesssesesesessssssssssssssnes 280

A.14 OL2602 Dual Serial POrt MOAUIE ..ottt 282
A.14.1 OL2602 Configuration OPtioNS........ccceerrrnerinirinninenenesesesesesesesesesesesssessssssssssnsnsnes 283

A.15 OL3406 Pushbutton/INdicator Panel..........cc.o ot 284
A.15.1 OL3406 Configuration OPtioNS.........cceerrrrreninesninenenesessesesesesesesesesesessssssssssnsnsnes 284

A.16 OL3420 Operator TErMINQAl ... ssssssenen 288
A.16.1 OL3420 Configuration OPtioNS........ccceererrmirenerinninenenenesssesesesesesesesssssessssssssssssnsnes 288

A.17 OL3440 DiSPlay PAn@l ...ttt sesee sttt 291
A.17.1 OL3440 Configuration OPtioNS.......cccceerrrrireneninninenenenesesesesesesesesesesssessssssssssssnsess 291

A.18 OL3850 Keypad TermMiNalcococeeeererereereeerereseseesesesesesesesesesesesesesesesesesesesssesssssssnssssssssssnes 292
A.18.1 OL3850 Configuration OPtioNS........ccceererrririrernninenenesesesesesesesssesesesssessssssssssssssnens 292
Appendix B: Flow Chart Command Reference.........ccciririmireirinnninennceneses 297
B.T GENEral COMMANDS......ouiiierireeeerires ettt ettt bbbttt es 298
B.1.1 Turn ONn and TUIN Off ...ttt 298

2 0 X1 T | OO SPP RO 298

B.1.3 Increment and DECre@MENtcccccururereniurirereeeire sttt 299

B.T.4 QLA ettt bbbt 300

B.1.5 Enable and Disable........ ettt 300

B.1.6 Get Tag NaAME... ettt e e e et e e ne e e 301

B.1.7 WAt ettt et 302

B.2 TIMEr COMMANDS....ciuieriiicireeeeeise ettt se e st se s et se e bbb bbb et ees 303
B.2.1 Timer Start and TimMer STOP ... 303

B.2.2 TIMEr RSO 303

B.2.3 TIMEI PrESET ..ot e 304

235 J 4 T o T @e 4 Y0 F=T o o L3 306
220 20 B d g1 gV [@] o)V OO SRRSO 306

(20 207 d g1 gV [@] o Lor- | Ao 307

B.3.3 String Left and String Right.....c e 308
B.3.4 STHING M ..ttt 309

Table of Contents

Pointe Controller User Guide

B.3.5 STFING INSEIT ...ttt ettt ettt 310
B.3.6 STrING DIETE. .. e 311
2305 T8 2 d g1 0 T T 2 =T o - T ol 313
B.3.8 STring FOrmMat INTEGEN ...ttt ettt et 314

B.4 DiagnostiCs COMMANTS......ceurirererireririrerireresesesesesssesesesesessssssssssssssesssesssssesesesssesssssssesssssnsesesesasasas 316
B.4.1 Diag Get Tag STAtUs....coirriiee ettt ettt 317

B.4.2 Diag Set Tag STatUS....ccoeriecririreerirtreee ettt st 318

B.4.3 Diag Clear Tag STatUs ..o s s 319

B.5 Serial COMMANGS......cciierereceerire ettt s e bbbt ees 321
B.5.1 Serial ConfiguIre POrt... . e 321
B.5.2 Serial Enable Port and Serial Disable POrt.........ccocoirneninnncneierreeeseeeseeseeenee 323
B.5.3 Serial REAA BYLe...oiieeeeeeeeeee e s 324
B.5.4 Serial WIIte BYLe. .. s s 325
B.5.5 Serial Read MUIIBYLEScoiieeeeee e 326
B.5.6 Serial Write MUItIBYLES ... s 327
B.5.7 Serial Get COMM EITOIS ...ttt se et s et 328

B.6 Date/Time COMMANDS......ooioiurereceueerereeeeresesee e s et s s s e es et ne bbb s s ees 330
B.6.1T Date/Time GeT ... e e e e 330

B.6.2 Date/Time FOIMAT ... e e e 331

2 ST T =1 al =1 T o 11 =To IR I T = 332

B.7 Operator Panel COMMANGSccverieirirnnininisininesesesesesesesssesssssessssssssssssssssssssssssssssssssssesssnsess 333
B.7.1 Keypad Data ENtry ... s 333
B.7.2 Arrow Adjust Data ENtry ... e 334

B.7.3 Button On and BUtton Off ...ttt 336
Appendix C: Ladder Diagram Block Reference.........cccoiireimimireinnnineinennsenens 337
Lo B (=T o V3 T o o I o | 3 338
C.1.1 Normally Open Contact (XIC)cvrrerrririnirinininieesesesesesesesesesesesesssesesesssssssessssnsnsnsns 338
C.1.2 Normally Closed Contact (XIO)......ccouerrrrrnerinirinererenenesesesesesesesesssesesesssssssessssssssnens 338
C.1.3 Rising EAge Relay (LEQ)coveieirerieiririeiniresinesesesisietsesesesesesesesesssssesesssssssesssssssessnsnsnsnens 339
C.1.4 Falling Edge Relay (TEQ)ovveeirieiririresesisisisesesesesesesesesesesssesssssessssssssssssssssssssssnsssnens 339
C.1.5 OUtPUL COil (OQ) ittt p s 340
C.1.6 Negated Output COil (NEGOQ)coeiiurereneerrerereeuserereeseseseesasssesesssseseessssseesans 341
C.1.7 Latched COil (LOQ).. et se s eessas 341
C.1.8 Unlatched COil (UOQ) ...ttt ettt r s s s ss s sn s s s s s s sn s s snannans 342
C.1.9 Rising EAge COil (LEOQC)covririrerirereririnisenenenenesssesssssessesssnsns 343

Pointe Controller User Guide Table of Contents

C.2

C3

c4

C.1.10 Falling EAge COil (TEOQ) ... ss e s ss s s s s s s s s s s s s 343
C.1.11 Falling Edge Detector (F_TRIG)ccoorreereseseseee s ss s 344
C.1.12 Rising Edge Detector (R_TRIG)cccuninrrreneseseesess s e ss s ss s 345
C.1.13 Set-Dominant Bistable (SR) ... 346
C.1.14 Reset-Dominant Bistable (RS).......cocieioieieeiieeeeee et e s s 348
Timer and COUNTET BIOCKScocceeeeeireeeescesesese e esssenes 350
(G B 1 o T=Y o oW1 K3 (L1 20 350
C.2.2 Timer, ON Delay (TON).....cooerreeenerereesststsesssssssesssssssess st esssssssssssassnsssssassnsesnens 351
C.2.3 Timer, OFF DElay (TOF) ...uoceereeerereresstsssess s tsesesssssssess st sssssssssssssssssssnsassssesnens 352
C.2.4 CoUNTEr, UP (CTU) oot ssesees s sesss s s st ssssssssassassssssssasssssssssssnsssnsassnsesneas 353
C.2.5 Counter, DOWN (CTD) ..ot s e sss e e se s ss s s s s s s s s s s s s s e s s s s s s s s s s s s s s s s anns 355
C.2.6 Counter, Up/DOWN (CTUD)....ccccoiinirrnreeeeessnssasssanas 356
= T = o Y of < 359
LGC 20 TR Vo o I (7) TR 359
LG 20 U o 4 Tt f (110 - TP 360
C.3.3 DiIVIAE (DIV) sttt eeses st seses s e e st sss st se s st st e s st st s s st sensassnsneneas 362
C.3.4 MUIPIY (MUL) oottt ettt sttt st e s st s s st s 363
C.3.5 SQUAre ROOT (SQRT)..cicirieereererrereestnesesesssssssessssssssssssssasssssssssssssssssnsssnsssssassnsesnens 364
C.3.6 MOAUIUS (MOD)....cooiierertreressisesesssesesessssssssssssssssssssssssssssssesssssssssssnsassnssssassnsesens 366
L. T8 A 1o Y= (] 1 V) PP 367
(O 2 T €0 1Y [VI ([0 1) I 368
LQIC I8 T =Yoo 1= o i 0 17 1V 1 369
C.3.10 ArC SIiNE (ASIN)..cuceeeeeeceteesess st st se st ss st ss st e st ee s st st ee s s st ee s s snseeanas 370
(O T I B N o €0 1Y [T3 (X @ 1) I 371
C.3.12 Arc TaNGeNT (ATAN) e e 372
C.3.13 ADSOIULE ValU (ABS)....eeeeeeeeeeeeeete ettt n s sn s n s e s n s s sn s sn s rsn s 373
LG I B A e To =Y oY (X0 1) 374
C.3.15 Natural Logarithm (LN) ... s 375
C.3.16 EXPONeNntial (EXPT) oo ss s ss s s 376
C.3.17 Natural EXponential (EXP)......ccoreeeeeeese s s ss s s 378
C.3.18 EXPression (EXPR) ... sessssssssss s s s s s s s s s s s s sssssssss s s s s s s s sssssnanas 379
1@ o] o =TT 0] g T 23 o el 1< 381
L I CT =Y 1T gl I o Y- T o TN (1) T 381
C.4.2 Greater Than or EQUAl 10 (GE) ..o 382
C.4.3 EQUAl 1O (EQ) .eirieccerereerenteescssstseses s tss e st st ss st st ss s st e s st e s st st es s snsnseensassnsesneas 383
LR 7 S o't =Te LU= I o TN (N = 385

Table of Contents Pointe Controller User Guide

C.4.5 Lessthan or EQUAl tO (LE)....crreeeeieieieieisieietstsietsesesesesesesesesesesesesesssesesesssensnsnens 386
C.4.6 LSS THAN (LT) cerurtreecrrrerecsensseesssssssssssssessasssssseesssssssasassssnssesssssnsesssnssssesssssnssnsesnsnsans 387
C.5 Logical and Bit Shift BIOCKS ..o enen 389
C.5.1 AN (AND) ottt s st et s st s st s s ss st s st e as s st seas s ans e s s s s et enasansnsesnsanans 389
LG 30 © T (©] OO 391
C.5.3 EXCIUSIVE OF (XOR)...csieereerertreesustsssessssssssessssssesssssssssssssssssssssssssesssssssesssssnssssesssans 393
C.5.4 NOT (NOT) ceoreceireeceteeseess st ss st s st es st ss st e s s st seas s sns e s s snsnsesasassnsesnsasans 394
C.5.5 Shift Dits LETE (SHL) cucueueeeeceeteecce ettt ssss e st s sssenas s s esssanans 396
C.5.6 Shift bits RIGt (SHR) .cecvecceeteecccetess ettt ss e st ee s s ss s s ensanans 397
(O N Vo) = (=0 oY A=Y o (O) T 399
C.5.8 Rotate bits Right (ROR)ccceriririririririninisinisisisisestsesesesestsesssesssssessssssssssssssssssssssssssnsns 400
L Y =Yt d oY o I] oY <3 402
C.6.1 Select MINIMUM Valu@ (IMIIN) ..ottt se s e sn s naan s 402
C.6.2 Select Maximum Value (IMAX).....oooioeeeieececceeesie st ssesss s s s s e s s s e s s s snsnnans 403
C.6.3 LiMit ValU@ (LIM) ...ttt ettt e e st e st ee s s s s s ensnanans 405
C.6.4 Select oNe Of TWO VAlUES (SEL) ...ttt sese s e s sn s s s s e 406
LI A T 0T T 2 oY 408
C.7.1 S STIING (SET) cooieieieieieieieinieiresietsesestseetsesestsesesesssests st sttt st stssssssstssssssesnsssssnsssnsnsnsnsesasnses 408
C.7.2 Find string 1€Ngth (LEN) ...c.coeeeeieeieieieieieieieisesisis et sesesesesesesesssssssssssssssssessssssnsnens 409
C.7.3 Extract sub-string from [€ft (LEFT).....ccccoermrrnrrrernireseseseeesesesesesesesesesesesesensnenens 410
C.7.4 Extract sub-string from right (RIGHT)......cccecevmrrnnrrnrsssesesesisesesesesesesesesenenenens 411
C.7.5 Extract sub-string from middle (MID)........cccecvrrirrrrrininreninenenesesesesesesenesesesenenenens 413
C.7.6 Concatenate StriNgSs (CAT) ..crerrrrerererinireneseeesesesesesesesesssessssssssssssssssssssssssssesesssases 414
C.7.7 Compare StriNgs (CIMP)coveeririeerinieieesesesesesssestsssesesestsssssessssssssssssssssssssssssssssesnsnses 416
C.7.8 INSErt SUD-STrNG (INS)coereirieieieieiririeieieesesese sttt ettt et se sttt sese st se st e sssessnsnsnsneas 417
C.7.9 Delete sub-String (DEL)cccooveeirririreririnirerisesisenisesssesesesesesssssesssssessssssssssssssssssssssssssnsns 419
C.7.10 Replace sub-string (REPL)......cccccoosririrrininiririnininieieesesesesestsesesesssesesssssessssssssssssssnsnsnsnsns 421
C.7.11 Find SUD-StrNG (FIND)ceueieiririririeieerinesieesesesesestsesseesesesestsesssessssssssssssssssssssssssssssesnsnses 423
C.8 FIOW CONLIOl BIOCKS ... enen 425
C.8.1 Call sub-ladder diagram (CALL).....cccooeerrrrneririniresiresesesesesesesesesesesesesesssesesessssnsnsnens 425
C.8.2 Return to main diagram (RETN)......ccceeermrrnrininininisesesesesesenesesesssesesesssesssessssssssnens 426
(= T |V, Tl T g =T oYU L3N 21 o Tl <3 427
C.9.1 Convert to Boolean (TO_BOOL) ...t ss s se s s s s s sssnssnans 427
C.9.2 Convert to INteger (TO_INT)..crreiereririreseseneeesesesesestsesesesesesessssssssssssssssssssssnsssnsns 428
C.9.3 ConVert 10 FIOAt (TO_FLT) oot e s s e s s ss s s s e s s s s s s s s s s snnans 429

10

Pointe Controller User Guide Table of Contents

c9.4
C.9.5
C.9.6
C.9.7
c.9.8
C.9.9
C.9.10

Convert to StriNg (TO_STRG) ..ccouciereerereeeneeereseseseseseseseesesesesesssesesesesesesessssssssssenes 430
TruNCate (TRUNQ) ...ttt s e e e e sn s s e s s e s e s e s s s s snsnenan 432
Integer to Character (TO_CHR) ... 433
Character to Integer (CHR_TO)corrirerenererenererenenesesesesesesesesesesesesesesesesessssssnssenes 434
Integer 10 BCD (TO_BCD) ..ccvuiecerereesasieesesssseseess st sesesasssssssssssesssssssssssssassnsesaens 435
BCD t0 INteger (BCD_TO) ..ccvveeerireririrererinesesenesesesesesssessnsnses 436
MOVE (IMOVE) ...eeeeeecteteeecastssses st as st ea s st ee s as st e s st et ses st e s s st nssss s snsenseas 438

11

Pointe Controller User Guide Chapter 1: Introducing the Pointe Controller

Chapter 1: Introducing the Pointe Controller

Welcome to the Pointe Controller. Nematron’s Pointe Controller is an important
part of the new generation of automation technology. The Pointe Controller
extends automation capabilities, previously available only in high-end PC-based
control systems, to low cost embedded control. It incorporates modular I/0 and
advanced communications features in a controller built on advanced e-control
software architecture. The result is a very cost effective, easy to implement, high
performance controller that can be used either stand alone or as a node in a
larger e-control system.

Central to the Pointe Controller is the OpenControl software development
environment. OpenControl is Nematron’s industry leading PC-based control
software package that has been successfully used in recent years in large, high
performance manufacturing applications. It provides the means for advanced
application development in Visual Flowchart Language (VFL) or ladder logic. The
Pointe Controller is the result of Nematron’s development effort to develop
scaleable solutions. With the addition of Pointe Controller, Nematron now
provides the means to address a much larger range of data acquisition and
control applications.

Pointe Controller technology is both powerful and easy to use. It will enable you
to quickly implement application systems ranging from simple, stand alone
machine controllers to large, integrated, communications intensive systems.

13

Chapter 1: Introducing the Pointe Controller Pointe Controller User Guide

1.1

The Node Controller Concept

Deployable, localized control with a high-speed, standards-compliant interface to
a larger network of devices — that's the concept of a node controller.

The Pointe Controller is part of a new generation of control devices designed to
meet the needs of today’s more integrated world. It provides all of the features
and functionality of traditional PLCs together with advanced features that enable
it to become a node in a larger, more integrated system. That is the Node
Controller Concept — deployable, localized control with a high-speed, standards-
compliant interface to a larger network of devices. The design architecture
enables this advanced functionality to be implemented easily and seamlessly.

All of the key features of the traditional PLC are incorporated into the design of
the Pointe Controller. These key features include the following:

= Real-time local control;

= Embedded, high reliability electronic design;
= Modular I/O;

= Pluggable terminal strip connectors;

= Ladder logic programming capability; and

= Compact, DIN rail mountable package.

Pointe Controllers also incorporate many advanced features that are typically not
found in traditional PLCs. Some of these advanced features include:

= Advanced visual flow chart programming capability;

= Ability to mix flowchart and ladder programming;

= Application program deployment over an Ethernet link;

»= Firmware update deployment and management over an Ethernet link;

= Advanced communications for development, deployment, monitoring and
coordination within a networked system;

= Remote monitoring, programming and debug capability over Ethernet;

= Powerful diagnostic tools for use during program development and
system monitoring;

= Scalable solutions;
= Remote Ethernet I/O options and ability to network Pointe Controllers;
= Easy integration into larger systems and easy future expansion of systems;

= Coordinated operation within a larger system;

14

Pointe Controller User Guide Chapter 1: Introducing the Pointe Controller

= Real-time, open standard data sharing from production to the front
office; and

= Direct connect operator panel interfaces available.

Since the mid 1970s, PLCs have been the foundation of traditional control
applications. PLCs have provided the advantages of localized control, modular
configuration, and rugged industrial packaging. Where traditional PLCs have
been weak has been in the areas of distributed architectures, communications
and more complex logic.

The 1990s brought new demands on control systems for deployability,
information collection and coordination. Since traditional PLCs are weak in these
types of capabilities, a new technology called “PC-based control” was launched
by Nematron and adopted by a number of other automation technology
companies. PC-based control has been very successful in mid-size to large systems
applications with distributed I/O and integration with other software systems for
e-manufacturing, MES, MRP, quality control and web access.

While “PC-based control” technology has brought the world of industrial
automation a number of improvements in processing power, communications,
performance and maintainability, it has had some current limitations. Those
limitations have been primarily based on the economics aspects of implementing
PC-based control being economically justifiable in only mid to high-end
applications.

Nematron developed the Pointe Controller to capitalize on the advanced features
of PC-based control while scaling the solution opportunity to medium and low-
end applications. While the Pointe Controller has many applications in
independent, non-networked applications, its unique design also forms the basis
for control solutions for widely distributed yet integrated applications.

15

Chapter 1: Introducing the Pointe Controller Pointe Controller User Guide

The figure below illustrates the power of the Pointe Controller. It shows a
number of Pointe Controllers connected into a larger network. Each Pointe
Controller interfaces local I/0 and performs local control on a real-time dedicated
basis. Each Pointe Controller can also be accessed by the larger system (shown as
“Host Computer”) to be polled for data and status, to coordinate applications, be

reprogrammed and deployed on demand, and any other type of system-wide
activity that may be desired.

POINTE CONTROLLERS

Locof dafa
acqufsiion
and controf

Ethemet or
Infermnest link

local dofo
slowViLiTels
and cortol

Local oot
Qoguisition
ardf corro!

The Pointe Controller’s design implementation of a low cost, modular, embedded
real-time control platform creates a tremendous level of opportunity and changes
the way control solutions can be implemented.

16

Pointe Controller User Guide Chapter 1: Introducing the Pointe Controller

1.2

Typical Applications

Pointe Controllers can be used for a wide variety of data acquisition and control
applications. The Pointe Controller's low cost, flexible and easy to use design
makes it a perfect choice for many small control applications that traditionally
have used PLC type solutions. Its advanced capabilities, which emphasize
deployability and network interoperability make it particularly applicable to
larger, distributed control applications. Typical usage includes the following
applications:

= Packaging machinery
= Semiconductor equipment
= Distributed manufacturing
= Building automation

= Data acquisition

17

Chapter 1: Introducing the Pointe Controller Pointe Controller User Guide

1.3

1.31

1.3.2

Architecture Options

Stand-alone Operation

The general discussion of the Pointe Controller has emphasized the
communications capability and capability to be deployed as a node on a network.
In reality, the Pointe Controller is just as applicable to stand-alone applications
that do not require remote communications.

* Switches * Photo Eyes
e Transducers Relays
e © Motors o Timers
10l/0 * Indicators * Counters
LY . Valves * Solenoids
* Pumps Transformers
« Conveyors * Potentiometers

Master Controller

As a Master Controller for distributed control solutions, the Pointe Controller is
capable of interfacing with up to four OptiLogic Remote I/O terminals via
Ethernet. This reduces wiring cost of the I/O devices back to the controller, while
providing high speed I/O control from the controller.

Ethernet Network

Optiogic 4054 RTU

18

Pointe Controller User Guide Chapter 1: Introducing the Pointe Controller

1.3.3

Network Node

As a control node in a scalable network, the Pointe Controller performs dedicated
real-time local control, while maintaining communications with the designated
supervisory computer. Total system deployment, configuration, project
coordination, and data logging can be implemented from any authorized
network workstation.

Ethernet Network

Nematron__

Nlematron Delta
Supervisory Computer

19

Chapter 1: Introducing the Pointe Controller

Pointe Controller User Guide

1.4

Available Parts and Accessories

The Pointe Controller system is designed to be extremely modular and flexible. As
such, all Pointe Controller parts and accessories are sold separately. For
availability and pricing, please call Nematron at 1-800-636-2876, or visit us on the
Web at http://www.nematron.com/Sales and find a certified Nematron distributor

near you.

A complete list of available parts and accessories follows:

PART # DESCRIPTION

PTC-5800 Pointe Controller base unit, 8-slot
NOTE: First-time users must also order at least one PointeControl
software CD (part # NS-PTC) and one RS-232 download cable (part # OL-
CBL-DNL). For more information, see below.

Software

NS-PTC PointeControl Development Framework and Runtime Monitor (software
CD), for Pointe Controller program development and debugging. Single-
seat license that can be used to program multiple Pointe Controller
units. Runs on Microsoft Windows NT 4.0, Windows 2000, and Windows
XP.

Accesories

OL-CBL-DNL Pointe Controller Boot Program download cable — connect’s PC's RS-232
port to Pointe Controller’s RS-232 port for IP address setting.

OL-CBL-X01 Ethernet CATS5 crossover cable, 6 foot, red — for direct connecting PC to
Pointe Controller for program downloading.

OL-CBL-PO1 Ethernet CAT5 patch cable, 6 foot, black — for connecting Pointe
Controller to an Ethernet network.

CBL-PV10 Pointe Controller to Nematron PowerView™ Touchscreen HMI
communication cable — supports Modbus protocol on Serial.

OL-PS1 Power Supply — 120 VAC to 24 VDC, 1 Amp output, wall pluggable.

OptiLogic I/O Modules

OL0001 Blank Module — recommended to fill unused slots in base unit.

OoL2104 4-point Relay Output Module, 5-30VDC or 5-132VAC, 2A/point @ 24VDC,
1A/point @ 120VAC, isolated contact outputs.

OL2108 8-point Relay Output Module, 5-30VDC or 5-132VAC, 2A/point @ 24VDC,
1A/point @ 120VAC, 4A/common, 2 commons.

OoL2109 8 points, 5-40VDC sinking output. 300 mA sinking capability / point.

oL2111 8 points, solid-state relay output. 15-132VAC, 0.5A/point.

OL2201 8-point digital input simulator.

OL2205 4-point AC/DC input. 10-30V (sourcing or sinking), isolated input and

return lines.

20

Pointe Controller User Guide Chapter 1: Introducing the Pointe Controller

PART # DESCRIPTION

0OL2208 8-point DC input. 10-30VDC (sourcing or sinking).

OoL2211 8-point AC input. 80-132VAC.

0OL2252 Counter Input, 2 channels, 0-15 KHz.

0OL2258 High Speed Counter. P&D, Quadrature, Up/Down Count. 0-80 KHz (0-160
KHz for Quad). Two high-speed open collector outputs.

0OL2304 4-channel analog voltage output, 14-bit. 0-5v, 0-10v, +/-5v, +/-10v
configurable. 12-bit resolution.

0OL2408 8-channel analog voltage input, 14-bit. 0-5VDC or 0-10VDC
conbfigurable.

0OL2418 8-channel analog current input, 14-bit. 4-20 mA.

OL2602 2-channel RS232 serial.

OptiLogic Operator Panels and Interconnect Cables

0OL3406 Pushbutton / Indicator Panel. 4 user-definable pushbuttons, 6 LED
indicators. Comes with OL-CBL-RIB1.

0OL3420 Terminal Panel. 2 line x 20 character alphanumeric LCD. LED backlit. 4
user-definable pushbuttons. Comes with OL-CBL-RIB1.

0OL3440 Alphanumeric Display panel. 4 line x 20 character LCD. LED backlit.
Comes with OL-CBL-RIB1.

0OL3850 Keypad Terminal panel. 2 line x 20 character alphanumeric LCD. LED
backlit. Numeric keypad. Three large LED indicator light bars. 5 user-
definable pushbuttons. Comes with OL-CBL-RIB1.

OL-CBL-RIB1 OL Operator Panel interconnect cable, 1 inch (approximate). Comes with
each operator panel.

OL-CBL-RIB12 OL Operator Panel interconnect cable, 12 inches (approximate).

OL-CBL-RIB36 OL Operator Panel interconnect cable, 36 inches (approximate).

OptiLogic RTUs (remote I/0O base units for networked systems)

0OL4054 4-slot RTU base — 10BaseT Ethernet interface, 1 R$232 port, operator
panel interface, DIN rail mountable, 8-30VDC power required for
operation.

0L4058 8-slot RTU base — 10BaseT Ethernet interface, 1 R$232 port, operator
panel interface, DIN rail mountable, 8-30VDC power required for
operation.

0oL4228 8-slot Modbus RTU base — 10BaseT Ethernet interface, 1 RS232 port,

operator panel interface, DIN rail mountable, 8-30VDC power required
for operation.

Complete technical specifications for all OptiLogic /O modules and operator
panels listed above can be found in Appendix A, starting on page 231.

21

Chapter 2: Initial Setup Pointe Controller User Guide

Chapter 2: Initial Setup

This chapter describes how to quickly set up the Pointe Controller unit, including
connecting a power supply to the Pointe Controller unit, installing the
PointeControl software on your PC, setting the controller’s network address,
installing 1/0 modules in the card cage, and connecting the controller to an
Ethernet network.
This setup procedure is greatly abbrieviated, so that you can jump right into
simple program development as described in Chapter 3, “Quickstart Project,”
starting on page 32. For complete system design and installation instructions, see
Chapter 4, “System Design and Installation,” starting on page 70.
To set up a Pointe Controller unit, you must have at /east the following items:

= A Windows-based PC that meets the PointeControl system requirements

= One PointeControl software CD (part number NS-PTC)

= One PTC-5800 base unit, 8-slot (part number PTC-5800)

= One AC power adapter and cord (part number OL-PS1)

= One RS-232 download cable, DB-9 to RJ-11 (part number OL-CBL-DNL)

= One 10BaseT crossover cable (part number OL-CBL-X01)

NOTE: All Pointe Controller parts and accessories are sold separately, as described
on page 20.

22

Pointe Controller User Guide Chapter 2: Initial Setup

21 Getting to Know the Pointe Controller Base

The figure below shows the layout of a Pointe Controller base:

RS232 PO,K

RS232 Status LEDs [/O Module Slots

Front Panel

Connection
Ethernst

Sl Ethermnet Indicator LEDs

Fower Input

The Pointe Controller base consists of a card cage containing the motherboard.
The base unit has a built in Ethernet port, as well as an RS232 port. The Ethernet
port is the interface to the larger system. The RS232 port is provided for general
purpose communications (as defined by your application program). It is also
designed to allow you to load future program upgrades (to incorporate the
ability to interface future 1/0 boards and operator panels) into the base.

Both communications ports have status indicator LEDs which provide you with
visible indications of each port’s operation. The RS232 serial port indicates when
it is transmitting (TX) and receiving (RX). The Ethernet port provides indications
for good Ethernet link connection (L) and Ethernet port access by the base
processor (S), as well as transmit (T) and receive (R) indicators.

Power must be provided to the unit by an external DC power supply. Any DC
voltage within the range of 8-30VDC is acceptable.

Input and output modules can be plugged into the slots in the base. Most
modules can plug into any base slot (including slot 0).

NOTE: Slot 0 includes additional features used by certain 12-pin specialty
modules. These modules are documented as slot 0-specific.

The OptiLogic base can snap onto any standard DIN rail, including the rail molded
into the back of all OptiLogic operator panels. When attaching an OptiLogic base
to an OptiLogic operator panel, the 10-pin cable connection on the side of the
base is used.

23

Chapter 2: Initial Setup Pointe Controller User Guide

2.2

Supplying Power to the Pointe Controller

The Pointe Controller unit requires a 8-30VDC, 1 Amp power supply. This can be
provided either by using a wall-pluggable AC adapter (part number OL-PS1) or by
connecting the unit directly to a properly rated DC grid. The connection is made
at the Power Input screw terminals located at the bottom left corner of the base
unit.

Ethernst

0
U

e ==
Supplisd b
kel
CRcukony
g-20 WD
% Ep—

S REE e Ethernet Indicator LEDs

Fower [nput
To connect a power supply to the controller:

1. Make sure the power is OFF — the AC adapter should be unplugged and/or
the DC grid should be turned off.

2. Using a regular slotted screwdriver, loosen the Power Input screw
terminals.

3. Pass the power supply wires through the opening in the bottom of the
controller base unit. Insert the positive wire into the positive terminal (+)
and the negative wire into the negative terminal (-).

4. Retighten the screw terminals.

5. Tug gently on the wires to verify that they are properly secured to the
terminals.

The Pointe Controller unit can now be powered on.

24

Pointe Controller User Guide

Chapter 2: Initial Setup

2.3

Installing the PointeControl Software

The PointeControl software CD (part number NS-PTC) includes the control
application development package and the various utilities needed to connect to
and configure the Pointe Controller unit.

System requirements:

200 MHz or faster Pentium processor

Operating system (any one):
o Microsoft Windows NT 4.0 Service Pack 5 or 6
o Microsoft Windows 2000
o Microsoft Windows XP

A CD-ROM drive

A 10BaseT Ethernet card

A DB-9 serial port

To install the PointeControl software on your PC:

1.
2.

4.

Insert the PointeControl software CD into your CD-ROM drive.

Open the mounted CD (typically drive D: or E:) and double-click

SETUP.EXE.

Follow the onscreen installation instructions. No unusual installation

options are presented.

Restart your PC when prompted.

NOTE: As part of the PointeControl software installation, a Java Runtime Engine
(JRE) is also installed on your PC. This JRE is used only by the PointeControl
software and it is not included in the Windows registry. It should not conflict with
any other Java tools you may have installed on your PC.

25

Chapter 2: Initial Setup Pointe Controller User Guide

24

Configuring the Controller’s Network Settings

Each Pointe Controller unit has two distinct addresses: an IP address, for
communicating across an Ethernet network; and a Modbus address, for
communicating with serial Modbus devices such as operator panels and bar code
readers. In this initial setup, we will configure only the IP address.

The Pointe Controller unit comes preconfigured with a default IP address. You
must reset the address so that the unit can properly communicate on your
Ethernet network. This change is made via a direct serial connection between
your PC and the Pointe Controller unit.

Remember that each Pointe Controller unit on your network must have its own
unique IP address and node name, which is set prior to applying power to the
controller. Duplicate addresses will cause system communications to fail.

To set the IP address of the Pointe Controller unit:

1. Establish a serial connection between your PC and the Pointe Controller
unit, using the download cable (OL-CBL-DNL):

a. Before you connect the serial cable, make sure the Pointe
Controller is powered off. The unit looks for the cable when it is
first powered on.

b. Connect the cable's RJ-11 plug to the Pointe Controller's serial
port.

¢. Connect the cable's DB-9 plug to your PC's serial port.

2. Power on the Pointe Controller unit.

NOTE: There is no power switch on the Pointe Controller unit itself. Either
the AC adapted must be plugged in or the directly connected DC grid
must be turned on.

3. From theWindows Start menu, choose Programs > PointeControl >
Update Tool.

NOTE: If you are running the Update Tool for the first time, you will be
asked to specify which COM (serial) port the tool should use. Enter the
number (1, 2, 3, or 4) to which you connected the serial cable in Step 1
above, and then click OK. After that, the tool will finish launching.

26

Pointe Controller User Guide

Chapter 2: Initial Setup

The PointeControl/OptiLogic Update Tool application window appears.

Do %31.8

., Optij=ea-
Pointe ~t-logic

Controller

Update Tool for
Pointe Controller and
all OptiLogic RTUs

x ..-

Nematron

Cipem Mimde. Chpen Syienns, Rl St

Click Automatic Base Detection. The application should immediately
connect to your Pointe Controller unit. If it does not, check your serial
connection and try again. If it still cannot connect, click Manual Setup
and select PTC5800 from the drop-down menu.

27

Chapter 2: Initial Setup Pointe Controller User Guide

When the application successfully connects, the following window will
appear:

%5 Update Tool ¥3.0 ; o] |
Port Help

rSelect File to Dovwnload—

File: Marmne:

Statuz

PHCIPL, bl Use Cable # OL-CEL-DNL !

Exit

rBead Current Settings

Kernel Version ’ 00,06 Read
Drive: Main YWersion D 0g Settings

1=c 2 Base Type [3Giot Pt Base S
il MAC Addiess [00506£.001039 e
[ess ettings
=T = 00.50.8E.00.10.39 L
urrent Sethings ew Sethings
=3 Pragram Files C St HEric oty
_JNematron IF Address
& PointeControl |1U.‘I B.E0103 l
[_] Classes Sub Met Mask [355 355 365 00 |
(22 Current
Qad Drefault Gatewa_l,ll 00.00.00.00 I
(] Diivers Default Server
10.1E.80.57
[Help =l IP Address | . I_
The IP address for this PC is: 10.16.80.63
DOWNLOAD FILE Mode Name [Gundam |

The Read Current Settings pane displays the current address settings on
the Pointe Controller unit. If you are addressing the unit for the first time,
the factory default settings are displayed.

5. Under New Settings, enter the new IP address and subnet mask for the
Pointe Controller unit. For example, an IP Address of “10.16.80.103” and a
Sub Net Mask of “255.255.255.00".

New Settings
{10.16.80.103

| 255.255.255.00
{00.00.00.00

The Pointe Controller unit should receive an address on the same subnet
as your PC. If you do not know what values to enter, contact your system
administrator.

NOTE: The Pointe Controller unit does not communicate directly with any
network gateway or router. Instead, it broadcasts to all machines on its
subnet. Therefore, you should enter "00.00.00.00" in the Default Gateway
field.

6. For the Default Server IP Address, enter the IP address of the PC with
which you are connecting to the Pointe Controller unit. For example,
“10.16.80.69".

28

Pointe Controller User Guide

Chapter 2: Initial Setup

10.
11.
12.

New Settings
{10.16.80.102

| 255.256.256.00
{00.00.00.00
{10.16.80.69

The secondary server is the PC to which the Pointe Controller unit will
attempt to connect when it first powers on.

For the Node Name pane, enter the name by which the Pointe Controller
unit will identify itself to PointeControl Monitor. For example, “Gundam.”

NOTE: If you do not want or need to change the Node Name, you can skip
this step and leave the factory default setting.

For more information on PointeControl Monitor, see Chapter 6,
“Downloading to the Controller,” and Chapter 7, “Monitoring and
Debugging.”

Click the Save Settings button to save your settings to the Pointe
Controller unit. When the settings are saved, the fields will turn green.

New Settings

[1016:80103
[255.255.255.00
[00.00.00.00

[1016.8069
PCis: 10.16.80.69

|Gundam

Click the Read Current Settings button to verify that the new settings
were saved correctly. The current settings should now match the IP
address, subnet mask, secondary server, and node name that you entered.
Exit the Update Tool application by clicking the Exit button.

Power off the Pointe Controller unit.

Disconnect the RS-232 serial cable.

29

Chapter 2: Initial Setup Pointe Controller User Guide

2.5

Installing I/0 Modules in the Controller

Each module occupies one slot in the controller base. Each slot position is
numbered as shown below. The slot number will provide a reference to your
application program for selecting the appropriate module for each particular
operation.

Shat it s ! 4 4 5 -"
- & n o e Ll il o
o w0 O i 2 i o3 Ok ks
E Lol O i) Oin W3 e (a1
= . . : ; e
fhe=

|7 P

W
Wil
Slot numbering is simply left to right, starting with slot number 0.

Each slot has card guides along each side and a connector on the motherboard.
To install an I/0O module, place the module’s circuitry board in the top and bottom
card guides. (Note that the board will not be tightly retained until it is
approximately 3/ inch into the card guide.)

sgueeze when inserfing or extracting Board Latch Hooks
bt

Rus connector

As you push the module into its mating connector, squeeze the ends together.
This will allow the board latches to travel inside the card cage. When you have
pushed the board into its mating connector and released, the latches should hook
the card cage and keep the module in place.

30

Pointe Controller User Guide

Chapter 2: Initial Setup

2.6

Connecting the Controller to Your PC

An Ethernet network connection is used to download finished control
applications from your PC to the Pointe Controller unit. It is also used to monitor
the unit's runtime performance and to share Modbus TCP data between different
control devices. An RJ-45 Ethernet port is located at the left side of the Pointe
Controller unit.

The simplest system is a point-to-point connection. Point to point connections, as
illustrated below, require only a crossover type patch cable.

.8 gg,g 3Il; é?geég
ol sfos i oo s oo
) | #t.Legi
Crossover cable] 3
TSR
|_F

)'\

An Ethernet crossover cable, shown below, connects the transmitter on one side,
with the receiver on the other. This is a category 5 type UTP crossover patch cable.
Cable length is limited to less than 100 meters.

Crossover Cable

) E— B
RD+3 3 RD+
-6 — 6 RD-

You can now power on the Pointe Controller unit and proceed to Chapter 3,
“Quickstart Project.”

31

Chapter 3: Quickstart Project Pointe Controller User Guide

Chapter 3: Quickstart Project

The first project we will implement with the Pointe Controller is a very simple one
that involves setting up an automated timer and then adding a few different
types of indicators that can be used to display the progress of the timer. To
implement this project, you will need the following.

= A Pointe Controller base unit, configured as described in “Initial Setup”
above

= An OL2201 Digital Input Simulator module, installed in the first 1/O slot

= An OL2109 Digital Output module, installed in the second /O slot
The program that we are going to develop will monitor the first toggle switch on
the OL2201 input module. If it is on, then the program will start the timer and

display its progress using the LEDs of the OL2109 output module and the four-line
LCD of the OL3440 display panel.

32

Pointe Controller User Guide Chapter 3: Quickstart Project

3.1 Starting a New Project

Begin by launching the PointeControl Framework application and creating a new
project:

1. From the Windows Start menu, choose Programs > PointeControl >
Framework. The PointeControl Framework window will appear.

2. From the File menu, choose New Project.

3. In the New Project dialog box, enter the name of your project (e.g.
“Mytest”) and click OK.

Mew Project [%]
Mew project name
IM ytest
oK I Cancel |

Once you have done this, your new project will be opened. The project name will
be shown on the title bar on the top of the PC screen and a project tree,
containing Flow Chart, Ladder Diagram and Logic Memory definitions (all
undefined at this time) will show up in the left hand pane of the display.

- Flow Chart
Ladder Diagram
Logic Memory

33

Chapter 3: Quickstart Project Pointe Controller User Guide

3.2

3.21

Defining Input, Output, and Memory Tags

The next thing that we’ll do is define our inputs, outputs and memory tags that
we'll need for this project. In general, you can do I/0 and data memory
definitions piecemeal, throughout the project development process — whenever
you find you need another variable or I/O point.

In this project, we will define all of the I1/0 points — eight input switches and
eight output LEDs — even though we’ll be using only one input switch. We will
also attach four string variables to the four lines of the display panel.

After we have defined all of the I1/0, we will set up the timer that drives the
project

Lastly, we will need to define a few reusable data variables for use in our internal
calculations, but we will address those as we add each of the progress indicators.

Defining input bits
First, to define the input tags:

1. In the project workspace pane on the left, expand the list to show Logic
Memory > Inputs and then double-click %IX (Bits). This opens the input
tag editor window.

e OpenContiol - Mytest [_[O[x]
File Edit Project ‘wWindow Help

el b=l T N =N E e T

- Flawr Chart
Ladder Diagram

€ Inputs: %I (Bits)

Inzert Delete Copy Size |0 _lj 0416384
ias

oRY | 2l [wire Label

Outputs
Stiings
Timers

[OpenCantral 560
Fieady

[Ready 4

s AL I E@DH 2O BE £ L& | s
|| L PawerDesk > | SxTFTPD32 by P..| I C\Progem Fie. | BEECAK1.31 01 Pointe Coniole. | [OpenControl... i Chatt! | [coriigit b .| || W2 G

34

Pointe Controller User Guide

Chapter 3: Quickstart Project

2. Create a table entry for the first input tag (%I1X1), either by clicking the
Insert button or by incrementing the Size counter up to 1.

o€ Inputs: ZIX [Bits) =]
Delete | Copy | See I = 1716384
DRY Alias ‘wite Label | Iritial Y ale | Retain
| [o No =1
I |

3. In the Alias field, enter the name of the input tag: InSwitch1. (You will
need to click in the field before you can type in it.)
o€ Inputs: ZIX [Bits) H=l
Insert_| Delete | Copy | Siee [i = 1 /16384
[orv | Alias | wielabel | Initial Value [Fetan
@1 | [inswitch P 0 Na =
KNI K

Now go ahead and define the rest of the tag names for the input module, even
though we’'re not going to use them in this tutorial project. We've already used
the name InSwitch1 for the first switch, so let's name the rest of the inputs
InSwitch2 through InputSwitch8.

35

Chapter 3: Quickstart Project Pointe Controller User Guide

Click the Copy button. The Copy Channels dialog box will appear.

o€ Inputs: ZIX [Bits) o [=]
Insert_| Delete | [Copy | s [T = 1716384
DRY Alias ‘wire Label | Iritial Value | Retain
EEAR 15 witch 11 0 Mo =

Copy Channels

Mumber of channels: Iﬂ _I?
ak. I Cancel I

I |

Increment the Number of channels up to 7 and click OK. Seven more
input tags will be defined in numerical order, copied from the original
InSwitch.

&€ Inputs: ZIX (Bits) =]
nseit | Delete | [Copy | Siee [& = & / 15354
[orv]| Alias | wielsbel | Initial ¥ alue | Retan
2041 211 0 Mo =1
2x2 [InSwitch2 w2 0 No =
2%3 [InSwitcha X3 0 No |=l
%4 |[InSwitchd PrT) 0 Na =l
2XE [InSwitchs X5 0 No =l
KB |[InSwitche IXE 0 No |=l
2KT [InSwitch? 2xT 0 No |=l
%8 |[InSwitche X8 0 No |=l
KNI |

Close the input tag editor window using the button in the corner.
When asked to save changes, click Yes.

3.2.2 Defining output bits

Now let’s define our output tags using the same basic procedure as we used to
define our input tags:

1.

In the project workspace pane on the left, expand the list to show Logic
Memory > Outputs and then double-click %QX (Bits). This opens the
output tag editor window.

Create a table entry for the first output tag (%QX1), either by clicking the
Insert button or by incrementing the Size counter up to 1.

36

Pointe Controller User Guide

Chapter 3: Quickstart Project

6.

In the Alias field, enter the name of the output tag: Myout1. You will
need to click in the field before you can type in it.

Click the Copy button. The Copy Channels dialog box will appear.
Increment the Number of channels up to 7 and click OK. Seven more

input tags will be defined in numerical order, copied from the original
Myout.

o€ Dutputs: 20X [Bits] A=
Insert_| | Delete |[Copy | siee [8 = 16 /16384
DRY | Alias Wit Label | Itial Y alue | Retain
01 01 [i Mo =1
%042 ||Myoutz K2 0 No =1
%053 |[Myout3 %0%3 0 Na |-
%054 | [Myouts %054 0 No =]
%045 || Myauis %0OKE 0 Mo |=1
%0KE||Myouts HOKE 0 No |=]
207 ||Myout7 KT 0 No |=
%048 ||Myouta #0K8 0 Mo |=]
KI 0|

Close the output tag editor window using the button in the corner.
When asked to save changes, click Yes.

3.2.3 Defining memory tags

Lastly, we'll define the memory tags that will keep track of the state of the
program:

1.

In the project workspace pane on the left, expand the list to show Logic
Memory > Memory and then double-click %MX (Bits). This opens the
output tag editor window.

Create a table entry for the first string (%MX1), either by clicking the
Insert button or by adjusting the Size counter up to 1.

In the Alias field, enter the name of the input tag: rightOn. You may
need to click in the field before you can type in it.

Close the memory tag editor window using the button in the corner.
When asked to save changes, click Yes.

37

Chapter 3: Quickstart Project Pointe Controller User Guide

3.3 Associating Tags with /O Points

At this point, we have tag-names defined. However, we haven’t configured our
I/0O and haven't associated our tag-names with particular I/O points. Let’s do that
now:

1. From the Project menu, choose Configure 1/0. The I/O Configuration
window will appear.

€ 1/0 Configuration
{r1u 1] R1u 2| RTU 3] RTU 4]

BAER e IW,

Unitidentier:] | o
Siot1 moduletps: | <] @; e
Slotzmoduletye: | =] =0 |
Slotamoduletps: | <] = o |
Sliotémoduletpe: | =] = 10 |
Siotsmoduletpe: | =] = 0. |
Slotbmoduletpe: | =] = 0. |
Slot7moduletpe: | =] = 0. |
Slotsmoduletye: | x| = 0|
T — | R

Ok |

Cancel |

2. Next to Slot 1 module type, click the drop-down menu and select
OL2201. This configures the OL2201 module in slot 1 of the Pointe
Controller base unit.

1/0 Configuration [X] I

1R 1o 2] Ru 3] 10 4]

Ease tvpe: IW’
Whitidentifier: I Seam
Intensal
Slot 1 module type: =l =es |
Siot 2 module bype: | o0, = [= ee |
Slot 3 module type: |OL2108 [= ee |
oLz2109
Slot 4 rmodule type: aLz111 b | :I Y. |
Slot 5 module type: [= |
Slot 6 module type: |0L2208 Ml = |
Slot 7 module type: | =1 =
Slot 8 module type: I vl I :’ Y. |
Panel type: | vl | :’ (e |

Ok |

Cancel |

38

Pointe Controller User Guide Chapter 3: Quickstart Project

NOTE: Configuring slot 1 activates the I/O button to the right of the slot.

3. Click the /0 button for slot 1. The OL2201 I/0 Map window will appear.

&€ 1/0 Configuration
Local o | rru 1] U 2| Rro 3] RTw 4]

Easeiype: IPtCSSDD Vl

[——

Y =f 012201 170 Map.... [X]

Input 0:

Input1:

Ihput 2:

Input 3:

|
|
|
|
Input 4: |
|
|
|

Input &5:

Input &:

8] 3 IS ES B0 EB B E

Input 7:

| Cancel |

Ok
Fanelype:] =17 =L
Ok

| Cancel |

At this point of our project development, we have defined input tag names and
selected an input module. What we haven’t done is associate each input tag
name with a particular point on the input module. That is what we will do now.

4. To the right of Input 1, click the | button. A list of available input tags

will appear.

S Map"- E -
Input 0: | &€ Input 0:
Input 1: | =none=
Ingut 2: | InSwitch
Inaut 3: I InSwitch2
. I InSwitch3
i InSwitcha
Input 5: | InSwitchs
Input & | InSwitchB
Input 7: I InSwitch?

InSwitchs

5. From the list of available input tags, select InSwitch1.

6. Repeat steps 4 and 5 for each of the remaining seven inputs, associating
InSwitch2 to Input 2, InSwitch3 to Input 3, and so on.

39

Chapter 3: Quickstart Project Pointe Controller User Guide

o€ 0L2201 1/0 Map...
Input 0 [InSwitch1
Input 1 [InSwitchz
Input 2 [InSwitch3
Input 3: [irgwitcha
Input 4: [irSwitchs
Input 5: [irSwitche
Input 6: [irngwitch?
Input 7: [InSwitche

Ok | Cancel |

7. Click OK to close the OL2201 I/0O Map window.

Now repeat the procedure to associate the eight output tags with the OL2109
module in slot 2:

8. Next to Slot 2 module type, click the drop-down menu and select
OL2109. This configures the OL2109 module in slot 2 of the Pointe
Controller base unit.

=& |70 Configuration E2

Local o | rru 1] R1u 2| R1o 2] Rru 4]

Easetype: IPtCSSDD Vl
WAt o ErtiEr I Scan

Intenval

Slot1module type: JoLzoon w][s = | Wo.. |
Slotzmodule type: JoLzioa =|fs = G
Slot3moduletype: | x| = 0|
Slotémoduletpe: | =] = 0. |
Slotsmoduletpe: | x| = 0. |
SlotBmoduletpe: | x| = 10|
Slot7 moduletyps: | 7] I—:I ey |
SiotBmoduletpe: | =] = 0. |
Fanel type: [= = o |

Ok | Cancel |

9. Click the /0 button for slot 2. The OL2109 I/0 Map window will appear.

10. To the right of Output 1, click the | button. A list of available output
tags will appear.

11. From the list of available output tags, select MyOut1.

40

Pointe Controller User Guide Chapter 3: Quickstart Project

12. Repeat steps 10 and 11 for each of the remaining seven outputs,
associating MyOut2 to Output 2, MyOut3 to Output 3, and so on.

=0 0L2109 1/0 Map. ..
outputs | Failsafe |

COutput 0: |ru13r|:| utt _I
Cutput 1: |ru13-'|:| Ltz _I
Cutput 2 |ru13r|:| ut3 _I
Cutput 3 |ru13ﬂ:| ut4 _I
Cutput 4: |ru13-'|:| uts _I
Qutput 5: |ru13-'|:| LtE J
CQutput B |ru13r|:| ut? _I
Output 7: {hyouta -

] | Cancel |

13. Click OK to close the OL2109 I/O Map window.

14. Click OK to close the I/0 Configuration window.

41

Chapter 3: Quickstart Project Pointe Controller User Guide

3.4 Creating Your First Flow Chart

We're going to do our first application with a flow chart. To create a new flow
chart:

1. In the project workspace window on the left, select Flow Chart. Then
from the File menu, choose New.

f OpenControl - Mytest o OpenControl - Mytest

File Edit Project “Window Help Edit Project “Window Help

= EE =

=i
- it Save
i Ladder Diagram S e
=8 Logic Memory [Elmse
- Inputs
. %|B [8 Eil = PrDiECt...
- %D [32E Open Project...
- %IF[32 B Cloze Project
- B (16 Copy Project...
- Z1X [Bit Delete Project...
(- Memnary Save Project As...
- Outputs Save s Master
- %AB [B
- 20D [32 Irnport Project..
o FTIE 172 Export Project...

When you do this, a new flow chart will be created and added to the
project tree.

o4 PointeContiol - Mytest [_[OI]
File Edit Project Window Help

Bls el > gl =] (e

=
L d;?h-;'_" € Flow Chart: Chart1
- Ladder Diagram T Ul el led—1 ol o~ l~d ol o= el o=l
El- Logic Memory oo alEalmE v Al) 5k &
- %IB (6 Bit Signed)
5ID (32 Bit Signed)
-~ %IF (32 Bit Redl)
%IUB (3 Bt Unsigned)
%D (32 Bit Unsigred)]
%L/ [16 Bit Unsigned)
Sl [16 Bit Signed)
- %I (Bits)
B Memory
= Outputs

- %0 (3 Bit Signed)
%0D [32 Bit Signed)

-~ 300F (32 Bit Fieal)
%0UB (8 Bit Unsigned]
#0UD (32 Bit Unsigned)

- %0UW (16 Bit Unsigned)
%0W (18 Bit Signed)

- %0X (Bits)

Stiings

Timers

A
Microsaft |
|| PointeContral - Mytest G S e@TI NG 310PH

42

Pointe Controller User Guide Chapter 3: Quickstart Project

We could give our flow chart a name right now. In most cases, you would
immediately name your flow chart based on the function it performs in your
application. Typical names include “Gantry 1,” “IPA Tank,” “Purge Cycle,” and so
on. We're going to wait to give our program a name and use the default name
“Chart1” for right now.

As you can see on your screen right now, a flow chart with nothing but a “Start”
block and a “Return” block comes up on your screen. We're ready to enter our
program.

Since we want to flash the outputs if Switch 1 is on, lets start with adding a
decision block based on Switch 1's state:

2. Click the Decision Block tool on the toolbar, and then click on the flow
line between the existing Start and Return blocks.

o€ Flow Chart: Chart1

Mol slelolE] «f 1A &) Bl |

Place a decision block here

A generic decision block will be placed in your flow chart.

&€ Flow Chart: Chart1 _ [

Olofa SaoE v aa] &l w2 EkE
u] 1 2 3

43

Chapter 3: Quickstart Project Pointe Controller User Guide

Double-click on the decision block to open its associated Block Properties
window.

The Block Properties window is where you define what the block will do.
As you can see, there are a number of properties that you can configure.

Caption determines the text description of the block. This is useful in
documenting the project, but we shall leave it unchanged for now and
come back to it later.

Line Labels determines the type of decision to be made by the block. We
shall use the standard If/Then/Else labels.

Switch T/F Paths determines in which direction the logic flow will
proceed, depending on whether the decision resolves as True or False. In
the default No setting, True (Then) continues downward while False (Else)
branches to the right. In the Yes setting, False (Else) continues downward
while True (Then) branches to the right. This choice affects the overall
readability of the flow chart and how the rest of the blocks will be
oriented. For this quickstart project, let’s switch the paths:

In the Block Properties window, click the Switch T/F Paths drop-down
menu and select Yes.

& Flow Chart: Chart1]

v ololalalaloE v alal &) @z Bkl
a 1 2 3

| Ifiove p | [ove Downl

Caption Condition ﬂ
Line Labels 1f/Then/Elze j
Switch T/F Paths Ed
Timeout ¥ alue
Units
Condition Type
Exprezsion

If
Condition

44

Pointe Controller User Guide

Chapter 3: Quickstart Project

5.

7.

When the property is changed, the Then and Else paths are switched.

¢ Flow Chart: Chart1 !IEI E

I Dlolala|aloE| «| alal 5 =l £
a 1 2 3

i} | Figert | [elete | Ioye E IMoveDownl

Caption Condition
Line Labels 11 Then/Else
Switch T/F Paths
Timeout alue
Units <ndar
Condition Type Expression
Expression

If

1 Conditian

Timeout Value is an optional override that we won't use here.

Condition Type is an Expression (the default). We want to define our
expression as “If InSwitch1 = ON":

To the right of the Expression property, click the | button. The Build
Condition window will appear.

In the Arg Type list on the left, select Inputs. A list of available inputs will
appear under Selection List.

: =10 x|
LY== EE R

1

I 818 & Bz Blsal

b Deiete | [ve lp | I ove o |
Caption Condition -
Line Labels If/Then/Elze j
Switch T/F Paths ‘ez

[
Timeout ¥ alue =
[
J

I

Uriits <ndar
Condition Type E xpression
E xpression

Arg Type Selection List
InSwitchl Cancel |
Outputs InSwitch2 Conditian
temary InSwitch3 1 ;I
Strings InSwitchd
Timers InSwitchE
Functions InSwitchE LI
Local/ars InSwitch?
InSwitchE 7|l sl s] =]« 2 6| [TRUE] oM
iew
EI 415 B < || = NOT| |%Qf | |FALSE|l OFF
i|lz]s <=|[>= | D
1} E| + [] Ul F Backspace
Enter |[#| [(]| 1] [anD] [%]/ "] |Space|| clear

In the Selection List, select InSwitch1. The InSwitch1 tag will be added to
the Condition pane.

45

Chapter 3: Quickstart Project

Pointe Controller User Guide

Arg Tupe

Outputs
M emary
Stings
Timers
Functions
Localyars

“Wire Label
DRV

Wiew I

11 ’-_l
3 [g uild Condition

Select Expression Argument

Selection List

IS witch2
InS witchd
InSwitchs
IS witchE
InSwitchy
IS witche

Cance |
Condition
RS witch] =]
I TRUE|[o
BEE FaLsE|| oFF
BRI
0 E Backspace
Enter Space” Clear

8. C(lick the = button to add “=" to the condition.

9. Click the ON button to add “ON" to the condition.

10. Click OK to close the Build Condition window and enter the condition in
the Expression property.

€ Flow Ch.

v Olo|alaa|oE]| v ala] & =2k 2858

Chart1

| Figert | [IElete

| Iizye lE | [ove Downl

Caption

Line Labels

Switch T/F Paths

Timeout ¥ alue
Units

Condition Type

Expression

ez

IF/Then/Else ji’
=]
=]

<ndax
Exprezsion

11. Close the Block Properties window.

46

Pointe Controller User Guide Chapter 3: Quickstart Project

3.5 Inserting a Second Decision Block

So far, all we've done is check to see if InputSwitch1 is on. If it is on, we want to
flash the first two output LEDs out of phase. To do so, we turn the first output on
and the second off for a period of time, then turn the first output off and the
second on for a time period. Our flow chart will use the flag that we previously
defined, rightOn, to keep track of which state we are in.

1. Click the Decision Block tool on the toolbar, and then click on the Then
branch to the right of your “InSwitch1 = ON” decision block. A new
decision block will be inserted.

2. Double-click on the new block to open its associated Block Properties
window.

3. Define the block’s Expression as “rightOn = TRUE,” as described
previously. Remember that rightOn is a Memory tag rather than an Input
tag.

<€ Flow Chart: Chartl

Iy OlolalalamE] v alg|
a 1

I [=]F3

ol @26l =
2

x]
_- |rsert | [UElEte | IevellE | Ioye Mawn |
Caption -
0 Line Labels 16T hendElze j
Switch T/F Paths Mo =]
Timeout Value [
Units <ntar
Condition Type Expression j
1 Ex i [=]
el Pression
ect & gument E2 || Build Condition E
Airg Type | Selection List | LI
Irputs ok | cancel |
Outputs Caondition
Stings rightQn = TRUE] =]
Tirmers
Functionz LI
Localyars
HEBRRREE 8| [tRuE] on é
Wiew 2]
ﬁl 4] s5]s <|[>| [wot| [] w] [FaLse| oFF
HEE <=|[>= M|
EI | E I+ [Ul F Backspace
Ener |[#]| [1] 1] [enp] [%]R] |Space| ciear

4. Close the Block Properties window.

47

Chapter 3: Quickstart Project Pointe Controller User Guide

3.6 Assigning Outputs

Now we are going to add the first of the two output patterns — turn off the first
output LED (MyOut1) and turn on the second output LED (MyOut2).

1.

Click the Process Block tool on the toolbar, and then click on the Then
branch below your “rightON = TRUE" decision block. A new Process block
will be inserted.

Open the Process block’s Block Properties window, as described
previously.

To the right of the Command property, click the | button. The Select
Process Command window will appear.

In the Type list, select General. A list of general commands will appear.

In the Command list, select Assign.

¢£ Flow Chart: Chart1

I OlolalsaloE ¢ ala] &) &/l
o 1 2 3

| O e |M0veDown|

Caption Process
Command Mo J

Cormmand |

|Fizert

Mone
Turm On
Turr CIFf

@ Then
Elze
If
rightOn = TRUE

Then

Increment
-
Decrement J

Operatar Panel || Clear

Enable
Dizable

Get Tag Mame
W ait

o]

Cancel

Process

P2 =

Click OK to close the Select Process Command window and enter the
Assigh command in the Command property.

You will see that a Statement sub-property is added to the Command
property.

To the right of the Statement sub-property, click the | button. The Build
Assignment window will appear.

Select the MyOut1 output tag, as described previously.

