
Pointe Controller
User Guide

Nematron Corporation
February 2003

Nematron, OpenControl, Pointe Controller, PointeControl, Optimation, and OptiLogic are trademarks
of Nematron Corporation. All other trademarks are the property of their respective holders.

Information in this document is subject to change without notice and does not represent a commitment
on the part of Nematron Corporation. No part of this manual may be reproduced or transmitted in any
form or by any means for any purpose without the express written permission of Nematron
Corporation.

Document 5.60.00 (2/3/2003 draft)

NEMATRON CORPORATION
5840 Interface Drive
Ann Arbor, MI 48103-9515
United States

Tel: 734-214-2000
Fax: 734-994-8074

NEMATRON, LTD.
1 The Briars
Waterberry Drive
Waterlooville, Hampshire
PO7 7YH
United Kingdom

Tel: +44 23 9226 8080
Fax: +44 23 9226 8081

OPTIMATION, INC.
2800 Bob Wallace Avenue, Suite L3
Huntsville, AL 35805-4157
United States

Tel: 256-883-3050
Fax: 256-883-3070

www.nematron.com

Pointe Controller User Guide Table of Contents

1

Chapter 1: Introducing the Pointe Controller.. 13

1.1 The Node Controller Concept ..14

1.2 Typical Applications ..17

1.3 Architecture Options ..18

1.3.1 Stand-alone Operation ...18

1.3.2 Master Controller ...18

1.3.3 Network Node...19

1.4 Available Parts and Accessories ...20

Chapter 2: Initial Setup.. 22

2.1 Getting to Know the Pointe Controller Base...23

2.2 Supplying Power to the Pointe Controller ...24

2.3 Installing the PointeControl Software...25

2.4 Configuring the Controller’s Network Settings ..26

2.5 Installing I/O Modules in the Controller..30

2.6 Connecting the Controller to Your PC...31

Chapter 3: Quickstart Project... 32

3.1 Starting a New Project ...33

3.2 Defining Input, Output, and Memory Tags ...34

3.2.1 Defining input bits ...34

3.2.2 Defining output bits ..36

3.2.3 Defining memory tags ..37

3.3 Associating Tags with I/O Points..38

3.4 Creating Your First Flow Chart ..42

3.5 Inserting a Second Decision Block...47

3.6 Assigning Outputs ...48

3.7 Adding a Time Delay ..53

3.8 Checking the Chart Integrity..55

3.9 Building the Project Runtime...56

3.10 Downloading and Running Your Program ..59

3.11 Monitoring Your Program While It Runs..63

Table of Contents Pointe Controller User Guide

2

3.12 Setting Breakpoints ..66

Chapter 4: System Design and Installation..70

4.1 Safety Guidelines...71

4.2 Getting to Know the Pointe Controller Base ..73

4.2.1 PTC-5800 Pointe Controller Technical Description ...74

4.3 Supplying Power to the Pointe Controller...76

4.4 Installing the PointeControl Software ..77

4.5 Addressing the Pointe Controller...78

4.5.1 IP Address...78

4.5.2 Modbus Address...82

4.6 Overview of OptiLogic I/O ..83

4.6.1 Digital Inputs...84

4.6.2 Digital Outputs ...87

4.6.3 Analog Inputs..89

4.7 Determining Your I/O Needs..93

4.7.1 Available I/O Modules...93

4.7.2 Available Operator Panels...94

4.7.3 Calculating Your Power Budget ..94

4.8 Installing I/O Modules in the Controller ...96

4.8.1 Slot Numbering...96

4.8.2 Installing Modules..97

4.9 Mounting Guidelines ...98

4.9.1 Mounting the Base ..98

4.9.2 Mounting the Controller Base to an Operator Panel ..99

4.10 Connecting the Pointe Controller to Your Network...101

4.10.1 Point-to-Point Connection...101

4.10.2 Single Hub and Switched Connections ..102

4.11 Ethernet Connection Guide ...103

4.11.1 UTP Cable Characteristics...103

4.11.2 Cable Connectors ...103

4.11.3 10Base-T Connections ...104

4.11.4 Straight-through Patch Cable...104

4.11.5 Crossover Patch Cable...104

Pointe Controller User Guide Table of Contents

3

Chapter 5: Developing Controller Programs ... 105

5.1 Basic Concepts in PointeControl... 106

5.1.1 Multiple Programming Languages... 106

5.1.2 Memory Allocation and Access.. 106

5.1.3 The Scan Cycle .. 107

5.2 The Visual Framework Editor (VFE) ... 108

5.2.1 The Framework Editor toolbar .. 109

5.2.2 The Project Workspace pane.. 109

5.2.3 The Object Editor pane.. 110

5.2.4 The Messages pane ... 110

5.3 Managing PointeControl Projects.. 111

5.3.1 Creating and opening projects .. 111

5.3.2 Importing and exporting projects... 111

5.3.3 Documenting your project.. 112

5.4 Defining Variables in Logic Memory... 113

5.4.1 Java reserved words.. 113

5.4.2 Defining Input, Memory, and Output tags .. 114

5.4.3 Defining strings in Logic Memory... 116

5.4.4 Defining timers in Logic Memory ... 117

5.4.5 Importing and exporting databases... 118

5.5 Associating Tags with I/O points .. 121

5.5.1 Specifying your installed hardware.. 121

5.5.2 Configuring I/O modules ... 127

5.5.3 Configuring operator panels.. 128

5.5.4 Configuring additional OptiLogic RTUs .. 128

5.6 Building and Editing Flow Charts .. 129

5.6.1 Creating a new Flow Chart ... 131

5.6.2 Navigating the Flow Chart editor... 132

5.6.3 Placing and configuring Flow Chart blocks.. 135

5.6.4 Building logical expressions.. 136

5.6.5 Moving, resizing, and deleting blocks in a Flow Chart....................................... 143

5.6.6 Adding comments to a Flow Chart... 145

5.6.7 Logging changes in a Flow Chart.. 146

5.6.8 Making a Flow Chart a reusable Subchart.. 147

Table of Contents Pointe Controller User Guide

4

5.7 Types of Flow Chart Blocks...151

5.7.1 Process Block..151

5.7.2 Terminator Block..154

5.7.3 Condition (If/Then/Else) Block...156

Repeat/Until Loop Block..158

5.7.5 While/Do Loop Block...159

5.7.6 Subchart Block ..161

5.8 Building and Editing Ladder Diagrams...163

5.8.1 Creating a new Ladder Diagram..163

5.8.2 Navigating the Ladder Diagram editor ...164

5.8.3 Adding new rungs and branches to a Ladder Diagram......................................166

5.8.4 Placing and configuring a Ladder Diagram block ..167

5.8.5 Moving, copying, and deleting elements in a Ladder Diagram........................168

5.8.6 Adding comments to a Ladder Diagram ...169

5.8.7 Making a Ladder Diagram a reusable Sub-Ladder ...170

5.9 Types of Ladder Diagram Blocks...171

5.9.1 Relays and Coils ..171

5.9.2 Timer and Counter Blocks..172

5.9.3 Math Blocks ...172

5.9.4 Comparison Blocks...173

5.9.5 Logical and Bit Shift Blocks ...174

5.9.6 Selection Blocks ..174

5.9.7 String Blocks ..175

5.9.8 Flow Control Blocks...176

5.9.9 Miscellaneous Blocks...176

5.10 Other Framework Editor Tools..177

5.10.1 Finding and replacing text ..177

5.10.2 Zooming in and out on a chart ..177

5.10.3 Viewing tag cross references ..178

5.11 Compliing your PointeControl project..179

5.11.1 Configuring your project's Chart List ...179

5.11.2 Setting your project's scan interval...180

5.11.3 Checking your project’s chart integrity ...181

5.11.4 Building your project's runtime module ...181

5.11.5 Activating the PointeControl Monitor...182

Pointe Controller User Guide Table of Contents

5

Chapter 6: Downloading to the Controller.. 183

6.1 Launching the PointeControl Monitor ... 184

6.2 Selecting and Attaching a Controller ... 185

6.2.1 Detaching from a controller... 186

6.3 Downloading a Project to the Controller .. 187

6.3.1 Unloading a project .. 187

6.4 Starting and Stopping a Loaded Project.. 188

6.4.1 Stopping a project... 188

6.4.2 Restarting a stopped project.. 188

6.4.3 Enabling and disabling I/O.. 189

6.5 Assigning a Password to the Controller ... 190

6.5.1 Overriding a password... 191

6.6 Saving a Project from the Controller .. 192

Chapter 7: Monitoring and Debugging ... 193

7.1 Monitoring a Running Project .. 194

7.1.1 The Charts Tab.. 194

7.1.2 The Browser Tab .. 195

7.1.3 The Console Tab... 198

7.1.4 The Controller Log Tab .. 201

7.2 Checking System Performance.. 202

7.2.1 Scanning... 202

7.2.2 Loading... 203

7.2.3 Errors... 204

7.3 Viewing and Debugging Charts ... 205

7.3.1 The Debugger Window ... 206

7.3.2 Zooming In and Out on a Chart .. 207

7.3.3 Viewing Subcharts within a Chart .. 207

7.3.4 Enabling Logic Flow in a Chart .. 208

7.3.5 Enabling Debug Trace in a Chart .. 208

7.3.6 Inserting Breakpoints in a Chart.. 210

7.3.7 Continuing Execution after a Breakpoint... 211

7.3.8 Forcing New Tag Values .. 212

7.3.9 Additional Tools for Flow Charts Only .. 215

Table of Contents Pointe Controller User Guide

6

Chapter 8: Networked Operations ...216

8.1 Networking via OptiLogic Remote I/O ..217

8.2 Networking via Modbus Data Mapping...218

8.2.1 Modbus Address...219

8.2.2 Types of Modbus data ..220

8.2.3 Enabling the Modbus driver ...221

8.2.4 Mapping variables to Modbus addresses ..222

Chapter 9: Troubleshooting..227

9.1 LED Boot Indicators ..228

9.2 Hardware Reset ...230

Appendix A: OptiLogic Technical Specifications ..231

A.1 OL2104 Relay Output Module...232

A.1.1 OL2104 Configuration Options ..233

A.2 OL2108 Relay Output Module...235

A.2.1 OL2108 Configuration Options ..236

A.3 OL2109 DC Sinking Output Module ..239

A.3.1 OL2109 Configuration Options ..240

A.4 OL2111 AC Solid State Relay Module..243

A.4.1 OL2111 Configuration Options ..244

A.5 OL2201 Digital Input Simulator Module ..247

A.5.1 OL2201 Configuration Options ..248

A.6 OL2205 AC/DC Input Module...249

A.6.1 OL2205 Configuration Options ..250

A.7 OL2208 DC Digital Input Module ...252

A.7.1 OL2208 Configuration Options ..254

A.8 OL2211 AC Digital Input Module ...255

A.8.1 OL2211 Configuration Options ..256

A.9 OL2252 Dual Pulse Counter..258

A.9.1 OL2252 Configuration Options ..261

A.10 OL2258 High Speed Pulse Counter...264

A.10.1 OL2258 Configuration Options ..268

A.11 OL2304 Analog Voltage Output Module ...273

Pointe Controller User Guide Table of Contents

7

A.11.1 OL2304 Configuration Options.. 275

A.12 OL2408 Analog Voltage Input .. 276

A.12.1 OL2408 Configuration Options.. 277

A.13 OL2418 Analog Current Input... 279

A.13.1 OL2418 Configuration Options.. 280

A.14 OL2602 Dual Serial Port Module .. 282

A.14.1 OL2602 Configuration Options.. 283

A.15 OL3406 Pushbutton/Indicator Panel.. 284

A.15.1 OL3406 Configuration Options.. 284

A.16 OL3420 Operator Terminal .. 288

A.16.1 OL3420 Configuration Options.. 288

A.17 OL3440 Display Panel .. 291

A.17.1 OL3440 Configuration Options.. 291

A.18 OL3850 Keypad Terminal ... 292

A.18.1 OL3850 Configuration Options.. 292

Appendix B: Flow Chart Command Reference... 297

B.1 General Commands.. 298

B.1.1 Turn On and Turn Off .. 298

B.1.2 Assign.. 298

B.1.3 Increment and Decrement .. 299

B.1.4 Clear .. 300

B.1.5 Enable and Disable.. 300

B.1.6 Get Tag Name... 301

B.1.7 Wait... 302

B.2 Timer Commands.. 303

B.2.1 Timer Start and Timer Stop... 303

B.2.2 Timer Reset.. 303

B.2.3 Timer Preset .. 304

B.3 String Commands ... 306

B.3.1 String Copy.. 306

B.3.2 String Concat .. 307

B.3.3 String Left and String Right.. 308

B.3.4 String Mid.. 309

Table of Contents Pointe Controller User Guide

8

B.3.5 String Insert ...310

B.3.6 String Delete..311

B.3.7 String Replace ...313

B.3.8 String Format Integer ...314

B.4 Diagnostics Commands..316

B.4.1 Diag Get Tag Status...317

B.4.2 Diag Set Tag Status..318

B.4.3 Diag Clear Tag Status..319

B.5 Serial Commands...321

B.5.1 Serial Configure Port...321

B.5.2 Serial Enable Port and Serial Disable Port...323

B.5.3 Serial Read Byte..324

B.5.4 Serial Write Byte...325

B.5.5 Serial Read MultiBytes..326

B.5.6 Serial Write MultiBytes...327

B.5.7 Serial Get Comm Errors ..328

B.6 Date/Time Commands..330

B.6.1 Date/Time Get...330

B.6.2 Date/Time Format ..331

B.6.3 Get Elapsed Time..332

B.7 Operator Panel Commands ..333

B.7.1 Keypad Data Entry...333

B.7.2 Arrow Adjust Data Entry..334

B.7.3 Button On and Button Off ..336

Appendix C: Ladder Diagram Block Reference...337

C.1 Relays and Coils ...338

C.1.1 Normally Open Contact (XIC) ...338

C.1.2 Normally Closed Contact (XIO)...338

C.1.3 Rising Edge Relay (LEC) ..339

C.1.4 Falling Edge Relay (TEC)...339

C.1.5 Output Coil (OC)...340

C.1.6 Negated Output Coil (NEGOC)...341

C.1.7 Latched Coil (LOC)..341

C.1.8 Unlatched Coil (UOC) ..342

C.1.9 Rising Edge Coil (LEOC) ..343

Pointe Controller User Guide Table of Contents

9

C.1.10 Falling Edge Coil (TEOC) .. 343

C.1.11 Falling Edge Detector (F_TRIG) .. 344

C.1.12 Rising Edge Detector (R_TRIG)... 345

C.1.13 Set-Dominant Bistable (SR) ... 346

C.1.14 Reset-Dominant Bistable (RS)... 348

C.2 Timer and Counter Blocks .. 350

C.2.1 Timer, Pulse (TP)... 350

C.2.2 Timer, ON Delay (TON)... 351

C.2.3 Timer, OFF Delay (TOF) .. 352

C.2.4 Counter, Up (CTU) ... 353

C.2.5 Counter, Down (CTD) ... 355

C.2.6 Counter, Up/Down (CTUD).. 356

C.3 Math Blocks.. 359

C.3.1 Add (ADD) ... 359

C.3.2 Subtract (SUB)... 360

C.3.3 Divide (DIV) ... 362

C.3.4 Multiply (MUL) ... 363

C.3.5 Square Root (SQRT)... 364

C.3.6 Modulus (MOD).. 366

C.3.7 Sine (SIN) .. 367

C.3.8 Cosine (COS).. 368

C.3.9 Tangent (TAN) .. 369

C.3.10 Arc Sine (ASIN).. 370

C.3.11 Arc Cosine (ACOS) ... 371

C.3.12 Arc Tangent (ATAN).. 372

C.3.13 Absolute Value (ABS).. 373

C.3.14 Logarithm (LOG) .. 374

C.3.15 Natural Logarithm (LN).. 375

C.3.16 Exponential (EXPT).. 376

C.3.17 Natural Exponential (EXP)... 378

C.3.18 Expression (EXPR) .. 379

C.4 Comparison Blocks ... 381

C.4.1 Greater Than (GT).. 381

C.4.2 Greater Than or Equal to (GE) ... 382

C.4.3 Equal to (EQ)... 383

C.4.4 Not Equal to (NE)... 385

Table of Contents Pointe Controller User Guide

10

C.4.5 Less than or Equal to (LE)...386

C.4.6 Less Than (LT) ..387

C.5 Logical and Bit Shift Blocks ..389

C.5.1 And (AND)..389

C.5.2 Or (OR) ..391

C.5.3 Exclusive Or (XOR)..393

C.5.4 Not (NOT) ...394

C.5.5 Shift bits Left (SHL) ..396

C.5.6 Shift bits Right (SHR)...397

C.5.7 Rotate bits Left (ROL)..399

C.5.8 Rotate bits Right (ROR) ..400

C.6 Selection Blocks ...402

C.6.1 Select minimum value (MIN)...402

C.6.2 Select maximum value (MAX)...403

C.6.3 Limit value (LIM)...405

C.6.4 Select one of two values (SEL)..406

C.7 String Blocks ...408

C.7.1 Set string (SET) ..408

C.7.2 Find string length (LEN) ...409

C.7.3 Extract sub-string from left (LEFT)...410

C.7.4 Extract sub-string from right (RIGHT)...411

C.7.5 Extract sub-string from middle (MID)...413

C.7.6 Concatenate strings (CAT) ...414

C.7.7 Compare strings (CMP) ...416

C.7.8 Insert sub-string (INS)..417

C.7.9 Delete sub-string (DEL)...419

C.7.10 Replace sub-string (REPL)...421

C.7.11 Find sub-string (FIND) ...423

C.8 Flow Control Blocks..425

C.8.1 Call sub-ladder diagram (CALL)..425

C.8.2 Return to main diagram (RETN)...426

C.9 Miscellaneous Blocks..427

C.9.1 Convert to Boolean (TO_BOOL) ...427

C.9.2 Convert to Integer (TO_INT)..428

C.9.3 Convert to Float (TO_FLT)..429

Pointe Controller User Guide Table of Contents

11

C.9.4 Convert to String (TO_STRG) .. 430

C.9.5 Truncate (TRUNC) .. 432

C.9.6 Integer to Character (TO_CHR).. 433

C.9.7 Character to Integer (CHR_TO).. 434

C.9.8 Integer to BCD (TO_BCD) .. 435

C.9.9 BCD to Integer (BCD_TO) .. 436

C.9.10 Move (MOVE) ... 438

Pointe Controller User Guide Chapter 1: Introducing the Pointe Controller

13

Chapter 1: Introducing the Pointe Controller
Welcome to the Pointe Controller. Nematron’s Pointe Controller is an important
part of the new generation of automation technology. The Pointe Controller
extends automation capabilities, previously available only in high-end PC-based
control systems, to low cost embedded control. It incorporates modular I/O and
advanced communications features in a controller built on advanced e-control
software architecture. The result is a very cost effective, easy to implement, high
performance controller that can be used either stand alone or as a node in a
larger e-control system.

Central to the Pointe Controller is the OpenControl software development
environment. OpenControl is Nematron’s industry leading PC-based control
software package that has been successfully used in recent years in large, high
performance manufacturing applications. It provides the means for advanced
application development in Visual Flowchart Language (VFL) or ladder logic. The
Pointe Controller is the result of Nematron’s development effort to develop
scaleable solutions. With the addition of Pointe Controller, Nematron now
provides the means to address a much larger range of data acquisition and
control applications.

Pointe Controller technology is both powerful and easy to use. It will enable you
to quickly implement application systems ranging from simple, stand alone
machine controllers to large, integrated, communications intensive systems.

Chapter 1: Introducing the Pointe Controller Pointe Controller User Guide

14

1.1 The Node Controller Concept
Deployable, localized control with a high-speed, standards-compliant interface to
a larger network of devices – that’s the concept of a node controller.

The Pointe Controller is part of a new generation of control devices designed to
meet the needs of today’s more integrated world. It provides all of the features
and functionality of traditional PLCs together with advanced features that enable
it to become a node in a larger, more integrated system. That is the Node
Controller Concept – deployable, localized control with a high-speed, standards-
compliant interface to a larger network of devices. The design architecture
enables this advanced functionality to be implemented easily and seamlessly.

All of the key features of the traditional PLC are incorporated into the design of
the Pointe Controller. These key features include the following:

� Real-time local control;

� Embedded, high reliability electronic design;

� Modular I/O;

� Pluggable terminal strip connectors;

� Ladder logic programming capability; and

� Compact, DIN rail mountable package.

Pointe Controllers also incorporate many advanced features that are typically not
found in traditional PLCs. Some of these advanced features include:

� Advanced visual flow chart programming capability;

� Ability to mix flowchart and ladder programming;

� Application program deployment over an Ethernet link;

� Firmware update deployment and management over an Ethernet link;

� Advanced communications for development, deployment, monitoring and
coordination within a networked system;

� Remote monitoring, programming and debug capability over Ethernet;

� Powerful diagnostic tools for use during program development and
system monitoring;

� Scalable solutions;

� Remote Ethernet I/O options and ability to network Pointe Controllers;

� Easy integration into larger systems and easy future expansion of systems;

� Coordinated operation within a larger system;

Pointe Controller User Guide Chapter 1: Introducing the Pointe Controller

15

� Real-time, open standard data sharing from production to the front
office; and

� Direct connect operator panel interfaces available.

Since the mid 1970s, PLCs have been the foundation of traditional control
applications. PLCs have provided the advantages of localized control, modular
configuration, and rugged industrial packaging. Where traditional PLCs have
been weak has been in the areas of distributed architectures, communications
and more complex logic.

The 1990s brought new demands on control systems for deployability,
information collection and coordination. Since traditional PLCs are weak in these
types of capabilities, a new technology called “PC-based control” was launched
by Nematron and adopted by a number of other automation technology
companies. PC-based control has been very successful in mid-size to large systems
applications with distributed I/O and integration with other software systems for
e-manufacturing, MES, MRP, quality control and web access.

While “PC-based control” technology has brought the world of industrial
automation a number of improvements in processing power, communications,
performance and maintainability, it has had some current limitations. Those
limitations have been primarily based on the economics aspects of implementing
PC-based control being economically justifiable in only mid to high-end
applications.

Nematron developed the Pointe Controller to capitalize on the advanced features
of PC-based control while scaling the solution opportunity to medium and low-
end applications. While the Pointe Controller has many applications in
independent, non-networked applications, its unique design also forms the basis
for control solutions for widely distributed yet integrated applications.

Chapter 1: Introducing the Pointe Controller Pointe Controller User Guide

16

The figure below illustrates the power of the Pointe Controller. It shows a
number of Pointe Controllers connected into a larger network. Each Pointe
Controller interfaces local I/O and performs local control on a real-time dedicated
basis. Each Pointe Controller can also be accessed by the larger system (shown as
“Host Computer”) to be polled for data and status, to coordinate applications, be
reprogrammed and deployed on demand, and any other type of system-wide
activity that may be desired.

The Pointe Controller’s design implementation of a low cost, modular, embedded
real-time control platform creates a tremendous level of opportunity and changes
the way control solutions can be implemented.

Pointe Controller User Guide Chapter 1: Introducing the Pointe Controller

17

1.2 Typical Applications
Pointe Controllers can be used for a wide variety of data acquisition and control
applications. The Pointe Controller’s low cost, flexible and easy to use design
makes it a perfect choice for many small control applications that traditionally
have used PLC type solutions. Its advanced capabilities, which emphasize
deployability and network interoperability make it particularly applicable to
larger, distributed control applications. Typical usage includes the following
applications:

� Packaging machinery

� Semiconductor equipment

� Distributed manufacturing

� Building automation

� Data acquisition

Chapter 1: Introducing the Pointe Controller Pointe Controller User Guide

18

1.3 Architecture Options

1.3.1 Stand-alone Operation
The general discussion of the Pointe Controller has emphasized the
communications capability and capability to be deployed as a node on a network.
In reality, the Pointe Controller is just as applicable to stand-alone applications
that do not require remote communications.

1.3.2 Master Controller
As a Master Controller for distributed control solutions, the Pointe Controller is
capable of interfacing with up to four OptiLogic Remote I/O terminals via
Ethernet. This reduces wiring cost of the I/O devices back to the controller, while
providing high speed I/O control from the controller.

Pointe Controller User Guide Chapter 1: Introducing the Pointe Controller

19

1.3.3 Network Node
As a control node in a scalable network, the Pointe Controller performs dedicated
real-time local control, while maintaining communications with the designated
supervisory computer. Total system deployment, configuration, project
coordination, and data logging can be implemented from any authorized
network workstation.

Chapter 1: Introducing the Pointe Controller Pointe Controller User Guide

20

1.4 Available Parts and Accessories
The Pointe Controller system is designed to be extremely modular and flexible. As
such, all Pointe Controller parts and accessories are sold separately. For
availability and pricing, please call Nematron at 1-800-636-2876, or visit us on the
Web at http://www.nematron.com/Sales and find a certified Nematron distributor
near you.

A complete list of available parts and accessories follows:

PART # DESCRIPTION

PTC-5800 Pointe Controller base unit, 8-slot

NOTE: First-time users must also order at least one PointeControl
software CD (part # NS-PTC) and one RS-232 download cable (part # OL-
CBL-DNL). For more information, see below.

Software

NS-PTC PointeControl Development Framework and Runtime Monitor (software
CD), for Pointe Controller program development and debugging. Single-
seat license that can be used to program multiple Pointe Controller
units. Runs on Microsoft Windows NT 4.0, Windows 2000, and Windows
XP.

Accesories

OL-CBL-DNL Pointe Controller Boot Program download cable — connect’s PC’s RS-232
port to Pointe Controller’s RS-232 port for IP address setting.

OL-CBL-X01 Ethernet CAT5 crossover cable, 6 foot, red — for direct connecting PC to
Pointe Controller for program downloading.

OL-CBL-P01 Ethernet CAT5 patch cable, 6 foot, black — for connecting Pointe
Controller to an Ethernet network.

CBL-PV10 Pointe Controller to Nematron PowerView™ Touchscreen HMI
communication cable — supports Modbus protocol on Serial.

OL-PS1 Power Supply — 120 VAC to 24 VDC, 1 Amp output, wall pluggable.

OptiLogic I/O Modules

OL0001 Blank Module — recommended to fill unused slots in base unit.

OL2104 4-point Relay Output Module, 5-30VDC or 5-132VAC, 2A/point @ 24VDC,
1A/point @ 120VAC, isolated contact outputs.

OL2108 8-point Relay Output Module, 5-30VDC or 5-132VAC, 2A/point @ 24VDC,
1A/point @ 120VAC, 4A/common, 2 commons.

OL2109 8 points, 5-40VDC sinking output. 300 mA sinking capability / point.

OL2111 8 points, solid-state relay output. 15-132VAC, 0.5A/point.

OL2201 8-point digital input simulator.

OL2205 4-point AC/DC input. 10-30V (sourcing or sinking), isolated input and
return lines.

Pointe Controller User Guide Chapter 1: Introducing the Pointe Controller

21

PART # DESCRIPTION

OL2208 8-point DC input. 10-30VDC (sourcing or sinking).

OL2211 8-point AC input. 80-132VAC.

OL2252 Counter Input, 2 channels, 0-15 KHz.

OL2258 High Speed Counter. P&D, Quadrature, Up/Down Count. 0-80 KHz (0-160
KHz for Quad). Two high-speed open collector outputs.

OL2304 4-channel analog voltage output, 14-bit. 0-5v, 0-10v, +/-5v, +/-10v
configurable. 12-bit resolution.

OL2408 8-channel analog voltage input, 14-bit. 0-5VDC or 0-10VDC
conbfigurable.

OL2418 8-channel analog current input, 14-bit. 4-20 mA.

OL2602 2-channel RS232 serial.

OptiLogic Operator Panels and Interconnect Cables

OL3406 Pushbutton / Indicator Panel. 4 user-definable pushbuttons, 6 LED
indicators. Comes with OL-CBL-RIB1.

OL3420 Terminal Panel. 2 line x 20 character alphanumeric LCD. LED backlit. 4
user-definable pushbuttons. Comes with OL-CBL-RIB1.

OL3440 Alphanumeric Display panel. 4 line x 20 character LCD. LED backlit.
Comes with OL-CBL-RIB1.

OL3850 Keypad Terminal panel. 2 line x 20 character alphanumeric LCD. LED
backlit. Numeric keypad. Three large LED indicator light bars. 5 user-
definable pushbuttons. Comes with OL-CBL-RIB1.

OL-CBL-RIB1 OL Operator Panel interconnect cable, 1 inch (approximate). Comes with
each operator panel.

OL-CBL-RIB12 OL Operator Panel interconnect cable, 12 inches (approximate).

OL-CBL-RIB36 OL Operator Panel interconnect cable, 36 inches (approximate).

OptiLogic RTUs (remote I/O base units for networked systems)

OL4054 4-slot RTU base — 10BaseT Ethernet interface, 1 RS232 port, operator
panel interface, DIN rail mountable, 8-30VDC power required for
operation.

OL4058 8-slot RTU base — 10BaseT Ethernet interface, 1 RS232 port, operator
panel interface, DIN rail mountable, 8-30VDC power required for
operation.

OL4228 8-slot Modbus RTU base — 10BaseT Ethernet interface, 1 RS232 port,
operator panel interface, DIN rail mountable, 8-30VDC power required
for operation.