48

Pointe Controller User Guide Chapter 3: Quickstart Project

10. Move the cursor to the Expression field, either by clicking in it or by
pressing the Tab key.

11. Click the OFF button to add “OFF" to the expression.

Insert | [Elete | Imye IMoveDownl

Caption a
Command Azsign J
I

Statematt

ument Build Assignment

-"—‘HQ T}'DE I Selection List | Tag
|InEuts l” |Myout‘| 0K | Cancel |

out2 = -
temony yout3 Hpression

Strings tyoutd OFF d
Timers youth
Functions ypouts LI

Localfars b pout?
b pouts

vew | Zlel=lld e 2 e [rRue] on

s | HEIEE EE]| w| [FeLse]] oFF
O 2]3]] L= [xor] [o

E”:I El + [Ul F Backspace

Enter | #] [] 1] [avp| [%]/ R] [Space| cea

12. Click OK to close the Build Assignment window and enter the assigment
in the Statement sub-property.

¢« Flow Chart: Chart1 1 [=]

I_Dlolﬁalzphﬁllmlll _I Jetfey _I _I_I

|Fzert | [ElEte | I owe | [if e owr |

Captian -
il Cornmand Aszzign J
Statement tvout = OFF

If
rightOn = TRUE

<~ Then

13. Now let’s add a second Assign command to this same Process block.

49

Chapter 3: Quickstart Project

Pointe Controller User Guide

14. Click on and highlight the existing Command property, and then click the
Insert button. A second Command property will be inserted.

Block Properties

[elEfe |

fEye [p | MoveDownl

Statemnent

Azzian
Mypoutl .= OFF

Block Properties
Ingert I Delete | Move Up | il Downl
ﬂ Caption ﬂ
] Command Aszign [
[=] Statement fyout] = OFF =
Cormand Mane [

15. Define the second Command property as “MyOut2 = ON,"” as described
previously.

¢£ Flow Chart: Chart1

N OlolalslalnE] v| Ala) &) .

Feer | e R R e D as
Caption -
Command Azzign =

Statemnent Myoutl := OFF =

Command Azsign

Statement I |
-

Arg Type Selection List | Tag
||nEut3 |M aut] IMyout2 ak. | Cancel |
I emary Ipout3 Eassian
Stings Mypoutd OM ;I
Timers Mypouth
(ocavms [V -
view | Hoets HEEIRREE TRUE|[on
s | HE R R E FaLsE|| oFF
1]z]= <=|[>=| [=om] [zM D]
EI | El + [1] Backspace
Enter # [1] AND IEI Space” Clear

Now we have two Assign commands in the Process block, as shown below.

If

rightdn = TRUE
Then

Command

Irzert

Statenent

Cormmand

Staternent

]
[efete ove lp | Iaie
Agzighn Jj

Myout! ;= OFF =]

Azzigh J

bpout? = OM J

[

50

Pointe Controller User Guide Chapter 3: Quickstart Project

Let’s add just one more statement to set rightOn to TRUE. This will force the
decision block to take the other branch on the next scan through. In that branch,
we'll set the output states to the opposite values. That will create the flashing
effect that we are looking to achieve.

16. Insert a third Command property, as described previously.

17. Define the third Command property as “rightOn = TRUE,” as described
previously. Remember that rightOn is a memory tag rather than an

output tag.

Deleiel | Wavellp | hove

Captian -
Command Azsign =
— Statement Myout1 := OFF =
Command Aazigh
Staternent Mpout2 = OM =]
Command Azzign =]
Statement B

18. Close the Block Properties window.

Now we need to add the second of the two output patterns — turn on MyOut1,
turn off MyOut2, and set rightOn to FALSE.

19. Insert a new Process block in the Then branch to the right of “rightOn =
TRUE" decision block.

20. Open the Process block’s Block Properties window.

21. Using the same procedure as before, define three Assign commands in the
Process block:

o “MyOutl =ON"
o “MyOut2 = OFF”
o "rightOn = FALSE"

51

Chapter 3: Quickstart Project Pointe Controller User Guide

The Process block should appear as shown below.

| Freert | [ElEte | eve I |M0ve

Caption

rightOn = TRUE Then Cormmand Asgign Jj
Statement Mpout! = ON J
Elze Command Assign [

Statement Myout? := OFF J
Commatnd Aszsign =
Statement

Myout! = OFF
Myout2 == 0OM
rightdn := TRUE

22. Close the Block Properties window.

Looking at our flow chart, we can now see that if the toggle switch (InSwitch1) is
on, then the output LEDs (MyOut1 and MyOut2) will flash back and forth. As
soon as the chart reaches the end, it returns to the start and scans through again.

If the toggle switch is off, then the output LEDs freeze in their last state until the
switch is on again.

52

Pointe Controller User Guide Chapter 3: Quickstart Project

3.7 Adding a Time Delay

Unfortunately, when the toggle switch is on, the output LEDs flash too rapidly for
us to see. We need to put in a time delay of 500 milliseconds — just enough to
slow the flashing to an observable speed.

1. Insert a new Process block after the two Process blocks that you defined
earlier.

NOTE: If you place the block in the wrong place, there are two ways to fix
it. The first way is to simply delete the block and insert it again. (For more
information on deleting Flow Chart blocks, see page 143.)

The second way is to click on and drag the block to the correct position in
the flowchart. The chart will automatically redraw itself to incorporate
the block wherever you place it.

2. Open the new block’s Block Properties window.

3. Set the Command property to Wait.

Myout1 .= OFF
Myout2 = OM
rightOn = TRUE

Process

Myout! = OM
Myout? = OFF
rightOn = FAOLSE

[Elete | eve I |M0ve
Process -

Caption
Command

Command

Waone

Tirner Tum On
String T OFf
Diagnostics Azsign
Serial Increment
Date/Time Decrement
QOperator Panel || Clear

Enable
Dizable

GetTaiName

Cancel |

A Wait Value sub-property will be added.

4. To the right of the Wait Value sub-property, click the | button. The Build
Argument window will appear.

53

Chapter 3: Quickstart Project

Pointe Controller User Guide

InSwitchi
InSwitch2
InSwitch3
InSwitchd
InSwitch
InSwitchE
InSwitch?
InSwitch

In the Argument field, enter a numerical value of 500.

| msert | [elete | [ove U | [fove
Caption -
Command it =
WAIT ms “w'ait Value T B
Build Argument
ak | Cancel |
Argument
500 =]
Fleylay s = || <= TRUE|| OMW
41 5| & < = FALSE|| OFF
1 2] 3 ¢=||»=
0 E| + N (N Backspace
Enter # [l] Space” Clear

the Wait Value sub-property.

5.
Functions
Localfars
Wiew |
| dias |
6.
7.

Click OK to close the Build Argument window and enter the argument in

Close the Block Properties window.

Your flow chart should now appear as shown below.

It
rightdn = TRUE
Elze

Myout1 = OFF
Myout2 = 0N

Myout! = ON
MyoutZ = OFF
rightOn = FALSE

rightOn = TRUE

54

Pointe Controller User Guide Chapter 3: Quickstart Project

3.8

Checking the Chart Integrity

The final step in entry, or modification, of a flow chart is an integrity check. This
integrity check will automatically check the chart for errors in the flow chart
function blocks. It will not tell you if your flow chart logic is correct - it will only
tell you if the statements have been entered properly.

To perform an integrity check, click the Check Integrity tool on the toolbar.

o PointeControl - Mytest - [Flow Chart: Chart1]
e File Edit Project Window Help

EEEEIREEEEENEAE
=~ Flow Chart |T|:||c::-|ﬁa||<;||ﬁ|uﬁ|||7 Je
= :

" Chart1
Ladder Diagram

#- Logic Memory

!

F]
Checking inteqrity for project tytest’. .)
Mo errors found. Check flow chart integrity
The results of the integrity check will appear in the Message and Error Window
Pane (the box below the editor window). The figure on the right illustrates the
message that you will get if your flow chart contains no statement errors. If an
error is found, a message listing the error and the flow chart block where it is
located, will appear in the Message and Error Window.

55

Chapter 3: Quickstart Project Pointe Controller User Guide

3.9 Building the Project Runtime

Once all of the flow charts have been created, we are ready to build the project
runtime.

First, we must define the list of charts that make up the project. A project can be
comprised of many flow charts and/or ladder diagrams. When a chart is created, it
is not automatically added to the project list. This allows you to incrementally edit
charts and keep optional charts within your development environment. When its
time to build the project runtime, you can place the required charts in the project
list.

To configure your project’s chart list:

1. From the Project menu, choose Configure Chart List. The Chart List
window will appear, showing all charts in the current project build and all

other available charts. We've only created one chart. — it is listed as
available.
Chart List E
Chart List Available Charts
_Up | [Chat
Do

ar. | Cancel |

2. In the Available Charts list, select Chart1 and click the € button to move
the chart to the active Chart List.

Chart List E

Chart Lizt Available Chartz

Select chart and click arrow to che to Chart List

Cancel |

56

Pointe Controller User Guide Chapter 3: Quickstart Project

The result should be as shown on the right.

Chart List E|
Chart List Available Charts
up_|
Dravan

Ok | Cancel |

3. Click OK to close the Chart List window.

After you have configured the project’s chart list, you must define the scan
parameters. Your project’s runtime operation actually occurs in a repetitive cycle
of updating inputs, logic solve, updating outputs and communications.

< Logic Scan Time—»

pdate ' Update fCommu-Update ' Update [Commu- | Update
F]puTs Log|C SOlve Cutputsfnications fnputs LOQ|C SOl\/e Qutputsnications | Inputs

Time »
4. From the Edit menu, choose Preferences. The Preferences window will
appear.
Logic Solve scan interval: | 15 ms
mMonitar update interval; | 280| ms

Controller timeout interval: I A000) ms

¥ Download source to controller

0K | Cancel |

Logic Solve scan interval is the time between the beginning of one
logic solve pass and the next.

Monitor update interval is how frequently, the monitor, which we’ll
use next for debug purposes, talks to the Pointe Controller to update its
information. The lower the update interval number, the faster the
monitor will react — but the more load it places on the Pointe Controller
processor for handling communications.

57

Chapter 3: Quickstart Project Pointe Controller User Guide

Controller Timeout Interval is a watchdog timer for the chart
execution. If the chart logic solve is greater than this value the project will
stop.
Download Source when checked will send the project source code to
the Pointe Controller. If this is un-checked the source will not be present
in the Pointe Controller and the Pointe Control Monitor will not be able
to view or debug the application.
For our application, a 15 millisecond scan time setting and 250 millisecond
monitor update interval are more than sufficient (actually, in most cases, you'll
want to increase the monitor interval to 500 to 1000 milliseconds to reduce the
CPU loading caused by the monitoring activities).
5. Inthe Logic Solve scan interval, enter 15 milliseconds.
6. Inthe Monitor update interval, enter 250 milliseconds.
7. Controller Timeout Interval to 5000 milliseconds.
8. Download Source must be checked.
9. Click OK to save your changes and close the Preferences window.

Now we can build our project runtime:

10. Click the Build Runtime tool on the toolbar.

o€ PointeControl - Mytest - [Flow Chart: Chart1]

i File Edit Project ‘wWindow Help

1= 1= = 1=] et =T s -

&) Flow Chart DEEE s Al
7 y

Ladder Diagram
- Logic Memory

Then

Checking integrity for project ytest’. .
Mo erars found.

Building flowchart / ladder logic runtighe modules...

Saving 'C:WProgram FileshMematranffPointeContralsT emphpraject.jar'...

...as 'C:5Program FilestMematron'fointeContro\Projectshh phesthbuild'r ptest jar'
S aving chart mapping...
S aving 'C:5Program FilegtMemagfonPointeControlhT emps__ChartiDiap'...

...a3 'C:hProgram FilzstMematrfnPointeContral\Projectsh M testhbuild,_ ChartiDMap'

Froiect build successful. Build Runtime Status Messages

When the project builds, messages will come up in the Message Window,
informing you of the progress of the build. The screen shot shown above
illustrates a successful build. Two key message lines are the “No errors found” line
and the “Project build successful” line. Most of the other messages are
informative about the progress of the build.

58

Pointe Controller User Guide

Chapter 3: Quickstart Project

3.10 Downloading and Running Your Program

Downloading a finished program to the Pointe Controller unit is performed via
the PointeControl Monitor. The Monitor is launched separately from the
development framework, either by choosing it from the Windows Start menu
"activating” it from

(Start > Programs > PointeControl > Monitor), or by

within the framework itself.

]

i File Edit

e Activate PointeControl

Monitor

To activate the monitor from within the framework, click the Activate
Monitor button on the toolbar

o€ PointeControl - Mytest - [Flow Chart: Chart1]

Project Window Help

BllRlE lzel x| 8| [E el &—"

= Flow Chart

. -/Chartl
Ladder Diagram
[Logic Memory

Checking inteqgrity for project Mytest’
Mo errors found.

Compiling flowchart / ladder logic ST cc
Building flowchart / ladder logic mntime
S aving 'C:\Program Files\Mematron\Pao
...a2 'C:\Program Files\MematronhPointe
S aving chart mapping...

S aving 'C:%Program Files\MNematronPo
..az 'C:\Program Files‘\MematrontPaointe
Froject build successful.

IT |:||C>| %I | &I <§| Activate Manitor ng

File Edit Wiew Help

Sl B[] 335

jm|

x

Generating flowchart / ladder logic 5T) s

Stant | Stop | Canfigune | Reset |

Cantraller:

LI Detach |

U8 [z |

Praject to {rejload:

Execution mode: I”O Disabled - |

!
Current project: I
|

5] Browser| Gonsale| Controller Log|

Ll ()| |

Chart

State

Alternately, you can choose Activate Monitor from the Window menu.

59

Chapter 3: Quickstart Project Pointe Controller User Guide

Once the PointeControl Monitor window is active, you can download your project
runtime to the Pointe Controller unit:

1. Click the Controller drop-down menu and select the Pointe Controller
unit from the listed devices.

ef PointeControl Monitor =] E3
File Edit wiew Help

Stant | Ston | EanfiEune | Reset |
Controller: "l] |
. PointeController_5800-102a [Select & controller to maonitor
Current project: IEEE

T
Frojectta (rejdload: I LI (Lo |

Execution made: I”O Digabled LI

Charts | Browser Console | Controller Log |
FaointeContral Monitor started.

2. Click the Project drop-down menu and select your project runtime. If you
have followed the examples given in the quickstart, your project runtime
should be named "Mytest.”

&& PointeControl Monitor =] 3
File Edit “iew Help

Start | St | Canfigure: | Reset |

Caontroller: IPointeCnntroller_SBDD—1Dza LI Detach |
Current project: I LI ezl |

Projectta (rejdload: LI Load |
Derma

Execution mode: Demo?
ede

Charts | Browser Yedci

FointeCantrol Monitorgedc_v1_0
loading source files for

<getSource> . .
<getSource=CiProgranReaction_Time
<getSourcex timer

T cp Aplehdonitarjar com.nem...

<getSourcexChProgra
zource files loaded.
Initializing debugger intaface...
debugger librany loaded
Debuggerinterface initialized.

3. Click the Load button. Your PC will spend several moments preparing the
download. (The exact time depends on the processing speed of your PC.)

TIP: You can get a detailed view of the download process by selecting the
Console tab, as shown below. The console messages are generated by
PointeControl Monitor as it prepares your project to run on the Pointe

60

Pointe Controller User Guide

Chapter 3: Quickstart Project

Controller’s Java-based processor. In most cases you can ignore these

messages; they are useful only when troubleshooting a faulty download.

&£ PointeControl Monitor M=] &1

File Edit wiew Help

Start | St | Canfigure: | Reset |

Cantraller: IPDinteCnntrDlIer_SBDD-1DEa LI etz |
Current project: IMB'TESt Unilmad |
Froject to (reiload: IMS'TESt LI W=} |

Preparing image...

Execution mode:

Charts | Erowser CDHSU|B|CUntrDIIerLUg|

<javaloadr \ProjectibydestiboildiCurentProject.flg d
<javaload= AProjectihbytestibuildibdytest. jar

<javaload= AProjectihbytestibuildy_ ChartiDhiap

<javaloadr \ProjectibdytestiboildaliddavaBuild . FLG

<javaloads 21 file(s) copiad.

<javaloads

<javaload=CAProgram FilessWEMATRONWFointeControNCURREN T2 copy (AP rojectshhiytest_ *
<javaload= AProjectsihbytest ioConfiguration

<jgvaloads \Projectiibdytesth Preferences

<javaloads \Projectbdytesty buildlD

<javaload> 3 filels) copied.

<javaload=

<javaload=CAFrogram Files\MEMATROMNWF ointeControMCURRENT=java -cp L hpledMonitorjar com.n...
<javaloads

<iavaload=C\Proaram FilesANEMATROMWPcinte ControWMCURREN T #ren Mvtest.iar currentProiect.iar

A progress bar in the Pointe Control Monitor window shows your project

runtime is downloaded to the Pointe Controller unit.

&£ PointeControl Monitor =] E3
File Edit “iew Help

Stant | =) e | [Earfilune HESEL |

Caontroller: IPDinteCnntrnIIer_ﬁSDD—1DZa LI Wetach |
Current project: IMv‘test [rload |
Project to (relload: IMS'T981 LI [Load |

Execution rode; |CRRSEELIED = Download in progress...

Charis | Browser Console | Controller Log |

<Zjavaloads
Zjavaload=CAProgram Files\WEMATROMNWPointeControNCURRENT #java -cp suppamiadileHost jar co...
<javaload=Fermentation Frocess Starting
<javaloadr Reading properies
<javaload> Reading blocks

“javaload= [ATA File 'DATAD
Zjavaload> Creating barrel

Zjavaloads ROM Size : OxbiS2
Zjavaload> RAl Size : 0x30fd0
<Zjavaloads JCH Addr: 050000962
<javaload> |DB Addr: OxSeb2d
<javaloadr Interral : 00

Zjavaloads Abort :0x0

<Zjavaloads IR0 Mask : 0xZeS20
Zjavaloads memLayout: d230320
<javaload> heapSize :0:x0

61

Chapter 3: Quickstart Project Pointe Controller User Guide

When the download is complete, the Start button will become active.

& PointeControl Monitor = [=]

File Edit “iew Help

Start | St | Earfigune: | Ressat |

Controller |Faintecantralier_sano-102a ~| Detach |
Current project: IMMEST Unload |
Project to (re)load; IMWEST LI Load |

Execution mode: LASEIEIIE n

Charts | Erowser CDHSNE'CDntmIIerLDgl

Zjawaload=CAFProgram Files\MEMATROMWPointeContraNCURRENT =java -cp supporadileHost jar co... :I
Zjawaload=Fermentation Frocess Staring
Zjawaload> Reading properies
Zjawaload> Reading blochks

Zjawaloads> DATA File 'DATAD
Zjawaload> Creating barrel

Zjawaload> ROM Size : O=biSfs
Zjawaload> FRAM Size : 0x30fd0
Zjawaload> JCB Addr: O=500009 2
Zjawvaload= |DB Addr: O=2eb2d
<jawaload= Intencal ;0

4. Click the Start button to run the project.
5. Select the Charts tab, as shown below.

The PointeControl Monitor window should show that your one chart (as
configured in the Chart List) is running. The Pointe Controller unit is now
executing your project as a real-time control progam.

&£ PointeControl Monitor M=] &1
File Edit wiew Help

Start | Stop | Configune |

Caontroller: IPointeCnntroller_SBDD—1Dza LI Detach |
Current project: IMv‘[est A =] |
Project to {re)load: IMB'TESt j [Laad |

Execution mode: I”O Enahled LI

Charts | Browser | Consale| Controller Log |

Chart | State |
Chart1 | RUMMIMG |

62

Pointe Controller User Guide

Chapter 3: Quickstart Project

3.11 Monitoring Your Program While It Runs

From your PC, you can monitor logic flow, view snapshots of tag values, change
tag values, set breakpoints, single-step through your program, and get

performance and loading information.

To monitor your program while it is running:

1. In the PointeControl Monitor window, click the Charts tab. A list of all

currently running charts will be displayed.

&£ PointeControl Monitor
File Edit “iew Help

=] E3

Stant | Stop | Configure

Cantroller: IPDinteCDntrDIIer_SSDD—1 02a

LI Detach |

Current project: IM!ﬁE st

Urlos |

Projectta fredload: IME-'TESt

Execution mode: I”O Enabled LI

Chaﬂs' Browser| Console | Contraller Log |

LI Loz |

Chart |

State

Chart1 | RUNMING

2. In the Charts tab, double-click Chart1. The chart will be displayed in a

separate monitor/debug window.

i !
1 Chart1 JH[=] EF || =< PointeControl Monitor O]

St |

ala g&lhm = e e R S %Imlﬁ_‘ File Edit Wiew Help
i 1 2

Stop | Gorfigne | Reset |

Caontraller:

Current project:

It

ImeeCnmm\leLSEDD-WIJQa

LI Detach

[ptest

Wiz

Project to (relloat: IMVIEST
1
Vl Execution moge: [/ Enabled he

charts' Browser | Console | Contraller Lag]

LI g

2 rightn = TRUE Chart

Myout! = OFF
3 Myoutz = ON
rightOn = TRUE = FALSE

State

63

Chapter 3: Quickstart Project Pointe Controller User Guide

3. In the Chart1 monitor/debug window, click the Enable Logic Flow and
Enable Debug Trace tools on the toolbar.

i Chart1 [_ (O] x|
alal @ wiEE #wERE S R ele] & T =
u] 1 F, 3 4

' If 1
1 InSwitch! = ON Click to enahle Debug
' Then
Elze
2
Elz=

Myout! = OFF Myautd = ON

3 Myout? = 0N Myait? == OFF

rightOn == TRUE rightOn == FALSE

1 » A

You now have a snapshot of the program’s logic flow, highlighted in yellow and
updated at a regular interval. The logic flow shown is the last 200 program blocks
executed each time the monitor collects a snapshot. The snapshot is taken based
on the Monitor update interval that you defined previously. (See “Building the
Project Runtime” above.) If the interval is set to 100 milliseconds, then a snapshot
will be taken every 100 milliseconds.

Flip the first switch on the OL2201 module and watch what happens. Depending
on whether the switch is on or off, you should see the logic flow change. Watch
the lights on the OL2109 output module. When the switch is in the on position,
lights for module outputs 0 and 1 should alternate. You should be able to see this
same alternating pattern in the logic flow.

64

Pointe Controller User Guide Chapter 3: Quickstart Project

4. Double-click on any of the flow chart blocks (except the Start and Stop
blocks). A Block Watch window for that block will appear, showing all of
the tags referenced by that block.

I : Charti (O[]

@mwmwmmwmum

=& Block Watch Window

Alias Clazs
hly oot oot pt
Iy out2 Ot pt
rigtition betnory

Myoust1 .= OFF
Myout2 == ON
righton == TRUE

M

The Block Watch window shows all of the tags used in the block and the
running value of each tag.

NOTE: The value shown for each tag is not the real-time value of the tag
as the Pointe Controller is actually executing the block. It is the value of
the tag at the time of last snapshot, which is generally more useful for
debugging purposes.

5. Close the Block Watch window.

65

Chapter 3: Quickstart Project Pointe Controller User Guide

3.12 Setting Breakpoints

Sometimes you'll want to check if your program gets to a particular point in your
chart. You may also want to step through the execution of the program one
block at a time in order to debug your logic. This is achieved by setting break
points in the logic flow:

1. Make sure your program is running and Debug Trace is enabled. (See
“Monitoring Your Program” above.)

2. Select a block in the flow chart. The block will be highlighted green.

3. Click the Insert/Remove Breakpoint tool on the toolbar.

: Chartl - (O] x]
alal & lEE wEERE] R ele] &l [Th =
2 3 4

1} Inzert/Remaove Breakpaint

'ﬂ

2 rightom = TRUE

II ' Then
Else
Myoutt = OFF Myout! = ON
3 Myoutz = ON Myout? = OFF

rightOn = TRUE rightOn := FALSE

66

Pointe Controller User Guide Chapter 3: Quickstart Project

When you do this, an alert window will pop up on your screen, warning
you that stopping the flow of a running program could cause problems (if
you were actually controlling a machine) and asking you to verify that
you do in fact want to insert the break point.

Real 1/0 Breakpoint E

WARNING!

Incorrect use of the breakpoint option when real
inputfoutput devvices are being used may result in
permanent damage to hardware and could cause

senvere personal injury.

Are you sure you wish to proceed with this option?

Tes | Ma |

4. Click Yes. A break point will be set on the selected block.
|

: Chartl =]

alal Bl @icll #wEe s [FEE ole| &l &

Then

If
2 rightOn = TRUE
Then
Elze
Myout! = OFF Myout = ONM
3 Myout2 = ON Myout2 = OFF

righton == TRUE righton == FOLSE

In a project as small as this (a single small flow chart), the executing program
should hit the break point almost immediately. Note the pink rectangle around
the block and the red diamond on the left side of the block. The pink rectangle

67

Chapter 3: Quickstart Project Pointe Controller User Guide

indicates that a break point is set for this block. The red diamond indicates that
the program has hit the break point.

Now that we have hit a break point, we can step through the program one block
at a time:

5. Click the Single Step tool on the toolbar.

i Chartl =
cley o) sl blwlele] s 5) olel i i |
: '

Then

If
2 rightOn = TRUE
Then
Elze
Myout1 = OFF Myoutt = ONM
3 Myout2 = ON Myoutz = OFF

rightdn := TRUE rightdn ;== FALSE

68

Pointe Controller User Guide Chapter 3: Quickstart Project

6. Continue to click the Single Step tool and watch the Pointe Controller
step through your program.

i Chart1 =] B3

[Eolio] 2elhleElar] sl [TERE ole] & T &

1 -
Then

If
2 rightOn = TRUE

Then

Myoutd == OFF Myoutd = OM
3 Myout? == OM Myout2 = OFF
rightOn == TRUE rightOn ;= FOLSE

Each time you click the Single Step tool, the program will step to and
highlight the next block in the flow. All blocks will execute as they
normally would, updating tag values and changing outputs as they go.

NOTE: You may wish to disable Debug Trace as you step through the
program, in order to reduce screen clutter.

The simple program that you have just written, downloaded and monitored has
given you a firm basis for any future program development. We have gone
through all of the basic operations. You should be ready to develop and
implement more complex “real” applications by following the same procedures.

As you begin development of your target application programs, recognize that in
most such applications, it makes sense to use multiple flow charts, ladder
diagrams, or a combination of both. You can experiment with the process on
your own, or you can read the rest of the manual to get more detailed
information.

69

Chapter 4: System Design and Installation Pointe Controller User Guide

Chapter 4: System Design and Installation

Now that you understand the basics of the Pointe Controller, you can design a
complete machine control system using it. Good system design includes defining
your /O needs, selecting the appropriate modules and panels, calculating the
power budget of the system, wiring the I/0 to the equipment, and observing
proper safety guidelines.

70

Pointe Controller User Guide Chapter 4: System Design and Installation

4.1

Safety Guidelines

WARNING: Providing a safe operating environment for personnel and equipment
is your responsibility and should be your primary goal during system planning and
installation. Automation systems can fail and may result in situations that can
cause serious injury to personnel or damage to equipment. Do not rely on the
automation system alone to provide a safe operating environment. You should
use external electromechanical devices, such as relays or limit switches, that are
independent of the Pointe Controller program to provide protection for any part
of the system that may cause personal injury or damage.

Every automation application is different, so there may be special requirements
for your particular application. Make sure you follow all national, state, and local
government requirements for the proper installation and use of your equipment.

Plan for Safety

The best way to provide a safe operating environment is to make personnel and
equipment safety part of the planning process. You should examine every aspect
of the system to determine which areas are critical to operator or machine safety.
If you are not familiar with Pointe Controller system installation practices, or your
company does not have established installation guidelines, you should obtain
additional information from the following sources.

* NEMA — The National Electrical Manufacturers Association, located in
Washington, D.C., publishes many different documents that discuss
standards for industrial control systems. You can order these publications
directly from NEMA. Some of these include:

o ICS 1, General Standards for Industrial Control and Systems
o ICS 3, Industrial Systems
o ICS 6, Enclosures for Industrial Control Systems
= NEC — The National Electrical Code provides regulations concerning the
installation and use of various types of electrical equipment. Copies of the
NEC Handbook can often be obtained from your local electrical
equipment distributor or your local library.
= Local and State Agencies — many local governments and state
governments have additional requirements above and beyond those

described in the NEC Handbook. Check with your local Electrical Inspector
or Fire Marshall office for information.

Safety Techniques
The publications mentioned provide many ideas and requirements for system
safety. At a minimum, you should follow these regulations. Using the techniques
listed below will further help reduce the risk of safety problems.

= Orderly system shutdown sequence in the Pointe Controller program.

= Emergency stop switch for disconnecting system power.

71

Chapter 4: System Design and Installation Pointe Controller User Guide

Orderly System Shutdown

The first level of protection can be provided with the Pointe Controller program
by identifying machine problems. Analyze your application and identify any
shutdown sequences that must be performed. Typical problems are jammed or
missing parts, empty bins, etc. that do not pose a risk of personal injury or
equipment damage.

WARNING: The control program must not be the only form of protection for any
problems that may result in a risk of personal injury or equipment damage.

System Power Disconnect

By using electromechanical devices, such as master control relays and/or limit
switches, you can prevent accidental equipment startup. When installed properly,
these devices will prevent any machine operations from occurring.

For example, if the machine has a jammed part, the Pointe Controller program
can turn off the saw blade and retract the arbor. However, since the operator
must open the guard to remove the part, you must include a bypass switch to
disconnect all system power any time the guard is opened.

The operator must also have a quick method of manually disconnecting all system
power. This is accomplished with a mechanical device clearly labeled as an
Emergency Stop switch.

After an emergency shutdown or any other type of power interruption, there
may be requirements that must be met before the Pointe Controller program can
be restarted. For example, there may be specific register values that must be
established (or maintained from the state prior to the shutdown) before
operations can resume. In this case, you may want to use retentive memory
locations, or include constants in the control program to ensure a known starting
point.

72

Pointe Controller User Guide Chapter 4: System Design and Installation

4.2 Getting to Know the Pointe Controller Base

The figure below shows the layout of a Pointe Controller base:

RS232 PO,K

RS232 Status LEDs [/O Module Slots

Front Panel

Connection
Ethernst

Sl Ethermnet Indicator LEDs

Fower Input

The Pointe Controller base consists of a card cage containing the motherboard.
The base unit has a built in Ethernet port, as well as an RS232 port. The Ethernet
port is the interface to the larger system. The RS232 port is provided for general
purpose communications (as defined by your application program). It is also
designed to allow you to load future program upgrades (to incorporate the
ability to interface future 1/0 boards and operator panels) into the base.

Both communications ports have status indicator LEDs which provide you with
visible indications of each port’s operation. The RS232 serial port indicates when
it is transmitting (TX) and receiving (RX). The Ethernet port provides indications
for good Ethernet link connection (L) and Ethernet port access by the base
processor (S), as well as transmit (T) and receive (R) indicators.

Power must be provided to the unit by an external DC power supply. Any DC
voltage within the range of 8-30VDC is acceptable.

Input and output modules can be plugged into the slots in the base. Most
modules can plug into any base slot (including slot 0).

NOTE: Slot 0 includes additional features used by certain 12-pin specialty
modules. These modules are documented as slot 0-specific.

The OptiLogic base can snap onto any standard DIN rail, including the rail molded
into the back of all OptiLogic operator panels. When attaching an OptiLogic base
to an OptiLogic operator panel, the 10-pin cable connection on the side of the
base is used.

73

Chapter 4: System Design and Installation Pointe Controller User Guide

4.21 PTC-5800 Pointe Controller Technical Description

Physical (Base Unit)
e DIN rail mount to 35mm DIN rail
e Overall dimensions: 8.4"L x 3.25"H x 3.00” D
e Color: Dark gray
e Material: Polycarbonate plastic

e #1/Oslots: 8

Environmental
e Storage Temperature :-20to 70 C
e Ambient Operating Temperature : 0 to 55C

e Humudity : 0 - 95% non-condensing

Electrical
e Power: 8 - 30 VDC input power
¢ Minimum load current (no I/0 boards or operator panel attached):
o 75mA @ 24VDC
o 150mA @ 12VDC

e Maximum load current (actual depends on the particular modules
attached):

o 700 mA @ 24VvDC
o 1.4A @ 12vDC
e Power available to I/0 modules : 2.8A @ 5VDC

e Power Connection: Terminal block, 2 terminal

74

Pointe Controller User Guide Chapter 4: System Design and Installation

Communications, Ethernet
e Type: 10Base-T Ethernet
¢ Data Rate: 10 Mbps
e Connection: RJ45

e Ethernet Protocols: TCP/IP, OptiLogic UDP/IP, Modbus

TIP: For a complete description of Ethernet connections, see page 103.

Communications, Serial
e Baud rates: 300, 1200, 2400, 4800, 9600, 19.2K (selectable)
e Data bits: 7 or 8 (selectable)
e Parity: odd, even, or none (selectable)
e Stop bits: 1 or 2 (selectable)

e Connection: RJ12

Pin # Description
Cn%%seecmr 6 GND
5 5V power out
4 Transmit data (TX)
3 Receive data (RX)
3] 1 2 Reserved (do not connect)
1 GND

75

Chapter 4: System Design and Installation Pointe Controller User Guide

4.3

Supplying Power to the Controller

The Pointe Controller unit requires a 8-30VDC, 1 Amp power supply. This can be
provided either by using a wall-pluggable AC adapter (part number OL-PS1) or by
connecting the unit directly to a properly rated DC grid. The connection is made
at the Power Input screw terminals located at the bottom left corner of the base
unit.

Ethernst

0
U

e ==
Supplisd b
kel
Cicuionl
g-20 WD
% Ep—

S REE e Ethernet Indicator LEDs

Fower [nput
To connect a power supply to the controller:

1. Make sure the power is OFF — the AC adapter should be unplugged and/or
the DC grid should be turned off.

2. Using a regular slotted screwdriver, loosen the Power Input screw
terminals.

3. Pass the power supply wires through the opening in the bottom of the
controller base unit. Insert the positive wire into the positive terminal (+)
and the negative wire into the negative terminal (-).

4. Retighten the screw terminals.

5. Tug gently on the wires to verify that they are properly secured to the
terminals.

The Pointe Controller unit can now be powered on.

76

Pointe Controller User Guide

Chapter 4: System Design and Installation

4.4

Installing the PointeControl Software

The PointeControl software CD (part number NS-PTC) includes the control
application development package and the various utilities needed to connect to
and configure the Pointe Controller unit.

System requirements:

200 MHz or faster Pentium processor

Operating system (any one):
o Microsoft Windows NT 4.0 Service Pack 5 or 6
o Microsoft Windows 2000
o Microsoft Windows XP

A CD-ROM drive

A 10BaseT Ethernet card

A DB-9 serial port

To install the PointeControl software on your PC:

1.
2.

4.

Insert the PointeControl software CD into your CD-ROM drive.

Open the mounted CD (typically drive D: or E:) and double-click
SETUP.EXE.

Follow the onscreen installation instructions. No unusual installation
options are presented.

Restart your PC when prompted.

NOTE: As part of the PointeControl software installation, a Java Runtime Engine
(JRE) is also installed on your PC. This JRE is used only by the PointeControl
software and it is not included in the Windows registry. It should not conflict with
any other Java tools you may have installed on your PC.

77

Chapter 4: System Design and Installation Pointe Controller User Guide

4.5

4.5.1

Addressing the Pointe Controller

Each Pointe Controller unit has two distinct addresses: an IP address, for
communicating across an Ethernet network; and a Modbus address, for
communicating with serial Modbus devices such as operator panels and bar code
readers.

IP Address

The Pointe Controller unit comes preconfigured with a default IP address. You
must reset the address so that the unit can properly communicate on your
Ethernet network. This change is made via a direct serial connection between
your PC and the Pointe Controller unit.

Remember that each Pointe Controller unit on your network must have its own
unique IP address and node name, which is set prior to applying power to the
controller. Duplicate addresses will cause system communications to fail.

To set the IP address of the Pointe Controller unit:

1. Establish a serial connection between your PC and the Pointe Controller
unit, using the download cable (OL-CBL-DNL):

a. Before you connect the serial cable, make sure the Pointe
Controller is powered off. The unit looks for the cable when it is
first powered on.

b. Connect the cable's RJ-11 plug to the Pointe Controller's serial
port.

¢. Connect the cable's DB-9 plug to your PC's serial port.

2. Power on the Pointe Controller unit.

NOTE: There is no power switch on the Pointe Controller unit itself. Either
the AC adapted must be plugged in or the directly connected DC grid
must be turned on.

3. From theWindows Start menu, choose Programs > PointeControl >
Update Tool.

NOTE: If you are running the Update Tool for the first time, you will be
asked to specify which COM (serial) port the tool should use. Enter the
number (1, 2, 3, or 4) to which you connected the serial cable in Step 1
above, and then click OK. After that, the tool will finish launching.

78

Pointe Controller User Guide

Chapter 4: System Design and Installation

The PointeControl/OptiLogic Update Tool application window appears.

Do %31.8

., Optij=ea-
Politte =-wlegic

Controller

Update Tool for
Pointe Controller and
all OptiLogic RTUs

x ..-

Nematron

Cipem Mimde. Chpen Syienns, Rl St

Click Automatic Base Detection. The application should immediately
connect to your Pointe Controller unit. If it does not, check your serial
connection and try again. If it still cannot connect, click Manual Setup
and select PTC5800 from the drop-down menu.

79

Chapter 4: System Design and Installation Pointe Controller User Guide

When the application successfully connects, the following window will

appear:
"‘_ﬁ Update Tool ¥3.00 : v i]Ellﬂ
Port Help
rSelect File to Download—
: Status:
File: 1 amex
J .
i = Exit
BHCIPL brl Use Cable # OL-CEL-DNL |
rBead Current Settings
Kernel Version ’ 00,06 Read
Drive: Main YWersion D 0g Settings
|=e = BaseType [55ioiFiC Base 5
ol MAC Addiess [00506£.001039 Settn
[ess ettings
=T = 00.50.8€.00.10.39 L}
{Program Files Current Settings Mew Settings
0 0
3 Nematron IP Address
& PointzControl [10.16.80.103 |
[Classes Sub Met Mask [355 355 365 00 [
(22 Current
di Default Gatewa_l,ll 00.00.00.00 I
[Drivers Diefault Server
10.16.80.57
(1 Help =l IP Address ! : I_
The IP address for this PC is: 10.16.80.63
DOWNLOAD FILE Mode Name [Gundam |

The Read Current Settings pane displays the current address settings on
the Pointe Controller unit. If you are addressing the unit for the first time,
the factory default settings are displayed.

5. Under New Settings, enter the new IP address and subnet mask for the
Pointe Controller unit. For example, an IP Address of “10.16.80.103” and a
Sub Net Mask of “255.255.255.00".

New Settings
{10.16.80.103

| 255.255.255.00
{00.00.00.00

The Pointe Controller unit should receive an address on the same subnet
as your PC. If you do not know what values to enter, contact your system
administrator.

NOTE: The Pointe Controller unit does not communicate directly with any
network gateway or router. Instead, it broadcasts to all machines on its
subnet. Therefore, you should enter "00.00.00.00" in the Default Gateway
field.

80

Pointe Controller User Guide

Chapter 4: System Design and Installation

6.

10.
11.
12.

For the Default Server IP Address, enter the IP address of the PC with
which you are connecting to the Pointe Controller unit. For example,
“10.16.80.69".

New Settings
{10.16.80.102

| 255.256.256.00
{00.00.00.00
{10.16.80.69

The secondary server is the PC to which the Pointe Controller unit will
attempt to connect when it first powers on.

For the Node Name pane, enter the name by which the Pointe Controller
unit will identify itself to PointeControl Monitor. For example, “Gundam.”

NOTE: If you do not want or need to change the Node Name, you can skip
this step and leave the factory default setting.

For more information on PointeControl Monitor, see Chapter 6,
“Downloading to the Controller,” and Chapter 7, “Monitoring and
Debugging.”

Click the Save Settings button to save your settings to the Pointe
Controller unit. When the settings are saved, the fields will turn green.

New Settings

[1016:80103
[255.255.255.00
[00.00.00.00

[10.16.80.69
PCis: 10.16.80.69

|Gundam

Click the Read Current Settings button to verify that the new settings
were saved correctly. The current settings should now match the IP
address, subnet mask, secondary server, and node name that you entered.
Exit the Update Tool application by clicking the Exit button.

Power off the Pointe Controller unit.

Disconnect the RS-232 serial cable.

81

Chapter 4: System Design and Installation Pointe Controller User Guide

4.5.2

Modbus Address

The addressing that you, the system designer, must set is the address set via
rotary address switches in the Pointe Controller base unit. Each controller in your
system must have its own unique address. This address, a value between 00 and
97, is how the software in the master PC identifies each controller.

NOTE: Addresses 98 and 99 are reserved for performing hardware resets. For
more information, see page 230.

To get to the address switches, you must first remove the end cover from the base
unit. To do this, simply squeeze the latching tabs, shown in the figure below, and
lift the cover off.

Address ing switches

sgueeze to lift off end cover

T
F

[]

==

Slot0
st
Slot2

!%%U rﬂ%‘aﬂ .?TJ
L"Wr"
| Gg 1 L

Exploded view

Removing the end cover will expose the base motherboard. The address switches
will be found near the connector for slot 0.

To set the controller’'s Modbus address, rotate the switches to the desired values.
The switch on the left is the “tens” digit. The switch on the right is the “ones”
digit. A small flat blade screwdriver is the only tool you need. The address shown
on the figure above is “25."”

Remember that each Pointe Controller unit on your network must have its own
unique Modbus address, which is set prior to applying power to the controller.
Duplicate addresses will cause system communications to fail.

For more information on configuring Modbus communications, see Chapter 8,
“Networked Operations,” starting on page 216.

82

Pointe Controller User Guide Chapter 4: System Design and Installation

4.6

An Overview of OptiLogic 1/0

The Pointe Controller system achieves its modularity and flexibility by integrating
with Optimation, Inc.'s complete line of OptiLogic I/0 modules and operator
panels. (Optimation is a wholly-owned subsidiary of Nematron.) OptiLogic
components can be plugged together in nearly any combination. This chapter
covers the currently available modules that plug into the card cage.

TIP: Additional I/0O modules are always under development. Please check our Web
site at http://www.nematron.com/PointeControl for a complete list of available
modules.

Most OptiLogic modules can be installed in any card cage slot and used in any
combination and quantity that will fit in the card cage. This applies to all general
purpose digital and analog I/0. If you need all digital inputs — plug in digital
input modules only. If you need a mixture of analog and digital inputs and
output — select the mixture that fits your needs. Snap together modularity gives
you the ability to optimize your system for your needs.

OptiLogic I/0 modules are designed to meet your needs in real world application.
They are all small circuit boards with a few available points to minimize your
system cost. Most module connectors are pluggable terminal strips for easy
connection, and easy maintainability. The snap-together design means low labor
costs — or costs on your time. Visual status indicators on digital 1/0 and
communications modules provide a convenient means for monitoring operation.
All together, the result is a cost effective, easy to use and maintain set of
industrial control hardware.

This manual covers general I1/0 characteristics and applications first. Specific 1/0
boards are covered in the latter pages. The general pages should serve as a guide
to selecting and installing I/O boards in your application.

83

Chapter 4: System Design and Installation Pointe Controller User Guide

4.6.1

Digital Inputs

Digital I/0 modules are used to either monitor (input) or control (output) the
“state” of something. “State” being on or off, active or inactive, open or closed
— etc. In the “real world” digital I/O requirements come in a variety of shapes
and sizes. Therefore, there are a variety of available modules designed to meet
the variety of needs.

Typical digital inputs are connected to switches, buttons, digital outputs from
other equipment, discrete level sensors, thermostats and other on/off sensing
devices.

Digital status is sensed by a controller, such as an OptiLogic system, by passing
current through an input sensor. When the current is on, the input state is active.
When it is not there, the input state is inactive.

Input Isolation

In most cases, it is important to “isolate” the real world inputs from the internal
electronics of the controller. You want to prevent some external situation from
“zapping” the controller’s electronics.

An effective means of providing such electrical isolation is optical isolation. The
figure below illustrates the basic concepts of optical isolation of a digital input
circuit:

sensor :
o O | optical
| isolatfion
ool
ptiLogic
Power ~_| |Processor
source i ~

Input module

As shown, when the digital input contact closes, the circuit path is complete and
current will flow. On the input module this circuit path passes through a device
which emits light when current flows through it. The light emitter is in very close
physical proximity to (actually in the same chip) a photo sensor, which will turn
on when it senses light. In this way, a digital input module can sense whether the
input device is closed (current flow) or open (no current flow) without a direct
electrical connection between the external sensor and the internal electronics.

DC Inputs

DC digital inputs are typically supplied by a DC power supply. The most common
DC supplies used in industry are 12VDC and 24VDC.

84

Pointe Controller User Guide Chapter 4: System Design and Installation

Typical DC digital input circuits are shown below:

Sourcing DC input Sinking DC input

sensor | optical optical

1
o | isolation [isolation
To 1 To

- OptiLogic QO OptiLogic
= } ~ processor ~ processor

| ~ —) | ~ —

common, common,
| |
| Input module s | Input module

As shown, the physical optical emitter on the input module is an LED (light
emitting diode). OptiLogic DC inputs use bidirectional LEDs — i.e. Your inputs
may either source or sink current. The top figure shows a sourcing input. The
figure below it shows a sinking input. When inputs are connected to a “common”
(most instances), inputs must be either all sourcing or all sinking.

|+

AC Inputs

AC digital inputs are typically supplied either directly from line voltage or
transformed down from line voltage. The most common AC inputs are 120VAC
and 24VAC, although any voltage range is possible.

A typical AC input circuit is shown below:

sensor :
—0O : optical
I isolation
Optiidg
ptilogic
@ | ~ proces%or
| N —P
r%
| Input module

As shown, the physical optical emitter on the input module consists of two LEDs
of opposite polarity. An AC (alternating current) connection flows current one
way, then the other. Light is emitted in both cases.

There is a short period when voltage, and therefore current flow, switches from
one direction to the other when no current flows. This is called zero crossover.
During zero crossover, the digital input circuit must “debounce” the signal to
ensure that the system does not provide a false indication that the input contact
is not closed when it is, in fact, closed. OptiLogic AC digital inputs handle such
zero crossover conditions.

85

Chapter 4: System Design and Installation Pointe Controller User Guide

Digital Input Voltage

Any digital input module, AC or DC, is designed to operate within an input
voltage range. The input voltage directly controls the amount of current flowing
through the circuit. The minimum voltage corresponds to a voltage that creates
enough current to produce LED light sufficient to be sensed by the optical sensor.
The maximum voltage corresponds to the maximum current the optocoupler can
handle without being damaged.

1/0 “"Common” Terminals

For a digital input circuit, one input terminal and one output terminal is necessary
for operation. For practical application, one of these two terminals may be
“common” to several circuits.

In most systems, the power source for all digital inputs is from the same supply. In
such cases, connecting all of the circuit return lines together results in reduced
equipment costs as well as simpler system wiring.

Sourcin o
9 Slnk|n7g
— N7 N
o O
— NG - NG
© ©
— N5 - NS
© ©
— N4 K— IN4
iy -
5 N3 IN3
o = w
— N1 (- INT
iy -
s=li0 INO
(G
+|1 |
- [+
10-30VDC 10-30VDC

The example above illustrates a digital input board that has eight inputs and two
commons. This can be accomplished with a 10 terminal connector block.

86

Pointe Controller User Guide Chapter 4: System Design and Installation

4.6.2

Digital Outputs

Digital outputs are used to turn “loads” on and off. “Loads” may be lights,
motors, solenoids, or any type of on/off device found in the “real world.”

Digital outputs in the OptiLogic series come in three types — relay, transistor and
solid state relay. Each type has applications it is best suited for. The following is a
general list of application characteristics for each output type:

Relay Transistor Solid State Relay

= Low contact loss = DC application only = AC application

= ACor DC = Low current rating = Moderate current

* Moderate to high = High frequency = Any switching
current rating switching frequency

= Low cost = Low cost * Moderate cost

= Should not be used
for:

o Ultra low current
switching (less than
10mA)

o Switching loads at
high frequency

Relay Outputs

Relays are basically electrically controlled mechanical switches. All current
OptiLogic Relay output boards utilize form A relays — i.e. the contact is either
open or closed.

Relays are affected by the type of load that is switched. Inductive loads
(solenoids, motors, etc.) tend to wear the relay much more than resistive loads
(lights, heaters, etc.).

Inductive load wear is due to the fact that inductive loads will continue to
conduct current for a period, even after the circuit is broken. This current flow
builds up opposing polarity charges between the contact segments that just
separated. This makes the two segments attract each other — making opening
the contact more difficult. It also can result in arcing while the contact is being
opened. Arcing, in turn, builds up carbon deposits, i.e. wear.

This situation can be improved for DC inductive circuit loads by the addition of
external diode protection of the circuit. The figure below illustrates diode
protection:

87

Chapter 4: System Design and Installation Pointe Controller User Guide

Inductive load |
|
O |
< o
| Diode protection L S0ition
From

- : <+« OptiLogic
processor

I

|
| Output module
|

When the contact is closed, the diode is reverse biased and no current flows
through it. When the contact opens, current will continue to flow through the
inductive load. The diode provides a path for current flow. The result that is the
energy is dissipated in the inductive coil and not the relay contact.

NOTE: Do not use this circuit for AC loads.

Transistor Outputs

An NPN transistor sinking output provides a path to ground. A typical circuit is
shown below:

Inductive load

Y7

optical

| Diode protection isolation

From

”* &—Optilogic

processor

III-I-

[
| Output module
|

There is a small voltage drop across the transistor in such a circuit. The voltage
drop will generate heat in the transistor. Therefore NPN transistor outputs are
generally limited to lower current applications.

Transistor outputs can be operated at high frequency. There is no effective wear
on a transistor output from switching, as there is in a mechanical relay.

Diode protection applied to inductive loads is recommended in cases where the
load current approaches the rated current limit of the output. In most cases
OptiLogic outputs are designed to withstand voltages of at least twice the rated
output voltage. However, diode protection like that shown above will ensure that
turn off voltage spikes will never get to that level.

88

Pointe Controller User Guide Chapter 4: System Design and Installation

4.6.3

Solid State Relay Outputs

Solid state relays are semiconductor switches that operate very much like
mechanical relays. They have an advantage over mechanical relays by virtue of
the fact that they are semiconductors. Solid state relays can be switched at
relatively high frequencies and they do not wear out. However they are more
expensive and there is a small voltage drop across the contact.

The figure below illustrates a typical solid state relay output:

|
I
: opfical
I isolation o F:rr Ffm.
ptiLogic
@ procesgsor

| ~

| | V| g

|
: Output module

OptiLogic Solid state relays are designed for AC load operation.

Analog Inputs

Analog inputs are used to monitor the value of some continuously variable
measurement. Typical analog inputs are measurements of temperature, pressure,
weight, liquid level, pH, flow rate and many other “real world” parameters.

The purpose of an analog input module is to convert the measurement into a
format that is usable by the data acquisition or control system. To be usable by an
computer-based system, the analog measurement must be converted to digital
format. Doing so accurately and, in some cases, quickly, is the goal of the analog
to digital converter module.

A good understanding of analog input modules includes an understanding of
isolation, accuracy, single and differential inputs, multiplexing, resolution and
range. The following paragraphs provide an overview of these subjects.

Isolation

In many applications there is a good deal of benefit to be derived from isolating
the analog measurement source from the RTU’s power supply. In some cases,
signal inputs may contain voltages or noise signals which could adversely affect
the main processor’'s operation. Likewise, noise on the main power bus can
degrade the accuracy of the analog value measurement. Both potential problems
can be solved by isolating the analog inputs from the main power supply.

Isolation involves totally isolating the analog to digital (A/D) converter from the
main power bus. This can be accomplished in two ways. The A/D input module
can use a separate power source input, which is isolated from the power input to
the base. The A/D module can also use the main power supply and isolated power

89

Chapter 4: System Design and Installation Pointe Controller User Guide

via a switching power converter and a transformer. There are OptiLogic analog
input modules in both categories. Neither is functionally superior to the other.
The on-board power generation may save the cost of an additional external
power supply.

C
0
S
—' 8
, é g 3 = g
Andlog _, 88 § 28
inputs (I l !
— A/D X | Bus
R Converter| ™ |Inferface

Converter Module

The other aspect of isolation is the fact that the measured value must be
transmitted from the analog to digital converter, operating on one power supply,
to the main system, which is operating on another power supply. This is
commonly accomplished through optical isolators.

Resolution

Resolution is the number of significant bits of information the A/D converter uses
to express the value of the measured input. A 12-bit A/D converter uses 12 bits of
information, meaning the entire range is covered by a number between 0 and
(2(12)-1) or 0 to 4095. A 14-bit A/D expresses the same range as a number
between 0 and 16,383. In other words, the more bits used, the finer the
increment. In general terms, the higher the resolution, the better.

20

Pointe Controller User Guide Chapter 4: System Design and Installation

Accuracy

Accuracy is expressed as the worst case deviation from the “ideal value” across
the entire input range. For example, for a 0 to 5V input range and a 12-bit A/D
module, a 2.0 volt input should yield a value equal to 1638 (0.4 x 4096). If it
returns a value of 1636, and this is the worst case error across the entire range of
0 to 5V, the accuracy is 12 bits +/- 2 counts.

Range

The analog input range is the minimum and maximum voltage, or current level,
measured by the A/C converter. Typical ranges are 0 to 5 volts, 0 to 10 volts, +/- 5
volts, +/- 10 volts, and 4 to 20 mA.

You should try to match the input range to the range of the signal that you are
measuring.

Multiplexing

Analog to digital converter devices are typically quite expensive. In order to keep
the cost per channel of analog inputs down, a multiplexer is commonly used.

C
_E
4 3
ke 2
25 a 23
Analog 1 ‘i Iy
. fé- J AD |X,| Bus
|nDUTS — 3 "Converter ™ |Interface
—
—
—

Converter Module

A multiplexer switches one analog input at a time into the A/D converter. Each
input is converted in sequence. The trade off is reduced sampling rate for a
particular channel versus reduced cost per channel measured. In most industrial
applications, the conversion rate is so fast in relation to the rate of change in the
measured value, that sampling rate is not a factor.

Single Ended Inputs

Single ended inputs are all referenced to the same ground point. In many
applications, single ended inputs produce significant advantages. Single ended
inputs require only one ground connection and one signal input per measured
value. The result is reduced wiring costs along with the reduced cost per channel
on the analog input module.

21

Chapter 4: System Design and Installation Pointe Controller User Guide

In order to use single ended inputs, the ground connection must be very good.
The measurement devices must also be capable of being referenced to a common
ground.

c
—' _%
— - 8
Analog , %,ﬂa g 5t
inputs — gl T !
—> R ~.| Bus
"Converer ™~ |Interface
—
Common
ground Converter Module

Differential Inputs

There are cases when the individual analog inputs cannot be connected to a
common ground. In those cases, a differential input A/D converter should be
used.

With a differential analog input, both a positive and negative signal line must be
connected for each signal. The analog input module then measures the difference
between the positive and negative. The effect of one channel’s signal on another
channel’s signal should be as little as possible. That relationship of the effect on
the measured value of one channel to the value input on a second channel is
called “common mode.” The higher the “common mode rejection ratio (CMRR)"”
the better.

+—,, ié

t (8, 3 .4

+ S 3 = =

%—D 238 & 328
Analog (— LD | BL
in DUTS é+—’ } CoAn{/erTer = InTerL;l‘che

4’- y

—

%'—’

Converter Module

92

Pointe Controller User Guide Chapter 4: System Design and Installation

4.7

4.71

Determining Your I/O Needs

The Pointe Controller system offers the following ways to add I/0 to the system:

= Local I/0 - consists of I/0 modules installed in the Pointe Controller unit
itself.

= Remote I/O - consists of I/0 modules installed in OptiLogic RTU bases
connected to the Pointe Controller unit through the Ethernet network.

A Pointe Controller system can be developed using many different arrangements
of these configurations. All I/0 configurations use the standard complement of
OptilLogic /0O modules and bases.

TIP: For complete technical descriptions of all OptiLogic modules and panels, see
Appendix A, “OptiLogic Technical Specifications,” starting on page 231.

Available I/0 Modules

The following is a list of I/O and operator panel modules available at the time of
this printing. Keep in mind that the range of avaliable OptiLogic modules is
always expanding. Many more modules will be available in the near future. To
get a current list of available modules, visit our Web site at
http://www.nematron.com/PointeControl.

The following I/0O modules are currently available (generally off the shelf):

Digital Inputs

OL2201 8 Digital input simulator (toggle switch input)

0OL2205 4 AC/DC (10-30V) In -- Each input has a separate common

0OL2208 8 DC (10-30VDQ) In

OoL2211 8 AC (80-132VAQ) In

OL2252 2 high speed counters (up to 20KHz) inputs. 6 additional inputs configurable
as general purpose DC inputs or control signals.

OL2258 High speed counter input for pulse encoder type devices. Up/Down count,
Pulse & Direction or Quatdrature inputs accepted. Pulse counting to 80KHz
(160KHz for quadrature). Two high speed transistor outputs.

Digital Outputs

OL2104 4 Relay (2A resistive @ 24VDC, 1A @120VAQ)

OL2108 8 Relay (2A resistive @ 24VDC, 1A @120VAQ)

0OL2109 8 Transistor (500mA sink)

oL2111 8 AC Solid State Relay (1A)

Analog Inputs / Outputs

93

Chapter 4: System Design and Installation Pointe Controller User Guide

4.7.2

4.7.3

0OL2304 4 channel voltage output, 0-5V, 0-10V, +/-5V, +/-10V

0L2408 8 channel 0-5VDC or 0-10VDC in

0OL2418 8 channel 4-20mA in

Communications

0OL2602 2 Port RS232

Available Operator Panels

The following is a list of currently available OptiLogic Operator Panels:

Pushbutton / Indicator Panels

OL3406 6 Indicator/4 Pushbutton Alphanumeric Display

0OL3440 4 Line x 20 Character backlit LCD alphanumeric display

Terminal Panels

0OL3420 2 Line x 20 character backlit LCD display, 4 pushbuttons

0OL3850 2 line x 20 character backlit LCD display, 5 user definable pushbuttons,
numeric keypad, 3 indicator light bars

Calculating Your Power Budget

Each I1/0 module and operator panel that you install in your Pointe Controller unit
requires a certain minimum amount of power to operate. Each controller base
has a maximum of 2.8 A (2800 mA) total power available.

To calculate the power budget for your Pointe Controller, simply add up the
power required for all of the /0 modules and operator panels that you want to
install in the controller. If the total power required is less than or equal to 2.8 A,
then the controller will be able to power everything. If the total power required
is greater than 2.8 A, then you must redesign your application to use a different
combination of modules.

The table below provides a quick reference to the power requirements for all of
the available 1/0 modules and operator panels. Again, for complete technical
descriptions of these components, see Appendix A, “OptiLogic Technical
Specifications,” starting on page 231.

Module Type | Description Power Req.
OL2104 Relay Output, 4-point 250 mA
OL2108 Relay Output, 8-point 375 mA
OL2109 DC Sinking Output, 8-point 140 mA

24

Pointe Controller User Guide Chapter 4: System Design and Installation

Module Type | Description Power Req.
oL2111 Solid State Relay Output, 8-point 120 mA
OL2201 Digit Input Simulator, 8-point 60 mA
OL2205 AC/DC Digital Input, 4-point 100 mA
0OL2208 DC Digital Input, 8-point 60 mA
OoL2211 AC Digital Input, 8-point 100 mA
OL2252 Dual Pulse Counter 100 mA
OL2258 High Speed Pulse Counter 400 mA
OL2304 Analog Voltage Output, 4-channel 700 mA
0OL2408 Analog Voltage Input, 8-channel 700 mA
0OL2418 Analog Current Input, 8-channel 700 mA
0OL2602 Dual Serial Port 110 mA

Panel Type Description Power
OL3406 Pushbutton/Indicator Panel 50 mA
0OL3420 Operator Terminal 115 mA
0OL3440 4-line Display Panel 150 mA
0OL3850 Keypad Terminal 525 mA

95

Chapter 4: System Design and Installation Pointe Controller User Guide

4.8

4.8.1

Installing /0 Modules in the Controller

Each Pointe Controller application will differ in the number and type of I/O
modules, the operator panels used (if any) and how the devices must be
distributed. The modular design of the Pointe Controller system allows you to mix
and match to meet your exact application requirements.

System configuration entails an early process of defining exactly what type and
quantity of I/O you need at each location. If operator interaction, alarm
annunciation, or status display are required at the various points, the appropriate
operator panel should be chosen. Once that is done, you can custom tailor your
controllers by selecting and installing standard 1/0 modules in your Pointe
Controller base units and snapping the appropriate operator panel onto each.

Slot Numbering

Each module will occupy one slot in the controller base. Each slot position is
numbered as shown below. The slot number will provide a reference to your
application program for selecting the appropriate module for each particular
operation.

Shat #

a0 n
Qe e u 1}

P T
lirl;:l

|L| _j,_l I I

Slot numbering is simply left to right, starting with slot number 0.

96

Pointe Controller User Guide Chapter 4: System Design and Installation

4.8.2

Installing Modules

Each slot has card guides along each side and a connector on the motherboard.
To install an I/0O module, place the module’s circuitry board in the top and bottom
card guides. (Note that the board will not be tightly retained until it is
approximately 3/ inch into the card guide.)

sgueeze when inserfing or extracting Board Latch Hooks
bt

Rus connector

As you push the module into its mating connector, squeeze the ends together.
This will allow the board latches to travel inside the card cage. When you have
pushed the board into its mating connector and released, the latches should hook
the card cage and keep the module in place.

97

Chapter 4: System Design and Installation Pointe Controller User Guide

4.9

4.9.1

Mounting the Pointe Controller

Pointe Controller units are intended to be mounted on a standard DIN rail. That
DIN rail can be a commercial DIN rail attached to any flat surface. It can also be
the DIN rail built into OptiLogic operator panels.

Mounting the Base on a DIN Rail

A DIN rail is simply a standard “U” shaped channel which is designed to be
mounted horizontally on any flat surface. DIN rail can be purchased at nearly any
electrical supply outlet.

There are a few standard DIN rail sizes available. Pictured below is a cross
sectional view of the standard 35 mm DIN rail the Pointe Controller base unit is
designed to clamp on:

A

35 mm

| 7.5mm |
DIN Rail Dimensions

The key dimensions are the 35mm overall width and a minimum 7.5mm depth.
The precise channel shape is not important.

98

Pointe Controller User Guide Chapter 4: System Design and Installation

4.9.2

Now, take a look at the bottom side of the controller base. It will appear as
shown below:

|
Retaining Clip

The DIN rail channel runs lengthwise across the middle of the base’s bottom side.
At the top of that channel are three overhanging hooks. At the bottom of the
channel there is a sliding retaining clip.

The process of installing a base on a DIN rail is as follows:

1. Pull the retaining clip back from the center of the base. It should pull back
about 1/8 inch. The retaining clip on an uninstalled unit can be pulled
back with your fingers.

2. Place the Pointe Controller base on the horizontal DIN rail with the three
overhanging hooks over the top of the rail. Mounting must be horizontal
to allow convection air flow for cooling.

3. Rock the Pointe Controller base down flat against the bottom of the DIN
rail.

4. Push the retaining clip closed to hook the bottom rib of the DIN rail.

Mounting the Base to an Operator Panel

The Pointe Controller unit base can also be mounted to any OptiLogic operator
panel. As shown in the figure below, OptiLogic operator panels have a built in
DIN rail for mounting the base.

929

Chapter 4: System Design and Installation Pointe Controller User Guide

The mounting process is exactly the same as described for mounting to a DIN rail.
Be sure that your orientation is right so the connectors on the base and the front

panel line up. An Pointe Controller unit base attached to an OptiLogic operator
panel should look like the figure below.

The short ribbon cable, which comes with the operator panel should be used to

provide the connection between the Pointe Controller base and the operator
panel.

100

Pointe Controller User Guide Chapter 4: System Design and Installation

4.10

4.10.1

Connecting the Controller to Your Network

An Ethernet network connection is used to download finished control
applications from your PC to the Pointe Controller unit. It is also used to monitor
the unit's runtime performance and to share Modbus TCP data between different
control devices. An RJ-45 Ethernet port is located at the left side of the Pointe
Controller unit.

NOTE: The following sections discuss interconnection using the term hub. Any of
the configurations apply equally well to a switch.

In an Pointe Controller system, there should be a single master, the host PC. All
physical media interconnections should be made to commercial building wiring
standards EIA/TIA-568 and the specification for Unshielded Twisted Pair cable
defined in the TIA/EIA TSB40-A specifications. For best case 10Base-T wiring, we

recommend using all CAT5 type cabling for connecting your Pointe Controller
network.

Point-to-Point Connection

The simplest system is a point-to-point connection. Point to point connections, as
illustrated below, require only a crossover type patch cable.

9290l
9000

QoecH

'
50 0%
OO L0
0900
ooe

)

i
b

) i
Crossover cable o II II II [I

Jiloooo

)'\

An Ethernet crossover cable, shown below, connects the transmitter on one side,
with the receiver on the other. This is a category 5 type UTP crossover patch cable.
Cable length is limited to less than 100 meters.

Crossover Cable

B
RD+3 3 RD+
RD- 6 — 4 RD-

101

Chapter 4: System Design and Installation Pointe Controller User Guide

4.10.2 Single Hub and Switched Connections

The next level of complexity is a single hub or switch system. Hubs and switches
are commonly available with anywhere from 4 to 24 connections.

Straight cable

Straight cable I

2090H
o [

1
sfoa- e
5] e e

5589
2990
000

i
.
|

The multiple Ethernet ports on a hub allow physical star type network wiring. The

hub is typically placed in the center of the system. Individual cables are run
between the hub and each controller.

)'\ | F

Crossovers are made internal to the hub. Therefore, in a single hub system, all
connections are straight-through. Remember that for 10Base-T, each cable
connection is limited to 100 meters in length.

Straight through Cable

D+ 1 1 D+
B2 2l
+ +
6 6 RD- —

Crossover is
infernal fo the
Hub

102

Pointe Controller User Guide Chapter 4: System Design and Installation

4.11

4111

4.11.2

Ethernet Connection Guide

Ethernet 10Base-T is a flexible, low cost method of cabling local area networks.
Pointe Controller units must be connected using 10Base-T compatible products.
All Ethernet 10Base-T implementation details are defined by the EIA/TIA standard
568A. This standard specifies UTP, an acronym for Unshielded Twisted Pair cable,
to be between all nodes on a given 10Base-T network. UTP cables are rated
according to their data-carrying ability (bandwidth) and rated by “category”
number. The standard specifies category 3, 4, or 5 cable may be used with
Ethernet 10Base-T applications. IEEE Ethernet standards limit cable length
between nodes to 100 meters (328 feet). The distance limitation is based on the
maximum cable signal loss of 11.5 decibels between the source and destination.
Due to emerging high speed standards and product capabilities, many sites now
install UTP category 5 type cables exclusively. We recommend category 5 cable for
all Pointe Controller connections.

UTP Cable Characteristics

Cabling is the foundation of any network; if it's incorrect or unstable all other
communications characteristics will be unreliable. The most critical aspect of UTP
cabling is the maintaining of correct conductor pairing throughout the network.
Commonly four-pair (8 wire) 24 AWG thermoplastic insulated solid conductor
wire with a 100 ohm impedance and total diameter of less than 6.35mm (0.25
inch) should be used with Ethernet 10Base-T networks. To ensure correct pairing,
network vendors offer patch cables (straight-through and crossover) which are
assembled with connectors.

Cable Connectors

Pointe Controller units interface the network via the standard 8-pin extension
port compatible with RJ45 type connectors. RJ45 type connectors are designed to
accommodate rounded PVC outer jacket UTP cable. The strain relief for the cable
is provided by the part of the RJ45 connector that acts as a wedge against the
outer jacket. The wedge is pressed and locked tightly against the cable jacket
when the connector is crimped into place.

A 10Base-T RJ45 connection is shown below:

Pair 2 ><
Pair 3 X Pair 1 ><

10Base-T uses pins 1& 2
to transmit and pins 3 & 6 Pair 4 >

to receive. Pins 4,5, 7, & 8
are not used

T

103

Chapter 4: System Design and Installation Pointe Controller User Guide

4.11.3

4.11.4

4.11.5

10Base-T Connections

Most hardware ports on Ethernet 10Base-T equipment are wired MDI-X (meaning
medium dependent interface crossover) so you can use straight-through cable for
interconnecting the network devices. This allows for proper alignment of
transmitter and receiver circuits according to 10Base-T networking standards. For
hub-to-hub connections, a crossover type cable is commonly required. The figures
below illustrate pin assignment and signal names for straight-through and
crossover type Ethernet patch cables.

Straight-through Patch Cable

A straight-through cable is commonly used to connect Ethernet 10Base-T devices
to a hub. Preassembled patch cables are available from various network product
vendors. RJ45 connectors are attached at both ends of an assembled patch cable.

- R

Straight through Cable

D+ 1 1 1D+ —
D- 2 2 1D- ﬁv;C
RD+3 3 RD+—

RD- 6 % RD- —

Crossover is
internal fo the
Hub
We recommend using a category 5, UTP cable type for all Pointe Controller
network connections.

Crossover Patch Cable

Crossover type patch cables are used to connect between hubs or switches. This
type of patch cable must also be used for all point-to-point connections, such as a
PC-based controller and Pointe Controller unit. Therefore, it is also called a point-
to-point cable.

Crossover Cable

) E— B
RD+3—— 3 RD+
RD-6——— — 6 RD-

104

Pointe Controller User Guide Chapter 5: Developing Controller Programs

Chapter 5: Developing Controller Programs

Once you have your machine control system designed and your I/O selected and
installed, you can proceed with developing the control program itself. Program
development is done using the PointeControl Framework application that was
installed on your PC from the PointeControl software CD. You can launch the
PointeControl Framework from the Windows Start menu by choosing Start >
Programs > PointeControl > Framework.

Please note that this chapter primarily describes how to develop programs for a
single Pointe Controller unit. For more information on developing distributed
applications, including enabling Modbus communications and adding remote
terminal units (RTUs), please refer to Chapter 8, “Networked Operations,”
starting on page 216.

TIP: The information provided in this chapter is also available via the
PointeControl Framework online help. To access the help, choose Contents from
the Framework’s Help menu.

105

Chapter 5: Developing Controller Programs Pointe Controller User Guide

5.1

5.1.1

5.1.2

Basic Concepts in PointeControl

The PointeControl visual framework editor (VFE) provides the tools you need to
design and compile machine control applications that can be run on Pointe
Controller hardware products.

In the framework editor, you create application projects made up of individual
components — also called “objects — such as Flow Charts, Ladder Diagrams, and
Logic Memory tables. Each object’s properties describe instructions and attributes
for that object. The framework editor arranges these objects into an expandable
hierarchy. You build the project by adding objects to the hierarchy and defining
the object properties.

After you complete your application project, you build (compile) the project into
runtime module that can be downloaded to and run on your Pointe Controller
unit. Using the PointeControl Monitor utility (included with the PointeControl
development software), you can monitor and debug your application as it runs on
your Pointe Controller.

Multiple Programming Languages

PointeControl provides tools to develop programs in either Nematron’s patented
Visual Flowchart Language (VFL) or traditional Relay Ladder Logic (RLL).

You can develop programs using only Flow Charts or only Ladder Diagrams, or
you can mix the two together and use whichever language is most appropriate to
each programming task. Charts communicate with each other by reading from
and writing to variables in the Logic Memory database. Charts never directly
reference each other.

Memory Allocation and Access

In traditional control logic engines, program memory is laid out in fixed data
tables and tags must be addressed as directly represented variables (DRVs).
Sometimes, the user must even manually allocate the available memory.

PointeControl does not have fixed data tables. The user defines tags and variables
as needed, using plaintext tag names (or “aliases) rather than DRVs. Tags are
organized by type in the Logic Memory database. A broad range of types is
supported, including bit, integer, floating point, string, and timer.

The Logic Memory database is globally accessible, allowing all Flow Charts,
Ladder Diagrams, and I/O points to communicate freely and continuously with
each other using the same data in common. For example, a Flow Chart can read a
variable that was set by a Ladder Diagram, or a Flow Chart and a Ladder Diagram
can both monitor an input tag that is associated with one of the controller’s I/0
points, and so on.

All data can be made available to the network via Modbus mapping. For more
information, see Chapter 8, “Networked Operations,” starting on page 216.

106

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.1.3

The Scan Cycle

When a PointeControl project is executed on the controller, all of the Flow
Charts, Ladder Diagrams, and I/O points that make up the project are “scanned at
a specified speed and in a specified order.

Inputs, charts, ladders and outputs are processed in a fixed sequence; each cycle
through this sequence is called a logic scan. The general execution sequence is:

1. Get input values from all Pointe Controller modules and save to
corresponding tags in the Logic Memory database.

2. Execute all Flow Charts and Ladder Diagrams. Update input and output
tags as necessary.

3. Extract output values from Logic Memory database and send to Pointe
Controller modules.

Charts and Ladders are run in the order they are placed in the scan list. Only
charts and ladders in the list will be executed. You can mix Flow Charts and
Ladder Diagrams in the list to get the order you want. For example, if a ladder
program is processing inputs and generating values to be processed by a chart,
place the ladder first in the list followed by the chart.

To configure the interval for scanning the Flow Charts and Ladder Diagrams, see
“Setting your project's scan interval” on page 180.

To configure the scan intervals for individual I/O modules and operator panels,
see “Specifying your installed hardware” on page 121.

NOTE: It is possible to create a project that scans so quickly, using up so much
processor power on the controller hardware, that the PointeControl Monitor
cannot reattach to the controller. For more information, see “Selecting and
attaching a controller” on page 185.

107

Chapter 5: Developing Controller Programs Pointe Controller User Guide

5.2

The Visual Framework Editor (VFE)

With the framework editor you create projects. PointeControl projects provide
the instructions to implement a specific machine control sequence. You can make
minor or full-scale changes as the control application undergoes periodic change
or adjustment.

o TR (12 B Wy

_I_I_Ih |

8 (BB Sgnd]
MO [32 B S igred]
S (2 B Find]
SWLE (BB Uraignsd]
TN {32 W asigned]
EWLI TTE B U reigresd]
EWw BB Siged]
M (s

= Dlinsins
0B B B Sigred
SO0 [E20H Sgd]
SOF 201 Aesd
SUE B B Lniigred
SO0 (208 Ursgesd]
HUW (16 B Linsigred]
I |16 B 5 igrec]
20 [Bis]

S

Timsin

[ForizCorna B ED
Fluace

|]
10 5t [Poiminon g AoboHELF | SIMp Conpuites | _gPonteConna | BFPoanisConind | Bjwonde | @ico T | [Team

The framework editor follows Windows NT/2000 user interface conventions to set
up projects. If you are new to Windows NT/2000, you should learn some basic
Windows skills before starting PointeControl. You can access online help for
Windows from the Start menu on your desktop.

Framework Editor Tools

With the framework editor's tools you create the objects, like Flow Charts and
Ladder Diagrams, that correspond to interrelated tasks and the logic that refers
to variables and I/O devices. The framework editor contains several integrated
windows and workspaces. When you click a toolbar, menu selection, or other
control, the Editor opens a window for an object or performs a function on an
object or the entire project. You define object properties through a variety of
drop-down lists, dialog windows, keystrokes, and field entries.

If you are not sure of the action a control performs, you can get a description by
placing the mouse cursor over the control. The description appears at the bottom
of the Editor window.

108

Pointe Controller User Guide

Chapter 5: Developing Controller Programs

5.2.1

The Framework Editor toolbar

SlzElaE &=

| X| &g 2 vIg| 8

The framework toolbar is located at the top of the main Framework Editor
window. The buttons on the toolbar perform the following functions, from left

to right:

New Object
Open Object
Save Object
Save All Objects

These four buttons manage Flow Chart and Ladder
Diagram objects in the project workspace pane. [pages 131,
163]

Cut

Copy
Paste

Delete

These four buttons cut, copy, paste, or delete the currently
selected object (from the project workspace) or block (from
the currently open Flow Chart or Ladder Diagram). [pages
143, 168]

Print Object

This button prints the object (Flow Chart, Ladder Diagram,
or Logic Memory table) that is currently selected in the
project workspace pane. [page 112]

Project Workspace

This button shows/hides the project workspace pane
located on the left side of the framework editor. [page
109]

Check Integrity
Build Runtime

These two buttons check the structure and syntax of your
project and then compile a finished runtime program to
run on the Pointe Controller unit. [page 181]

Activate Monitor

This button launches the PointeControl Monitor utility,
which is used to load, run, and debug compiled programs
on the Pointe Controller unit. [page 182]

5.2.2 The Project Workspace pane

(TR ERET T
bils G auge
Gauges
paicanll auge
Tamer
= Ladder Diagram
gaugezM.ath
= Logic Memory
= Inguaz
8 [E Bt Sigresd]
D |32 B Signed)
30 [32 B Reall
SIUR 9 Bt Ursigresd)
D (32 Bit Unzignad]
SN |16 Bit Unsigned|
s |16 Bt Signd|
XIx [Halz]
1= Memang
= Mgz
Sirings
Tmezrs

The project workspace pane is located at the upper left
side of the main framework editor window. It keeps track
of all of the Flow Charts, Ladder Diagrams, and Logic
Memory tables that you create for your PointeControl
project.

Add and open resources with the buttons on the toolbar.
Resources appear in the project workspace as windows.
You can open multiple windows at once, which creates
many active windows and dialogs in the editor. Selections
from the Window menu cascade or tile these windows.
Many resource windows have their own set of tools. For
example, predefined blocks, selected from the Flow Chart
toolbar, allow you to point-and-click to create a chart’s

109

Chapter 5: Developing Controller Programs Pointe Controller User Guide

5.2.3

5.2.4

structure. You can then access each block's properties through a floating Block
Properties box.

== NOTE: You can hide/show this pane by clicking the Project Workspace
button in the toolbar. You can also adjust its size by dragging the right and
=== bottom edges of the pane.

The Object Editor pane

The object editor pane is a multi-function area that takes up most of the
framework editor. When you do not have any objects open, the pane is an empty
grey space. When you select an object (i.e., a Flow Chart, a Ladder Diagram, or a
Logic Memory data table) from the project workspace and open it for editing,
that object’s editor window appears in the pane.

Each object editor window — including its layout and toolbar — is specific to its
corresponding object type. For more information, see also:

= Defining variables in Logic Memory [page 113]
= Navigating the Flow Chart editor [page 132]

= Navigating the Ladder Diagram editor [page 163]

The Messages pane

The message pane is located at the bottom of the main framework editor
window. It displays the progress and error messages that are generated when you
check the integrity of your project or build it as a runtime program.

Checking integrity for project ‘Honewwell'..
E rrar-+ Flow ChartAdvance_Bottle'[65536] Actuatar1: Blank arqument to subchart call [7.1]
Found 1 emraorz in 29 ohjects.

|Eheck the integrity of the curently opened project.

NOTE: You can adjust the size of the pane — or even hide it completely — by
dragging the top edge of the pane up and down.

110

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.3

5.3.1

5.3.2

Managing PointeControl Projects

A PointeControl project is a collection of Flow Charts, Ladder Diagrams, Logic
Memory tables, I/O configurations, Modbus mappings, and assorted preferences
that, when compiled, implements a specific machine control program on the
Pointe Controller unit.

The default working directory for PointeControl project files is:

C:\Program Files\Nematron\PointeControl\Projects

You can also import and export projects to other directories.

Creating and opening projects

New Project
To create a new PointeControl project:

1. From the File menu, choose New Project. The New Project dialog
window appears and prompts you to enter a project name.

2. Enter a project name and click OK.

Open Project
To open an existing PointeControl project located in your working directory:

1. From the File menu, choose Open Project. The Open Project window
appears.

2. Choose the project you want to open from the drop menu.

3. Click OK.

NOTE: If another project is already open, PointeControl will automatically save
and close it before creating or opening another.

If the project you want to open is not listed in the drop menu, then it is not
located in your working directory. You may need to import the project from
another drive before you can open it.

Importing and exporting projects

Import Project
To import a PointeControl project from another drive to your working directory:

1. From the File menu, choose Import Project. The Import Project window
appears.

111

Chapter 5: Developing Controller Programs Pointe Controller User Guide

5.3.3

2. In the Source box, select the Drive where the project you want to import
is located.

NOTE: The project must be located in a directory named 0CProjects on
that drive. (For example, A:\OCProjects.)

3. Choose the project you want to import from the Projects list.

4. Click Import to copy the project to your working directory.

Export Project
To export a PointeControl project from your working directory to another drive:

1. From the File menu, choose Export Project. The Export Project window
appears.

2. In the Source box, choose the project you want to export from the
Projects list.

3. In the Destination box, select the Drive to which you want to export the
project.

NOTE: The project will be exported to a directory named 0CProjects on
that drive. (For example, A:\0CProjects.) If the directory does not exist,
it will be created.

4. Click Export to copy the project to the other drive.

Documenting your project

To print the various objects, including database and memory configurations, of
the current project, choose File > Print Project. You will receive a printed copy of
all Flow Charts, Ladder Diagrams, and Logic Memory tables from the selected
printer.

NOTE: To print a single Flow Chart, Ladder Diagram, or Logic Memory table, open
the object from the Project Workspace pane and choose File > Print.

To create and print a cross-reference report of the location of every instance of all
Logic Memory tags and variables used in the current project, choose File > Print
Cross Reference. You will receive a printed copy of a formatted cross-reference
report from the selected printer. The format includes:

= The name (Alias) of the tag or variable;

* The chart name and block coordinates for each instance of the tag; and

= A description of each usage of the tag.

112

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.4

5.4.1

Defining Variables in Logic Memory

In PointeControl, Logic Memory is the database of all tags, variables, and data
structures used in your program. Logic Memory is globally accessible, allowing all
Flow Charts, Ladder Diagrams, and I/O points to communicate freely and
continuously with each other using the same data in common. For example, a
Flow Chart can read a variable that was set by a Ladder Diagram, or a Flow Chart
and a Ladder Diagram can both monitor an input tag that is associated with one
of the controller’s I/0 points, and so on.

Logic Memory supports the following data types:

= An Input tag is a bit, integer, or real number variable that is associated
with a Pointe Controller input channel.

= A Memory tag is a bit, integer, or real number variable that is stored in
temporary memory.

= An Output tag is a bit, integer, or real number variable that is associated
with a Pointe Controller output channel.

= A String is used to store ASCII text. Strings can also be associated with
operator panel display lines.

= A Timer is a special data structure that is used to count real time in
milliseconds, based on the Pointe Controller’s internal clock rather than
on the project’s scan cycle.

As you define tags and variables in Logic Memory, keep in mind which tags you
will need to associate with to the Pointe Controller’s I/0 points and which you will
need to facilitate your program’s internal logic flow.

NOTE: All tags and variables are defined using plaintext names or “aliases.” DRVs
and wire labels are not used in PointeControl.

Java reserved words

Since your PointeControl project will ultimately be compiled into Java classes, you
cannot use any of Java’'s “reserved words as aliases in Logic Memory. Reserved
words are terms that have their own inherent functions within the programming
language itself and therefore can conflict with similarly named variables.

PointeControl will automatically check for conflicts whenever you attempt to
compile your project, but it is better to avoid using reserved words when defining
your variables in the first place.

Java's reserved words include:

abstract default goto operator synchronized

boolean do if outer this

113

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

5.4.2

break double implements package throw
byte else import private throws
byvalue extends inner protected transient
case false instanceof public true

cast final int rest try

catch finally interface return var

char float long short void
class for native static volatile
const future new super while
continue generic null switch

Other reserved words in PointeControl: Chart, Project.

Defining Input, Memory, and Output tags

Input, Memory, and Output tags are all basically the same type of data structure.
Individual tags differ from each other in only two ways:

How the tag is used - Input and Output tags are typically associated
with the various I/O points on the Pointe Controller unit. Memory tags are
used as “scratch values within the program itself and typically do not have
any direct readout.

What size the tag is — Every tag must be defined as a specific register
size and numeric mode. The size/mode of the tag determines the range of
values the tag can have:

SIZE/MODE VALUE RANGE
Bit/Boolean Oor1

8-bit Unsigned 0 to 255

16-bit Unsigned 0 to 65,535

32-bit Unsigned 0 to 4,294,967,295

8-bit Signed -128 to 127

16-bit Signed -32,768 to 32,767

32-bit Signed -2,147,483,648 to 2,147,483,647
32-bit Real -3.4 x 10738 to 3.4 x 10°38

114

Pointe Controller User Guide Chapter 5: Developing Controller Programs

Before you define any new tags, you should have some idea of what types and
sizes are required by your control application. You can always define more tags
later, but it makes for better application design to plan your tags in advance.

To define new Input, Memory, or Output tags:

1. In the Project Workspace pane, double-click on Logic Memory to expand
the hierarchy.

2. Double-click again on the desired data type: Inputs, Memory, or
Outputs. The data type will be expanded to show all of the individual
data tables within the type.

3. Select and open the data table that corresponds to the desired tag
size/mode. The editor window for that data table will appear. In this
example, the 32-bit Unsigned Memory data table is selected.

e Memony: ZMUD [32 Bit Unsgned) EE[E:]
Incet | Delets | Copy | Ske [= 19 /16384
=MD | e 0 B
EMUD2 || percentComplete EMUD2 1]
| BMUDI || peogressBar EMUDS 0
-
K1 H

4. Adjust the Size control to add addresses to the data table. Either use the
arrow buttons or directly enter a number.

NOTE: As you add more addresses, the data table increases in size and
uses more memory. The memory used/available readout shows the
number of addresses used by all data tables and the total number of
addresses available.

5. Click in the Alias field of the first empty address and enter a name for the
tag. The name must be a continuous alphanumeric string that does not
begin with a number; for example, STA1_UP_LIMIT.

NOTE: Aliases are case sensitive.

6. Click in the Initial Value field and enter a value to initialize on program
startup. Default initial value is 0.

7. Repeat steps 4 through 6 as needed.

8. When finished, close the editor window. You will be prompted to save
your changes.

You can insert and delete addresses in the middle of the table using the Insert
and Delete buttons. And since PointeControl refers to all tags and variables only

115

Chapter 5: Developing Controller Programs Pointe Controller User Guide

5.4.3

by Alias, it is not necessary to keep your tags in any particular address or DRV
order.

Diagnostics Metadata
Every Input, Memory, and Output tag has associated with it three metadata
registers. These registers are allocated automatically when the tag is first defined

in Logic Memory, and they can be used to store diagnostic information about the
tag. For more information, see Diagnostics Commands on page 316.

Defining strings in Logic Memory

String variables are defined using dialogs that allow specification of a name, the
size or number of characters the variable may hold, and an initial value.

To define new String variables:

1. In the Project Workspace pane, double-click on Logic Memory to expand
the hierarchy.

2. Select and open the Strings data table. The Strings editor window will

appear.
M|
4dd | Mody | Delte | Deean |

| Alias |_ElementLength |
| 20 -
2 || dizplayLive2 20
3 || displavLine3 20
4 || dizplayLined 20
5 || dsplayPescent 2
E__I|Shingf 1

4] 1P

3. Click Add to add a new address to the table.

4. Click in the Alias field of the empty address and enter a name for the
String. The name must be a continuous alphanumeric string that does not
begin with a number.

NOTE: Aliases are case sensitive.

5. Click in the Element Length field and enter the maximum number of
ASClI characters that the String should hold. Maximum length is 255.

116

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.4.4

6. If you want to set an initial value (i.e., the value to which the String will
be set on program startup), click Modify and enter the value.

M odity Entrp “dizplayLine]

(M Length = 20 chas]

[ok] cees |

7. Repeat steps 3 through 6 as needed.

8. When finished, close the editor window. You will be prompted to save
your changes.

Defining timers in Logic Memory

A Timer is a special data structure that is used to count real time in milliseconds,
based on the Pointe Controller’s internal clock rather than on the project’s scan
cycle. Up to 2048 Timers are pre-allocated in Logic Memory, and you can use any
one of them once you have given it a name.

Each Timer is assigned a Preset value (in milliseconds), either when it is first
defined or later by using a function block. The Timer can then be started and
stopped as needed by the logic flow, and when it reaches its Preset it sets a “done
bit that can be read.

For more information on using Timers, see Timer Commands (for Flow Charts) on
page 303 or Timer and Counter blocks (for Ladder Diagrams) on page 350.

To define new Timers:

1. In the Project Workspace pane, double-click on Logic Memory to expand
the hierarchy.

2. Select and open the Timers data table. The Timers editor window will
appear.

of Timers

117

Chapter 5: Developing Controller Programs Pointe Controller User Guide

9.4.5

3. Click in the Alias field of the empty address and enter a name for the
Timer. The name must be a continuous alphanumeric string that does not
begin with a number.

NOTE: Aliases are case sensitive.

4. Click in the Preset field and enter timer preset (in milliseconds).
5. Repeat steps 3 and 4 as needed.

6. When finished, close the editor window. You will be prompted to save
your changes.

Importing and exporting databases

As an alternative to defining every Logic Memory tag individually, you can import
a pre-made tag database into PointeControl from an external file. You can also
export a existing project’s Logic Memory tables to an external database file for
backup or future use.

Database File Format
To import a database into a project, you must first format the database as a
delimited text file. PointeControl recognizes three types of text files for
import/export:

= *txt - Fields delimited by tabs.

= * prn - Fields delimited by spaces.

= * csv - Fields delimited by commas.

WARNING: Attempts to import other, non-supported file types — particularly
those that contain non-ASCIl characters — can compromise the PointeControl
system.

Each line in the text file should describe a single Input/Memory/Output tag,
String, or Timer. The format of the line varies according to the type of variable
being described, as explained in the table below. Note that in the Format column,
the dash (—) represents a delimiter. Be sure to use the delimiter appropriate to
the file type.

TYPE FORMAT DESCRIPTION

Input, DRV—Alias—Wire—Value—Retain DRV — Address describing the type of
Memory, tag and its position in the Logic
Output Memory tables. (For example, “QX3"

is an Output Bit, table position 3.)
Must be consecutively numbered.
Mandatory.

Alias — The common name by which
the tag is referred in PointeControl.
Up to 30 characters. Mandatory.

118

Pointe Controller User Guide Chapter 5: Developing Controller Programs

Wire — The tag’s wire label. Maximum
of 10 characters. Must be enclosed in
tildes (~xxx~). Optional, not used in
PointeControl.

Value - The initial value of the tag
upon program start. Optional.

Retain — A yes/no option to specify
whether the tag should be retained
in retentive memory. Optional, not
used in PointeControl.

String STRING—A/ias—Length—Value STRING - Denotes that the line
describes a String. Mandatory.

Alias — The common name by which
the String is referred in
PointeControl. Can be up to 30
characters. Mandatory.

Length — The element length of the
String. Maximum of 255. Mandatory.

Value — The initial value of the String
upon program start. If defined, must
be less than or equal to Length and
must be enclosed in quotes (“xxx").
Optional.

Timer TIMER—/D—Alias—Preset TIMER - Denotes that the line
describes a Timer.

ID — The Timer ID (table position) to

be defined.
Alias — The common name by which
the String is referred in

PointeControl. Can be up to 30
characters. Mandatory.

Preset — The preset value of the
Timer, in milliseconds. Optional.

Notes:

= If an optional field is not defined in a .csv file, the comma delimiter is
used as a place keeper for that field. Default values are assigned when no
value is specified for a field.

= Since you may enter any number of spaces and tabs as delimiters in .prn
and .txt files, you need to observe these rules when building a .prn or .txt
database file:

o If a field following an undefined Wire is defined, the Wire must
be indicated by closed tildes (~~).

o If a field following an undefined value is defined, the undefined
value must be indicated by the default value.

TIP: If you still do not understand how the database file must be formatted, try
exporting the database from an existing project. You can then compare the
exported file against the Logic Memory tables and see how specific tags are
described. For more information on exporting database files, see below.

119

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

Importing a Database

To import a database file into a PointeControl project:

1.

2.

Format the database file as described above.

If a project is open in PointeControl, close it (File > Close Project). If you
do not close the project, you will not be able to import to it.

From the File menu, choose Import Database. The Import Database
dialog will appear.

Under File name, enter the file name of the database file to be
imported. If necessary, click Browse to find the file on your drive.

Under Project name, select the project from the drop-down menu.
Click Import.
Specify whether you want the imported database to overwrite the

project’s existing Logic Memory or merge with it. (Click Yes to overwrite,
No to merge.)

When importing a text database file, if PointeControl detects an erroneous line or
duplicate Aliases, you have the options of discarding the line or canceling the
import process. If PointeControl detects a duplicate Alias in a definition,
PointeControl converts the name to blanks.

Exporting a Database

To export a database file into a PointeControl project:

1.

If a project is open in PointeControl, close it (File > Close Project). If you
do not close the project, you will not be able to export from it.

From the File menu, choose Export Database. The Export Database
dialog will appear.

Under Project name, select the project from the drop-down menu.

Under File name, enter the file name of the database file to be exported.
If necessary, click Browse to find the save directory on your drive.

NOTE: PointeControl will automatically format the file according to the
file suffix you use: *.txt, *.prn, or *.csv.

Click Export.

120

Pointe Controller User Guide Chapter 5: Developing Controller Programs

9.5

5.5.1

Associating Tags with 1/0 points

I/O points are the many input and output channels that are made available to
your control application when you install OptiLogic I/0 modules and operator
panels in your Pointe Controller unit. Each point is associated with a tag in your
project’s Logic Memory database. Your project controls these points by reading
from and writing to the associated tags.

To configure your project’s I/0O points, you must first specify which modules and
panel are actually installed in your controller. Then you can step through each
module and manually associate Logic Memory tags to each specific input and
output channel.

NOTE: Each Logic Memory tag can be associated with only one I/0 point, so make
sure that you have defined enough tags to cover every point on your installed
modules and operator panel. If necessary, you can go back and define additional
tags as you configure each module.

Specifying your installed hardware

Before you can associate Logic Memory variables with individual I/0 points, you
must first specify which OptiLogic I/O modules and operator panel will ultimately
be installed in your Pointe Controller unit. Your PointeControl project cannot
recognize or communicate with these modules at runtime if they are not properly
configured.

NOTE: You can add and remove modules at any time so long as you properly
configure them as described here, then adjust your programming to
accommodate the changes and recompile your project for the Pointe Controller
unit.

To specify what 1/0 modules and operator panels are installed in your Pointe
Controller unit:

1. Check your controller and make note of what modules you have installed.
(For more information on selecting and installing modules, see Chapter 4,
“System Design and Installation,” starting on page 70.)

121

Chapter 5: Developing Controller Programs Pointe Controller User Guide

2. From the Project menu, choose Configure 1/0. The I/0 Configuration
window appears.

10 G omisguar ot mon

LU LR L TR ATRY

S
[El =
[El =
[El =
[El =
[El =
[El =
[El =
[El =
[El =

_x | _cma

122

Pointe Controller User Guide

Chapter 5: Developing Controller Programs

3.

Starting with Slot 1 module type, click on the drop-down menu to get a

list of available I/0 modules.

10 G omisguar ot mon

i 2] s 3]

123

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

4. Select the model number that corresponds to the I1/0 module that is
actually installed in the first slot in the Pointe Controller unit. In this
example, an OL2201 Digital Input module is selected.

Local 0 | rru 1] mrw 2] mTU 3] R 4]

B HEREE

NI EHIET i

Soan

Irberval

Slot 1 module pe: [OL2201

Eijis

= w._ |

gotzmosuietpe: N1 —_ @ |

:’ I |

:’ [jr |

:’ [jr |

:’ I |

:’ I |

:’ I |

Slot 3 module ype: | =
Slot4 module ype: | =i
Slot& module ype: | =
Slot6 module ype: | =
Slot 7 module ype: | =l
Slot® module ype: | =i
Panel type; | =i

:’ I |

Ok E

Cancel E

5. Continue through the rest of the slots (1 through 8), selecting the model
numbers that correspond to the installed modules. If no module is
installed in a given slot, then skip it.

NOTE: To clear any selection, select the <blank> option at the top of the

drop-down menu.

124

Pointe Controller User Guide Chapter 5: Developing Controller Programs

6. To the right of Panel type, click on the drop-down to get a list of available
operator panels. This list will be different from the list of I/O modules
above.

on =l = 0. |
on =l = 0. |
oz =l = o]
ozios =lfp = o, |

125

Chapter 5: Developing Controller Programs Pointe Controller User Guide

7. Select the model number that corresponds to the operator panel, if any,
that is actually connected to your Pointe Controller unit. In this example,
an OL3850 Operator Terminal is selected.

Local 0 | rru 1] mrw 2] mTU 3] R 4]
B HEE e C
AN EmHrEr: i SoEh
Slot1 module type: [OL2201 = = _w_ |
Slot 2 module type: [OL2201 = = _w._ |
iotamoduletpe: [oLzios =lfe = o |
glotd moduletpe: [oLzios =jfe = o |

Slot& module type: | =1 == e
Slot& module tpe: | =1 e
Slot 7 module tpe: | =1 — | -
Slot@ module tpe: | =1 == e

Panal type: [oseso =lfso = o |
K E cancel E

8. Proceed to Configuring I/O modules, or click OK to save your changes and
close the window.

Scan Intervals and Scanner Overload

Each installed /0O module has a Scan Interval which determines how frequently
the module is scanned by the Pointe Controller unit. In most cases, the default
values should be used. However, if you encounter performance issues while
running a compiled program, you may need to adjust the values in order to tune
processor and memory usage.

Also, if you install modules that require extremely low Scan Intervals (for
example, the OL2602 has a default Scan Interval of 3), then you may be warned
of a Scanner Overload. To avoid the overload, you must either increase the
modules’ Scan Intervals or redesign your project to use fewer or different
modules.

For more information, see Chapter 4, “System Design and Installation,” starting
on page 70.

126

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.5.2

Configuring I/0 modules

For each I/0 module that you have specified as being installed in your Pointe
Controller unit, you must configure that module’s individual settings and 1/0
points to work with your project. The configuration options are accessed by
clicking on the I/O button to the right of the module.

NOTE: All of the tags for a given module must already be defined in Logic
Memory before you can associate them with the module’s I/O points. If the tags
are not defined or if you're not sure what tags are required, review the module
below and then go back to Defining Variables in Logic Memory.

Select an OptiLogic IO module to configure:

MODULE GO TO...
OL2104 Relay Output Module Page 233
OL2108 Relay Output Module Page 236
OL2109 DC Sinking Output Module Page 240
OL2111 AC Solid-state Relay Module Page 244
OL2201 Digital Input Simulator Module Page 248
OL2205 AC/DC Digital Input Module Page 250
OL2208 DC Digital Input Module Page 254
OL2211 AC Digital Input Module Page 256
OL2252 Dual Pulse Counter Module Page 261
OL2258 High Speed Counter Module Page 268
OL2304 Analog Voltage Output Module Page 273
OL2408 Analog Voltage Input Module Page 276
OL2418 Analog Current Input Module Page 279
OL2602 Dual Serial Port Module Page 282

For complete technical descriptions of all of these modules, see Appendix A,
"OptiLogic Technical Specifications.”

When you have configured all of the I/0 modules installed in your Pointe
Controller unit, proceed to Configuring operator panels.

127

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

5.5.3

5.5.4

Configuring operator panels

If you have specified an operator panel as being connected to your Pointe
Controller unit, you must configure its individual settings and I/O points to work
with your project. The configuration options are accessed by clicking on the 1/0

button to the right of the panel.

NOTE: All of the tags for a given panel must already be defined in Logic Memory
before you can associate them with the panel’s I/0 points. If the tags are not
defined or if you're not sure what tags are required, review the panel below and
then go back to Defining Variables in Logic Memory.

Select an operator panel to configure:

MODULE

GO TO...

0OL3406 Pushbutton/Indicator Panel

Page 284

OL3420 Operator Terminal

Page 288

OL3440 Display Panel

Page 291

OL3850 Keypad Terminal

Page 292

For complete technical descriptions of all of these panels, see Appendix A,

"OptiLogic Technical Specifications.”

Configuring additional OptiLogic RTUs

You can configure up to four additional OptiLogic Remote Terminal Units (RTUs)
to work with your Pointe Controller unit. These units are slaved to your controller
using the OptiLogic UDP/IP communication protocol.

For more information, see Chapter 8, “Networked Operations,” starting on page

216.

128

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.6

Building and Editing Flow Charts

Flow Charts depict various types of information and control processing problems
and their means of solution. Charts consist of symbols having a given
signification, brief explanatory text, and connecting lines. Each symbol relates to
an unambiguous and meaningful name that is consistent throughout the charts.
The connecting lines show the path of execution through the chart.

Multiple Flow Charts

A single Flow Chart ideally performs a single task; however, a total system
solution requires the execution of multiple tasks, often simultaneously.
PointeControl solves this problem by providing concurrent execution of any
number of separate Flow Charts. With multiple charts executing concurrently,
each chart focuses only on its specific task, which greatly simplifies the chart
structure.

The PointeControl Framework creates a Chart List that specifies which charts are
executed and the order in which the charts are executed. At startup, the Pointe
Controller unit performs all initialization procedures then begins the normal scan
cycle. During each cycle, the system performs an input scan to read data from the
configured modules, executes each chart specified in the Chart List, and performs
an output scan to write data to the modules.

All charts execute during each cycle — starting with the first chart in the chart list
and proceeding through the entire list. In the most basic cycle, the first chart in
the list runs, then the second chart in the list, then the third, until all charts have
run. However, in many real world situations, the chart being executed reaches a
block where it must wait for some event to occur before it can proceed. While
waiting, the chart (typically) yields control to the next chart in the list, allowing
that chart and all other charts to continue executing as normal. During the next
execution cycle, if the event has occurred, the chart continues execution from
that point; otherwise, the chart again yields control to the next chart.

Program and Subcharts

The PointeControl Framework provides two levels of flowchart development:
Program and Subchart. Program charts describe the steps needed to perform a
particular control task or process. The more precise a Program chart, the easier it
is to develop function flowcharts.

Subcharts contain the more detailed information necessary to make the chart
function. You can use these powerful reusable subprograms many times in several
different flowcharts.

129

Chapter 5: Developing Controller Programs Pointe Controller User Guide

Flow Chart Blocks

Flow charts contain distinct block types: Process, Terminator, Decision blocks, and
Subcharts.

Rectangles with the entry point at the top and the exit point at the bottom
represent Process blocks:

TURN OFF

Errori[entr]
INC. cntr

Each Process block contains a description of the action or actions to be taken. The
same Process block can contain multiple commands, with each command
executing sequentially.

Terminator blocks define the beginning and ending of a chart’s program flow:
All Flow Charts have a Start and an Exit or Return terminator block. Subcharts
return to the calling chart at a Return block.

TIP: A Flow Chart can have only one Start block, but may have more than one Exit
or Return block.

Diamonds, with an entry point located at the top and exit points on the right side
and at the bottom, represent Decision blocks:

Decision blocks include Condition, Repeat/Until Loop, and While Loop blocks. Any
yes/no question can be asked within these blocks. If you need to test two
conditions at the same time, you can describe both within the test block by using
the logical AND, OR, XOR, and NOT operators. For example:

START PB = ON AND EMERGENCY = OFF

With the Repeat/Until Loop and the While Loop blocks, you can design a block
that repeats commands. The Repeat/Until Loop continues to ask the questions
contained in its block until its conditions become true. The While Loop continues
to ask the questions contained in the block until its conditions are no longer true.

Flow Charts are event-driven diagrams that do not depend on time constraints,
although you can assign a time-out to a decision block. When the timeout-
defined number of microseconds passes, the program proceeds to the Else path,
even if the block has not fulfilled all of its conditions.

130

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.6.1

With Subchart blocks you can add calls to other charts:

You can place multiple Subchart blocks in a single Flow Chart.

Creating a new Flow Chart

To create a new Flow Chart:

1. In the Project Workspace pane, select Flow Chart.

2. Click the New Object tool in the Framework Editor toolbar, or choose
New from the File menu. A new Flow Chart with a default name (ChartN)
will be added to the project hierarchy.

To open a Flow Chart for editing, simply double-click on it or select the chart and

click the Open Object tool in the Framework Editor toolbar. When you open an
chart, its editor window will appear in the Object Editor pane.

Saving a Flow Chart
All program objects are saved automatically whenever you close them. However,

you can save a Flow Chart while it's open by clicking the Save Object or Save All
Objects tool in the Framework Editor toolbar.

Deleting a Flow Chart

You can delete Flow Charts in the same place you open them: the Project
Workspace pane. To delete a Flow Chart:

1. Close all open Flow Charts, Ladder Diagrams, and Logic Memory tables.

2. Select the desired Flow Chart in the Project Workspace pane. (You may
need to expand the hierarchy to select it - double-clicking expands it,
double-clicking again collapses it.)

3. Click the Delete Object tool in the Framework Editor toolbar, or choose
Delete from the Edit menu.

NOTE: Before deleting a Flow Chart, PointeControl will ask for a confirmation.

131

Chapter 5: Developing Controller Programs Pointe Controller User Guide

5.6.2

Navigating the Flow Chart editor

The Flow Chart editor window includes a work area and the tools you need to
create an executable chart. With the window's special set of tools, you add and
define the blocks that represent the program flow of interrelated tasks.

=10 =]

o Flow Chart Times

I_DIDI?II&IEEI!I ~| 818 & Elilﬂﬂl

Object-oriented flowcharting gives you freedom to easily establish your chart’s
structure. With the arrow cursor and tool bar, you can place and manipulate Flow
Chart blocks. By placing blocks you direct program flow, link to subcharts, and
add comments to the chart. You can select blocks and perform cut/copy, paste,
delete, and resizing functions to a selected block.

Flow Chart Workspace

This area provides an object-oriented graphic screen where you place and edit
blocks. The Workspace uses a grid with vertical and horizontal coordinate labels
at the left and top of the workspace. Each grid coordinate does not reflect any
absolute measurement, but indicates block locations (which can vary in size). A
new Flow Chart has a start block at 0 (h), 0 (v) and a return or exit block at 0,1.
The start block's properties use default values. For example, a new chart's name
appears as Chart [#], until you change it.

Special View Pane
To reveal a special view pane:
1. Pass the cursor over the gray bar (the adjust pane size) between the left

side of the window and the vertical coordinates. The cursor changes to a
black double-headed arrow that points left and right.

132

Pointe Controller User Guide Chapter 5: Developing Controller Programs

€ Flow Chart: Timer

' OlolalslaloE] v &

Special View Pane
[click and drag)

PAMEL KEYFAD DATA EMTRY
Lime: 1
Mezzage: ‘Enter zeconds: ~H00

[T I P T N A Y Y

2. Click and drag the adjust pane size bar to the right. The special view pane
appears as the workspace slides to the right.

TIP: If the entire Flow Chart editor window moves, you have grabbed the left side
of the window, not the adjust pane size bar. Move the cursor slightly to the right
and try again.

To determine the view pane display, right-click in the special view pane and select
Chart View, ST Code View, or Hide from the drop-down menu:

= When you select Chart View, the chart appears in the special view pane
at full magnification level. The view scrolls automatically to keep the
display in the view pane centered around the current position of the
mouse cursor in the workspace window:

e« Flow Chart: Timer o [=]

v OlololalalofE] v| Ala] & pelp

Lirtil
datafuailable = TRUE

datalaluelnt = datavalue

T_RESET[courter |
T_FRESET [courter | TO datavaluelnt sec

T_START [counter)
TURN OFF redLamp
TURMN ON greenlLamp

This option allows you to display smaller magnification levels in the
workspace window and the area around the cursor at full magnification
in the special view pane. You may find this feature useful with a large
chart, since you can see the entire chart and a smaller area of detail at the
same time.

133

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

= When you select ST Code View, a representation of the chart appears in
IEC-1131 structured text source code:

PROGRAM Timer
INCLUDE ‘SysLib.sh’

PanelDataEntrvi(l.
WHILE TRUE DO

END_IF
¥ield():
END_WHILE:

T _RESET(counter):

e« Flow Chart: Timer =10l =l
& OlolalsaloE v 1] &) | £
(% Start *) ” - ; . . .

INCLUDE '_ EzxternDecl . sh'

: BOOL:

VAR
_ ErrorCode : DINT:
_ Ticks : UDINT:
_ EzxTestResult
END_VAR

IF dataAwailable = TRUE THEN
EXIT;

dataW¥aluelnt := dataValue:

'Enter seconds:

| o

The editor automatically updates the code view as you make changes to

the chart.

= When you select Hide, the special view pane no longer appears.

The Flow Chart toolbar

Y OoalakoE v ala] &) @z HkE

Access the Flow Chart programming tools from this bar. The toolbar allows you to

select blocks, place a va
viewing mode, hide/show
you click its button.

riety of block types, change zoom levels and special
block labels, and check chart integrity. To select a tool,

Select Tool

With the arrow cursor you can select, move, and resize
blocks. [page 143]

Process Block
Terminator Block
Condition Block
Repeat/Until Loop Block
While Loop Block
Subchart Block

The six Block tools determine block type placed in a Flow
Chart. [page 135]

Comment Tool

With the Comment Tool, you can add notes to your Flow
Chart. [page 145]

Check Chart Integrity

This button checks the structure and syntax of the Flow
Chart. [page 181]

134

Pointe Controller User Guide Chapter 5: Developing Controller Programs

Zoom In The Zoom In and Zoom Out tools expand and reduce the
image of your Flow Chart in the workspace, making it
easier to review large sections of the logic flow at a
glance. [page 177]

Zoom Out

Replace Text The Replace Text tool finds and replaces all instances of
specified text within the current chart. [page 177]

Toggle Labels The Toggle Labels tool turns on/off the display of block
Captions in the editor window. (Captions can be added
to blocks via the Block Properties window.)

Size to Content The Size to Content tool resizes all of the blocks in the
chart to fit their respective contents. This makes it easier
to read the chart and see what blocks do without
opening them one by one.

View Change History This tool displays the history of changes to the current
Flow Chart. [page 146]

View Tag Cross Ref This tool displays a cross-reference of what tags and
variables are used in the chart. [page 178]

5.6.3 Placing and configuring Flow Chart blocks
Object-oriented flowcharting gives you freedom to easily establish your chart’s
structure. With the arrow cursor and toolbar, you can place and manipulate Flow
Chart blocks. By placing blocks, you direct program flow, link to subcharts, and
add comments to the chart.
To place a new Flow Chart block:
1. Select a block type from the Flow Chart toolbar:
o Process Block [page 151]
o Terminator Block [page 154]
o Condition Block (If/Then/Else) [page 156]
o Repeat/Until Loop Block [page 158]
o While Loop Block [page 159]
o Subchart Block [page 161]
2. Place the selected block type by clicking on an existing flowline in the

chart. The block appears at the specified location. Flowlines are
automatically redrawn to incorporate the new block into the logic flow.

Block Properties

When you insert a new block into the chart, the editor assigns default properties,
based on the block type. You change properties for a block through the Block
Properties window, accessed by double-clicking the block. A list of attributes for

135

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

5.6.4

the selected block appears in the window; the types of attributes listed depend
on the type of block selected.

fowe [l | MD\-‘EDDWHI

Caption -

Command Turn OFf J
Tag Errori [cnti] J

Command Increment J
Tag chitr J LI

The window provides editing controls and fields that allow you to specify what
actions occur or what conditions are tested when the runtime system executes a

block:

The list buttons modify the command list in Process blocks and the
argument lists in subchart Start blocks. These buttons allow you to Insert
an item (after the highlighted item), Delete the highlighted item, or
move the highlighted item Up or Down in the list. The Command field
must be highlighted in order to access the list buttons. Doing this allows
you to enter multiple commands in one process block using the Insert
button.

The Build Expression (==]) button opens a dialog to build an expression
for the selected property or action.

The Close button (ﬂ) closes the box. To reopen the box, double-click
any block.

The scroll bars allow you to move through the list of properties.

The Block Properties window always opens at a default size. You may change the
size of the currently open box by grabbing a line or corner with the cursor.

Building logical expressions

Most Flow Chart blocks reference a tag or expression. Tags provide the chart
access to real device inputs and outputs. With expressions you can assign new
values based on numeric calculations that often include references to other tags.
Decision blocks refer to tags and expressions that control program flow through a

chart.

136

Pointe Controller User Guide Chapter 5: Developing Controller Programs

For all blocks and commands, you enter tags and expressions through a similar
dialog box. Although these dialog boxes vary slightly depending on the required
response, they all contain a keypad and an area to enter an expression.

T
[ox] _cwes |

Bogureert

proge s ;I
2] 8] af +] (<] o| o] u] sl rewe] on
(4] sfs] o] [<]i>] wor] xof w] {paise] orr
(23] o] e 4]
:;ﬂ'lE_‘I_'_I 0| U] F| | Backmace |
o 3] 0i1] 0])] (o] cou]

The keypad allows you to build an expression using the mouse rather than the
keyboard. When you select a keypad button, the Flow Chart editor inserts the
button’s corresponding characters at the text insertion point in the selected field.
You can add numbers, arithmetic and Boolean operators, logic memory prefixes
and data types, spaces, and keyword constants (ON, OFF, TRUE, FALSE). The
Backspace button erases the character to the left of the cursor; the Clear button
erases the entire field.

A second box, the Select Expression Argument list box, appears beside the tags
and expressions dialog box and contains a list of tagnames:

= Add a reference to any defined Logic Memory database element using
the tagname list. From the Arg Type list, you can select Inputs, Outputs,
Memory database elements, Strings, Timers, Functions, or Local Variables.
The tags available for the selected argument type appear in the Selection
List. Double-click an item in the selection list to insert the corresponding
name in the tag area of the tags and expressions dialog. All tags are
displayed by Alias.

= You can manually enter an entire tag reference or expression by clicking
in the field on the tags and expressions dialog and typing the required
text using the keyboard.

= From the Arg Type list, you can also select Functions as an expression
argument. When Functions is selected, the View list presents the options
Math, String, Timer, and Date/Time.
Math functions:

e SHL(value,bits) returns the value shifted to the left by the
specified number of bits.

e SHR(value,bits) returns the value shifted to the right by the
specified number of bits.

137

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

Tags

String functions:
e COMPARE(string1, string2) compares two strings, returning -1
when string1 is ‘less than’ string2, 0 when the strings are identical,
and 1 when string1 is ‘greater than’ string2.

e FIND(string1, string2) returns the position in string1 where string2
is first found. If string2 is not found, the return is 0.

e LEN(string) returns the length of the specified string.
e STRING_TO_INT(string) converts the specified string to an integer.
Timer functions:

e T_DONE(timer_id) returns True when the specified timer has
expired

e T_PREVAL(timer_id) returns the specified timer’s preset value

e T_VALUE(timer_id) returns the specified timer’s current value
The Date/Time functions are all used to format the given seconds
parameter, as counted from January 1, 1970. To format the current time,

you must first get the time using the Date/Time Get command.

To specify a string, insert the string’s tag name in the function’s
parameter list.

To specify a timer, insert the timer’'s tag name as the timer_id in the
function’s parameter list [T_DONE(timer tagname)].

To specify the number of seconds since January 1, 1970, obtain the
current system time using the Date/Time Get process block.

A tag references an item in the PointeControl database. When a device input scan
or chart assignment statement assigns a new value to a tag, the entry in the
database updates. When an expression references a tag, the runtime system
retrieves the tag’s current value from the database and uses the value in the
expression.

138

Pointe Controller User Guide Chapter 5: Developing Controller Programs

Expression Syntax

In many instances, expressions can replace a single value or tag reference. Enter
expressions as free form text; they may be arithmetic or logical in nature.

Build Argument |
ak I Cancel |
Argument
[T_WALUE [counter] * 255]/ T_PREWAL [counted | ;I

HEE R FaLSE|| oFF
...El HOR E

Ll e =] D] [o
__Eme [o] [1]1] W .El |Space]| Cear |

All expressions produce a numeric result—either the actual result of the
arithmetic calculation, or the true/false result of a logical expression, where true
is 1 and false is 0.

An expression can include constants, tags, and functions and follows the syntax:

expression operator expression

The following table summarizes the available operators, listed in order of

precedence.
EXPRESSION TYPE OPERATORS
unary -a (negation)
multiplicative a* b (multiplication)
a/b (division)
a MOD b (modulus)
additive a + b (addition)
a-b (subtraction)

139

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

EXPRESSION TYPE

OPERATORS

relational

a<b (lessthan)

a<=b (less than or equal to)

a > b (greater than)

a>=b (greater than or equal to)
a=b (equal to)

a<>b (notequal to)

bitwise

a AND b (bitwise AND)
a OR b (bitwise inclusive OR)
a XOR b (bitwise exclusive OR)

logical

NOT a (logical NOT)

Calling Subcharts

The Build Argument dialog also appears when you define arguments to pass to a
called subchart. This dialog includes one text entry field, Argument. You can
enter math and Boolean logic in the Argument field, but you must enclose
Boolean expressions in brackets. You cannot compare values (greater than or less
than), and you can only use the AND Boolean operator.

140

Pointe Controller User Guide Chapter 5: Developing Controller Programs

Other Build Dialogs

Certain block properties present customized “build” dialogs, other than the
standard Build Expression dialog. These other dialogs are described below.

Build Assignment
‘ ion Argument Build Assignment |
| Selection List I Tag
H Ik datadvailable I ak. I Cancel |
+ | Cutputs data alue Evpression
| Memary InSwitchl
Strings InSwitch? ;I
Timers InSwitch3
| Functions InSwitchd LI
Localars RS witch
RS witchb
ew ||ty HEERRE 2 8] [TRuE] on
InSwitchd
| P HHEE <| > | [wo| [za] [Fase| oFF
1]2]= <=|l>= | D
EI El + 11 Uy F Backspace
‘ Ener |/ #]| [(] 1] [ano| [=]/R] |Seace| clea

The Build Assignment dialog appears when you define an Assign command in a
Process block. A statement assigns the specified Expression value to the specified
Tag. You can only enter one tag reference in the Tag field. You can enter math
and Boolean logic in the Expression field, but you must enclose Boolean
expressions in brackets. You cannot compare values (greater than or less than),
and you can only use the AND Boolean operator.

Build Timer ID
Select Expression Argument EM|Build Timer ID x|
Arg Type | Selection List I
Inputs couhter Cancel |
Edutputs Timer 1D
emory =
Stlinis _I
Functions LI
Localars
“leyay =« TRUE || 0OMW
Wigw |
4115 6 <l > FALSE|| CFF
123 {=|| 2=
1} E| + [] Backspace
Enter # [1 Space" Clear

The Build Timer ID dialog appears when you define the properties for Timer
commands. The dialog contains a single text box to enter the Timer ID, which can
be selected from the list on the left.

141

Chapter 5: Developing Controller Programs Pointe Controller User Guide

Select String Tag and Build String Argument

When you select a String command in a Process block, a list of parameter types
for that command appears. The first parameter, Destination String, displays a

String Tag Select dialog when selected. You can enter only one tag reference as
the string tag field.

Select Expression Argument Select String Tag : il
Arg Type | Selection List I Tag
Inputs dizplayLinel ||
Outputs dizplayline?
I ermor dizplaylined
m dizplayLined
Tirners dizplayPercent
Functi
Logalvars el (=]
4056 * ol
View 2|zl -1 (===
oyl || EY + [
e [] []l1]

The second and following parameters that appear depend on the selected string
command. You may enter a Source String, Number of Chars, Start Position, String
to Insert, or Replacement String. When you select any of these parameters, the

Build String Argument dialog box appears so you can define the remaining
arguments.

Select Expression Argument Build String Argument x|
Arg Type | Selection List I
Inputs dizplaylinel Cancel |
Outputs dizplayLine? Argument
I ermor dizplayLine3 ;I
Sivg: |t
Timers dizplayPercent
Functions LI
Localars
“leyay =« TRUE || 0OMW
Wigw
4115 6 <l > FALSE|| CFF
123 {=|| 2=
1} E| + [] Backspace
Enter # [1 Space" Clear

You can enter math and Boolean logic for the string command argument, but
you must enclose Boolean expressions in brackets. You cannot compare values
(greater than or less than), and you can only use the AND Boolean operator.