Complete technical specifications for all OptiLogic I/O modules and operator
panels listed above can be found in Appendix A, starting on page 231.

Chapter 2: Initial Setup Pointe Controller User Guide

22

Chapter 2: Initial Setup
This chapter describes how to quickly set up the Pointe Controller unit, including
connecting a power supply to the Pointe Controller unit, installing the
PointeControl software on your PC, setting the controller’s network address,
installing I/O modules in the card cage, and connecting the controller to an
Ethernet network.

This setup procedure is greatly abbrieviated, so that you can jump right into
simple program development as described in Chapter 3, “Quickstart Project,”
starting on page 32. For complete system design and installation instructions, see
Chapter 4, “System Design and Installation,” starting on page 70.

To set up a Pointe Controller unit, you must have at least the following items:

� A Windows-based PC that meets the PointeControl system requirements

� One PointeControl software CD (part number NS-PTC)

� One PTC-5800 base unit, 8-slot (part number PTC-5800)

� One AC power adapter and cord (part number OL-PS1)

� One RS-232 download cable, DB-9 to RJ-11 (part number OL-CBL-DNL)

� One 10BaseT crossover cable (part number OL-CBL-X01)

NOTE: All Pointe Controller parts and accessories are sold separately, as described
on page 20.

Pointe Controller User Guide Chapter 2: Initial Setup

23

2.1 Getting to Know the Pointe Controller Base
The figure below shows the layout of a Pointe Controller base:

The Pointe Controller base consists of a card cage containing the motherboard.
The base unit has a built in Ethernet port, as well as an RS232 port. The Ethernet
port is the interface to the larger system. The RS232 port is provided for general
purpose communications (as defined by your application program). It is also
designed to allow you to load future program upgrades (to incorporate the
ability to interface future I/O boards and operator panels) into the base.

Both communications ports have status indicator LEDs which provide you with
visible indications of each port’s operation. The RS232 serial port indicates when
it is transmitting (TX) and receiving (RX). The Ethernet port provides indications
for good Ethernet link connection (L) and Ethernet port access by the base
processor (S), as well as transmit (T) and receive (R) indicators.

Power must be provided to the unit by an external DC power supply. Any DC
voltage within the range of 8-30VDC is acceptable.

Input and output modules can be plugged into the slots in the base. Most
modules can plug into any base slot (including slot 0).

NOTE: Slot 0 includes additional features used by certain 12-pin specialty
modules. These modules are documented as slot 0-specific.

The OptiLogic base can snap onto any standard DIN rail, including the rail molded
into the back of all OptiLogic operator panels. When attaching an OptiLogic base
to an OptiLogic operator panel, the 10-pin cable connection on the side of the
base is used.

Chapter 2: Initial Setup Pointe Controller User Guide

24

2.2 Supplying Power to the Pointe Controller
The Pointe Controller unit requires a 8-30VDC, 1 Amp power supply. This can be
provided either by using a wall-pluggable AC adapter (part number OL-PS1) or by
connecting the unit directly to a properly rated DC grid. The connection is made
at the Power Input screw terminals located at the bottom left corner of the base
unit.

To connect a power supply to the controller:

 1. Make sure the power is OFF – the AC adapter should be unplugged and/or
the DC grid should be turned off.

 2. Using a regular slotted screwdriver, loosen the Power Input screw
terminals.

 3. Pass the power supply wires through the opening in the bottom of the
controller base unit. Insert the positive wire into the positive terminal (+)
and the negative wire into the negative terminal (-).

 4. Retighten the screw terminals.

 5. Tug gently on the wires to verify that they are properly secured to the
terminals.

The Pointe Controller unit can now be powered on.

Pointe Controller User Guide Chapter 2: Initial Setup

25

2.3 Installing the PointeControl Software
The PointeControl software CD (part number NS-PTC) includes the control
application development package and the various utilities needed to connect to
and configure the Pointe Controller unit.

System requirements:

� 200 MHz or faster Pentium processor

� Operating system (any one):

o Microsoft Windows NT 4.0 Service Pack 5 or 6

o Microsoft Windows 2000

o Microsoft Windows XP

� A CD-ROM drive

� A 10BaseT Ethernet card

� A DB-9 serial port

To install the PointeControl software on your PC:

1. Insert the PointeControl software CD into your CD-ROM drive.

2. Open the mounted CD (typically drive D: or E:) and double-click
SETUP.EXE.

3. Follow the onscreen installation instructions. No unusual installation
options are presented.

4. Restart your PC when prompted.

NOTE: As part of the PointeControl software installation, a Java Runtime Engine
(JRE) is also installed on your PC. This JRE is used only by the PointeControl
software and it is not included in the Windows registry. It should not conflict with
any other Java tools you may have installed on your PC.

Chapter 2: Initial Setup Pointe Controller User Guide

26

2.4 Configuring the Controller’s Network Settings
Each Pointe Controller unit has two distinct addresses: an IP address, for
communicating across an Ethernet network; and a Modbus address, for
communicating with serial Modbus devices such as operator panels and bar code
readers. In this initial setup, we will configure only the IP address.

The Pointe Controller unit comes preconfigured with a default IP address. You
must reset the address so that the unit can properly communicate on your
Ethernet network. This change is made via a direct serial connection between
your PC and the Pointe Controller unit.

Remember that each Pointe Controller unit on your network must have its own
unique IP address and node name, which is set prior to applying power to the
controller. Duplicate addresses will cause system communications to fail.

To set the IP address of the Pointe Controller unit:

1. Establish a serial connection between your PC and the Pointe Controller
unit, using the download cable (OL-CBL-DNL):

a. Before you connect the serial cable, make sure the Pointe
Controller is powered off. The unit looks for the cable when it is
first powered on.

b. Connect the cable's RJ-11 plug to the Pointe Controller's serial
port.

c. Connect the cable's DB-9 plug to your PC's serial port.

2. Power on the Pointe Controller unit.

NOTE: There is no power switch on the Pointe Controller unit itself. Either
the AC adapted must be plugged in or the directly connected DC grid
must be turned on.

3. From theWindows Start menu, choose Programs > PointeControl >
Update Tool.

NOTE: If you are running the Update Tool for the first time, you will be
asked to specify which COM (serial) port the tool should use. Enter the
number (1, 2, 3, or 4) to which you connected the serial cable in Step 1
above, and then click OK. After that, the tool will finish launching.

Pointe Controller User Guide Chapter 2: Initial Setup

27

The PointeControl/OptiLogic Update Tool application window appears.

4. Click Automatic Base Detection. The application should immediately
connect to your Pointe Controller unit. If it does not, check your serial
connection and try again. If it still cannot connect, click Manual Setup
and select PTC5800 from the drop-down menu.

Chapter 2: Initial Setup Pointe Controller User Guide

28

When the application successfully connects, the following window will
appear:

The Read Current Settings pane displays the current address settings on
the Pointe Controller unit. If you are addressing the unit for the first time,
the factory default settings are displayed.

5. Under New Settings, enter the new IP address and subnet mask for the
Pointe Controller unit. For example, an IP Address of “10.16.80.103” and a
Sub Net Mask of “255.255.255.00”.

The Pointe Controller unit should receive an address on the same subnet
as your PC. If you do not know what values to enter, contact your system
administrator.

NOTE: The Pointe Controller unit does not communicate directly with any
network gateway or router. Instead, it broadcasts to all machines on its
subnet. Therefore, you should enter "00.00.00.00" in the Default Gateway
field.

6. For the Default Server IP Address, enter the IP address of the PC with
which you are connecting to the Pointe Controller unit. For example,
“10.16.80.69”.

Pointe Controller User Guide Chapter 2: Initial Setup

29

The secondary server is the PC to which the Pointe Controller unit will
attempt to connect when it first powers on.

7. For the Node Name pane, enter the name by which the Pointe Controller
unit will identify itself to PointeControl Monitor. For example, “Gundam.”

NOTE: If you do not want or need to change the Node Name, you can skip
this step and leave the factory default setting.

For more information on PointeControl Monitor, see Chapter 6,
“Downloading to the Controller,” and Chapter 7, “Monitoring and
Debugging.”

8. Click the Save Settings button to save your settings to the Pointe
Controller unit. When the settings are saved, the fields will turn green.

9. Click the Read Current Settings button to verify that the new settings
were saved correctly. The current settings should now match the IP
address, subnet mask, secondary server, and node name that you entered.

10. Exit the Update Tool application by clicking the Exit button.

11. Power off the Pointe Controller unit.

12. Disconnect the RS-232 serial cable.

Chapter 2: Initial Setup Pointe Controller User Guide

30

2.5 Installing I/O Modules in the Controller
Each module occupies one slot in the controller base. Each slot position is
numbered as shown below. The slot number will provide a reference to your
application program for selecting the appropriate module for each particular
operation.

Slot numbering is simply left to right, starting with slot number 0.

Each slot has card guides along each side and a connector on the motherboard.
To install an I/O module, place the module’s circuitry board in the top and bottom
card guides. (Note that the board will not be tightly retained until it is
approximately 3⁄4 inch into the card guide.)

As you push the module into its mating connector, squeeze the ends together.
This will allow the board latches to travel inside the card cage. When you have
pushed the board into its mating connector and released, the latches should hook
the card cage and keep the module in place.

Pointe Controller User Guide Chapter 2: Initial Setup

31

2.6 Connecting the Controller to Your PC
An Ethernet network connection is used to download finished control
applications from your PC to the Pointe Controller unit. It is also used to monitor
the unit's runtime performance and to share Modbus TCP data between different
control devices. An RJ-45 Ethernet port is located at the left side of the Pointe
Controller unit.

The simplest system is a point-to-point connection. Point to point connections, as
illustrated below, require only a crossover type patch cable.

An Ethernet crossover cable, shown below, connects the transmitter on one side,
with the receiver on the other. This is a category 5 type UTP crossover patch cable.
Cable length is limited to less than 100 meters.

You can now power on the Pointe Controller unit and proceed to Chapter 3,
“Quickstart Project.”

Chapter 3: Quickstart Project Pointe Controller User Guide

32

Chapter 3: Quickstart Project
The first project we will implement with the Pointe Controller is a very simple one
that involves setting up an automated timer and then adding a few different
types of indicators that can be used to display the progress of the timer. To
implement this project, you will need the following.

� A Pointe Controller base unit, configured as described in “Initial Setup”
above

� An OL2201 Digital Input Simulator module, installed in the first I/O slot

� An OL2109 Digital Output module, installed in the second I/O slot

The program that we are going to develop will monitor the first toggle switch on
the OL2201 input module. If it is on, then the program will start the timer and
display its progress using the LEDs of the OL2109 output module and the four-line
LCD of the OL3440 display panel.

Pointe Controller User Guide Chapter 3: Quickstart Project

33

3.1 Starting a New Project
Begin by launching the PointeControl Framework application and creating a new
project:

1. From the Windows Start menu, choose Programs > PointeControl >
Framework. The PointeControl Framework window will appear.

2. From the File menu, choose New Project.

3. In the New Project dialog box, enter the name of your project (e.g.
“Mytest”) and click OK.

Once you have done this, your new project will be opened. The project name will
be shown on the title bar on the top of the PC screen and a project tree,
containing Flow Chart, Ladder Diagram and Logic Memory definitions (all
undefined at this time) will show up in the left hand pane of the display.

Chapter 3: Quickstart Project Pointe Controller User Guide

34

3.2 Defining Input, Output, and Memory Tags
The next thing that we’ll do is define our inputs, outputs and memory tags that
we’ll need for this project. In general, you can do I/O and data memory
definitions piecemeal, throughout the project development process – whenever
you find you need another variable or I/O point.

In this project, we will define all of the I/O points — eight input switches and
eight output LEDs — even though we’ll be using only one input switch. We will
also attach four string variables to the four lines of the display panel.

After we have defined all of the I/O, we will set up the timer that drives the
project

Lastly, we will need to define a few reusable data variables for use in our internal
calculations, but we will address those as we add each of the progress indicators.

3.2.1 Defining input bits
First, to define the input tags:

1. In the project workspace pane on the left, expand the list to show Logic
Memory > Inputs and then double-click %IX (Bits). This opens the input
tag editor window.

Pointe Controller User Guide Chapter 3: Quickstart Project

35

2. Create a table entry for the first input tag (%IX1), either by clicking the
Insert button or by incrementing the Size counter up to 1.

3. In the Alias field, enter the name of the input tag: InSwitch1. (You will
need to click in the field before you can type in it.)

Now go ahead and define the rest of the tag names for the input module, even
though we’re not going to use them in this tutorial project. We’ve already used
the name InSwitch1 for the first switch, so let's name the rest of the inputs
InSwitch2 through InputSwitch8.

Chapter 3: Quickstart Project Pointe Controller User Guide

36

4. Click the Copy button. The Copy Channels dialog box will appear.

5. Increment the Number of channels up to 7 and click OK. Seven more
input tags will be defined in numerical order, copied from the original
InSwitch.

6. Close the input tag editor window using the button in the corner.
When asked to save changes, click Yes.

3.2.2 Defining output bits
Now let’s define our output tags using the same basic procedure as we used to
define our input tags:

1. In the project workspace pane on the left, expand the list to show Logic
Memory > Outputs and then double-click %QX (Bits). This opens the
output tag editor window.

2. Create a table entry for the first output tag (%QX1), either by clicking the
Insert button or by incrementing the Size counter up to 1.

Pointe Controller User Guide Chapter 3: Quickstart Project

37

3. In the Alias field, enter the name of the output tag: Myout1. You will
need to click in the field before you can type in it.

4. Click the Copy button. The Copy Channels dialog box will appear.

5. Increment the Number of channels up to 7 and click OK. Seven more
input tags will be defined in numerical order, copied from the original
Myout.

6. Close the output tag editor window using the button in the corner.
When asked to save changes, click Yes.

3.2.3 Defining memory tags
Lastly, we’ll define the memory tags that will keep track of the state of the
program:

1. In the project workspace pane on the left, expand the list to show Logic
Memory > Memory and then double-click %MX (Bits). This opens the
output tag editor window.

2. Create a table entry for the first string (%MX1), either by clicking the
Insert button or by adjusting the Size counter up to 1.

3. In the Alias field, enter the name of the input tag: rightOn. You may
need to click in the field before you can type in it.

4. Close the memory tag editor window using the button in the corner.
When asked to save changes, click Yes.

Chapter 3: Quickstart Project Pointe Controller User Guide

38

3.3 Associating Tags with I/O Points
At this point, we have tag-names defined. However, we haven’t configured our
I/O and haven’t associated our tag-names with particular I/O points. Let’s do that
now:

1. From the Project menu, choose Configure I/O. The I/O Configuration
window will appear.

2. Next to Slot 1 module type, click the drop-down menu and select
OL2201. This configures the OL2201 module in slot 1 of the Pointe
Controller base unit.

Pointe Controller User Guide Chapter 3: Quickstart Project

39

NOTE: Configuring slot 1 activates the I/O button to the right of the slot.

3. Click the I/O button for slot 1. The OL2201 I/O Map window will appear.

At this point of our project development, we have defined input tag names and
selected an input module. What we haven’t done is associate each input tag
name with a particular point on the input module. That is what we will do now.

4. To the right of Input 1, click the button. A list of available input tags
will appear.

5. From the list of available input tags, select InSwitch1.

6. Repeat steps 4 and 5 for each of the remaining seven inputs, associating
InSwitch2 to Input 2, InSwitch3 to Input 3, and so on.

Chapter 3: Quickstart Project Pointe Controller User Guide

40

7. Click OK to close the OL2201 I/O Map window.

Now repeat the procedure to associate the eight output tags with the OL2109
module in slot 2:

8. Next to Slot 2 module type, click the drop-down menu and select
OL2109. This configures the OL2109 module in slot 2 of the Pointe
Controller base unit.

9. Click the I/O button for slot 2. The OL2109 I/O Map window will appear.

10. To the right of Output 1, click the button. A list of available output
tags will appear.

11. From the list of available output tags, select MyOut1.

Pointe Controller User Guide Chapter 3: Quickstart Project

41

12. Repeat steps 10 and 11 for each of the remaining seven outputs,
associating MyOut2 to Output 2, MyOut3 to Output 3, and so on.

13. Click OK to close the OL2109 I/O Map window.

14. Click OK to close the I/O Configuration window.

Chapter 3: Quickstart Project Pointe Controller User Guide

42

3.4 Creating Your First Flow Chart
We’re going to do our first application with a flow chart. To create a new flow
chart:

1. In the project workspace window on the left, select Flow Chart. Then
from the File menu, choose New.

When you do this, a new flow chart will be created and added to the
project tree.

Pointe Controller User Guide Chapter 3: Quickstart Project

43

We could give our flow chart a name right now. In most cases, you would
immediately name your flow chart based on the function it performs in your
application. Typical names include “Gantry 1,” “IPA Tank,” “Purge Cycle,” and so
on. We’re going to wait to give our program a name and use the default name
“Chart1” for right now.

As you can see on your screen right now, a flow chart with nothing but a “Start”
block and a “Return” block comes up on your screen. We’re ready to enter our
program.

Since we want to flash the outputs if Switch 1 is on, lets start with adding a
decision block based on Switch 1’s state:

2. Click the Decision Block tool on the toolbar, and then click on the flow
line between the existing Start and Return blocks.

A generic decision block will be placed in your flow chart.

Chapter 3: Quickstart Project Pointe Controller User Guide

44

3. Double-click on the decision block to open its associated Block Properties
window.

The Block Properties window is where you define what the block will do.
As you can see, there are a number of properties that you can configure.

Caption determines the text description of the block. This is useful in
documenting the project, but we shall leave it unchanged for now and
come back to it later.

Line Labels determines the type of decision to be made by the block. We
shall use the standard If/Then/Else labels.

Switch T/F Paths determines in which direction the logic flow will
proceed, depending on whether the decision resolves as True or False. In
the default No setting, True (Then) continues downward while False (Else)
branches to the right. In the Yes setting, False (Else) continues downward
while True (Then) branches to the right. This choice affects the overall
readability of the flow chart and how the rest of the blocks will be
oriented. For this quickstart project, let’s switch the paths:

4. In the Block Properties window, click the Switch T/F Paths drop-down
menu and select Yes.

Pointe Controller User Guide Chapter 3: Quickstart Project

45

When the property is changed, the Then and Else paths are switched.

Timeout Value is an optional override that we won’t use here.

Condition Type is an Expression (the default). We want to define our
expression as “If InSwitch1 = ON”:

5. To the right of the Expression property, click the button. The Build
Condition window will appear.

6. In the Arg Type list on the left, select Inputs. A list of available inputs will
appear under Selection List.

7. In the Selection List, select InSwitch1. The InSwitch1 tag will be added to
the Condition pane.

Chapter 3: Quickstart Project Pointe Controller User Guide

46

8. Click the = button to add “=” to the condition.

9. Click the ON button to add “ON” to the condition.

10. Click OK to close the Build Condition window and enter the condition in
the Expression property.

11. Close the Block Properties window.

Pointe Controller User Guide Chapter 3: Quickstart Project

47

3.5 Inserting a Second Decision Block
So far, all we’ve done is check to see if InputSwitch1 is on. If it is on, we want to
flash the first two output LEDs out of phase. To do so, we turn the first output on
and the second off for a period of time, then turn the first output off and the
second on for a time period. Our flow chart will use the flag that we previously
defined, rightOn, to keep track of which state we are in.

1. Click the Decision Block tool on the toolbar, and then click on the Then
branch to the right of your “InSwitch1 = ON” decision block. A new
decision block will be inserted.

2. Double-click on the new block to open its associated Block Properties
window.

3. Define the block’s Expression as “rightOn = TRUE,” as described
previously. Remember that rightOn is a Memory tag rather than an Input
tag.

4. Close the Block Properties window.

Chapter 3: Quickstart Project Pointe Controller User Guide

48

3.6 Assigning Outputs
Now we are going to add the first of the two output patterns — turn off the first
output LED (MyOut1) and turn on the second output LED (MyOut2).

1. Click the Process Block tool on the toolbar, and then click on the Then
branch below your “rightON = TRUE” decision block. A new Process block
will be inserted.

2. Open the Process block’s Block Properties window, as described
previously.

3. To the right of the Command property, click the button. The Select
Process Command window will appear.

4. In the Type list, select General. A list of general commands will appear.

5. In the Command list, select Assign.

6. Click OK to close the Select Process Command window and enter the
Assign command in the Command property.

7. You will see that a Statement sub-property is added to the Command
property.

8. To the right of the Statement sub-property, click the button. The Build
Assignment window will appear.

9. Select the MyOut1 output tag, as described previously.

Pointe Controller User Guide Chapter 3: Quickstart Project

49

10. Move the cursor to the Expression field, either by clicking in it or by
pressing the Tab key.

11. Click the OFF button to add “OFF” to the expression.

12. Click OK to close the Build Assignment window and enter the assigment
in the Statement sub-property.

13. Now let’s add a second Assign command to this same Process block.

Chapter 3: Quickstart Project Pointe Controller User Guide

50

14. Click on and highlight the existing Command property, and then click the
Insert button. A second Command property will be inserted.

15. Define the second Command property as “MyOut2 = ON,” as described
previously.

Now we have two Assign commands in the Process block, as shown below.

Pointe Controller User Guide Chapter 3: Quickstart Project

51

Let’s add just one more statement to set rightOn to TRUE. This will force the
decision block to take the other branch on the next scan through. In that branch,
we’ll set the output states to the opposite values. That will create the flashing
effect that we are looking to achieve.

16. Insert a third Command property, as described previously.

17. Define the third Command property as “rightOn = TRUE,” as described
previously. Remember that rightOn is a memory tag rather than an
output tag.

18. Close the Block Properties window.

Now we need to add the second of the two output patterns — turn on MyOut1,
turn off MyOut2, and set rightOn to FALSE.

19. Insert a new Process block in the Then branch to the right of “rightOn =
TRUE” decision block.

20. Open the Process block’s Block Properties window.

21. Using the same procedure as before, define three Assign commands in the
Process block:

o “MyOut1 = ON”

o “MyOut2 = OFF”

o “rightOn = FALSE”

Chapter 3: Quickstart Project Pointe Controller User Guide

52

The Process block should appear as shown below.

22. Close the Block Properties window.

Looking at our flow chart, we can now see that if the toggle switch (InSwitch1) is
on, then the output LEDs (MyOut1 and MyOut2) will flash back and forth. As
soon as the chart reaches the end, it returns to the start and scans through again.

If the toggle switch is off, then the output LEDs freeze in their last state until the
switch is on again.

Pointe Controller User Guide Chapter 3: Quickstart Project

53

3.7 Adding a Time Delay
Unfortunately, when the toggle switch is on, the output LEDs flash too rapidly for
us to see. We need to put in a time delay of 500 milliseconds — just enough to
slow the flashing to an observable speed.

1. Insert a new Process block after the two Process blocks that you defined
earlier.

NOTE: If you place the block in the wrong place, there are two ways to fix
it. The first way is to simply delete the block and insert it again. (For more
information on deleting Flow Chart blocks, see page 143.)

The second way is to click on and drag the block to the correct position in
the flowchart. The chart will automatically redraw itself to incorporate
the block wherever you place it.

2. Open the new block’s Block Properties window.

3. Set the Command property to Wait.

A Wait Value sub-property will be added.

4. To the right of the Wait Value sub-property, click the button. The Build
Argument window will appear.

Chapter 3: Quickstart Project Pointe Controller User Guide

54

5. In the Argument field, enter a numerical value of 500.

6. Click OK to close the Build Argument window and enter the argument in
the Wait Value sub-property.

7. Close the Block Properties window.

Your flow chart should now appear as shown below.

Pointe Controller User Guide Chapter 3: Quickstart Project

55

3.8 Checking the Chart Integrity
The final step in entry, or modification, of a flow chart is an integrity check. This
integrity check will automatically check the chart for errors in the flow chart
function blocks. It will not tell you if your flow chart logic is correct – it will only
tell you if the statements have been entered properly.

To perform an integrity check, click the Check Integrity tool on the toolbar.

The results of the integrity check will appear in the Message and Error Window
Pane (the box below the editor window). The figure on the right illustrates the
message that you will get if your flow chart contains no statement errors. If an
error is found, a message listing the error and the flow chart block where it is
located, will appear in the Message and Error Window.

Chapter 3: Quickstart Project Pointe Controller User Guide

56

3.9 Building the Project Runtime
Once all of the flow charts have been created, we are ready to build the project
runtime.

First, we must define the list of charts that make up the project. A project can be
comprised of many flow charts and/or ladder diagrams. When a chart is created, it
is not automatically added to the project list. This allows you to incrementally edit
charts and keep optional charts within your development environment. When its
time to build the project runtime, you can place the required charts in the project
list.

To configure your project’s chart list:

1. From the Project menu, choose Configure Chart List. The Chart List
window will appear, showing all charts in the current project build and all
other available charts. We’ve only created one chart. — it is listed as
available.

2. In the Available Charts list, select Chart1 and click the ���� button to move
the chart to the active Chart List.

Pointe Controller User Guide Chapter 3: Quickstart Project

57

The result should be as shown on the right.

3. Click OK to close the Chart List window.

After you have configured the project’s chart list, you must define the scan
parameters. Your project’s runtime operation actually occurs in a repetitive cycle
of updating inputs, logic solve, updating outputs and communications.

4. From the Edit menu, choose Preferences. The Preferences window will
appear.

Logic Solve scan interval is the time between the beginning of one
logic solve pass and the next.

Monitor update interval is how frequently, the monitor, which we’ll
use next for debug purposes, talks to the Pointe Controller to update its
information. The lower the update interval number, the faster the
monitor will react — but the more load it places on the Pointe Controller
processor for handling communications.

Chapter 3: Quickstart Project Pointe Controller User Guide

58

Controller Timeout Interval is a watchdog timer for the chart
execution. If the chart logic solve is greater than this value the project will
stop.

Download Source when checked will send the project source code to
the Pointe Controller. If this is un-checked the source will not be present
in the Pointe Controller and the Pointe Control Monitor will not be able
to view or debug the application.

For our application, a 15 millisecond scan time setting and 250 millisecond
monitor update interval are more than sufficient (actually, in most cases, you’ll
want to increase the monitor interval to 500 to 1000 milliseconds to reduce the
CPU loading caused by the monitoring activities).

5. In the Logic Solve scan interval, enter 15 milliseconds.

6. In the Monitor update interval, enter 250 milliseconds.

7. Controller Timeout Interval to 5000 milliseconds.

8. Download Source must be checked.

9. Click OK to save your changes and close the Preferences window.

Now we can build our project runtime:

10. Click the Build Runtime tool on the toolbar.

When the project builds, messages will come up in the Message Window,
informing you of the progress of the build. The screen shot shown above
illustrates a successful build. Two key message lines are the “No errors found” line
and the “Project build successful” line. Most of the other messages are
informative about the progress of the build.

Pointe Controller User Guide Chapter 3: Quickstart Project

59

3.10 Downloading and Running Your Program
Downloading a finished program to the Pointe Controller unit is performed via
the PointeControl Monitor. The Monitor is launched separately from the
development framework, either by choosing it from the Windows Start menu
(Start > Programs > PointeControl > Monitor), or by “activating” it from
within the framework itself.

To activate the monitor from within the framework, click the Activate
Monitor button on the toolbar

Alternately, you can choose Activate Monitor from the Window menu.

Chapter 3: Quickstart Project Pointe Controller User Guide

60

Once the PointeControl Monitor window is active, you can download your project
runtime to the Pointe Controller unit:

1. Click the Controller drop-down menu and select the Pointe Controller
unit from the listed devices.

2. Click the Project drop-down menu and select your project runtime. If you
have followed the examples given in the quickstart, your project runtime
should be named “Mytest.”

3. Click the Load button. Your PC will spend several moments preparing the
download. (The exact time depends on the processing speed of your PC.)

TIP: You can get a detailed view of the download process by selecting the
Console tab, as shown below. The console messages are generated by
PointeControl Monitor as it prepares your project to run on the Pointe

Pointe Controller User Guide Chapter 3: Quickstart Project

61

Controller’s Java-based processor. In most cases you can ignore these
messages; they are useful only when troubleshooting a faulty download.

A progress bar in the Pointe Control Monitor window shows your project
runtime is downloaded to the Pointe Controller unit.

Chapter 3: Quickstart Project Pointe Controller User Guide

62

When the download is complete, the Start button will become active.

4. Click the Start button to run the project.

5. Select the Charts tab, as shown below.

The PointeControl Monitor window should show that your one chart (as
configured in the Chart List) is running. The Pointe Controller unit is now
executing your project as a real-time control progam.

Pointe Controller User Guide Chapter 3: Quickstart Project

63

3.11 Monitoring Your Program While It Runs
From your PC, you can monitor logic flow, view snapshots of tag values, change
tag values, set breakpoints, single-step through your program, and get
performance and loading information.

To monitor your program while it is running:

1. In the PointeControl Monitor window, click the Charts tab. A list of all
currently running charts will be displayed.

2. In the Charts tab, double-click Chart1. The chart will be displayed in a
separate monitor/debug window.

Chapter 3: Quickstart Project Pointe Controller User Guide

64

3. In the Chart1 monitor/debug window, click the Enable Logic Flow and
Enable Debug Trace tools on the toolbar.

You now have a snapshot of the program’s logic flow, highlighted in yellow and
updated at a regular interval. The logic flow shown is the last 200 program blocks
executed each time the monitor collects a snapshot. The snapshot is taken based
on the Monitor update interval that you defined previously. (See “Building the
Project Runtime” above.) If the interval is set to 100 milliseconds, then a snapshot
will be taken every 100 milliseconds.

Flip the first switch on the OL2201 module and watch what happens. Depending
on whether the switch is on or off, you should see the logic flow change. Watch
the lights on the OL2109 output module. When the switch is in the on position,
lights for module outputs 0 and 1 should alternate. You should be able to see this
same alternating pattern in the logic flow.

Pointe Controller User Guide Chapter 3: Quickstart Project

65

4. Double-click on any of the flow chart blocks (except the Start and Stop
blocks). A Block Watch window for that block will appear, showing all of
the tags referenced by that block.

The Block Watch window shows all of the tags used in the block and the
running value of each tag.

NOTE: The value shown for each tag is not the real-time value of the tag
as the Pointe Controller is actually executing the block. It is the value of
the tag at the time of last snapshot, which is generally more useful for
debugging purposes.

5. Close the Block Watch window.

Chapter 3: Quickstart Project Pointe Controller User Guide

66

3.12 Setting Breakpoints
Sometimes you’ll want to check if your program gets to a particular point in your
chart. You may also want to step through the execution of the program one
block at a time in order to debug your logic. This is achieved by setting break
points in the logic flow:

1. Make sure your program is running and Debug Trace is enabled. (See
“Monitoring Your Program” above.)

2. Select a block in the flow chart. The block will be highlighted green.

3. Click the Insert/Remove Breakpoint tool on the toolbar.

Pointe Controller User Guide Chapter 3: Quickstart Project

67

When you do this, an alert window will pop up on your screen, warning
you that stopping the flow of a running program could cause problems (if
you were actually controlling a machine) and asking you to verify that
you do in fact want to insert the break point.

4. Click Yes. A break point will be set on the selected block.

In a project as small as this (a single small flow chart), the executing program
should hit the break point almost immediately. Note the pink rectangle around
the block and the red diamond on the left side of the block. The pink rectangle

Chapter 3: Quickstart Project Pointe Controller User Guide

68

indicates that a break point is set for this block. The red diamond indicates that
the program has hit the break point.

Now that we have hit a break point, we can step through the program one block
at a time:

5. Click the Single Step tool on the toolbar.

Pointe Controller User Guide Chapter 3: Quickstart Project

69

6. Continue to click the Single Step tool and watch the Pointe Controller
step through your program.

Each time you click the Single Step tool, the program will step to and
highlight the next block in the flow. All blocks will execute as they
normally would, updating tag values and changing outputs as they go.

NOTE: You may wish to disable Debug Trace as you step through the
program, in order to reduce screen clutter.

The simple program that you have just written, downloaded and monitored has
given you a firm basis for any future program development. We have gone
through all of the basic operations. You should be ready to develop and
implement more complex “real” applications by following the same procedures.

As you begin development of your target application programs, recognize that in
most such applications, it makes sense to use multiple flow charts, ladder
diagrams, or a combination of both. You can experiment with the process on
your own, or you can read the rest of the manual to get more detailed
information.

Chapter 4: System Design and Installation Pointe Controller User Guide

70

Chapter 4: System Design and Installation
Now that you understand the basics of the Pointe Controller, you can design a
complete machine control system using it. Good system design includes defining
your I/O needs, selecting the appropriate modules and panels, calculating the
power budget of the system, wiring the I/O to the equipment, and observing
proper safety guidelines.

Pointe Controller User Guide Chapter 4: System Design and Installation

71

4.1 Safety Guidelines

WARNING: Providing a safe operating environment for personnel and equipment
is your responsibility and should be your primary goal during system planning and
installation. Automation systems can fail and may result in situations that can
cause serious injury to personnel or damage to equipment. Do not rely on the
automation system alone to provide a safe operating environment. You should
use external electromechanical devices, such as relays or limit switches, that are
independent of the Pointe Controller program to provide protection for any part
of the system that may cause personal injury or damage.

Every automation application is different, so there may be special requirements
for your particular application. Make sure you follow all national, state, and local
government requirements for the proper installation and use of your equipment.

Plan for Safety

The best way to provide a safe operating environment is to make personnel and
equipment safety part of the planning process. You should examine every aspect
of the system to determine which areas are critical to operator or machine safety.
If you are not familiar with Pointe Controller system installation practices, or your
company does not have established installation guidelines, you should obtain
additional information from the following sources.

� NEMA — The National Electrical Manufacturers Association, located in
Washington, D.C., publishes many different documents that discuss
standards for industrial control systems. You can order these publications
directly from NEMA. Some of these include:

o ICS 1, General Standards for Industrial Control and Systems

o ICS 3, Industrial Systems

o ICS 6, Enclosures for Industrial Control Systems

� NEC — The National Electrical Code provides regulations concerning the
installation and use of various types of electrical equipment. Copies of the
NEC Handbook can often be obtained from your local electrical
equipment distributor or your local library.

� Local and State Agencies — many local governments and state
governments have additional requirements above and beyond those
described in the NEC Handbook. Check with your local Electrical Inspector
or Fire Marshall office for information.

Safety Techniques

The publications mentioned provide many ideas and requirements for system
safety. At a minimum, you should follow these regulations. Using the techniques
listed below will further help reduce the risk of safety problems.

� Orderly system shutdown sequence in the Pointe Controller program.

� Emergency stop switch for disconnecting system power.

Chapter 4: System Design and Installation Pointe Controller User Guide

72

Orderly System Shutdown

The first level of protection can be provided with the Pointe Controller program
by identifying machine problems. Analyze your application and identify any
shutdown sequences that must be performed. Typical problems are jammed or
missing parts, empty bins, etc. that do not pose a risk of personal injury or
equipment damage.

WARNING: The control program must not be the only form of protection for any
problems that may result in a risk of personal injury or equipment damage.

System Power Disconnect

By using electromechanical devices, such as master control relays and/or limit
switches, you can prevent accidental equipment startup. When installed properly,
these devices will prevent any machine operations from occurring.

For example, if the machine has a jammed part, the Pointe Controller program
can turn off the saw blade and retract the arbor. However, since the operator
must open the guard to remove the part, you must include a bypass switch to
disconnect all system power any time the guard is opened.

The operator must also have a quick method of manually disconnecting all system
power. This is accomplished with a mechanical device clearly labeled as an
Emergency Stop switch.

After an emergency shutdown or any other type of power interruption, there
may be requirements that must be met before the Pointe Controller program can
be restarted. For example, there may be specific register values that must be
established (or maintained from the state prior to the shutdown) before
operations can resume. In this case, you may want to use retentive memory
locations, or include constants in the control program to ensure a known starting
point.

Pointe Controller User Guide Chapter 4: System Design and Installation

73

4.2 Getting to Know the Pointe Controller Base
The figure below shows the layout of a Pointe Controller base:

The Pointe Controller base consists of a card cage containing the motherboard.
The base unit has a built in Ethernet port, as well as an RS232 port. The Ethernet
port is the interface to the larger system. The RS232 port is provided for general
purpose communications (as defined by your application program). It is also
designed to allow you to load future program upgrades (to incorporate the
ability to interface future I/O boards and operator panels) into the base.

Both communications ports have status indicator LEDs which provide you with
visible indications of each port’s operation. The RS232 serial port indicates when
it is transmitting (TX) and receiving (RX). The Ethernet port provides indications
for good Ethernet link connection (L) and Ethernet port access by the base
processor (S), as well as transmit (T) and receive (R) indicators.

Power must be provided to the unit by an external DC power supply. Any DC
voltage within the range of 8-30VDC is acceptable.

Input and output modules can be plugged into the slots in the base. Most
modules can plug into any base slot (including slot 0).

NOTE: Slot 0 includes additional features used by certain 12-pin specialty
modules. These modules are documented as slot 0-specific.

The OptiLogic base can snap onto any standard DIN rail, including the rail molded
into the back of all OptiLogic operator panels. When attaching an OptiLogic base
to an OptiLogic operator panel, the 10-pin cable connection on the side of the
base is used.

Chapter 4: System Design and Installation Pointe Controller User Guide

74

4.2.1 PTC-5800 Pointe Controller Technical Description

Physical (Base Unit)

• DIN rail mount to 35mm DIN rail

• Overall dimensions: 8.4”L x 3.25”H x 3.00” D

• Color: Dark gray

• Material: Polycarbonate plastic

• # I/O slots: 8

Environmental

• Storage Temperature : -20 to 70 C

• Ambient Operating Temperature : 0 to 55C

• Humudity : 0 - 95% non-condensing

Electrical

• Power: 8 - 30 VDC input power

• Minimum load current (no I/O boards or operator panel attached):

o 75mA @ 24VDC

o 150mA @ 12VDC

• Maximum load current (actual depends on the particular modules
attached):

o 700 mA @ 24VDC

o 1.4A @ 12VDC

• Power available to I/O modules : 2.8A @ 5VDC

• Power Connection: Terminal block, 2 terminal

Pointe Controller User Guide Chapter 4: System Design and Installation

75

Communications, Ethernet

• Type: 10Base-T Ethernet

• Data Rate: 10 Mbps

• Connection: RJ45

• Ethernet Protocols: TCP/IP, OptiLogic UDP/IP, Modbus

TIP: For a complete description of Ethernet connections, see page 103.

Communications, Serial

• Baud rates: 300, 1200, 2400, 4800, 9600, 19.2K (selectable)

• Data bits: 7 or 8 (selectable)

• Parity: odd, even, or none (selectable)

• Stop bits: 1 or 2 (selectable)

• Connection: RJ12

Pin # Description

6 GND

5 5V power out

4 Transmit data (TX)

3 Receive data (RX)

2 Reserved (do not connect)

1 GND

Chapter 4: System Design and Installation Pointe Controller User Guide

76

4.3 Supplying Power to the Controller
The Pointe Controller unit requires a 8-30VDC, 1 Amp power supply. This can be
provided either by using a wall-pluggable AC adapter (part number OL-PS1) or by
connecting the unit directly to a properly rated DC grid. The connection is made
at the Power Input screw terminals located at the bottom left corner of the base
unit.

To connect a power supply to the controller:

 1. Make sure the power is OFF – the AC adapter should be unplugged and/or
the DC grid should be turned off.

 2. Using a regular slotted screwdriver, loosen the Power Input screw
terminals.

 3. Pass the power supply wires through the opening in the bottom of the
controller base unit. Insert the positive wire into the positive terminal (+)
and the negative wire into the negative terminal (-).

 4. Retighten the screw terminals.

 5. Tug gently on the wires to verify that they are properly secured to the
terminals.

The Pointe Controller unit can now be powered on.

Pointe Controller User Guide Chapter 4: System Design and Installation

77

4.4 Installing the PointeControl Software
The PointeControl software CD (part number NS-PTC) includes the control
application development package and the various utilities needed to connect to
and configure the Pointe Controller unit.

System requirements:

� 200 MHz or faster Pentium processor

� Operating system (any one):

o Microsoft Windows NT 4.0 Service Pack 5 or 6

o Microsoft Windows 2000

o Microsoft Windows XP

� A CD-ROM drive

� A 10BaseT Ethernet card

� A DB-9 serial port

To install the PointeControl software on your PC:

 1. Insert the PointeControl software CD into your CD-ROM drive.

 2. Open the mounted CD (typically drive D: or E:) and double-click
SETUP.EXE.

 3. Follow the onscreen installation instructions. No unusual installation
options are presented.

 4. Restart your PC when prompted.

NOTE: As part of the PointeControl software installation, a Java Runtime Engine
(JRE) is also installed on your PC. This JRE is used only by the PointeControl
software and it is not included in the Windows registry. It should not conflict with
any other Java tools you may have installed on your PC.

Chapter 4: System Design and Installation Pointe Controller User Guide

78

4.5 Addressing the Pointe Controller
Each Pointe Controller unit has two distinct addresses: an IP address, for
communicating across an Ethernet network; and a Modbus address, for
communicating with serial Modbus devices such as operator panels and bar code
readers.

4.5.1 IP Address
The Pointe Controller unit comes preconfigured with a default IP address. You
must reset the address so that the unit can properly communicate on your
Ethernet network. This change is made via a direct serial connection between
your PC and the Pointe Controller unit.

Remember that each Pointe Controller unit on your network must have its own
unique IP address and node name, which is set prior to applying power to the
controller. Duplicate addresses will cause system communications to fail.

To set the IP address of the Pointe Controller unit:

1. Establish a serial connection between your PC and the Pointe Controller
unit, using the download cable (OL-CBL-DNL):

a. Before you connect the serial cable, make sure the Pointe
Controller is powered off. The unit looks for the cable when it is
first powered on.

b. Connect the cable's RJ-11 plug to the Pointe Controller's serial
port.

c. Connect the cable's DB-9 plug to your PC's serial port.

2. Power on the Pointe Controller unit.

NOTE: There is no power switch on the Pointe Controller unit itself. Either
the AC adapted must be plugged in or the directly connected DC grid
must be turned on.

3. From theWindows Start menu, choose Programs > PointeControl >
Update Tool.

NOTE: If you are running the Update Tool for the first time, you will be
asked to specify which COM (serial) port the tool should use. Enter the
number (1, 2, 3, or 4) to which you connected the serial cable in Step 1
above, and then click OK. After that, the tool will finish launching.

Pointe Controller User Guide Chapter 4: System Design and Installation

79

The PointeControl/OptiLogic Update Tool application window appears.

4. Click Automatic Base Detection. The application should immediately
connect to your Pointe Controller unit. If it does not, check your serial
connection and try again. If it still cannot connect, click Manual Setup
and select PTC5800 from the drop-down menu.

Chapter 4: System Design and Installation Pointe Controller User Guide

80

When the application successfully connects, the following window will
appear:

The Read Current Settings pane displays the current address settings on
the Pointe Controller unit. If you are addressing the unit for the first time,
the factory default settings are displayed.

5. Under New Settings, enter the new IP address and subnet mask for the
Pointe Controller unit. For example, an IP Address of “10.16.80.103” and a
Sub Net Mask of “255.255.255.00”.

The Pointe Controller unit should receive an address on the same subnet
as your PC. If you do not know what values to enter, contact your system
administrator.

NOTE: The Pointe Controller unit does not communicate directly with any
network gateway or router. Instead, it broadcasts to all machines on its
subnet. Therefore, you should enter "00.00.00.00" in the Default Gateway
field.

Pointe Controller User Guide Chapter 4: System Design and Installation

81

6. For the Default Server IP Address, enter the IP address of the PC with
which you are connecting to the Pointe Controller unit. For example,
“10.16.80.69”.

The secondary server is the PC to which the Pointe Controller unit will
attempt to connect when it first powers on.

7. For the Node Name pane, enter the name by which the Pointe Controller
unit will identify itself to PointeControl Monitor. For example, “Gundam.”

NOTE: If you do not want or need to change the Node Name, you can skip
this step and leave the factory default setting.

For more information on PointeControl Monitor, see Chapter 6,
“Downloading to the Controller,” and Chapter 7, “Monitoring and
Debugging.”

8. Click the Save Settings button to save your settings to the Pointe
Controller unit. When the settings are saved, the fields will turn green.

9. Click the Read Current Settings button to verify that the new settings
were saved correctly. The current settings should now match the IP
address, subnet mask, secondary server, and node name that you entered.

10. Exit the Update Tool application by clicking the Exit button.

11. Power off the Pointe Controller unit.

12. Disconnect the RS-232 serial cable.

Chapter 4: System Design and Installation Pointe Controller User Guide

82

4.5.2 Modbus Address
The addressing that you, the system designer, must set is the address set via
rotary address switches in the Pointe Controller base unit. Each controller in your
system must have its own unique address. This address, a value between 00 and
97, is how the software in the master PC identifies each controller.

NOTE: Addresses 98 and 99 are reserved for performing hardware resets. For
more information, see page 230.

To get to the address switches, you must first remove the end cover from the base
unit. To do this, simply squeeze the latching tabs, shown in the figure below, and
lift the cover off.

Removing the end cover will expose the base motherboard. The address switches
will be found near the connector for slot 0.

To set the controller’s Modbus address, rotate the switches to the desired values.
The switch on the left is the “tens” digit. The switch on the right is the “ones”
digit. A small flat blade screwdriver is the only tool you need. The address shown
on the figure above is “25.”

Remember that each Pointe Controller unit on your network must have its own
unique Modbus address, which is set prior to applying power to the controller.
Duplicate addresses will cause system communications to fail.

For more information on configuring Modbus communications, see Chapter 8,
“Networked Operations,” starting on page 216.

Pointe Controller User Guide Chapter 4: System Design and Installation

83

4.6 An Overview of OptiLogic I/O

The Pointe Controller system achieves its modularity and flexibility by integrating
with Optimation, Inc.’s complete line of OptiLogic I/O modules and operator
panels. (Optimation is a wholly-owned subsidiary of Nematron.) OptiLogic
components can be plugged together in nearly any combination. This chapter
covers the currently available modules that plug into the card cage.

TIP: Additional I/O modules are always under development. Please check our Web
site at http://www.nematron.com/PointeControl for a complete list of available
modules.

Most OptiLogic modules can be installed in any card cage slot and used in any
combination and quantity that will fit in the card cage. This applies to all general
purpose digital and analog I/O. If you need all digital inputs — plug in digital
input modules only. If you need a mixture of analog and digital inputs and
output — select the mixture that fits your needs. Snap together modularity gives
you the ability to optimize your system for your needs.

OptiLogic I/O modules are designed to meet your needs in real world application.
They are all small circuit boards with a few available points to minimize your
system cost. Most module connectors are pluggable terminal strips for easy
connection, and easy maintainability. The snap-together design means low labor
costs — or costs on your time. Visual status indicators on digital I/O and
communications modules provide a convenient means for monitoring operation.
All together, the result is a cost effective, easy to use and maintain set of
industrial control hardware.

This manual covers general I/O characteristics and applications first. Specific I/O
boards are covered in the latter pages. The general pages should serve as a guide
to selecting and installing I/O boards in your application.

Chapter 4: System Design and Installation Pointe Controller User Guide

84

4.6.1 Digital Inputs
Digital I/O modules are used to either monitor (input) or control (output) the
“state” of something. “State” being on or off, active or inactive, open or closed
— etc. In the “real world” digital I/O requirements come in a variety of shapes
and sizes. Therefore, there are a variety of available modules designed to meet
the variety of needs.

Typical digital inputs are connected to switches, buttons, digital outputs from
other equipment, discrete level sensors, thermostats and other on/off sensing
devices.

Digital status is sensed by a controller, such as an OptiLogic system, by passing
current through an input sensor. When the current is on, the input state is active.
When it is not there, the input state is inactive.

Input Isolation

In most cases, it is important to “isolate” the real world inputs from the internal
electronics of the controller. You want to prevent some external situation from
“zapping” the controller’s electronics.

An effective means of providing such electrical isolation is optical isolation. The
figure below illustrates the basic concepts of optical isolation of a digital input
circuit:

As shown, when the digital input contact closes, the circuit path is complete and
current will flow. On the input module this circuit path passes through a device
which emits light when current flows through it. The light emitter is in very close
physical proximity to (actually in the same chip) a photo sensor, which will turn
on when it senses light. In this way, a digital input module can sense whether the
input device is closed (current flow) or open (no current flow) without a direct
electrical connection between the external sensor and the internal electronics.

DC Inputs

DC digital inputs are typically supplied by a DC power supply. The most common
DC supplies used in industry are 12VDC and 24VDC.

Pointe Controller User Guide Chapter 4: System Design and Installation

85

Typical DC digital input circuits are shown below:

As shown, the physical optical emitter on the input module is an LED (light
emitting diode). OptiLogic DC inputs use bidirectional LEDs — i.e. Your inputs
may either source or sink current. The top figure shows a sourcing input. The
figure below it shows a sinking input. When inputs are connected to a “common”
(most instances), inputs must be either all sourcing or all sinking.

AC Inputs

AC digital inputs are typically supplied either directly from line voltage or
transformed down from line voltage. The most common AC inputs are 120VAC
and 24VAC, although any voltage range is possible.

A typical AC input circuit is shown below:

As shown, the physical optical emitter on the input module consists of two LEDs
of opposite polarity. An AC (alternating current) connection flows current one
way, then the other. Light is emitted in both cases.

There is a short period when voltage, and therefore current flow, switches from
one direction to the other when no current flows. This is called zero crossover.
During zero crossover, the digital input circuit must “debounce” the signal to
ensure that the system does not provide a false indication that the input contact
is not closed when it is, in fact, closed. OptiLogic AC digital inputs handle such
zero crossover conditions.

Chapter 4: System Design and Installation Pointe Controller User Guide

86

Digital Input Voltage

Any digital input module, AC or DC, is designed to operate within an input
voltage range. The input voltage directly controls the amount of current flowing
through the circuit. The minimum voltage corresponds to a voltage that creates
enough current to produce LED light sufficient to be sensed by the optical sensor.
The maximum voltage corresponds to the maximum current the optocoupler can
handle without being damaged.

I/O “Common” Terminals

For a digital input circuit, one input terminal and one output terminal is necessary
for operation. For practical application, one of these two terminals may be
“common” to several circuits.

In most systems, the power source for all digital inputs is from the same supply. In
such cases, connecting all of the circuit return lines together results in reduced
equipment costs as well as simpler system wiring.

The example above illustrates a digital input board that has eight inputs and two
commons. This can be accomplished with a 10 terminal connector block.

Pointe Controller User Guide Chapter 4: System Design and Installation

87

4.6.2 Digital Outputs
Digital outputs are used to turn “loads” on and off. “Loads” may be lights,
motors, solenoids, or any type of on/off device found in the “real world.”

Digital outputs in the OptiLogic series come in three types — relay, transistor and
solid state relay. Each type has applications it is best suited for. The following is a
general list of application characteristics for each output type:

Relay

� Low contact loss

� AC or DC

� Moderate to high
current rating

� Low cost

� Should not be used
for:

o Ultra low current
switching (less than
10mA)

o Switching loads at
high frequency

Transistor

� DC application only

� Low current rating

� High frequency
switching

� Low cost

Solid State Relay

� AC application

� Moderate current

� Any switching
frequency

� Moderate cost

Relay Outputs

Relays are basically electrically controlled mechanical switches. All current
OptiLogic Relay output boards utilize form A relays — i.e. the contact is either
open or closed.

Relays are affected by the type of load that is switched. Inductive loads
(solenoids, motors, etc.) tend to wear the relay much more than resistive loads
(lights, heaters, etc.).

Inductive load wear is due to the fact that inductive loads will continue to
conduct current for a period, even after the circuit is broken. This current flow
builds up opposing polarity charges between the contact segments that just
separated. This makes the two segments attract each other — making opening
the contact more difficult. It also can result in arcing while the contact is being
opened. Arcing, in turn, builds up carbon deposits, i.e. wear.

This situation can be improved for DC inductive circuit loads by the addition of
external diode protection of the circuit. The figure below illustrates diode
protection:

Chapter 4: System Design and Installation Pointe Controller User Guide

88

When the contact is closed, the diode is reverse biased and no current flows
through it. When the contact opens, current will continue to flow through the
inductive load. The diode provides a path for current flow. The result that is the
energy is dissipated in the inductive coil and not the relay contact.

NOTE: Do not use this circuit for AC loads.

Transistor Outputs

An NPN transistor sinking output provides a path to ground. A typical circuit is
shown below:

There is a small voltage drop across the transistor in such a circuit. The voltage
drop will generate heat in the transistor. Therefore NPN transistor outputs are
generally limited to lower current applications.

Transistor outputs can be operated at high frequency. There is no effective wear
on a transistor output from switching, as there is in a mechanical relay.

Diode protection applied to inductive loads is recommended in cases where the
load current approaches the rated current limit of the output. In most cases
OptiLogic outputs are designed to withstand voltages of at least twice the rated
output voltage. However, diode protection like that shown above will ensure that
turn off voltage spikes will never get to that level.

Pointe Controller User Guide Chapter 4: System Design and Installation

89

Solid State Relay Outputs

Solid state relays are semiconductor switches that operate very much like
mechanical relays. They have an advantage over mechanical relays by virtue of
the fact that they are semiconductors. Solid state relays can be switched at
relatively high frequencies and they do not wear out. However they are more
expensive and there is a small voltage drop across the contact.

The figure below illustrates a typical solid state relay output:

OptiLogic Solid state relays are designed for AC load operation.

4.6.3 Analog Inputs
Analog inputs are used to monitor the value of some continuously variable
measurement. Typical analog inputs are measurements of temperature, pressure,
weight, liquid level, pH, flow rate and many other “real world” parameters.

The purpose of an analog input module is to convert the measurement into a
format that is usable by the data acquisition or control system. To be usable by an
computer-based system, the analog measurement must be converted to digital
format. Doing so accurately and, in some cases, quickly, is the goal of the analog
to digital converter module.

A good understanding of analog input modules includes an understanding of
isolation, accuracy, single and differential inputs, multiplexing, resolution and
range. The following paragraphs provide an overview of these subjects.

Isolation

In many applications there is a good deal of benefit to be derived from isolating
the analog measurement source from the RTU’s power supply. In some cases,
signal inputs may contain voltages or noise signals which could adversely affect
the main processor’s operation. Likewise, noise on the main power bus can
degrade the accuracy of the analog value measurement. Both potential problems
can be solved by isolating the analog inputs from the main power supply.

Isolation involves totally isolating the analog to digital (A/D) converter from the
main power bus. This can be accomplished in two ways. The A/D input module
can use a separate power source input, which is isolated from the power input to
the base. The A/D module can also use the main power supply and isolated power

Chapter 4: System Design and Installation Pointe Controller User Guide

90

via a switching power converter and a transformer. There are OptiLogic analog
input modules in both categories. Neither is functionally superior to the other.
The on-board power generation may save the cost of an additional external
power supply.

The other aspect of isolation is the fact that the measured value must be
transmitted from the analog to digital converter, operating on one power supply,
to the main system, which is operating on another power supply. This is
commonly accomplished through optical isolators.

Resolution

Resolution is the number of significant bits of information the A/D converter uses
to express the value of the measured input. A 12-bit A/D converter uses 12 bits of
information, meaning the entire range is covered by a number between 0 and
(2(12)-1) or 0 to 4095. A 14-bit A/D expresses the same range as a number
between 0 and 16,383. In other words, the more bits used, the finer the
increment. In general terms, the higher the resolution, the better.

Pointe Controller User Guide Chapter 4: System Design and Installation

91

Accuracy

Accuracy is expressed as the worst case deviation from the “ideal value” across
the entire input range. For example, for a 0 to 5V input range and a 12-bit A/D
module, a 2.0 volt input should yield a value equal to 1638 (0.4 x 4096). If it
returns a value of 1636, and this is the worst case error across the entire range of
0 to 5V, the accuracy is 12 bits +/- 2 counts.

Range

The analog input range is the minimum and maximum voltage, or current level,
measured by the A/C converter. Typical ranges are 0 to 5 volts, 0 to 10 volts, +/- 5
volts, +/- 10 volts, and 4 to 20 mA.

You should try to match the input range to the range of the signal that you are
measuring.

Multiplexing

Analog to digital converter devices are typically quite expensive. In order to keep
the cost per channel of analog inputs down, a multiplexer is commonly used.

A multiplexer switches one analog input at a time into the A/D converter. Each
input is converted in sequence. The trade off is reduced sampling rate for a
particular channel versus reduced cost per channel measured. In most industrial
applications, the conversion rate is so fast in relation to the rate of change in the
measured value, that sampling rate is not a factor.

Single Ended Inputs

Single ended inputs are all referenced to the same ground point. In many
applications, single ended inputs produce significant advantages. Single ended
inputs require only one ground connection and one signal input per measured
value. The result is reduced wiring costs along with the reduced cost per channel
on the analog input module.

Chapter 4: System Design and Installation Pointe Controller User Guide

92

In order to use single ended inputs, the ground connection must be very good.
The measurement devices must also be capable of being referenced to a common
ground.

Differential Inputs

There are cases when the individual analog inputs cannot be connected to a
common ground. In those cases, a differential input A/D converter should be
used.

With a differential analog input, both a positive and negative signal line must be
connected for each signal. The analog input module then measures the difference
between the positive and negative. The effect of one channel’s signal on another
channel’s signal should be as little as possible. That relationship of the effect on
the measured value of one channel to the value input on a second channel is
called “common mode.” The higher the “common mode rejection ratio (CMRR)”
the better.

Pointe Controller User Guide Chapter 4: System Design and Installation

93

4.7 Determining Your I/O Needs
The Pointe Controller system offers the following ways to add I/O to the system:

� Local I/O – consists of I/O modules installed in the Pointe Controller unit
itself.

� Remote I/O – consists of I/O modules installed in OptiLogic RTU bases
connected to the Pointe Controller unit through the Ethernet network.

A Pointe Controller system can be developed using many different arrangements
of these configurations. All I/O configurations use the standard complement of
OptiLogic I/O modules and bases.

TIP: For complete technical descriptions of all OptiLogic modules and panels, see
Appendix A, “OptiLogic Technical Specifications,” starting on page 231.