142

Pointe Controller User Guide

Chapter 5: Developing Controller Programs

9.6.5

Build Condition

The following dialog boxes appear, depending on the Condition Type you select
for a decision block of If/Then, Repeat/Until, or While Loop:

For a Condition Type of Expression, the Build Condition dialog appears:

Select Expression Argument Build Condition x|
Arg Type | Selectlon List I
datadevailable Cancel |
Outputs dataalue Condition
temony InSwitchl ;I
Strings InSwitch?
Timers InSwitchd
Functions InSwitchd LI
Localars InSwitchb
InSwitchE
vew |[Erichy Alslislad (= TRUE| ON
M'”Sw'mhs +|5]s <|[>] [war FaLse|| oFF
1 2] = <=[>= @
1} E| + [] Backspace
Enter # [1 AND EIEI Space" Clear

This dialog includes one text entry field, Condition, which must include
some relational operator (e.g. =, <, >, #) to be evaluated. You can enter
math and Boolean expressions in the Condition field, but you must
enclose Boolean expressions in brackets.

If the Condition evaluates as TRUE when the chart is scanned, then the
true branch of the decision block will be followed. If the Condition
evaluates as FALSE, then the false branch will be followed.

For a Condition Type of Diag Fault Bit Test or Error Status Bit Test, a
regular Select Tag dialog appears for you to enter the Source Tag.

Moving, resizing, and deleting blocks in a Flow Chart

Once a block or group of blocks has been placed in a flow chart, you can move,
copy, resize, or delete it as needed without breaking the chart’'s flow. The
flowlines to and from the blocks are automatically redrawn to accommodate
whatever changes you make.

X

To select a block or group of blocks: click the Select Tool in the Flow Chart
toolbar and then click anywhere inside a block. The selected block becomes

dark green and red handles appear around it. To select multiple blocks, hold
down the <shift> key while selecting blocks. All selected blocks become green.

143

Chapter 5: Developing Controller Programs Pointe Controller User Guide

NOTE: If you select a decision block (If/Then, Repeat/Until, or While/Do), then all
of the blocks contained within the decision block’s loop are also selected. These
contained blocks are marked in yellow rather than green.

Moving a selected block
To move a selected block or group of blocks, click on it and drag it to a new
location in the chart. You must place the moved blocks onto a flowline. The

editor automatically inserts the block between the blocks connected by the
flowline. Moved blocks carry all of their properties with them.

Copying a selected block
These editing features allow you to move and duplicate blocks. Cut and copy
perform similar functions, but cut removes the original block and copy leaves the
original in place. When you paste a block, the editor places it after the currently
selected block. To copy a block:

1. With the Select tool, select a block to copy or cut.

2. To copy, click the Copy button, or choose Copy from the Edit menu.

3. To cut, click the Cut button, or choose Cut from the Edit menu.

4. Select a block after which the cut or copied block is to be pasted.

5. Click the Paste button, or choose Paste from the Edit menu. The block
from the clipboard appears after the currently selected block.

Resizing a selected block

After you select a single block, you can change the size of that block with the
block handles. To change a block’s size:

1. Pass the arrow tool over one of the handles until the tool becomes a
double arrow (pointing in the directions you can resize with that handle).

2. Click the handle and drag the block outline to the size you want. You
should only need to resize a block to accommodate a large label or name.

%l NOTE: You cannot manually resize multiple selected blocks. However, you
can resize all of the blocks in the chart by using the Size to Content tool.

144

Pointe Controller User Guide Chapter 5: Developing Controller Programs

Deleting a selected block
There are many different ways to delete a selected block or group of blocks:
= C(Click either the Cut Object tool or the Delete Object tool on the
framework toolbar. Cutting a block places it on the clipboard. Deleting a
block does not place it on the clipboard.

= Choose either Cut or Delete from the Edit menu. Cutting a block places it
on the clipboard. Deleting a block does not place it on the clipboard.

= Press the key on your keyboard, click on the Delete Object tool, or
select Delete from the Edit menu.

Cutting a block places the block on the Windows clipboard. Deleting an element
does not place the element on the clipboard.

5.6.6 Adding comments to a Flow Chart
Enter comments and tack them to your Flow Charts like a note. Unlike the other
block types, comments do not snap to the chart's grid. Place the comments
anywhere on the chart. Comments can display any text, like information about
the chart or its blocks, but comments do not affect program flow.
1. Click the Comment tool on the Flow Chart toolbar.

Comment tool

MololalslalmE v| ala] & Bl Bl

2. Point and click on the chart to begin placing the comment.

3. Drag the box until it reaches the size you want, then release the mouse
button. The Comment block is now available for editing.

=& | Comment

145

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

5.6.7

4. Double-click on the Comment block to open its Block Properties window.

Block Properties

Comment

Block Properties
lnset |

Miowve U | aneDownl

Anchor ta Black[xy)

-

tMove Up || Move Down |

Caption
Comment

6. Close the Block Properties window.

Cornrrert

-

Thiz block, controls the timer,

Anchor ta Block[xy)

This block controls the timer.

If your comments should run larger than the limits of the block, you can resize
the block. Text automatically reflows according to the size and shape of the

comment block.

Logging changes in a Flow Chart

The View Change History button displays the change history of a Flow Chart if the
audit log processing has been turned on for the selected chart. If audit log
processing has not been turned on for the chart, then an error dialog appears
that gives you the option of turning on the audit log processing. The program
logs any changes made after the processing has been turned on in the change

history for the chart.

146

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.6.8

To enable audit log processing for a Flow Chart, click the View Change History
button on the chart’s toolbar:

View Change History tool

Ix Olo|a|aalojE| v ala] |%l|§%ﬁ|

A notice appears that gives you the option of enabling audit log processing.

NOTE: Once this feature is enabled, it cannot be disabled.

Once enabled, you are required to enter a comment on changes made to the
chart each time you close the Flow Chart editor window (and save changes). The
Update Flowchart Change History box appears, allowing you to enter your
comments.

Update Flowchart Change History |
Frogecl lieer_and_gauges
Flowchait Chard5
Desciplion of changes:
Aelded & second Time: Fleset., =]

ok | ceneel | wviewlog |

You can also check the current change history by clicking the View Log button.

After you have enabled audit log processing for a Flow Chart, the Update
Flowchart Change History box appears whenever you click the View Change
History button on the toolbar.

Making a Flow Chart a reusable Subchart

Create Subcharts to reuse common Flow Chart programming. This reuse speeds
development and testing, since you only create and debug a chart once. When
you create a Subchart, you add arguments specific to the chart. Another Flow
Chart can then call the Subchart and assign values to these chart-specific tags.

147

Chapter 5: Developing Controller Programs Pointe Controller User Guide

To make a Flow Chart a reusable Subchart:

1. Double-click on the chart’'s Start block to open its Block Properties
window.

Block Properties
Delete

Start

Chart1
Freferences <Arial, ..o
Chart Type Program

Default State Enabled
Run Criteria

2. Click the Chart Type property and select Subchart from the drop-down

menu. The Arguments and Local Vars properties are added to the
window.

Block Properties
Insett || Delete | Move Up || Move Down |
Caption Start
M arme Chart1
Freferences <anal, ... >
Chart Type
Arguments = r
Local Vars ¢ 03

3. Define the arguments and local variables to be used by the Subchart:

a. Select Arguments or Local Vars. Arguments are values and
variables passed from the calling Flow Chart to the Subchart. Local
Vars are variables defined and used only within the Subchart,
completely independent of Logic Memory.

In this example, Arguments is selected:

Block Properties : k|

Inseit || Delete || Wovellp | Wove Down |
Caption Start -
M ame Chart1
Preferences <énial, ... x -]
Chart Type Subchart j
SArgurnerts A
Loczal Wars LI

[|

148

Pointe Controller User Guide

Chapter 5: Developing Controller Programs

b. Click Insert to add a new argument.

C.

d.

e.

Block Properties |

Inseit | Delete | tovelp | Blove Down |
Caption Start -
M ame Chart1
Preferences <énial, ... x -]
Chart Type Subchart j
Arguments ELa
Loczal Wars LI

=

From the tag type drop-down list, select the argument type. In
this example, DINT (32 Bit Signed) is selected:

Inzert |

| Mave lp |Moveann

H|

Caption

M ame
Preferences
Chart Type
Arguments

BoOL
SINT
LSINT
INT
LINT

LUDINT
REAL
BOOL (by ref]
SINT (b ref]

DINT

Start
Chart1
<arial, ... x
Subchart
73—

| «

=403

|»

FY

=

For more information on configuring arguments, see “A Note on

Arguments”

below.

In the variable’s text entry box (right column), enter a name to
describe the tag. In this example, “totalElapsed” is entered:

Block Properties |
Inseit | Delete | tovelp | Blove Down |
Caption Start -
M ame Chart1
Preferences <arial, ... x =]
Chart Type Subchart j
Arguments ELa
DINT = |[totalE lapzed |
Loczal Wars LI
LI

Repeat steps a through d for all of the arguments and local
variables to be used by the Subchart.

4. Close the Block Properties window and save the Subchart. It can now be
called by any other Flow Chart.

149

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

A Note on Arguments

When you define an argument in the Subchart’'s Start block, you are merely
setting it up to receive some value or variable that will be passed from the calling
Flow Chart. The actual value of that argument is defined in the Flow Chart'’s
Subchart block.

Also, arguments can be passed either “by value” or “by reference”:

An Argument by value is the calculated value of the argument’s logical
expression at the moment the Subchart is called. The value is then
operated on locally within the Subchart — as if it was a literal - without
affecting the tag or expression from which the value was calculated.

An Argument by reference is a pointer to a tag in Logic Memory.
Operations on the pointer within the Subchart read from and write to the
tag as if it was referenced directly by the Subchart. The pointer is used so
that a different tag can be referenced each time the Subchart is called. It
all depends on what tag reference is passed by the calling Flow Chart.

If the Subchart needs to read from or write to the same Logic Memory tag
every time it is called, then the tag can be directly referenced the same
way it is in a regular Flow Chart.

Make sure you select the right variable type — by value or by reference - from the
type menu (step 4c above).

Calling the Subchart

For a complete description of how to call a Subchart from within a Flow Chart,
see “Subchart Block” on page 161.

150

Pointe Controller User Guide

Chapter 5: Developing Controller Programs

5.7

5.7.1 Process Block

TURN OFF

Errori[entr]
INC. cntr

Types of Flow Chart Blocks

Process blocks define commands in your control program
logic. You can add an unlimited number of the 41 available
commands to a single Process block. Upon encountering a
Process block, the program executes the commands in their
order of appearance, from top to bottom, in the Block
Properties window.

PROPERTY

WHAT YOU ENTER

Caption

User label for the block.

Command

You can choose commands from the following types:
*= General Commands
*= Timer Commands
= String Commands
= Diagnostics Commands
= Serial Commands
= Date/Time Commands
= Operator Panel Commands
Most commands require you to configure additional parameters.

To add and remove additional commands, use the Insert and
Delete buttons in the Block Properties window. To change the
order of the commands, use the Move Up and Move Down
buttons.

Double-clicking on

an empty Command

property opens a Select Process Command
dialog, which can be used to select a
specific command and add it to the
Process block.

window.

Turn On
Slgring _ Turr_1 s
First, select a command type from the |Diagnostics Assign
Type list on the left. When a command SE’t'E'LT. ::r;':’ementt
type is selected, the commands available |z ™2 SCISMEN
. . . Operatar Panel || Clear
in that type appear in the Command list Enable
on the right. From there, select a specific Dizahle
command from the Command list and Get Tag Mame
click OK. The selected command and its Y it
configurable parameters will be shown in
the Process block’s Block Properties
Cancel |

A complete description for each command

— including configuration details - can be found in Appendix B, “Flow Chart
Command Reference.” Page links are provided for each command type. General
Commands (at right) can be found starting on page 298. The rest of the
command types are shown below.

151

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

Select Pr

Type | Command |

| General

String
Diagnostics
Sernal
DatesTime
Operator Panel

Tirner Start
Timer Stop
Timer Reset
Tirner Prezet

Timer Commands [page 303]

‘Dagnoshcs
Sernial
DatedTime

Operator Panel

Diag Set Tag Status
Diag Clear Tag Status

Diagnostics Commands [page 316]

Select Pr

Type | Cormmand |

General
Tirner
String
Diagnostics
Sernal

D atedTime
Operator Panel

D atedTime Get
DratedTime Farmat
Get Elapsed Time

Date/Time Commands [page 330]

elect Pr

Type | Cormmand |

General
| Tirmer

Diagnostics
Sernal
DatesTime
Operator Panel

String Copy

String Concat

String Left

String Right

String kid

String [nzert

String Delete

String Replace
String Format Integer

String Commands [page 306]

Select Pr

Type | Cormmand |

General
Tirner
String

Diainnstics

DatesTime
Operator Panel

Serial Configure Port
Sernial Enable Part
Senal Dizable Port
Senal Read Byte
Serial Write Byte

Sernal Read MultiBytes
Senal ‘wite MultiBytes
Senal et Comm Errors

Serial Commands [page 321]

elect Pr

Type | Cormmand |

General

Tirner

String
Diagnostics
Sernial
DratesTime
Uperator Panel

Operator Panel Commands [p. 333]

K.eppad D ata Enfry
Arrowe Adjust Data Entry
Button On

Buttan OIff

152

Pointe Controller User Guide

Chapter 5: Developing Controller Programs

Process Block Example

Block Properties X

[Fsert | [Nelete I e @ | ewe [Mawn |

Cormmand Timer Stop J
Timner kirmer_1 J
Commard Tirmer Preszet J
Tirner timer_1 |
Freszet Walue kestl J
I rits Fillizeconds j
Command Tirner Stark J
Timer himer_1 J j

Program flow enters the process block at the top and executes the commands as

they are listed, from top to bottom.

= The command, Timer Stop, freezes the specified timer, timer1.

= The command, Timer Preset, sets the specified timer (loads Preset), timer1,
to the value contained in the specified tag, test1.

= The command, Timer Start, restarts the specified timer, timer1.

= After all of the block’'s commands execute, program flow continues
through the outgoing arrow to the next block.

153

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

5.7.2

Terminator Block

Terminator blocks define the start and exit points of a Flow Chart. Each chart has
one Start block and at least one Return block. Start blocks for subcharts contain
important information about chart-specific tags (see below).

Start Block Properties:

PROPERTY

WHAT YOU ENTER

Caption

User label for the block.

Name

Name of the Flow Chart, as it appears in the Project Workspace
pane.

Preferences

Display the Flowchart Preferences window, in which you can set
certain appearance and behavior options for the chart:

= In the Font pane, click the Select button to change the
font, font size, font style, or font script. The default font is
Small Fonts.

= In the Block Text Margins pane, use the controls to adjust
the Left/right and Top/bottom margins. The default is 6
points.

= In the Size to Content Preferences pane, use the sliding
scales to change the starting width of the Diamonds
(decision blocks) and Rectangles (process blocks) in your
chart. Also, use the control to adjust the Horizontal Snap
Size (the incremental snap-to width; the higher the value,
the wider the block).

= Inthe Options, select the check box if you want to:
= Always YIELD in loops (see note below)
= Always size to content
= Display block shadow
= Freeze selected block in detail view
= Check run criteria on all YIELDs (see note below)

Save or restore default selections by clicking the Save Defaults or
Restore Defaults buttons, respectively.

Chart Type

Program (executable flowchart) OR Subchart (callable subchart)

For more information on subcharts, see "Making a Flow Chart a
reusable subchart” on page Error! Bookmark not defined..

Default State

(Program only)

Enabled OR Disabled

A disabled state inhibits the execution of the Flow Chart. You may
find this useful for developing charts for future functionality in
your project, or if some machinery is undergoing maintenance and
should not run.

154

Pointe Controller User Guide

Chapter 5: Developing Controller Programs

PROPERTY

WHAT YOU ENTER

Run Criteria

(Program only)

Presents Build Condition dialog to specify a condition that must be
true for the program chart to execute. Run criteria are always
evaluated on start of execution at the beginning of a chart. You
can also elect to evaluate run criteria each time a chart returns
from a yield (for example, inside a loop or wait operation) by
selecting the option in the Flowchart Preferences dialog box.

Arguments
(Subchart only)

By Value (default): A tag’s value is passed to the subchart; as such,
the tag cannot be modified within the subchart. Literal constants,
i.e., numbers, may be passed by value.

By Reference: A reference to the tag is passed to the subchart.
Since the tag’s reference provides direct access to the
PointeControl database, the tag’s value can be referenced or
modified within the subchart through the tag reference. A string
may also be passed by reference.

Local Vars
(Subchart only)

The number of chart-specific local variables. A listing of the
defined chart-specific outputs appears below this property.

NOTE: A loop (Repeat/Until or While/Do) that is set to YIELD will allow the rest of
the charts in the project’s Chart List to scan while the loop is running. If the loop
is not set to YIELD, then it will continuously check its run condition without
interruption, effectively putting all other charts on hold. For more information,
see “Repeat/Until Loop” on page 158 and “While/Do Loop” on page 159.

Return/Exit Block Properties:

PROPERTY

WHAT YOU ENTER

Caption

User label for the block.

Terminate Type

Return OR Exit

For program charts, Return restarts the chart from the Start block;
for subcharts, Return directs program flow to the calling chart.

Exit directs program flow out of a loop and continues execution at
the block immediately following the loop.

155

Chapter 5: Developing Controller Programs Pointe Controller User Guide

5.7.3 Condition (IflThen/Else) Block

A Condition block contains a Yes or No type
question that directs program flow in one of two
directions. When the specified condition evaluates
to a non-zero value, program flow proceeds down
the true branch.

By default, the true branch is labeled “Then” and
the false branch is labeled “Else,” to correspond to

the if-then-else programming construct. You can change these labels to yes and
no or on and off to correlate to the test condition.

PROPERTY WHAT YOU ENTER
Caption User label for the block.
Line Labels If/Then/Else, Is/Yes/No, or Is/On/Off as the labels for the block and

outgoing flowlines.

Switch T/F Paths

Yes or No. Yes switches the direction of the true/false paths. When
you enable this option, the true path proceeds to the right, and
the false path proceeds down. No leaves true/false paths in the
normal orientation (true is down, false is to the right).

Timeout Value

Timeout value to wait for the condition to be true before
proceeding down the false path. Only the current chart remains
suspended waiting for this timeout to occur—all other charts
continue to run normally.

Units

Units of the Timeout Value.

Condition Type

Type of Condition:

= Expression — Build a conditional expression using the
Build Condition dialog.

= Diag Fault Bit Test — Select an Input, Memory, or Output
tag and test to see if its Diag Fault Bit is set or clear.

If the condition evaluates true, then the Then/Yes/On line is
followed. If the condition evaluates false, then then Else/No/Off
line is followed.

156

Pointe Controller User Guide

Chapter 5: Developing Controller Programs

Condition Block Example

Block Properties

IF/Then/Elze j:|
Switch T/F Paths Mo =
Tirneout ' alue =i
TR <ndar
Condition Type Expreszion j
Expreszion Input_1 = 0N JLI

i [z | fEne ey

This decision block determines if Input_1 is ON or OFF. If Input_1 is ON, program
flow continues through the Flowline labeled Then. If Input_1 is OFF, flow
continues through the flowline labeled Else.

The LinelLabels property specifies a Then label for the flowline followed
from a true or on condition and an Else label for the flowline followed
from a false or off condition.

The Switch T/F Paths property is No, meaning the default true/false path is
taken. A selection of Yes switches the true/false path of the flow.

The Timeout Value property is not selected. When you select a tag, the
value adds a wait period to the block. Program flow does not follow the
Else line, even if the condition is false, until the Timeout expires and the
condition still evaluates to false. Any time the condition evaluates to True,
regardless of the Timeout, program flow follows the Then line.

The Units property is associated with the Timeout Value. If you specify a
Timeout Value, you can select the units for counting time in milliseconds,
seconds, or minutes.

The Condition Type property is selected as an Expression, and the next
property defines the block’s tested expression. In this condition, the tag,
Input_1, can be ON or OFF.

157

Chapter 5: Developing Controller Programs Pointe Controller User Guide

5.7.4 Repeat/Until Loop Block

The Repeat/Until Loop block represents a repetitive
process, where the block checks the condition at the
bottom of the loop, ensuring that the chart executes
the sequence of instructions at least once. If the
condition at the bottom of the loop is true, program
flow continues at the next block in the chart. If the
condition is false, control returns to the top of the loop.

Repeat

PROPERTY WHAT YOU ENTER
Caption User label for the block.
Line Labels Until/Done/Repeat or Until/On/Off as the labels for the block and

outgoing flowlines.

Yield Yes or No to specify whether, when the condition tests false,
program flow should immediately return to top of the loop or
yield to the next listed Flow Chart. Use this option with caution,
since it essentially disables all other charts while the program
executes the loop.

A block that yields (Yes) runs all other charts in your Chart List,
then returns to the top of the loop that yielded and retests the
block’s condition. A block that does not yield (No) continues to
check the condition, uninterrupted.

Condition Type Type of Condition:

= Expression — Build a conditional expression using the
Build Condition dialog.

= Diag Fault Bit Test — Select an Input, Memory, or Output
tag and test to see if its Diag Fault Bit is set or clear.

If the condition evaluates true, then the Done/On line is followed.
If the condition evaluates false, then the Repeat/Off line is
followed.

Repeat/Until Loop Block Example
— |

Block Properties
k=it [Ielere favellp | Tl ey

Line Labels IIntil/D'one/Repeat jj
i

Yield Tes
]

INC Input_2

Condition Type E wprezszion
Expreszion Input_2 »= 20

Before reaching this decision block, the program increments the value of Input_2.
The decision block then determines if Input_2 is greater than or equal to 20. If

158

Pointe Controller User Guide

Chapter 5: Developing Controller Programs

yes, program flow continues through the Flowline labeled Done. If Input_2 is less
than 20, flow yields to the next chart, then returns to the flowline Repeat to
again increment and check Input_2 until the required count is reached.

= The LinelLabels property specifies a Done label for the flowline followed
from a condition of Input_2 being greater than or equal to 20 and a
Repeat label for the flowline followed from a condition of Input_2 being

less than 20.

= The Yield property specifies the program flow must continue to the next
chart if the condition is not met and return to increment and check the
value again until the condition is met.

= The Condition Type property selects an Expression.

= The next property defines the block’s tested expression. In this condition,
the tag, Input_2, can be any number greater than or equal to 20.

5.7.5 While/Do Loop Block

Error_MNumber

The While/Do Loop block represents a repetitive
process, where the block evaluates a condition at the

EELl top of the loop until the condition evaluates to true. If

the condition is true, the blocks in the loop are
executed; if the condition is false, program flow
continues at the block immediately following the
loop.

PROPERTY

WHAT YOU ENTER

Caption

User label for the block.

Line Labels

While/Do/Done or While/On/Off as the labels for the block and
outgoing flowlines.

Yield

Yes or No to specify whether, when the condition tests false,
program flow should immediately return to top of the loop or
yield to the next listed chart. Use this option with caution, since it
essentially disables all other charts while the program executes the
loop.

A block that yields (Yes) runs all other charts in your Chart List
after executing the blocks in the loop, then returns to the top of
the loop that yielded and retests the block’s condition. A block
that does not yield (No) continues to check the condition,
uninterrupted.

159

Chapter 5: Developing Controller Programs Pointe Controller User Guide

PROPERTY WHAT YOU ENTER

Condition Type Type of Condition:

= Expression — Build a conditional expression using the
Build Condition dialog.

= Diag Fault Bit Test — Select an Input, Memory, or Output
tag and test to see if its Diag Fault Bit is set or clear.

If the condition evaluates true, then the Do/On line is followed. If
the condition evaluates false, then the Done/Off line is followed.

While/Do Loop Block Example

Block Froperties
fase E | f i B

LineLabels while /D o/Dione 5l
ield Yes =
Condition Type Expreszion j
............... Expression Errar_Murnber » 0

DEC
Error_Number

The decision block determines if Error_Number is greater than 0. While the
answer is yes, program flow yields to the next chart, returns to the flowline
labeled Do, and decrements the value of Error_Number before returning to the
decision block to check the value. If the value is greater than 0, flow continues to
the remainder of the current chart through the flowline labeled Done.

= The LinelLabels property specifies a While label that specifies the
condition, a Do label for the flowline from a condition of Error_Number
being greater than 0, and a Done label for the flowline a condition of
Error_Number being less than or equal to 0.

= The Yield property specifies the program flow must continue to the next
chart while the condition is met and return to decrement and check the
value again until the condition is no longer met.

= The Condition Type property is selected as Expression.

= The next property defines the block’s tested expression. In this condition,
the tag, Error_Number, can be any number greater than 0.

160

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.7.6 Subchart Block

A Subchart block makes a call to a previously
defined subchart, analogous to a call to a
subroutine in a programming language. When
program flow reaches a Subchart block, the chart
transfers program flow to the Start block in the
called subchart. Program flow continues from that
point until reaching a Return block. Control then
returns to the calling (main) chart and proceeds
with the block immediately following the original
Subchart block. You can nest Subchart calls; a main chart may call a subchart,
which can in turn call another subchart, etc.

PROPERTY WHAT YOU ENTER

Caption User label for the block.

Call Chart Name of the subchart to call.
Arguments Arguments to pass.

Local Vars Variables local to the subchart.

Subchart Arguments

When calling a function chart, you must assign tag references to the called chart’s
internal tags. To assign these values, pass arguments from the calling chart’s
subchart block to the called chart (specified by CallChart):

1. Add or select a Subchart block.

2. In the Block Properties box, select a chart from the CallChart drop-down
list. After you select a chart, the properties appear in the Block Properties
box.

3. Press the logic statement button for each property to build the arguments
that are passed from the calling chart’'s subchart block to the called
subchart. For internal references, you can assign a value or reference any
tag.

4. Access the local variables that are to be used within the subchart. The
local variables are not accessible from other charts.

161

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

Subchart Example

b ation

QM [

100 [

TRUE [

Inputfl ON Actuators TRLUE J
AND Output_1 End_Senzor FALSE J;I

This subchart block calls the function chart, Motion. Program flow enters the
block at the top and jumps to the Motion chart’s start block. The subchart block
passes each argument, listed in the Block Properties box (Invert becomes ON,
Max_Time becomes 100, etc.) to that particular call of the Motion chart. Program
flow continues through the Motion chart until reaching a return block. Flow

returns to the calling chart and continues through the outgoing flowline of the
subchart block.

162

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.8

5.8.1

Building and Editing Ladder Diagrams

A Ladder Diagram is a program component written using traditional Relay Ladder
Logic. The ladder is made up of sequential rungs, and each rung is made up of
sequential function blocks.

Ladders are executed from top to bottom, one rung at a time.

Creating a new Ladder Diagram

To create a new Ladder Diagram:

3. Inthe Project Workspace pane, select Ladder Diagram.

4. Click the New Object tool in the Framework Editor toolbar, or choose
New from the File menu. A new Flow Chart with a default name
(LadderN) will be added to the project hierarchy.

To open a Ladder Diagram for editing, simply double-click on it or select the

diagram and click the Open Object tool in the Framework Editor toolbar. When
you open a diagram, its editor window will appear in the Object Editor pane.

Saving a Flow Chart
All program objects are saved automatically whenever you close them. However,

you can save a Ladder Diagram while it's open by clicking the Save Object or
Save All Objects tool in the Framework Editor toolbar.

Deleting a Flow Chart

You can delete Ladder Diagram in the same place you open them: the Project
Workspace pane. To delete a Ladder Diagram:

4. Close all open Flow Charts, Ladder Diagrams, and Logic Memory tables.

5. Select the desired Ladder Diagram in the Project Workspace pane. (You
may need to expand the hierarchy to select it — double-clicking expands it,
double-clicking again collapses it.)

6. Click the Delete Object tool in the Framework Editor toolbar, or choose
Delete from the Edit menu.

NOTE: Before deleting a Ladder Diagram, PointeControl will ask for a
confirmation.

163

Chapter 5: Developing Controller Programs Pointe Controller User Guide

5.8.2

Navigating the Ladder Diagram editor

As a resource of PointeControl, ladder diagrams appear in the resource tree of
the PointeControl framework. Expanding the ladder diagrams entry in the
resource tree shows the diagrams included with the project. Double clicking on
one of the listed diagrams will activate the ladder editor and load the selected
diagram. A new diagram can be defined by selecting the Ladder Diagrams entry
in the resource tree and then clicking the New Object icon in the framework
toolbar. Alternately, select File/New while the Ladder Diagrams entry is selected
in the resource tree. The ladder editor window is shown below:

of Ladder Diagram: gaugesMath O] =]

A x| [F wlw|m (e m 6] n)~ | A8 8 [FTl o] = o

ey e e e e e

D
EN ENO
T_YALUE[counter) hitsCaunter blieCounter 1IM1 OUT |- bitsCounter
255 2 T_PREVAL(counter) 4 IN2

LIT o
EH END EN ENRD

T WAL UE[counfer] 4 INT OUT = proagressBar progrssstar 4 INT - QUT = progoessHar

LR

Al o INZ I_PREVAL{ coumlir § = 1K

DIy
EM END

T_WALUE[counter) percentComplete percentComplete 4 INT - OUT | percentComplete
1l T_PREWVAL(counter | 4 INZ

wE=a

The window includes a title bar containing the name of the ladder diagram and a
standard system menu bar. A toolbar, found under the title bar, contains a set of
icons for each of the tools available to the ladder editor. A secondary toolbar,
immediately under the main toolbar, provides the ladder objects available for
placement in the workspace. This secondary toolbar changes with the selection of
an object library tool from the main toolbar. The workspace, appearing under the
toolbars, is the area in which the ladder diagram will be constructed. Scroll bars
appear around the workspace as needed based on workspace contents and
magnification level.

The workspace is the scratchpad into which ladder diagram blocks are placed. A
ladder diagram consists of a series of ladder rungs that execute sequentially, from
left to right, and top to bottom. Each rung consists of a left and right power rail
and ladder objects, typically contacts and coils, as well as function blocks. Rungs
may include branches and may also include jumps to other rungs or calls to other
ladder diagrams. Objects are placed in the workspace using the tools contained
on the toolbar and discussed in subsequent paragraphs.

164

Pointe Controller User Guide Chapter 5: Developing Controller Programs

The workspace area is shared with a cross-reference window and a code view
window in which the structured text equivalent of the ladder diagram can be
viewed. The Show Cross Reference tool (see subsequent paragraphs describing
the editor tools) activates the cross-reference window. Dragging the splitter bar
on the left side of the editor workspace to the right reveals the code view
window. This is a view-only window — structured text cannot be edited.

Each ladder diagram has a set of properties: diagram name, type, and description.
The name is limited to 30 characters (like Flow Charts) and will default to LadderX
where X will be the next sequential index of all ladder diagrams for the project.
The type can be either program (the default) or sub-ladder, allowing it to be
called like a subroutine from another ladder diagram. The optional description
can be text of essentially unlimited length describing the overall operation or
purpose of the diagram. These properties can be defined when the diagram is
first created or later, using the Program Properties dialog. This dialog is activated
by a right click anywhere within the workspace (to activate a context menu) and
selection of the Edit Program Properties entry. The dialog appears as:

Program Properties

Program Name:

Ladderl [SubLladder

Pragram Descption

0K | Cancel

Once the program properties are as desired select the OK button to save the
values or select Cancel to leave the properties unchanged.

The Ladder Diagram toolbar
k| x| [|| o | 2 | 2 | | || [vet] v | [B &[]t n] o o [|]

Access the Ladder Diagram programming tools from this bar. The toolbar allows
you to select blocks, place a variety of block types, change zoom levels and special
viewing mode, hide/show block labels, and check diagram integrity. To select a
tool, simply click its button.

165

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

5.8.3

The tools are, from left to right:

Select
Delete

These two buttons are used to select and delete elements
in the Ladder Diagram. [page 168]

Relays and Coils
Timer and Counter
Math

Comparison

Logical and Bit Shift
Selection

String

Flow Control
Miscellaneous

These nine buttons are used to access the various libraries
of Ladder Diagram function blocks. [page 167]

New Rung
Branch Rung

These two buttons are used to add new rungs and rung
branches to a Ladder Diagram. [page 166]

Validate Ladder

This button checks the structure and syntax of the Ladder
Diagram. [page 181]

Zoom In
Zoom Out

These two buttons adjust the magnification level at which
the Ladder Diagram is displayed in the workspace. [page
1771

Replace Text

This button finds and replaces text in the Ladder Diagram.
[page 177]

Show Rung Comments
Show Rung Numbers
Show Rung Logic
Show Block Captions

These four buttons change what supplementary
information is displayed in the Ladder Diagram workspace.
[page 169]

Show Cross Refs

This button displays a list of all tags and variables used in
the Ladder Diagram. [page 178]

Adding new rungs and branches to a Ladder Diagram

Rungs may be added to a ladder diagram via the New Rung tool.
H Selecting the New Rung button will add another rung to the current
displayed ladder diagram. Rungs are inserted before a selected rung or
added to the end of the diagram when no rung or block is selected, or

when any block is selected. When a new rung is inserted or added in the wrong
position, select the rung (click on the rung number) and drag it to the desired
position, or delete it and try again.

Rungs may optionally be assigned a label to serve as the target for a GOTO block
or a caption to document the diagram. Both attributes can be edited by a right-
click on the rung number (to activate the context menu) and selecting the Edit
Rung Properties entry.

166

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.8.4

Adding a branch to an existing rung

Branches may be added to rungs using the Branch Rung tool. This tool,

I-:-l when selected, allows you to click anywhere on a rung to select one

endpoint for the branch. An arc then appears between the endpoint

and the cursor position showing the path the branch will take. Now

click on the rung to define the other branch endpoint. When a valid endpoint is

specified the branch will be drawn. (Note the branch is not drawn as an arc once

its endpoints are defined. Rather the branch corners are squared so the branch

appears as a set of horizontal and vertical lines.) When an invalid branch

endpoint is selected, an audible beep occurs and the arc remains visible so that a

valid endpoint may be specified. To abort the branch definition, select another
tool or hit the keyboard ESC key.

Branches cannot cross other branches, nor can they jump from one rung to
another. Branches may nest within other branches. Once placed, the branch
endpoints may be repositioned via drag-and-drop, subject to the previous
restrictions.

Placing and configuring a Ladder Diagram block

Once placed on a rung within a ladder diagram, ladder function blocks must be
configured, that is, each of the block’s inputs and outputs must be assigned a tag
from the project’s database. A double click on the block, or a right click and
selection of Edit Block Properties from the context menu, initiates the block
configuration dialog.

The function block configuration dialog provides a convenient, easy-to-use way
to provide tags for configuring ladder function blocks. Its functionality and
appearance are similar to the configuration dialogs used in the chart editor. A
representative example, showing the configuration of a division function,
appears below:

Select M1

[| x|

Selection List

batscunlier 1M1 m
peeceriComplate
i progiescha 73 |T_F'FIE1.-'AL| counter |
rIITEIS
Humernic auT |h|9r._'murrc:

OE. Cariel
| |

Dietails Unsigned 32 B / 5MUDT / bitsCounter / 5MUDT /D

The configuration dialog is actually two dialogs working together, one on the
right, the configurator, providing values for each of the tags needed to configure
a ladder function block, and one on the left, the browser, to assist with the tag
selection. The configurator title bar shows the type of function block being

167

Chapter 5: Developing Controller Programs Pointe Controller User Guide

5.8.5

edited. As each of the configuration fields is selected the title bar of the browser
updates to show the name of the field being edited. Use of the browser is
optional — each of the configurator fields allows direct type-in. Validation is
performed on each field and the configurator OK button is enabled only when all
fields contain legal entries or blanks. (Blank entries are valid for some fields, for
example the Timer Pulse preset and elapsed time fields. Checking for blanks in
fields requiring a valid tag is performed at project build time.)

Use of the browser is straightforward. The Type listbox shows the valid database
types for the selected configurator field. Types shown may be any or all of Inputs,
Memory, Outputs, Strings, Timers, Numeric, or Literal. The inclusion of the
Numeric and Literal types is for mnemonic purposes only — both types must be
entered directly by the user. Literals must be enclosed within single quotes to be
valid. Selection of a Type will force an update to the contents of the View and
Selection List sections.

The View listbox shows the different views available for the selected database
type. Inputs, Memory, and Outputs are viewed only by Alias. The available
selections for Timers are T_DONE, T_PRESET, and T_VALUE when integer value
tags are allowed in the selected configurator field. No View selections are shown
when just the name of a timer is expected in the selected configurator field (as
for example the Timer field for any of the Timer function blocks). No View
selections are available for the String, Numeric, or Literal types.

The Selection List shows the available tags for the selected type and view. The list
is filtered to exclude tags not appropriate for the selected configurator field. For
example, when configuring fields for contacts or relays, only bit type tags of the
selected type and view will be shown. Further filtering is available through use of
the configurator field itself. Characters entered into the field are matched against
the available tags and only those tags beginning with the entered characters will
be shown: enter ‘a’ and all tags beginning with ‘a’ will be shown. Add the
character ‘'r' and only tags beginning with ‘ar’ will be shown. Filtering is not case
sensitive. A single click within the Selection List copies the selection to the active
configurator field.

Moving, copying, and deleting elements in a Ladder Diagram

Elements (blocks, branches, rungs) are selected using the Select/Edit

tool. Selecting an element highlights it and deselects/un-highlights any

prior selection. Blocks are selected by clicking on the block. Branches

are selected by clicking on the merge point. The branch origin is
selected by clicking on the split point. Rungs are selected by clicking on the rung
number. Once selected, elements may be dragged and dropped to other positions
in the Ladder Diagram. Elements will drop only on legal drop points; if the drop
point is not a legal position, then the element is not moved.

One exception to the drag-and-drop paradigm is the branch. Only the branch
origin (split) and the branch termination (merge) may be dragged and dropped
to new positions. To move or copy a branch to a new position, first Cut or Copy
the selected branch. Next select another object around which the branch should
link, then ‘Paste’ it in place. Should the branch origin and endpoint end up
misplaced, simply drag and drop them to the desired position. Branches may not
cross each other; they must always nest either inside or around other branches.

168

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.8.6

Deleting elements

Selected elements may be deleted using the Delete tool. Object
deletion is also possible using the Edit menu or the keyboard DEL key.
Be advised that element deletion is not undoable. Unlike cutting an

element, the Delete action does not place a copy of the element in the
clipboard.

Adding comments to a Ladder Diagram

Ladder Diagrams may be given optional comments or captions as an aid in
documenting the logic flow.

Program Properties

Program properties include the Program Name (as it appears in the Project
Workspace pane), the Program Description, and the Sub-Ladder option. To edit
these properties, right-click anywhere in the Ladder Diagram and choose Edit
Program Properties from the context menu.

Rung Properties

Rung properties include the Rung Label and Rung Comment. To edit these
properties, right-click on the desired rung and choose Edit Rung Properties
from the context menu.

o The visibility of rung comments may be toggled using the Show Rung
Comments tool in the Ladder Diagram toolbar. Rung comments are visible
by default whenever the ladder editor is started.

Block Captions

Each function block in a Ladder Diagram can have its own Block Caption. To edit
a block’s caption, right-click on the desired block and choose Edit Block Caption
from the context menu.

e | The visibility of block captions may be toggled using the Show Captions
tool in the Ladder Diagram toolbar. Rung comments are visible by default
whenever the ladder editor is started.

il NOTE: Rung logic (the contacts, coils and function blocks comprising the

ladder diagram) may be shown or hidden using the Show Rung Logic tool.
Rung logic is visible by default whenever the ladder editor is started. This feature
may be useful when comments are defined for each ladder rung. By hiding the
rung logic, leaving just the comments visible, a text only description of the ladder
diagram will be seen, allowing the viewer a quick overview of the purpose and
functionality of the ladder diagram.

169

Chapter 5: Developing Controller Programs Pointe Controller User Guide

5.8.7 Making a Ladder Diagram a reusable Sub-Ladder

Create Sub-Ladders to reuse common Ladder Diagram programming. This reuse
speeds development and testing, since you only create and debug a chart once.

To convert an existing Ladder Diagram into a reusable Sub-Ladder:

1. Select and open the desired Ladder Diagram from the Project Workspace
pane.

2. Right-click anywhere in the ladder and choose Edit Program Properties
from the pop-up menu. The Program Properties window will appear.

3. Click the Sub-Ladder checkbox.
4. Click OK to save your changes and close the window.

The program is now a reusable Sub-Ladder and can be called from another
Ladder Diagram using the CALL and RETN blocks.

NOTE: Unlike Subcharts, Sub-Ladders cannot receive any local variables.

170

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.9

5.9.1

Types of Ladder Diagram Blocks

To make it easier to select from the 79 available Ladder Diagram blocks, they are
grouped into nine block types or libraries. These libraries can be accessed by
selecting the corresponding tools from the Ladder Diagram toolbar:

mn oo | om | oo | om | oo | om | oo | om
<4 TIM| MTH | CMP | BIT | 2EL | TR | FLW | M2C

Clicking on a library toolbar button will make that library’s own toolbar appear
just below the main Library Diagram toolbar. From there, you can select
individual blocks and place them in your diagram.

TIP: A complete description for each block - including configuration details — can
be found in Appendix C, “Ladder Diagram Block Reference.” Direct page links are
provided below.

Relays and Coils

o Selecting this library tool activates the Relays and Coils toolbar, which
allows the placement of relay contacts and coil-type objects in your
—I I— ladder diagram.

This library includes the following blocks:

TOOL | DESCRIPTION FOUND ON...
il Normally Open Contact Page 338
il Normally Closed Contact Page 338
ﬂl Rising Edge Relay Page 339
ﬂl Falling Edge Relay Page 339
Ql Output Coil Page 340
ﬁl Negated Output Coil Page 341
Ql Latched Coil Page 341
Ql Unlatched Coil Page 342
@l Rising Edge Coil Page 343
gl Falling Edge Coil Page 343
FED Falling Edge Detector Page 344

171

Chapter 5: Developing Controller Programs Pointe Controller User Guide

TOOL | DESCRIPTION FOUND ON...
RED Rising Edge Detector Page 345
S0M Set-Dominant Bistable Page 346
FOM Reset-Dominant Bistable Page 348

5.9.2 Timer and Counter Blocks

o Clicking on this toolbar button activates the Timer and Counter Blocks
toolbar, which allows the placement of timing and counting functions
T"'|'1 in your ladder diagram.

This library includes the following blocks:

TOOL | DESCRIPTION FOUND ON...
TP Timer, Pulse Page 350
TOM Timer, ON Delay Page 351
TOF Timer, OFF Delay Page 352
CTU Counter, Up Page 353
CTD Counter, Down Page 355

ﬂl Counter, Up/Down Page 356

5.9.3 Math Blocks

o Clicking on this toolbar button activates the Math Blocks toolbar, which
allows the placement of mathematical functions in your ladder
I"'ITH diagram. Activation of the Math Blocks toolbar terminates any active
block insertion mode, forcing a selection from the Math Blocks library
before insertion mode is restored.

This library includes the following blocks:

TOOL | DESCRIPTION FOUND ON...
+ | Add Page 359
- | Subtract Page 360

172

Pointe Controller User Guide Chapter 5: Developing Controller Programs

TOOL | DESCRIPTION FOUND ON...
_+| Divide Page 362
il Multiply Page 363
il Square Root Page 364
MOD Modulus Page 366
5IH Sine Page 367
El Cosine Page 368
ﬂl Tangent Page 369
HSH Arc Sine Page 370
El Arc Cosine Page 371
ATH Arc Tangent Page 372
RES Absolute Value Page 373
El Logarithm Page 374
il Natural Logarithm Page 375
El_“l Exponential Page 376
E_"l Natural Exponential Page 378
PR Expression Page 379

5.9.4 Comparison Blocks

Clicking on this toolbar button activates the Comparison Blocks toolbar,
which allows the placement of functions that perform a numerical
EMF' comparison between two Logic Memory tags.

This library includes the following blocks:

TOOL | DESCRIPTION FOUND ON...
GT | Greater Than Page 381

173

Chapter 5: Developing Controller Programs Pointe Controller User Guide

TOOL | DESCRIPTION FOUND ON...
El Greater Than or Equal to Page 382
ﬂl Equal to Page 383
El Not Equal to Page 385
il Less Than or Equal to Page 386
il Less Than Page 387

5.9.5 Logical and Bit Shift Blocks

o Clicking on this toolbar button activates the Logical and Bit Shift Blocks
toolbar, which allows the placement of function block objects in the
EIT ladder diagram that perform Boolean and/or bit oriented functions.

This library includes the following blocks:

TOOL | DESCRIPTION FOUND ON...
AMD And Page 389

El Or Page 391

El Exclusive Or Page 393
HOT Not Page 394
SHL Shift bits Left Page 396
SHR Shift bits Right Page 397
ROL Rotate bits Left Page 399
ROR Rotate bits Right Page 400

5.9.6 Selection Blocks

o Clicking on this toolbar button activates the Selection Blocks toolbar,
which allows the placement of selection or clamping functions in your
EEL ladder diagram.

174

Pointe Controller User Guide

Chapter 5: Developing Controller Programs

This library includes the following blocks:

TOOL | DESCRIPTION FOUND ON...

il Select minimum value Page 402

il Select maximum value Page 403
LIM Limit value Page 405
SEL Select one of two values Page 406

5.9.7 String Blocks

o Clicking on this toolbar button activates the String Blocks toolbar,
which allows the placement of string operations in your ladder

ETF: diagram.

This library includes the following blocks:

TOOL | DESCRIPTION FOUND ON...
il Set string Page 408
LEH Find string length Page 409
El Extract sub-string from Left Page 410
ﬂl Extract sub-string from Right Page 411
rID Extract sub-string from Middle Page 413
il Concatenate strings Page 414
LHF Compare strings Page 416
IH5 Insert sub-string Page 417
DEL Delete sub-string Page 419
El Replace sub-string Page 421
ﬂl Find sub-string Page 423

175

Chapter 5: Developing Controller Programs Pointe Controller User Guide

5.9.8 Flow Control Blocks

o Clicking on this toolbar button activates the Flow Control Blocks
toolbar, which allows the placement of command objects that control

FLI.I.I execution flow of the ladder diagram. These objects alter the standard
left to right, top to bottom execution of the diagram.

The library includes the following blocks:

TOOL | DESCRIPTION FOUND ON...
CALL | Call sub-ladder diagram Page 425
RETH Return to main diagram Page 426

5.9.9 Miscellaneous Blocks

o Clicking on this toolbar button activates the Miscellaneous Blocks
toolbar, which allows the placement of conversion and assignment
ME functions in your ladder diagram.

The library includes the following blocks:

TOOL | DESCRIPTION FOUND ON...
ﬂl Convert to Boolean Page 427
* INT Convert to Integer Page 428
ﬂl Convert to Float Page 429
ﬂl Convert to String Page 430
TRHC Truncate Page 432
ﬂl Integer to Character Page 433
ﬂl Character to Integer Page 434
ﬂl Integer to BCD Page 435
ﬂl BCD to Integer Page 436
M Move Page 438

176

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.10

5.10.1

5.10.2

Other Framework Editor Tools

Finding and replacing text

Text strings within the active ladder diagram can be replaced with

ﬂ other strings using the Replace Text tool. This contrasts with the

- Replace Text in Project command that is available in the Edit menu,
which replaces text throughout the project.

Selecting the tool activates the Replace Text dialog:

Heplace Text In Chart/Diagram
Find what: |
F eplace with: |
Heplace it
[Match whale ward anly r
[Match caze + ‘Wwhole chart/diagram
ar. Cancel

Using the dialog you specify the text string to be replaced and its replacement.
Scans may be case-sensitive or case-insensitive. Scans may also be restricted to
whole-word matches or not. This is especially useful when replacing tag names in
a diagram and you need to replace all occurrences of the tag XIC1 with XIC2, but
do not want to modify tags XIC11, XIC100, XIC1102, etc. The scan will default to
replacing all occurrences of the search string within the whole diagram, unless
there are objects selected within the diagram, in which case the scan defaults to
the selected objects.

Zooming in and out on a chart

You can view the Flow Chart or Ladder Diagram editor

workspace at several magnification levels using the Zoom In

= and Zoom Out buttons on the toolbar. Zoom In makes the
diagram appear larger, while Zoom Out makes the diagram

appear smaller, allowing you to see more of it within the workspace window. By
default, the workspace is initially displayed at the maximum magnification level.

177

Chapter 5: Developing Controller Programs Pointe Controller User Guide

5.10.3 Viewing tag cross references

A cross-reference of all Logic Memory tags and variables used within

::.::FI the active Flow Chart or Ladder Diagram can be shown or hidden using

the Show Cross-Reference tool. The cross-reference appears on the left

side of the editor workspace and consists of a tree of all database alias

tags. Each tag can be expanded, by clicking the open icon (cross within a square)

or double clicking on the entry, to show the DRV, wire label and list of blocks

using the tag. Each entry in the list includes the rung number and block type

using the tag. A double click on the entry will select and show the function block.
The cross-reference is hidden by default whenever the ladder editor is started.

178

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.11

5.11.1

Compliing Your PointeControl Project

After you have developed your project, you can compile it into a finished
program and download it to your Pointe Controller unit for execution.

To compile your PointeControl project for download:
1. Configure your Chart List.
2. Setyour Scan Interval.
3. Build your runtime module.
4. Activate the PointeControl Monitor.

For more information on using PointeControl Monitor, see Chapter 6,
“Downloading to the Controller,” and Chapter 7, “Monitoring and Debugging.”

NOTE: PointeControl does not support online changes. If you wish to modify your
project after you have downloaded it to the Pointe Controller unit, you must
make your changes in the PointeControl Framework and then recompile your
project.

Configuring your project's Chart List

You can use the Chart List to specify which Flow Charts and Ladder Diagrams are
to be compiled into the finished program and in what scan order they must be
arranged.

NOTE: The Chart List does not list subcharts. Any subcharts called by charts in the
Chart List are automatically included when the project is compiled.

To configure your project’s Chart List:

1. From the Project menu, choose Configure Chart List. The Chart List
window appears. All saved Flow Charts and Ladder Diagrams are listed
under Available Charts on the right.

2. Under Available Charts, highlight the chart you want to add and click the
<- button. The chart is moved from Available Charts on the right to the
Chart List on the left.

3. Repeat step 2 for each chart you want to add to the Chart List.

4. To change the scan order of a chart in the Chart List, highlight the chart
and use the Up and Down buttons to move it within the list. Repeat this
step until all of the charts are in the correct scan order.

5. To remove a chart from the Chart List, highlight the chart and click the ->
button. The chart is moved from the Chart List on the left to Available
Charts on the right.

179

Chapter 5: Developing Controller Programs

Pointe Controller User Guide

5.11.2

NOTE: This action only removes the chart from the project’s Chart List. It
does not delete the chart from the project. To delete a chart from the
project, see Deleting an object from your project.

6. When you are satisfied with the configuration of the Chart List, click OK
to save your changes and close the window.

If you are doing a full compile of your project, then proceed to Setting your
project’s scan interval.

Setting your project's scan interval

Your project’s scan interval is the frequency at which the Pointe Controller unit
scans, or resolves, the Flow Charts and Ladder Diagrams that make up your
project. You can set the scan interval and other project preferences by using the
Preferences window.

To set your project’s scan interval:

1. From the Edit menu, choose Preferences. The Preferences window will
appear.

Logic Solve seaninterval: | 10 ms
Manitor update intensal: [250 ms
Controllertimeoutinterval [5000 ms
¥ Download source fo contraller

Ok E Cancel E

2. Change the preferences as needed:

Logic Solve scan interval — The frequency at which the controller
resolves the charts that make up your project. (Default: 10 msecs)

Monitor update interval - The frequency at which the controller
sends runtime data back to an attached PointeControl Monitor.
(Default: 250 msecs)

Controller timeout interval - The time at which the controller will
stop execution, if communications with an attached PointeControl
Monitor are interrupted and cannot be reestablished. (Default: 5000
msecs)

Download source to controller - The option to download the
project’s source code to the controller along with the compiled
program, so that the project may later be uploaded from the
controller back to an attached PointeControl Monitor for debugging.

3. Click OK to save your changes and close the window.

180

Pointe Controller User Guide Chapter 5: Developing Controller Programs

5.11.3

5.11.4

For more information on using PointeControl Monitor, see Chapters 6 and 7.

If you are doing a full compile of your project, then proceed to Checking your
project's chart integrity.

Checking your project’s chart integrity

«; PointeControl includes a built-in syntax checker that scans your Flow Charts

and Ladder Diagrams for missing, incorrect, or undefined tags and block
parameters. Some checking occurs as you build your charts, but using the Check
Integrity tool ensures that a thorough scan is performed.

The Check Integrity button allows you to locate and correct bugs that prevent the
program from compiling correctly. For each identified error in a Flow Chart or
Ladder Diagram, the Messages pane lists the name of the affected chart and the
coordinates of the block that contains the error.

NOTE: You can also check the integrity of an individual Flow Chart or Ladder
Diagram by clicking the Check Integrity tool in the toolbar of that particular
chart.

To check your project’s chart integrity:

1. Click the Check Integrity tool in the framework editor toolbar, or choose
Check Integrity from the Project menu. If PointeControl detects any
errors, they will be displayed in the Messages pane at the bottom of the
Framework Editor window.

2. Double-click a listed error to correct it. PointeControl will open the
affected Flow Chart or Ladder Diagram and highlight the block that
contains the error.

3. Correct the error.

4. Repeat steps 1 through 3 until all errors are corrected.

Building your project's runtime module

.aa After you have configured your project’s Chart List, click the Build

Runtime toolbar button to build the final runtime module that will be
loaded onto the Pointe Controller unit. (You can also choose Build Runtime
from the Project menu.)

As the runtime is built, progress messages are displayed in the Messages pane at
the bottom of the Framework Editor window. If any errors are encountered, then
the build process will be aborted. Possible errors include:

= Syntax and chart integrity errors

= |/O configuration errors

* Modbus mapping errors

181

Chapter 5: Developing Controller Programs Pointe Controller User Guide

9.11.5

= Java compilation errors
You must fix all errors before you can try again to build the runtime module.

Once the runtime module is successfully built, proceed to Activating the
PointeControl Monitor.

Activating the PointeControl Monitor

@I After you have built your project’s runtime module, click the Activate

Monitor toolbar button to launch the PointeControl Monitor utility. (You
can also choose Activate Monitor from the Window menu.) This utility
manages the downloading of your runtime to the Pointe Controller unit.

For more information on using PointeControl Monitor, see Chapters 6 and 7.

182

Pointe Controller User Guide Chapter 6: Downloading to the Controller

Chapter 6: Downloading to the Controller

When you have finished developing and compiling your control program, you
must use the PointeControl Monitor application to download it to the Pointe
Controller unit. PointeControl Monitor (referred to hereafter as PCM) is a Java-

based utility for loading, running, monitoring, and debugging projects on Pointe
Controller units.

This chapter describes how to select and attach a Pointe Controller unit on the
network, then prepare and load a PointeControl project onto the controller.

TIP: The information provided in this chapter is also available via the
PointeControl Monitor online help. To access the help, choose Contents from the
Monitor’s Help menu.

183

Chapter 6: Downloading to the Controller

Pointe Controller User Guide

6.1

Launching the PointeControl Monitor

To launch PCM from within the PointeControl development framework, either

click the Activate Monitor toolbar button or choose Activate Monitor from
the Window menu. To launch PCM from the Windows Start menu, choose Start
> Programs > PointeControl > Monitor. When you launch PCM, the
PointeControl Monitor window appears:

e PomteControl Monstos
| File Edit Wiew Help

i E Stop | erif] 2 I Rt E

Controller. |-\:,-r--:1:=n- ;I Detach t
Current project: |'-""1" angd_gauges 8] [!

Project 1o (re)load: |:=rr BY_and_gauges ;I

Execution made: |isU Enabled ;I

ﬁh&ﬂlﬁi Em'merl Cnnsala] Controller Luul

Timar RN G
Gaugesiiath READY
BlsGauge READY
BarGalge READY

ParcentGauge | READY'

The PointeControl Monitor window is roughly divded into two halves. The top
half of the window is a control panel that is used to download and run finished
control programs on the Pointe Controller hardware. The bottom half of the
window is a tabbed set of displays that show the status and performance of the
program as it runs on the controller. For more information on monitoring
program performance, see Chapter 7, “Monitoring and Debugging,” starting on

page 193.

184

Pointe Controller User Guide Chapter 6: Downloading to the Controller

6.2

Selecting and Attaching a Controller

PCM can interact with any Pointe Controller unit on the local Ethernet network.
However, PCM launches in a blank state and must establish an exclusive
connection with a specific controller in order for this interaction to occur.
Establishing this connection is called “attaching to the controller.

To select and attach a controller:

1. Click the Controller drop-down menu. The menu will list all of the Pointe
Controller units that are available on your network. If no controllers are
listed, make sure both your target controller and your PC are attached to
the same Ethernet network.

2. Select your target controller from the menu. PCM will immediately
attempt to attach the controller.

It may take several moments for PCM to successfully attach the controller. This
delay occurs as PCM checks to see if a project is already loaded on the controller
and, if there is, to secure the corresponding source code for debugging. (For more
information, see “Viewing and debugging charts” on page 205.)

NOTE: If PCM cannot attach the target controller, because of either
communication problems or extreme load, then you will be alerted to the failure
and an error message will be logged in the Console tab. If the problem persists,
you should reset the controller as described on page 230.

Once PCM has attached to the target controller, the control panel will be
updated to reflect the current state of the controller:

= If no project is loaded on the controller, then the Current project field
will remain empty and the Project to (re)load menu will become
enabled. The Start, Stop, and Reset buttons will be disabled. From here,
you can proceed with loading a project onto the controller.

= [If a project is loaded but not running, then project will be displayed in the
Current project field and the Start and Reset buttons will become
enabled. From here, you can proceed with either starting the loaded
project or loading a different one.

= If a project is loaded and running, then the project will be displayed in
the Current project field and the Stop button will become enabled.
Also, the tabbed displays at the bottom of the window will show the
status of the project. From here, you can proceed with either monitoring
the running project or stopping it.

NOTE: If a password has been set on a Pointe Controller unit, then you must
match that password in PCM before you can attach the controller. If you do not,
you will receive an error message when you attempt to attach. For more
information, see “Assigning a password to the controller” on page 190.

185

Chapter 6: Downloading to the Controller Pointe Controller User Guide

6.2.1

Detaching from a controller

When PCM is attached to a specific Pointe Controller unit, it disables the
Controller drop-down menu to prevent you from accidentally disrupting
communications with the controller. You must explicitly detach from the
currently attached controller before you can select another.

To detach from a controller, click the Detach button to the right of the
Controller drop-down menu. You can then select and attach another controller
as described above.

NOTE: If a project is running on an attached controller, it will continue to run
after you detach from it.

186

Pointe Controller User Guide Chapter 6: Downloading to the Controller

6.3

6.3.1

Downloading a Project to the Controller

After PCM is attached to a specific Pointe Controller unit, you can select a
compiled project from your PointeControl working directory and download it to
the controller. Downloading a new project will completely overwrite any existing
project on the controller.

To download a project to the controller:

1. Verify that PCM is attached to the target controller.

2. If the controller is already running a project, then stop it.

3. Click the Project to (re)load drop-down menu. The menu will list all of
the compiled projects that are available in your PointeControl working
directory.

4. Select your desired project from the menu.

5. Click the Load button to begin the download process. PCM will prepare

the project and download it to the controller. You can watch the process
in the Console tab.

NOTE: You cannot download the same revision of a project that is already loaded.
You must download either a different (newer) revision of the loaded project or
different project altogether.

The download process can take several minutes, since it involves converting the
compiled project into a program image and writing it to the controller’s flash
memory. The actual amount of time it takes depends on the processor speed of
your PC.

When the load process is finished, the Start button will become enabled. You can
then proceed to Starting and stopping a loaded project.

Unloading a project

Downloading a new project will completely overwrite any existing project on the
controller. However, in certain cases (such as sending the hardware back to the
vendor for service), you may want to unload the existing project without
downloading a new one. To do this, simply attach the controller and click the
Unload button located to the right of the Current project field. This will
download a blank (null) project onto the controller, effectively erasing the
controller's memory.

187

Chapter 6: Downloading to the Controller Pointe Controller User Guide

6.4

6.4.1

6.4.2

Starting and Stopping a Loaded Project

Once a project is loaded onto the Pointe Controller unit, it's a very easy matter to
start the project:

1. Verify that PCM is attached to the target controller and your project is
loaded onto it.

2. From the Execution mode drop-down menu, select either I/O Enabled
or /0 Disabled:

= In /O Enabled mode, the controller will scan all /0O points and
execute charts using live data. This option is intended for real control
of connected machinery.