4.7.1 Available I/O Modules
The following is a list of I/O and operator panel modules available at the time of
this printing. Keep in mind that the range of avaliable OptiLogic modules is
always expanding. Many more modules will be available in the near future. To
get a current list of available modules, visit our Web site at
http://www.nematron.com/PointeControl.

The following I/O modules are currently available (generally off the shelf):

Digital Inputs

OL2201 8 Digital input simulator (toggle switch input)

OL2205 4 AC/DC (10-30V) In -- Each input has a separate common

OL2208 8 DC (10-30VDC) In

OL2211 8 AC (80-132VAC) In

OL2252 2 high speed counters (up to 20KHz) inputs. 6 additional inputs configurable
as general purpose DC inputs or control signals.

OL2258 High speed counter input for pulse encoder type devices. Up/Down count,
Pulse & Direction or Quatdrature inputs accepted. Pulse counting to 80KHz
(160KHz for quadrature). Two high speed transistor outputs.

Digital Outputs

OL2104 4 Relay (2A resistive @ 24VDC, 1A @120VAC)

OL2108 8 Relay (2A resistive @ 24VDC, 1A @120VAC)

OL2109 8 Transistor (500mA sink)

OL2111 8 AC Solid State Relay (1A)

Analog Inputs / Outputs

Chapter 4: System Design and Installation Pointe Controller User Guide

94

OL2304 4 channel voltage output, 0-5V, 0-10V, +/-5V, +/-10V

OL2408 8 channel 0-5VDC or 0-10VDC in

OL2418 8 channel 4-20mA in

Communications

OL2602 2 Port RS232

4.7.2 Available Operator Panels
The following is a list of currently available OptiLogic Operator Panels:

Pushbutton / Indicator Panels

OL3406 6 Indicator/4 Pushbutton Alphanumeric Display

OL3440 4 Line x 20 Character backlit LCD alphanumeric display

Terminal Panels

OL3420 2 Line x 20 character backlit LCD display, 4 pushbuttons

OL3850 2 line x 20 character backlit LCD display, 5 user definable pushbuttons,
numeric keypad, 3 indicator light bars

4.7.3 Calculating Your Power Budget
Each I/O module and operator panel that you install in your Pointe Controller unit
requires a certain minimum amount of power to operate. Each controller base
has a maximum of 2.8 A (2800 mA) total power available.

To calculate the power budget for your Pointe Controller, simply add up the
power required for all of the I/O modules and operator panels that you want to
install in the controller. If the total power required is less than or equal to 2.8 A,
then the controller will be able to power everything. If the total power required
is greater than 2.8 A, then you must redesign your application to use a different
combination of modules.

The table below provides a quick reference to the power requirements for all of
the available I/O modules and operator panels. Again, for complete technical
descriptions of these components, see Appendix A, “OptiLogic Technical
Specifications,” starting on page 231.

Module Type Description Power Req.

OL2104 Relay Output, 4-point 250 mA

OL2108 Relay Output, 8-point 375 mA

OL2109 DC Sinking Output, 8-point 140 mA

Pointe Controller User Guide Chapter 4: System Design and Installation

95

Module Type Description Power Req.

OL2111 Solid State Relay Output, 8-point 120 mA

OL2201 Digit Input Simulator, 8-point 60 mA

OL2205 AC/DC Digital Input, 4-point 100 mA

OL2208 DC Digital Input, 8-point 60 mA

OL2211 AC Digital Input, 8-point 100 mA

OL2252 Dual Pulse Counter 100 mA

OL2258 High Speed Pulse Counter 400 mA

OL2304 Analog Voltage Output, 4-channel 700 mA

OL2408 Analog Voltage Input, 8-channel 700 mA

OL2418 Analog Current Input, 8-channel 700 mA

OL2602 Dual Serial Port 110 mA

Panel Type Description Power

OL3406 Pushbutton/Indicator Panel 50 mA

OL3420 Operator Terminal 115 mA

OL3440 4-line Display Panel 150 mA

OL3850 Keypad Terminal 525 mA

Chapter 4: System Design and Installation Pointe Controller User Guide

96

4.8 Installing I/O Modules in the Controller
Each Pointe Controller application will differ in the number and type of I/O
modules, the operator panels used (if any) and how the devices must be
distributed. The modular design of the Pointe Controller system allows you to mix
and match to meet your exact application requirements.

System configuration entails an early process of defining exactly what type and
quantity of I/O you need at each location. If operator interaction, alarm
annunciation, or status display are required at the various points, the appropriate
operator panel should be chosen. Once that is done, you can custom tailor your
controllers by selecting and installing standard I/O modules in your Pointe
Controller base units and snapping the appropriate operator panel onto each.

4.8.1 Slot Numbering
Each module will occupy one slot in the controller base. Each slot position is
numbered as shown below. The slot number will provide a reference to your
application program for selecting the appropriate module for each particular
operation.

Slot numbering is simply left to right, starting with slot number 0.

Pointe Controller User Guide Chapter 4: System Design and Installation

97

4.8.2 Installing Modules
Each slot has card guides along each side and a connector on the motherboard.
To install an I/O module, place the module’s circuitry board in the top and bottom
card guides. (Note that the board will not be tightly retained until it is
approximately 3⁄4 inch into the card guide.)

As you push the module into its mating connector, squeeze the ends together.
This will allow the board latches to travel inside the card cage. When you have
pushed the board into its mating connector and released, the latches should hook
the card cage and keep the module in place.

Chapter 4: System Design and Installation Pointe Controller User Guide

98

4.9 Mounting the Pointe Controller
Pointe Controller units are intended to be mounted on a standard DIN rail. That
DIN rail can be a commercial DIN rail attached to any flat surface. It can also be
the DIN rail built into OptiLogic operator panels.

4.9.1 Mounting the Base on a DIN Rail
 A DIN rail is simply a standard “U” shaped channel which is designed to be
mounted horizontally on any flat surface. DIN rail can be purchased at nearly any
electrical supply outlet.

There are a few standard DIN rail sizes available. Pictured below is a cross
sectional view of the standard 35 mm DIN rail the Pointe Controller base unit is
designed to clamp on:

The key dimensions are the 35mm overall width and a minimum 7.5mm depth.
The precise channel shape is not important.

Pointe Controller User Guide Chapter 4: System Design and Installation

99

Now, take a look at the bottom side of the controller base. It will appear as
shown below:

The DIN rail channel runs lengthwise across the middle of the base’s bottom side.
At the top of that channel are three overhanging hooks. At the bottom of the
channel there is a sliding retaining clip.

The process of installing a base on a DIN rail is as follows:

1. Pull the retaining clip back from the center of the base. It should pull back
about 1/8 inch. The retaining clip on an uninstalled unit can be pulled
back with your fingers.

2. Place the Pointe Controller base on the horizontal DIN rail with the three
overhanging hooks over the top of the rail. Mounting must be horizontal
to allow convection air flow for cooling.

3. Rock the Pointe Controller base down flat against the bottom of the DIN
rail.

4. Push the retaining clip closed to hook the bottom rib of the DIN rail.

4.9.2 Mounting the Base to an Operator Panel
The Pointe Controller unit base can also be mounted to any OptiLogic operator
panel. As shown in the figure below, OptiLogic operator panels have a built in
DIN rail for mounting the base.

Chapter 4: System Design and Installation Pointe Controller User Guide

100

The mounting process is exactly the same as described for mounting to a DIN rail.
Be sure that your orientation is right so the connectors on the base and the front
panel line up. An Pointe Controller unit base attached to an OptiLogic operator
panel should look like the figure below.

The short ribbon cable, which comes with the operator panel should be used to
provide the connection between the Pointe Controller base and the operator
panel.

Pointe Controller User Guide Chapter 4: System Design and Installation

101

4.10 Connecting the Controller to Your Network
An Ethernet network connection is used to download finished control
applications from your PC to the Pointe Controller unit. It is also used to monitor
the unit's runtime performance and to share Modbus TCP data between different
control devices. An RJ-45 Ethernet port is located at the left side of the Pointe
Controller unit.

NOTE: The following sections discuss interconnection using the term hub. Any of
the configurations apply equally well to a switch.

In an Pointe Controller system, there should be a single master, the host PC. All
physical media interconnections should be made to commercial building wiring
standards EIA/TIA-568 and the specification for Unshielded Twisted Pair cable
defined in the TIA/EIA TSB40-A specifications. For best case 10Base-T wiring, we
recommend using all CAT5 type cabling for connecting your Pointe Controller
network.

4.10.1 Point-to-Point Connection
The simplest system is a point-to-point connection. Point to point connections, as
illustrated below, require only a crossover type patch cable.

An Ethernet crossover cable, shown below, connects the transmitter on one side,
with the receiver on the other. This is a category 5 type UTP crossover patch cable.
Cable length is limited to less than 100 meters.

Chapter 4: System Design and Installation Pointe Controller User Guide

102

4.10.2 Single Hub and Switched Connections
The next level of complexity is a single hub or switch system. Hubs and switches
are commonly available with anywhere from 4 to 24 connections.

The multiple Ethernet ports on a hub allow physical star type network wiring. The
hub is typically placed in the center of the system. Individual cables are run
between the hub and each controller.

Crossovers are made internal to the hub. Therefore, in a single hub system, all
connections are straight-through. Remember that for 10Base-T, each cable
connection is limited to 100 meters in length.

Pointe Controller User Guide Chapter 4: System Design and Installation

103

4.11 Ethernet Connection Guide
Ethernet 10Base-T is a flexible, low cost method of cabling local area networks.
Pointe Controller units must be connected using 10Base-T compatible products.
All Ethernet 10Base-T implementation details are defined by the EIA/TIA standard
568A. This standard specifies UTP, an acronym for Unshielded Twisted Pair cable,
to be between all nodes on a given 10Base-T network. UTP cables are rated
according to their data-carrying ability (bandwidth) and rated by “category”
number. The standard specifies category 3, 4, or 5 cable may be used with
Ethernet 10Base-T applications. IEEE Ethernet standards limit cable length
between nodes to 100 meters (328 feet). The distance limitation is based on the
maximum cable signal loss of 11.5 decibels between the source and destination.
Due to emerging high speed standards and product capabilities, many sites now
install UTP category 5 type cables exclusively. We recommend category 5 cable for
all Pointe Controller connections.

4.11.1 UTP Cable Characteristics
Cabling is the foundation of any network; if it’s incorrect or unstable all other
communications characteristics will be unreliable. The most critical aspect of UTP
cabling is the maintaining of correct conductor pairing throughout the network.
Commonly four-pair (8 wire) 24 AWG thermoplastic insulated solid conductor
wire with a 100 ohm impedance and total diameter of less than 6.35mm (0.25
inch) should be used with Ethernet 10Base-T networks. To ensure correct pairing,
network vendors offer patch cables (straight-through and crossover) which are
assembled with connectors.

4.11.2 Cable Connectors
Pointe Controller units interface the network via the standard 8-pin extension
port compatible with RJ45 type connectors. RJ45 type connectors are designed to
accommodate rounded PVC outer jacket UTP cable. The strain relief for the cable
is provided by the part of the RJ45 connector that acts as a wedge against the
outer jacket. The wedge is pressed and locked tightly against the cable jacket
when the connector is crimped into place.

A 10Base-T RJ45 connection is shown below:

Chapter 4: System Design and Installation Pointe Controller User Guide

104

4.11.3 10Base-T Connections
Most hardware ports on Ethernet 10Base-T equipment are wired MDI-X (meaning
medium dependent interface crossover) so you can use straight-through cable for
interconnecting the network devices. This allows for proper alignment of
transmitter and receiver circuits according to 10Base-T networking standards. For
hub-to-hub connections, a crossover type cable is commonly required. The figures
below illustrate pin assignment and signal names for straight-through and
crossover type Ethernet patch cables.

4.11.4 Straight-through Patch Cable
A straight-through cable is commonly used to connect Ethernet 10Base-T devices
to a hub. Preassembled patch cables are available from various network product
vendors. RJ45 connectors are attached at both ends of an assembled patch cable.

We recommend using a category 5, UTP cable type for all Pointe Controller
network connections.

4.11.5 Crossover Patch Cable
Crossover type patch cables are used to connect between hubs or switches. This
type of patch cable must also be used for all point-to-point connections, such as a
PC-based controller and Pointe Controller unit. Therefore, it is also called a point-
to-point cable.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

105

Chapter 5: Developing Controller Programs
Once you have your machine control system designed and your I/O selected and
installed, you can proceed with developing the control program itself. Program
development is done using the PointeControl Framework application that was
installed on your PC from the PointeControl software CD. You can launch the
PointeControl Framework from the Windows Start menu by choosing Start >
Programs > PointeControl > Framework.

Please note that this chapter primarily describes how to develop programs for a
single Pointe Controller unit. For more information on developing distributed
applications, including enabling Modbus communications and adding remote
terminal units (RTUs), please refer to Chapter 8, “Networked Operations,”
starting on page 216.

TIP: The information provided in this chapter is also available via the
PointeControl Framework online help. To access the help, choose Contents from
the Framework’s Help menu.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

106

5.1 Basic Concepts in PointeControl
The PointeControl visual framework editor (VFE) provides the tools you need to
design and compile machine control applications that can be run on Pointe
Controller hardware products.

In the framework editor, you create application projects made up of individual
components — also called “objects — such as Flow Charts, Ladder Diagrams, and
Logic Memory tables. Each object’s properties describe instructions and attributes
for that object. The framework editor arranges these objects into an expandable
hierarchy. You build the project by adding objects to the hierarchy and defining
the object properties.

After you complete your application project, you build (compile) the project into
runtime module that can be downloaded to and run on your Pointe Controller
unit. Using the PointeControl Monitor utility (included with the PointeControl
development software), you can monitor and debug your application as it runs on
your Pointe Controller.

5.1.1 Multiple Programming Languages
PointeControl provides tools to develop programs in either Nematron’s patented
Visual Flowchart Language (VFL) or traditional Relay Ladder Logic (RLL).

You can develop programs using only Flow Charts or only Ladder Diagrams, or
you can mix the two together and use whichever language is most appropriate to
each programming task. Charts communicate with each other by reading from
and writing to variables in the Logic Memory database. Charts never directly
reference each other.

5.1.2 Memory Allocation and Access
In traditional control logic engines, program memory is laid out in fixed data
tables and tags must be addressed as directly represented variables (DRVs).
Sometimes, the user must even manually allocate the available memory.

PointeControl does not have fixed data tables. The user defines tags and variables
as needed, using plaintext tag names (or “aliases) rather than DRVs. Tags are
organized by type in the Logic Memory database. A broad range of types is
supported, including bit, integer, floating point, string, and timer.

The Logic Memory database is globally accessible, allowing all Flow Charts,
Ladder Diagrams, and I/O points to communicate freely and continuously with
each other using the same data in common. For example, a Flow Chart can read a
variable that was set by a Ladder Diagram, or a Flow Chart and a Ladder Diagram
can both monitor an input tag that is associated with one of the controller’s I/O
points, and so on.

All data can be made available to the network via Modbus mapping. For more
information, see Chapter 8, “Networked Operations,” starting on page 216.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

107

5.1.3 The Scan Cycle
When a PointeControl project is executed on the controller, all of the Flow
Charts, Ladder Diagrams, and I/O points that make up the project are “scanned at
a specified speed and in a specified order.

Inputs, charts, ladders and outputs are processed in a fixed sequence; each cycle
through this sequence is called a logic scan. The general execution sequence is:

1. Get input values from all Pointe Controller modules and save to
corresponding tags in the Logic Memory database.

2. Execute all Flow Charts and Ladder Diagrams. Update input and output
tags as necessary.

3. Extract output values from Logic Memory database and send to Pointe
Controller modules.

Charts and Ladders are run in the order they are placed in the scan list. Only
charts and ladders in the list will be executed. You can mix Flow Charts and
Ladder Diagrams in the list to get the order you want. For example, if a ladder
program is processing inputs and generating values to be processed by a chart,
place the ladder first in the list followed by the chart.

To configure the interval for scanning the Flow Charts and Ladder Diagrams, see
“Setting your project's scan interval” on page 180.

To configure the scan intervals for individual I/O modules and operator panels,
see “Specifying your installed hardware” on page 121.

NOTE: It is possible to create a project that scans so quickly, using up so much
processor power on the controller hardware, that the PointeControl Monitor
cannot reattach to the controller. For more information, see “Selecting and
attaching a controller” on page 185.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

108

5.2 The Visual Framework Editor (VFE)
With the framework editor you create projects. PointeControl projects provide
the instructions to implement a specific machine control sequence. You can make
minor or full-scale changes as the control application undergoes periodic change
or adjustment.

The framework editor follows Windows NT/2000 user interface conventions to set
up projects. If you are new to Windows NT/2000, you should learn some basic
Windows skills before starting PointeControl. You can access online help for
Windows from the Start menu on your desktop.

Framework Editor Tools

With the framework editor's tools you create the objects, like Flow Charts and
Ladder Diagrams, that correspond to interrelated tasks and the logic that refers
to variables and I/O devices. The framework editor contains several integrated
windows and workspaces. When you click a toolbar, menu selection, or other
control, the Editor opens a window for an object or performs a function on an
object or the entire project. You define object properties through a variety of
drop-down lists, dialog windows, keystrokes, and field entries.

If you are not sure of the action a control performs, you can get a description by
placing the mouse cursor over the control. The description appears at the bottom
of the Editor window.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

109

5.2.1 The Framework Editor toolbar

The framework toolbar is located at the top of the main Framework Editor
window. The buttons on the toolbar perform the following functions, from left
to right:

New Object

Open Object

Save Object

Save All Objects

These four buttons manage Flow Chart and Ladder
Diagram objects in the project workspace pane. [pages 131,
163]

Cut

Copy

Paste

Delete

These four buttons cut, copy, paste, or delete the currently
selected object (from the project workspace) or block (from
the currently open Flow Chart or Ladder Diagram). [pages
143, 168]

Print Object This button prints the object (Flow Chart, Ladder Diagram,
or Logic Memory table) that is currently selected in the
project workspace pane. [page 112]

Project Workspace This button shows/hides the project workspace pane
located on the left side of the framework editor. [page
109]

Check Integrity

Build Runtime

These two buttons check the structure and syntax of your
project and then compile a finished runtime program to
run on the Pointe Controller unit. [page 181]

Activate Monitor This button launches the PointeControl Monitor utility,
which is used to load, run, and debug compiled programs
on the Pointe Controller unit. [page 182]

5.2.2 The Project Workspace pane
The project workspace pane is located at the upper left
side of the main framework editor window. It keeps track
of all of the Flow Charts, Ladder Diagrams, and Logic
Memory tables that you create for your PointeControl
project.

Add and open resources with the buttons on the toolbar.
Resources appear in the project workspace as windows.
You can open multiple windows at once, which creates
many active windows and dialogs in the editor. Selections
from the Window menu cascade or tile these windows.
Many resource windows have their own set of tools. For
example, predefined blocks, selected from the Flow Chart
toolbar, allow you to point-and-click to create a chart’s

Chapter 5: Developing Controller Programs Pointe Controller User Guide

110

structure. You can then access each block's properties through a floating Block
Properties box.

NOTE: You can hide/show this pane by clicking the Project Workspace
button in the toolbar. You can also adjust its size by dragging the right and
bottom edges of the pane.

5.2.3 The Object Editor pane
The object editor pane is a multi-function area that takes up most of the
framework editor. When you do not have any objects open, the pane is an empty
grey space. When you select an object (i.e., a Flow Chart, a Ladder Diagram, or a
Logic Memory data table) from the project workspace and open it for editing,
that object’s editor window appears in the pane.

Each object editor window — including its layout and toolbar — is specific to its
corresponding object type. For more information, see also:

� Defining variables in Logic Memory [page 113]

� Navigating the Flow Chart editor [page 132]

� Navigating the Ladder Diagram editor [page 163]

5.2.4 The Messages pane
The message pane is located at the bottom of the main framework editor
window. It displays the progress and error messages that are generated when you
check the integrity of your project or build it as a runtime program.

NOTE: You can adjust the size of the pane — or even hide it completely — by
dragging the top edge of the pane up and down.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

111

5.3 Managing PointeControl Projects
A PointeControl project is a collection of Flow Charts, Ladder Diagrams, Logic
Memory tables, I/O configurations, Modbus mappings, and assorted preferences
that, when compiled, implements a specific machine control program on the
Pointe Controller unit.

The default working directory for PointeControl project files is:

C:\Program Files\Nematron\PointeControl\Projects

You can also import and export projects to other directories.

5.3.1 Creating and opening projects

New Project

To create a new PointeControl project:

1. From the File menu, choose New Project. The New Project dialog
window appears and prompts you to enter a project name.

2. Enter a project name and click OK.

Open Project

To open an existing PointeControl project located in your working directory:

1. From the File menu, choose Open Project. The Open Project window
appears.

2. Choose the project you want to open from the drop menu.

3. Click OK.

NOTE: If another project is already open, PointeControl will automatically save
and close it before creating or opening another.

If the project you want to open is not listed in the drop menu, then it is not
located in your working directory. You may need to import the project from
another drive before you can open it.

5.3.2 Importing and exporting projects

Import Project

To import a PointeControl project from another drive to your working directory:

1. From the File menu, choose Import Project. The Import Project window
appears.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

112

2. In the Source box, select the Drive where the project you want to import
is located.

NOTE: The project must be located in a directory named OCProjects on
that drive. (For example, A:\OCProjects.)

3. Choose the project you want to import from the Projects list.

4. Click Import to copy the project to your working directory.

Export Project

To export a PointeControl project from your working directory to another drive:

1. From the File menu, choose Export Project. The Export Project window
appears.

2. In the Source box, choose the project you want to export from the
Projects list.

3. In the Destination box, select the Drive to which you want to export the
project.

NOTE: The project will be exported to a directory named OCProjects on
that drive. (For example, A:\OCProjects.) If the directory does not exist,
it will be created.

4. Click Export to copy the project to the other drive.

5.3.3 Documenting your project
To print the various objects, including database and memory configurations, of
the current project, choose File > Print Project. You will receive a printed copy of
all Flow Charts, Ladder Diagrams, and Logic Memory tables from the selected
printer.

NOTE: To print a single Flow Chart, Ladder Diagram, or Logic Memory table, open
the object from the Project Workspace pane and choose File > Print.

To create and print a cross-reference report of the location of every instance of all
Logic Memory tags and variables used in the current project, choose File > Print
Cross Reference. You will receive a printed copy of a formatted cross-reference
report from the selected printer. The format includes:

� The name (Alias) of the tag or variable;

� The chart name and block coordinates for each instance of the tag; and

� A description of each usage of the tag.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

113

5.4 Defining Variables in Logic Memory
In PointeControl, Logic Memory is the database of all tags, variables, and data
structures used in your program. Logic Memory is globally accessible, allowing all
Flow Charts, Ladder Diagrams, and I/O points to communicate freely and
continuously with each other using the same data in common. For example, a
Flow Chart can read a variable that was set by a Ladder Diagram, or a Flow Chart
and a Ladder Diagram can both monitor an input tag that is associated with one
of the controller’s I/O points, and so on.

Logic Memory supports the following data types:

� An Input tag is a bit, integer, or real number variable that is associated
with a Pointe Controller input channel.

� A Memory tag is a bit, integer, or real number variable that is stored in
temporary memory.

� An Output tag is a bit, integer, or real number variable that is associated
with a Pointe Controller output channel.

� A String is used to store ASCII text. Strings can also be associated with
operator panel display lines.

� A Timer is a special data structure that is used to count real time in
milliseconds, based on the Pointe Controller’s internal clock rather than
on the project’s scan cycle.

As you define tags and variables in Logic Memory, keep in mind which tags you
will need to associate with to the Pointe Controller’s I/O points and which you will
need to facilitate your program’s internal logic flow.

NOTE: All tags and variables are defined using plaintext names or “aliases.” DRVs
and wire labels are not used in PointeControl.

5.4.1 Java reserved words
Since your PointeControl project will ultimately be compiled into Java classes, you
cannot use any of Java’s “reserved words as aliases in Logic Memory. Reserved
words are terms that have their own inherent functions within the programming
language itself and therefore can conflict with similarly named variables.

PointeControl will automatically check for conflicts whenever you attempt to
compile your project, but it is better to avoid using reserved words when defining
your variables in the first place.

Java’s reserved words include:

abstract

boolean

default

do

goto

if

operator

outer

synchronized

this

Chapter 5: Developing Controller Programs Pointe Controller User Guide

114

break

byte

byvalue

case

cast

catch

char

class

const

continue

double

else

extends

false

final

finally

float

for

future

generic

implements

import

inner

instanceof

int

interface

long

native

new

null

package

private

protected

public

rest

return

short

static

super

switch

throw

throws

transient

true

try

var

void

volatile

while

Other reserved words in PointeControl: Chart, Project.

5.4.2 Defining Input, Memory, and Output tags
Input, Memory, and Output tags are all basically the same type of data structure.
Individual tags differ from each other in only two ways:

� How the tag is used – Input and Output tags are typically associated
with the various I/O points on the Pointe Controller unit. Memory tags are
used as “scratch values within the program itself and typically do not have
any direct readout.

� What size the tag is – Every tag must be defined as a specific register
size and numeric mode. The size/mode of the tag determines the range of
values the tag can have:

SIZE/MODE VALUE RANGE

Bit/Boolean 0 or 1

8-bit Unsigned 0 to 255

16-bit Unsigned 0 to 65,535

32-bit Unsigned 0 to 4,294,967,295

8-bit Signed -128 to 127

16-bit Signed -32,768 to 32,767

32-bit Signed -2,147,483,648 to 2,147,483,647

32-bit Real -3.4 x 10^38 to 3.4 x 10^38

Pointe Controller User Guide Chapter 5: Developing Controller Programs

115

Before you define any new tags, you should have some idea of what types and
sizes are required by your control application. You can always define more tags
later, but it makes for better application design to plan your tags in advance.

To define new Input, Memory, or Output tags:

1. In the Project Workspace pane, double-click on Logic Memory to expand
the hierarchy.

2. Double-click again on the desired data type: Inputs, Memory, or
Outputs. The data type will be expanded to show all of the individual
data tables within the type.

3. Select and open the data table that corresponds to the desired tag
size/mode. The editor window for that data table will appear. In this
example, the 32-bit Unsigned Memory data table is selected.

4. Adjust the Size control to add addresses to the data table. Either use the
arrow buttons or directly enter a number.

NOTE: As you add more addresses, the data table increases in size and
uses more memory. The memory used/available readout shows the
number of addresses used by all data tables and the total number of
addresses available.

5. Click in the Alias field of the first empty address and enter a name for the
tag. The name must be a continuous alphanumeric string that does not
begin with a number; for example, STA1_UP_LIMIT.

NOTE: Aliases are case sensitive.

6. Click in the Initial Value field and enter a value to initialize on program
startup. Default initial value is 0.

7. Repeat steps 4 through 6 as needed.

8. When finished, close the editor window. You will be prompted to save
your changes.

You can insert and delete addresses in the middle of the table using the Insert
and Delete buttons. And since PointeControl refers to all tags and variables only

Chapter 5: Developing Controller Programs Pointe Controller User Guide

116

by Alias, it is not necessary to keep your tags in any particular address or DRV
order.

Diagnostics Metadata

Every Input, Memory, and Output tag has associated with it three metadata
registers. These registers are allocated automatically when the tag is first defined
in Logic Memory, and they can be used to store diagnostic information about the
tag. For more information, see Diagnostics Commands on page 316.

5.4.3 Defining strings in Logic Memory
String variables are defined using dialogs that allow specification of a name, the
size or number of characters the variable may hold, and an initial value.

To define new String variables:

1. In the Project Workspace pane, double-click on Logic Memory to expand
the hierarchy.

2. Select and open the Strings data table. The Strings editor window will
appear.

3. Click Add to add a new address to the table.

4. Click in the Alias field of the empty address and enter a name for the
String. The name must be a continuous alphanumeric string that does not
begin with a number.

NOTE: Aliases are case sensitive.

5. Click in the Element Length field and enter the maximum number of
ASCII characters that the String should hold. Maximum length is 255.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

117

6. If you want to set an initial value (i.e., the value to which the String will
be set on program startup), click Modify and enter the value.

7. Repeat steps 3 through 6 as needed.

8. When finished, close the editor window. You will be prompted to save
your changes.

5.4.4 Defining timers in Logic Memory
A Timer is a special data structure that is used to count real time in milliseconds,
based on the Pointe Controller’s internal clock rather than on the project’s scan
cycle. Up to 2048 Timers are pre-allocated in Logic Memory, and you can use any
one of them once you have given it a name.

Each Timer is assigned a Preset value (in milliseconds), either when it is first
defined or later by using a function block. The Timer can then be started and
stopped as needed by the logic flow, and when it reaches its Preset it sets a “done
bit that can be read.

For more information on using Timers, see Timer Commands (for Flow Charts) on
page 303 or Timer and Counter blocks (for Ladder Diagrams) on page 350.

To define new Timers:

1. In the Project Workspace pane, double-click on Logic Memory to expand
the hierarchy.

2. Select and open the Timers data table. The Timers editor window will
appear.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

118

3. Click in the Alias field of the empty address and enter a name for the
Timer. The name must be a continuous alphanumeric string that does not
begin with a number.

NOTE: Aliases are case sensitive.

4. Click in the Preset field and enter timer preset (in milliseconds).

5. Repeat steps 3 and 4 as needed.

6. When finished, close the editor window. You will be prompted to save
your changes.

5.4.5 Importing and exporting databases
As an alternative to defining every Logic Memory tag individually, you can import
a pre-made tag database into PointeControl from an external file. You can also
export a existing project’s Logic Memory tables to an external database file for
backup or future use.

Database File Format

To import a database into a project, you must first format the database as a
delimited text file. PointeControl recognizes three types of text files for
import/export:

� *.txt – Fields delimited by tabs.

� *.prn - Fields delimited by spaces.

� *.csv - Fields delimited by commas.

WARNING: Attempts to import other, non-supported file types – particularly
those that contain non-ASCII characters – can compromise the PointeControl
system.

Each line in the text file should describe a single Input/Memory/Output tag,
String, or Timer. The format of the line varies according to the type of variable
being described, as explained in the table below. Note that in the Format column,
the dash (—) represents a delimiter. Be sure to use the delimiter appropriate to
the file type.

TYPE FORMAT DESCRIPTION

Input,
Memory,
Output

DRV—Alias—Wire—Value—Retain DRV – Address describing the type of
tag and its position in the Logic
Memory tables. (For example, “QX3”
is an Output Bit, table position 3.)
Must be consecutively numbered.
Mandatory.

Alias – The common name by which
the tag is referred in PointeControl.
Up to 30 characters. Mandatory.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

119

Wire – The tag’s wire label. Maximum
of 10 characters. Must be enclosed in
tildes (~xxx~). Optional, not used in
PointeControl.

Value – The initial value of the tag
upon program start. Optional.

Retain – A yes/no option to specify
whether the tag should be retained
in retentive memory. Optional, not
used in PointeControl.

String STRING—Alias—Length—Value STRING – Denotes that the line
describes a String. Mandatory.

Alias – The common name by which
the Str ing i s referred in
PointeControl. Can be up to 30
characters. Mandatory.

Length – The element length of the
String. Maximum of 255. Mandatory.

Value – The initial value of the String
upon program start. If defined, must
be less than or equal to Length and
must be enclosed in quotes (“xxx”).
Optional.

Timer TIMER—ID—Alias—Preset T I M E R – Denotes that the line
describes a Timer.

ID – The Timer ID (table position) to
be defined.

Alias – The common name by which
the Str ing i s referred in
PointeControl. Can be up to 30
characters. Mandatory.

Preset – The preset value of the
Timer, in milliseconds. Optional.

Notes:

� If an optional field is not defined in a .csv file, the comma delimiter is
used as a place keeper for that field. Default values are assigned when no
value is specified for a field.

� Since you may enter any number of spaces and tabs as delimiters in .prn
and .txt files, you need to observe these rules when building a .prn or .txt
database file:

o If a field following an undefined Wire is defined, the Wire must
be indicated by closed tildes (~~).

o If a field following an undefined value is defined, the undefined
value must be indicated by the default value.

TIP: If you still do not understand how the database file must be formatted, try
exporting the database from an existing project. You can then compare the
exported file against the Logic Memory tables and see how specific tags are
described. For more information on exporting database files, see below.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

120

Importing a Database

To import a database file into a PointeControl project:

1. Format the database file as described above.

2. If a project is open in PointeControl, close it (File > Close Project). If you
do not close the project, you will not be able to import to it.

3. From the File menu, choose Import Database. The Import Database
dialog will appear.

4. Under File name, enter the file name of the database file to be
imported. If necessary, click Browse to find the file on your drive.

5. Under Project name, select the project from the drop-down menu.

6. Click Import.

7. Specify whether you want the imported database to overwrite the
project’s existing Logic Memory or merge with it. (Click Yes to overwrite,
No to merge.)

When importing a text database file, if PointeControl detects an erroneous line or
duplicate Aliases, you have the options of discarding the line or canceling the
import process. If PointeControl detects a duplicate Alias in a definition,
PointeControl converts the name to blanks.

Exporting a Database

To export a database file into a PointeControl project:

1. If a project is open in PointeControl, close it (File > Close Project). If you
do not close the project, you will not be able to export from it.

2. From the File menu, choose Export Database. The Export Database
dialog will appear.

3. Under Project name, select the project from the drop-down menu.

4. Under File name, enter the file name of the database file to be exported.
If necessary, click Browse to find the save directory on your drive.

NOTE: PointeControl will automatically format the file according to the
file suffix you use: *.txt, *.prn, or *.csv.

5. Click Export.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

121

5.5 Associating Tags with I/O points
I/O points are the many input and output channels that are made available to
your control application when you install OptiLogic I/O modules and operator
panels in your Pointe Controller unit. Each point is associated with a tag in your
project’s Logic Memory database. Your project controls these points by reading
from and writing to the associated tags.

To configure your project’s I/O points, you must first specify which modules and
panel are actually installed in your controller. Then you can step through each
module and manually associate Logic Memory tags to each specific input and
output channel.

NOTE: Each Logic Memory tag can be associated with only one I/O point, so make
sure that you have defined enough tags to cover every point on your installed
modules and operator panel. If necessary, you can go back and define additional
tags as you configure each module.

5.5.1 Specifying your installed hardware
Before you can associate Logic Memory variables with individual I/O points, you
must first specify which OptiLogic I/O modules and operator panel will ultimately
be installed in your Pointe Controller unit. Your PointeControl project cannot
recognize or communicate with these modules at runtime if they are not properly
configured.

NOTE: You can add and remove modules at any time so long as you properly
configure them as described here, then adjust your programming to
accommodate the changes and recompile your project for the Pointe Controller
unit.

To specify what I/O modules and operator panels are installed in your Pointe
Controller unit:

1. Check your controller and make note of what modules you have installed.
(For more information on selecting and installing modules, see Chapter 4,
“System Design and Installation,” starting on page 70.)

Chapter 5: Developing Controller Programs Pointe Controller User Guide

122

2. From the Project menu, choose Configure I/O. The I/O Configuration
window appears.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

123

3. Starting with Slot 1 module type, click on the drop-down menu to get a
list of available I/O modules.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

124

4. Select the model number that corresponds to the I/O module that is
actually installed in the first slot in the Pointe Controller unit. In this
example, an OL2201 Digital Input module is selected.

5. Continue through the rest of the slots (1 through 8), selecting the model
numbers that correspond to the installed modules. If no module is
installed in a given slot, then skip it.

NOTE: To clear any selection, select the <blank> option at the top of the
drop-down menu.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

125

6. To the right of Panel type, click on the drop-down to get a list of available
operator panels. This list will be different from the list of I/O modules
above.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

126

7. Select the model number that corresponds to the operator panel, if any,
that is actually connected to your Pointe Controller unit. In this example,
an OL3850 Operator Terminal is selected.

8. Proceed to Configuring I/O modules, or click OK to save your changes and
close the window.

Scan Intervals and Scanner Overload

Each installed I/O module has a Scan Interval which determines how frequently
the module is scanned by the Pointe Controller unit. In most cases, the default
values should be used. However, if you encounter performance issues while
running a compiled program, you may need to adjust the values in order to tune
processor and memory usage.

Also, if you install modules that require extremely low Scan Intervals (for
example, the OL2602 has a default Scan Interval of 3), then you may be warned
of a Scanner Overload. To avoid the overload, you must either increase the
modules’ Scan Intervals or redesign your project to use fewer or different
modules.

For more information, see Chapter 4, “System Design and Installation,” starting
on page 70.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

127

5.5.2 Configuring I/O modules
For each I/O module that you have specified as being installed in your Pointe
Controller unit, you must configure that module’s individual settings and I/O
points to work with your project. The configuration options are accessed by
clicking on the I/O button to the right of the module.

NOTE: All of the tags for a given module must already be defined in Logic
Memory before you can associate them with the module’s I/O points. If the tags
are not defined or if you’re not sure what tags are required, review the module
below and then go back to Defining Variables in Logic Memory.

Select an OptiLogic I/O module to configure:

MODULE GO TO…

OL2104 Relay Output Module Page 233

OL2108 Relay Output Module Page 236

OL2109 DC Sinking Output Module Page 240

OL2111 AC Solid-state Relay Module Page 244

OL2201 Digital Input Simulator Module Page 248

OL2205 AC/DC Digital Input Module Page 250

OL2208 DC Digital Input Module Page 254

OL2211 AC Digital Input Module Page 256

OL2252 Dual Pulse Counter Module Page 261

OL2258 High Speed Counter Module Page 268

OL2304 Analog Voltage Output Module Page 273

OL2408 Analog Voltage Input Module Page 276

OL2418 Analog Current Input Module Page 279

OL2602 Dual Serial Port Module Page 282

For complete technical descriptions of all of these modules, see Appendix A,
“OptiLogic Technical Specifications.”

When you have configured all of the I/O modules installed in your Pointe
Controller unit, proceed to Configuring operator panels.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

128

5.5.3 Configuring operator panels
If you have specified an operator panel as being connected to your Pointe
Controller unit, you must configure its individual settings and I/O points to work
with your project. The configuration options are accessed by clicking on the I/O
button to the right of the panel.

NOTE: All of the tags for a given panel must already be defined in Logic Memory
before you can associate them with the panel’s I/O points. If the tags are not
defined or if you’re not sure what tags are required, review the panel below and
then go back to Defining Variables in Logic Memory.

Select an operator panel to configure:

MODULE GO TO…

OL3406 Pushbutton/Indicator Panel Page 284

OL3420 Operator Terminal Page 288

OL3440 Display Panel Page 291

OL3850 Keypad Terminal Page 292

For complete technical descriptions of all of these panels, see Appendix A,
“OptiLogic Technical Specifications.”

5.5.4 Configuring additional OptiLogic RTUs
You can configure up to four additional OptiLogic Remote Terminal Units (RTUs)
to work with your Pointe Controller unit. These units are slaved to your controller
using the OptiLogic UDP/IP communication protocol.

For more information, see Chapter 8, “Networked Operations,” starting on page
216.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

129

5.6 Building and Editing Flow Charts
Flow Charts depict various types of information and control processing problems
and their means of solution. Charts consist of symbols having a given
signification, brief explanatory text, and connecting lines. Each symbol relates to
an unambiguous and meaningful name that is consistent throughout the charts.
The connecting lines show the path of execution through the chart.

Multiple Flow Charts

A single Flow Chart ideally performs a single task; however, a total system
solution requires the execution of multiple tasks, often simultaneously.
PointeControl solves this problem by providing concurrent execution of any
number of separate Flow Charts. With multiple charts executing concurrently,
each chart focuses only on its specific task, which greatly simplifies the chart
structure.

The PointeControl Framework creates a Chart List that specifies which charts are
executed and the order in which the charts are executed. At startup, the Pointe
Controller unit performs all initialization procedures then begins the normal scan
cycle. During each cycle, the system performs an input scan to read data from the
configured modules, executes each chart specified in the Chart List, and performs
an output scan to write data to the modules.

All charts execute during each cycle — starting with the first chart in the chart list
and proceeding through the entire list. In the most basic cycle, the first chart in
the list runs, then the second chart in the list, then the third, until all charts have
run. However, in many real world situations, the chart being executed reaches a
block where it must wait for some event to occur before it can proceed. While
waiting, the chart (typically) yields control to the next chart in the list, allowing
that chart and all other charts to continue executing as normal. During the next
execution cycle, if the event has occurred, the chart continues execution from
that point; otherwise, the chart again yields control to the next chart.

Program and Subcharts

The PointeControl Framework provides two levels of flowchart development:
Program and Subchart. Program charts describe the steps needed to perform a
particular control task or process. The more precise a Program chart, the easier it
is to develop function flowcharts.

Subcharts contain the more detailed information necessary to make the chart
function. You can use these powerful reusable subprograms many times in several
different flowcharts.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

130

Flow Chart Blocks

Flow charts contain distinct block types: Process, Terminator, Decision blocks, and
Subcharts.

Rectangles with the entry point at the top and the exit point at the bottom
represent Process blocks:

Each Process block contains a description of the action or actions to be taken. The
same Process block can contain multiple commands, with each command
executing sequentially.

Terminator blocks define the beginning and ending of a chart’s program flow:
All Flow Charts have a Start and an Exit or Return terminator block. Subcharts
return to the calling chart at a Return block.

TIP: A Flow Chart can have only one Start block, but may have more than one Exit
or Return block.

Diamonds, with an entry point located at the top and exit points on the right side
and at the bottom, represent Decision blocks:

Decision blocks include Condition, Repeat/Until Loop, and While Loop blocks. Any
yes/no question can be asked within these blocks. If you need to test two
conditions at the same time, you can describe both within the test block by using
the logical AND, OR, XOR, and NOT operators. For example:

START_PB = ON AND EMERGENCY = OFF

With the Repeat/Until Loop and the While Loop blocks, you can design a block
that repeats commands. The Repeat/Until Loop continues to ask the questions
contained in its block until its conditions become true. The While Loop continues
to ask the questions contained in the block until its conditions are no longer true.

Flow Charts are event-driven diagrams that do not depend on time constraints,
although you can assign a time-out to a decision block. When the timeout-
defined number of microseconds passes, the program proceeds to the Else path,
even if the block has not fulfilled all of its conditions.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

131

With Subchart blocks you can add calls to other charts:

You can place multiple Subchart blocks in a single Flow Chart.

5.6.1 Creating a new Flow Chart
To create a new Flow Chart:

1. In the Project Workspace pane, select Flow Chart.

2. Click the New Object tool in the Framework Editor toolbar, or choose
New from the File menu. A new Flow Chart with a default name (ChartN)
will be added to the project hierarchy.

To open a Flow Chart for editing, simply double-click on it or select the chart and
click the Open Object tool in the Framework Editor toolbar. When you open an
chart, its editor window will appear in the Object Editor pane.

Saving a Flow Chart

All program objects are saved automatically whenever you close them. However,
you can save a Flow Chart while it’s open by clicking the Save Object or Save All
Objects tool in the Framework Editor toolbar.

Deleting a Flow Chart

You can delete Flow Charts in the same place you open them: the Project
Workspace pane. To delete a Flow Chart:

1. Close all open Flow Charts, Ladder Diagrams, and Logic Memory tables.

2. Select the desired Flow Chart in the Project Workspace pane. (You may
need to expand the hierarchy to select it – double-clicking expands it,
double-clicking again collapses it.)

3. Click the Delete Object tool in the Framework Editor toolbar, or choose
Delete from the Edit menu.

NOTE: Before deleting a Flow Chart, PointeControl will ask for a confirmation.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

132

5.6.2 Navigating the Flow Chart editor
The Flow Chart editor window includes a work area and the tools you need to
create an executable chart. With the window's special set of tools, you add and
define the blocks that represent the program flow of interrelated tasks.

Object-oriented flowcharting gives you freedom to easily establish your chart’s
structure. With the arrow cursor and tool bar, you can place and manipulate Flow
Chart blocks. By placing blocks you direct program flow, link to subcharts, and
add comments to the chart. You can select blocks and perform cut/copy, paste,
delete, and resizing functions to a selected block.

Flow Chart Workspace

This area provides an object-oriented graphic screen where you place and edit
blocks. The Workspace uses a grid with vertical and horizontal coordinate labels
at the left and top of the workspace. Each grid coordinate does not reflect any
absolute measurement, but indicates block locations (which can vary in size). A
new Flow Chart has a start block at 0 (h), 0 (v) and a return or exit block at 0,1.
The start block's properties use default values. For example, a new chart's name
appears as Chart [#], until you change it.

Special View Pane

To reveal a special view pane:

1. Pass the cursor over the gray bar (the adjust pane size) between the left
side of the window and the vertical coordinates. The cursor changes to a
black double-headed arrow that points left and right.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

133

2. Click and drag the adjust pane size bar to the right. The special view pane
appears as the workspace slides to the right.

TIP: If the entire Flow Chart editor window moves, you have grabbed the left side
of the window, not the adjust pane size bar. Move the cursor slightly to the right
and try again.

To determine the view pane display, right-click in the special view pane and select
Chart View, ST Code View, or Hide from the drop-down menu:

� When you select Chart View, the chart appears in the special view pane
at full magnification level. The view scrolls automatically to keep the
display in the view pane centered around the current position of the
mouse cursor in the workspace window:

This option allows you to display smaller magnification levels in the
workspace window and the area around the cursor at full magnification
in the special view pane. You may find this feature useful with a large
chart, since you can see the entire chart and a smaller area of detail at the
same time.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

134

� When you select ST Code View, a representation of the chart appears in
IEC-1131 structured text source code:

The editor automatically updates the code view as you make changes to
the chart.

� When you select Hide, the special view pane no longer appears.

The Flow Chart toolbar

Access the Flow Chart programming tools from this bar. The toolbar allows you to
select blocks, place a variety of block types, change zoom levels and special
viewing mode, hide/show block labels, and check chart integrity. To select a tool,
you click its button.

Select Tool With the arrow cursor you can select, move, and resize
blocks. [page 143]

Process Block

Terminator Block

Condition Block

Repeat/Until Loop Block

While Loop Block

Subchart Block

The six Block tools determine block type placed in a Flow
Chart. [page 135]

Comment Tool With the Comment Tool, you can add notes to your Flow
Chart. [page 145]

Check Chart Integrity This button checks the structure and syntax of the Flow
Chart. [page 181]

Pointe Controller User Guide Chapter 5: Developing Controller Programs

135

Zoom In

Zoom Out

The Zoom In and Zoom Out tools expand and reduce the
image of your Flow Chart in the workspace, making it
easier to review large sections of the logic flow at a
glance. [page 177]

Replace Text The Replace Text tool finds and replaces all instances of
specified text within the current chart. [page 177]

Toggle Labels The Toggle Labels tool turns on/off the display of block
Captions in the editor window. (Captions can be added
to blocks via the Block Properties window.)

Size to Content The Size to Content tool resizes all of the blocks in the
chart to fit their respective contents. This makes it easier
to read the chart and see what blocks do without
opening them one by one.

View Change History This tool displays the history of changes to the current
Flow Chart. [page 146]

View Tag Cross Ref This tool displays a cross-reference of what tags and
variables are used in the chart. [page 178]

5.6.3 Placing and configuring Flow Chart blocks
Object-oriented flowcharting gives you freedom to easily establish your chart’s
structure. With the arrow cursor and toolbar, you can place and manipulate Flow
Chart blocks. By placing blocks, you direct program flow, link to subcharts, and
add comments to the chart.

To place a new Flow Chart block:

1. Select a block type from the Flow Chart toolbar:

o Process Block [page 151]

o Terminator Block [page 154]

o Condition Block (If/Then/Else) [page 156]

o Repeat/Until Loop Block [page 158]

o While Loop Block [page 159]

o Subchart Block [page 161]

2. Place the selected block type by clicking on an existing flowline in the
chart. The block appears at the specified location. Flowlines are
automatically redrawn to incorporate the new block into the logic flow.

Block Properties

When you insert a new block into the chart, the editor assigns default properties,
based on the block type. You change properties for a block through the Block
Properties window, accessed by double-clicking the block. A list of attributes for

Chapter 5: Developing Controller Programs Pointe Controller User Guide

136

the selected block appears in the window; the types of attributes listed depend
on the type of block selected.

The window provides editing controls and fields that allow you to specify what
actions occur or what conditions are tested when the runtime system executes a
block:

� The list buttons modify the command list in Process blocks and the
argument lists in subchart Start blocks. These buttons allow you to Insert
an item (after the highlighted item), Delete the highlighted item, or
move the highlighted item Up or Down in the list. The Command field
must be highlighted in order to access the list buttons. Doing this allows
you to enter multiple commands in one process block using the Insert
button.

� The Build Expression () button opens a dialog to build an expression
for the selected property or action.

� The Close button () closes the box. To reopen the box, double-click
any block.

� The scroll bars allow you to move through the list of properties.

The Block Properties window always opens at a default size. You may change the
size of the currently open box by grabbing a line or corner with the cursor.

5.6.4 Building logical expressions
Most Flow Chart blocks reference a tag or expression. Tags provide the chart
access to real device inputs and outputs. With expressions you can assign new
values based on numeric calculations that often include references to other tags.
Decision blocks refer to tags and expressions that control program flow through a
chart.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

137

For all blocks and commands, you enter tags and expressions through a similar
dialog box. Although these dialog boxes vary slightly depending on the required
response, they all contain a keypad and an area to enter an expression.

The keypad allows you to build an expression using the mouse rather than the
keyboard. When you select a keypad button, the Flow Chart editor inserts the
button’s corresponding characters at the text insertion point in the selected field.
You can add numbers, arithmetic and Boolean operators, logic memory prefixes
and data types, spaces, and keyword constants (ON, OFF, TRUE, FALSE). The
Backspace button erases the character to the left of the cursor; the Clear button
erases the entire field.

A second box, the Select Expression Argument list box, appears beside the tags
and expressions dialog box and contains a list of tagnames:

� Add a reference to any defined Logic Memory database element using
the tagname list. From the Arg Type list, you can select Inputs, Outputs,
Memory database elements, Strings, Timers, Functions, or Local Variables.
The tags available for the selected argument type appear in the Selection
List. Double-click an item in the selection list to insert the corresponding
name in the tag area of the tags and expressions dialog. All tags are
displayed by Alias.

� You can manually enter an entire tag reference or expression by clicking
in the field on the tags and expressions dialog and typing the required
text using the keyboard.

� From the Arg Type list, you can also select Functions as an expression
argument. When Functions is selected, the View list presents the options
Math, String, Timer, and Date/Time.

Math functions:

• SHL(value,bits) returns the value shifted to the left by the
specified number of bits.

• SHR(value,bits) returns the value shifted to the right by the
specified number of bits.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

138

String functions:

• COMPARE(string1, string2) compares two strings, returning –1
when string1 is ‘less than’ string2, 0 when the strings are identical,
and 1 when string1 is ‘greater than’ string2.

• FIND(string1, string2) returns the position in string1 where string2
is first found. If string2 is not found, the return is 0.

• LEN(string) returns the length of the specified string.

• STRING_TO_INT(string) converts the specified string to an integer.

Timer functions:

• T_DONE(timer_id) returns True when the specified timer has
expired

• T_PREVAL(timer_id) returns the specified timer’s preset value

• T_VALUE(timer_id) returns the specified timer’s current value

The Date/Time functions are all used to format the given seconds
parameter, as counted from January 1, 1970. To format the current time,
you must first get the time using the Date/Time Get command.

� To specify a string, insert the string’s tag name in the function’s
parameter list.

� To specify a timer, insert the timer’s tag name as the timer_id in the
function’s parameter list [T_DONE(timer tagname)].

� To specify the number of seconds since January 1, 1970, obtain the
current system time using the Date/Time Get process block.

Tags

A tag references an item in the PointeControl database. When a device input scan
or chart assignment statement assigns a new value to a tag, the entry in the
database updates. When an expression references a tag, the runtime system
retrieves the tag’s current value from the database and uses the value in the
expression.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

139

Expression Syntax

In many instances, expressions can replace a single value or tag reference. Enter
expressions as free form text; they may be arithmetic or logical in nature.

All expressions produce a numeric result—either the actual result of the
arithmetic calculation, or the true/false result of a logical expression, where true
is 1 and false is 0.

An expression can include constants, tags, and functions and follows the syntax:

expression operator expression

The following table summarizes the available operators, listed in order of
precedence.

EXPRESSION TYPE OPERATORS

unary -a (negation)

multiplicative a * b (multiplication)

a / b (division)

a MOD b (modulus)

additive a + b (addition)

a - b (subtraction)

Chapter 5: Developing Controller Programs Pointe Controller User Guide

140

EXPRESSION TYPE OPERATORS

relational a < b (less than)

a <= b (less than or equal to)

a > b (greater than)

a >= b (greater than or equal to)

a = b (equal to)

a <> b (not equal to)

bitwise a AND b (bitwise AND)

a OR b (bitwise inclusive OR)

a XOR b (bitwise exclusive OR)

logical NOT a (logical NOT)

Calling Subcharts

The Build Argument dialog also appears when you define arguments to pass to a
called subchart. This dialog includes one text entry field, Argument. You can
enter math and Boolean logic in the Argument field, but you must enclose
Boolean expressions in brackets. You cannot compare values (greater than or less
than), and you can only use the AND Boolean operator.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

141

Other Build Dialogs

Certain block properties present customized “build” dialogs, other than the
standard Build Expression dialog. These other dialogs are described below.

Build Assignment

The Build Assignment dialog appears when you define an Assign command in a
Process block. A statement assigns the specified Expression value to the specified
Tag. You can only enter one tag reference in the Tag field. You can enter math
and Boolean logic in the Expression field, but you must enclose Boolean
expressions in brackets. You cannot compare values (greater than or less than),
and you can only use the AND Boolean operator.

Build Timer ID

The Build Timer ID dialog appears when you define the properties for Timer
commands. The dialog contains a single text box to enter the Timer ID, which can
be selected from the list on the left.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

142

Select String Tag and Build String Argument

When you select a String command in a Process block, a list of parameter types
for that command appears. The first parameter, Destination String, displays a
String Tag Select dialog when selected. You can enter only one tag reference as
the string tag field.

The second and following parameters that appear depend on the selected string
command. You may enter a Source String, Number of Chars, Start Position, String
to Insert, or Replacement String. When you select any of these parameters, the
Build String Argument dialog box appears so you can define the remaining
arguments.

You can enter math and Boolean logic for the string command argument, but
you must enclose Boolean expressions in brackets. You cannot compare values
(greater than or less than), and you can only use the AND Boolean operator.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

143

Build Condition

The following dialog boxes appear, depending on the Condition Type you select
for a decision block of If/Then, Repeat/Until, or While Loop:

� For a Condition Type of Expression, the Build Condition dialog appears:

This dialog includes one text entry field, Condition, which must include
some relational operator (e.g. =, <, >, ≠) to be evaluated. You can enter
math and Boolean expressions in the Condition field, but you must
enclose Boolean expressions in brackets.

If the Condition evaluates as TRUE when the chart is scanned, then the
true branch of the decision block will be followed. If the Condition
evaluates as FALSE, then the false branch will be followed.

� For a Condition Type of Diag Fault Bit Test or Error Status Bit Test, a
regular Select Tag dialog appears for you to enter the Source Tag.

5.6.5 Moving, resizing, and deleting blocks in a Flow Chart
Once a block or group of blocks has been placed in a flow chart, you can move,
copy, resize, or delete it as needed without breaking the chart’s flow. The
flowlines to and from the blocks are automatically redrawn to accommodate
whatever changes you make.

To select a block or group of blocks: click the Select Tool in the Flow Chart
toolbar and then click anywhere inside a block. The selected block becomes

dark green and red handles appear around it. To select multiple blocks, hold
down the <shift> key while selecting blocks. All selected blocks become green.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

144

NOTE: If you select a decision block (If/Then, Repeat/Until, or While/Do), then all
of the blocks contained within the decision block’s loop are also selected. These
contained blocks are marked in yellow rather than green.

Moving a selected block

To move a selected block or group of blocks, click on it and drag it to a new
location in the chart. You must place the moved blocks onto a flowline. The
editor automatically inserts the block between the blocks connected by the
flowline. Moved blocks carry all of their properties with them.

Copying a selected block

These editing features allow you to move and duplicate blocks. Cut and copy
perform similar functions, but cut removes the original block and copy leaves the
original in place. When you paste a block, the editor places it after the currently
selected block. To copy a block:

1. With the Select tool, select a block to copy or cut.

2. To copy, click the Copy button, or choose Copy from the Edit menu.

3. To cut, click the Cut button, or choose Cut from the Edit menu.

4. Select a block after which the cut or copied block is to be pasted.

5. Click the Paste button, or choose Paste from the Edit menu. The block
from the clipboard appears after the currently selected block.

Resizing a selected block

After you select a single block, you can change the size of that block with the
block handles. To change a block’s size:

1. Pass the arrow tool over one of the handles until the tool becomes a
double arrow (pointing in the directions you can resize with that handle).

2. Click the handle and drag the block outline to the size you want. You
should only need to resize a block to accommodate a large label or name.

NOTE: You cannot manually resize multiple selected blocks. However, you
can resize all of the blocks in the chart by using the Size to Content tool.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

145

Deleting a selected block

There are many different ways to delete a selected block or group of blocks:

� Click either the Cut Object tool or the Delete Object tool on the
framework toolbar. Cutting a block places it on the clipboard. Deleting a
block does not place it on the clipboard.

� Choose either Cut or Delete from the Edit menu. Cutting a block places it
on the clipboard. Deleting a block does not place it on the clipboard.

� Press the key on your keyboard, click on the Delete Object tool, or
select Delete from the Edit menu.

Cutting a block places the block on the Windows clipboard. Deleting an element
does not place the element on the clipboard.

5.6.6 Adding comments to a Flow Chart
Enter comments and tack them to your Flow Charts like a note. Unlike the other
block types, comments do not snap to the chart's grid. Place the comments
anywhere on the chart. Comments can display any text, like information about
the chart or its blocks, but comments do not affect program flow.

1. Click the Comment tool on the Flow Chart toolbar.

2. Point and click on the chart to begin placing the comment.

3. Drag the box until it reaches the size you want, then release the mouse
button. The Comment block is now available for editing.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

146

4. Double-click on the Comment block to open its Block Properties window.

5. Complete the block properties for the selected comment.

6. Close the Block Properties window.

If your comments should run larger than the limits of the block, you can resize
the block. Text automatically reflows according to the size and shape of the
comment block.