= In I/O Disabled mode, the controller will not scan any I/O points and
will only execute charts internally using virtual data. This option is
useful for debugging logic flow; inputs can be simulated by forcing
tag values.

3. Click the Start button.

When the project is running, you can proceed with monitoring and/or debugging
it.

Stopping a project

To stop a project that is currently running on an attached controller, simply click
the Stop button. The controller immediately stops scanning charts and 1/0, and
the project’s last state (including tag values and chart conditions) is retained in
memory.

WARNING: Stopping a project does not stop the controller’s internal clock nor
any Timers that are keyed to it. Active Timers continue to count elapsed time
even while the project is stopped, and all control logic that is based on those
Timers will update accordingly when the project is resumed.

To completely stop an active Timer, you must either execute a Timer Stop
command (T_STOP) within the project or stop and reset the project using PCM.
For more information on resetting a project, see below.

Restarting a stopped project

To resume a stopped project from its last state, simply click the Start button
again.

To restart a stopped project from its initial state — that is, the initial tag values
and chart conditions that you defined when you created the project in the
PointeControl Framework - click the Reset button and then the Start button.

188

Pointe Controller User Guide Chapter 6: Downloading to the Controller

6.4.3 Enabling and disabling I/0

You can change the controller execution mode (i.e., whether real I/O scanning is
enabled or disabled) any time the project is stopped — for example, if you began
your debugging with 1/0 disabled and now want to enable it. To change the
execution mode:

1. Verify that PCM is attached to the target controller and your project is
loaded and running.

2. Click the Stop button.

3. Click the Execution mode drop-down menu and select either 1/0
Enabled or 1/0 Disabled, as desired.

4. If you wish to restart the project from its initial state, click the Reset
button.

5. Click the Start button.

189

Chapter 6: Downloading to the Controller

Pointe Controller User Guide

6.5

Assigning a Password to the Controller

You can secure one or more Pointe Controller units against unauthorized access
by assigning passwords to them. You can assign the same password to a group of
controllers by first creating the password in PCM and then assigning it to each
controller in the group.

Once a password is assigned to a controller, you must have that password set in
PCM before you can reattach the controller. (If you do not, you will receive an
error message.) The password is retained in memory, allowing you to freely
attach all matching controllers.

To create/set a password in PCM:

1.

From the Edit menu, choose Password. The Controller group
password window will appear.

Enter your password, then tab to the next field and enter it again to
confirm.

Click OK. The password is retained until a new password is set or until the
current PCM session is closed.

Once the password is set in PCM, it can be used both to add new, unsecured
controllers and to access controllers that are already secured with that password.

To assign the current password to an unsecured controller:

1.

2.

Verify that PCM is attached to the target controller.

From the Edit menu, choose Join group. The password will be assigned
to the controller and the change will be confirmed in the Controller Log.

NOTE: The password is saved permanently in the controller’s flash
memory, until the controller is removed from the group or undergoes a
hard reset (see below).

To assign the same password to other controllers, detach from the current
controller and repeat the process for each additional controller.

To clear the password from a secured controller:

1.

Verify that PCM is attached to the target controller. (You must have the
appropriate password set in PCM before you can attach the controller.)

From the Edit menu, choose Leave group. The password will be erased
from the controller and the change will be confirmed in the Controller
Log.

To clear the same password from other controllers, detach from the
current controller and repeat the process for each additional controller.

190

Pointe Controller User Guide Chapter 6: Downloading to the Controller

6.5.1 Overriding a password

If you cannot remember a controller’s password, you can bypass it via hardware
override. To override the password on a controller:

1. Power off the affected controller.

2. Change the controller’s Modbus address to “98," using the rotary switches
located on the controller's motherboard.

3. Power on the controller.

4. Launch PCM, attach the controller, and clear the password.
5. Power off the controller.

6. Change the Modbus address back to its original setting.

7. Power on the controller.

For more information on accessing the Pointe Controller rotary switches, see
“Hardware Reset” on page 230.

191

Chapter 6: Downloading to the Controller Pointe Controller User Guide

6.6

Saving a Project from the Controller

If you wish to edit a project that was not developed on your own PC, you can
retrieve the project’s source code from the controller and save it in your
PointeControl working directory. From there, it can be opened normally in the
PointeControl development framework.
To save a project from the controller:

1. Verify that PCM is attached to the target controller.

2. From the File menu, choose Save Current Project As. The save file
dialog will appear.

3. Enter a name for the project.

4. Click OK. The project is saved.

NOTE: In order to retrieve a project’s source code from the controller, the project
must have had the Download source to controller preference enabled when
the project was originally loaded. The preference is enabled by default, but some
developers may disable it to restrict access to the project.

192

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

Chapter 7: Monitoring and Debugging

One of the powerful features of PointeControl is the ability to monitor and
debug program operations while they are running on the Pointe Controller unit.

This chapter is divided into two sections:

= Monitoring a running project — This section describes how to use PCM's
built-in tools to monitor the status and performance of the project while
it is running on the Pointe Controller unit.

= Viewing and debugging charts — This section describes how to use PCM’s
built-in tools to debug the project’s Flow Charts and Ladder Diagrams, by
manipulating individual tag values and block execution.

TIP: The information provided in this chapter is also available via the
PointeControl Monitor online help. To access the help, choose Contents from the
Monitor’s Help menu.

193

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

741

711

Monitoring a Running Project

After you have loaded and started a project on your Pointe Controller unit, you
can monitor the project’s behavior using the tools included in PCM. These tools
are accessible through the four tabbed panes along the bottom of the PCM
window:

= The Charts tab lists all of the Flow Charts and Ladder Diagrams that are
running in the current project. You can select any listed chart to open it
for viewing and/or debugging.

= The Browser tab provides a searchable list of all the Logic Memory tags,
strings, and timers in the current project. You can select individual tags to
see their real-time values or to force new values.

= The Console tab displays all status and error messages generated by PCM
itself as it communicates with attached controllers.

= The Controller Log tab shows the activity log of the currently attached
controller. Logged activities include project loads and unloads, project

starts and stops, and password group changes.
You can also check the general system performance (scanning speed, processor

usage, I/0O errors) of the Pointe Controller itself by using the Performance Metrics
window.

The Charts Tab

Charts | Browser| Console | Controtier Log |

Chart | State |
= FLMRRNG
|G aLigeshath READY
itz Gauge READY
BarGauge READY
PercerCaunge READY

The Charts tab displays all of the Flow Charts and Ladder Diagrams that are
running in the current project.

NOTE: In this chapter, the term “charts” refers to both Flow Charts and Ladder
Diagrams collectively.

The tab displays up to four columns:

= Chart - The name of the chart.

194

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

= State — The current state (READY, RUNNING, etc) of the chart.

= Block (optional) - If logic flow is enabled in the debugger, then this
column shows which block in the chart is currently being executed.

= Execution Time (optional) - If diagnostic timers are enabled in the
debugger, then this column shows the total time to execute the chart.

To open any chart for viewing and/or debugging, simply double-click on it. The

chart will be opened into a new debugger window. For more information,
proceed to “Viewing and debugging charts” on page 205.

7.1.2 The Browser Tab

The Browser tab provides a searchable list of all the Logic Memory tags, strings,
and timers in the current project. You can select individual tags to see their real-
time values or to force new values.

To create a new search:

1. Click the Search criteria tab.

195

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

2. Select the classes and types of tags for which you want to search by
clicking the corresponding checkboxes. For example, to search for all
Input Bit and Output Bit tags, click the Inputs, Outputs, and Bits
checkboxes:

3. Click the Search results tab. The tags that match the selected types will
be listed.

There are two ways to narrow your search even further:

= Switch from All values to Forced values to search only for tags which
you have manually forced to new values.

= Enter a Filter string to search only for tag names that start with that
string. For example, a Filter string of “InSwitch will return Inswitch1,
InSwitch2, InSwitch3, and so on.

196

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

Showing tag details

Once you have your search results, you can double-click on any listed tag (or
right-click and choose Show Details) to open a new window that shows detailed
information about the tag:

ccSetinpw @]
Ml
Jinswitch
Clasgs:
I N
Typa:
Bit
Value:
[
M valug:
[
 Farce state

Forcad: MO
Toggle Force State l

Close I

From this window you can also force the tag to a new value - but for more
information on that, see “Forcing new tag values” on page 212.

Adding tags to a watch window

As you monitor your running project, you can build a Watch Window that shows
only your favorite tags. To add a tag from the Browser search results to the
Watch Window, right-click on the desired tag and choose Add to watch
window.

el Waltch Window - Faves_ wwwd HF[E |

File Edit Help

Alaz Clasz Type Valuz |
istas vailable gt
e wtein Pput
ot
Bt
AT
o tEN3
joutSnS
S
ot BiG
BT
courer
fdspiayPercant String

FRFI R

i

Fﬁﬂﬁﬂlﬂ—‘a—‘—‘ﬂﬂ

197

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

713

Just as in the Search results tab, you can double-click on any listed tag to open a
new window that shows detailed information about the tag.

After you have built your Watch Window, you can save its configuration as a
.WWD file in your project’s working directory. You can do this either by choosing
File > Save or by closing the window and clicking Yes when prompted. Then the
next time you run PCM and monitor the project, you can quickly restore the
Watch Window to its saved configuration by choosing File > Open and selecting
the desired .WWD file.

NOTE: You can open the Watch Window directly from the main PCM window by
choosing View > Watch Window.

The Console Tab

Charts | Brawser Consols | Controller Log |

PointeContigl Monitar stared.

laading sourcs filas for confroller dabugging.,

cgeiSource®

=geiSourea=CAPrpgram FllasiHamatien'PointeContol=dal cumant /g
igetSouroer

<getSoutcerCAFrogram FilesiNem atren\FointeControl>cd cumant
<getSourass

cgeiSource* CAFrogram FileANEMATROMPsinteCantra NCURRENT = jar =f \Fojectitesfibuildesmce,
eoures filas loadad

Inttializing debugger interface...

debugger libeary loaded

Drebuggaer infefaos intialized.

checking For file cumenbThad okt

chart hWivnd i 19003

The Console tab displays all status and error messages generated by PCM as it
communicates with attached controllers. Types of messages displayed here
include:

= Program activity messages for the PCM application itself;

= Communications status and error messages, as PCM communicates with
the Pointe Controller unit via the Ethernet network;

= Progress messages generated as a finished PointeControl project is
prepared for loading onto the controller; and

= Debugging status messages, as PCM’s built-in debugger interfaces with
the project running on the controller.

Saving or clearing messages

Messages can be saved from the tab by selecting (highlighting) the desired
messages, right-clicking on the selection, and choosing either Copy or Save As
from the pop-up menu. If you choose Copy, then you can paste the selection into

198

Pointe Controller User Guide

Chapter 7: Monitoring and Debugging

another application such as MS Word or Notepad. If you choose Save As, then
you will be prompted to save the selection as a text file.

If no specific messages are selected, then the entire backlog will be copied/saved.

You can also clear the log by right-clicking and choosing Clear.

Communications errors

The table below lists the possible communications error messages:

Code

Name

Description

1

TNT_INV_ARGUMENT

An invalid argument was passed to
the method

TNT_INV_CLASS

An invalid class name was passed to
the method

TNT_NOT_OPEN

A TNTManager object has not been
created

TNT_TOO_MANY_MGR

Current number of TNTManager's at
maximum

TNT_BASE_SUPT

Unable to initiate Paragon services

TNT_BIN_FILE

Unable to locate Client Objects BIN
file

TNT_INV_HANDLE

Invalid handle used for receiver

TNT_INV_METHOD

Method is not supported by object

TNT_TRACE_FAIL

Unable to open trace file

10

TNT_NO_MEMORY

Unable to allocate required memory

11

TNT_IMPROPER_METHOD

Method is inappropriate given
current object state

12

TNT_TRC_NO_MEM

Unable to trace due to inability to
allocate memory

13

TNT_CRA_OPEN_ERR

CRA error - unable to open stream

14

TNT_CRA_ADD_ERR

CRA error - unable to add request

15

TNT_CRA_INFO_ERR

CRA error - unable to perform
information query

16

TNT_READ_ERR

CRA error - unable to perform read

199

Chapter 7: Monitoring and Debugging

Pointe Controller User Guide

Code | Name Description

17 TNT_WRITE_ERR CRA error - unable to perform write

18 TNT_READWRITE_ERR CRA error - unable to perform
read/write (query)

19 TNT_CRA_NAMES_ERR CRA error - unable to retrieve names

20 TNT_INV_DEFINITION Invalid structure definition

21 TNT_INV_REFERENCE Invalid structure reference

22 TNT_NOT_AVAILABLE Data is not available at this time

23 TNT_CRA_GETNAMES_ERR CRA error - unable to access directory

24 TNT_ARCHIVE_OPEN_FAIL Unable to open archive file

25 TNT_ARCHIVE_WRITE_FAIL Unable to write into archive file

26 TNT_ARCHIVE_READ_FAIL Unable to read from archive file

27 TNT_NO_CRA Client Objects initialized without CRA
support

To fix a communications error, try the following:

Wait for the transient condition to clear and try again to attach the
controller.

Verify that both the Pointe Controller unit and your PC are properly
connected to the Ethernet network. Also verify that their IP addresses and
other network settings are properly configured.

Cycle power to the Pointe Controller unit.

If none of these fix the error, then please contact Nematron Customer Support.

200

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

7.1.4 The Controller Log Tab

Chants| Browser| Console Controller Log |

Messagas logged: (K]

Messagas availaple: [
- Message 0g

0020822 178820 844) Frojeot actwated
[2002-08-23 17.56:98.985] D enabled
[R00Z-08-23 17:50:10.682] VD enabled
[2002.08.22 17:68:27 238] Projeot idled
[2002-D8-23 17.54:50.315) Projecl aclivated
[200%-02-22 17 :54:84.07 2] Project idled
[2002-08-23 17:98:494.743] Froject activated
RO0Z-08-23 17:498: 30,0991 U'D enabled
(1970040 O0:11:22.282] Projant EEF wnT ool @rtedsa 8304220 loaded
[2002-D8-23 17:44:53 128] VD dizabled

1870-01-01 00:04,02, 142] Me project loadaed

The Controller Log tab shows the activity log of the currently attached
controller. Logged activities include project loads and unloads, project starts and
stops, password group changes, and so on. The 25 most recent messages are
retained in the controller’s flash memory.

For more information on interpreting controller log messages, see Chapter 9,
“Troubleshooting,” starting on page 227.

Saving or clearing messages

Messages can be saved from the tab by selecting (highlighting) the desired
messages, right-clicking on the selection, and choosing either Copy or Save As
from the pop-up menu. If you choose Copy, then you can paste the selection into
another application such as MS Word or Notepad. If you choose Save As, then
you will be prompted to save the selection as a text file.

If no specific messages are selected, then the entire backlog will be copied/saved.

You can also clear the log by right-clicking and choosing Clear.

201

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

1.2

7.21

Checking System Performance

You can check the system performance of an attached Pointe Controller unit by
opening the Performance Metrics window:

* From the View menu, choose System Performance. The Performance
Metrics window will appear.

The Performance Metrics window offers three tabs: Scanning, Loading, and
Errors.

Scanning

e Peiffoimance Metncs

Scarring | Loading | Brors |

Average Ietaicimim Ibrimum ChsrTuns

ChartiLadder BO0S 462 S409 14
Iiodiule 1 1043 143 996 2
Iiodule 2 1025 1143 996 2
Iiodule 3 159 1307 63 1
Miodule 4 160 1419 63 1
Iiodule 5 a a a a
Wodule & I I I I
Iiodule 7 0 0 0 0
Iiodule & a a a a
Pans 2530 276G 24352 a
RTUA i a a a
RTU2 0 I 0 I
RTU3 0 0 0 0
RTU 4 a a a a

Chaart & I'D Totel Scans 27ES58 138317

Chart & 11D Scan Inferyad 10 2

alltimes in micraseconds

The Scanning tab shows how much real time (in microseconds) it is taking the
controller to process the Flow Charts and Ladder Diagrams that make up the
currently running project, as well as to scan the I/O modules, operator panel, and
OptilLogic RTUs that are connected to the controller.

For charts/ladders, the scan time is the time elapsed from when the input tags are
read in, through the entire logic solve, to when the output tags are written out.
For modules, panels and RTUs, the scan time is the time elapsed from when the
controller’s processor becomes available to scan the component to when that
component’s scan is complete.

Overruns occur when a component does not complete its current scan before its
next scheduled scan. For example, if a module is configured with a Scan Interval
of 10, then it is scheduled to be scanned at 0, 10, 20, 30, and so on. The scan
starting at 0 must be completed before 10. If it is not, it is registered as an
overrun.

NOTE: All charts and I/0 scan concurrently, not sequentially.

202

Pointe Controller User Guide

Chapter 7: Monitoring and Debugging

7.2.2 Loading

e Petfoimance Metncs

Searming Loading IEm:rsl

Parcent |omd
Chartiladder axecution 42 TESE3
Doedousg intarface 0807 285
Locs IO scanning 26 TEIZA
RTL seanrindg 0 D07 1100
MWodbus TCF drivver 0000000
Mochus RTU driver Oui000on
Cintm access sarver 1 E16228

Fres stalic hesp (bytes) 1452968
Free dymamic hesp (byles) TE1924

The Loading tab shows how much load each PointeControl task is putting on the
controller’s processor. Each task’s load is expressed as a percentage of the
processor’s total available resources:

Chart/Ladder execution is the load to process the Flow Charts and
Ladder Diagrams that make up the currently running project.

Debug interface is the load to interface with the Monitor’s debugging
tools.

Local I/0 scanning is the load to scan and update the I/O modules and
operator panel specifically in the attached controller.

RTU scanning is the load to scan the I/0 points on any additional Remote
Terminal Units (RTUs) that are attached to the controller using the
OptiLogic UDP/IP protocol.

Modbus TCP driver is the load to maintain the controller’s built-in
Modbus TCP driver, if enabled, and to respond to incoming Modbus
requests.

Modbus RTU driver is the load to run the controller’s built-in Modbus
RTU driver, if enabled, and to respond to incoming Modbus requests.

Data access server is the load to maintain communications between the
controller and the Monitor. This includes support for tag browsing,
controller log, performance metrics, and network discovery.

Free static heap indicates how much non-reusable memory is still available.
Free dynamic heap indicates how much reusable memory is still available. The
dynamic heap will decrement to zero as memory is used and reset as memory is
recovered.

203

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

7.2.3 Errors

e Petfoimance Metncs

S-:urringl Loadng Errors I

Stalus Errors Pask

Ieioaziile 1 O u} 1
Mol 2 CH 0 1
Ilosdile 3 i 0 1
Iviodile 4 (a2 [} 1
odule 5

Miodule B

Ilodule 7

Ilosdule B - - -
Parel (a2 [} [}
RTUA1

RTU2

RTU3 - - -
RTU 4 - - -

The Errors tab shows the current status of the I/O modules, operator panel, and
OptiLogic RTUs connected to the controller, as well as the total number of
communications errors encountered by each device since the current project was
started.

Status is the current operating condition of the given module. Errors is the
current “streak of consecutive errors. Peak is the longest streak encountered
since the project was started.

Errors on a module or panel are indicative of serial communication errors on the
controller’'s motherboard. A single error or two may be encountered during
initialization. Continuous errors may be indicative of a hardware defect or a
poorly seated connection.

Errors on an RTU are more likely an indication of problems in the Ethernet
network — either a bad network connection or excessive network load.

For more information, see Chapter 9, “Troubleshooting,” starting on page 227.

204

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

7.3

Viewing and Debugging Charts

You can open any chart for viewing and debugging by double-clicking on the
chart in the Charts tab. The chart will be opened into a new Debugger window:

P Chart1 ™= E3

ala)) sl wielol] wewknl [T olel B Tl

E

The Debugger window displays a real-time view of the selected chart’s activity
and provides tools to interactively control the program flow. The Debugger
window highlights the currently active block. As the program flows, different
blocks appear highlighted as they become active.

For more information on the different parts of the Debugger window, proceed to
“The Debugger window"” on page 206.

NOTE: When PCM first attaches to a Pointe Controller unit, it attempts to retrieve
the source code of the currently loaded project. The source code is required for
debugging, and it can also be saved locally for further editing. By default, the
source code is always loaded onto the controller along with the compiled project.
However, this can be prevented by disabling the Download source to
controller preference in the PointeControl development framework. If the
source code cannot be retrieved, then the project cannot be debugged.

205

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

7.3.1

The Debugger Window

P Chart1 ™= E3

ala)) sl wielol] wewknl [T olel B Tl

E TURN OFF gl

4]
1.

= L

The Debugger window displays a real-time view of the selected chart’s activity
and provides tools to interactively control the program flow. The currently active
block is always highlighted; as the program flows, different blocks are
highlighted as they become active.

A toolbar containing icons for each of the tools available to the debugger
appears below the title bar. Most of the tools are usable in both Flow Charts and
Ladder Diagrams, but some tools are for Flow Charts only. Each tool is described
later in this document.

Below the toolbar is a workspace area in which the chart is displayed. Scroll bars
will appear as needed to view the diagram, based on magnification level and size
of the diagram.

The cursor is always in Select mode within the Debugger window. Any chart block
may be selected by a single-click. Object selection enables some of the tools in the
toolbar and disables others.

206

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

7.3.2

7.3.3

To view the activity of a particular block in the chart displayed in the Debugger
window, double-click on that block. A Block Watch Window for that block will
be displayed. The window lists all of the Logic Memory tags, strings, and timers
that are read or updated by the selected block. The value of each tag is
dynamically updated as the value changes within the program flow.

M Chart 1 _ O] x]

Block Watch Window

| Tag Alas:
Flagl

Zooming In and Out on a Chart

glql A chart that is opened in the Debugger window can be viewed at
= several different magnification levels using the Zoom In and Zoom
Out tools. Zooming is useful when you are trying to view a especially large chart
and you need to see how the logic flows without scrolling around.

Zoom In makes the chart appear larger, while Zoom Out makes the chart appear
smaller, allowing you to see more of it within the workspace window. By default,
a chart is initially displayed at the maximum magnification level.

Viewing Subcharts within a Chart

B When a chart contains a call to another subchart, the subchart can be

viewed by selecting the calling block and clicking the Open Subchart tool
(or Open Subdiagram in ladder). The subchart will be opened, replacing the
previous chart in the active Debugger window. All of the regular debugging tools
are available while viewing the subchart.

ﬂl Once a subchart is opened, it can be closed again by clicking the Close
Subchart tool (or Close Subdiagram in ladder). The previous chart will be

207

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

7.3.4

7.3.5

restored in the Debugger window, with magnification and scroll position intact.

NOTE: The Open Subchart tool is enabled only when a calling block (Subchart
block in Flow Charts, CALL function block in Ladder Diagrams) is selected. The
Close Subchart tool is enabled only when the subchart is open in the Debugger
window.

Enabling Logic Flow in a Chart

ﬁl Clicking the Enable Logic Flow tool suspends the normal execution cycle

on the Pointe Controller unit and enters the Logic Flow debugging mode.
When Logic Flow is enabled (the button remains depressed), the controller checks
for a breakpoint at each chart block transition, pauses if it finds a breakpoint, and
waits for the command to continue.

Logic Flow must be enabled in order to insert breakpoints. Also, when
breakpoints are set, the Enable Logic Flow toolbar button is locked to ensure that
all breakpoints are honored.

Enabling logic flow also enables the Block column in the Charts tab.

NOTE: Checking for and processing breakpoints causes a significant impact on the
performance of the controller. As such, Logic Flow is automatically disabled when
all breakpoints are removed and all debugger windows are closed.

Scan /0 During Single Step Mode

Iﬁ When Scan I/O During Single Step Mode is enabled (the tool button

remains depressed), the controller continues to scan all of its /0O points even
while one chart is stopped on a breakpoint. Disabling this mode (the tool button
is not depressed) prevents I/0 scanning. This mode is enabled by default, but it is
useful to disable it if you do not want the controller to run unsupervised while
you are working with a specific breakpoint.

Run Charts During Single Step Mode

I@ When Run Charts During Single Step Mode is enabled (the tool button

remains depressed), the controller continues to execute all other charts even
while one chart is stopped on a breakpoint. Disabling this mode (the tool button
is not depressed) prevents the execution of other charts. This mode is enabled by
default, but it is useful to disable it if you do not want the controller to run
unsupervised while you are working with a specific breakpoint.

NOTE: Since these tools control the actual state of the controller, they are
automatically synchronized across all debugger windows.

Enabling Debug Trace in a Chart

ﬂ Selecting the Enable Debug Trace tool activates an internal tracing of how
the chart’s logic flow is executed. The trace is dynamically updated as each

208

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

block is executed, and the information can be displayed either as a visible path in
the debugger window (Show Debug Trace) or as tabular data (View Debug
Trace).

Up to 1000 steps (records) can be saved in a circular memory buffer; if more than
1000 steps are recorded, the trace overwrites from the beginning of the buffer.
The buffer is reset for each new scan of the chart.

NOTE: Enabling Debug Trace adversely affects the execution speed of the Pointe
Controller unit. As such, Debug Trace is automatically disabled when the
debugger window is closed.

Show Debug Trace

E| Once debug tracing is enabled, you can select the Show Debug Trace tool
to display the tracing in the debugger window. In Flow Charts, the trace is
displayed as a yellow frame around the currently active block. In Ladder
Diagrams, the trace is displayed as a green highlight along the currently active
rung.

Show Debug Trace is automatically enabled when the Enable Debug Trace tool is
selected.

NOTE: In Ladder Diagrams, the trace display and trace record collections are
interlocked so that a whole pass through the diagram is shown. That is, the
display of the trace will be done only after the last ladder object in the last rung
of the diagram executes, but before the trace buffer is reinitialized at the top of
the diagram. This differs from the tracing done in the Flow Charts, in which
partial passes through a chart are shown.

View Debug Trace

i| In addition to the visual debug trace, a tabular readout of the trace records

can be displayed by selecting the View Debug Trace tool. Trace records are
listed from newest to oldest, and each record shows the name of the chart (or
called subchart) and the object’s coordinates (rung/block). A sample table is
shown below:

i Flowchaat Debug Trace
tecec blocks B K I Erirk | S
T | C Ak M Sl s, u||

2 Ladde3 2. 3

2 Ladde:3 2.2

i Laddes 3 7.1

£ Ladde 2 i1, 7

e Larddes 4 ['I g

z Ladde: 3 1.1

The trace records can also be printed or saved to a file for subsequent analysis.

209

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

7.3.6

Inserting Breakpoints in a Chart

il Breakpoints may be set and cleared on selected blocks using the
Insert/Remove Breakpoint tool. Selection of a block enables the tool.
Clicking the tool toggles the breakpoint status of the block.

NOTE: Breakpoints can be inserted only when Logic Flow is enabled.

When a breakpoint is set, the block is shown with a red background. All logic
flow in the current project pauses the next time the block is about to execute,
before any processing occurs for the block. If the Debugger window containing
the breakpoint is closed or hidden when the breakpoint is reached, it is opened
and/or brought to the front.

When logic flow pauses on the breakpoint, the block is shown with a yellow
background. When the breakpoint is cleared, the block is shown with a green
background.

Use the Go, Single Step, or Run to Cursor tools to continue execution of logic
flow.

Setting a breakpoint on any block will also enable the following tools...

Remove All Breakpoints

ﬁl All breakpoints set within the active (foreground) Debugger window can be

cleared by clicking the Remove All Breakpoints tool. All blocks containing
breakpoints will be restored to their normal (green) state. However, removing the
breakpoints does not re-enable execution flow — use the Go, Single Step, or Run
to Cursor tools to resume execution (see above).

Remove All Breakpoints in All Threads

@l All breakpoints set in all charts in the project can be cleared by clicking the

Remove All Breakpoints in All Threads tool. All blocks containing
breakpoints will be restored to their normal (green) state. However, removing the
breakpoints does not re-enable execution flow — use the Go, Single Step, or Run
to Cursor tools to resume execution (see above).

Display Breakpoint List

:l Breakpoints established in any chart can be viewed using the Display
%71 Breakpoint List tool. This tool is enabled whenever any breakpoints are set

210

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

1.3.7

within the executing OpenControl project. Selecting the tool activates the
Breakpoint List dialog. This dialog will float on top of all OpenControl runtime
windows, so selecting another debugger window or the OC Monitor will not hide
the breakpoint list. An example breakpoint list is shown below:

Breakpoint Lizt
Tirner OO0, 00003]

Tirner (00.0074)

Each breakpoint in the list shows the name of the chart (followed by the subchart
name for breakpoints in subcharts) and the coordinates of the affected block.
Double-clicking on a listed breakpoint will open the chart in which the
breakpoint is set.

Continuing Execution after a Breakpoint

l¢1| Once a breakpoint is reached, all logic flow in the chart containing the
breakpoint stops. Execution of the chart can be resumed by clicking the Go
tool and it continues normally until the next breakpoint is reached.

NOTE: By default, all other charts and I/0 in a project continue to scan while one
chart is stopped on a breakpoint. For more information, see “Enabling logic flow
in a chart” on page 208.

Single Step

%I Another option is to execute a single block, or “step, by selecting the

Single Step tool. Clicking this tool places a temporary breakpoint on the
next block to execute and then runs only to that block. The temporary breakpoint
is cleared when reached and it does not appear in the breakpoint list.

You can click the Single Step tool repeatedly to continue “stepping through
chart, one block at a time.

NOTE: In Ladder Diagrams, branches are executed according to a special ordering
algorithm. For example:

211

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

7.3.8

|

H|
H|

9

The numbers indicate the order in which the contacts are executed. As is shown,
the ordering is from innermost branch to outermost branch. The main branch is
followed until a merge point, at which the preceding split point is found and its
branch followed.

Run to Cursor

El A third option is to execute all the way up to a specific block in the chart, by

selecting the desired block and clicking the Run to Cursor tool. A
temporary breakpoint is set on the selected block and the chart is executed only
up to it. The temporary breakpoint is cleared when reached and it does not
appear in the breakpoint list.

When using this tool, be aware that the breakpoint set on the selected block may
never be reached if, depending on the flow of the chart, the block is never
executed. In such a case, the temporary breakpoint will remain set until manually
removed using the Remove Breakpoint tool.

Forcing New Tag Values

When you double-click on any tag listed in the Browser tab or Watch Window, a
pop-up window is displayed that allows you to force a new value for the tag. The
new value is treated as real data by the Pointe Controller unit.

This is useful for testing hypothetical conditions that may not be reached in the
normal execution of your project. It can also be used to simulate inputs and
outputs when you are running your project with /0O disabled.

WARNING: Please exercise extreme caution when using this function with I/0
enabled. Forcing a value while I/O is enabled can cause connected equipment to
exceed normal operating parameters.

212

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

Input, Output, and Memory tags
To force a new value for an Input, Output, or Memory tag:
1. Open the tag by double-clicking on it in the Browser tab, in the main

Watch Window, or in an individual Block Watch Window. The tag’s detail
window will be displayed.

Sl It

213

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

2. Click the Toggle Force State button. This will lock the tag against
updates that may be made by the normal execution of your project.

Sl It

n3witchl

3. Enter the New value and press return. The tag will be immediately
changed from its previous value to the new value.

Sl It

To remove the force, simply click the Toggle Force State button again. The
value will then be overwritten by the normal execution of the project.

214

Pointe Controller User Guide

Chapter 7: Monitoring and Debugging

7.3.9

NOTE: You can enter a new value without toggling the tag’s force state, but then
the tag can be overwritten.

Strings and Timers

Strings and timers differ from tags only in that you do not need to click the
Toggle Force State button before entering a new value. (In fact, there is no such
button in the string and timer windows.) Whatever value you enter will be
accepted immediately by the project. However, the value cannot be locked and
will be overwritten by the normal execution of your project.

Additional Tools for Flow Charts Only

Button | Tool Description
Toggle Labels Toggles the display of block labels, as

determined by each block’s Caption
property.

s

Select Active Block

Directly selects the block that is
currently being executed.

Enable Diagnostic Timers

Enables diagnostic timers that measure
the total time to execute charts, as well
as time spent executing loops. Selecting
this tool also enables the Execution
Time column in the Charts tab.

View Diagnostic Timers

Opens a window showing all of the
diagnostic timers for the current chart.
Diagnostic timers must already be
enabled as described above. Since only
times of 1 second or more are
displayed, this window is usually empty.

Size to Content

Adjusts the sizes of the blocks in the
currentchart to accomodate the content
of the blocks. Resizing is not persistent;
blocks will revert to their original sizes
when the debugger window is closed.

215

Chapter 8: Networked Operations Pointe Controller User Guide

Chapter 8: Networked Operations

In addition to operating as a stand-alone machine controller, the Pointe
Controller unit can also be integrated into a networked control system. It can
serve as supervisory node, administering up to four remote 1/0 terminals, or it can
be configured as a Modbus slave device in a larger Modbus network.

TIP: The information provided in this chapter is also available via the
PointeControl Framework online help. To access the help, choose Contents from

the Framework’s Help menu.

216

Pointe Controller User Guide Chapter 8: Networked Operations

8.1

Networking via OptiLogic Remote 1/0

As a Master Controller for distributed control solutions, the Pointe Controller is
capable of interfacing with up to four OptiLogic I/O terminals via Ethernet. This
reduces wiring cost of the 1/0 devices back to the controller, while providing high
speed I/O control from the controller.

Ethernet Network

Optilogic 4054 10

You can configure up to four additional OptiLogic Remote Terminal Units (RTUs)
to work with your Pointe Controller unit. These units are slaved to your controller
using the OptiLogic UDP/IP communication protocol.

To configure additional OptiLogic RTUs:
1. Launch the PointeControl Framework and open your project.
2. From the Project menu, choose Configure 1/0.
3. Click the RTU 1 tab.

4. Click the Base type drop-down menu and select the appropriate
OptiLogic RTU model number: OL4054, OL4058, or OL4228.

5. In the Unit identifier field, enter the RTU’s ID number.

6. Specify what I/O modules and operator panel are installed in the RTU. This
is done the same way as for the Pointe Controller itself. For a reminder,
see “Specifying your installed hardware” on page 121.

7. Configure the I/O modules. This is done the same way as for the Pointe
Controller itself. For a reminder, see “Configuring 1/0 modules” on page
127.

8. Configure the operator panel, if any. This is done the same way as for the
Pointe Controller itself. For a reminder, see “Configuring operator
panels” on page 128.

9. Repeat steps 2 through 7 for RTU 2, RTU 3, and RTU 4 as needed.
10. Click OK to save your changes and close the window.
For more information on using OptiLogic RTUs, see the OptiLogic RTU User

Manual. This document is included with every OptiLogic RTU, or it can be
downloaded from Optimation’s Web site at http:/www.optimate.com/.

217

Chapter 8: Networked Operations Pointe Controller User Guide

8.2

Networking via Modbus Data Mapping

As a control node in a scalable network, the Pointe Controller performs dedicated
real-time local control, while maintaining communications with the designated
supervisory computer. Total system deployment, configuration, project
coordination, and data logging can be implemented from any authorized
network workstation.

Ethernet Network

Nematron.

Nlematron Delta
Supervisory Computer

The Pointe Controller can be configured to communicate with supervisory
computers and operator terminals via the industry-standard Modbus protocol. To
do this, you must first enable the Modbus driver and then map the Logic Memory
variables used in PointeControl to the appropriate Modbus addresses. When your
project is downloaded to and run on the Pointe Controller unit, Modbus
communication is started automatically and the unit shares the mapped data over
its serial and/or Ethernet connection.

If you intend to configure Modbus mapping, you should be familiar with the
Modbus protocol and the different Modbus data types, as defined by Modicon /
Schneider Electric. You should also have a basic understanding of PLC memory
addressing.

NOTE: The Pointe Controller is designed to work as a Modbus slave device,
regardless of whether serial or Ethernet communication is enabled. Anything that
attaches to the Pointe Controller unit via Ethernet is automatically the Modbus
master device and therefore responsible for initiating requests to the controller.

218

Pointe Controller User Guide Chapter 8: Networked Operations

8.2.1

Modbus Address

The addressing that you, the system designer, must set is the address set via
rotary address switches in the Pointe Controller base unit. Every Modbus device in
your system must have its own unique address. This address, a value between 00
and 97, is how the Modbus master identifies each device.

NOTE: Addresses 98 and 99 are reserved for performing hardware resets. For
more information, see page 230.

To get to the address switches, you must first remove the end cover from the base
unit. To do this, simply squeeze the latching tabs, shown in the figure below, and
lift the cover off.

Squeeze fo lift off end cover e

Slot
Sl 1
Slat2

[SLsTeT=)

!'1’.1% ?v—'l'hg zv—"
L‘"Wf"
| Sg q L

Exploded view

Removing the end cover will expose the base motherboard. The address switches
will be found near the connector for slot 0.

To set the controller's Modbus address, rotate the switches to the desired values.
The switch on the left is the “tens” digit. The switch on the right is the “ones”
digit. A small flat blade screwdriver is the only tool you need. The address shown
on the figure above is “25."”

Remember that each Pointe Controller unit on your network must have its own
unique Modbus address, which is set prior to applying power to the controller.
Duplicate addresses will cause system communications to fail.

219

Chapter 8: Networked Operations Pointe Controller User Guide

8.2.2 Types of Modbus data

PointeControl allows mapping to four different Modbus data types: Coils,
Discretes, Analogs, and Registers. The following table shows which variables in
Logic Memory can be mapped to each data type:

Coils
(00001-
09999)

read/write

Discretes
(10001-
19999)

read only

Analogs
(30001-
39999)

read only

Registers
(40001-
49999)

read/write

Inputs

%IX (Bits)

%IUB (8 Bit Unsigned)

%IB (8 Bit Signed)

%IUW (16 Bit Unsigned)

%IW (16 Bit Signed)

%IUD (32 Bit Unsigned)

%ID (32 Bit Signed)

%IF (32 Bit Real)

X | X | X | X[X]|X]| X

Memory

%MX (Bits)

%MUB (8 Bit Unsigned)

%MB (8 Bit Signed)

%MUW (16 Bit Unsigned)

%MW (16 Bit Signed)

%MUD (32 Bit Unsigned)

%MD (32 Bit Signed)

%MF (32 Bit Real)

X | X | X | X| X | X]| X

X | X | X | X| X | X]|X|X

Outputs

%QX (Bits)

%QUB (8 Bit Unsigned)

%QB (8 Bit Signed)

%QUW (16 Bit Unsigned)

%QW (16 Bit Signed)

%QUD (32 Bit Unsigned)

X | X | X | X | X

X | X | X | X| X | X

220

Pointe Controller User Guide

Chapter 8:

Networked Operations

8.2.3

Coils Discretes Analogs Registers
(00001- (10001- (30001- (40001-
09999) 19999) 39999) 49999)
read/write read only read only read/write
%QD (32 Bit Signed) X X
%QF (32 Bit Real) X X
Strings X X
Timers X

WARNING: Always be careful when mapping directly to Output variables. While
it may be desirable to do so in certain applications, be advised that if you do, you
will be giving direct control of mapped outputs to any remote device that
communicates over your Modbus interface. It is generally more advisable to map
to a Memory variable, so that your PointeControl program can check incoming
commands and verify they should be executed.

Enabling the Modbus driver

To enable the Modbus driver on the Pointe Controller unit:

1. Launch the PointeControl Framework and open your project.

2. From the Project menu, choose Configure Modbus Mapping. The
Modbus Driver Configuration window will appear.

Driver tyae
Efhomet TOF

Sanal

Eerial port configuration

« kedbus Driver Configuration

SEEE || Coils | Dezcrates | Analoge

Car

Fagkslerns

al

3. To enable Modbus communication via Ethernet, click the Ethernet TCP
checkbox. No additional configuration is needed.

221

Chapter 8: Networked Operations

Pointe Controller User Guide

8.2.4

4. To enable Modbus communication via the RS232 serial port:

a. Click the Serial checkbox. The Serial port configuration settings
become enabled.

« kedbus Driver Configuration

SEEE || Coils | Dezcrates | Analogs | Ragkstens
Driver tyae
Efhemat TCF
Hanal
Eerial port configuration
Canmal

b. Configure the serial port as needed for your control application. (The
default values of 9600 baud, 8 data bits, 1 stop bit and no parity are
recommended.)

5. Proceed to Mapping variables to Modbus addresses, or click OK to save
your changes and close the Modbus Driver Configuration window.

NOTE: You can enable both Ethernet and Serial communications on the same
Pointe Controller unit. However, each type of communications requires additional
memory and processing power, so enable only the features you need for your
control application.

Mapping variables to Modbus addresses

To map Logic Memory variables to Modbus addresses:

1. If the Modbus Driver Configuration window is not already open, open it
now by choosing Project > Configure Modbus Mapping.

« kedbus Driver Configuration

SEEE || Coils | Dezcrates | Analogs | Ragkstens
Driver tyae
Efhemat TCF
Hanal
Eerial port configuration
Canmal

222

Pointe Controller User Guide

Chapter 8: Networked Operations

2.

Click on the tab corresponding to the Modbus data type — Coils,
Discretes, Analogs, or Registers — that you want to map.

In this example, Coils is selected:

#f Modbus Driver Configuration

Base | COIS) Discretes | Analogs | Reopsters
Husmiber of coll= i
Akdress L

angz|

Specify the number of addresses that you want to map in this Modbus
data type: click in the Number of field, enter the number, and press the
Tab key. Addressing always starts at the low end of the available range.

In this example, 16 addresses are specified, numbered 00001 through
00016:

e Mod b Driver Conligaralion

Base Coils | Discrates | Anslogs Ragishers

Muimbar of cods]

Addrass
oo
LLLE Leg
[LL e
N0

Tag

[LERES
onnnE
o0z

[u]} Cancel

NOTE: You can increase the number of addresses at any time without
affecting addresses that have already been mapped. However, if you
attempt to decrease the number of addresses without first unmapping
the addresses that would be removed, you will be prompted to verify the
action.

223

Chapter 8: Networked Operations Pointe Controller User Guide

4. Double-click on an address you want to map. A pop-up window appears
listing all of the currently defined Logic Memory variables that can be
mapped to that Modbus data type.

4 Maodbus Driver Conflguration

Baga 2088 | Digcrelas | Ansbops | Reghsts amone

Hurmber of colls 16 5 Pl
adiapDatalaich

Address Tag CisaTangle
KBEEAIR St

0T
Lightl

MR -
Ligha?

aH d

e memBit

WK Whyout]

SO Wb

VIR Iyutd
Whvioutd

al} Cameal I

For more information on which Logic Memory variables can be mapped to
which Modbus data types, see “Types of Modbus data” on page 219.

5. Select the variable you want to map from the pop-up window. The
variable is mapped to the address.

NOTE: Each Modbus address represents a 16-bit memory location. If the
selected variable — for example, a string or a long interger — requires
more than 16 bits, then additional addresses will be allocated to the
variable and marked as <unavailable>.

Also, PointeControl will automatically append a NULL terminator onto a
string as it is mapped. Therefore, as an example, a 20-character string will
be allocated 11 addresses: 10 addresses for the string at two characters
per address, plus one address for the NULL terminator.

6. Continue mapping each address until finished.

Hurnber of coils 16 St

Nk
Aba Teg i 2
e P Jull 3
i 4
I0H s
(e Tt &

GO0 Ot
oo Jutd
Ve e Sutd

i3
Dt

NOTE: You do not need to map all of the addresses in a data type. You
can leave some blank while mapping only the addresses needed to
communicate with your other Modbus devices.

224

Pointe Controller User Guide Chapter 8: Networked Operations

7. Return to step 2 to map another data type, or click OK to save your
changes and close the Modbus Driver Configuration window.

Packing individual bits into a Register

Under the Register data type, you can “pack up to 16 individual Bit-type variables
into a single address. This is done by expanding the address into 16 sub-addresses
and mapping the bits to each sub-address. Each sub-address is denoted by a “:n

suffix on the address.
To pack individual bits into a Register:
1. Click the Registers tab.

2. Right-click on the Register address you want to map and choose Pack bit
values from the menu.

oL Mol Dreiver Canligaralion 'J

Bz | Cods | Discrales | Analogs Fedistens

Hurmoer of registarns: =
Address Tag

LN T T e TN

02 b _1_Fiow_s=t

SO Ine = Fiowy_ ot

#0004 I _3_Flow_ssi

000 Ine 4 Fiow _set

A0 P ket

Pack b val ves
(oIS wap T regiaten

The address is expanded into 16 sub-addresses.

o Eedbus Driver Configurathon

Beze | Colls| Discretes | Anslogs Remisters
Musmiber of ragisters: @
Address Tag
LS R TR
40004 e _3_flow_snt
40003 e 4 flom_set
A000ns £k M_Parge
An0aT acuiryreblatin
A0003: 1
4000E:
40008; 3
AN00E:A
AR5
O Cancel

225

Chapter 8: Networked Operations Pointe Controller User Guide

3. Double-click on the chosen sub-address and select the bit to be mapped
from the pop-up window.

Husribiar of regesiers B

el

s o3 e
S Ul - s alanm_sxhacest_fall
A0004 e _3_flow_set aharm_gad_leak
4m roe_4_Flow_set adanm_HIFirad
4 sel_max_purgs lamm HiFigwa
:g: w:"m"’ ums.-. = mianm_HIFITwW3
000511 aarm_gws_leoh adanm_HiFlored
A0008: 2 alarrn_HF ik _1_delivary_scthie
R = ¢=ivery_acte
400034 line_3_delivary_actie
RALLLI link & dadivery acive
0% Camnc

4. Continue mapping each sub-address until finished.
To unpack a Register — that is, to delete the individual mappings and convert the

Register back to a full 16-bit address — right-click on the Register address and
choose Undo packing from the menu.

226

Pointe Controller User Guide Chapter 9: Troubleshooting

Chapter 9: Troubleshooting

This chapter provides some basic tips for troubleshooting the Pointe Controller
system. More information will be added in future revisions. In the meantime, if
you have any problems, please contact Nematron Technical Support at 1-800-636-
2876, or email us at support@nematron.com.

227

Chapter 9: Troubleshooting Pointe Controller User Guide

9.1

LED Boot Indicators

The first thing to look at when the controller is installed, connected to a hub or
PC and everything is powered up, is the diagnostic LEDs:

o By
RX
@
& |
TA
RS232
Ethernet
Link
Receive
Select
Transmit

¥

The first thing that happens when the controller is powered up is that is checks its
operating program. This process takes a couple of seconds. If the operating
program does not check out, the RS232 TX (transmit) LED will flash at a rate of
about 1 flash per second. If this should happen, the base must be loaded with
operating software.

After the startup program check (as long a programming cable is not plugged
into the RS232 port), the base will enter its main program. At this point, the
Select LED should be on indicating the program is interfacing the ethernet
electronics.

The next thing to look at is the Link (L) LED. If it is on, there is a good ethernet
link. Ethernet devices send a periodic “link pulse”. The ethernet receiver on the
other side looks for this link signal. If it is received, the link LED will light. Link
LEDs should be on, both on the RTU and the hub.

If the link LEDs do not come on, one of the following problems probably exists.

= The cable between the hub and the RTU is defective (improper
connections, bad connections, etc.)

= The hub or the RTU is not turned on.

228

Pointe Controller User Guide Chapter 9: Troubleshooting

There are two LEDs, one red and one green, next to the Pointe Controller base
unit’s RJ-11 connector. The red LED is used by the boot procedure to indicate
failure conditions:

Flashes Failure Condition
1 Flash Memory test failed
2 RAM test failed
3 LAN Controller Register test failed
4 Missing memory size configuration
5 Serial port failed to initialize

If any of the above failure conditions exist, then the red LED will continue to flash
the corresponding number of times with a short pause between flash cycles. For
example, if the RAM test has failed, then the red LED will flash three times,
pause, flash three times, pause, flash three times, and so on.

NOTE: In most cases, a failure condition may be cleared by cycling power to the
Pointe Controller unit. If the failure condition reoccurs, then contact Nematron
customer support.

If all boot tests pass and no failure condition exists, then the unit checks to see if
the serial download cable is connected. If it is, then the unit waits for download
commands from the configuration utility (Update Tool).

If the serial download cable is not connected, then the unit will attempt to run
the project currently stored in memory, if any. If there is no project in memory or
if the project fails to run, then the red LED flashes rapidly without pauses to
indicate that user action is required.

229

Chapter 9: Troubleshooting Pointe Controller User Guide

9.2

Hardware Reset

In some cases, it may be necessary to perform a full hardware reset on the Pointe
Controller unit. This will bypass any password set on the controller, reset the IP
address and node name settings to factory defaults, and erase any control
program currently saved in flash memory.

The reset is performed by powering off the controller, turning the Modbus
address switches to “99,” and powering on the controller. Upon startup, the
controller will detect the new address and immediately reset itself. After that,
you can reconfigure the controller as if it was brand new. (See Chapter 2, “Initial
Setup,” starting on page 22.)

To get to the address switches, you must first remove the end cover from the base

unit. To do this, simply squeeze the latching tabs, shown in the figure below, and
lift the cover off.

sgueeze to lift off end cover

Address ing switches

=%
%
Slat0 a-'I

Slat 1
Slot2

[#L+T=)

IS L
L‘"Wf"
| 99‘1 L

Exploded view

Removing the end cover will expose the base motherboard. The address switches
will be found near the connector for slot 0. To set the address, rotate both
switches to the “9” position. A small flat blade screwdriver is the only tool you
need.

230

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

Appendix A: OptiLogic Technical Specifications

This appendix provides complete technical descriptions and configuration
instructions for all of the OptiLogic I/O modules and operator panels that can be
used with the Pointe Controller system.

231

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

A1

OL2104 Relay Output Module

The OL2104 Relay Output Module provides four (4) nductvelead
|
|

optically isolated mechanical relay outputs that can
be used for switching a variety of AC and DC loads. %@m
Individual LED indicators provide visual feedback of —=Precrd=ion From

output state. | —Opiiooe

|
| Output module
|

Technical Specifications

Card Cage Power Required 250 mA

Output Type Mechanical relay
Outputs 4
Status Indicators Logic Side LED
Contact resistence 0.1 ohm (initial)
Contact voltage rating 0-60VDC
0-120 VAC
Contact rating 2A (resistive) / point @24 VDC,
1A / point @120 VAC
Minimum load 10 mA
Contact type Form A (SPST)
Contact arrangement 4 isolated normally open contact relays
Mechanical life 10,000,000 operations per relay (at no load)
Electrical life 100,000 operations per relay (at full load)
Terminal Strip Plug In (removable)
Terminal Screws Slotted (0.1” blade max)
Max. terminal wire gauge 18 AWG (use copper conductors)
Terminal block torque 2.2 Ib-in
Required Temp. rating of 60°C/75°C
field installed conductors
Weight 1.6 0z (46 g)
Type 8
Subtype 1

232

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

A1.1

Connection Diagram

:j L3

Terminal

8 out3c

7 Out 3 NO 5| L2

6 out2c

5 Out 2 NO

4 out1c¢ 9

3 out 1 NO

2 outoC

1 Out 0 NO e
5-30VDC
5-132VAC

OL2104 Configuration Options

The OL2104 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/0, see page 118.) Selecting an OL2104 module and clicking the I/O button opens
the OL2104 1/0 Map dialog window...

Outputs tab

e€ L2104 1/0 Map...
(uipiis] Faisate]

Dutput 0: | |
Output 1- | =
Dutput 2 [=
Output 3 | _-j

Ok I Cancel

Each Output point, from 0 through 3, is associated with a single Output Bit tag
(%QX).

To configure an Output, click the =l to the right and select an Output Bit tag
from the pop-up menu. Each tag can be used only once.

233

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

NOTE: You can leave any or all Outputs unconfigured, but if you do, those 1/0
points will not be available to your project.

Failsafe tab

o€ L2104 1/0 Mop... =]
outputs [Faiisate]

Timeout interdal fms): |

Cutput 0 Action; || astValue __i
Output 1 Action: |Last value _..i
Output 2 Action: [Last value _.1
Output 3 Artion: [Lastvaiue o

ik Cancel

If, during runtime, your project fails to respond for a given timeout interval, then
the Pointe Controller unit will automatically set all Output points to
preconfigured failsafes. Parameters for this tab include:

Timeout Interval (ms) - Wait time in milliseconds after project failure
before Outputs switch to configured Output Actions.

NOTE: This value of Timeout Interval is taken from the project’s
preferences and is not editable in this window. To edit this value, see Edit
Preferences.

Output n Action — Each Output has three possible failsafe actions:
o Fail ON - On Fail condition, turn this Output OFF.
o Fail OFF — On Fail condition, turn this Output ON.

o Last Value (default) — On Fail condition, leave this Output in its
current state.

To configure an Output Action, click the =l to the right and select an
action from the pop-up menu.

When you have finished configuring the module, click OK to save your changes
and close the window.

234

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

A.2

Technical Specifications

OL2108 Relay Output Module

The OL2108 Relay Output Module provides eight (8) optically
isolated mechanical relay outputs that can be used for 4)7) ToED
switching a variety of AC and DC loads. Individual LED T T From
indicators provide visual feedback of output state. g

isolation

== Optilogic
processor
I
I module internal
I circuit

Card Cage Power Required

375 mA

Output Type

Mechanical relay

Outputs

8

Status Indicators

Logic Side LED

Contact resistence

0.1 ohm (initial)

Contact voltage rating

0-60VDC
0-120 VAC

Contact rating

2A (resistive) / point @24 VDC,
1A / point @120 VAC

Minimum load

10 mA

Contact type

Form A (SPST)

Contact arrangement

4 relays per common

Mechanical life

10,000,000 operations per relay (at no load)

Electrical life

100,000 operations per relay (at full load)

Terminal Strip

Plug In (removable)

Terminal Screws

Slotted (0.1” blade max)

Max. terminal wire gauge

18 AWG (use copper conductors)

Terminal block torque 2.2 Ib-in
Required Temp. rating of 60°C/75°C
field installed conductors

Weight 2.10z (58 g)
Type 9

Subtype 1

235

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

Connection Diagram

Terminal
L7}
10 Out 7 _—
9 Out 6 el
L8]
8 Out 5
14l
7 Out 4 L4
[12]
6 Out 3 &
[10]
5 Out 2 L2]
L1
4 Out 1
3 Ou10 @
e
2 Common
Out 4-7 @
_/
1 Common 5-30VDC
Out 0-3 5-132VAC

A.21 O0L2108 Configuration Options

The OL2108 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/0, see page 118.) Selecting an OL2108 module and clicking the I/O button opens
the OL2108 I/0 Map dialog window...

Outputs tab

e L2108 170 Map...

[Giutpuis] Failsate]

Crutput 0:
Crutpiat 1:
Crutput 2:
Cutput 3:
Output 4;
Crutput 5
Output &
Crutput 7:

A S 3 Y 4 £

Dk Cancel

236

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

Each Output point, from 0 through 7, is associated with a single Output Bit tag
(%QX).

To configure an Output, click the =l to the right and select an Output Bit tag
from the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Outputs unconfigured, but if you do, those 1/0
points will not be available to your project.

Failsafe tab

e OLZ108 10 Map...

Outputs Fallsafe |

Timeout interval (ms: |-

Cutput 0 Action: |Las1 Value _:_._..j
Output 1 Action: |Last Value]
Qutput 2 Action: |I.as1 Value =]
Output 3 Action: |Last value =
Cutput 4 Action: |Last value f=
Output 5 Action; |Last value o]
Crutput 6 Action: [Las1 Valug]
Output 7 Action: |Last value i

Dk Cancel

If, during runtime, your project fails to respond for a given timeout interval, then
the Pointe Controller unit will automatically set all Output points to
preconfigured failsafes. Parameters for this tab include:

= Timeout Interval (ms) - Wait time in milliseconds after project failure
before Outputs switch to configured Output Actions.

NOTE: This value of Timeout Interval is taken from the project’s
preferences and is not editable in this window. To edit this value, see Edit
Preferences.

= Output n Action - Each Output has three possible failsafe actions:
o Fail ON - On Fail condition, turn this Output OFF.
o Fail OFF — On Fail condition, turn this Output ON.

o Last Value (default) — On Fail condition, leave this Output in its
current state.

To configure an Output Action, click the =l to the right and select an
action from the pop-up menu.

237

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

When you have finished configuring the module, click OK to save your changes
and close the window.

238

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

A3

OL2109 DC Sinking Output Module

The OL2109 DC Sinking Output Module provides eight |
(8) optically isolated transistor outputs that can be used
for switching small DC loads. Individual LED indicators
provide visual feedback of output state.

Technical Specifications

~optical
isolation
I ~ From
| ™~ * Optilogic
processor

T
I module internal

I circuit

Card Cage Power Required

140 mA

Output Type

NPN open collector transistor

Outputs

8

Status Indicators

Logic Side LED

Voltage Rating

0-40VDC

Peak Voltage

80VDC

On voltage drop

0.75V @ 100mA
0.95V @ 300mA

Max. continuous load

300 mA

Maximum surge current

1.0A for 5 seconds

Commons

2 (connected internally)

Terminal Strip

Plug In (removable)

Terminal Screws

Slotted (0.1” blade max)

Max. terminal wire gauge

18 AWG (use copper conductors)

Terminal block torque 2.2 Ib-in
Required Temp. rating of 60°C/75°C
field installed conductors

Weight 1.1 0z (30 g)
Type 9

Subtype 2

239

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

Connection Diagram

Terminal @
10 out 7 [L6]
9 Out 6 @
8 Out5
- L4!
7 Out 4
L3
6 Out 3
[12]
5 Out 2 ==
L1}
4 Out 1
(10l
3 Outl o 'LO
2 Common
+| |
1 Common | |
5-40VDC

A.3.1 0L2109 Configuration Options

The OL2109 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/0, see page 118.) Selecting an OL2109 module and clicking the I/O button opens
the OL2109 I/0 Map dialog window...

Outputs tab

ef OL2109 10 Map...

[Giutpuis] Failsate]

Crutput 0:
Crutput 1:
Crutput 2:
Crutpurt 3:
Output 4:
Crutput 5:
Output &

Output 7:

Lt L Lo Lo fo[s s e

8123

Cancel

240

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

Each Output point, from 0 through 7, is associated with a single Output Bit tag

(%QX).

To configure an Output, click the =l to the right and select an Output Bit tag
from the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Outputs unconfigured, but if you do, those 1/0
points will not be available to your project.

Failsafe tab

ed OLZ109 10 Map...

Outouts [Faiisate]

Timeout interval (ms: |-

Output O Action: [Lastvaiue &1
Cutput 1 Action: |Last Value =
Qrutput 2 Action; |l.as1 Value =]
Output 3 Action: |Last value o
Cutput 4 Action: |Last value i
Output 5 Action; |Last value o]
Crutput 6 Action: [Las1 Valug el
Cutput T Action; |LE|'E1 WValue =]

Dk Cancel

If, during runtime, your project fails to respond for a given timeout interval, then
the Pointe Controller unit will automatically set all Output points to
preconfigured failsafes. Parameters for this tab include:

= Timeout Interval (ms) - Wait time in milliseconds after project failure
before Outputs switch to configured Output Actions.

NOTE: This value of Timeout Interval is taken from the project’s
preferences and is not editable in this window. To edit this value, see Edit
Preferences.

= Output n Action - Each Output has three possible failsafe actions:

(0]

(0]

o

Fail ON - On Fail condition, turn this Output OFF.
Fail OFF — On Fail condition, turn this Output ON.

Last Value (default) — On Fail condition, leave this Output in its
current state.

To configure an Output Action, click the =l to the right and select an
action from the pop-up menu.

241

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

When you have finished configuring the module, click OK to save your changes
and close the window.

242

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

A4

OL2111 AC Solid State Relay Module

The OL2111 AC Solid-state Relay Module provides eight (8)
solid-state relay outputs. This module is ideally suited for
switching small AC loads. As a solid-state device, switch ¢
wear will not be a factor. Each output is optocoupled for | %’H | V| e
system isolation. Individual LED indicators provide visual | |

feedback indicating the state that each relay is being

driven.

Technical Specifications

optical
isolation From

|

|

é)_ OptiLlogic
processor

I module infernal
I circuit

Card Cage Power Required

120 mA

Output Type

Solid state relay (Trice)

Outputs

8

Status Indicators

Logic Side LED

Voltage Rating

12 -132 VAC

Maximum load current

0.5 A/ point @ 120VAC

Minimum load current 10 mA
On state voltage drop 1V (typical)
Peak surge current, 1 cycle 15A

Commons

2 (connected internally)

Terminal Strip

Plug In (removable)

Terminal Screws

Slotted (0.1” blade max)

Max. terminal wire gauge

18 AWG (use copper conductors)

Terminal block torque 2.2 Ib-in
Required Temp. rating of 60°C/75°C
field installed conductors

Weight 1.30z(389)
Type 9

Subtype 3

243

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

Connection Diagram

Terminal @
10 Out 7 L6]
9 Out 6 @
8 Out 5 @
7 Out 4
6 Out 3 @
ut
12|
5 out 2 —
L1
4 Out 1
3 Oul0 @
2 Common /.\
1 Common @
15-132VAC

A.41 OL2111 Configuration Options

The OL2111 module is configured through the Configure /O menu command in
the PointeControl development framework. (For more information on Configure
I/0, see page 118.) Selecting an OL2111 module and clicking the I/O button opens
the OL2111 I/O Map dialog window...

Ouput tab

Output 0:
Crutpuet 1:
Crutput 2:
Output 3:
Output 4:
Output 5:
Output &
Output 7

30 0 O S N

Dk Cancel

244

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

Each Output point, from 0 through 7, is associated with a single Output Bit tag

(%QX).

To configure an Output, click the =l to the right and select an Output Bit tag
from the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Outputs unconfigured, but if you do, those 1/0
points will not be available to your project.

Failsafe tab

e OLZ111 170 M
Outouts {Falisate]

Timeout interval (msy; |-

Crutpirt 0 Action:
Crutput 1 Action:
Crutput 2 Action;
Output 3 Action:
Cutput 4 Action:
Output 5 Action:
Crutput 6 Action:
Cutput 7 Action:

ap

|Las1 Value ___._j

|Last Value e

fLast value -
|Last value -

[Last value i
JLast value i

[Last value i

|LE|'E1 Value -

Dk Cancel

If, during runtime, your project fails to respond for a given timeout interval, then
the Pointe Controller unit will automatically set all Output points to
preconfigured failsafes. Parameters for this tab include:

= Timeout Interval (ms) - Wait time in milliseconds after project failure
before Outputs switch to configured Output Actions.

NOTE: This value of Timeout Interval is taken from the project’s
preferences and is not editable in this window. To edit this value, see Edit
Preferences.

= Output n Action - Each Output has three possible failsafe actions:

(0]

(0]

o

Fail ON - On Fail condition, turn this Output OFF.
Fail OFF — On Fail condition, turn this Output ON.

Last Value (default) — On Fail condition, leave this Output in its
current state.

To configure an Output Action, click the =l to the right and select an
action from the pop-up menu.

245

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

When you have finished configuring the module, click OK to save your changes
and close the window.

246

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

A.5

OL2201 Digital Input Simulator Module

The OL2201 Digital Input Simulator Module is designed to be an aid to
program development. Use the OL2201 to simulate real world inputs
during your design and debug process. The OL2201 enables the
program developer to cause a change in input status at will to simulate
a system action. In doing so, you are able to see the program’s
response. Use of the OL2201 is an aid in the process of thoroughly
testing and debugging a system prior to “going live” with real
hardware.

When it becomes time to move to real hardware, replace the OL2201

with the appropriate digital input module. The logic of your program
will remain the same.

Technical Specifications

Card Cage Power Required 60mA

Input Type Toggle Switch
Inputs 8

Status Indicators Logic side LED
Weight 1.1 0z (30 g)
Type 1

Subtype 3

Connection Diagram

Because this module simulates inputs using toggle switches, there is no

connection diagram.

247

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

A5.1

OL2201 Configuration Options

The OL2201 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/0, see page 118.) Selecting an OL2201 module and clicking the I/O button opens
the OL2201 I/0O Map dialog window...

ed L2201 10 Map...

Irpust 0:
Iput 1:
It 2:

|
|
|
Input 3 |
|
|
|
|

IFiput 4:
Input &
Input B
It 7-

N O O T

Dk Cancel

Configuring the OL2201 module is very simple: each Input point, from 0 through
7, is associated with a single Input Bit tag (%IX).

To configure an Input, click the =l to the right and select an Input Bit tag from
the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Inputs unconfigured, but if you do, those I/O
points will not be available to your project.

When you have finished configuring the module, click OK to save your changes
and close the window.

248

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

A.6

OL2205 AC/DC Input Module

The OL2205 Digital Input module senses up to four (4) AC or
DC input signals. All inputs are individually optocoupled for
isolation. Inputs are also individually isolated from each
other by separate terminal connections. Filtering is provided
for zero crossover. Individual LED indicators provide visual

feedback of current status.

Technical Specifications

optical
isolation

-

| module internal
| circuit

o
Optilogic
processor
—

N S

Card Cage Power Required

100 mA

Input Type

AC Optocoupled

Inputs

4

Status Indicators

Logic Side LED

Voltage Range

10-30 V ACor DC

Input Impedence

2.7K ohms

Inputs DC sinking or sourcing / or AC
Min. On Current (per point) 3.3 mA
Max. On Current (per point) 11 mA

Terminal Strip

Plug In (removable)

Terminal Screws

Slotted (0.1” blade max.)

Max. terminal wire gauge

18 AWG (use copper conductors)

Terminal block torque 2.2 Ib-in
Required Temp. rating of 60°C/75°C
field installed conductors

Weight 1.2 0z (349)
Type 5

Subtype 1

249

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

A.6.1

Connection Diagram

—IN3
Terminal ‘:)
8 In3
7 In3 2
6 In2 @
5 In2
—IN1
4 In1
3 In1 @
2 In0
1 In0 @ _INO
10-30V AC or DC

OL2205 Configuration Options

The OL2205 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/0, see page 118.) Selecting an OL2205 module and clicking the I/O button opens
the OL2205 I/0 Map dialog window...

o OLZ205 170 Map... E3

Input 0 | %
It 1: 3 _.'...|
Input 2 I o
It 3: | =l

Dk Cancel

Configuring the OL2205 module is very simple: each Input point, from 0 through
3, is associated with a single Input Bit tag (%IX).

To configure an Input, click the =l to the right and select an Input Bit tag from
the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Inputs unconfigured, but if you do, those I/O
points will not be available to your project.

250

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

When you have finished configuring the module, click OK to save your changes
and close the window.

251

Appendix A: OptiLogic Technical Specifications

Pointe Controller User Guide

A.7

OL2208 DC Digital Input Module

The OL2208 DC Digital Input module can be used in either |

sourcing or sinking application. (All eight inputs must be !

used in the same manner.) Each input is optocoupled to é—wv—
provide system isolation. Individual LED indicators provide | %R\:
a visual feedback of current status. 4

Technical Specifications

optical
isolation

| module internal
| circuit

0
OptiLogic
processor
—

Card Cage Power Required

60 mA

Input Type

DC Optocoupled

Inputs

8

Status Indicators

Logic Side LED

Voltage Range 10 -30 vDC
Input Impedence 2.7K ohms
Min. On Current (per point) 3.3 mA
Max. On Current (per point) 11 mA

Commons

2 (connected internally)

Terminal Strip

Plug In (removable)

Terminal Screws

Slotted (0.1” blade max.)

Max. terminal wire gauge

18 AWG (use copper conductors)

Terminal block torque 2.2 Ib-in
Required Temp. rating of 60°C/75°C
field installed conductors

Weight 1.2 0z (349)
Type 1

Subtype 1

252

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

Connection Diagram

The OL2208 DC Digital Input module can be used in either sourcing or sinking
application. All eight inputs must be used in the same manner.

Terminal Sourcing -
10 In7 — o
9 In6 _°_JN6_
8 In5 —°_JNs_
7 In 4 —°_JNL1_
6 In3 ol
5 In 2 —O_JNQ—:;::L
4 In 1 —O_JN]—
3 Ino — N
2 Common
1 Common + I

10-30VDC

Terminal Sin||<|i\|r17g
10 In7 l;_ ING
9 In 6 L IN5
8 In5 L N
7 In4 L] IN3
6 In3 L N2
5 In2] N
4 In 1
3 In 0 E: 10
2 Common
1 Common 1 I_l_

10-30vDC

253

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

A.7.1

OL2208 Configuration Options

The OL2208 module is configured through the Configure /O menu command in
the PointeControl development framework. (For more information on Configure
I/0, see page 118.) Selecting an OL2208 module and clicking the I/O button opens
the OL2208 I/0 Map dialog window...

ed OLZ208 10 Map...

It 0
Iput1:
It 2:

|
|
|
Input 3 |
|
|
|
|

IFupost 42
Input &
It A
It 72

Lol e e b e e

o). Cancel

Configuring the OL2208 module is very simple: each Input point, from 0 through
7, is associated with a single Input Bit tag (%IX).

To configure an Input, click the =l to the right and select an Input Bit tag from
the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Inputs unconfigured, but if you do, those I/O
points will not be available to your project.

When you have finished configuring the module, click OK to save your changes
and close the window.

254

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

A.8 0L2211 AC Digital Input Module

The OL2211 AC Digital input module senses up to eight (8) |

AC input signals. All inputs are individually optocoupled for | To

isolation. Filtering is provided for zero crossover. Individual <{>— Optilogic
i

opfical
isolation

. . . . rOCessor
LED indicators provide visual feedback of current status. =
| module intemnal
| circuit

Technical Specifications

Card Cage Power Required 100 mA

Input Type AC Optocoupled
Inputs 8

Status Indicators Logic Side LED
Voltage Range 80 - 132 VAC
Input Impedence 47K ohms

Min. On Current (per point) 1.7 mA

Max. On Current (per point) 2.8 mA

Commons 2 (connected internally)
Terminal Strip Plug In (removable)

Terminal Screws Slotted (0.1” blade max.)

Max. terminal wire gauge 18 AWG (use copper conductors)
Terminal block torque 2.2 Ib-in

Required Temp. rating of 60°C/75°C

field installed conductors

Weight 1.3 0z (389)

Type 1

Subtype 2

255

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

Connection Diagram

Terminal O_C|N7
10 In7 o_clNé
9 In6 5 oS
8 In5 O—CIN4
7 In4 o—QIN(-S
6 In3
" 52
4 In1 ° ¢
—|NO
3 Ino © 0
2 Common
1 Common 4@
80-132VAC

A.8.1 0L2211 Configuration Options

The OL2211 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/0, see page 118.) Selecting an OL2211 module and clicking the I/O button opens
the OL2211 I/O Map dialog window...

ef 0LZ211 140 Map... E

Input O:
Iput 1:
Iput 2
Irput 3
IFrput 4:
Input &
Irput B
It 7-

Sy e e e S e e s

[o].8 Cancel

Configuring the OL2211 module is very simple: each Input point, from 0 through
7, is associated with a single Input Bit tag (%IX).

To configure an Input, click the =l to the right and select an Input Bit tag from
the pop-up menu. Each tag can be used only once.

256

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

NOTE: You can leave any or all Inputs unconfigured, but if you do, those I/O
points will not be available to your project.

When you have finished configuring the module, click OK to save your changes
and close the window.

257

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

A9

OL2252 Dual Pulse Counter

The OL2252 module provides two independent high |

speed pulse counter inputs. Each input counter will ! o
accurately count pulse inputs up to 15KHz. Inputs may be J>—m— Opilogic
sourcing or sinking type. There are a number of operating | %Q’/ =
options available with the OL2252. The six remaining |,

inputs can be used as predefined control signals or as | module infernal
general purpose inputs. These options are detailed below. | circuit

opfical
isolation

Input Connections

The following is a list of the input connections on the module:

Terminal Label Description
1 Common | Sourcing or sinking return line
2 Common | Sourcing or sinking return line
3 Pulse 1 Square wave input, up to 15 KHz
4 Pulse 2 Square wave input, up to 15 KHz
5 Reset 1 If configured as “reset” input, will clear the Pulse 1 count

when activated. If not configured as “reset” input, can be
used as a general purpose input.

6 Reset 2 If configured as “reset” input, will clear the Pulse 2 count
when activated. If not configured as “reset” input, can be
used as a general purpose input.

7 Enable 1 | If configured as an “enable” input, enables the Pulse 1
counter when active. If not configured as an “enable” input,
can be used as a general purpose input.

8 Enable 2 | If configured as an “enable” input, enables the Pulse 2
counter when active. If not configured as an “enable” input,
can be used as a general purpose input.

9 Input 1 General purpose input

10 Input 2 General purpose input

Theory of Operation

The OL2252 Pulse Counter has two independent pulse counter inputs. These pulse
counter inputs will accurately count pulses between 0 and 15KHz.

All counts begin at zero and count up to the maximum number the counter can
hold (4,294,967,295). If the count should ever get that high, it will roll over to
zero.

In order to count, the count input must be enabled. A message with an enable
must come from the runtime program. The module can also be set up to use the
local hardware input enable (in addition to the enable message).

258

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

The count can be reset to 0 at any time. Again there is both a reset message that
can be sent from the PC and an optional hardware reset signal.

Whether the hardware “reset” and “enable” are used is determined by how the
module is configured in the PointeControl development framework (see below).

Input Signal

The input pulse train is a repetitive square wave input that looks something like
the following:

- lcount -

If you know the maximum frequency of the pulse train, you can configure the
pulse counter to count pulse up to that pulse rate. In doing so, the counter will
consider anything above the maximum rate that you have defined to be noise
and will ignore it.

Technical Specifications

Card Cage Power Required 100 mA

Inputs (all) 8

Pulse Inputs 2

Status Indicators Logic Side LED

Input Voltage 10-30 vVDC

Input Impedence 2.7K ohms

Input frequency (on pulses) 15 KHz maximum

Min. On Current (per point) 3.3 mA

Max. On Current (per point) 11 mA

Commons

2 (connected internally)

Terminal Strip

Plug In (removable)

Terminal Screws

Slotted (0.1” blade max.)

Max. terminal wire gauge

18 AWG (use copper conductors)

Terminal block torque 2.2 Ib-in
Required Temp. rating of 60°C/75°C
field installed conductors

Weight 1.2 0z (349q)

259

Appendix A: OptiLogic Technical Specifications

Pointe Controller User Guide

Type 1
Subtype 2
Connection Diagram
—IN7
Terminal O O
10 Input 2 o_clNé
9 Input 1 O_CEN 2
8 Enable 2 O_CEN 1
7 Enable 1 N
nable 5 CRESET
6 Reset 2 —— RESET
0 O
5 Reset 1
HEr Pulse
4 Pulse 2 PU
ulse
3 Pulse 1 UL
2 Common |
1 Common ! [
10-30VDC

260

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

A9.1

0L2252 Configuration Options

The OL2252 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/0, see page 118.) Selecting an OL2252 module and clicking the I/O button opens
the OL2252 1/0 Map dialog window...

Inputs tab

e DL2252 170 Map...
inputs || channel 1] Channel 2|

Input 0:
Input1:
Input 2:
Input 3:
Input 4;
Input &:
Input &:
Input 7:

l
|
!
I
|
|
I
|

Ok,

Cancel

Each Input point, from 0 through 7, is associated with a single Input Bit tag

(%I1X).

To configure an Input, click the =l to the right and select an Input Bit tag from

the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Inputs unconfigured, but if you do, the pulse
counters may not work as intended.

261

Appendix A: OptiLogic Technical Specifications

Pointe Controller User Guide

Channel tabs

ed DLZ252 170 Map.

Inputs Channel 1]

Frequency.

Channel 2|

15 KHz

Hardware Enable: [Disabled

Hardware Resat
Counter Yalue:
Enable:

Resal:

|Dizatled

I

il i s s [

Ok,

Cancel

The first six Inputs on the OL2252 module are grouped into two channels, which
correspond with and control the two pulse counters on the module. (The last two
Inputs — 6 and 7 — are generic DC inputs.) The Inputs are grouped as follows:

Channel Counter Input Hardware Reset Hardware Enable
1 Input 0 Input 2 Input 4
2 Input 1 Input 3 Input 5

These channels are configured via the Channel 1 and Channel 2 tabs. Both tabs
have the same parameters:

* Frequency — The maximum frequency range for the channel to count
pulses. Available frequencies: 15 KHz (default), 10 KHz, 5 KHz, 2.5 KHz, 1

KHz.

To configure Frequency, click the =l to the right and select a frequency

from the pop-up menu.

= Hardware Enable - Option to use value received on the Hardware
Enable input (Input 4 for Channel 1, Input 5 for Channel 2) to determine
when the channel starts and stops counting.

(0]

If Disabled (default), then the Hardware Enable input can be
used as a generic DC input and will not have any effect on the

channel.

If Enabled, then the value received on the Hardware Enable
input controls the corresponding channel’s behavior: a value of
ON starts counting, while a value of OFF stops counting.

To configure Hardware Enabled, click the =l to the right and select an
option (Disabled or Enabled) from the pop-up menu.

262

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

NOTE: If you use the Hardware Enable option, then you must also have
the Enable bit set (see below). If you do not, the channel cannot count.

Hardware Reset - Option to use value received on the Hardware Reset
input (Input 2 for Channel 1, Input 3 for Channel 2) to determine when
the channel resets the counter to 0.

o If Disabled (default), then the Hardware Reset input can be
used as a generic DC input and will not have any effect on the
channel.

o If Enabled, then the value received on the Hardware Reset input
controls the corresponding channel’s behavior: a value of ON
resets the counter to 0, while a value of OFF resumes counting
as normal.

To configure Hardware Reset, click the =l to the right and select an
option (Disabled or Enabled) from the pop-up menu.

Counter Value - The 32-bit Unsigned Input tag (%IUD) to which the
channel’s actual counter total is written.

To configure Counter Value, click the =l to the right and select a tag from
the pop-up menu. Each tag can be used only once.

Enable - Bit to enable and disable the counter from within the project.
This bit takes precedence over the Hardware Enable input (above). When
the bit is ON, the counter is enabled. When the bit is OFF, the counter is
disabled. Mapped to an Output Bit tag (%QX).

To configure Enable, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

Reset - Bit to reset and resume the counter from within the project. This
bit takes precedence over the Hardware Reset input (above). When the
bit is ON, the counter is reset. When the bit is OFF, the counter is
resumed. Mapped to an Output Bit tag (%QX).

To configure Reset, click the =l to the right and select a tag from the pop-
up menu. Each tag can be used only once.

When you have finished configuring the module, click OK to save your changes
and close the window.

263

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

A.10

OL2258 High Speed Pulse Counter

The OL2258 High Speed Counter Module provides for direct

1
pulse counting for a variety of high speed pulse interface ; A = A
applications. Typical applications include motion control, 2 L
metering and velocity measurement. The OL2258 contains |3 — -
on-board intelligence necessary for processing and counting W§% —~ B
pulse information as well as automatically triggering control 14 [[1] | |
outputs. |

&
The OL2258 can be configured to operate in one of three L%N — 7
pulse counting modes: Pulse & Direction, Up/Down Count, or | —
Quadrature. Pulse & Direction and Up/Down Count will | | []
operate at up to 80KHz input pulse rates. Quadrature inputs is ?% — IS
count each quadrature state transitions at up to 160 KHz. T T — —
Additionally, the OL2258 will return frequency information. o

o

i+ l—oun
The counter has a 32-bit resolution and a total range of
~2,147,483,648 to +2,147,483,648, 4] f—out2

i

General Overview

The OL2258 is configurable. It can be used with pulse & direction, up/down count
or quadrature type pulse encoders. These signals may come from shaft encoders,
flow meters or any other signal source that produces a pulse train output. When
operating, the OL2258 maintains a current cummulative count as a 32 bit integer
value. It also makes available frequency snapshot data as the most recent count
over either 1 second or 200 milliseconds. The Z and LS inputs can be used to
automatically reset the count to a user defined value. Each transistor output can
be configured to turn on when the count value is within its related count range.

Pulse and Direction

In this configuration, pulses are input to “A”. The counter direction is controlled
by input “B"”. The operation is illustrated below.

Pulse & Direction Count

Pulse (A) |
Direction (B) |

Count 1 2 3 4 5 4 3 2 1 0 1 2

264

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

Quadrature Encoder Input
The counting process for quadrature type encoding is determined by the phase
angle between input A and input B. If A leads B, the counter increments. If B

leads A, the counter decrements. The count is incremented or decremented on
each pulse transition as shown below.

Quadrature Count

Pulse (A) | ’ |
Pulse (B) | |

Count 12345678 76543210-1-2-3

Up/Down Count

For this type of configuration, the count increments on pulses input to “A” and
decrements on pulses input to “B”. This is illustrated in the figure below.

Up/Down Count

Up Pulse (A)
Down Pulse (B)

Count 1 2 3 4 5 4 3 2 1 0101

Z and LS Presetting

The count can be preset to a value that you define based on either or both inputs
LS and Z. It can also be forced to a preset value on command via a message.

Through the configuration message, the counter can be set up to force a preset
value when Z is active, LS is active, both Z and LS are active or on software
command.

Output Control

The two open collector outputs can each be progammed to trigger within a
programmable (via an ethernet message) count range. This range can be changed
at any time via a “Send Output Range” message, effectively providing and
unlimited number of ranges, under user program control.

Outputs will trigger within immediately, when the count enters the related
range.

Frequency Measurement

Frequency data can be read back as a 16 bit signed integer value. The value will
correspond to the most recent 1 second or 200 millisecond (configurable) pulse
count.

265

Appendix A: OptiLogic Technical Specifications

Pointe Controller User Guide

Technical Specifications

Card Cage Power Required 400 mA
Inputs (all) 4
Pulse Inputs 2

Status Indicators

Logic Side LED

Counting Modes

Pulse & Direction, Up/Down Count, Quadrature

Count Value

32 Bit Signed

Frequency Data

16 Bit Signed (configurable for 1 sec or 200 msec)

Input Signal Type

Sinking, sourcing, or differential

Input Impedence

2.0K ohms nominal

Input frequency (on pulses)

80/160 KHz maximum

Min. Input On Voltage 4.00V
(or differential)

Min. Input Off Voltage 3.00V
(or differential)

Maximum Input Voltage 28V
Outputs 2

Output Type

Open collector

Commons

1 (connected internally)

Terminal Strip

Plug In (removable)

Terminal Screws

Slotted (0.1” blade max.)

Max. terminal wire gauge

18 AWG (use copper conductors)

Terminal block torque

2.2 Ib-in

Required Temp. rating of
field installed conductors

60°C/75°C

Weight 1.24 oz (359)
Type 82
Subtype 2

266

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

Connection Diagram

Terminals
10 Out 2 Open collector output 2
9 Out 1 Open collector output 1
8 Common Common for LS and two outputs
7 LS Limit Switch input (optional)
6 Z2 Z input (optional)
5 Z1
4 B2 Pulse input B (quadrature) /
Direction input (pulse & direction) /
3 B1 Down pulse (up/down count)
2 A2 Pulse input A (quadrature) /
Pulse input (pulse & direction) /
1 A1 Up pulse (up/down count)

The OL2258 High Speed Pulse counter is designed to interface to a variety of
standard pulse encoder devices: differential, sourcing, or sinking. The figures
below illustrate connections for each type of encoder.

Cifferential Dive Inferface
(Positive differsntial|

Cifferential Diive Interface

(Bpoiar differentian

dinking Encoder Interface Sourcing Encoder Interface

267

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

A.10.1 OL2258 Configuration Options

The OL2258 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/0, see page 118.) Selecting an OL2258 module and clicking the I/O button opens
the OL2258 I/0 Map dialog window...

Inputs tab

Input & |
Input 8 |
Input Z: |
Input LS: |

256 1/0 Mop...
| counter| outout1 | outout 2]

(0

Dk Cancel

Each of the four inputs on the OL2258 module is written to a separate bit.

Input A - Bit to which the current status of Input A is written. When A
becomes ON, the bit is set to 1. When A becomes OFF, the bit is set to 0.
Mapped to an Input Bit tag (%IX).

To configure Input A, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

Input B - Bit to which the current status of Input B is written. When B
becomes ON, the bit is set to 1. When B becomes OFF, the bit is set to 0.
Mapped to an Input Bit tag (%IX).

To configure Input B, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

Input Z - Bit to which the current status of Input Z is written. When Z
becomes ON, the bit is set to 1. When Z becomes OFF, the bit is set to 0.
Mapped to an Input Bit tag (%IX).

To configure Input Z, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

Input LS - Bit to which the current status of Input LS is written. When LS
becomes ON, the bit is set to 1. When LS becomes OFF, the bit is set to 0.
Mapped to an Input Bit tag (%IX).

268

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

To configure Input LS, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

NOTE: These inputs do not necessarily need to be mapped to tags in Logic
Memory for the pulse counter itself to function. The counter will still count pulses
and write out the counter value, as configured in the Counter tab (below).
However, it is sometimes useful to have access to these I/0 points independent of
the counter function.

Counter tab

o€ DLZ258 170 Map... E

| cutout1 | output 2|

Counter Type: [F‘L |ze/Direction
Frequency Selection: |Up to 20 kKHz
Counter Yalug: |

Frequency; |
Hold Count: |
Preset Yalug: |
Z Prazet |Dizabled
LS Preset: [Dlaa bled
Force Preset |

Qk Cancel

General configuration parameters for pulse counter.

Y

= Counter Type - The mode in which the counter will operate (see above).
Options include:

o Pulse/Direction (default) — In this mode, pulses are counted by
Input A and the counter direction is determined by Input B.

o Up/Down Count — In this mode, pulses received by Input A
increment the counter and pulses received by Input B
decrement the counter.

o Quadrature - In this mode, counting is determined by the phase
angle between Input A and Input B. If A leads B, then the
counter increments. If B leads A, then the counter decrements.

To configure Counter Type, click the =l to the right and select a mode
from the pop-up menu.

= Frequency Selection - The frequency at which pulses will be received
and counted. Options include:

o Up to 30 KHz — The maximum pulse frequency will be less than
or equal to 30 KHz.

269

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

o Over 30 KHz — The maximum pulse frequency will be greater
than or equal to 30 KHz.

To configure Frequency Selection, click the =l to the right and select a
frequency option from the pop-up menu.

Counter Value - Tag to which the current value of the pulse counter will
be written. Mapped to a 32-bit Signed Input tag (%ID).

To configure Counter Value, click the =l to the right and select a tag from
the pop-up menu. Each tag can be used only once.

Frequency - A sample of counted pulses taken over a predetermined
time period. The length of the period depends on the Frequency Selection
(above). If “Up to 30 KHz" is selected, then the period is the most recent 1
second. If “Over 30 KHz" is selected, then the period is the most recent
200 milliseconds (msecs). The total number of pulses counted during that
period is written to the Frequency tag. Mapped to a 16-bit Signed Input
tag (%IW).

To configure Frequency, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

Hold Count - Bit to pause and resume the counter. When the bit
becomes ON, the counter is paused. When the bit becomes OFF, the
counter is resumed from its last value. Mapped to an Output Bit tag
(%QX).

To configure Hold Count, click the =l to the right and select a tag from
the pop-up menu. Each tag can be used only once.

Preset Value - Value to which Counter Value will be forced whenever Z

Preset, LS Preset, or Force Preset becomes ON (see below). Mapped to any
32-bit Signed tag (%ID, %MD, or %QD).

To configure Preset Value, click the =l to the right and select a tag from
the pop-up menu. Each tag can be used only once.

Z Preset - Option to allow the status of Input Z to force the Preset Value.

o If Disabled (default), then Input Z can be used as a generic DC
input.

o If Enabled, then Counter Value will be forced to Preset Value
when Input Z becomes ON.

To configure Z Preset, click the =l to the right and select an option
(Disabled or Enabled) from the pop-up menu.

LS Preset — Option to allow the status of Input LS to force the Preset
Value.

o If Disabled (default), then Input LS can be used as a generic DC
input.

270

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

o If Enabled, then Counter Value will be forced to Preset Value
when Input LS becomes ON.

To configure LS Preset, click the =l to the right and select an option
(Disabled or Enabled) from the pop-up menu.

Force Preset - Bit to force Counter Value to Preset Value. Whenever the
bit is set to 1, the value is forced. Mapped to an Output Bit tag (%QX).

To configure Force Preset, click the =l to the right and select a tag
from the pop-up menu. Each tag can be used only once.

Output tabs

ed DLZ258 1470 Map...

Enzble Qutput; |
Output Status: |
Manc value: |
Min value: [

(3 S

Dk Cancel

The OL2258 module includes two (2) DC open collector outputs that are
automatically turned on/off according on the current value of the pulse counter.
When the counter value is inside an output’s specified range, the output is turned
on. When the counter value goes outside (above or below) an output’s specified
range, the output is turned off.

Each output is configured separately through its own tab: Output 1 and Output
2. Both tabs have the same configuration parameters...

Enable Output - Bit to enable and disable the output. When the bit is
set to 1, the output is enabled. When the bit is set to 0, the output is
disabled. Mapped to an Output Bit tag (%QX).

To configure Enable Output, click the =l to the right and select a tag
from the pop-up menu. Each tag can be used only once.

Output Status - Bit to which the current status of the output is copied.
(The actual status of the output is automatically controlled by the module
itself.) When the output becomes ON, the bit is set to 1. When the output
becomes OFF, the bit is set to 0. Mapped to an Input Bit tag (%IX).

271

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

To configure Output Status, click the =l to the right and select a tag from
the pop-up menu. Each tag can be used only once.

Max Value - The maximum value of the range in which the output will
be ON. When the counter value is above this maximum, the output will be
OFF. Mapped to any 32-bit Signed tag (%IX, %MX, or %QX).

To configure Max Value, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

Min Value - The minimum value of the range in which the output will be
ON. When the counter value is below this minimum, the output will be
OFF. Mapped to any 32-bit Signed tag (%IX, %MX, or %QX).

To configure Min Value, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

When you have finished configuring the module, click OK to save your changes
and close the window.

272

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

A1

OL2304 Analog Voltage Output Module

The OL2304 Analog Voltage Output Module provides four (4) output channels
that are range configurable, on a channel by channel basis, to any of four
common output ranges: 0-5 V, 0-10 V, +/-5 V, or +/-10 V. The voltage range for
each channel can be configured through your PointeControl project rather than
using physical jumpers. The module generates its own isolated output power
supply, eliminating any need for an outside source.

To control the voltage output, the module receives an output value from the
program and converts it to an actual voltage. The output value has a 12-bit
resolution and is scaled from 0 to 4095 (0x0 to OxFFF); i.e., the minimum voltage is
equal to 0, the maximum voltage is equal to 4095, and all other voltages are
scaled in between.

To find the correct output value for a given voltage, you must configure a Flow
Chart block or Ladder Diagram rung to perform the following calculations:

= Forarangeof0-5V...
Output Value = (Actual Voltage x 4095) / 5
= Forarangeof 0-10 V...
Output Value = (Actual Voltage x 4095) / 10
= Forarange of +/-5V...
Output Value = [(Actual Voltage + 5) / 10] x 4095
= Forarange of +/-10 V...
Output Value = [(Actual Voltage + 10) / 20] x 4095

Example 1: A channel is configured for a range of 0-10 V and a 3.3V output is
required. The output value is calculated as...

Output Value = (3.3 x 4095) / 10 = 1351

Example 2: A channel is configured for a range of +/-5 V and a -2.5V output is
required. The output value is calculated as...

Output Value =[(-2.5 + 5) / 10] x 4095 = 1024

Technical Specifications

Card Cage Power Required 700 mA

Ouptuts 4

Output Ranges 0-5V, 0-10V, +/-5V, +/-10V (configurable by channel)
Resolution 12 bit (1 in 4096)

Output Type Single-ended, 1 common

273

Appendix A: OptiLogic Technical Specifications

Pointe Controller User Guide

External Power Required none
Output Current +/-5 mA
Short Circuit Current +/-15 mA

Offset Calibration Error

+/- 32 counts @ 0-5V

+/- 16 counts @ 0-10V
+/- 16 counts @ +/-5V
+/- 8 counts @ +/-10V

Nonlinearity

+/- 1 count

Terminal Strip

Plug In (removable)

Terminal Screws

Slotted (0.1” blade max.)

Max. terminal wire gauge

18 AWG (use copper conductors)

Terminal block torque 2.2 Ib-in
Required Temp. rating of 60°C/75°C
field installed conductors
Type 25
Subtype 1
Connection Diagram
+
—
Terminal Channel 4
8 Out 4
7 Common |—+
6 Out 3 Channel 3
5 Common
4 Out 2 +
3 Common Channel 2
2 Out 1
+
1 Common]
Channel 1

274

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

A.11.1 OL2304 Configuration Options

The OL2304 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/0, see page 118.) Selecting an OL2304 module and clicking the I/O button opens
the OL2304 1/0 Map dialog window...

e DLZ304 10 Map...

Channel 1:
Channel 2:
Channel 3:
Channgel 4

Voltage Range 1:
Woltage Riange 2:
Vollage Range 3:
Voltage Range 4:

g s e

lo-5v

|5+

lo-sv

[o-5v

o).

B O O R T

Cancel

Each of the four output channels on the OL2304 module can be configured
separately. To use a channel, you must configure both its Channel and its

Voltage Range.

= Channel n - Tag from which the output value for the specified channel is
taken. Mapped to a 16-bit Unsigned Output tag (% QUW).

To configure a Channel, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

= Voltage Range n - Voltage range for the specified channel. This option
is configured separately for each output channel. Options include 0-5 V
(default), 0-10 V, +/-5 V or +/-10 V.

To configure a Voltage Range, click the =l to the right and select a range
from the pop-up menu.

NOTE: You can leave any or all output channels unconfigured, but if you do,
those I/0 points will not be available to your project.

When you have finished configuring the module, click OK to save your changes
and close the window.

275

Appendix A: OptiLogic Technical Specifications

Pointe Controller User Guide

A12

OL2408 Analog Voltage Input

The OL2408 Analog Voltage Input Module provides eight (8) voltage sensors.
Each sensor reads the current input voltage, scales it, and writes the scaled value
to a Logic Memory tag. The value has 14-bit resolution and is scaled from 0 to
16383 (0x0 to Ox3FFF); i.e., the minimum voltage is equal to 0, the maximum
voltage is equal to 16383, and all other voltages are scaled in between.

NOTE: The OL2408 comes factory configured for 0-5VDC input range and cannot
be changed through software. If you need 0-10VDC input range, you must
physically set a jumper on the module board.

To convert the scaled value back to an actual voltage input, you must configure a
Flow Chart block or Ladder Logic rung to perform the following calculation:

Voltage Input = Maximum Voltage x (Scaled Value / 16383)

Remember that Maximum Voltage can be either 5 or 10, depending on the
jumper setting.

Technical Specifications

Card Cage Power Required 700 mA

Inputs 4

Input Type 0-5 VDC or 0-10 VDC
Input Impedence 10 MOhm
Maximum Voltage Input +/- 15VDC

Conversion Type

Successive approximation

Resolution

14 bit (1 in 16384)

Full Scale Calibration Error

+/- 15 counts maximum
+/- 5 counts typical

Offset Calibration Error

+/- 2 counts maximum

Linearity Error

+/- 1.25 count maximum

Input Stability

+/- 2 counts

Terminal Strip

Plug In (removable)

Terminal Screws

Slotted (0.1” blade max.)

Max. terminal wire gauge

18 AWG (use copper conductors)

Terminal block torque 2.2 Ib-in
Required Temp. rating of 60°C/75°C
field installed conductors

Type 17

276

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

Subtype 1

Connection Diagram

Terminal

10 Channel 8

9 Channel 7

8 Channel 6

7 Channel 5

6 Channel 4

5 Channel 3

4 Channel 2

3 Channel 1

2 Common

1 Common

A.12.1 OL2408 Configuration Options

4-20 mA

4-20 mA

4-20 mA

4-20 mA

4-20 mA

4-20 mA

4-20 mA

4-20 mA

The OL2408 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/0, see page 118.) Selecting an OL2408 module and clicking the I/O button opens

the OL2408 I/0 Map dialog window...

ed QL2408 170 Map...

Channel 1:

Channel 2:

Channgl 3

Channel 4

Channgl &

Channel G

Channel 7:

Channel 8:

Dk Cancel

T O O R T

The OL2408 module has eight input channels. Each channel is configured

separately.

277

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

Channel n - Tag to which the scaled value of the input voltage is written.
Mapped to a 16-bit Unsigned Input tag (%IUW).

To configure a Channel, click the =l to the right and select a tag from the pop-up
menu. Each tag can be used only once.

NOTE: You can leave any or all Channels unconfigured, but if you do, those 1/O
points will not be available to your project.

When you have finished configuring the module, click OK to save your changes
and close the window.

278

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

A13

OL2418 Analog Current Input

The OL2418 Analog Current Input Module
provides eight (8) amperage sensors. Each
sensor reads the current input amperage,
scales it, and writes the scaled value to a Logic
Memory tag. The value has 14-bit resolution
and is scaled from 0 to 16383 (0x0 to Ox3FFF);
i.e., the minimum amperage is equal to 0, the

maximum amperage is equal to 16383, and all
other amperages are scaled in between.

opftical
isolation

kU

i

To
OptiLogic
processor
SOl —p

/D Converter

]
@
2
=
3

1

analog current
input module

NOTE: The OL2408 module is currently designed for an amperage range of 4 to 20
mA. This range cannot be changed.

To convert the scaled value back to an actual amperage input, you must
configure a Flow Chart block or Ladder Logic rung to perform the following

calculation:
Amperage Input = 16 x (Scaled Value / 16383) 1 + 4
Technical Specifications
Card Cage Power Required 700 mA
Inputs 8
Input Type 4-20 mA

Input Impedence

250 Ohms +/- 0.05%

Conversion Type

Successive approximation

Resolution

14 bit (1 in 16384)

Full Scale Calibration Error

+/- 15 counts maximum

+/- 5 counts typical

Offset Calibration Error

+/- 2 counts maximum

Power Isolation

Transformer

Signal Isolation

Optical

Terminal Strip

Plug In (removable)

Terminal Screws

Slotted (0.1” blade max.)

Max. terminal wire gauge

18 AWG (use copper conductors)

Terminal block torque 2.2 Ib-in
Required Temp. rating of 60°C/75°C
field installed conductors

Type 18

279

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

Subtype 2

Connection Diagram

T inal 0-5VDC
ermina or0-10VDC
10 Channel 8 || o5vDC
or0-10VDC
9 Channel 7 0-5VDC
or0-10vDC
8 Channel 6
0-5VDC
or0-10 VDC
7 Channel 5
0-5VDC
[or0-10VDC
6 Channel 4 o
0-5VDC
5 Channel 3 [~ or0-10VDC
0-5VDC
4 Channel 2 — o 0-10vDe
3 Channel 1 0-5VDC
or0-10VDC
2 Common
1 Common

A.13.1 OL2418 Configuration Options

The OL2418 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/0, see page 118.) Selecting an OL2418 module and clicking the I/O button opens
the OL2418 I/0 Map dialog window...

e L2418 170 Map...

Channel 1:
Channel 2:
Channel 3:
Channgel 4
Channel 5:
Channel &
Channel 7:
Channel 8:

ey e G e e e G R

T O O R T

[8].8 Cancel

The OL2418 module has eight input channels. Each channel is configured
separately.

280

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

Channel n - Tag to which the scaled value of the input amperage is written.
Mapped to a 16-bit Unsigned Input tag (%IUW).

To configure a Channel, click the =l to the right and select a tag from the pop-up
menu. Each tag can be used only once.

NOTE: You can leave any or all Channels unconfigured, but if you do, those 1/O
points will not be available to your project.

When you have finished configuring the module, click OK to save your changes
and close the window.

281

Appendix A: OptiLogic Technical Specifications

Pointe Controller User Guide

A.14

OL2602 Dual Serial Port Module

The OL2602 Dual Serial Port Module provides two (2) standard RS232 serial ports
- in addition to the built-in port on the Pointe Controller unit itself — that can be
used to connect to and communicate with a wide variety of device networks and

control hardware.

Connection Diagram

Technical Specifications

RX
Terminal, Top Port TX
3 Receive (RX) .
Signal Gnd
2 Transmit (TX)
1 Signal Ground
Terminal, Bottom Port
3 Receive (RX)
2 Transmit (TX) RX
1 Signal Ground TX
Signal Gnd

Card Cage Power Required 110 mA

Communications Ports 2

Type RS232C

Baud Rates 1200, 2400, 4800, 9600, 19200 (selectable)
Parity Even, odd or none

Data Bits 7o0r8

Transmit Buffer 48 bytes

Receive Buffer 48 bytes

Terminal Strip

Plug In (removable)

Terminal Screws

Slotted (0.1” blade max.)

Max. terminal wire gauge

18 AWG (use copper conductors)

282

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

Terminal block torque 2.2 Ib-in
Required Temp. rating of 60°C/75°C
field installed conductors

Weight 1.0 0z (299)
Type 112
Subtype 2

A.14.1 0OL2602 Configuration Options

This module cannot be configured through the Configure I/0 dialog. To configure
and use this module, see Serial Commands on page 321.

283

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

A.15

A.15.1

OL3406 Pushbutton/Indicator Panel

The OL3406 Pushbutton/Indicator Panel has four user-definable pushbuttons and
six white indicator bars. The buttons can be configured for either momentary or
alternate-action operation. The button LEDs normally reflect button on/off status.
The momentary buttons can also be configured for LED separation (direct on/off
control). Every button LED and indicator bar can be turned on, off, or flashed.

OL3406 Configuration Options

The OL3406 panel is configured through the Configure I/0 menu command in the
PointeControl development framework. (For more information on Configure 1/0,
see page 118.) Selecting an OL3406 panel and clicking the I/O button opens the
OL3406 I/0 Map dialog window...

Indicators tab

o€ L3406 170 Map...
findicaiors | utons |

Indicator1:
Indicator 2:
Indicator 3:
Indicator 4:
Indicator &:
Indicatar &:
Indicatar 1 Flash:
Indicator 2 Flash:
Indicatar 3 Flash:
Indicator 4 Flash:
Indicatar 5 Flash:
Indicalor & Flash:

Dk Cancel

0 0 S R

284

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

This tab configures the six white indicator bars on the OL3406 panel.

= Indicator n - Bit that turns the indicator on/off. When the bit becomes
ON, the indicator is turned on. When the bit becomes OFF, the indicator is
turned OFF. Mapped to an Output Bit tag (% QX).

To configure an Indicator, click the =l to the right and select a tag from
the pop-up menu. Each tag can be used only once.

*= Indicator n Flash - Bit that quickly flashes the indicator. (The indicator
itself must already be on.) When the bit becomes ON, the indicator starts
flashing. When the bit becomes OFF, the indicator stops flashing. Mapped
to an Output Bit (% QX).

To configure an Indicator Flash, click the =l to the right and select a tag
from the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Indicators unconfigured, but if you do, those 1/0
points will not be available to your project.

Buttons tab
e DL340E 170 Map... E

LED Separation: [Disabled 2]
Button 1 | Button 2| Button 3] Button 4|

Type: [Momentary J
Value: | |
LED: [=
LED Flash: | =

Dk Cancel

This tab controls the four white pushbuttons on the OL3406 panel.

= LED Separation - Option to control the red LEDs embedded in the
pushbuttons, separate from the actual ON/OFF states of the buttons. (The
setting applies to all four buttons.)

o If Disabled (default), then each button’s LED directly reflects the
current ON/OFF state of the button.

285

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

o If Enabled, then each button LED can be turned on/off
independently using the LED parameter (below).

To configure LED Separation, click the =l to the right and select an option
(Disabled or Enabled) from the pop-up menu.

NOTE: This configuration applies to a button only if the button is also set
Momentary (see below).

Button n - Each pushbutton can be configured separately, using its own
Button sub-tab. The buttons on the panel are numbered 1 through 4, from
left to right. All four sub-tabs have the same parameters:

= Type - Option to change the responsiveness of the button.

o If Momentary (default), then the button is ON only so long as it
is pressed and held by the operator.

o If Alternate Action, then the button toggles between ON and
OFF every time it is pressed by the operator.

To configure Type, click the =l to the right and select an option
(Momentary or Alternate Action) from the pop-up menu.

= Value - The current ON/OFF state of the button. Mapped to an Input
Bit tag (%IX).

To configure Value, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

NOTE: The current value of the button should always be read as an
input; the associated tag should never be directly set by the program
logic. To change the state of the button from within the program, use
the Button On and Button Off commands.

= LED - Bit that turns the button LED on/off, if LED Separation is
enabled and the button is set Momentary (see above). Mapped to an
Output Bit tag (% QX).

To configure LED, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

= LED Flash - Bit that quickly flashes the button LED, if LED Separation
is enabled and the button is set Momentary (see above). The LED must
already be on before it can be flashed. Mapped to an Output Bit tag
(%QX).

To configure LED Flash, click the =l to the right and select a tag from
the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Buttons unconfigured, but if you do, those I/O
points will not be available to your project.

286

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

When you have finished configuring the panel, click OK to save your changes and
close the window.

287

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

A.16

A.16.1

OL3420 Operator Terminal

The OL3420 Operator Terminal has four user-definable pushbuttons and a 2 line x
20 character LCD display. The buttons can be configured for either momentary or
alternate-action operation. The button LEDs normally reflect button on/off status.
The momentary buttons can also be configured for LED separation (direct on/off
control). Every button LED can be turned on, off, or flashed.

OL3420 Configuration Options

The OL3420 panel is configured through the Configure I/0 menu command in the
PointeControl development framework. (For more information on Configure 1/0,
see page 118.) Selecting an OL3420 panel and clicking the I/O button opens the
OL3420 I/0 Map dialog window...

Buttons tab

ed DL3420 170 Map...

{Buiions | wessages|

LED Separation; [Dizabied |
Button 1 | Button 2| Button 3] Button 4|
Type: |'-.1|:|r"|c ntary __.:___I
Value: | I |
LED: | 1
LED Flash: |]

ik Cancel

This tab controls the four white pushbuttons on the OL3420 panel.

= LED Separation - Option to control the red LEDs embedded in the
pushbuttons, separate from the actual ON/OFF states of the buttons. (The
setting applies to all four buttons.)

288

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

o If Disabled (default), then each button’s LED directly reflects the
current ON/OFF state of the button.

o If Enabled, then each button LED can be turned on/off
independently using the LED parameter (below).

To configure LED Separation, click the =l to the right and select an option
(Disabled or Enabled) from the pop-up menu.

NOTE: This configuration applies to a button only if the button is also set
Momentary (see below).

Button n - Each pushbutton can be configured separately, using its own
Button sub-tab. The buttons on the panel are numbered 1 through 4, from
left to right. All four sub-tabs have the same parameters:

Type - Option to change the responsiveness of the button.

o If Momentary (default), then the button is ON only so long as it
is pressed and held by the operator.

o If Alternate Action, then the button toggles between ON and
OFF every time it is pressed by the operator.

To configure Type, click the =l to the right and select an option
(Momentary or Alternate Action) from the pop-up menu.

Value - The current ON/OFF state of the button. Mapped to an Input
Bit tag (%IX).

To configure Value, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

NOTE: The current value of the button should always be read as an
input; the associated tag should never be directly set by the program
logic. To change the state of the button from within the program, use
the Button On and Button Off commands.

LED - Bit that turns the button LED on/off, if LED Separation is
enabled and the button is set Momentary (see above). Mapped to an
Output Bit tag (% QX).

To configure LED, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

LED Flash - Bit that quickly flashes the button LED, if LED Separation
is enabled and the button is set Momentary (see above). The LED must
already be on before it can be flashed. Mapped to an Output Bit tag
(%QX).

To configure LED Flash, click the =l to the right and select a tag from
the pop-up menu. Each tag can be used only once.

289

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

NOTE: You can leave any or all Buttons unconfigured, but if you do, those I/O
points will not be available to your project.

Messages tab

e€ OL3420 1/0 Map...
Butions [Wessages]|

Ling 1: |
Line Z; |

Ll

Ok I Cancel

This tab controls to two lines of the LCD on the OL3420 panel. The lines on the
panel are numbered 1 and 2, from top to bottom. Each line is mapped to a
separate 20-character String variable.

To configure a Line, click the =l to the right and select a String variable from the
pop-up menu. Each variable can be used only once.

Lines can be set and changed independently of each other; text does not wrap
from one line to the next. To display text on the panel, use String commands
(Flow Chart or Ladder Block) to write the desired text to the associated String
variables.

NOTE: You can leave any or all Lines unconfigured, but if you do, those I/O points
will not be available to your project.

When you have finished configuring the panel, click OK to save your changes and
close the window.

290

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

A.17 OL3440 Display Panel

The OL3440 Display Panel is a 4 line x 20 character LCD display. You can send text
to any line.

A.17.1 OL3440 Configuration Options

The OL3440 panel is configured through the Configure I/0 menu command in the
PointeControl development framework. (For more information on Configure 1/0,
see page 118.) Selecting an OL3440 panel and clicking the I/O button opens the
OL3440 1/0 Map dialog window...

ed OL3440 150 Map...

Line 1: [=]
Line 2: | 2
Ling 3: | i
Line 4: | ;I

Ok I Cancel [

This tab controls to four lines of the LCD on the OL3440 panel. The lines on the
panel are numbered 1 through 4, from top to bottom. Each line is mapped to a
separate 20-character String variable.

To configure a Line, click the =l to the right and select a String variable from the
pop-up menu. Each variable can be used only once.

Lines can be set and changed independently of each other; text does not wrap
from one line to the next. To display text on the panel, use String commands
(Flow Chart or Ladder Block) to write the desired text to the associated String
variables.

NOTE: You can leave any or all Lines unconfigured, but if you do, those I/O points
will not be available to your project.

When you have finished configuring the panel, click OK to save your changes and
close the window.

291

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

A.18 OL3850 Keypad Terminal

The OL3850 Keypad Terminal has a 2 line x 20 character LCD display, a numeric
keypad w/ up and down arrows, five user-definable pushbuttons, and three
colored indicator bars. The buttons can be configured for either momentary or
alternate-action operation. The button LEDs normally reflect button on/off status.
The momentary buttons can also be configured for LED separation (direct on/off
control). Every button LED and indicator bar can be turned on, off, or flashed.

Optilogic Series
Model 2258 Terminal

@@@%qu

A.18.1 OL3850 Configuration Options

The OL3850 panel is configured through the Configure I/0 menu command in the
PointeControl development framework. (For more information on Configure 1/0,
see page 118.) Selecting an OL3850 panel and clicking the I/O button opens the
OL3850 I/0 Map dialog window...

Indicators tab

o OL38%0 170 Map...
{indicators | Buttons| Messages | Data Entry|

Indicator 1: |
Indicator 2; |
Indicator 3: |
Indicator 1 Flash: |
|
|

Indicator 2 Flash
Indicator 3 Flash:

L S £ 38 £

Ok I Cancel

This tab configures the green (Indicator 1), yellow (Indicator 2), and red (Indicator
3) bars on the OL3850 panel.

292

Pointe Controller User Guide

Appendix A: OptiLogic Technical Specifications

Indicator n - Bit that turns the indicator on/off. When the bit becomes
ON, the indicator is turned on. When the bit becomes OFF, the indicator is
turned OFF. Mapped to an Output Bit tag (%QX).

To configure an Indicator, click the =l to the right and select a tag from
the pop-up menu. Each tag can be used only once.

Indicator n Flash - Bit that quickly flashes the indicator. (The indicator
itself must already be on.) When the bit becomes ON, the indicator starts
flashing. When the bit becomes OFF, the indicator stops flashing. Mapped
to an Output Bit (% QX).

To configure an Indicator Flash, click the =l to the right and select a tag
from the pop-up menu. Each tag can be used only once.

NOTE:
points

You can leave any or all Indicators unconfigured, but if you do, those 1/0
will not be available to your project.

Buttons tab

e OL3

Ingicators | Buttons | massages | Data Entry]

LED Separation: |Dizabied 2
Button 1 | Button 2| Button 3| Button 4| Bution 5|

Value: |

850 170 Map...

H

Type: [Momantary

=]
2]
LED: | =]
£

LED Flash: |

QK I Cancel

This tab controls the five white pushbuttons on the OL3850 panel.

LED Separation - Option to control the red LEDs embedded in the
pushbuttons, separate from the actual ON/OFF states of the buttons. (The
setting applies to all five buttons.)

o If Disabled (default), then each button’s LED directly reflects the
current ON/OFF state of the button.

o If Enabled, then each button LED can be turned on/off
independently using the LED parameter (below).

To configure LED Separation, click the =l to the right and select an option
(Disabled or Enabled) from the pop-up menu.

NOTE: This configuration applies to a button only if the button is also set
Momentary (see below).

293

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

Button n - Each pushbutton can be configured separately, using its own
Button sub-tab. The buttons on the panel are numbered 1 through 5, from
left to right. All five sub-tabs have the same parameters:

Type - Option to change the responsiveness of the button.

o If Momentary (default), then the button is ON only so long as it
is pressed and held by the operator.

o If Alternate Action, then the button toggles between ON and
OFF every time it is pressed by the operator.

To configure Type, click the =l to the right and select an option
(Momentary or Alternate Action) from the pop-up menu.

Value - The current ON/OFF state of the button. Mapped to an Input
Bit tag (%IX).

To configure Value, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

NOTE: The current value of the button should always be read as an
input; the associated tag should never be directly set by the program
logic. To change the state of the button from within the program, use
the Button On and Button Off commands.

LED - Bit that turns the button LED on/off, if LED Separation is
enabled and the button is set Momentary (see above). Mapped to an
Output Bit tag (% QX).

To configure LED, click the =l to the right and select a tag from the
pop-up menu. Each tag can be used only once.

LED Flash - Bit that quickly flashes the button LED, if LED Separation
is enabled and the button is set Momentary (see above). The LED must
already be on before it can be flashed. Mapped to an Output Bit tag
(%QX).

To configure LED Flash, click the =l to the right and select a tag from
the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Buttons unconfigured, but if you do, those I/O
points will not be available to your project.

294

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

Messages tab

ed DL3EB0 170 Map...

Ingicators | Buttons [Messages]| Data Entry]

Ling 1: |
Line Z; |

Ll

QK I Cancel

This tab controls to two lines of the LCD on the OL3850 panel. The lines on the
panel are numbered 1 and 2, from top to bottom. Each line is mapped to a
separate 20-character String variable.

To configure a Line, click the =l to the right and select a String variable from the
pop-up menu. Each variable can be used only once.

Lines can be set and changed independently of each other; text does not wrap
from one line to the next. To display text on the panel, use String commands
(Flow Chart or Ladder Block) to write the desired text to the associated String
variables.

NOTE: You can leave any or all Lines unconfigured, but if you do, those I/O points
will not be available to your project.

Data Entry tab

e DLIAS0 10 Map...

Data Value: |
Data Available: |

(L

ik Cancel

295

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

This tab is used to configure two variables that are required to enter data
through the numeric keypad on the OL3850 panel.

= Data Value - When the user inputs a numeric value and presses the
ENTER key on the keypad, the value is saved to Data Value. Mapped to a
32-bit Real Input tag (%]IF).

To configure Data Value, click the =l to the right and select a tag from
the pop-up menu. Each tag can be used only once.

= Data Available - When the user inputs a numeric value and presses the
ENTER key on the keypad, the Data Available flag is set. Mapped to an
Input Bit tag (%IX).

To configure Data Available, click the =l to the right and select a tag
from the pop-up menu. Each tag can be used only once.

For more information on entering data through the numeric keypad, see
Operator Panel Commands on page 333.

When you have finished configuring the panel, click OK to save your changes and
close the window.

296

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

Appendix B: Flow Chart Command Reference

This appendix provides complete descriptions and configuration instructions for
all of the Flow Chart process commands that are available in the PointeControl
development framework. (For more information on building Flow Charts, see
page 129.)

TIP: The information provided in this appendix is also available via the
PointeControl Framework online help. To access the help, choose Contents from
the Framework’s Help menu.

297

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

B.1

B.1.1

B.1.2

General Commands

General commands (in a Process block) are used to set and clear Logic Memory
tags, to enable and disable Flow Charts, and to insert a timed delay in the chart
execution.

Turn On and Turn Off

These commands can be selected from the General commands list.

TLIII'I I:I n

Tur OAI

=l =l

When used in a Flow Chart, the Turn On and Turn Off commands set a specified
Bit tag to 1 or 0, respectively.

Parameters for these commands include:

= Tag - The Bit tag to be turned on or off by the command. Bit-type tags
include Input Bits (%IX), Memory Bits (%MX), and Output Bits (% QX).

To configure the Tag parameter, click the | button to open a standard
Select Tag dialog.

Assign

This command can be selected from the General commands list.

Block Properties
|nzert I [Ielete | fase i m | fl e [Ew
Caption =
M Agzign J_
Statemert [

[

When used in a Flow Chart, the Assign command writes a value to a specified tag.

298

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

Parameters for this command include:

= Statement - The statement which specifies the tag to be set and
describes the value to written.

The value of may be an Input/Memory/Output tag, a literal numeric value,

or some other logical expression that is evaluated every time the block is
executed.

To configure the Statement parameter, click the | button to open a
standard Build Assignment dialog.

B.1.3 Increment and Decrement

These commands can be selected from the General commands list.

Increment =l Diecrameri
LI

= =l

When used in a Flow Chart, the Increment and Decrement commands increase or
decrease a specified non-Bit tag's value by 1.

Parameters for this command include:
= Tag - The tag to be incremented or decremented by the command. Any

non-Bit Input, Memory, or Output tag can be specified. String and Timer
variables, as well as Bit tags, cannot be specified.

To configure the Tag parameter, click the | button to open a standard
Select Tag dialog.

299

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

B.1.4 Clear

B.1.5

This command can be selected from the General commands list.

Block Properties
|nzert I [Ielete | fase i m | fl e [Ew |
Caption ﬂ
M Clear J
Tag [

[

When used in a Flow Chart, the Clear command resets a specified tag to 0.

Parameters for this command include:

= Tag - The tag to be reset to 0 by the command. Any Input, Memory, or
Output tag can be specified. Strings and Timers cannot be specified.

To configure the Tag parameter, click the | button to open a standard

Select Tag dialog.

Enable and Disable

These commands can be selected from the General commands list.

=l =l

When used in a Flow Chart, the Enable and Disable commands change whether a
specified Flow Chart is scanned. An enabled chart is scanned normally, while a
disabled chart is not scanned. Using these commands is equivalent to toggling the
Default State property in the specified chart’s Start block.

Parameters for this command include:

= Chart - The Flow Chart to be enabled or disabled by the command. Any
regular Flow Chart can be enabled or disabled. Ladder Diagrams, as well

as Flow Charts which have been made Subcharts, cannot be enabled or
disabled.

300

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

To configure the Chart parameter, click the =] button and select a chart
from the drop-down menu.

B.1.6 Get Tag Name

This command can be selected from the General commands list.

Block Properties
|nzert I [Ielete | fase i m | f e Du:uwnl

Source Tag
Destination String
MHame Type {ntar

Caption ﬂ
M Get Tag Mame J

[

When used in a Flow Chart, the Get Tag Name command retrieves the name
(alias) of a specified tag and saves it to a string.

Parameters for this command include:

= Source Tag - The tag from which the name is retrieved. Any Input,
Memory, or Output tag can be selected, as well as any String variable.
Timers cannot be selected.

To configure the Source Tag parameter, click the | putton to open a
standard Select Tag dialog.

= Destination String - The String tag to which the name of Source Tag is
written. If the name is longer than the defined Element Length of the
String, then it will be truncated.

To configure the Destination String parameter, click the | button to
open a standard Select String Tag dialog.

= Name Type - Since all tags are referenced by Alias, this parameter cannot
be configured in PointeControl.

301

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

B.1.7 Wait

This command can be selected from the General commands list.

Block Properties
|nzert I [Ielete | fase i m | fl e [Ew |
Caption ﬂ
mw W ait [
Wait Value [
Units Millisecands hd

[

When used in a Flow Chart, the Wait command inserts a delay of specified
duration into the execution of the chart.

Parameters for this command include:

Wait Value - The number of specified time units in the delay. (Wait
Value is combined with Units below to get the actual duration. For
example, 3 Seconds or 3000 Milliseconds.)

The value of Wait Value may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Wait Value parameter, click the | button to open a
standard Build Argument dialog.

Units - The time units in which the Wait Value above is counted.
Available units include Milliseconds, Seconds, and Minutes.

To configure the Units parameter, click the =] button and select a unit
from the drop-down menu.

302

Pointe Controller User Guide

Appendix B: Flow Chart Command Reference

B.2

B.2.1

B.2.2

Timer Commands

Timer commands (in a Process block) are used to start, stop, and reset Timers. (For
more information on defining Timers in Logic memory, see page 117.)

Timer Start and Timer Stop

These commands can be selected from the Timer commands list.