5.6.7 Logging changes in a Flow Chart
The View Change History button displays the change history of a Flow Chart if the
audit log processing has been turned on for the selected chart. If audit log
processing has not been turned on for the chart, then an error dialog appears
that gives you the option of turning on the audit log processing. The program
logs any changes made after the processing has been turned on in the change
history for the chart.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

147

To enable audit log processing for a Flow Chart, click the View Change History
button on the chart’s toolbar:

A notice appears that gives you the option of enabling audit log processing.

NOTE: Once this feature is enabled, it cannot be disabled.

Once enabled, you are required to enter a comment on changes made to the
chart each time you close the Flow Chart editor window (and save changes). The
Update Flowchart Change History box appears, allowing you to enter your
comments.

You can also check the current change history by clicking the View Log button.

After you have enabled audit log processing for a Flow Chart, the Update
Flowchart Change History box appears whenever you click the View Change
History button on the toolbar.

5.6.8 Making a Flow Chart a reusable Subchart
Create Subcharts to reuse common Flow Chart programming. This reuse speeds
development and testing, since you only create and debug a chart once. When
you create a Subchart, you add arguments specific to the chart. Another Flow
Chart can then call the Subchart and assign values to these chart-specific tags.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

148

To make a Flow Chart a reusable Subchart:

1. Double-click on the chart’s Start block to open its Block Properties
window.

2. Click the Chart Type property and select Subchart from the drop-down
menu. The Arguments and Local Vars properties are added to the
window.

3. Define the arguments and local variables to be used by the Subchart:

a. Select Arguments or Local Vars. Arguments are values and
variables passed from the calling Flow Chart to the Subchart. Local
Vars are variables defined and used only within the Subchart,
completely independent of Logic Memory.

In this example, Arguments is selected:

Pointe Controller User Guide Chapter 5: Developing Controller Programs

149

b. Click Insert to add a new argument.

c. From the tag type drop-down list, select the argument type. In
this example, DINT (32 Bit Signed) is selected:

For more information on configuring arguments, see “A Note on
Arguments” below.

d. In the variable’s text entry box (right column), enter a name to
describe the tag. In this example, “totalElapsed” is entered:

e. Repeat steps a through d for all of the arguments and local
variables to be used by the Subchart.

4. Close the Block Properties window and save the Subchart. It can now be
called by any other Flow Chart.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

150

A Note on Arguments

When you define an argument in the Subchart’s Start block, you are merely
setting it up to receive some value or variable that will be passed from the calling
Flow Chart. The actual value of that argument is defined in the Flow Chart’s
Subchart block.

Also, arguments can be passed either “by value” or “by reference”:

� An Argument by value is the calculated value of the argument’s logical
expression at the moment the Subchart is called. The value is then
operated on locally within the Subchart – as if it was a literal – without
affecting the tag or expression from which the value was calculated.

� An Argument by reference is a pointer to a tag in Logic Memory.
Operations on the pointer within the Subchart read from and write to the
tag as if it was referenced directly by the Subchart. The pointer is used so
that a different tag can be referenced each time the Subchart is called. It
all depends on what tag reference is passed by the calling Flow Chart.

If the Subchart needs to read from or write to the same Logic Memory tag
every time it is called, then the tag can be directly referenced the same
way it is in a regular Flow Chart.

Make sure you select the right variable type – by value or by reference – from the
type menu (step 4c above).

Calling the Subchart

For a complete description of how to call a Subchart from within a Flow Chart,
see “Subchart Block” on page 161.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

151

5.7 Types of Flow Chart Blocks

5.7.1 Process Block
Process blocks define commands in your control program
logic. You can add an unlimited number of the 41 available
commands to a single Process block. Upon encountering a
Process block, the program executes the commands in their
order of appearance, from top to bottom, in the Block
Properties window.

PROPERTY WHAT YOU ENTER

Caption User label for the block.

Command You can choose commands from the following types:

� General Commands

� Timer Commands

� String Commands

� Diagnostics Commands

� Serial Commands

� Date/Time Commands

� Operator Panel Commands

Most commands require you to configure additional parameters.

To add and remove additional commands, use the Insert and
Delete buttons in the Block Properties window. To change the
order of the commands, use the Move Up and Move Down
buttons.

Double-clicking on an empty Command
property opens a Select Process Command
dialog, which can be used to select a
specific command and add it to the
Process block.

First, select a command type from the
Type list on the left. When a command
type is selected, the commands available
in that type appear in the Command list
on the right. From there, select a specific
command from the Command list and
click OK. The selected command and its
configurable parameters will be shown in
the Process block’s Block Properties
window.

A complete description for each command
– including configuration details – can be found in Appendix B, “Flow Chart
Command Reference.” Page links are provided for each command type. General
Commands (at right) can be found starting on page 298. The rest of the
command types are shown below.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

152

Timer Commands [page 303] String Commands [page 306]

Diagnostics Commands [page 316] Serial Commands [page 321]

Date/Time Commands [page 330] Operator Panel Commands [p. 333]

Pointe Controller User Guide Chapter 5: Developing Controller Programs

153

Process Block Example

Program flow enters the process block at the top and executes the commands as
they are listed, from top to bottom.

� The command, Timer Stop, freezes the specified timer, timer1.

� The command, Timer Preset, sets the specified timer (loads Preset), timer1,
to the value contained in the specified tag, test1.

� The command, Timer Start, restarts the specified timer, timer1.

� After all of the block’s commands execute, program flow continues
through the outgoing arrow to the next block.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

154

5.7.2 Terminator Block
Terminator blocks define the start and exit points of a Flow Chart. Each chart has
one Start block and at least one Return block. Start blocks for subcharts contain
important information about chart-specific tags (see below).

Start Block Properties:

PROPERTY WHAT YOU ENTER

Caption User label for the block.

Name Name of the Flow Chart, as it appears in the Project Workspace
pane.

Preferences Display the Flowchart Preferences window, in which you can set
certain appearance and behavior options for the chart:

� In the Font pane, click the Select button to change the
font, font size, font style, or font script. The default font is
Small Fonts.

� In the Block Text Margins pane, use the controls to adjust
the Left/right and Top/bottom margins. The default is 6
points.

� In the Size to Content Preferences pane, use the sliding
scales to change the starting width of the Diamonds
(decision blocks) and Rectangles (process blocks) in your
chart. Also, use the control to adjust the Horizontal Snap
Size (the incremental snap-to width; the higher the value,
the wider the block).

� In the Options, select the check box if you want to:

� Always YIELD in loops (see note below)

� Always size to content

� Display block shadow

� Freeze selected block in detail view

� Check run criteria on all YIELDs (see note below)

Save or restore default selections by clicking the Save Defaults or
Restore Defaults buttons, respectively.

Chart Type Program (executable flowchart) OR Subchart (callable subchart)

For more information on subcharts, see “Making a Flow Chart a
reusable subchart” on page Error! Bookmark not defined..

Default State

(Program only)

Enabled OR Disabled

A disabled state inhibits the execution of the Flow Chart. You may
find this useful for developing charts for future functionality in
your project, or if some machinery is undergoing maintenance and
should not run.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

155

PROPERTY WHAT YOU ENTER

Run Criteria

(Program only)

Presents Build Condition dialog to specify a condition that must be
true for the program chart to execute. Run criteria are always
evaluated on start of execution at the beginning of a chart. You
can also elect to evaluate run criteria each time a chart returns
from a yield (for example, inside a loop or wait operation) by
selecting the option in the Flowchart Preferences dialog box.

Arguments

(Subchart only)

By Value (default): A tag’s value is passed to the subchart; as such,
the tag cannot be modified within the subchart. Literal constants,
i.e., numbers, may be passed by value.

By Reference: A reference to the tag is passed to the subchart.
Since the tag’s reference provides direct access to the
PointeControl database, the tag’s value can be referenced or
modified within the subchart through the tag reference. A string
may also be passed by reference.

Local Vars

(Subchart only)

The number of chart-specific local variables. A listing of the
defined chart-specific outputs appears below this property.

NOTE: A loop (Repeat/Until or While/Do) that is set to YIELD will allow the rest of
the charts in the project’s Chart List to scan while the loop is running. If the loop
is not set to YIELD, then it will continuously check its run condition without
interruption, effectively putting all other charts on hold. For more information,
see “Repeat/Until Loop” on page 158 and “While/Do Loop” on page 159.

Return/Exit Block Properties:

PROPERTY WHAT YOU ENTER

Caption User label for the block.

Terminate Type Return OR Exit

For program charts, Return restarts the chart from the Start block;
for subcharts, Return directs program flow to the calling chart.

Exit directs program flow out of a loop and continues execution at
the block immediately following the loop.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

156

5.7.3 Condition (If/Then/Else) Block
A Condition block contains a Yes or No type
question that directs program flow in one of two
directions. When the specified condition evaluates
to a non-zero value, program flow proceeds down
the true branch.

By default, the true branch is labeled “Then” and
the false branch is labeled “Else,” to correspond to

the if-then-else programming construct. You can change these labels to yes and
no or on and off to correlate to the test condition.

PROPERTY WHAT YOU ENTER

Caption User label for the block.

Line Labels If/Then/Else, Is/Yes/No, or Is/On/Off as the labels for the block and
outgoing flowlines.

Switch T/F Paths Yes or No. Yes switches the direction of the true/false paths. When
you enable this option, the true path proceeds to the right, and
the false path proceeds down. No leaves true/false paths in the
normal orientation (true is down, false is to the right).

Timeout Value Timeout value to wait for the condition to be true before
proceeding down the false path. Only the current chart remains
suspended waiting for this timeout to occur—all other charts
continue to run normally.

Units Units of the Timeout Value.

Condition Type Type of Condition:

� Expression – Build a conditional expression using the
Build Condition dialog.

� Diag Fault Bit Test – Select an Input, Memory, or Output
tag and test to see if its Diag Fault Bit is set or clear.

If the condition evaluates true, then the Then/Yes/On line is
followed. If the condition evaluates false, then then Else/No/Off
line is followed.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

157

Condition Block Example

This decision block determines if Input_1 is ON or OFF. If Input_1 is ON, program
flow continues through the Flowline labeled Then. If Input_1 is OFF, flow
continues through the flowline labeled Else.

� The LineLabels property specifies a Then label for the flowline followed
from a true or on condition and an Else label for the flowline followed
from a false or off condition.

� The Switch T/F Paths property is No, meaning the default true/false path is
taken. A selection of Yes switches the true/false path of the flow.

� The Timeout Value property is not selected. When you select a tag, the
value adds a wait period to the block. Program flow does not follow the
Else line, even if the condition is false, until the Timeout expires and the
condition still evaluates to false. Any time the condition evaluates to True,
regardless of the Timeout, program flow follows the Then line.

� The Units property is associated with the Timeout Value. If you specify a
Timeout Value, you can select the units for counting time in milliseconds,
seconds, or minutes.

� The Condition Type property is selected as an Expression, and the next
property defines the block’s tested expression. In this condition, the tag,
Input_1, can be ON or OFF.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

158

5.7.4 Repeat/Until Loop Block
The Repeat/Until Loop block represents a repetitive
process, where the block checks the condition at the
bottom of the loop, ensuring that the chart executes
the sequence of instructions at least once. If the
condition at the bottom of the loop is true, program
flow continues at the next block in the chart. If the

condition is false, control returns to the top of the loop.

PROPERTY WHAT YOU ENTER

Caption User label for the block.

Line Labels Until/Done/Repeat or Until/On/Off as the labels for the block and
outgoing flowlines.

Yield Yes or No to specify whether, when the condition tests false,
program flow should immediately return to top of the loop or
yield to the next listed Flow Chart. Use this option with caution,
since it essentially disables all other charts while the program
executes the loop.

A block that yields (Yes) runs all other charts in your Chart List,
then returns to the top of the loop that yielded and retests the
block’s condition. A block that does not yield (No) continues to
check the condition, uninterrupted.

Condition Type Type of Condition:

� Expression – Build a conditional expression using the
Build Condition dialog.

� Diag Fault Bit Test – Select an Input, Memory, or Output
tag and test to see if its Diag Fault Bit is set or clear.

If the condition evaluates true, then the Done/On line is followed.
If the condition evaluates false, then the Repeat/Off line is
followed.

Repeat/Until Loop Block Example

Before reaching this decision block, the program increments the value of Input_2.
The decision block then determines if Input_2 is greater than or equal to 20. If

Pointe Controller User Guide Chapter 5: Developing Controller Programs

159

yes, program flow continues through the Flowline labeled Done. If Input_2 is less
than 20, flow yields to the next chart, then returns to the flowline Repeat to
again increment and check Input_2 until the required count is reached.

� The LineLabels property specifies a Done label for the flowline followed
from a condition of Input_2 being greater than or equal to 20 and a
Repeat label for the flowline followed from a condition of Input_2 being
less than 20.

� The Yield property specifies the program flow must continue to the next
chart if the condition is not met and return to increment and check the
value again until the condition is met.

� The Condition Type property selects an Expression.

� The next property defines the block’s tested expression. In this condition,
the tag, Input_2, can be any number greater than or equal to 20.

5.7.5 While/Do Loop Block
The While/Do Loop block represents a repetitive
process, where the block evaluates a condition at the
top of the loop until the condition evaluates to true. If
the condition is true, the blocks in the loop are
executed; if the condition is false, program flow
continues at the block immediately following the
loop.

PROPERTY WHAT YOU ENTER

Caption User label for the block.

Line Labels While/Do/Done or While/On/Off as the labels for the block and
outgoing flowlines.

Yield Yes or No to specify whether, when the condition tests false,
program flow should immediately return to top of the loop or
yield to the next listed chart. Use this option with caution, since it
essentially disables all other charts while the program executes the
loop.

A block that yields (Yes) runs all other charts in your Chart List
after executing the blocks in the loop, then returns to the top of
the loop that yielded and retests the block’s condition. A block
that does not yield (No) continues to check the condition,
uninterrupted.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

160

PROPERTY WHAT YOU ENTER

Condition Type Type of Condition:

� Expression – Build a conditional expression using the
Build Condition dialog.

� Diag Fault Bit Test – Select an Input, Memory, or Output
tag and test to see if its Diag Fault Bit is set or clear.

If the condition evaluates true, then the Do/On line is followed. If
the condition evaluates false, then the Done/Off line is followed.

While/Do Loop Block Example

The decision block determines if Error_Number is greater than 0. While the
answer is yes, program flow yields to the next chart, returns to the flowline
labeled Do, and decrements the value of Error_Number before returning to the
decision block to check the value. If the value is greater than 0, flow continues to
the remainder of the current chart through the flowline labeled Done.

� The LineLabels property specifies a While label that specifies the
condition, a Do label for the flowline from a condition of Error_Number
being greater than 0, and a Done label for the flowline a condition of
Error_Number being less than or equal to 0.

� The Yield property specifies the program flow must continue to the next
chart while the condition is met and return to decrement and check the
value again until the condition is no longer met.

� The Condition Type property is selected as Expression.

� The next property defines the block’s tested expression. In this condition,
the tag, Error_Number, can be any number greater than 0.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

161

5.7.6 Subchart Block
A Subchart block makes a call to a previously
defined subchart, analogous to a call to a
subroutine in a programming language. When
program flow reaches a Subchart block, the chart
transfers program flow to the Start block in the
called subchart. Program flow continues from that
point until reaching a Return block. Control then
returns to the calling (main) chart and proceeds
with the block immediately following the original

Subchart block. You can nest Subchart calls; a main chart may call a subchart,
which can in turn call another subchart, etc.

PROPERTY WHAT YOU ENTER

Caption User label for the block.

Call Chart Name of the subchart to call.

Arguments Arguments to pass.

Local Vars Variables local to the subchart.

Subchart Arguments

When calling a function chart, you must assign tag references to the called chart’s
internal tags. To assign these values, pass arguments from the calling chart’s
subchart block to the called chart (specified by CallChart):

1. Add or select a Subchart block.

2. In the Block Properties box, select a chart from the CallChart drop-down
list. After you select a chart, the properties appear in the Block Properties
box.

3. Press the logic statement button for each property to build the arguments
that are passed from the calling chart’s subchart block to the called
subchart. For internal references, you can assign a value or reference any
tag.

4. Access the local variables that are to be used within the subchart. The
local variables are not accessible from other charts.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

162

Subchart Example

This subchart block calls the function chart, Motion. Program flow enters the
block at the top and jumps to the Motion chart’s start block. The subchart block
passes each argument, listed in the Block Properties box (Invert becomes ON,
Max_Time becomes 100, etc.) to that particular call of the Motion chart. Program
flow continues through the Motion chart until reaching a return block. Flow
returns to the calling chart and continues through the outgoing flowline of the
subchart block.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

163

5.8 Building and Editing Ladder Diagrams
A Ladder Diagram is a program component written using traditional Relay Ladder
Logic. The ladder is made up of sequential rungs, and each rung is made up of
sequential function blocks.

Ladders are executed from top to bottom, one rung at a time.

5.8.1 Creating a new Ladder Diagram
To create a new Ladder Diagram:

3. In the Project Workspace pane, select Ladder Diagram.

4. Click the New Object tool in the Framework Editor toolbar, or choose
New from the File menu. A new Flow Chart with a default name
(LadderN) will be added to the project hierarchy.

To open a Ladder Diagram for editing, simply double-click on it or select the
diagram and click the Open Object tool in the Framework Editor toolbar. When
you open a diagram, its editor window will appear in the Object Editor pane.

Saving a Flow Chart

All program objects are saved automatically whenever you close them. However,
you can save a Ladder Diagram while it’s open by clicking the Save Object or
Save All Objects tool in the Framework Editor toolbar.

Deleting a Flow Chart

You can delete Ladder Diagram in the same place you open them: the Project
Workspace pane. To delete a Ladder Diagram:

4. Close all open Flow Charts, Ladder Diagrams, and Logic Memory tables.

5. Select the desired Ladder Diagram in the Project Workspace pane. (You
may need to expand the hierarchy to select it – double-clicking expands it,
double-clicking again collapses it.)

6. Click the Delete Object tool in the Framework Editor toolbar, or choose
Delete from the Edit menu.

NOTE: Before deleting a Ladder Diagram, PointeControl will ask for a
confirmation.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

164

5.8.2 Navigating the Ladder Diagram editor
As a resource of PointeControl, ladder diagrams appear in the resource tree of
the PointeControl framework. Expanding the ladder diagrams entry in the
resource tree shows the diagrams included with the project. Double clicking on
one of the listed diagrams will activate the ladder editor and load the selected
diagram. A new diagram can be defined by selecting the Ladder Diagrams entry
in the resource tree and then clicking the New Object icon in the framework
toolbar. Alternately, select File/New while the Ladder Diagrams entry is selected
in the resource tree. The ladder editor window is shown below:

The window includes a title bar containing the name of the ladder diagram and a
standard system menu bar. A toolbar, found under the title bar, contains a set of
icons for each of the tools available to the ladder editor. A secondary toolbar,
immediately under the main toolbar, provides the ladder objects available for
placement in the workspace. This secondary toolbar changes with the selection of
an object library tool from the main toolbar. The workspace, appearing under the
toolbars, is the area in which the ladder diagram will be constructed. Scroll bars
appear around the workspace as needed based on workspace contents and
magnification level.

The workspace is the scratchpad into which ladder diagram blocks are placed. A
ladder diagram consists of a series of ladder rungs that execute sequentially, from
left to right, and top to bottom. Each rung consists of a left and right power rail
and ladder objects, typically contacts and coils, as well as function blocks. Rungs
may include branches and may also include jumps to other rungs or calls to other
ladder diagrams. Objects are placed in the workspace using the tools contained
on the toolbar and discussed in subsequent paragraphs.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

165

The workspace area is shared with a cross-reference window and a code view
window in which the structured text equivalent of the ladder diagram can be
viewed. The Show Cross Reference tool (see subsequent paragraphs describing
the editor tools) activates the cross-reference window. Dragging the splitter bar
on the left side of the editor workspace to the right reveals the code view
window. This is a view-only window – structured text cannot be edited.

Each ladder diagram has a set of properties: diagram name, type, and description.
The name is limited to 30 characters (like Flow Charts) and will default to LadderX
where X will be the next sequential index of all ladder diagrams for the project.
The type can be either program (the default) or sub-ladder, allowing it to be
called like a subroutine from another ladder diagram. The optional description
can be text of essentially unlimited length describing the overall operation or
purpose of the diagram. These properties can be defined when the diagram is
first created or later, using the Program Properties dialog. This dialog is activated
by a right click anywhere within the workspace (to activate a context menu) and
selection of the Edit Program Properties entry. The dialog appears as:

Once the program properties are as desired select the OK button to save the
values or select Cancel to leave the properties unchanged.

The Ladder Diagram toolbar

Access the Ladder Diagram programming tools from this bar. The toolbar allows
you to select blocks, place a variety of block types, change zoom levels and special
viewing mode, hide/show block labels, and check diagram integrity. To select a
tool, simply click its button.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

166

The tools are, from left to right:

Select

Delete

These two buttons are used to select and delete elements
in the Ladder Diagram. [page 168]

Relays and Coils

Timer and Counter

Math

Comparison

Logical and Bit Shift

Selection

String

Flow Control

Miscellaneous

These nine buttons are used to access the various libraries
of Ladder Diagram function blocks. [page 167]

New Rung

Branch Rung

These two buttons are used to add new rungs and rung
branches to a Ladder Diagram. [page 166]

Validate Ladder This button checks the structure and syntax of the Ladder
Diagram. [page 181]

Zoom In

Zoom Out

These two buttons adjust the magnification level at which
the Ladder Diagram is displayed in the workspace. [page
177]

Replace Text This button finds and replaces text in the Ladder Diagram.
[page 177]

Show Rung Comments

Show Rung Numbers

Show Rung Logic

Show Block Captions

These four buttons change what supplementary
information is displayed in the Ladder Diagram workspace.
[page 169]

Show Cross Refs This button displays a list of all tags and variables used in
the Ladder Diagram. [page 178]

5.8.3 Adding new rungs and branches to a Ladder Diagram
Rungs may be added to a ladder diagram via the New Rung tool.
Selecting the New Rung button will add another rung to the current
displayed ladder diagram. Rungs are inserted before a selected rung or
added to the end of the diagram when no rung or block is selected, or

when any block is selected. When a new rung is inserted or added in the wrong
position, select the rung (click on the rung number) and drag it to the desired
position, or delete it and try again.

Rungs may optionally be assigned a label to serve as the target for a GOTO block
or a caption to document the diagram. Both attributes can be edited by a right-
click on the rung number (to activate the context menu) and selecting the Edit
Rung Properties entry.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

167

Adding a branch to an existing rung

Branches may be added to rungs using the Branch Rung tool. This tool,
when selected, allows you to click anywhere on a rung to select one
endpoint for the branch. An arc then appears between the endpoint
and the cursor position showing the path the branch will take. Now

click on the rung to define the other branch endpoint. When a valid endpoint is
specified the branch will be drawn. (Note the branch is not drawn as an arc once
its endpoints are defined. Rather the branch corners are squared so the branch
appears as a set of horizontal and vertical lines.) When an invalid branch
endpoint is selected, an audible beep occurs and the arc remains visible so that a
valid endpoint may be specified. To abort the branch definition, select another
tool or hit the keyboard ESC key.

Branches cannot cross other branches, nor can they jump from one rung to
another. Branches may nest within other branches. Once placed, the branch
endpoints may be repositioned via drag-and-drop, subject to the previous
restrictions.

5.8.4 Placing and configuring a Ladder Diagram block
Once placed on a rung within a ladder diagram, ladder function blocks must be
configured, that is, each of the block’s inputs and outputs must be assigned a tag
from the project’s database. A double click on the block, or a right click and
selection of Edit Block Properties from the context menu, initiates the block
configuration dialog.

The function block configuration dialog provides a convenient, easy-to-use way
to provide tags for configuring ladder function blocks. Its functionality and
appearance are similar to the configuration dialogs used in the chart editor. A
representative example, showing the configuration of a division function,
appears below:

The configuration dialog is actually two dialogs working together, one on the
right, the configurator, providing values for each of the tags needed to configure
a ladder function block, and one on the left, the browser, to assist with the tag
selection. The configurator title bar shows the type of function block being

Chapter 5: Developing Controller Programs Pointe Controller User Guide

168

edited. As each of the configuration fields is selected the title bar of the browser
updates to show the name of the field being edited. Use of the browser is
optional – each of the configurator fields allows direct type-in. Validation is
performed on each field and the configurator OK button is enabled only when all
fields contain legal entries or blanks. (Blank entries are valid for some fields, for
example the Timer Pulse preset and elapsed time fields. Checking for blanks in
fields requiring a valid tag is performed at project build time.)

Use of the browser is straightforward. The Type listbox shows the valid database
types for the selected configurator field. Types shown may be any or all of Inputs,
Memory, Outputs, Strings, Timers, Numeric, or Literal. The inclusion of the
Numeric and Literal types is for mnemonic purposes only – both types must be
entered directly by the user. Literals must be enclosed within single quotes to be
valid. Selection of a Type will force an update to the contents of the View and
Selection List sections.

The View listbox shows the different views available for the selected database
type. Inputs, Memory, and Outputs are viewed only by Alias. The available
selections for Timers are T_DONE, T_PRESET, and T_VALUE when integer value
tags are allowed in the selected configurator field. No View selections are shown
when just the name of a timer is expected in the selected configurator field (as
for example the Timer field for any of the Timer function blocks). No View
selections are available for the String, Numeric, or Literal types.

The Selection List shows the available tags for the selected type and view. The list
is filtered to exclude tags not appropriate for the selected configurator field. For
example, when configuring fields for contacts or relays, only bit type tags of the
selected type and view will be shown. Further filtering is available through use of
the configurator field itself. Characters entered into the field are matched against
the available tags and only those tags beginning with the entered characters will
be shown: enter ‘a’ and all tags beginning with ‘a’ will be shown. Add the
character ‘r’ and only tags beginning with ‘ar’ will be shown. Filtering is not case
sensitive. A single click within the Selection List copies the selection to the active
configurator field.

5.8.5 Moving, copying, and deleting elements in a Ladder Diagram
Elements (blocks, branches, rungs) are selected using the Select/Edit
tool. Selecting an element highlights it and deselects/un-highlights any
prior selection. Blocks are selected by clicking on the block. Branches
are selected by clicking on the merge point. The branch origin is

selected by clicking on the split point. Rungs are selected by clicking on the rung
number. Once selected, elements may be dragged and dropped to other positions
in the Ladder Diagram. Elements will drop only on legal drop points; if the drop
point is not a legal position, then the element is not moved.

One exception to the drag-and-drop paradigm is the branch. Only the branch
origin (split) and the branch termination (merge) may be dragged and dropped
to new positions. To move or copy a branch to a new position, first Cut or Copy
the selected branch. Next select another object around which the branch should
link, then ‘Paste’ it in place. Should the branch origin and endpoint end up
misplaced, simply drag and drop them to the desired position. Branches may not
cross each other; they must always nest either inside or around other branches.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

169

Deleting elements

Selected elements may be deleted using the Delete tool. Object
deletion is also possible using the Edit menu or the keyboard DEL key.
Be advised that element deletion is not undoable. Unlike cutting an
element, the Delete action does not place a copy of the element in the

clipboard.

5.8.6 Adding comments to a Ladder Diagram
Ladder Diagrams may be given optional comments or captions as an aid in
documenting the logic flow.

Program Properties

Program properties include the Program Name (as it appears in the Project
Workspace pane), the Program Description, and the Sub-Ladder option. To edit
these properties, right-click anywhere in the Ladder Diagram and choose Edit
Program Properties from the context menu.

Rung Properties

Rung properties include the Rung Label and Rung Comment. To edit these
properties, right-click on the desired rung and choose Edit Rung Properties
from the context menu.

The visibility of rung comments may be toggled using the Show Rung
Comments tool in the Ladder Diagram toolbar. Rung comments are visible

by default whenever the ladder editor is started.

Block Captions

Each function block in a Ladder Diagram can have its own Block Caption. To edit
a block’s caption, right-click on the desired block and choose Edit Block Caption
from the context menu.

The visibility of block captions may be toggled using the Show Captions
tool in the Ladder Diagram toolbar. Rung comments are visible by default

whenever the ladder editor is started.

NOTE: Rung logic (the contacts, coils and function blocks comprising the
ladder diagram) may be shown or hidden using the Show Rung Logic tool.

Rung logic is visible by default whenever the ladder editor is started. This feature
may be useful when comments are defined for each ladder rung. By hiding the
rung logic, leaving just the comments visible, a text only description of the ladder
diagram will be seen, allowing the viewer a quick overview of the purpose and
functionality of the ladder diagram.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

170

5.8.7 Making a Ladder Diagram a reusable Sub-Ladder
Create Sub-Ladders to reuse common Ladder Diagram programming. This reuse
speeds development and testing, since you only create and debug a chart once.

To convert an existing Ladder Diagram into a reusable Sub-Ladder:

1. Select and open the desired Ladder Diagram from the Project Workspace
pane.

2. Right-click anywhere in the ladder and choose Edit Program Properties
from the pop-up menu. The Program Properties window will appear.

3. Click the Sub-Ladder checkbox.

4. Click OK to save your changes and close the window.

The program is now a reusable Sub-Ladder and can be called from another
Ladder Diagram using the CALL and RETN blocks.