Irigeit [IE afey=ieg [EVE D Irigait [IE Wl =R R L
Caplion 1= Caplion |
Tirmer Slail ;I_ Timer Slap o
T et |] T ezt | |

When used in a Flow Chart, the Timer Start and Timer Stop commands start and
stop a specified Timer.

Parameters for these commands include:

= Timer - The Timer to be started or stopped by the command.

To configure the Timer parameter, click the | button to open a standard
Build Timer ID dialog.

NOTE: If the Timer was previously stopped, the Timer Start command resumes the
Timer from its last value. To start the Timer from 0, it must first be reset using the
Timer Reset command.

Timer Reset

This command can be selected from the Timer commands list.

Block Properties

|nzert I [Ielete | fase i m | fl e [Ew |

Caption ﬂ
M Timer Reset J
Tirner [

303

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

When used in a Flow Chart, the Timer Reset command resets the specified Timer
to 0 msecs.

Parameters for this command include:

= Timer - The Timer to be reset by the command.

To configure the Timer parameter, click the | button to open a standard
Build Timer ID dialog.

B.2.3 Timer Preset

This command can be selected from the Timer commands list.

Block Properties
|nzert I [Ielete | fase i m | fl e [Ew

Timner
Prezet Value J
Uitz Millizecands hd

Caption =
M Tirner Preset [[
|

[

When used in a Flow Chart, the Timer Preset command assigns a new Preset value
to a specified Timer. This value overwrites whatever Preset was set when the
Timer was originally defined in Logic Memory, and it is retained until the

program is restarted or until the Preset is overwritten again by another Timer
Preset command.

Parameters for this command include:

= Timer - The Timer for which the Preset is to be defined.

To configure the Timer parameter, click the | button to open a standard
Build Timer ID dialog.

= Preset Value - The number of specified time units in the Preset. (Preset
Value is combined with Units below to get the actual Preset. For example,
3 Seconds or 3000 Milliseconds.)

The value of Preset Value may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Preset Value parameter, click the | button to open a
Build Preset Value dialog.

= Units - The time units in which the Preset Value above is counted.
Available units include Milliseconds, Seconds, and Minutes.

304

Pointe Controller User Guide

Appendix B: Flow Chart Command Reference

To configure the Units parameter, click the =] button and select a unit
from the drop-down menu.

NOTE: Although other time units can be selected when using this
command, the Timer itself still counts in milliseconds during runtime. (The
Preset value that is entered is recalculated in milliseconds.)

305

Appendix B: Flow Chart Command Reference

Pointe Controller User Guide

B.3

B.3.1

String Commands

String commands (in a Process block) are used to manipulate strings and String

tags.

NOTE: All String outputs are NULL-terminated.

String Copy

This command can be selected from the String commands list.

Block Properties
|nzert I [Ielete | fase i m | f e Du:uwnl

Destination String
Saource String

Caption ﬂ
M String Copy J

[

When used in a Flow Chart, the String Copy commands directly copies one String
into another.

Parameters for this command include:

Destination String - The String tag to which the Source String will be
copied.

To configure the Destination String parameter, click the | button to
open a standard Select String Tag dialog.

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

Source String - The string to be copied into the Destination String.

The value of Source String may be a String tag, a literal string enclosed in
single quotes (‘' ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Source String parameter, click the | button to open a
standard Build String Argument dialog.

NOTE: Source String is not modified by the execution of this command.

306

Pointe Controller User Guide

Appendix B: Flow Chart Command Reference

B.3.2 String Concat

This command can be selected from the String commands list.

Block Properties
|nzert I [Ielete | fase i m | f e Du:uwnl

Destination String
Saource String

Caption ﬂ
M String Concat J

[

When used in a Flow Chart, the String Concat command appends one string to
the end of another.

Parameters for this command include:

Destination String — The string onto which the Source String will be
appended. Also, the String tag to which the output will be written.
(Essentially, old Destination String + Source String = new Destination
String.)

To configure the Destination String parameter, click the | button to
open a standard Select String Tag dialog.

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

Source String — The string to be appended to the end of the Destination
String.

The value of Source String may be a String tag, a literal string enclosed in
single quotes (* ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Source String parameter, click the | button to open a
standard Build String Argument dialog.

NOTE: Source String is not modified by the execution of this command.

307

Appendix B: Flow Chart Command Reference

Pointe Controller User Guide

B.3.3 String Left and String Right

These commands can be selected from the String commands list.

Sheirg Left | [Sterg Righl | [
[eslination Siing E [eslination Shing | |
Souce Slll.rsg LI Souce Sinng LI
Humber Chars | Humber Chars =
=l [|

When used in a Flow Chart, the String Left and String Right commands extract a
sub-string of a specified length from a given string. The String Left command
extracts from the left side of the string. The String Right command extracts from
the right side of the string.

Parameters for these commands include:

Destination String - The String tag to which the extracted sub-string
will be written.

To configure the Destination String parameter, click the | button to
open a standard Select String Tag dialog.

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

Source String - The string from which the sub-string will be extracted.

The value of Source String may be a String tag, a literal string enclosed in
single quotes (‘' ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Source String parameter, click the | button to open a
standard Build String Argument dialog.

NOTE: Source String is not modified by the execution of this command.

Number Chars - The length of the sub-string, in characters, to be
extracted.

The value of Number Chars may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Number Chars parameter, click the | button to open a
standard Build Argument dialog.

308

Pointe Controller User Guide

Appendix B: Flow Chart Command Reference

B.3.4 String Mid

This command can be selected from the String commands list.

Block Properties
|nzert I [Ielete | fase i m | f e Du:uwnl

Destination String
Saource String
Murmber Chars
Start Pozition

Caption i
Er— s
=

Lt Le

[

When used in a Flow Chart, the String Mid command extracts a sub-string, of a
specified length and starting from a specified position, from a given string.

Parameters for this command include:

Destination String - The String tag to which the extracted sub-string
will be written.

To configure the Destination String parameter, click the | button to
open a standard Select String Tag dialog.

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

Source String - The string from which the sub-string will be extracted.

The value of Source String may be a String tag, a literal string enclosed in
single quotes (‘' ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Source String parameter, click the | button to open a
standard Build String Argument dialog.

NOTE: Source String is not modified by the execution of this command.

Number Chars - The length of the sub-string, in characters, to be
extracted.

The value of Number Chars may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Number Chars parameter, click the | button to open a
standard Build Argument dialog.

309

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

Start Position — The starting position from which the sub-string will be
extracted. The first character of the Source String is equivalent to a Start
Position of 1.

The value of Start Position may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Start Position parameter, click the | button to open a
standard Build Argument dialog.

B.3.5 String Insert

This command can be selected from the String commands list.

Block Properties
|nzert I [Ielete | fase i m | f e Du:uwnl

Caption -
M String Inzert J

Destination String
Saource String
String to Inzert
Start Pozition

Ll le |

[

When used in a Flow Chart, the String Insert command inserts one string into
another, starting at a specified position, and writes the result to separate String

tag.

Parameters for this command include:

Destination String - The String tag to which the result of the command
will be written.

To configure the Destination String parameter, click the | button to
open a standard Select String Tag dialog.

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

Source String - The string into which the String to Insert will be inserted.

The value of Source String may be a String tag, a literal string enclosed in
single quotes (‘' ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Source String parameter, click the | button to open a
standard Build String Argument dialog.

310

Pointe Controller User Guide

Appendix B: Flow Chart Command Reference

NOTE: Source String is not modified by the execution of this command.

String to Insert - The string that will be inserted into the Source String.

The value of String to Insert may be a String tag, a literal string enclosed
in single quotes (' '), or some other logical expression that is evaluated
every time the block is executed.

To configure the Source String parameter, click the | button to open a
standard Build String Argument dialog.

Start Position - The starting position at which the String to Insert will be
inserted. The first character of the Source String is equivalent to a Start
Position of 1.

The value of Start Position may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Start Position parameter, click the | button to open a
standard Build Argument dialog.

B.3.6 String Delete

This command can be selected from the String commands list.

Block Properties
|nzert I [Ielete | fase i m | f e Du:uwnl

Destination String
Saource String
Murmber Chars
Start Pozition

Caption ﬂ
M String Delete J
|

Lt Le

[

When used in a Flow Chart, the String Delete command deletes a specified
number of characters from a given string and writes the result to separate String
tag. This is different from the String Left, String Right, and String Mid commands
above; the output is the remainder of the given string rather than the characters
that were deleted from it.

Parameters for this command include:

Destination String - The String tag to which the result of the command
will be written.

To configure the Destination String parameter, click the | button to
open a standard Select String Tag dialog.

311

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

Source String — The string from which the specified characters will be
deleted.

The value of Source String may be a String tag, a literal string enclosed in
single quotes (‘' ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Source String parameter, click the | button to open a
standard Build String Argument dialog.

NOTE: Source String is not modified by the execution of this command.

Number Chars — The number of characters to be deleted from the Source
String.

The value of Number Chars may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Number Chars parameter, click the | button to open a
standard Build Argument dialog.

Start Position - The starting position from which the specified characters
will be deleted. The first character of the Source String is equivalent to a
Start Position of 1.

The value of Start Position may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Start Position parameter, click the | button to open a
standard Build Argument dialog.

312

Pointe Controller User Guide

Appendix B: Flow Chart Command Reference

B.3.7 String Replace

This command can be selected from the String commands list.

Block Properties
|nzert I [Ielete | fase i m | f e Du:uwnl

Caption -
M String Replace J

Destination String

Source String [
Fieplacement String [
Murnber Chars [
Start Position [

When used in a Flow Chart, the String Replace command replaces a specified
number of characters in a given string with the contents of another string. The
result is written to a separate String tag. This is different from the String Insert
command above; the specified characters are completely overwritten rather than
simply displaced.

Parameters for this command include:

Destination String - The String tag to which the result of the command
will be written.

To configure the Destination String parameter, click the | button to
open a standard Select String Tag dialog.

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

Source String - The string in which the specified characters will be
replaced.

The value of Source String may be a String tag, a literal string enclosed in
single quotes (* ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Source String parameter, click the | button to open a
standard Build String Argument dialog.

NOTE: Source String is not modified by the execution of this command.

Replacement String - The string which will replace the specified
characters in the Source String.

The value of Replacement String may be a String tag, a literal string
enclosed in single quotes (' ’), or some other logical expression that is
evaluated every time the block is executed.

313

Appendix B: Flow Chart Command Reference

Pointe Controller User Guide

To configure the Source String parameter, click the | button to open a
standard Build String Argument dialog.

Number Chars - The number of characters to be replaced in the Source
String.

The value of Number Chars may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Number Chars parameter, click the | button to open a
standard Build Argument dialog.

Start Position - The starting position after which the specified characters
will be replaced. The first character of the Source String is equivalent to a
Start Position of 1.

The value of Start Position may be an Input/Memory/Output tag, a literal

numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Start Position parameter, click the | button to open a

standard Build Argument dialog.

B.3.8 String Format Integer

This command can be selected from the String commands list.

Block Properties
|nzert I [Ielete

fase i m | MD'-.-'EDDWHI

| Caption

Destination String
Inteqer YValle
R adix [B aze]

Fe
String Format Integer Jj

10

[

When used in a Flow Chart, the String Format Integer command formats an
integer value as a string using the specified radix (base). The result is written to a
separate String tag. This is especially useful for converting Input, Memory, and
Output tags to equivalent String tags for further manipulation.

Parameters for this command include:

= Destination String - The String tag to which the result of the command
will be written.

To configure the Destination String parameter, click the =] button to
open a standard Select String Tag dialog.

314

Pointe Controller User Guide

Appendix B: Flow Chart Command Reference

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

Integer Value - The integer value to be formatted.

The value of Integer Value may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Number Chars parameter, click the | button to open a
standard Build Argument dialog.

Radix (Base) — The base system by which the Integer Value will be
formatted. For example, a Radix of 10 will format the Integer Value as a
decimal, while a Radix of 16 will format the Integer Value as a
hexidecimal.

The value of Radix (Base) may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Start Position parameter, click the | button to open a
standard Build Argument dialog.

315

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

B.4

Diagnostics Commands

Diagnostics commands (in a Process block) are used to read from and write to the
diagnostic items that are associated with each Input, Memory, and Output tag.

About Diagnostic Items

Every Input, Memory, and Output tag has associated with it three metadata
registers, plus a fourth register for Input and Output tags only. These registers are
allocated automatically when each tag is defined in Logic Memory, and they can
be manipulated independently of the tag’s primary value.

The four metadata registers — also called “diagnostic items” — are:

= Diag Fault Bit - This item is used simply to indicate whether a fault
condition exists on the specified tag. The item occupies a single bit, which
can be toggled between 0 and 1.

= Diag Fault Level - This item can be used to indicate escalating levels of
fault on the specified tag. The item occupies a 32-bit register.

= Diag Status Code - This item can be used to record more complex error
codes on the specified tag. The item occupies a 32-bit register.

= Error Status Bit — This item, available only on Input and Output tags, is a
special flag that is used to notify the program when an 1/O error has been
encountered (see below). The item occupies a single bit, which can be
toggled between 0 and 1.

PointeControl itself does not utilize the Diag Fault Bit and Diag Fault Level items;
you are free to implement your own custom routines that write to and read from
these items, using the Diagnostics commands described below as well as the Diag
Fault Bit Test option of decision-type blocks (If/Then, Repeat/Until, and While
Loop).

However, PointeControl does internally utilize the Diag Status Code and Error
Status Bit items. For each I/O point on the Pointe Controller unit (and on any
connected OptiLogic RTUs), the controller automatically notes /O errors
encountered during runtime and logs them on the Input or Output tag associated
with the affected point. When an error is encountered, the tag’s Error Status Bit is
set to 1 and the error code is copied to the tag’s Diag Status Code. Possible error
codes include:

CODE DESCRIPTION

0x00000200 (512) I/0 module or operator panel not found
0x00000400 (1024) OptiLogic RTU not found

0x00004000 (16384) No value read yet

0x00040000 (262144) System error

0x00200000 (2097152) Communication error

316

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

For all other errors, please contact Nematron Technical Support.

NOTE: The Pointe Controller unit updates a given tag’s Error Status Bit and Diag
Status Code only when a new error is encountered at the tag’s associated 1/0
point. As such, the values currently stored in the items should always be handled
as merely the last error encountered, not as an ongoing error condition. To
actually clear the items, use the Diag Clear Tag Status command.

Also, clearing one item does not clear the other. Each item must be cleared
individually using separate commands.

B.4.1 Diag Get Tag Status

This command can be selected from the Diagnostics commands list.

Block Properties
|nzert I [Ielete | fase i m | fl e [Ew |
Caption ﬂ
M Diag Get Tag Statuz J
Source Tag [
Diag Item Diag Fault Eit i
Destination Tag [

[

When used in a Flow Chart, the Diag Get Tag Status command retrieves the
current value of any diagnostic item on a specified tag.

Parameters for this command include:

= Source Tag - The Input, Output, or Memory tag for which the diagnostic
item will be retrieved.

To configure the Source Tag parameter, click the | putton to open a
standard Select Tag dialog.

= Diag Item - The type of diagnostic item that will be retrieved by the
command. Available items include Diag Fault Bit, Diag Fault Level, Diag
Status Code, and Error Status Bit (input and Output tags only).

To configure the Diag Item parameter, click the =] button and select an
item from the drop-down menu.

= Destination Tag - The Memory or Output tag to which the retrieved
value will be saved. If the Diag Fault Bit or Error Status Bit will be
retrieved, then the value should be saved to a Bit tag (%MX or %QX). If
the Diag Fault Level or Diag Status Code will be retrieved, then the value
should be saved to a 32-bit Unsigned tag (%MUD or %QUD).

317

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

To configure the Destination Tag parameter, click the | button to open a
standard Select Tag dialog.

B.4.2 Diag Set Tag Status

This command can be selected from the Diagnostics commands list.

Block Properties
|nzert I [Ielete | fase i m | f e Du:uwnl

Caption -
M Diag Set Tag Status J

Destination Tag
Diag Item Diag Fault Eit i
Fault Bit 1

[

When used in a Flow Chart, the Diag Set Tag Status command assigns a new value
to any diagnostic item on a specified tag.

Parameters for this command include:

= Destination Tag - The Input, Output, or Memory tag on which the
diagnostic item will be assigned.

To configure the Destination Tag parameter, click the | button to open a
standard Select Tag dialog.

= Diag Item - The type of diagnostic item that will be assigned by the
command. Available items include Diag Fault Bit, Diag Fault Level, Diag
Status Code, and Error Status Bit (input and Output tags only).

To configure the Diag Item parameter, click the =] button and select an
item from the drop-down menu.

* The third parameter varies depending on which Diag Item is selected:

o If Diag Fault Bit is selected, then the third parameter is Fault
Bit. The parameter is not configurable since it simply toggles
the bit from 0 to 1. (To reset the bit to 0, use the Diag Clear Tag
Status command described below.)

o If Diag Fault Level is selected, then the third parameter is New
Fault Level. You can define your own fault levels in your
diagnostic routines.

The value of Diag Fault Level may be an Input/Memory/Output
tag, a literal numeric value, or some other logical expression
that is evaluated every time the block is executed.

318

Pointe Controller User Guide

Appendix B: Flow Chart Command Reference

To configure the Diag Fault Level parameter, click the | button
to open a standard Build Argument dialog.

If Diag Status Code is selected, then the third parameter is New
Status Code. You can define your own status codes in your
diagnostic routines, but PointeControl does automatically
record I/O errors (see above).

The value of Diag Status Code may be an Input/Memory/Output
tag, a literal numeric value, or some other logical expression
that is evaluated every time the block is executed.

To configure the Diag Status Code parameter, click the &
button to open a standard Build Argument dialog.

If Error Status Bit is selected, then the third parameter is Error
Status Bit. The parameter is not configurable since it simply
toggles the bit from 0 to 1. (To reset the bit to 0, use the Diag
Clear Tag Status command described below.)

B.4.3 Diag Clear Tag Status

This command can be selected from the Diagnostics commands list.

Block Properties
|nzert

[Ielete | fase i m |I'-.-1|:|\-'eDu:|wn|

Caption -
M Diag Clear Tag Status J

Destination Tag
Diag Item

Diiag Fault Bit hd

[

When used in a Flow Chart, the Diag Clear Tag Status command clears the current
value of any diagnostic item (resets to 0) on a specified tag.

Parameters for this command include:

Destination Tag - The Input, Output, or Memory tag on which the
diagnostic item will be cleared.

To configure the Destination Tag parameter, click the | button to open a
standard Select Tag dialog.

Diag Item - The type of diagnostic item that will be cleared by the
command. Available items include Diag Fault Bit, Diag Fault Level, Diag
Status Code, and Error Status Bit (input and Output tags only).

319

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

To configure the Diag Item parameter, click the =] button and select an
item from the drop-down menu.

320

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

B.5

B.5.1

Serial Commands

The Serial commands are used to initiate serial communications through the
Pointe Controller I/O system.

NOTE: Read/Write commands do not normally block or wait. Read gets all bytes
which have been buffered on the port; write queues the byte(s) for output. The
command does not wait until the characters are physically transmitted.

About COM Ports

The Pointe Controller unit has one serial port built into the base unit itself, and
more ports can be added by installing a Dual Port RS232 Serial module (OL2602)
in one of the unit’s slots.

The built-in port is COM Port 0. The rest of the port numbers are determined by
which slot the OL2602 module is installed in:

Controller Slot 1 2 3 4 5 6 7 8
Top COM Port 1 3 5 7 9 11 13 15
Bottom COM Port 2 4 6 8 10 12 14 16

As such, if you had an OL2602 module installed in slot 4, then the top port would
be COM Port 7 and the bottom port would be COM Port 8.

NOTE: If you attempt to use a COM Port number that does not exist — because no
0OL2602 module is installed in that slot — then the Pointe Controller will return a
Status Tag error.

Serial Configure Port

This command can be selected from the Serial commands list.

Block Properties
Inzert I [NElEte | foyvellp | [oy Dawh |
Caption -

M Senal Configure Port J

COM Paort [

Baud 9600 |

P arity MNone ﬂ

D ata Bits a hd

Stop Bits 1 i

Statuz Tag [
LI

When used in a Flow Chart, the Serial Configure Port command configures the
specified COM port for serial communications.

321

Appendix B: Flow Chart Command Reference

Pointe Controller User Guide

NOTE: This command also enables (opens) the specified port.

Parameters for this command include:

COM Port - Specify which serial communications port to configure. For
more information on how the ports are numbered, see page 321.

The value of COM Port may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the COM Port parameter, click the | button to open a
standard Build Argument dialog.

Baud - 300, 1200, 2400, 4800, 9600, or 19200 baud; default is 9600.

To configure the Baud parameter, click the =] button and select a setting
from the drop-down menu.

Parity — None, Even, or Odd parity; default is None.

To configure the Parity parameter, click the =] button and select a setting
from the drop-down menu.

Data Bits — 7 or 8 data bits; default is 8.

To configure the Data Bits parameter, click the =] button and select a
setting from the drop-down menu.

Stop Bits - 1, 1.5, or 2 stop bits; default is 1.

To configure the Stop Bits parameter, click the =] button and select a
setting from the drop-down menu.

Status Tag - The Serial Configure Port command checks for a
communication error at the time of command execution. The Status Tag is
the tag to which the error code, if any, is saved. For more information on
interpreting error codes, see “Serial Get Comm Errors” on page 328.

The value of Status Tag may be any 16-bit Unsigned tag (%IUW, %MUW,
or %QUW).

To configure the Status Tag parameter, click the | button to open a
standard Select Tag dialog.

322

Pointe Controller User Guide

Appendix B: Flow Chart Command Reference

B.5.2 Serial Enable Port and Serial Disable Port

These commands can be selected from the Serial commands list.

-
COM Port S| com Por

Slatus Tn:g _"_I Shatus Tng

= =l

When used in a Flow Chart, the Serial Enable Port and Serial Disable Port
commands open and close the specified COM port, respectively.

Parameters for these commands include:

COM Port - Specify which serial communications port to enable (open) or
disable (close). For more information on how the ports are numbered, see
page 321.

The value of COM Port may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the COM Port parameter, click the | button to open a
standard Build Argument dialog.

Status Tag - The Serial Enable and Serial Disable commands check for a
communication error at the time of command execution. The Status Tag is
the tag to which the error code, if any, is saved. For more information on
interpreting error codes, see “Serial Get Comm Errors” on page 328.

The value of Status Tag may be any 16-bit Unsigned tag (%IUW, %MUW,
or %QUW).

To configure the Status Tag parameter, click the | button to open a
standard Select Tag dialog.

323

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

B.5.3 Serial Read Byte

This command can be selected from the Serial commands list.

Block Properties
|nzert I [Ielete | fase i m | fl e [Ew |
Caption ﬂ
M Senal Read Bpte J
COM Paort [
Destination Tag [
Status Tag [

[

When used in a Flow Chart, the Serial Read Byte command reads a single
byte/character from the specified COM port and saves it to a Logic Memory tag.

NOTE: If you need to convert the read byte into an ASCII character, you can use
the Integer to Character ladder block.

Parameters for this command include:

COM Port - Specify which serial communications port to read from. For
more information on how the ports are numbered, see page 321.

The value of COM Port may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the COM Port parameter, click the | button to open a
standard Build Argument dialog.

Destination Tag — The tag to which the read byte will be saved.

The value of Destination Tag may be any 8-bit Unsigned tag (%IUB,
%MUB, or %QUB).

To configure the Destination Tag parameter, click the | button to open a
standard Select Tag dialog.

Status Tag — The Serial Read Byte command checks for a communication
error at the time of command execution. The Status Tag is the tag to
which the error code, if any, is saved. For more information on
interpreting error codes, see “Serial Get Comm Errors” on page 328.

The value of Status Tag may be any 16-bit Unsigned tag (%IUW, %MUW,
or %QUW).

To configure the Status Tag parameter, click the | button to open a
standard Select Tag dialog.

324

Pointe Controller User Guide

Appendix B: Flow Chart Command Reference

B.5.4 Serial Write Byte

This command can be selected from the Serial commands list.

Block Properties
|nzert I [Ielete | fase i m | fl e [Ew |
Caption ﬂ
M Senal Wite Bpte J
COM Paort [
Source Char [
Status Tag [

[

When used in a Flow Chart, the Serial Write Byte command writes a single
byte/character (as defined in the Build Argument dialog) to the specified COM

port.

NOTE: String characters are automatically converted into their equivalent ASCII

values.

Parameters for this command include:

COM Port - Specify which serial communications port to write to. For
more information on how the ports are numbered, see page 321.

The value of COM Port may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the COM Port parameter, click the | button to open a
standard Build Argument dialog.

Source Char - The byte/character that will be written to the COM port.

The value of Source Char may be an Input/Memory/Output tag, a String
variable, a literal numeric value, a literal string enclosed in single quotes ('
"), or some other logical expression that is evaluated every time the block
is executed. If the given value is more than one byte long, then only the
first byte will be written.

To configure the Source Char parameter, click the | button to open a
standard Build Argument dialog.

Status Tag - The Serial Write Byte command checks for a communication
error at the time of command execution. The Status Tag is the tag to
which the error code, if any, is saved. For more information on
interpreting error codes, see “Serial Get Comm Errors” on page 328.

The value of Status Tag may be any 16-bit Unsigned tag (%IUW, %MUW,
or %QUW).

325

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

To configure the Status Tag parameter, click the | button to open a
standard Select Tag dialog.

B.5.5 Serial Read MultiBytes

This command can be selected from the Serial commands list.

Block Properties
Inseit] D GEEEN e E e B e vl
Caption ﬂ
M Senal Read MultButes J
COM Paort [
Destination Sting [
Status Tag [

[

When used in a Flow Chart, the Serial Read MultiBytes command reads a string
from the specified COM port and saves it to a String variable in Logic Memory.
The command will read up to defined Element Length of the variable and will not
block until the variable is full.

NOTE: The read bytes will be automatically converted into a string, regardless of
how they were originally sent.

Parameters for this command include:

COM Port - Specify which serial communications port to read from. For
more information on how the ports are numbered, see page 321.

The value of COM Port may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the COM Port parameter, click the | button to open a
standard Build Argument dialog.

Destination String — The String variable to which the read bytes will be
saved.

To configure the Destination String parameter, click the =] button to
open a standard Select String Tag dialog.

Status Tag - The Serial Read MultiBytes command checks for a
communication error at the time of command execution. The Status Tag is
the tag to which the error code, if any, is saved. For more information on
interpreting error codes, see “Serial Get Comm Errors” on page 328.

326

Pointe Controller User Guide

Appendix B: Flow Chart Command Reference

The value of Status Tag may be any 16-bit Unsigned tag (%IUW, %MUW,
or %QUW).

To configure the Status Tag parameter, click the | button to open a
standard Select Tag dialog.

B.5.6 Serial Write MultiBytes

This command can be selected from the Serial commands list.

Block Properties
Inzert I [NElEte | foyvellp | [oy Dawh |
Caption ﬂ
M Senal Wiite MultiBytesz J
COM Paort [
Source String [
Status Tag [

[

When used in a Flow Chart, the Serial Write MultiBytes command writes a string
(as defined in the Build String Argument dialog) to the specified COM port. It will
write only up to the actual length of the given string.

Parameters for this command include:

COM Port - Specify which serial communications port to write to. For
more information on how the ports are numbered, see page 321.

The value of COM Port may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the COM Port parameter, click the | button to open a
standard Build Argument dialog.

Source String - The string that will be written to the COM port.

The value of Source String may be a String variable, a literal string
enclosed in single quotes (' ’), or some other logical expression that is
evaluated every time the block is executed.

To configure the Source String parameter, click the | button to open a
standard Build String Argument dialog.

Status Tag - The Serial Write MultiBytes command checks for a
communication error at the time of command execution. The Status Tag is
the tag to which the error code, if any, is saved. For more information on
interpreting error codes, see “Serial Get Comm Errors” on page 328.

327

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

The value of Status Tag may be any 16-bit Unsigned tag (%IUW, %MUW,

or %QUW).

To configure the Status Tag parameter, click the | button to open a

standard Select Tag dialog.

B.5.7 Serial Get Comm Errors

This command can be selected from the Serial commands list.

Block Properties
|nzert I [Ielete | fase i m | fl e [Ew |
Caption ﬂ
M Senal Get Comm Ermors J
COM Paort [
Erors Tag [

[

When used in a Flow Chart, the Serial Get Comm Errors command simply checks
the specified COM port for communication errors.

Parameters for this command include:

COM Port - Specify which serial communications port to check. For more
information on how the ports are numbered, see page 321.

The value of COM Port may be an Input/Memory/Output tag, a literal

numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the COM Port parameter, click the | button to open a
standard Build Argument dialog.

Errors Tag — The tag to which the error code, if any, is saved.

The value of Errors Tag may be any 16-bit Unsigned tag (%IUW, %MUW,
or %QUW).

To configure the Errors Tag parameter, click the | button to open a
standard Select Tag dialog.

Error Codes

To interpret a serial communication error code, get the value that was saved to
the Status/Errors Tag and check it against the table below:

328

Pointe Controller User Guide

Appendix B:

Flow Chart Command Reference

VALUE NAME DESCRIPTION

0x0000 (0) n/a No error; good communication
0x0001 (1) PARITY_ERROR OptilLogic parity error

0x0002 (2) FRAMING_ERROR OptiLogic framing error
0x0004 (4) OVERRUN_ERROR OptilLogic overrun error
0x0010 (16) READ_ERROR Serial read error

0x0020 (32) WRITE_ERROR Serial write error

0x0040 (64)

BAD_CONFIG_ERROR

Invalid configuration error

0x0080 (128)

BAD_PORT_ERROR

Non-existent serial port error

0x0100 (256)

OVERFLOW_ERROR

Buffer overflow error

0x8000 (32768)

NO_DATA

No data available on read

For all other errors, please contact Nematron Technical Support.

329

Appendix B: Flow Chart Command Reference

Pointe Controller User Guide

B.6

B.6.1

Date/Time Commands

Date/Time commands (in a Process block) are used to retrieve the system time on

the Pointe Controller unit.

NOTE: The controller’s internal clock is updated whenever a compiled project is
downloaded from your PC to the controller. The time is taken from your PC’s

system time.

Date/Time Get

This command can be selected from the Date/Time commands list.

Block Properties
|nzert I [Ielete | fase i m | f e Du:uwnl

Secaonds Tag
Millizecondz Tag

Caption ﬂ
M Date/Time Get J

|

When used in a Flow Chart, the Date/Time Get command retrieves the current
system time on the Pointe Controller unit. The time is expressed as the number of
whole seconds and remaining milliseconds elapsed since January 1, 1970. The
Seconds and Milliseconds values are both returned as 32-bit unsigned integers.

Parameters for this command include:

= Seconds Tag — The Logic Memory tag to which the number of seconds
will be written. The tag should be a 32-bit Unsigned Input, Memory, or

Output tag.

To configure the Seconds Tag parameter, click the | button to open a

standard Select Tag dialog.

= Milliseconds Tag - The Logic Memory tag to which the number of
remaining milliseconds will be written. The tag should be a 32-bit

Unsigned Input, Memory, or Output tag.

To configure the Milliseconds Tag parameter, click the | button to open

a standard Select Tag dialog.

330

Pointe Controller User Guide

Appendix B: Flow Chart Command Reference

B.6.2 Date/Time Format

This command can be selected from the Date/Time commands list.

Block Properties
|nzert I [Ielete | fase i m | f e Du:uwnl

Date/Time Type |Jzer-zpecified
Second:
Millizeconds

Deztination Sting

Caption ﬂ
M Date/Time Format J
|
|

Lt Le

[

When used in a Flow Chart, the Date/Time Format command formats a given time
as a string and writes the result to a String tag. The format of the string is <ddd
mmm DD HH:MM:SS.sss YYYY>.

Parameters for this command include:

Date/Time Type — The time to be formatted, either the current system
time or some user-specified time. If the current system time is selected,
then it will be retrieved automatically when the block is executed. If a
user-specified time is selected, then the Seconds and Milliseconds
parameters below must also be configured.

To configure the Date/Time Type parameter, click the =] button and
select a type from the drop-down menu.

Seconds — The number of whole seconds elapsed since January 1, 1970.

The value of Seconds may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Seconds parameter, click the =] putton to open a
standard Build Argument dialog.

Milliseconds — The number of remaining milliseconds (total time elapsed
minus whole seconds).

The value of Milliseconds may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Milliseconds parameter, click the =] button to open a
standard Build Argument dialog.

Destination String - The String tag to which the result of the command
will be written.

331

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

To configure the Destination String parameter, click the | button to
open a standard Select String Tag dialog.

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

B.6.3 Get Elapsed Time

This command can be selected from the Date/Time commands list.

Block Properties
|nzert I [Ielete | fase i m | fl e [Ew

| Caption =
et Elapzed Time J_

Millizecondz Tag

[

When used in a Flow Chart, the Get Elapsed Time command retrieves the total
time elapsed, in milliseconds, since the Pointe Controller unit was last powered
on. The Milliseconds value is returned as a 32-bit unsigned integer.

Parameters for this command include:

= Milliseconds Tag - The Logic Memory tag to which the number of
milliseconds will be written. The tag should be a 32-bit Unsigned Input,
Memory, or Output tag.

To configure the Milliseconds Tag parameter, click the | button to open
a standard Select Tag dialog.

332

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

B.7

B.7.1

Operator Panel Commands

Operator Panel commands (in a Process block) are used to control the OL3406,
OL3420, and OL3850 operator panels. You must have one of these panels
connected to your Pointe Controller unit and properly configured in order to use
these commands. For more information, see “Configuring operator panels” on
page 128.

NOTE: The Keypad Data Entry and Arrow Adjust Data Entry commands work only
with the OL3850 operator panel. The Button On and Button Off commands work
with all three panel models.

Keypad Data Entry

This command can be selected from the Operator Panel commands list.

Block Properties
|nzert I [Ielete | fase i m | f e Du:uwnl

Mezzage Line
Mezzage
Imitial % alue
Decimal Digiks

Caption ﬂ
M F.eypad Data Entry J
|

Lt Le

[

When used in a Flow Chart, the Keypad Data Entry command displays a message
prompting the user to enter a value using the panel’s numeric keypad. After the
user enters a value and presses the ENTER key, the entered value is saved to the
Data Value tag and the Data Available tag is set to 1.

NOTE: This command works only with the OL3850 operator panel.

Parameters for this command include:

= Message Line - Which line of the operator panel that will be used to
display the message. The top line is 1, the bottom line is 2.

The value of Message Line may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Message Line parameter, click the | button to open a
standard Build Argument dialog.

= Message - The text of the message, as specified in the Build String
Argument dialog. Carets “~A” must be included in the message text as a

333

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

place holders for the data entry field. A typical message may be ‘Enter
value: AMAAAAN allowing up to seven digits to be entered.

The value of Message may be a String tag, a literal string enclosed in
single quotes (‘' ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Message parameter, click the | button to open a
standard Build String Argument dialog.

= Initial Value - The initial value that is displayed in the entry field. It can
be any integer or real number, as specified in the Build Argument dialog.
The value entered by the user overwrites this value.

The value of Initial Value may be an Input/Memory/Output tag, a literal

numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Initial Value parameter, click the | button to open a
standard Build Argument dialog.

= Decimal Digits — The number of decimal places to which the Initial Value
is displayed. Integers are padded, reals are truncated.

The value of Decimal Digits may be an Input/Memory/Output tag, a literal

numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Decimal Digits parameter, click the | button to open a
standard Build Argument dialog.

B.7.2 Arrow Adjust Data Entry

This command can be selected from the Operator Panel commands list.

Block Properties
|nzert I [Ielete | fase i m | f e Du:uwnl

Caption -
M Arrow Adjust Diata Entry J

Mezzage Line
Mezzage
Firirurn W alue
b airnum W alue
Imitial % alue
Decimal Digiks

IR I

[

When used in a Flow Chart, the Arrow Adjust Data Entry command displays a
message prompting the user to enter a value using the panel’s arrow buttons.
After the user enters a value and presses the ENTER key, the entered value is
saved to the Data Value tag and the Data Available tag is set to 1.

334

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

NOTE: This command works only with the OL3850 operator panel.

Parameters for this command include:

= Message Line - Which line of the operator panel that will be used to
display the message. The top line is 1, the bottom line is 2.

The value of Message Line may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Message Line parameter, click the | button to open a
standard Build Argument dialog.

= Message - The text of the message, as specified in the Build Argument
dialog. Carets “~" must be included in the message text as a place holders
for the data entry field. A typical message may be ‘Enter value: AMMAAAAAY
allowing up to seven digits to be entered.

The value of Message may be a String tag, a literal string enclosed in
single quotes (* ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Message parameter, click the | button to open a
standard Build String Argument dialog.

= Minimum Value - The minimum possible value that can be entered. If
the user presses and holds the down arrow, the entry field will stop
decrementing at this value.

The value of Minimum Value may be an Input/Memory/Output tag, a
literal numeric value, or some other logical expression that is evaluated
every time the block is executed.

To configure the Minimum Value parameter, click the | button to open
a standard Build Argument dialog.

= Maximum Value - The maximum possible value that can be entered. If
the user presses and holds the up arrow, the entry field will stop
incrementing at this value.

The value of Maximum Value may be an Input/Memory/Output tag, a
literal numeric value, or some other logical expression that is evaluated
every time the block is executed.

To configure the Maximum Value parameter, click the | button to open
a standard Build Argument dialog.

= Initial Value - The initial value that is displayed in the entry field. It can
be any integer or real number, as specified in the Build Argument dialog.
The value entered by the user overwrites this value.

The value of Initial Value may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

335

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

B.7.3

To configure the Initial Value parameter, click the | button to open a
standard Build Argument dialog.

= Decimal Digits — The number of decimal places to which the Initial Value
is displayed. Integers are padded, reals are truncated.

The value of Decimal Digits may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Decimal Digits parameter, click the | button to open a
standard Build Argument dialog.

NOTE: In both Data Entry commands, the message is removed from the display as
soon as the user presses the ENTER key. It is replaced with the current value of
String variable associated with the I/0 point.

Button On and Button Off

These commands can be selected from the Operator Panel commands list.

I =l

When used in a Flow Chart, the Button On and Button Off commands force the
specified pushbutton on or off, respectively. The pushbutton is specified by the
Button parameter, and the buttons on each panel are numerically addressed from
left to right. For example, to force the second pushbutton on an OL3850 panel to
turn on, you would use the Button On command and set the Button parameter
to 2.

NOTE: The buttons should already be set "alternate action.” For more
information, see “Configuring operator panels” on page 128.

Parameters for this command include:

= Button - Which button on the panel that will be forced on/off by the
command. The buttons on each panel are numbered from left to right.

The value of Button may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Button parameter, click the =] button to open a
standard Build Argument dialog.

336

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

Appendix C: Ladder Diagram Block Reference

This appendix provides complete descriptions and configuration instructions for
all of the Ladder Diagram function blocks that are available in the PointeControl
development framework. (For more information on building Ladder Diagrames,
see page 163.)

TIP: The information provided in this appendix is also available via the
PointeControl Framework online help. To access the help, choose Contents from
the Framework’s Help menu.

337

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

CA

C.A1.1

C.A1.2

Relays and Coils

Normally Open Contact (XIC)

When used in a Ladder Diagram, this block acts as a relay that controls the
passing of the rung state from the left to the right. The state is passed only if the
value of the associated Bit tag is true or 1.

Select the il tool (from the Relays and Coils toolbar) and click on a ladder rung

to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When the input state from the left becomes on, the value of the associated Bit
tag is checked. If the tag is true or 1, then the output state to the right is turned
on. If the tag is false or 0, then the output state is kept off.

The relay is checked every time the ladder is scanned, so long as the input state
remains on.

Configuration Reference

Any Bit tag may be associated with the block: %IX, %MX, %QX, or T_DONE.

Normally Closed Contact (XIO)

When used in a Ladder Diagram, this block acts as a relay that controls the
passing of the rung state from the left to the right. The state is passed only if the
value of the associated Bit tag is false or 0.

Select the il tool (from the Relays and Coils toolbar) and click on a ladder rung

to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

338

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C1.3

C1.4

Functional Description

When the input state from the left becomes on, the value of the associated Bit
tag is checked. If the tag is false or 0, then the output state to the right is turned
on. If the tag is true or 1, then the output state is kept off.

The relay is checked every time the ladder is scanned, so long as the input state
remains on.

Configuration Reference

Any Bit tag may be associated with the block: %IX, %MX, %QX, or T_DONE.

Rising Edge Relay (LEC)
When used in a Ladder Diagram, this block acts as a relay that controls the

passing of the rung state from the left to the right. The state is passed only when
the value of the associated Bit tag changes from 0 to 1.

Select the ﬁl tool (from the Relays and Coils toolbar) and click on a ladder rung

to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When the value of the associated Bit tag transitions from 0 to 1, the input state
from the left is momentarily passed through the the output state to the right.

The state is passed only once, on the first scan immediately following the

transition. After that, the output state is turned off and kept off until the
associated Bit tag transitions again from 0 to 1.

Configuration Reference

Any Bit tag may be associated with the block: %IX, %MX, %QX, or T_DONE.

Falling Edge Relay (TEC)

When used in a Ladder Diagram, this block acts as a relay that controls the
passing of the rung state from the left to the right. The state is passed only when
the value of the associated Bit tag changes from 1 to 0.

Select the ﬁl tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

339

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C1.5

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When the value of the associated Bit tag transitions from 1 to 0, the input state
from the left is momentarily passed through the the output state to the right.

The state is passed only once, on the first scan immediately following the

transition. After that, the output state is turned off and kept off until the
associated Bit tag transitions again from 1 to 0.

Configuration Reference

Any Bit tag may be associated with the block: %IX, %MX, %QX, or T_DONE.

Output Coil (OC)

When used in a Ladder Diagram, this block acts as a coil that sets an associated Bit
tag to match the state of the rung.

Select the Ql tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the input state through to the output state without
change; when the input state becomes on, the output state is turned on, and
when the input state becomes off, the output state is turned off.

When the input state from the left becomes on, the associated Bit tag is set to 1.
When the input state becomes off, the tag is set to 0.

The coil is checked every time the ladder is scanned, regardless of whether the
input state is on or off.

Configuration Reference

Any Memory Bit (%MX) or Output Bit (%QX) tag may be associated with the
block.

340

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.1.6

CA.7

Negated Output Coil (NEGOC)

When used in a Ladder Diagram, this block acts as a coil that sets an associated Bit
tag to the inverse of the state of the rung.

Select the ﬁl tool (from the Relays and Coils toolbar) and click on a ladder rung

to insert the following block:
A

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the input state through to the output state without
change; when the input state becomes on, the output state is turned on, and
when the input state becomes off, the output state is turned off.

When the input state from the left becomes on, the associated Bit tag is set to 0.
When the input state becomes off, the tag is set to 1.

The coil is checked every time the ladder is scanned, regardless of whether the
input state is on or off.

Configuration Reference

Any Memory Bit (%MX) or Output Bit (%QX) tag may be associated with the
block.

Latched Coil (LOC)

When used in a Ladder Diagram, this block acts as a coil that sets an associated Bit
tag to 1 and maintains it until it is explicitly reset to 0 by an external action.

Select the Ql tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the input state through to the output state without
change; when the input state becomes on, the output state is turned on, and
when the input state becomes off, the output state is turned off.

341

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C1.8

When the input state from the left becomes on, the associated Bit tag is set to 1.
The tag is maintained, or “latched, at 1 until it is explicitly reset to 0 by an
external action (either an I/O change or another PointeControl block). The tag is
not changed when the input state becomes off.

The coil is checked every time the ladder is scanned, so long as the input state

remains on. However, the associated Bit tag cannot be set (latched) unless it is
already 0.

Configuration Reference

Any Memory Bit (%MX) or Output Bit (%QX) tag may be associated with the
block.

Unlatched Coil (UOC)

When used in a Ladder Diagram, this block acts as a coil that sets an associated Bit
tag to 0 and maintains it until it is explicitly reset to 1 by an external action.

Select the Ql tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the input state through to the output state without
change; when the input state becomes on, the output state is turned on, and
when the input state becomes off, the output state is turned off.

When the input state from the left becomes off, the associated Bit tag is set to 0.
The tag is maintained, or “unlatched, at 0 until it is explicitly reset to 1 by an
external action (either an I/O change or another PointeControl block). The tag is
not changed when the input state becomes on.

The coil is checked every time the ladder is scanned, so long as the input state

remains off. However, the associated Bit tag cannot be set (unlatched) unless it is
already 1.

Configuration Reference

Any Memory Bit (%MX) or Output Bit (%QX) tag may be associated with the
block.

342

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.1.9

C.1.10

Rising Edge Coil (LEOC)

When used in a Ladder Diagram, this block acts as a coil that momentarily sets an
associated Bit tag to 1 when the rung state changes from 0 to 1.

Select the @l tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the input state through to the output state without
change; when the input state becomes on, the output state is turned on, and
when the input state becomes off, the output state is turned off.

When the input state from the left transitions from 0 to 1, the associated Bit tag

is momentarily set to 1. The tag is only maintained for a single execution of the
block, after which it is reset to 0.

Configuration Reference

Any Memory Bit (%MX) or Output Bit (%QX) tag may be associated with the
block.

Falling Edge Coil (TEOC)

When used in a Ladder Diagram, this block acts as a coil that momentarily sets an
associated Bit tag to 1 when the rung state changes from 1 to 0.

Select the gl tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the input state through to the output state without
change; when the input state becomes on, the output state is turned on, and
when the input state becomes off, the output state is turned off.

When the input state from the left transitions from 1 to 0, the associated Bit tag
is momentarily set to 1. The tag is only maintained for a single execution of the
block, after which it is reset to 0.

343

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.1.11

Configuration Reference

Any Memory Bit (%MX) or Output Bit (%QX) tag may be associated with the
block.

Falling Edge Detector (F_TRIG)

When used in a Ladder Diagram, the F_TRIG block waits for an input bit to
change from 1 to 0 and triggers an output bit when it does.

Select the El tool (from the Relays and Coils toolbar) and click on a ladder rung

I F_TRIG I
EN ENO

to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Clock input (CLK) is
monitored for a transition from 1 to 0. When a transition is detected, the Output
(Q) is triggered; i.e., Q is set to 1 for a single execution of the block, after which it
is immediately reset to 0.

The block function is executed every time the ladder is scanned, so long as EN
remains on. However, Q is triggered only when a transition in CLK is detected.

After Q has been triggered, CLK must be reset to 1 and transition again to 0
before Q can be triggered again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.

344

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

Param | Name Config Var Type Description

CLK Clock req %IX The input value.
% MX
%QX

T_DONE

Q Output req %IX The output value that is triggered
% MX when the input value transitions
%QX from 1to 0.

C.1.12 Rising Edge Detector (R_TRIG)

When used in a Ladder Diagram, the R_TRIG block waits for an input bit to
change from 0 to 1 and triggers an output bit when it does.

Select the El tool (from the Relays and Coils toolbar) and click on a ladder rung

I R_TRIG I
EN ENO

to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Clock input (CLK) is
monitored for a transition from 0 to 1. When a transition is detected, the Output
(Q) is triggered; i.e., Q is set to 1 for a single execution of the block, after which it
is immediately reset to 0.

The block function is executed every time the ladder is scanned, so long as EN
remains on. However, Q is triggered only when a transition in CLK is detected.
After Q has been triggered, CLK must be reset to 0 and transition again to 1
before Q can be triggered again.

345

Appendix C: Ladder Diagram Block Reference

Pointe Controller User Guide

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
CLK Clock req %IX The input value.
% MX
%QX
T_DONE
Q Output req %IX The output value that is triggered
% MX when the input value transitions
%QX from0to 1.

C.1.13 Set-Dominant Bistable (SR)

When used in a Ladder Diagram, the SR block switches an output bit between 0
and 1 depending on the values of two input bits. The block is “set-dominant,
meaning that a decision to set the output bit to 1 will override a decision to reset

the output bit to 0.

Select the ﬂl tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a new value for the Output
(Q) is determined based on the Set and Reset inputs (S1 and R), as well as the
existing value of Q. If S1 is true or 1, then Q is set to 1. If R is true or 1, then Q is
reset to 0. (However, the block is set-dominant, so S1 will override R.) If both S1
and R are false or 0, then Q is left at its existing value regardless of what it is.

346

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

Therefore, the block function is evaluated according to the following table:

SET 0 1 0 1

RESET 0 0 1 1

OUTPUT existing 1 0 1
value

The block function is executed every time the ladder is scanned, so long as EN
remains on.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
S1 Set req %IX The “set” input. This will override
% MX the "reset” input.
%QX
T_DONE
R Reset req %IX The “reset” input.
% MX
%QX
T_DONE
Numeric
Q Output req %IX The output value determined by
% MX the “set” and “reset” inputs.
%QX

347

Appendix C: Ladder Diagram Block Reference

Pointe Controller User Guide

C.1.14 Reset-Dominant Bistable (RS)

When used in a Ladder Diagram, the SR block switches an output bit between 0
and 1 depending on the values of two input bits. The block is “reset-dominant,
meaning that a decision to reset the output bit to 0 will override a decision to set
the output bit to 1.

Select the ﬂl tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a new value for the Output
(Q) is determined based on the Set and Reset inputs (S and R1), as well as the
existing value of Q. If S is true or 1, then Q is set to 1. If R1 is true or 1, then Q is
reset to 0. (However, the block is reset-dominant, so R1 will override S.) If both S
and R1 are false or 0, then Q is left at its existing value regardless of what it is.

Therefore, the block function is evaluated according to the following table:

SET 0 1 0 1

RESET 0 0 1 1

OUTPUT existing 1 0 0
value

The block function is executed every time the ladder is scanned, so long as EN
remains on.

348

Pointe Controller User Guide

Appendix C: Ladder Diagram Block Reference

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
S Set req %IX The “set” input.
% MX
%QX
T_DONE
R1 Reset req %IX The “reset” input. This will override
% MX the “set” input.
%QX
T_DONE
Numeric
Q Output req %IX The output value determined by
% MX the “set” and “reset” inputs.
%QX

349

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.2

C.2.1

Timer and Counter Blocks

Timer, Pulse (TP)

When used in a Ladder Diagram, the TP block turns on the output state for a
fixed-width pulse.

Select the il tool (from the Timers and Counters Blocks toolbar) and click on a
ladder rung to insert the following block:

II
N O

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When the Input State (IN) becomes on, the Output State (Q) is turned on and the
associated Timer variable (TIMER) is started. When the Timer equals the Preset
Time input (PT), the Timer is stopped and Q is turned off.

When both IN and Q become off, the Timer is reset to 0.

The Timer cannot be stopped once it is started, even if IN becomes off before the
Timer equals PT.

The Elapsed Time output (ET) shows the time passed since IN became on; in other
words, it shows the current value of the Timer itself. When the Timer reaches PT,

ET remains equal to PT until it is reset. When the Timer is reset to 0, ET is reset to
0.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
IN Input no - The state of the rung (off/on)
State received from the left.
Q Output no - The state of the rung (off/on)
State passed to the right.
TIMER | Timer req Timer The Timer variable on which the
function is based.

350

Pointe Controller User Guide

Appendix C: Ladder Diagram Block Reference

C.2.2

Param | Name Config Var Type Description
PT Preset opt %IUD The length of the pulse, in msecs. If
Time %QUD no Preset Time is defined, then the
%MUD preset value of Timer variable is

Numeric used instead.
ET Elapsed opt %QUD The time elapsed since the Input
Time %MUD State became on, in msecs. In most

instances, the Elapsed Time equals
the current value of the Timer
variable.

Timer, ON Delay (TON)

When used in a Ladder Diagram, the TON block turns on the output state after a

specified time delay has elapsed.

Select the ﬂl tool (from the Timers and Counters Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When the Input State (IN) becomes on, the associated Timer variable (TIMER) is
started and continues while IN remains on. When the Timer equals the Preset
Time input (PT), the Output State (Q) is turned on.

When IN becomes off, Q is turned off and the Timer is reset to 0.

If IN becomes off while the Timer is counting but before it equals PT, then the
Timer is reset to 0 and Q remains off.

The Elapsed Time output (ET) shows the time passed since IN became on; in other
words, it shows the current value of the Timer itself. When the Timer reaches PT,
ET remains equal to PT until it is reset. When the Timer is reset to 0, ET is reset to

0.

351

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.23

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
IN Input no - The state of the rung (off/on)
State received from the left.
Q Output no - The state of the rung (off/on)
State passed to the right.
TIMER | Timer req Timer The Timer variable on which the
function is based.
PT Preset opt %IUD The length of the delay, in msecs. If
Time %QUD no Preset Time is defined, then the
%MUD preset value of Timer variable is
Numeric used.
ET Elapsed opt %QUD The time elapsed since the Input
Time %MUD State became on, in msecs. In most

instances, the Elapsed Time equals
the current value of the Timer
variable.

Timer, OFF Delay (TOF)

When used in a Ladder Diagram, the TOF block turns off the output state after a
specified time delay has elapsed.

Select the El tool (from the Timers and Counters Blocks toolbar) and click on a
ladder rung to insert the following block:

TOF
IN Q

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When the Input State (IN) becomes on, the Output State (Q) is turned on and the
associated Timer variable (TIMER) is reset to 0.

When IN becomes off, the Timer is started and continues while IN remains off.
When the Timer equals the Preset Time input (PT), Q is turned off.

If IN becomes on while the Timer is counting but before it equals PT, then the
Timer is reset to 0 and Q remains on.

352

Pointe Controller User Guide

Appendix C: Ladder Diagram Block Reference

The Elapsed Time output (ET) shows the time passed since IN became on; in other
words, it shows the current value of the Timer itself. When the Timer reaches PT,
ET remains equal to PT until it is reset. When the Timer is reset to 0, ET is reset to

0.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
IN Input no - The state of the rung (off/on)
State received from the left.
Q Output no - The state of the rung (off/on)
State passed to the right.
TIMER | Timer req Timer The Timer variable on which the
function is based.
PT Preset opt %IUD The length of the delay, in msecs. If
Time %QUD no Preset Time is defined, then the
%MUD preset value of Timer variable is
Numeric used.
ET Elapsed opt %QUD The time elapsed since the Input
Time %MUD State became on, in msecs. In most

instances, the Elapsed Time equals
the current value of the Timer
variable.

C.2.4 Counter, Up (CTU)

When used in a Ladder Diagram, the CTU block increments a counter by 1. It also
sets a “done bit when the counter reaches a preset value.

Select the ﬂl tool (from the Timers and Counters Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

353

Appendix C: Ladder Diagram Block Reference

Pointe Controller User Guide

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed and the following

conditions are evaluated in order:

1.

to 0.

by 1.

If the Reset input (R) is true, then the Counter Value output (CV) is reset

If R is false and the Count Up input (CU) is true, then CV is incremented

If CV is greater than or equal to the Preset Value input (PV), then the

Output Up bit (QU) is set to true. If CV is less than PV, then QU is set to
false.

The block function is executed every time the ladder is scanned, so long as EN
remains on.

NOTE: Because the frequency of the count is based on the project’s Scan Interval,
it should not be used to gauge real time. To gauge real time, use a Timer.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
Ccu Count Up req %IX The enable bit which must be set in
%QX order for the counter to increment.
% MX
T_DONE
R Reset req %IX The reset bit; if this bit is set, then
%QX the counter is set to 0.
% MX
T_DONE
PV Preset req %IUD The preset or target value of the
Value %QUD counter.
%MUD
Numeric
QU Output req %QX The “done” bit which is set when
Up % MX the counter reaches the preset

value.

354

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.2.5

Param | Name Config Var Type Description
cv Counter req %QUD The current value of the counter.
Value %MUD

Counter, Down (CTD)

When used in a Ladder Diagram, the CTD block decrements a counter by 1. It also
sets a “done bit when the counter reaches 0.

Select the ﬂl tool (from the Timers and Counters Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed and the following
conditions are evaluated in order:

1. If the Preset input (L) is true, then the Counter Value output (CV) is reset
to the Preset Value input (PV).

2. If L is false and the Count Down input (CD) is true, then CV is
decremented by 1.

3. If CV is less than or equal to 0, then the Output Down bit (QD) is set to
true. If CV is greater than 0, then QD is set to false.

The block function is executed every time the ladder is scanned, so long as EN
remains on.

NOTE: Because the frequency of the count is based on the project’s Scan Interval,
it should not be used to gauge real time. To gauge real time, use a Timer.

355

Appendix C: Ladder Diagram Block Reference

Pointe Controller User Guide

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
(@) Count req %IX The enable bit which must be set in
Down %QX order for the counter to
% MX decrement.
T_DONE
L Preset req %IX The preset bit; if this bit is set, then
%QX the counter is set to the preset
% MX value.
T_DONE
PV Preset req %IUD The preset value of the counter.
Value %QUD
%MUD
Numeric
QD Output req %QX The “done” bit which is set when
Down % MX the counter reaches 0.
cv Counter req %QUD The current value of the counter.
Value %MUD

C.2.6 Counter, Up/Down (CTUD)

When used in a Ladder Diagram, the CTUD block either increments or decrements
a counter by 1, depending on which enable bit is set. It also sets “done bit when

the counter reaches either a preset value or 0.

Select the

CTUD

ladder rung to insert the following block:

tool (from the Timers and Counters Blocks toolbar) and click on a

356

Pointe Controller User Guide

Appendix C: Ladder Diagram Block Reference

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed and the following
conditions are evaluated in order:

1. The Reset and Preset inputs (R and L) are checked and the Counter Value
output (CV) is changed accordingly:

If R is true and L is false, then CV is set to 0 and the function skips to
#3 below.

If R is false and L is true, then CV is set to the Preset Value input (PV)
and the function skips to #3 below.

If R and L are both true, then R takes precedence (see above).

If R and L are both false, then CV is not changed and the function
proceeds to #2 below.

2. The Count Up and Count Down inputs (CU and CD) are checked and CV is
changed accordingly:

If CU is true, CD is false, and CV is less than PV, then CV is
incremented by 1 and the function proceeds to #3 below.

If CU is false, CD is true, and CV is greater than 0, then CV is
decremented by 1 and the function proceeds to #3 below.

In all other conditions, CV is not changed.

3. The Output Up and Output Down bits (QU and QD) are set according to
the current value of CV:

If CV is greater than or equal to PV, then QU is set to true and QD is
set to false.

If CV is less than or equal to 0, then QU is set to false and QD is set to
true.

If CV is between 0 and PV, then both QU and QD are set to false.

The block function is executed every time the ladder is scanned, so long as EN

remains on.

NOTE: Because the frequency of the count is based on the project’s Scan Interval,
it should not be used to gauge real time. To gauge real time, use a Timer.

357

Appendix C: Ladder Diagram Block Reference

Pointe Controller User Guide

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
Ccu Count Up req %IX The enable bit which must be set in
%QX order for the counter to increment.
% MX
T_DONE
(@) Count req %IX The enable bit which must be set in
Down %QX order for the counter to
% MX decrement.
T_DONE
R Reset req %IX The reset bit; if this bit is set, then
%QX the counter is set to 0.
% MX
T_DONE
L Preset req %IX The preset bit; if this bit is set, then
%QX the counter is set to the preset
% MX value.
T_DONE
PV Preset req %IUD The preset value of the counter.
Value %QUD
%MUD
Numeric
QU Output req %QX The “done bit which is set when
Up % MX the counter reaches the preset
value.
QD Output req %QX The “done bit which is set when
Down % MX the counter reaches 0.
cv Counter req %QUD The current value of the counter.
Value %MUD

358

Pointe Controller User Guide

Appendix C: Ladder Diagram Block Reference

C.3

C.3.1

Math Blocks

Add (ADD)

When used in a Ladder Diagram, the ADD block finds the sum of two inputs and
sends the result to output.

Select the ll tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Values 1 and 2
(IN1 and IN2) are added together and the result is placed in the Output Value

(ouT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.

359

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.3.2

Param | Name Config Var Type Description

IN1 Input req any Input The first input value.
Value 1 any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric

IN2 Input req any Input The second input value.

Value 2 any Output

any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric

ouT Output req any Input The result of adding the two input
Value any Output values together.
any Memory

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes — for example, a 32-bit input and an
8-bit output — may result in unusable output.

Subtract (SUB)

When used in a Ladder Diagram, the SUB block subtracts one input from another
and sends the result to output.

Select the Ll tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value 2 (IN2) is
subtracted from the Input Value 1 (IN1) and the result is placed in the Output
Value (OUT).

360

Pointe Controller User Guide

Appendix C: Ladder Diagram Block Reference

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN1 Input req any Input The first input value.
Value 1 any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric
IN2 Input req any Input The second input value.
Value 2 any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric
ouT Output req any Input The result of subtracting the
Value any Output second input value from the first
any Memory | input value.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes — for example, a 32-bit input and an
8-bit output — may result in unusable output.

361

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.3.3 Divide (DIV)

When used in a Ladder Diagram, the DIV block divides one input by another and
sends the result to output.

Select the Ll tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
divided by the Input Value 2 (IN2) and the result is placed in the Output Value
(OUT).

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN1 Input req any Input The first input value.
Value 1 any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric

362

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.3.4

Param | Name Config Var Type Description
IN2 Input req any Input The second input value.
Value 2 any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric
ouT Output req any Input The result of dividing the first input
Value any Output value by the second input value.
any Memory

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes — for example, a 32-bit input and an
8-bit output — may result in unusable output.

NOTE: This function cannot perform division by zero. Floating point division by
zero generates an overflow condition. Integer division by zero causes an
exception and shuts down the application.

Multiply (MUL)

When used in a Ladder Diagram, the MUL block multiplies two inputs and sends
the result to output.

Select the il tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
multiplied by the Input Value 2 (IN2) and the result is placed in the Output Value
(OUT).

363

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.3.5

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN1 Input req any Input The first input value.
Value 1 any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric
IN2 Input req any Input The second input value.
Value 2 any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric
ouT Output req any Input The result of multiplying the first
Value any Output input value by the second input
any Memory | value.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes — for example, a 32-bit input and an
8-bit output — may result in unusable output.

Square Root (SQRT)

When used in a Ladder Diagram, the SQRT block finds the square root of an input
and sends the result to output.

Select the Ll tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

364

Pointe Controller User Guide

Appendix C: Ladder Diagram Block Reference

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the square root of the
Input Value (IN) is calculated and the result is placed in the Output Value (OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req real only* The input value. If a Numeric value
Value Numeric is manually entered, it must be real
/ floating.
ouT Output req real only* The result of calculating the square
Value root of the input value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: This function cannot calculate the square root of a negative input value. If
the input value is negative, the value “1.#IND0O0” (indefinite) is placed in the
output. No error is generated.

365

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.3.6 Modulus (MOD)

When used in a Ladder Diagram, the MOD block finds the remainder from
dividing one input value by another input value and sends the result to output.

Select the El tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: Input Value 1 (IN1) is
divided by Input Value 2 (IN2) and the remainder is placed in the Output Value
(OUT).

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN1 Input req any integer* The first input value, which is
Value 1 T_DONE divided by the second input value.
T_VALUE
T_PREVAL
Numeric

366

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.3.7

Param | Name Config Var Type Description
IN2 Input req any integer* The second input value, which is
Value 2 T _DONE divided into the first input value.
T_VALUE
T_PREVAL
Numeric
ouT Output req any integer* The result of calculating the square
Value root of the input value.

* Any Input, Output, or Memory tag except 32-bit Real (F) or Bit (X). For more information, see
“Defining Input, Output, Memory tags” on page 114.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes — for example, a 32-bit input and an
8-bit output — may result in unusable output.

Sine (SIN)

When used in a Ladder Diagram, the SIN block finds the sine of an input and
sends the result to output.

Select the ﬂl tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the sine of the Input Value
(IN) is calculated and the result is placed in the Output Value (OUT). The input
must be specified in radians.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

367

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req real only* The input value, in radians. If a
Value Numeric Numeric value is entered, it must

be real / floating.

ouT Output req real only* The result of calculating the sine of
Value the input value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

C.3.8 Cosine (COS)

When used in a Ladder Diagram, the COS block finds the cosine of an input and
sends the result to output.

Select the El tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the cosine of the Input
Value (IN) is calculated and the result is placed in the Output Value (OUT). The
input must be specified in radians.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

368

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.3.9

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req real only* The input value, in radians. If a
Value Numeric Numeric value is entered, it must

be real / floating.

ouT Output req real only* The result of calculating the cosine
Value of the input value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

Tangent (TAN)

When used in a Ladder Diagram, the TAN block finds the tangent of an input and
sends the result to output.

Select the ﬂl tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the tangent of the Input
Value (IN) is calculated and the result is placed in the Output Value (OUT). The
input must be specified in radians.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

369

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.3.10

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req real only* The input value, in radians. If a
Value Numeric Numeric value is entered, it must

be real / floating.

ouT Output req real only* The result of calculating the
Value tangent of the input value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

Arc Sine (ASIN)

When used in a Ladder Diagram, the ASIN block finds the arc sine of an input and
sends the result to output.

Select the ﬂl tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the arc sine of the Input
Value (IN) is calculated and the result is placed in the Output Value (OUT). The
result is expressed in radians.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

370

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.3.11

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req real only* The input value. If a Numeric value
Value Numeric is entered, it must be real /
floating.
ouT Output req real only* The result of calculating the arc
Value sine of the input value, expressed
in radians.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

Arc Cosine (ACOS)

When used in a Ladder Diagram, the ACOS block finds the arc cosine of an input
and sends the result to output.

Select the El tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the arc cosine of the Input
Value (IN) is calculated and the result is placed in the Output Value (OUT). The
result is expressed in radians.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

371

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.3.12

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req real only* The input value. If a Numeric value
Value Numeric is entered, it must be real /
floating.
ouT Output req real only* The result of calculating the arc
Value cosine of the input value, expressed
in radians.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

Arc Tangent (ATAN)

When used in a Ladder Diagram, the ATAN block finds the arc tangent of an
input and sends the result to output.

Select the ﬂl tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the arc tangent of the
Input Value (IN) is calculated and the result is placed in the Output Value (OUT).
The result is expressed in radians.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

372

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req real only* The input value. If a Numeric value
Value Numeric is entered, it must be real /
floating.
ouT Output req real only* The result of calculating the arc
Value tangent of the input value,

expressed in radians.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

C.3.13 Absolute Value (ABS)

When used in a Ladder Diagram, the ABS block finds the absolute value of an
input and sends the result to output.

Select the El tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the absolute value of the
Input Value (IN) is calculated and the result is placed in the Output Value (OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

373

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req signed only* | The input value.
Value T _DONE
T_VALUE
T_PREVAL
Numeric
ouT Output req signed only* | The result of calculating the
Value absolute value of the input value.

* Any Input, Output, or Memory tag labeled as “signed. For more information, see “Defining Input,
Output, Memory tags” on page 114.

C.3.14 Logarithm (LOG)

When used in a Ladder Diagram, the LOG block finds the base-10 logarithm of an
input and sends the result to output.

Select the El tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the logarithm of the Input
Value (IN) is calculated and the result is placed in the Output Value (OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

374

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req real only* The input value. If a Numeric value
Value Numeric is manually entered, it must be real
/ floating.
ouT Output req real only* The result of calculating the
Value logarithm of the input value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: This function cannot process a zero or negative input value. If the input
value is zero, then the value “1.#INFO0” (infinite) is placed in the output. If the
input value is negative, then the value “- 1.#QNANO0” (not available) is placed in
the output. No error is generated.

C.3.15 Natural Logarithm (LN)

When used in a Ladder Diagram, the LN block finds the natural logarithm of an
input and sends the result to output.

Select the il tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the natural log of the Input
Value (IN) is calculated and the result is placed in the Output Value (OUT).

375

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.3.16

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req real only* The input value. If a Numeric value
Value Numeric is manually entered, it must be real
/ floating.
ouT Output req real only* The result of calculating the
Value natural log of the input value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: This function cannot process a zero or negative input value. If the input
value is zero, then the value “1.#INFO0” (infinite) is placed in the output. If the
input value is negative, then the value “- 1.#QNANO0” (not available) is placed in
the output. No error is generated.

Exponential (EXPT)

When used in a Ladder Diagram, the EXPT block raises the base input to the
power of the exponent input and sends the result to output.

b
Select the a_l tool (from the Math Blocks toolbar) and click on a ladder rung to

I EXPT I
EN ENO

insert the following block:

Once the block is inserted, you can double-click on it to configure it.

376

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
raised to the power of the Input Value 2 (IN2) and the result is placed in the
Output Value (OUT).

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN1 Input req real only* The base input value. If a Numeric
Value 1 Numeric value is manually entered, it must

be real / floating.

IN2 Input req real only* The exponent input value. If a
Value 2 Numeric Numeric value is manually entered,
it must be real / floating.

ouT Output req real only* The result of raising the base input
Value value to the exponent input value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: This function does not check for bit register overflow. If overflow occurs,
the value “1.#INFOO” (infinite) is placed in the output.

377

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.3.17 Natural Exponential (EXP)

When used in a Ladder Diagram, the EXP block find the natural exponential of
the input and sends the result to output.

Select the il tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the natural exponential of
the Input Value (IN) is calculated and the result is placed in the Output Value
(OUT).

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req real only* The input value. If a Numeric value
Value Numeric is manually entered, it must be real
/ floating.
ouT Output req real only* The result of calculating the
Value natural exponential of the input
value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

378

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.3.18

NOTE: This function does not check for bit register overflow. If overflow occurs,
the value “1.#INFO0” (infinite) is placed in the output.

Expression (EXPR)

As it is currently implemented, the EXPR block simply assigns the value of the
input to the output. In future releases this function will allow expressions to be
defined and executed as part of the diagram.

Select the ﬂl tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is
directly assigned (copied) to the Output Value (OUT).

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.

379

Appendix C: Ladder Diagram Block Reference

Pointe Controller User Guide

Param | Name Config Var Type Description
IN Input req any Input The input value.
Value any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Literal
Numeric
ouT Output req any Input The result of assigning the input
Value any Output value.

any Memory

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes — for example, a 32-bit input and an
8-bit output — may result in unusable output.

380

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

Cé4

C.4.1

Comparison Blocks

Greater Than (GT)

When used in a Ladder Diagram, the GT block checks to see if one input is greater
than another and uses the result — false or true — to set the output rung state.

Select the il tool (from the Comparison Blocks toolbar) and click on a ladder

II
EN O

rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
compared with the Input Value 2 (IN2) and the result is placed in the Output (Q).

If IN1 is greater than IN2, then “true is placed in Q. If IN1 is not greater than IN2,
then “false is placed in Q.

The result placed in Q determines the state of the rung passed to the right: a
“true result turns the rung on and a “false result turns the rung off.

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then Q is immediately turned off regardless of the
values of IN1 and IN2.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

Q Output no - The result — false or true — of
comparing the two input values.
The result becomes the state of the
rung (off/on) passed to the right.

381

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.4.2

Param | Name Config Var Type Description

IN1 Input req any Input The first input value. The function

Value 1 any Output checks to see if this value is greater

any Memory | than the second input value.
T_DONE
T_VALUE
T_PREVAL

IN2 Input req any Input The second input value.

Value 2 any Output

any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric

Greater Than or Equal to (GE)

When used in a Ladder Diagram, the GE block checks to see if one input is greater
than or equal to another and uses the result — false or true — to set the output
rung state.

Select the El tool (from the Comparison Blocks toolbar) and click on a ladder

II
EN O

rung to insert the following block:

INZ

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
compared with the Input Value 2 (IN2) and the result is placed in the Output (Q).

If IN1 is greater than or equal to IN2, then “true is placed in Q. If IN1 is not
greater than or equal to IN2, then “false is placed in Q.

The result placed in Q determines the state of the rung passed to the right: a
“true result turns the rung on and a “false result turns the rung off.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then Q is immediately turned off regardless of the
values of IN1 and IN2.

382

Pointe Controller User Guide

Appendix C: Ladder Diagram Block Reference

C43

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
Q Output no - The result — false or true — of
comparing the two input values.
The result becomes the state of the
rung (off/on) passed to the right.
IN1 Input req any Input The first input value. The function
Value 1 any Output checks to see if this value is greater
any Memory | than or equal to the second input
T _DONE value.
T_VALUE
T_PREVAL
IN2 Input req any Input The second input value.
Value 2 any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric

Equal to (EQ)

When used in a Ladder Diagram, the EQ block checks to see if one input is equal
to another and uses the result — false or true — to set the output rung state.

Select the ﬂl tool (from the Comparison Blocks toolbar) and click on a ladder

II
EN O

rung to insert the following block:

INZ

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
compared with the Input Value 2 (IN2) and the result is placed in the Output (Q).

If IN1 is equal to IN2, then “true is placed in Q. If IN1 is not equal to IN2, then
“false is placed in Q.

383

Appendix C: Ladder Diagram Block Reference

Pointe Controller User Guide

The result placed in Q determines the state of the rung passed to the right: a
“true result turns the rung on and a “false result turns the rung off.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then Q is immediately turned off regardless of the

values of IN1 and IN2.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
Q Output no - The result — false or true — of
comparing the two input values.
The result becomes the state of the
rung (off/on) passed to the right.
IN1 Input req any Input The first input value. The function
Value 1 any Output checks to see if this value is equal
any Memory | to the second input value.
T_DONE
T_VALUE
T_PREVAL
IN2 Input req any Input The second input value.
Value 2 any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes — for example, a 32-bit input and an
8-bit output — may result in unusable output.

384

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.4.4

Not Equal to (NE)

When used in a Ladder Diagram, the NE block checks to see if one input is not
equal to another and uses the result — false or true — to set the output rung
state.

Select the El tool (from the Comparison Blocks toolbar) and click on a ladder

II
EN O

rung to insert the following block:

INZ

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
compared with the Input Value 2 (IN2) and the result is placed in the Output (Q).

If IN1 is not equal to IN2, then “true is placed in Q. If IN1 is not not equal to IN2,
then “false is placed in Q.

The result placed in Q determines the state of the rung passed to the right: a
“true result turns the rung on and a “false result turns the rung off.

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then Q is immediately turned off regardless of the
values of IN1 and IN2.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

Q Output no - The result — false or true — of
comparing the two input values.
The result becomes the state of the
rung (off/on) passed to the right.

385

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.4.5

Param | Name Config Var Type Description

IN1 Input req any Input The first input value. The function

Value 1 any Output checks to see if this value is not

any Memory equal to the second input value.
T_DONE
T_VALUE
T_PREVAL

IN2 Input req any Input The second input value.

Value 2 any Output

any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric

Less than or Equal to (LE)

When used in a Ladder Diagram, the LE block checks to see if one input is less
than or equal to another and uses the result — false or true — to set the output
rung state.

Select the il tool (from the Comparison Blocks toolbar) and click on a ladder

II
EN O

rung to insert the following block:

INZ

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
compared with the Input Value 2 (IN2) and the result is placed in the Output (Q).

If IN1 is less than or equal to IN2, then “true is placed in Q. If IN1 is not less than
or equal to IN2, then “false is placed in Q.

The result placed in Q determines the state of the rung passed to the right: a
“true result turns the rung on and a “false result turns the rung off.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then Q is immediately turned off regardless of the
values of IN1 and IN2.

386

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.4.6

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

Q Output no - The result — false or true — of
comparing the two input values.
The result becomes the state of the
rung (off/on) passed to the right.

IN1 Input req any Input The first input value. The function
Value 1 any Output checks to see if this value is less
any Memory | than or equal to the second input
T _DONE value.
T_VALUE
T_PREVAL

IN2 Input req any Input The second input value.

Value 2 any Output

any Memory
T_DONE
T_VALUE
T_PREVAL

Numeric

Less Than (LT)

When used in a Ladder Diagram, the LT block checks to see if one input is less
than another and uses the result — false or true — to set the output rung state.

Select the il tool (from the Comparison Blocks toolbar) and click on a ladder

II
EN O

rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
compared with the Input Value 2 (IN2) and the result is placed in the Output (Q).

If IN1 is less than IN2, then “true is placed in Q. If IN1 is not less than IN2, then
“false is placed in Q.

387

Appendix C: Ladder Diagram Block Reference

Pointe Controller User Guide

The result placed in Q determines the state of the rung passed to the right: a
“true result turns the rung on and a “false result turns the rung off.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then Q is immediately turned off regardless of the

values of IN1 and IN2.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
Q Output no - The result — false or true — of
comparing the two input values.
The result becomes the state of the
rung (off/on) passed to the right.
IN1 Input req any Input The first input value. The function
Value 1 any Output checks to see if this value is less
any Memory | than the second input value.
T_DONE
T_VALUE
T_PREVAL
IN2 Input req any Input The second input value.
Value 2 any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric

388

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.5

C.5.1

Logical and Bit Shift Blocks

And (AND)

When used in a Ladder Diagram, the AND function block performs a bit-for-bit
“and comparison between two inputs and sends the result to output.

Select the ﬂl tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a bit-for-bit logical
comparison is made between the Input Values 1 and 2 (IN1 and IN2) and the
result is placed in the Output Value (OUT).

Each set of bits in IN1 and IN2 is evaluated according to the following table:

IN1 0 1 0 1
IN2 0 0 1 1
ouT 0 0 0 1

Therefore, a 16-bit example of AND would be:

INl: 1010010101011101
IN2: 0101011010101110
OUT: 0000010000001100
The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

389

Appendix C: Ladder Diagram Block Reference

Pointe Controller User Guide

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN1 Input req any integer* The first input value.
Value 1 T _DONE
T_VALUE
T_PREVAL
IN2 Input req any integer* The second input value.
Value 2 T _DONE
T_VALUE
T_PREVAL
Numeric
ouT Output req any integer* The result of a bit-for-bit AND
Value comparison between the input

values.

* Any Input, Output, or Memory tag except 32-bit Real (F). For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: No restrictions are placed on the sizes of input or output variables. If the
inputs differ in size (for example, an 8-bit byte compared with a 16-bit word),
then the smaller input is bit-extended with zeros to match the size of the larger

input.

Furthermore, if the result is larger than the output variable (for example, a 16-bit
result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output.

390

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.5.2

Or (OR)

When used in a Ladder Diagram, the OR block performs a bit-for-bit “or
comparison between two inputs and sends the result to output.

Select the il tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

I OR I
EN ENO

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a bit-for-bit logical
comparison is made between the Input Values 1 and 2 (IN1 and IN2) and the
result is placed in the Output Value (OUT).

Each set of bits in IN1 and IN2 is evaluated according to the following table:

IN1 0 1 0 1
IN2 0 0 1 1
ouT 0 1 1 1

Therefore, a 16-bit example of OR would be:

INl: 1010010101011101
IN2: 0101011010101110
OoUT: 1111011111111111
The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

391

Appendix C: Ladder Diagram Block Reference

Pointe Controller User Guide

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN1 Input req any integer* The first input value.
Value 1 T _DONE
T_VALUE
T_PREVAL
IN2 Input req any integer* The second input value.
Value 2 T _DONE
T_VALUE
T_PREVAL
Numeric
ouT Output req any integer* The result of a bit-for-bit OR
Value comparison between the input

values.

* Any Input, Output, or Memory tag except 32-bit Real (F). For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: No restrictions are placed on the sizes of inputs or output variables. If the
inputs differ in size (for example, an 8-bit byte compared with a 16-bit word),
then the smaller input is bit-extended with zeros to match the size of the larger

input.

Furthermore, if the result is larger than the output variable (for example, a 16-bit
result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output.

392

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.5.3

Exclusive Or (XOR)

When used in a Ladder Diagram, the XOR block performs a bit-for-bit “exclusive
or comparison between two inputs and sends the result to output.

Select the El tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a bit-for-bit logical
comparison is made between the Input Values 1 and 2 (IN1 and IN2) and the
result is placed in the Output Value (OUT).

Each set of bits in IN1 and IN2 is evaluated according to the following table:

IN1 0 1 0 1
IN2 0 0 1 1
ouT 0 1 1 0

Therefore, a 16-bit example of XOR would be:

INl: 1010010101011101
IN2: 0101011010101110
OUT: 1111001111110011
The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

393

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.5.4

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN1 Input req any integer* The first input value.
Value 1 T _DONE
T_VALUE
T_PREVAL
IN2 Input req any integer* The second input value.
Value 2 T _DONE
T_VALUE
T_PREVAL
Numeric
ouT Output req any integer* The result of a bit-for-bit XOR
Value comparison between the input
values.

* Any Input, Output, or Memory tag except 32-bit Real (F). For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: No restrictions are placed on the sizes of inputs or output variables. If the
inputs differ in size (for example, an 8-bit byte compared with a 16-bit word),
then the smaller input is bit-extended with zeros to match the size of the larger
input.

Furthermore, if the result is larger than the output variable (for example, a 16-bit
result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output.

Not (NOT)

When used in a Ladder Diagram, the NOT block performs a bit-for-bit inversion
upon an input and sends the result to output.

Select the ﬂl tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

394

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a bit-for-bit logical
inversion is made upon the Input Values (IN) and the result is placed in the
Output Value (OUT).

Each bit in IN is evaluated according to the following table:

IN 0 1

ouT 1 0

Therefore, a 16-bit example of NOT would be:

INl: 1010010101011101
OUT: 0101101010100010
The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req any integer* The input value.
Value T _DONE
T_VALUE
T_PREVAL
ouT Output req any integer* The result of a bit-for-bit NOT
Value inversion upon the input value.

* Any Input, Output, or Memory tag except 32-bit Real (F). For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: If the function result is larger than the output variable (for example, a 16-
bit result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output.

Also, this function does not negate or invert the sign of a signed variable. To
invert the sign of a signed variable, configure an XOR function with the variable
to be inverted as the first input value and -1 as the second input variable.

395

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.5.5

Shift bits Left (SHL)

When used in a Ladder Diagram, the SHL block shifts the bits of the input a
specified number of places to the left and sends the result to output.

Select the ﬂl tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is shifted the specified
Number of Places (N) to the left and zeroes are placed in the vacated registers. The resulting bit
pattern is placed in the Output Value (OUT).

Therefore, a 16-bit example of SHL would be:

IN: 1010010101011101
N: 5
OUT: 1010101110100000
The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.

396

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.5.6

Param | Name Config Var Type Description
IN Input req any integer* The input value.
Value T _DONE
T_VALUE
T_PREVAL
N Number req unsigned** The number of places to be shifted.
of Places T _DONE
T_VALUE
T_PREVAL
Numeric
ouT Output req any integer* The result of shifting the input
Value value n places to the left.

* Any Input, Output, or Memory tag except 32-bit Real (F) or Bit (X). For more information, see
“Defining Input, Output, Memory tags” on page 114.

** Any unsigned (UB, UW, UD, X) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the function result is larger than the output variable (for example, a 16-
bit result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output. No overflow
error is generated.

Shift bits Right (SHR)

When used in a Ladder Diagram, the SHR block shifts the bits of the input a
specified number of places to the right and sends the result to output.

Select the ﬂl tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is shifted the specified
Number of Places (N) to the right and zeroes are placed in the vacated registers. The resulting bit
pattern is placed in the Output Value (OUT).

397

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

Therefore, a 16-bit example of SHL would be:

IN: 1010010101011101
N: 5
OUT: 0000010100101010
The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req any integer* The input value.
Value T _DONE
T_VALUE
T_PREVAL
N Number req unsigned** The number of places to be shifted.
of Places T _DONE
T_VALUE
T_PREVAL
Numeric
ouT Output req any integer* The result of shifting the input
Value value n places to the right.

* Any Input, Output, or Memory tag except 32-bit Real (F) or Bit (X). For more information, see
“Defining Input, Output, Memory tags” on page 114.

** Any unsigned (UB, UW, UD, X) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the function result is larger than the output variable (for example, a 16-
bit result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output. No overflow
error is generated.

398

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.5.7

Rotate bits Left (ROL)

When used in a Ladder Diagram, the ROL block rotates the bits of the input a
specified number of places to the left and sends the result to output.

Select the El tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is rotated the specified
Number of Places (N) to the left. The bits rotated off the left are added back on the right. The
resulting bit pattern is placed in the Output Value (OUT).

Therefore, a 16-bit example of ROL would be:

IN: 1010010101011101
N: 5
OUT: 1010101110110100
The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.

399

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.5.8

Param | Name Config Var Type Description
IN Input req any integer* The input value.
Value T _DONE
T_VALUE
T_PREVAL
N Number req unsigned** The number of places to be
of Places T _DONE rotated.
T_VALUE
T_PREVAL
Numeric
ouT Output req any integer* The result of rotating the input
Value value n places to the left.

* Any Input, Output, or Memory tag except 32-bit Real (F) or Bit (X). For more information, see
“Defining Input, Output, Memory tags” on page 114.

** Any unsigned (UB, UW, UD, X) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the function result is larger than the output variable (for example, a 16-
bit result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output. No overflow
error is generated.

Rotate bits Right (ROR)

When used in a Ladder Diagram, the ROR block rotates the bits of the input a
specified number of places to the left and sends the result to output.

Select the El tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is rotated the specified
Number of Places (N) to the right. The bits rotated off the right are added back on the left. The
resulting bit pattern is placed in the Output Value (OUT).

400

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

Therefore, a 16-bit example of ROR would be:

IN: 1010010101011101
N: 5
OUT: 1110110100101010
The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req any integer* The input value.
Value T _DONE
T_VALUE
T_PREVAL
N Number req unsigned** The number of places to be
of Places T _DONE rotated.
T_VALUE
T_PREVAL
Numeric
ouT Output req any integer* The result of rotating the input
Value value n places to the right.

* Any Input, Output, or Memory tag except 32-bit Real (F) or Bit (X). For more information, see
“Defining Input, Output, Memory tags” on page 114.

** Any unsigned (UB, UW, UD, X) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the function result is larger than the output variable (for example, a 16-
bit result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output. No overflow
error is generated.

401

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.6 Selection Blocks

C.6.1 Select minimum value (MIN)

When used in a Ladder Diagram, the MIN block finds the smaller of two inputs
and sends the result to output.

Select the il tool (from the Selection Blocks toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Values 1 and 2
(IN1 and IN2) are compared and the smaller is placed in the Output Value (OUT).

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.

402

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.6.2

Param | Name Config Var Type Description

IN1 Input req any Input The first input value.
Value 1 any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric

IN2 Input req any Input The second input value.

Value 2 any Output

any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric

ouT Output req any Input The result of finding the smaller of
Value any Output the two input values.
any Memory

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes — for example, a 32-bit input and an
8-bit output — may result in unusable output.

Select maximum value (MAX)

When used in a Ladder Diagram, the MAX block finds the larger of two inputs
and sends the result to output.

Select the il tool (from the Selection Blocks toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Values 1 and 2
(IN1 and IN2) are compared and the larger is placed in the Output Value (OUT).

403

Appendix C: Ladder Diagram Block Reference

Pointe Controller User Guide

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN1 Input req any Input The first input value.
Value 1 any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric
IN2 Input req any Input The second input value.
Value 2 any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric
ouT Output req any Input The result of finding the larger of
Value any Output the two input values.

any Memory

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes — for example, a 32-bit input and an
8-bit output — may result in unusable output.

404

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.6.3

Limit value (LIM)

When used in a Ladder Diagram, the LIM block limits an input to a specified
range.

Select the il tool (from the Selection Blocks toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is
compared to both the Minimum and Maximum Values (MIN and MAX) and the
limit is placed in the Output Value (OUT). When IN is less than MIN, MIN is
placed in OUT. When IN is greater than MAX, MAX is placed in OUT. Otherwise,
IN is placed directly in OUT.

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.

405

Appendix C: Ladder Diagram Block Reference

Pointe Controller User Guide

Param

Name

Config

Var Type

Description

Input
Value

req

any Input
any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric

The input value.

MIN

Minimum
Value

req

any Input
any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric

The minimum value against which
the input value is compared.

MAX

Maximum
Value

req

any Input
any Output
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric

The maximum value against which
the input value is compared.

ouT

Output
Value

req

any Input
any Output
any Memory

The result of finding the limit.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes — for example, a 32-bit input and an
8-bit output — may result in unusable output.

C.6.4 Select one of two values (SEL)

When used in a Ladder Diagram, the SEL block selects one of two input values,
depending on the rung state received from the left, and sends the result to

output.

Select the il tool (from the Selection Blocks toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

406

Pointe Controller User Guide

Appendix C: Ladder Diagram Block Reference

Functional Description

This block always passes the Select input state (SEL) through to the Enable Out
output state (ENO) without change; when SEL becomes on, ENO is turned on,
and when EN becomes off, ENO is turned off.

The block function is executed every time the ladder is scanned, regardless of
whether SEL is on or off. The state of SEL determines which Input Value (INO or
IN1) is selected and placed in the Output Value (OUT). If SEL is on, then IN1 is
placed in OUT. If SEL is off, then INO is placed in OUT.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
SEL Select no - The state of the rung (off/on)
received from the left. Also
determines which input value is
selected to place in the output.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
INO Input req any Input The input value that is selected if
Value any Output the rung is off.
OFF any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric
IN1 Input req any Input The input value that is selected if
Value ON any Output the rung is on.
any Memory
T_DONE
T_VALUE
T_PREVAL
Numeric
ouT Output req any Input The result of selecting one of two
Value any Output input values.
any Memory

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes — for example, a 32-bit input and an
8-bit output — may result in unusable output.

407

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.7

C.7.1

String Blocks

Set string (SET)

When used in a Ladder Diagram, the SET block copies a string (variable or literal)
from an input to an output.

Select the il tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input String (IN) is
copied directly to the Output String (OUT).

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req String The input string. Literals must be
String Literal enclosed in single quotes (').
ouT Output req String The result of copying the input
String string. The output is always NULL-
terminated.

408

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.7.2

NOTE: If the defined Element Length of the String variable configured to OUT is
smaller than the result of the function, then the result is truncated to fit. No
overflow error is generated.

Find string length (LEN)

When used in a Ladder Diagram, the LEN block finds the character length of a
string (variable or literal) and send it to output.

Select the il tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the length (i.e., the
number of characters) of the Input String (IN) is determined and the result is
placed in the Output Value (OUT).

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req String The input string. Literals must be
String Literal enclosed in single quotes (').
ouT Output req any integer* The result of finding the length the
Value input string.

409

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.7.3

* Any Input, Output, or Memory tag except 32-bit Real (F) or Bit (X). For more information, see
“Defining Input, Output, Memory tags” on page 114.

Extract sub-string from left (LEFT)

When used in a Ladder Diagram, the LEFT block extracts a sub-string of specified
length from the left end of a string (variable or literal) and sends the result to an
output.

Select the El tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a sub-string of up to
specified Length (LEN) is extracted from the Input String (IN) and placed in the
Output String (OUT). The sub-string is extracted from the left end of IN.

For example:

IN: ‘Hello world. This is PointeControl.’
LEN: 8
OUT: ‘Hello wo’
The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

410

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req String The input string. Literals must be
String Literal enclosed in single quotes (').
LEN Length req unsigned* The length (i.e., the number of
Numeric characters) of the sub-string to be
extracted.
ouT Output req String The result of extracting the sub-
String string. The output is always NULL-
terminated.

* Any unsigned (UB, UW, UD) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the configured length of the string variable assigned to OUT is smaller
than the result of the function, then the result is truncated to fit. No overflow
error is generated.

C.7.4 Extract sub-string from right (RIGHT)

When used in a Ladder Diagram, the RIGHT block extracts a sub-string of
specified length from the right end of a string (variable or literal) and sends the
result to an output.

Select the ﬂl tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

411

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a sub-string of up to
specified Length (LEN) is extracted from the Input String (IN) and placed in the
Output String (OUT). The sub-string is extracted from the right end of IN.

For example:

IN: ‘Hello world. This is PointeControl.’
LEN: 8
OUT: ‘Control.’
The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req String The input string. Literals must be
String Literal enclosed in single quotes (').
LEN Length req unsigned* The length (i.e., the number of
Numeric characters) of the sub-string to be
extracted.
ouT Output req String The result of extracting the sub-
String string. The output is always NULL-
terminated.

* Any unsigned (UB, UW, UD) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the configured length of the string variable assigned to OUT is smaller
than the result of the function, then the result is truncated to fit. No overflow
error is generated.

412

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.7.5

Extract sub-string from middle (MID)

When used in a Ladder Diagram, the MID block extracts a sub-string of specified
length from the middle of a string (variable or literal) and sends the result to an
output.

Select the ﬂl tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a sub-string of up to
specified Length (LEN) is extracted from the Input String (IN), starting at the
specified Position (POS). The result is placed in the Output String (OUT).

For example:

IN: ‘Hello world. This is PointeControl.’
POS: 9
LEN: 8
OUT: ‘rld. Thi’
The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

NOTE: If there are fewer than POS characters in the Input String, then the output
will be a null string.

413

Appendix C: Ladder Diagram Block Reference

Pointe Controller User Guide

C.7.6

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req String The input string. Literals must be
String Literal enclosed in single quotes (').
POS Position req unsigned* The starting position of the sub-
Numeric string to be extracted. The first
character corresponds to a Position
of 1.
LEN Length req unsigned* The length (i.e., the number of
Numeric characters) of the sub-string to be
extracted.
ouT Output req String The result of extracting the sub-
String string. The output is always NULL-

terminated.

* Any unsigned (UB, UW, UD) Input, Output, or Memory tag. For more information, see “Defining

Input, Output, Memory tags” on page 114.

NOTE: If the configured length of the string variable assigned to OUT is smaller
than the result of the function, then the result is truncated to fit. No overflow

error is generated.

Concatenate strings (CAT)

When used in a Ladder Diagram, the CAT block concatenates two strings (variable
or literal) and send the resulting string to an output.

Select the il tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

414

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Strings 1 and 2
(IN1 and IN2) are concatenated and the resulting string is placed in the Output
String (OUT).

For example:

INl1: ‘Hello world.’
IN2: ' This is PointeControl.’
OUT: ‘Hello world. This is PointeControl.’

NOTE: This function does not insert any spaces between the concatenated strings.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN1 Input req String The first input string. Literals must
String 1 Literal be enclosed in single quotes (' ’).
IN2 Input req String The second input string. Literals
String 2 Literal must be enclosed in single quotes (’
:).
ouT Output req String The result of concatenating the
String input strings. The output is always
NULL-terminated.

NOTE: If the configured length of the string variable assigned to OUT is smaller
than the result of the function, then the result is truncated to fit. No overflow
error is generated.

415

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.7.7

Compare strings (CMP)

When used in a Ladder Diagram, the CMP block compares two strings (variable or
literal) and send the result to an output.

Select the il tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Strings 1 and 2
(IN1 and IN2) are compared and the result is placed in the Output Value (OUT).

Values for OUT are determined as follows:

When... OUT is...
IN1 < IN2 -1
IN1T =1IN2 0
IN1T > IN2 1

When two strings are identical up to the NULL terminator in the shorter string
(‘ain1’ and 'ain100’ for example) the shorter string is considered less than the
longer.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

416

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.7.8

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN1 Input req String The first input string. Literals must
String 1 Literal be enclosed in single quotes (' ’).
IN2 Input req String The second input string. Literals
String 2 Literal must be enclosed in single quotes (’
:).
ouT Output req signed* The result of comparing the input
Value strings.

* Any signed (B, W, D) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

Insert sub-string (INS)

When used in a Ladder Diagram, the INS block inserts a sub-string into an input
string (variable or literal) at a specified position and sends the resulting string to
an output.

Select the ﬂl tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

417

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

When EN becomes on, the block function is executed: the Input String 2 (IN2) is
inserted into the Input String 1 (IN1) at the specified Position (POS). The resulting
string is placed in the Output String (OUT).

For example:

INl: ‘Hello world.’

IN2: ‘This is PointeControl.’

POS: 9

OUT: ‘Hello woThis is PointeControl.rld.’

NOTE: If there are fewer than POS characters in IN1, then IN1 and IN2 are simply
concatenated.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN1 Input req String The input string into which the sub-
String 1 Literal string is inserted. Literals must be

enclosed in single quotes (').

IN2 Input req String The sub-string to be inserted.
String 2 Literal Literals must be enclosed in single

quotes (').
POS Position req unsigned* The starting position where the
Numeric sub-string will be inserted. The first
character corresponds to a Position

of 1.

ouT Output req String The result of inserting the sub-
String string. The output is always NULL-

terminated.

* Any unsigned (UB, UW, UD) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the configured length of the string variable assigned to OUT is smaller
than the result of the function, then the result is truncated to fit. No overflow
error is generated.

418

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.7.9

Delete sub-string (DEL)

When used in a Ladder Diagram, the DEL block deletes a sub-string of specified
length from the middle of a string (variable or literal) and sends the resulting
string to an output.

Select the El tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a sub-string of specified
Length (LEN) is deleted from the Input String (IN), starting at the specified
Position (POS). The resulting string is placed in the Output String (OUT).

For example:

IN: ‘Hello world. This is PointeControl.’
POS: 9
LEN: 8

OUT: ‘Hello wos is PointeControl.’

NOTE: If there are fewer than POS characters in IN, then IN is copied without
changes to OUT.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

419

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req String The input string. Literals must be
String Literal enclosed in single quotes (').
POS Position req unsigned* The starting position of the sub-
Numeric string to be extracted. The first
character corresponds to a Position
of 1.
LEN Length req unsigned* The length (i.e., the number of
Numeric characters) of the sub-string to be
deleted.
ouT Output req String The result of deleting the sub-
String string. The output is always NULL-
terminated.

* Any unsigned (UB, UW, UD) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the configured length of the string variable assigned to OUT is smaller
than the result of the function, then the result is truncated to fit. No overflow
error is generated.

420

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.7.10 Replace sub-string (REPL)

When used in a Ladder Diagram, the REPL block replaces part of an input string
with a specified number of characters from another input string, starting at a
specified position. The resulting string is sent to output.

Select the El tool (from the String Blocks toolbar) and click on a ladder rung to

I REPL I
EN ENO

insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a sub-string in Input String
1 (IN1), starting at the specified Position (POS) and of specified Length (LEN), is
replaced with Input String 2 (IN2). The resulting string is placed in the Output
String (OUT).

For example:

INl: ‘Hello world.’
IN2: ‘GOODBYE'

POS: 4

LEN: 5

OUT: ‘HelGOODBYErld.’

NOTE: If there are fewer than POS characters in IN1, then IN1 and IN2 are simply
concatenated.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

421

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN1 Input req String The input string into which the sub-
String 1 Literal string is inserted. Literals must be

enclosed in single quotes (').

IN2 Input req String The sub-string to be inserted.
String 2 Literal Literals must be enclosed in single
quotes (').
POS Position req unsigned* The starting position where the
Numeric sub-string will be replaced. The first
character corresponds to a Position
of 1.
LEN Length req unsigned* The length (i.e., the number of
Numeric characters) of the sub-string to be
replaced.
ouT Output req String The result of replacing the sub-
String string. The output is always NULL-
terminated.

* Any unsigned (UB, UW, UD) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the configured length of the string variable assigned to OUT is smaller
than the result of the function, then the result is truncated to fit. No overflow
error is generated.

422

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.7.11 Find sub-string (FIND)

When used in a Ladder Diagram, the FIND block finds the first occurance, if any,
of a sub-string within a given string. The position of the sub-string is sent to
output.

Select the ﬂl tool (from the String Blocks toolbar) and click on a ladder rung to

I FIND I
EN ENO

insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input String 1 (IN1) is
searched for the first occurance, if any, of the Input String 2 (IN2). If IN2 is found
within IN1, then the starting position is placed in the Output Value (OUT). If IN2
is not found, then 0 is placed in OUT.

For example:
INl: ‘This is OpenControl.’
IN2: ‘is’
OUT: 3
The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

423

Appendix C: Ladder Diagram Block Reference

Pointe Controller User Guide

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN1 Input req String The input string to be searched.
String 1 Literal Literals must be enclosed in single
quotes.
IN2 Input req String The sub-string to be found in the
String 2 Literal input string. Literals must be
enclosed in single quotes.
ouT Output req any integer* The resulting position of the sub-
Value string, if found.

* Any Input, Output, or Memory tag except 32-bit Real (F) or Bit (X). For more information, see
“Defining Input, Output, Memory tags” on page 114.

424

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.38

C.8.1

Flow Control Blocks

Call sub-ladder diagram (CALL)

When used in a Ladder Diagram, this block executes a specified Sub-Ladder.

Select the ﬂl tool (from the Flow Control Blocks toolbar) and click on a ladder

rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

NOTE: This block is configured differently than other Ladder Diagram blocks. See
“Configuration Reference” below.

Functional Description

This block always passes the input state through to the output state without
change; when the input state becomes on, the output state is turned on, and
when the input state becomes off, the output state is turned off.

When the input state from the left becomes on, the Sub-Ladder referenced by the

block is executed. Ladder diagram execution continues on the right of the CALL
object only after execution of the Sub-Ladder is completed.

Configuration Reference

This block may reference any Ladder Diagram which has been defined as a Sub-
Ladder. The Sub-Ladder is selected using the dialog below:

Call [Gosuh)

LD Hame

factornial
Ladderd
lzztcall

425

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.8.2

All valid Sub-Ladders in the current project will be listed in the dialog. A selection
may be made from the list or entered directly into the LD Name field.

The OK button will be enabled when a valid selection has been made or entered.
Click it to save your selection and close the dialog.

Return to main diagram (RETN)

When used in a Sub-Ladder, this block stops execution of the Sub-Ladder and
returns to the Ladder Diagram which called it. Use of this block is required only if
the logic flow of your program requires an early return from the Sub-Ladder (i.e.,
the Sub-Ladder must be aborted before its normal end). Use of the block is
optional in the last rung of a Sub-Ladder.

Select the ﬂl tool (from the Flow Control Blocks toolbar) and click on a ladder

rung to insert the following block:

This block cannot be configured.

NOTE: This block can only be used in a properly defined Sub-Ladder. If a Return
block is inserted in a regular Ladder Diagram, it will be detected and reported
when the diagram'’s integrity is checked.

Functional Description
This block does not pass the rung state in any situation. When the input state

from the left becomes on, execution of the Sub-Ladder is immediately stopped
and returned to the Ladder Diagram which originally called the Sub-Ladder.

Configuration Reference

The are no configurable parameters for this block.

426

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.9

C.9.1

Miscellaneous Blocks

Convert to Boolean (TO_BOOL)

When used in a Ladder Diagram, the TO_BOOL block converts any input value
into an equivalent boolean (bit) tag. All non-zero inputs are converted to 1, while
zero inputs are converted to 0.

FE0IL

Select the tool (from the Miscellaneous Blocks toolbar) and click on a ladder

rung to insert the following block:

I TO_BOOL I
EN ENO

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is
converted into its equivalent boolean (bit) value and the result is sent to the
Output Value (OUT). If IN is any non-zero value, then OUT is set to 1. If IN is zero,
then OUT is set to 0.

NOTE: When IN is a String, conversion to a numeric representation is attempted.
If the conversion succeeds, then OUT is set to 1. If the conversion fails, then OUT is
set to 0.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.

427

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.9.2

Param | Name Config Var Type Description
IN Input req any Input The input value.
Value any Memory
any Output
Numeric
String
ouT Output req % MX The result of converting the input
Value %QX value into an equivalent boolean
(bit) tag.

Convert to Integer (TO_INT)

When used in a Ladder Diagram, the TO_INT block converts any input value into
an equivalent integer. It is used primarily to convert floating-point variable types
into integer variable types of the same approximate value. However, any input
values can be given.

NOTE: Floating point numbers are rounded when converted in this way.

Select the il tool (from the Miscellaneous Blocks toolbar) and click on a ladder

rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is
converted into an equivalent integer and the result is sent to the Output Value
(OUT).

NOTE: When IN is a String, conversion to a numeric representation is attempted.
If the conversion succeeds, then OUT is set to 1. If the conversion fails, then OUT is
set to 0.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

428

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.9.3

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req any Input The input value.
Value any Memory
any Output
Numeric
String
ouT Output req any integer* The result of converting the input
Value value into an equivalent integer.

* Any Output or Memory tag except 32-bit Real (F) or Bit (X). For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes — for example, a 32-bit input and an
8-bit output — may result in unusable output.

Convert to Float (TO_FLT)

When used in a Ladder Diagram, the TO_FLT block converts any input value into
an equivalent floating point number. It is used primarily to convert integer
variable types into floating-point variable types of the same value. However, any
input values can be given.

Select the il tool (from the Miscellaneous Blocks toolbar) and click on a ladder

rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

429

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.9.4

When EN becomes on, the block function is executed: the Input Value (IN) is
converted into an equivalent floating point and the result is sent to the Output
Value (OUT).

NOTE: When IN is a String, conversion to a numeric representation is attempted.
If the conversion succeeds, then OUT is set to 1. If the conversion fails, then OUT is
set to 0.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req any Input The input value.
Value any Memory
any Output
Numeric
String
ouT Output req %MF The result of converting the input
Value %QF value into an equivalent floating
point.

Convert to String (TO_STRG)

When used in a Ladder Diagram, the TO_STRG block converts any input value into
an equivalent string. It is used primarily to convert non-String variables into String
variables which can then be stored, edited, or displayed. However, any input
values can be given, including other Strings.

Select the ﬂl tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

I TO_STRG I
EN ENO

Once the block is inserted, you can double-click on it to configure it.

430

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is
converted into an equivalent string and the result is sent to the Output Value
(OUT).

For example, the numeric value 123 is converted into a three-character string
123"
The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req any Input The input value.
Value any Memory
any Output
Numeric
String
ouT Output req String The result of converting the input
Value value into an equivalent string. The
output is always NULL-terminated.

NOTE: No restrictions are placed on the size of the output string. If the string
resulting from a non-string IN is longer than the defined Element Length of the
String variable configured to OUT, then a NULL string is placed in OUT. String-to-
string “conversions will simply truncate excess characters. In neither case will an
overflow error be generated.

431

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.9.5 Truncate (TRUNC)

When used in a Ladder Diagram, the TRUNC block truncates a floating-point
input value and discards its fractional (decimal) part. This is effectively the same
as rounding the value down to the nearest integer, although the value always
remains a floating-point number.

Select the ﬂl tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is
truncated and its fractional (decimal) part is discarded. The result is sent to the
Output Value (OUT).

For example, the floating-point value 123.45 is truncated to 123.00.

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req %IF The input value.
Value %MF
%QF
ouT Output req %MF The result of truncating the input
Value %QF value.

432

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.9.6

Integer to Character (TO_CHR)

When used in a Ladder Diagram, the TO_CHR block converts a decimal value into
the equivalent ASCII character.

Select the ﬂl tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is
converted into an equivalent ASCIl character and the result is placed in the first
character position of the Output Value (OUT).

For example, the decimal value 65 is converted into the ASCII character ‘A’.

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req %IUB The input value.
Value %MUB
%QUB
ouT Output req String The result of converting the input
Value value into an equivalent ASCII
character.

NOTE: The output string is not NULL-terminated, as this is not a string operation.

433

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.9.7

Character to Integer (CHR_TO)

When used in a Ladder Diagram, the CHR_TO block converts the first character of
a string into the equivalent ASCII decimal value.

Select the ﬂl tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the first character of the
Input Value (IN) is converted into an equivalent ASCIl decimal value and the
result is placed in the Output Value (OUT).

For example, the character ‘A’ is converted into the ASCII decimal value 65.

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
IN Input req String The input value. Literals must be
Value Literal enclosed in single quotes (').
ouT Output req any integer* The result of converting the first
Value character of the input value into an

equivalent decimal value.

* Any Memory or Output tag except 32-bit Real (F) or Bit (X). For more information, see “Defining
Input, Output, Memory tags” on page 114.

434

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

C.9.8

Integer to BCD (TO_BCD)

When used in a Ladder Diagram, the TO_BCD block converts a regular integer
value into an equivalent binary coded decimal (BCD).

Select the ﬂl tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: each digit of the Input
Value (IN) is separately converted into a 4-bit “nibble, and then the nibbles are
concatenated into a single binary which is placed in the Output Value (OUT).

For example, an integer value of 5319 would be converted in the following
manner:

DIGIT 5 3 1 9

NIBBLE 0101 0011 0001 1001

The resulting BCD is 0101001100011001.

NOTE: Given the 32-bit limit on the size of Logic Memory variables, the largest
integer that can be practically converted into a BCD is 99999999.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

435

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.9.9

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable no - The state of the rung (off/on)
Out passed to the right.

IN Input req unsigned* The input value.
Value

ouT Output req any integer** | The result of converting the input
Value value into a binary coded decimal

(BCD). NOTE: Although the variable
type is an integer, the value stored
in the variable is still a BCD.

* Any unsigned (UB, UW, UD) Input or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

** Any Memory or Output tag except 32-bit Real (F) or Bit (X). For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but if the size of the resulting BCD exceeds the available space
in the output variable, then the high-order nibbles are discarded.

BCD to Integer (BCD_TO)

When used in a Ladder Diagram, the BCD_TO block converts a binary coded
decimal (BCD) into an equivalent integer value.

Select the ﬂl tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

436

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

When EN becomes on, the block function is executed: each 4-bit “nibble of the
Input Value (IN) is separately converted into a base-10 digit, and then the digits
are concatenated into a single integer which is placed in the Output Value (OUT).

For example, a BCD of 0101001100011001 would be converted in the following
manner:

NIBBLE 0101 0011 0001 1001

DIGIT 5 3 1 9

The resulting integer is 5319.

NOTE: Checks are not performed on the magnitude of the decimal digits in the
BCD input value. Values within each nibble are multiplied by the appropriate
power of 10 whether they exceed 9 or not. No “out-of-range indication is made
when invalid BCD digits are present.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable no - The state of the rung (off/on)
Out passed to the right.

IN Input req any integer* The input value, read as a BCD.
Value

ouT Output req any integer** | The result of converting the input
Value value into an integer.

* Any Input or Memory tag except 32-bit Real (F) or Bit (X). For more information, see “Defining
Input, Output, Memory tags” on page 114.

** Any Memory or Output tag except 32-bit Real (F) or Bit (X). For more information, see “Defining
Input, Output, Memory tags” on page 114.

437

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

C.9.10 Move (MOVE)

When used in a Ladder Diagram, the MOVE block directly copies the value from a
source variable to a destination variable.

MOVE

Select the tool (from the Miscellaneous Blocks toolbar) and click on a ladder

rung to insert the following block:

I MOVE I
EN ENO

SRC DST

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the current value in the
Source input (SRC) is moved (copied) to the Destination output (DST). No other
manipulation is performed on the value.

The block function is executed every time the ladder is scanned, so long as EN

remains on. If EN becomes off, then DST remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param | Name Config Var Type Description
EN Enable no - The state of the rung (off/on)
received from the left.
ENO Enable no - The state of the rung (off/on)
Out passed to the right.
SRC Source req any Input The input value.
any Memory
any Output
Numeric
DST Desti- req any Input The result of moving (copying) the
nation any Memory input value.
any Output

438

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes — for example, a 32-bit input and an
8-bit output — may result in unusable output.

439

	Introducting the Pointe Controller
	The Node Controller Concept
	Typical Applications
	Architecture Options
	Stand-alone Operation
	Master Controller
	Network Node

	Available Parts and Accessories

	Initial Setup
	Getting to Know the Pointe Controller Base
	Supplying Power to the Pointe Controller
	Installing the PointeControl Software
	Configuring the Controller's Network Settings
	Installing I/O Modules in the Controller
	Connecting the Controller to Your PC

	Quickstart Project
	Starting a New Project
	Defining Input, Output, and Memory Tags
	Defining input bits
	Defining output bits
	Defining memory tags

	Associating Tags with I/O Points
	Creating Your First Flow Chart
	Inserting a Second Decision Block
	Assigning Outputs
	Adding a Time Delay
	Checking the Chart Integrity
	Building the Project Runtime
	Downloading and Running Your Program
	Monitoring Your Program While It Runs
	Setting Breakpoints

	System Design and Installation
	Safety Guidelines
	Getting to Know the Pointe Controller Base
	PTC-5800 Pointe Controller Technical Description

	Supplying Power to the Controller
	Installing the PointeControl Software
	Addressing the Pointe Controller
	IP Address
	Modbus Address

	Overview of OptiLogic I/O
	Digital Inputs
	Digital Outputs
	Analog Inputs

	Determining Your I/O Needs
	Available I/O Modules
	Available Operator Panels
	Calculating Your Power Budget

	Installing I/O Modules in the Controller
	Slot Numbering
	Installing Modules

	Mounting the Pointe Controller
	Mounting the Base on a DIN Rail
	Mounting the Base to an Operator Panel

	Connecting the Controller to Your Network
	Point-to-Point Connection
	Single Hub and Switched Connections

	Ethernet Connection Guide
	UTP Cable Characteristics
	Cable Connectors
	10Base-T Connections
	Straight-through Patch Cable
	Crossover Patch Cable

	Developing Controller Programs
	Basic Concepts in PointeControl
	Multiple Programming Languages
	Memory Allocation and Access
	The Scan Cycle

	The Visual Framework Editor (VFE)
	The Framework Editor toolbar
	The Project Workspace pane
	The Object Editor pane
	The Messages pane

	Managing PointeControl Projects
	Creating and opening projects
	Importing and exporting projects
	Documenting your project

	Defining Variables in Logic Memory
	Java reserved words
	Defining Input, Memory, and Output tags
	Defining strings in Logic Memory
	Defining timers in Logic Memory
	Importing and exporting databases

	Associating Tags with I/O Points
	Specifying your installed hardware
	Configuring I/O modules
	Configuring operator panels
	Configuring additional OptiLogic RTUs

	Building and Editing Flow Charts
	Creating a new Flow Chart
	Navigating the Flow Chart editor
	Placing and configuring Flow Chart blocks
	Building logical expressions
	Moving, resizing, and deleting blocks
	Adding comments to a Flow Chart
	Logging changes in a Flow Chart
	Making a Flow Chart a reusable Subchart

	Types of Flow Chart Blocks
	Process Block
	Terminator Block
	Condition (If/Then/Else) Block
	Repeat/Until Loop Block
	While/Do Loop Block
	Subchart Block

	Building and Editing Ladder Diagrams
	Creating a new Ladder Diagram
	Navigating the Ladder Diagram editor
	Adding new rungs and branches
	Placing and configuring a Ladder Diagram block
	Moving, copying, and deleting elements
	Adding comments to a Ladder Diagram
	Making a Ladder Diagram a reusable Sub-Ladder

	Types of Ladder Diagram Blocks
	Relays and Coils
	Timer and Counter Blocks
	Math Blocks
	Comparison Blocks
	Logical and Bit Shift Blocks
	Selecting Blocks
	String Blocks
	Flow Control Blocks
	Miscellaneous Blocks

	Other Framework Editor Tools
	Finding and replacing text
	Zooming in and out on a chart
	Viewing tag cross references

	Compiling Your PointeControl Project
	Configuring your project's Chart List
	Setting your project's scan interval
	Checking your project's chart integrity
	Building your project's runtime module
	Activating the PointeControl Monitor

	Downloading to the Controller
	Launching the PointeControl Monitor
	Selecting and Attaching a Controller
	Detaching from a controller

	Downloading a Project to the Controller
	Unloading a project

	Starting and Stopping a Loaded Project
	Stopping a project
	Restarting a stopped project
	Enabling and disabling I/O

	Assigning a Password to the Controller
	Overriding a password

	Saving a Project from the Controller

	Monitoring and Debugging
	Monitoring a Running Project
	The Charts tab
	The Browser tab
	The Console tab
	The Controller Log tab

	Checking System Performance
	Scanning
	Loading
	Errors

	Viewing and Debugging Charts
	The Debugger window
	Zooming In and Out on a chart
	Viewing Subcharts within a chart
	Enabling Logic Flow in a chart
	Enabling Debug Trace in a chart
	Inserting breakpoints in a chart
	Continuing execution after a breakpoint
	Forcing new tag values
	Additional tools for Flow Charts only

	Networked Operations
	Networking via OptiLogic Remote I/O
	Networking via Modbus Data Mapping
	Modbus Address
	Types of Modbus data
	Enabling the Modbus driver
	Mapping variables to Modbus addresses

	Troubleshooting
	LED Boot Indicators
	Hardware Reset

	Appendix: OptiLogic Technical Specs
	OL2104 Relay Output Module
	OL2108 Relay Output Module
	OL2109 DC Sinking Output Module
	OL2111 AC Solid State Relay Module
	OL2201 Digital Input Simulator Module
	OL2205 AC/DC Input Module
	OL2208 DC Digital Input Module
	OL2211 AC Digital Input Module
	OL2252 Dual Pulse Counter
	OL2258 High Speed Pulse Counter
	OL2304 Analog Voltage Output Module
	OL2408 Analog Voltage Input Module
	OL2418 Analog Current Input Module
	OL2602 Dual Serial Port Module
	OL3406 Pushbutton/Indicator Panel
	OL3420 Operator Terminal
	OL3440 Display Panel
	OL3850 Keypad Terminal

	Appendix: Flow Chart Command Reference
	General Commands
	Turn On and Turn Off
	Assign
	Increment and Decrement
	Clear
	Enable and Disable
	Get Tag Name
	Wait

	Timer Commands
	Timer Start and Timer Stop
	Timer Reset
	Timer Preset

	String Commands
	String Copy
	String Concat
	String Left and String Right
	String Mid
	String Insert
	String Delete
	String Replace
	String Format Integer

	Diagnostics Commands
	Diag Get Tag Status
	Diag Set Tag Status
	Diag Clear Tag Status

	Serial Commands
	Serial Configure Port
	Serial Enable Port and Serial Disable Port
	Serial Read Byte
	Serial Write Byte
	Serial Read MultiBytes
	Serial Write MultiBytes
	Serial Get Comm Errors

	Date/Time Commands
	Date/Time Get
	Date/Time Format
	Get Elapsed Time

	Operator Panel Commands
	Keypad Data Entry
	Arrow Adjust Data Entry
	Button On and Button Off

	Appendix: Ladder Diagram Block Reference
	Relays and Coils
	Normally Open Contact (XIC)
	Normally Closed Contact (XIO)
	Rising Edge Relay (LEC)
	Falling Edge Relay (TEC)
	Output Coil (OC)
	Negated Output Coil (NEGOC)
	Latched Coil (LOC)
	Unlatched Coil (UOC)
	Rising Edge Coil (LEOC)
	Falling Edge Coil (TEOC)
	Falling Edge Detector (F_TRIG)
	Rising Edge Detector (R_TRIG)
	Set-Dominant Bistable (SR)
	Reset-Dominant Bistable (RS)

	Timer and Counter Blocks
	Timer, Pulse (TP)
	Timer, ON Delay (TON)
	Timer, OFF Delay (TOF)
	Counter, Up (CTU)
	Counter, Down (CTD)
	Counter, Up/Down (CTUD)

	Math Blocks
	Add (ADD)
	Subtract (SUB)
	Divide (DIV)
	Multiply (MUL)
	Square Root (SQRT)
	Modulus (MOD)
	Sine (SIN)
	Cosine (COS)
	Tangent (TAN)
	Arc Sine (ASIN)
	Arc Cosine (ACOS)
	Arc Tangent (ATAN)
	Absolute Value (ABS)
	Logarithm (LOG)
	Natural Logarithm (LN)
	Exponential (EXPT)
	Natural Exponential (EXP)
	Expression (EXPR)

	Comparison Blocks
	Greater Than (GT)
	Greater than or Equal to (GE)
	Equal to (EQ)
	Not Equal to (NE)
	Less than or Equal to (LE)
	Less Than (LT)

	Logical and Bit Shift Blocks
	And (AND)
	Or (OR)
	Exclusive Or (XOR)
	Not (NOT)
	Shift bits Left (SHL)
	Shift bits Right (SHR)
	Rotate bits Left (ROL)
	Rotate bits Right (ROR)

	Selection Blocks
	Select minimum value (MIN)
	Select maximum value (MAX)
	Limit value (LIM)
	Select one of two values (SEL)

	String Blocks
	Set string (SET)
	Find string length (LEN)
	Extract sub-string from left (LEFT)
	Extract sub-string from right (RIGHT)
	Extract sub-string from middle (MID)
	Concatenate strings (CAT)
	Compare strings (CMP)
	Insert sub-string (INS)
	Delete sub-string (DEL)
	Replace sub-string (REPL)
	Find sub-string (FIND)

	Flow Control Blocks
	Call sub-ladder diagram (CALL)
	Return to main diagram (RETN)

	Miscellaneous Blocks
	Convert to Boolean (TO_BOOL)
	Convert to Integer (TO_INT)
	Convert to Float (TO_FLT)
	Convert to String (TO_STRG)
	Truncate (TRUNC)
	Integer to Character (TO_CHR)
	Character to Integer (CHR_TO)
	Integer to BCD (TO_BCD)
	BCD to Integer (BCD_TO)
	Move (MOVE)