NOTE: Unlike Subcharts, Sub-Ladders cannot receive any local variables.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

171

5.9 Types of Ladder Diagram Blocks
To make it easier to select from the 79 available Ladder Diagram blocks, they are
grouped into nine block types or libraries. These libraries can be accessed by
selecting the corresponding tools from the Ladder Diagram toolbar:

Clicking on a library toolbar button will make that library’s own toolbar appear
just below the main Library Diagram toolbar. From there, you can select
individual blocks and place them in your diagram.

TIP: A complete description for each block – including configuration details – can
be found in Appendix C, “Ladder Diagram Block Reference.” Direct page links are
provided below.

5.9.1 Relays and Coils
Selecting this library tool activates the Relays and Coils toolbar, which
allows the placement of relay contacts and coil-type objects in your
ladder diagram.

This library includes the following blocks:

TOOL DESCRIPTION FOUND ON...

Normally Open Contact Page 338

Normally Closed Contact Page 338

Rising Edge Relay Page 339

Falling Edge Relay Page 339

Output Coil Page 340

Negated Output Coil Page 341

Latched Coil Page 341

Unlatched Coil Page 342

Rising Edge Coil Page 343

Falling Edge Coil Page 343

Falling Edge Detector Page 344

Chapter 5: Developing Controller Programs Pointe Controller User Guide

172

TOOL DESCRIPTION FOUND ON...

Rising Edge Detector Page 345

Set-Dominant Bistable Page 346

Reset-Dominant Bistable Page 348

5.9.2 Timer and Counter Blocks
Clicking on this toolbar button activates the Timer and Counter Blocks
toolbar, which allows the placement of timing and counting functions
in your ladder diagram.

This library includes the following blocks:

TOOL DESCRIPTION FOUND ON...

Timer, Pulse Page 350

Timer, ON Delay Page 351

Timer, OFF Delay Page 352

Counter, Up Page 353

Counter, Down Page 355

Counter, Up/Down Page 356

5.9.3 Math Blocks
Clicking on this toolbar button activates the Math Blocks toolbar, which
allows the placement of mathematical functions in your ladder
diagram. Activation of the Math Blocks toolbar terminates any active
block insertion mode, forcing a selection from the Math Blocks library

before insertion mode is restored.

This library includes the following blocks:

TOOL DESCRIPTION FOUND ON...

Add Page 359

Subtract Page 360

Pointe Controller User Guide Chapter 5: Developing Controller Programs

173

TOOL DESCRIPTION FOUND ON...

Divide Page 362

Multiply Page 363

Square Root Page 364

Modulus Page 366

Sine Page 367

Cosine Page 368

Tangent Page 369

Arc Sine Page 370

Arc Cosine Page 371

Arc Tangent Page 372

Absolute Value Page 373

Logarithm Page 374

Natural Logarithm Page 375

Exponential Page 376

Natural Exponential Page 378

Expression Page 379

5.9.4 Comparison Blocks
Clicking on this toolbar button activates the Comparison Blocks toolbar,
which allows the placement of functions that perform a numerical
comparison between two Logic Memory tags.

This library includes the following blocks:

TOOL DESCRIPTION FOUND ON...

Greater Than Page 381

Chapter 5: Developing Controller Programs Pointe Controller User Guide

174

TOOL DESCRIPTION FOUND ON...

Greater Than or Equal to Page 382

Equal to Page 383

Not Equal to Page 385

Less Than or Equal to Page 386

Less Than Page 387

5.9.5 Logical and Bit Shift Blocks
Clicking on this toolbar button activates the Logical and Bit Shift Blocks
toolbar, which allows the placement of function block objects in the
ladder diagram that perform Boolean and/or bit oriented functions.

This library includes the following blocks:

TOOL DESCRIPTION FOUND ON...

And Page 389

Or Page 391

Exclusive Or Page 393

Not Page 394

Shift bits Left Page 396

Shift bits Right Page 397

Rotate bits Left Page 399

Rotate bits Right Page 400

5.9.6 Selection Blocks
Clicking on this toolbar button activates the Selection Blocks toolbar,
which allows the placement of selection or clamping functions in your
ladder diagram.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

175

This library includes the following blocks:

TOOL DESCRIPTION FOUND ON...

Select minimum value Page 402

Select maximum value Page 403

Limit value Page 405

Select one of two values Page 406

5.9.7 String Blocks
Clicking on this toolbar button activates the String Blocks toolbar,
which allows the placement of string operations in your ladder
diagram.

This library includes the following blocks:

TOOL DESCRIPTION FOUND ON...

Set string Page 408

Find string length Page 409

Extract sub-string from Left Page 410

Extract sub-string from Right Page 411

Extract sub-string from Middle Page 413

Concatenate strings Page 414

Compare strings Page 416

Insert sub-string Page 417

Delete sub-string Page 419

Replace sub-string Page 421

Find sub-string Page 423

Chapter 5: Developing Controller Programs Pointe Controller User Guide

176

5.9.8 Flow Control Blocks
Clicking on this toolbar button activates the Flow Control Blocks
toolbar, which allows the placement of command objects that control
execution flow of the ladder diagram. These objects alter the standard
left to right, top to bottom execution of the diagram.

The library includes the following blocks:

TOOL DESCRIPTION FOUND ON...

Call sub-ladder diagram Page 425

Return to main diagram Page 426

5.9.9 Miscellaneous Blocks
Clicking on this toolbar button activates the Miscellaneous Blocks
toolbar, which allows the placement of conversion and assignment
functions in your ladder diagram.

The library includes the following blocks:

TOOL DESCRIPTION FOUND ON...

Convert to Boolean Page 427

Convert to Integer Page 428

Convert to Float Page 429

Convert to String Page 430

Truncate Page 432

Integer to Character Page 433

Character to Integer Page 434

Integer to BCD Page 435

BCD to Integer Page 436

Move Page 438

Pointe Controller User Guide Chapter 5: Developing Controller Programs

177

5.10 Other Framework Editor Tools

5.10.1 Finding and replacing text
Text strings within the active ladder diagram can be replaced with
other strings using the Replace Text tool. This contrasts with the
Replace Text in Project command that is available in the Edit menu,
which replaces text throughout the project.

Selecting the tool activates the Replace Text dialog:

Using the dialog you specify the text string to be replaced and its replacement.
Scans may be case-sensitive or case-insensitive. Scans may also be restricted to
whole-word matches or not. This is especially useful when replacing tag names in
a diagram and you need to replace all occurrences of the tag XIC1 with XIC2, but
do not want to modify tags XIC11, XIC100, XIC1102, etc. The scan will default to
replacing all occurrences of the search string within the whole diagram, unless
there are objects selected within the diagram, in which case the scan defaults to
the selected objects.

5.10.2 Zooming in and out on a chart
You can view the Flow Chart or Ladder Diagram editor
workspace at several magnification levels using the Zoom In
and Zoom Out buttons on the toolbar. Zoom In makes the
diagram appear larger, while Zoom Out makes the diagram

appear smaller, allowing you to see more of it within the workspace window. By
default, the workspace is initially displayed at the maximum magnification level.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

178

5.10.3 Viewing tag cross references
A cross-reference of all Logic Memory tags and variables used within
the active Flow Chart or Ladder Diagram can be shown or hidden using
the Show Cross-Reference tool. The cross-reference appears on the left
side of the editor workspace and consists of a tree of all database alias

tags. Each tag can be expanded, by clicking the open icon (cross within a square)
or double clicking on the entry, to show the DRV, wire label and list of blocks
using the tag. Each entry in the list includes the rung number and block type
using the tag. A double click on the entry will select and show the function block.
The cross-reference is hidden by default whenever the ladder editor is started.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

179

5.11 Compliing Your PointeControl Project
After you have developed your project, you can compile it into a finished
program and download it to your Pointe Controller unit for execution.

To compile your PointeControl project for download:

1. Configure your Chart List.

2. Set your Scan Interval.

3. Build your runtime module.

4. Activate the PointeControl Monitor.

For more information on using PointeControl Monitor, see Chapter 6,
“Downloading to the Controller,” and Chapter 7, “Monitoring and Debugging.”

NOTE: PointeControl does not support online changes. If you wish to modify your
project after you have downloaded it to the Pointe Controller unit, you must
make your changes in the PointeControl Framework and then recompile your
project.

5.11.1 Configuring your project's Chart List
You can use the Chart List to specify which Flow Charts and Ladder Diagrams are
to be compiled into the finished program and in what scan order they must be
arranged.

NOTE: The Chart List does not list subcharts. Any subcharts called by charts in the
Chart List are automatically included when the project is compiled.

To configure your project’s Chart List:

1. From the Project menu, choose Configure Chart List. The Chart List
window appears. All saved Flow Charts and Ladder Diagrams are listed
under Available Charts on the right.

2. Under Available Charts, highlight the chart you want to add and click the
<- button. The chart is moved from Available Charts on the right to the
Chart List on the left.

3. Repeat step 2 for each chart you want to add to the Chart List.

4. To change the scan order of a chart in the Chart List, highlight the chart
and use the Up and Down buttons to move it within the list. Repeat this
step until all of the charts are in the correct scan order.

5. To remove a chart from the Chart List, highlight the chart and click the ->
button. The chart is moved from the Chart List on the left to Available
Charts on the right.

Chapter 5: Developing Controller Programs Pointe Controller User Guide

180

NOTE: This action only removes the chart from the project’s Chart List. It
does not delete the chart from the project. To delete a chart from the
project, see Deleting an object from your project.

6. When you are satisfied with the configuration of the Chart List, click OK
to save your changes and close the window.

If you are doing a full compile of your project, then proceed to Setting your
project’s scan interval.

5.11.2 Setting your project's scan interval
Your project’s scan interval is the frequency at which the Pointe Controller unit
scans, or resolves, the Flow Charts and Ladder Diagrams that make up your
project. You can set the scan interval and other project preferences by using the
Preferences window.

To set your project’s scan interval:

1. From the Edit menu, choose Preferences. The Preferences window will
appear.

2. Change the preferences as needed:

� Logic Solve scan interval – The frequency at which the controller
resolves the charts that make up your project. (Default: 10 msecs)

� Monitor update interval – The frequency at which the controller
sends runtime data back to an attached PointeControl Monitor.
(Default: 250 msecs)

� Controller timeout interval – The time at which the controller will
stop execution, if communications with an attached PointeControl
Monitor are interrupted and cannot be reestablished. (Default: 5000
msecs)

� Download source to controller – The option to download the
project’s source code to the controller along with the compiled
program, so that the project may later be uploaded from the
controller back to an attached PointeControl Monitor for debugging.

3. Click OK to save your changes and close the window.

Pointe Controller User Guide Chapter 5: Developing Controller Programs

181

For more information on using PointeControl Monitor, see Chapters 6 and 7.

If you are doing a full compile of your project, then proceed to Checking your
project's chart integrity.

5.11.3 Checking your project’s chart integrity
PointeControl includes a built-in syntax checker that scans your Flow Charts
and Ladder Diagrams for missing, incorrect, or undefined tags and block

parameters. Some checking occurs as you build your charts, but using the Check
Integrity tool ensures that a thorough scan is performed.

The Check Integrity button allows you to locate and correct bugs that prevent the
program from compiling correctly. For each identified error in a Flow Chart or
Ladder Diagram, the Messages pane lists the name of the affected chart and the
coordinates of the block that contains the error.

NOTE: You can also check the integrity of an individual Flow Chart or Ladder
Diagram by clicking the Check Integrity tool in the toolbar of that particular
chart.

To check your project’s chart integrity:

1. Click the Check Integrity tool in the framework editor toolbar, or choose
Check Integrity from the Project menu. If PointeControl detects any
errors, they will be displayed in the Messages pane at the bottom of the
Framework Editor window.

2. Double-click a listed error to correct it. PointeControl will open the
affected Flow Chart or Ladder Diagram and highlight the block that
contains the error.

3. Correct the error.

4. Repeat steps 1 through 3 until all errors are corrected.

5.11.4 Building your project's runtime module
After you have configured your project’s Chart List, click the Build
Runtime toolbar button to build the final runtime module that will be

loaded onto the Pointe Controller unit. (You can also choose Build Runtime
from the Project menu.)

As the runtime is built, progress messages are displayed in the Messages pane at
the bottom of the Framework Editor window. If any errors are encountered, then
the build process will be aborted. Possible errors include:

� Syntax and chart integrity errors

� I/O configuration errors

� Modbus mapping errors

Chapter 5: Developing Controller Programs Pointe Controller User Guide

182

� Java compilation errors

You must fix all errors before you can try again to build the runtime module.

Once the runtime module is successfully built, proceed to Activating the
PointeControl Monitor.

5.11.5 Activating the PointeControl Monitor
After you have built your project’s runtime module, click the Activate
Monitor toolbar button to launch the PointeControl Monitor utility. (You

can also choose Activate Monitor from the Window menu.) This utility
manages the downloading of your runtime to the Pointe Controller unit.

For more information on using PointeControl Monitor, see Chapters 6 and 7.

Pointe Controller User Guide Chapter 6: Downloading to the Controller

183

Chapter 6: Downloading to the Controller
When you have finished developing and compiling your control program, you
must use the PointeControl Monitor application to download it to the Pointe
Controller unit. PointeControl Monitor (referred to hereafter as PCM) is a Java-
based utility for loading, running, monitoring, and debugging projects on Pointe
Controller units.

This chapter describes how to select and attach a Pointe Controller unit on the
network, then prepare and load a PointeControl project onto the controller.

TIP: The information provided in this chapter is also available via the
PointeControl Monitor online help. To access the help, choose Contents from the
Monitor’s Help menu.

Chapter 6: Downloading to the Controller Pointe Controller User Guide

184

6.1 Launching the PointeControl Monitor
To launch PCM from within the PointeControl development framework, either
click the Activate Monitor toolbar button or choose Activate Monitor from
the Window menu. To launch PCM from the Windows Start menu, choose Start
> Programs > PointeControl > M o n i t o r. When you launch PCM, the
PointeControl Monitor window appears:

The PointeControl Monitor window is roughly divded into two halves. The top
half of the window is a control panel that is used to download and run finished
control programs on the Pointe Controller hardware. The bottom half of the
window is a tabbed set of displays that show the status and performance of the
program as it runs on the controller. For more information on monitoring
program performance, see Chapter 7, “Monitoring and Debugging,” starting on
page 193.

Pointe Controller User Guide Chapter 6: Downloading to the Controller

185

6.2 Selecting and Attaching a Controller
PCM can interact with any Pointe Controller unit on the local Ethernet network.
However, PCM launches in a blank state and must establish an exclusive
connection with a specific controller in order for this interaction to occur.
Establishing this connection is called “attaching to the controller.

To select and attach a controller:

1. Click the Controller drop-down menu. The menu will list all of the Pointe
Controller units that are available on your network. If no controllers are
listed, make sure both your target controller and your PC are attached to
the same Ethernet network.

2. Select your target controller from the menu. PCM will immediately
attempt to attach the controller.

It may take several moments for PCM to successfully attach the controller. This
delay occurs as PCM checks to see if a project is already loaded on the controller
and, if there is, to secure the corresponding source code for debugging. (For more
information, see “Viewing and debugging charts” on page 205.)

NOTE: If PCM cannot attach the target controller, because of either
communication problems or extreme load, then you will be alerted to the failure
and an error message will be logged in the Console tab. If the problem persists,
you should reset the controller as described on page 230.

Once PCM has attached to the target controller, the control panel will be
updated to reflect the current state of the controller:

� If no project is loaded on the controller, then the Current project field
will remain empty and the Project to (re)load menu will become
enabled. The Start, Stop, and Reset buttons will be disabled. From here,
you can proceed with loading a project onto the controller.

� If a project is loaded but not running, then project will be displayed in the
Current project field and the Start and Reset buttons will become
enabled. From here, you can proceed with either starting the loaded
project or loading a different one.

� If a project is loaded and running, then the project will be displayed in
the Current project field and the Stop button will become enabled.
Also, the tabbed displays at the bottom of the window will show the
status of the project. From here, you can proceed with either monitoring
the running project or stopping it.

NOTE: If a password has been set on a Pointe Controller unit, then you must
match that password in PCM before you can attach the controller. If you do not,
you will receive an error message when you attempt to attach. For more
information, see “Assigning a password to the controller” on page 190.

Chapter 6: Downloading to the Controller Pointe Controller User Guide

186

6.2.1 Detaching from a controller
When PCM is attached to a specific Pointe Controller unit, it disables the
Controller drop-down menu to prevent you from accidentally disrupting
communications with the controller. You must explicitly detach from the
currently attached controller before you can select another.

To detach from a controller, click the Detach button to the right of the
Controller drop-down menu. You can then select and attach another controller
as described above.

NOTE: If a project is running on an attached controller, it will continue to run
after you detach from it.

Pointe Controller User Guide Chapter 6: Downloading to the Controller

187

6.3 Downloading a Project to the Controller
After PCM is attached to a specific Pointe Controller unit, you can select a
compiled project from your PointeControl working directory and download it to
the controller. Downloading a new project will completely overwrite any existing
project on the controller.

To download a project to the controller:

1. Verify that PCM is attached to the target controller.

2. If the controller is already running a project, then stop it.

3. Click the Project to (re)load drop-down menu. The menu will list all of
the compiled projects that are available in your PointeControl working
directory.

4. Select your desired project from the menu.

5. Click the Load button to begin the download process. PCM will prepare
the project and download it to the controller. You can watch the process
in the Console tab.

NOTE: You cannot download the same revision of a project that is already loaded.
You must download either a different (newer) revision of the loaded project or
different project altogether.

The download process can take several minutes, since it involves converting the
compiled project into a program image and writing it to the controller’s flash
memory. The actual amount of time it takes depends on the processor speed of
your PC.

When the load process is finished, the Start button will become enabled. You can
then proceed to Starting and stopping a loaded project.

6.3.1 Unloading a project
Downloading a new project will completely overwrite any existing project on the
controller. However, in certain cases (such as sending the hardware back to the
vendor for service), you may want to unload the existing project without
downloading a new one. To do this, simply attach the controller and click the
Unload button located to the right of the Current project field. This will
download a blank (null) project onto the controller, effectively erasing the
controller’s memory.

Chapter 6: Downloading to the Controller Pointe Controller User Guide

188

6.4 Starting and Stopping a Loaded Project
Once a project is loaded onto the Pointe Controller unit, it’s a very easy matter to
start the project:

1. Verify that PCM is attached to the target controller and your project is
loaded onto it.

2. From the Execution mode drop-down menu, select either I/O Enabled
or I/O Disabled:

� In I/O Enabled mode, the controller will scan all I/O points and
execute charts using live data. This option is intended for real control
of connected machinery.

� In I/O Disabled mode, the controller will not scan any I/O points and
will only execute charts internally using virtual data. This option is
useful for debugging logic flow; inputs can be simulated by forcing
tag values.

3. Click the Start button.

When the project is running, you can proceed with monitoring and/or debugging
it.

6.4.1 Stopping a project
To stop a project that is currently running on an attached controller, simply click
the Stop button. The controller immediately stops scanning charts and I/O, and
the project’s last state (including tag values and chart conditions) is retained in
memory.

WARNING: Stopping a project does not stop the controller’s internal clock nor
any Timers that are keyed to it. Active Timers continue to count elapsed time
even while the project is stopped, and all control logic that is based on those
Timers will update accordingly when the project is resumed.

To completely stop an active Timer, you must either execute a Timer Stop
command (T_STOP) within the project or stop and reset the project using PCM.
For more information on resetting a project, see below.

6.4.2 Restarting a stopped project
To resume a stopped project from its last state, simply click the Start button
again.

To restart a stopped project from its initial state – that is, the initial tag values
and chart conditions that you defined when you created the project in the
PointeControl Framework – click the Reset button and then the Start button.

Pointe Controller User Guide Chapter 6: Downloading to the Controller

189

6.4.3 Enabling and disabling I/O
You can change the controller execution mode (i.e., whether real I/O scanning is
enabled or disabled) any time the project is stopped – for example, if you began
your debugging with I/O disabled and now want to enable it. To change the
execution mode:

1. Verify that PCM is attached to the target controller and your project is
loaded and running.

2. Click the Stop button.

3. Click the Execution mode drop-down menu and select either I /O
Enabled or I/O Disabled, as desired.

4. If you wish to restart the project from its initial state, click the Reset
button.

5. Click the Start button.

Chapter 6: Downloading to the Controller Pointe Controller User Guide

190

6.5 Assigning a Password to the Controller
You can secure one or more Pointe Controller units against unauthorized access
by assigning passwords to them. You can assign the same password to a group of
controllers by first creating the password in PCM and then assigning it to each
controller in the group.

Once a password is assigned to a controller, you must have that password set in
PCM before you can reattach the controller. (If you do not, you will receive an
error message.) The password is retained in memory, allowing you to freely
attach all matching controllers.

To create/set a password in PCM:

1. From the Edit menu, choose Password. The Controller group
password window will appear.

2. Enter your password, then tab to the next field and enter it again to
confirm.

3. Click OK. The password is retained until a new password is set or until the
current PCM session is closed.

Once the password is set in PCM, it can be used both to add new, unsecured
controllers and to access controllers that are already secured with that password.

To assign the current password to an unsecured controller:

1. Verify that PCM is attached to the target controller.

2. From the Edit menu, choose Join group. The password will be assigned
to the controller and the change will be confirmed in the Controller Log.

NOTE: The password is saved permanently in the controller’s flash
memory, until the controller is removed from the group or undergoes a
hard reset (see below).

3. To assign the same password to other controllers, detach from the current
controller and repeat the process for each additional controller.

To clear the password from a secured controller:

1. Verify that PCM is attached to the target controller. (You must have the
appropriate password set in PCM before you can attach the controller.)

2. From the Edit menu, choose Leave group. The password will be erased
from the controller and the change will be confirmed in the Controller
Log.

3. To clear the same password from other controllers, detach from the
current controller and repeat the process for each additional controller.

Pointe Controller User Guide Chapter 6: Downloading to the Controller

191

6.5.1 Overriding a password
If you cannot remember a controller’s password, you can bypass it via hardware
override. To override the password on a controller:

1. Power off the affected controller.

2. Change the controller’s Modbus address to “98,” using the rotary switches
located on the controller’s motherboard.

3. Power on the controller.

4. Launch PCM, attach the controller, and clear the password.

5. Power off the controller.

6. Change the Modbus address back to its original setting.

7. Power on the controller.

For more information on accessing the Pointe Controller rotary switches, see
“Hardware Reset” on page 230.

Chapter 6: Downloading to the Controller Pointe Controller User Guide

192

6.6 Saving a Project from the Controller
If you wish to edit a project that was not developed on your own PC, you can
retrieve the project’s source code from the controller and save it in your
PointeControl working directory. From there, it can be opened normally in the
PointeControl development framework.

To save a project from the controller:

1. Verify that PCM is attached to the target controller.

2. From the File menu, choose Save Current Project As. The save file
dialog will appear.

3. Enter a name for the project.

4. Click OK. The project is saved.

NOTE: In order to retrieve a project’s source code from the controller, the project
must have had the Download source to controller preference enabled when
the project was originally loaded. The preference is enabled by default, but some
developers may disable it to restrict access to the project.

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

193

Chapter 7: Monitoring and Debugging
One of the powerful features of PointeControl is the ability to monitor and
debug program operations while they are running on the Pointe Controller unit.

This chapter is divided into two sections:

� Monitoring a running project – This section describes how to use PCM’s
built-in tools to monitor the status and performance of the project while
it is running on the Pointe Controller unit.

� Viewing and debugging charts – This section describes how to use PCM’s
built-in tools to debug the project’s Flow Charts and Ladder Diagrams, by
manipulating individual tag values and block execution.

TIP: The information provided in this chapter is also available via the
PointeControl Monitor online help. To access the help, choose Contents from the
Monitor’s Help menu.

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

194

7.1 Monitoring a Running Project
After you have loaded and started a project on your Pointe Controller unit, you
can monitor the project’s behavior using the tools included in PCM. These tools
are accessible through the four tabbed panes along the bottom of the PCM
window:

� The Charts tab lists all of the Flow Charts and Ladder Diagrams that are
running in the current project. You can select any listed chart to open it
for viewing and/or debugging.

� The Browser tab provides a searchable list of all the Logic Memory tags,
strings, and timers in the current project. You can select individual tags to
see their real-time values or to force new values.

� The Console tab displays all status and error messages generated by PCM
itself as it communicates with attached controllers.

� The Controller Log tab shows the activity log of the currently attached
controller. Logged activities include project loads and unloads, project
starts and stops, and password group changes.

You can also check the general system performance (scanning speed, processor
usage, I/O errors) of the Pointe Controller itself by using the Performance Metrics
window.

7.1.1 The Charts Tab

The Charts tab displays all of the Flow Charts and Ladder Diagrams that are
running in the current project.

NOTE: In this chapter, the term “charts” refers to both Flow Charts and Ladder
Diagrams collectively.

The tab displays up to four columns:

� Chart – The name of the chart.

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

195

� State – The current state (READY, RUNNING, etc) of the chart.

� Block (optional) – If logic flow is enabled in the debugger, then this
column shows which block in the chart is currently being executed.

� Execution Time (optional) – If diagnostic timers are enabled in the
debugger, then this column shows the total time to execute the chart.

To open any chart for viewing and/or debugging, simply double-click on it. The
chart will be opened into a new debugger window. For more information,
proceed to “Viewing and debugging charts” on page 205.

7.1.2 The Browser Tab

The Browser tab provides a searchable list of all the Logic Memory tags, strings,
and timers in the current project. You can select individual tags to see their real-
time values or to force new values.

To create a new search:

1. Click the Search criteria tab.

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

196

2. Select the classes and types of tags for which you want to search by
clicking the corresponding checkboxes. For example, to search for all
Input Bit and Output Bit tags, click the Inputs, Outputs, and Bits
checkboxes:

3. Click the Search results tab. The tags that match the selected types will
be listed.

There are two ways to narrow your search even further:

� Switch from All values to Forced values to search only for tags which
you have manually forced to new values.

� Enter a Filter string to search only for tag names that start with that
string. For example, a Filter string of “InSwitch will return Inswitch1,
InSwitch2, InSwitch3, and so on.

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

197

Showing tag details

Once you have your search results, you can double-click on any listed tag (or
right-click and choose Show Details) to open a new window that shows detailed
information about the tag:

From this window you can also force the tag to a new value – but for more
information on that, see “Forcing new tag values” on page 212.

Adding tags to a watch window

As you monitor your running project, you can build a Watch Window that shows
only your favorite tags. To add a tag from the Browser search results to the
Watch Window, right-click on the desired tag and choose Add to watch
window.

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

198

Just as in the Search results tab, you can double-click on any listed tag to open a
new window that shows detailed information about the tag.

After you have built your Watch Window, you can save its configuration as a
.WWD file in your project’s working directory. You can do this either by choosing
File > Save or by closing the window and clicking Yes when prompted. Then the
next time you run PCM and monitor the project, you can quickly restore the
Watch Window to its saved configuration by choosing File > Open and selecting
the desired .WWD file.

NOTE: You can open the Watch Window directly from the main PCM window by
choosing View > Watch Window.

7.1.3 The Console Tab

The Console tab displays all status and error messages generated by PCM as it
communicates with attached controllers. Types of messages displayed here
include:

� Program activity messages for the PCM application itself;

� Communications status and error messages, as PCM communicates with
the Pointe Controller unit via the Ethernet network;

� Progress messages generated as a finished PointeControl project is
prepared for loading onto the controller; and

� Debugging status messages, as PCM’s built-in debugger interfaces with
the project running on the controller.

Saving or clearing messages

Messages can be saved from the tab by selecting (highlighting) the desired
messages, right-clicking on the selection, and choosing either Copy or Save As
from the pop-up menu. If you choose Copy, then you can paste the selection into

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

199

another application such as MS Word or Notepad. If you choose Save As, then
you will be prompted to save the selection as a text file.

If no specific messages are selected, then the entire backlog will be copied/saved.

You can also clear the log by right-clicking and choosing Clear.

Communications errors

The table below lists the possible communications error messages:

Code Name Description

1 TNT_INV_ARGUMENT An invalid argument was passed to
the method

2 TNT_INV_CLASS An invalid class name was passed to
the method

3 TNT_NOT_OPEN A TNTManager object has not been
created

4 TNT_TOO_MANY_MGR Current number of TNTManager's at
maximum

5 TNT_BASE_SUPT Unable to initiate Paragon services

6 TNT_BIN_FILE Unable to locate Client Objects BIN
file

7 TNT_INV_HANDLE Invalid handle used for receiver

8 TNT_INV_METHOD Method is not supported by object

9 TNT_TRACE_FAIL Unable to open trace file

10 TNT_NO_MEMORY Unable to allocate required memory

11 TNT_IMPROPER_METHOD Method is inappropriate given
current object state

12 TNT_TRC_NO_MEM Unable to trace due to inability to
allocate memory

13 TNT_CRA_OPEN_ERR CRA error - unable to open stream

14 TNT_CRA_ADD_ERR CRA error - unable to add request

15 TNT_CRA_INFO_ERR CRA error - unable to perform
information query

16 TNT_READ_ERR CRA error - unable to perform read

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

200

Code Name Description

17 TNT_WRITE_ERR CRA error - unable to perform write

18 TNT_READWRITE_ERR CRA error - unable to perform
read/write (query)

19 TNT_CRA_NAMES_ERR CRA error - unable to retrieve names

20 TNT_INV_DEFINITION Invalid structure definition

21 TNT_INV_REFERENCE Invalid structure reference

22 TNT_NOT_AVAILABLE Data is not available at this time

23 TNT_CRA_GETNAMES_ERR CRA error - unable to access directory

24 TNT_ARCHIVE_OPEN_FAIL Unable to open archive file

25 TNT_ARCHIVE_WRITE_FAIL Unable to write into archive file

26 TNT_ARCHIVE_READ_FAIL Unable to read from archive file

27 TNT_NO_CRA Client Objects initialized without CRA
support

To fix a communications error, try the following:

� Wait for the transient condition to clear and try again to attach the
controller.

� Verify that both the Pointe Controller unit and your PC are properly
connected to the Ethernet network. Also verify that their IP addresses and
other network settings are properly configured.

� Cycle power to the Pointe Controller unit.

If none of these fix the error, then please contact Nematron Customer Support.

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

201

7.1.4 The Controller Log Tab

The Controller Log tab shows the activity log of the currently attached
controller. Logged activities include project loads and unloads, project starts and
stops, password group changes, and so on. The 25 most recent messages are
retained in the controller’s flash memory.

For more information on interpreting controller log messages, see Chapter 9,
“Troubleshooting,” starting on page 227.

Saving or clearing messages

Messages can be saved from the tab by selecting (highlighting) the desired
messages, right-clicking on the selection, and choosing either Copy or Save As
from the pop-up menu. If you choose Copy, then you can paste the selection into
another application such as MS Word or Notepad. If you choose Save As, then
you will be prompted to save the selection as a text file.

If no specific messages are selected, then the entire backlog will be copied/saved.

You can also clear the log by right-clicking and choosing Clear.

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

202

7.2 Checking System Performance
You can check the system performance of an attached Pointe Controller unit by
opening the Performance Metrics window:

� From the View menu, choose System Performance. The Performance
Metrics window will appear.

The Performance Metrics window offers three tabs: Scanning, Loading, and
Errors.

7.2.1 Scanning

The Scanning tab shows how much real time (in microseconds) it is taking the
controller to process the Flow Charts and Ladder Diagrams that make up the
currently running project, as well as to scan the I/O modules, operator panel, and
OptiLogic RTUs that are connected to the controller.

For charts/ladders, the scan time is the time elapsed from when the input tags are
read in, through the entire logic solve, to when the output tags are written out.
For modules, panels and RTUs, the scan time is the time elapsed from when the
controller’s processor becomes available to scan the component to when that
component’s scan is complete.

Overruns occur when a component does not complete its current scan before its
next scheduled scan. For example, if a module is configured with a Scan Interval
of 10, then it is scheduled to be scanned at 0, 10, 20, 30, and so on. The scan
starting at 0 must be completed before 10. If it is not, it is registered as an
overrun.

NOTE: All charts and I/O scan concurrently, not sequentially.

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

203

7.2.2 Loading

The Loading tab shows how much load each PointeControl task is putting on the
controller’s processor. Each task’s load is expressed as a percentage of the
processor’s total available resources:

� Chart/Ladder execution is the load to process the Flow Charts and
Ladder Diagrams that make up the currently running project.

� Debug interface is the load to interface with the Monitor’s debugging
tools.

� Local I/O scanning is the load to scan and update the I/O modules and
operator panel specifically in the attached controller.

� RTU scanning is the load to scan the I/O points on any additional Remote
Terminal Units (RTUs) that are attached to the controller using the
OptiLogic UDP/IP protocol.

� Modbus TCP driver is the load to maintain the controller’s built-in
Modbus TCP driver, if enabled, and to respond to incoming Modbus
requests.

� Modbus RTU driver is the load to run the controller’s built-in Modbus
RTU driver, if enabled, and to respond to incoming Modbus requests.

� Data access server is the load to maintain communications between the
controller and the Monitor. This includes support for tag browsing,
controller log, performance metrics, and network discovery.

Free static heap indicates how much non-reusable memory is still available.
Free dynamic heap indicates how much reusable memory is still available. The
dynamic heap will decrement to zero as memory is used and reset as memory is
recovered.

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

204

7.2.3 Errors

The Errors tab shows the current status of the I/O modules, operator panel, and
OptiLogic RTUs connected to the controller, as well as the total number of
communications errors encountered by each device since the current project was
started.

Status is the current operating condition of the given module. Errors is the
current “streak of consecutive errors. Peak is the longest streak encountered
since the project was started.

Errors on a module or panel are indicative of serial communication errors on the
controller’s motherboard. A single error or two may be encountered during
initialization. Continuous errors may be indicative of a hardware defect or a
poorly seated connection.

Errors on an RTU are more likely an indication of problems in the Ethernet
network – either a bad network connection or excessive network load.

For more information, see Chapter 9, “Troubleshooting,” starting on page 227.

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

205

7.3 Viewing and Debugging Charts
You can open any chart for viewing and debugging by double-clicking on the
chart in the Charts tab. The chart will be opened into a new Debugger window:

The Debugger window displays a real-time view of the selected chart’s activity
and provides tools to interactively control the program flow. The Debugger
window highlights the currently active block. As the program flows, different
blocks appear highlighted as they become active.

For more information on the different parts of the Debugger window, proceed to
“The Debugger window” on page 206.

NOTE: When PCM first attaches to a Pointe Controller unit, it attempts to retrieve
the source code of the currently loaded project. The source code is required for
debugging, and it can also be saved locally for further editing. By default, the
source code is always loaded onto the controller along with the compiled project.
However, this can be prevented by disabling the Download source to
controller preference in the PointeControl development framework. If the
source code cannot be retrieved, then the project cannot be debugged.

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

206

7.3.1 The Debugger Window

The Debugger window displays a real-time view of the selected chart’s activity
and provides tools to interactively control the program flow. The currently active
block is always highlighted; as the program flows, different blocks are
highlighted as they become active.

A toolbar containing icons for each of the tools available to the debugger
appears below the title bar. Most of the tools are usable in both Flow Charts and
Ladder Diagrams, but some tools are for Flow Charts only. Each tool is described
later in this document.

Below the toolbar is a workspace area in which the chart is displayed. Scroll bars
will appear as needed to view the diagram, based on magnification level and size
of the diagram.

The cursor is always in Select mode within the Debugger window. Any chart block
may be selected by a single-click. Object selection enables some of the tools in the
toolbar and disables others.

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

207

To view the activity of a particular block in the chart displayed in the Debugger
window, double-click on that block. A Block Watch Window for that block will
be displayed. The window lists all of the Logic Memory tags, strings, and timers
that are read or updated by the selected block. The value of each tag is
dynamically updated as the value changes within the program flow.

7.3.2 Zooming In and Out on a Chart
A chart that is opened in the Debugger window can be viewed at
several different magnification levels using the Zoom In and Zoom

Out tools. Zooming is useful when you are trying to view a especially large chart
and you need to see how the logic flows without scrolling around.

Zoom In makes the chart appear larger, while Zoom Out makes the chart appear
smaller, allowing you to see more of it within the workspace window. By default,
a chart is initially displayed at the maximum magnification level.

7.3.3 Viewing Subcharts within a Chart
When a chart contains a call to another subchart, the subchart can be
viewed by selecting the calling block and clicking the Open Subchart tool

(or Open Subdiagram in ladder). The subchart will be opened, replacing the
previous chart in the active Debugger window. All of the regular debugging tools
are available while viewing the subchart.

Once a subchart is opened, it can be closed again by clicking the Close
Subchart tool (or Close Subdiagram in ladder). The previous chart will be

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

208

restored in the Debugger window, with magnification and scroll position intact.

NOTE: The Open Subchart tool is enabled only when a calling block (Subchart
block in Flow Charts, CALL function block in Ladder Diagrams) is selected. The
Close Subchart tool is enabled only when the subchart is open in the Debugger
window.

7.3.4 Enabling Logic Flow in a Chart
Clicking the Enable Logic Flow tool suspends the normal execution cycle
on the Pointe Controller unit and enters the Logic Flow debugging mode.

When Logic Flow is enabled (the button remains depressed), the controller checks
for a breakpoint at each chart block transition, pauses if it finds a breakpoint, and
waits for the command to continue.

Logic Flow must be enabled in order to insert breakpoints. Also, when
breakpoints are set, the Enable Logic Flow toolbar button is locked to ensure that
all breakpoints are honored.

Enabling logic flow also enables the Block column in the Charts tab.

NOTE: Checking for and processing breakpoints causes a significant impact on the
performance of the controller. As such, Logic Flow is automatically disabled when
all breakpoints are removed and all debugger windows are closed.

Scan I/O During Single Step Mode

When Scan I/O During Single Step Mode is enabled (the tool button
remains depressed), the controller continues to scan all of its I/O points even

while one chart is stopped on a breakpoint. Disabling this mode (the tool button
is not depressed) prevents I/O scanning. This mode is enabled by default, but it is
useful to disable it if you do not want the controller to run unsupervised while
you are working with a specific breakpoint.

Run Charts During Single Step Mode

When Run Charts During Single Step Mode is enabled (the tool button
remains depressed), the controller continues to execute all other charts even

while one chart is stopped on a breakpoint. Disabling this mode (the tool button
is not depressed) prevents the execution of other charts. This mode is enabled by
default, but it is useful to disable it if you do not want the controller to run
unsupervised while you are working with a specific breakpoint.

NOTE: Since these tools control the actual state of the controller, they are
automatically synchronized across all debugger windows.

7.3.5 Enabling Debug Trace in a Chart
Selecting the Enable Debug Trace tool activates an internal tracing of how
the chart’s logic flow is executed. The trace is dynamically updated as each

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

209

block is executed, and the information can be displayed either as a visible path in
the debugger window (Show Debug Trace) or as tabular data (View Debug
Trace).

Up to 1000 steps (records) can be saved in a circular memory buffer; if more than
1000 steps are recorded, the trace overwrites from the beginning of the buffer.
The buffer is reset for each new scan of the chart.

NOTE: Enabling Debug Trace adversely affects the execution speed of the Pointe
Controller unit. As such, Debug Trace is automatically disabled when the
debugger window is closed.

Show Debug Trace

Once debug tracing is enabled, you can select the Show Debug Trace tool
to display the tracing in the debugger window. In Flow Charts, the trace is

displayed as a yellow frame around the currently active block. In Ladder
Diagrams, the trace is displayed as a green highlight along the currently active
rung.

Show Debug Trace is automatically enabled when the Enable Debug Trace tool is
selected.

NOTE: In Ladder Diagrams, the trace display and trace record collections are
interlocked so that a whole pass through the diagram is shown. That is, the
display of the trace will be done only after the last ladder object in the last rung
of the diagram executes, but before the trace buffer is reinitialized at the top of
the diagram. This differs from the tracing done in the Flow Charts, in which
partial passes through a chart are shown.

View Debug Trace

In addition to the visual debug trace, a tabular readout of the trace records
can be displayed by selecting the View Debug Trace tool. Trace records are

listed from newest to oldest, and each record shows the name of the chart (or
called subchart) and the object’s coordinates (rung/block). A sample table is
shown below:

The trace records can also be printed or saved to a file for subsequent analysis.

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

210

7.3.6 Inserting Breakpoints in a Chart
Breakpoints may be set and cleared on selected blocks using the
Insert/Remove Breakpoint tool. Selection of a block enables the tool.

Clicking the tool toggles the breakpoint status of the block.

NOTE: Breakpoints can be inserted only when Logic Flow is enabled.

When a breakpoint is set, the block is shown with a red background. All logic
flow in the current project pauses the next time the block is about to execute,
before any processing occurs for the block. If the Debugger window containing
the breakpoint is closed or hidden when the breakpoint is reached, it is opened
and/or brought to the front.

When logic flow pauses on the breakpoint, the block is shown with a yellow
background. When the breakpoint is cleared, the block is shown with a green
background.

Use the Go, Single Step, or Run to Cursor tools to continue execution of logic
flow.

Setting a breakpoint on any block will also enable the following tools…

Remove All Breakpoints

All breakpoints set within the active (foreground) Debugger window can be
cleared by clicking the Remove All Breakpoints tool. All blocks containing

breakpoints will be restored to their normal (green) state. However, removing the
breakpoints does not re-enable execution flow – use the Go, Single Step, or Run
to Cursor tools to resume execution (see above).

Remove All Breakpoints in All Threads

All breakpoints set in all charts in the project can be cleared by clicking the
Remove All Breakpoints in All Threads tool. All blocks containing

breakpoints will be restored to their normal (green) state. However, removing the
breakpoints does not re-enable execution flow – use the Go, Single Step, or Run
to Cursor tools to resume execution (see above).

Display Breakpoint List

Breakpoints established in any chart can be viewed using the Display
Breakpoint List tool. This tool is enabled whenever any breakpoints are set

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

211

within the executing OpenControl project. Selecting the tool activates the
Breakpoint List dialog. This dialog will float on top of all OpenControl runtime
windows, so selecting another debugger window or the OC Monitor will not hide
the breakpoint list. An example breakpoint list is shown below:

Each breakpoint in the list shows the name of the chart (followed by the subchart
name for breakpoints in subcharts) and the coordinates of the affected block.
Double-clicking on a listed breakpoint will open the chart in which the
breakpoint is set.

7.3.7 Continuing Execution after a Breakpoint
Once a breakpoint is reached, all logic flow in the chart containing the
breakpoint stops. Execution of the chart can be resumed by clicking the Go

tool and it continues normally until the next breakpoint is reached.

NOTE: By default, all other charts and I/O in a project continue to scan while one
chart is stopped on a breakpoint. For more information, see “Enabling logic flow
in a chart” on page 208.

Single Step

Another option is to execute a single block, or “step, by selecting the
Single Step tool. Clicking this tool places a temporary breakpoint on the

next block to execute and then runs only to that block. The temporary breakpoint
is cleared when reached and it does not appear in the breakpoint list.

You can click the Single Step tool repeatedly to continue “stepping through
chart, one block at a time.

NOTE: In Ladder Diagrams, branches are executed according to a special ordering
algorithm. For example:

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

212

The numbers indicate the order in which the contacts are executed. As is shown,
the ordering is from innermost branch to outermost branch. The main branch is
followed until a merge point, at which the preceding split point is found and its
branch followed.

Run to Cursor

A third option is to execute all the way up to a specific block in the chart, by
selecting the desired block and clicking the Run to Cursor tool. A

temporary breakpoint is set on the selected block and the chart is executed only
up to it. The temporary breakpoint is cleared when reached and it does not
appear in the breakpoint list.

When using this tool, be aware that the breakpoint set on the selected block may
never be reached if, depending on the flow of the chart, the block is never
executed. In such a case, the temporary breakpoint will remain set until manually
removed using the Remove Breakpoint tool.

7.3.8 Forcing New Tag Values
When you double-click on any tag listed in the Browser tab or Watch Window, a
pop-up window is displayed that allows you to force a new value for the tag. The
new value is treated as real data by the Pointe Controller unit.

This is useful for testing hypothetical conditions that may not be reached in the
normal execution of your project. It can also be used to simulate inputs and
outputs when you are running your project with I/O disabled.

WARNING: Please exercise extreme caution when using this function with I/O
enabled. Forcing a value while I/O is enabled can cause connected equipment to
exceed normal operating parameters.

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

213

Input, Output, and Memory tags

To force a new value for an Input, Output, or Memory tag:

1. Open the tag by double-clicking on it in the Browser tab, in the main
Watch Window, or in an individual Block Watch Window. The tag’s detail
window will be displayed.

Chapter 7: Monitoring and Debugging Pointe Controller User Guide

214

2. Click the Toggle Force State button. This will lock the tag against
updates that may be made by the normal execution of your project.

3. Enter the New value and press return. The tag will be immediately
changed from its previous value to the new value.

To remove the force, simply click the Toggle Force State button again. The
value will then be overwritten by the normal execution of the project.

Pointe Controller User Guide Chapter 7: Monitoring and Debugging

215

NOTE: You can enter a new value without toggling the tag’s force state, but then
the tag can be overwritten.

Strings and Timers

Strings and timers differ from tags only in that you do not need to click the
Toggle Force State button before entering a new value. (In fact, there is no such
button in the string and timer windows.) Whatever value you enter will be
accepted immediately by the project. However, the value cannot be locked and
will be overwritten by the normal execution of your project.

7.3.9 Additional Tools for Flow Charts Only

Button Tool Description

Toggle Labels Toggles the display of block labels, as
determined by each block’s Caption
property.

Select Active Block Directly selects the block that is
currently being executed.

Enable Diagnostic Timers Enables diagnostic timers that measure
the total time to execute charts, as well
as time spent executing loops. Selecting
this tool also enables the Execution
Time column in the Charts tab.

View Diagnostic Timers Opens a window showing all of the
diagnostic timers for the current chart.
Diagnostic timers must already be
enabled as described above. Since only
times of 1 second or more are
displayed, this window is usually empty.

Size to Content Adjusts the sizes of the blocks in the
currentchart to accomodate the content
of the blocks. Resizing is not persistent;
blocks will revert to their original sizes
when the debugger window is closed.

Chapter 8: Networked Operations Pointe Controller User Guide

216

Chapter 8: Networked Operations
In addition to operating as a stand-alone machine controller, the Pointe
Controller unit can also be integrated into a networked control system. It can
serve as supervisory node, administering up to four remote I/O terminals, or it can
be configured as a Modbus slave device in a larger Modbus network.

TIP: The information provided in this chapter is also available via the
PointeControl Framework online help. To access the help, choose Contents from
the Framework’s Help menu.

Pointe Controller User Guide Chapter 8: Networked Operations

217

8.1 Networking via OptiLogic Remote I/O
As a Master Controller for distributed control solutions, the Pointe Controller is
capable of interfacing with up to four OptiLogic I/O terminals via Ethernet. This
reduces wiring cost of the I/O devices back to the controller, while providing high
speed I/O control from the controller.

You can configure up to four additional OptiLogic Remote Terminal Units (RTUs)
to work with your Pointe Controller unit. These units are slaved to your controller
using the OptiLogic UDP/IP communication protocol.

To configure additional OptiLogic RTUs:

1. Launch the PointeControl Framework and open your project.

2. From the Project menu, choose Configure I/O.

3. Click the RTU 1 tab.

4. Click the Base type drop-down menu and select the appropriate
OptiLogic RTU model number: OL4054, OL4058, or OL4228.

5. In the Unit identifier field, enter the RTU’s ID number.

6. Specify what I/O modules and operator panel are installed in the RTU. This
is done the same way as for the Pointe Controller itself. For a reminder,
see “Specifying your installed hardware” on page 121.

7. Configure the I/O modules. This is done the same way as for the Pointe
Controller itself. For a reminder, see “Configuring I/O modules” on page
127.

8. Configure the operator panel, if any. This is done the same way as for the
Pointe Controller itself. For a reminder, see “Configuring operator
panels” on page 128.

9. Repeat steps 2 through 7 for RTU 2, RTU 3, and RTU 4 as needed.

10. Click OK to save your changes and close the window.

For more information on using OptiLogic RTUs, see the OptiLogic RTU User
Manual. This document is included with every OptiLogic RTU, or it can be
downloaded from Optimation’s Web site at http://www.optimate.com/.

Chapter 8: Networked Operations Pointe Controller User Guide

218

8.2 Networking via Modbus Data Mapping
As a control node in a scalable network, the Pointe Controller performs dedicated
real-time local control, while maintaining communications with the designated
supervisory computer. Total system deployment, configuration, project
coordination, and data logging can be implemented from any authorized
network workstation.

The Pointe Controller can be configured to communicate with supervisory
computers and operator terminals via the industry-standard Modbus protocol. To
do this, you must first enable the Modbus driver and then map the Logic Memory
variables used in PointeControl to the appropriate Modbus addresses. When your
project is downloaded to and run on the Pointe Controller unit, Modbus
communication is started automatically and the unit shares the mapped data over
its serial and/or Ethernet connection.

If you intend to configure Modbus mapping, you should be familiar with the
Modbus protocol and the different Modbus data types, as defined by Modicon /
Schneider Electric. You should also have a basic understanding of PLC memory
addressing.

NOTE: The Pointe Controller is designed to work as a Modbus slave device,
regardless of whether serial or Ethernet communication is enabled. Anything that
attaches to the Pointe Controller unit via Ethernet is automatically the Modbus
master device and therefore responsible for initiating requests to the controller.

Pointe Controller User Guide Chapter 8: Networked Operations

219

8.2.1 Modbus Address
The addressing that you, the system designer, must set is the address set via
rotary address switches in the Pointe Controller base unit. Every Modbus device in
your system must have its own unique address. This address, a value between 00
and 97, is how the Modbus master identifies each device.

NOTE: Addresses 98 and 99 are reserved for performing hardware resets. For
more information, see page 230.

To get to the address switches, you must first remove the end cover from the base
unit. To do this, simply squeeze the latching tabs, shown in the figure below, and
lift the cover off.

Removing the end cover will expose the base motherboard. The address switches
will be found near the connector for slot 0.

To set the controller’s Modbus address, rotate the switches to the desired values.
The switch on the left is the “tens” digit. The switch on the right is the “ones”
digit. A small flat blade screwdriver is the only tool you need. The address shown
on the figure above is “25.”

Remember that each Pointe Controller unit on your network must have its own
unique Modbus address, which is set prior to applying power to the controller.
Duplicate addresses will cause system communications to fail.

Chapter 8: Networked Operations Pointe Controller User Guide

220

8.2.2 Types of Modbus data
PointeControl allows mapping to four different Modbus data types: Coils,
Discretes, Analogs, and Registers. The following table shows which variables in
Logic Memory can be mapped to each data type:

Coils
(00001-
09999)

read/write

Discretes
(10001-
19999)

read only

Analogs
(30001-
39999)

read only

Registers
(40001-
49999)

read/write

Inputs

%IX (Bits) X

%IUB (8 Bit Unsigned) X

%IB (8 Bit Signed) X

%IUW (16 Bit Unsigned) X

%IW (16 Bit Signed) X

%IUD (32 Bit Unsigned) X

%ID (32 Bit Signed) X

%IF (32 Bit Real) X

Memory

%MX (Bits) X X X

%MUB (8 Bit Unsigned) X X

%MB (8 Bit Signed) X X

%MUW (16 Bit Unsigned) X X

%MW (16 Bit Signed) X X

%MUD (32 Bit Unsigned) X X

%MD (32 Bit Signed) X X

%MF (32 Bit Real) X X

Outputs

%QX (Bits) X X X

%QUB (8 Bit Unsigned) X X

%QB (8 Bit Signed) X X

%QUW (16 Bit Unsigned) X X

%QW (16 Bit Signed) X X

%QUD (32 Bit Unsigned) X X

Pointe Controller User Guide Chapter 8: Networked Operations

221

Coils
(00001-
09999)

read/write

Discretes
(10001-
19999)

read only

Analogs
(30001-
39999)

read only

Registers
(40001-
49999)

read/write

%QD (32 Bit Signed) X X

%QF (32 Bit Real) X X

Strings X X

Timers X

WARNING: Always be careful when mapping directly to Output variables. While
it may be desirable to do so in certain applications, be advised that if you do, you
will be giving direct control of mapped outputs to any remote device that
communicates over your Modbus interface. It is generally more advisable to map
to a Memory variable, so that your PointeControl program can check incoming
commands and verify they should be executed.

8.2.3 Enabling the Modbus driver
To enable the Modbus driver on the Pointe Controller unit:

1. Launch the PointeControl Framework and open your project.

2. From the Project menu, choose Configure Modbus Mapping. The
Modbus Driver Configuration window will appear.

3. To enable Modbus communication via Ethernet, click the Ethernet TCP
checkbox. No additional configuration is needed.

Chapter 8: Networked Operations Pointe Controller User Guide

222

4. To enable Modbus communication via the RS232 serial port:

a. Click the Serial checkbox. The Serial port configuration settings
become enabled.

b. Configure the serial port as needed for your control application. (The
default values of 9600 baud, 8 data bits, 1 stop bit and no parity are
recommended.)

5. Proceed to Mapping variables to Modbus addresses, or click OK to save
your changes and close the Modbus Driver Configuration window.

NOTE: You can enable both Ethernet and Serial communications on the same
Pointe Controller unit. However, each type of communications requires additional
memory and processing power, so enable only the features you need for your
control application.

8.2.4 Mapping variables to Modbus addresses
To map Logic Memory variables to Modbus addresses:

1. If the Modbus Driver Configuration window is not already open, open it
now by choosing Project > Configure Modbus Mapping.

Pointe Controller User Guide Chapter 8: Networked Operations

223

2. Click on the tab corresponding to the Modbus data type — Coils,
Discretes, Analogs, or Registers — that you want to map.

In this example, Coils is selected:

3. Specify the number of addresses that you want to map in this Modbus
data type: click in the Number of field, enter the number, and press the
Tab key. Addressing always starts at the low end of the available range.

In this example, 16 addresses are specified, numbered 00001 through
00016:

NOTE: You can increase the number of addresses at any time without
affecting addresses that have already been mapped. However, if you
attempt to decrease the number of addresses without first unmapping
the addresses that would be removed, you will be prompted to verify the
action.

Chapter 8: Networked Operations Pointe Controller User Guide

224

4. Double-click on an address you want to map. A pop-up window appears
listing all of the currently defined Logic Memory variables that can be
mapped to that Modbus data type.

For more information on which Logic Memory variables can be mapped to
which Modbus data types, see “Types of Modbus data” on page 219.

5. Select the variable you want to map from the pop-up window. The
variable is mapped to the address.

NOTE: Each Modbus address represents a 16-bit memory location. If the
selected variable — for example, a string or a long interger — requires
more than 16 bits, then additional addresses will be allocated to the
variable and marked as <unavailable>.

Also, PointeControl will automatically append a NULL terminator onto a
string as it is mapped. Therefore, as an example, a 20-character string will
be allocated 11 addresses: 10 addresses for the string at two characters
per address, plus one address for the NULL terminator.

6. Continue mapping each address until finished.

NOTE: You do not need to map all of the addresses in a data type. You
can leave some blank while mapping only the addresses needed to
communicate with your other Modbus devices.

Pointe Controller User Guide Chapter 8: Networked Operations

225

7. Return to step 2 to map another data type, or click OK to save your
changes and close the Modbus Driver Configuration window.

Packing individual bits into a Register

Under the Register data type, you can “pack up to 16 individual Bit-type variables
into a single address. This is done by expanding the address into 16 sub-addresses
and mapping the bits to each sub-address. Each sub-address is denoted by a “:n
suffix on the address.

To pack individual bits into a Register:

1. Click the Registers tab.

2. Right-click on the Register address you want to map and choose Pack bit
values from the menu.

The address is expanded into 16 sub-addresses.

Chapter 8: Networked Operations Pointe Controller User Guide

226

3. Double-click on the chosen sub-address and select the bit to be mapped
from the pop-up window.

4. Continue mapping each sub-address until finished.

To unpack a Register – that is, to delete the individual mappings and convert the
Register back to a full 16-bit address – right-click on the Register address and
choose Undo packing from the menu.

Pointe Controller User Guide Chapter 9: Troubleshooting

227

Chapter 9: Troubleshooting
This chapter provides some basic tips for troubleshooting the Pointe Controller
system. More information will be added in future revisions. In the meantime, if
you have any problems, please contact Nematron Technical Support at 1-800-636-
2876, or email us at support@nematron.com.

Chapter 9: Troubleshooting Pointe Controller User Guide

228

9.1 LED Boot Indicators
The first thing to look at when the controller is installed, connected to a hub or
PC and everything is powered up, is the diagnostic LEDs:

The first thing that happens when the controller is powered up is that is checks its
operating program. This process takes a couple of seconds. If the operating
program does not check out, the RS232 TX (transmit) LED will flash at a rate of
about 1 flash per second. If this should happen, the base must be loaded with
operating software.

After the startup program check (as long a programming cable is not plugged
into the RS232 port), the base will enter its main program. At this point, the
Select LED should be on indicating the program is interfacing the ethernet
electronics.

The next thing to look at is the Link (L) LED. If it is on, there is a good ethernet
link. Ethernet devices send a periodic “link pulse”. The ethernet receiver on the
other side looks for this link signal. If it is received, the link LED will light. Link
LEDs should be on, both on the RTU and the hub.

If the link LEDs do not come on, one of the following problems probably exists.

� The cable between the hub and the RTU is defective (improper
connections, bad connections, etc.)

� The hub or the RTU is not turned on.

Pointe Controller User Guide Chapter 9: Troubleshooting

229

There are two LEDs, one red and one green, next to the Pointe Controller base
unit’s RJ-11 connector. The red LED is used by the boot procedure to indicate
failure conditions:

Flashes Failure Condition

1 Flash Memory test failed

2 RAM test failed

3 LAN Controller Register test failed

4 Missing memory size configuration

5 Serial port failed to initialize

If any of the above failure conditions exist, then the red LED will continue to flash
the corresponding number of times with a short pause between flash cycles. For
example, if the RAM test has failed, then the red LED will flash three times,
pause, flash three times, pause, flash three times, and so on.

NOTE: In most cases, a failure condition may be cleared by cycling power to the
Pointe Controller unit. If the failure condition reoccurs, then contact Nematron
customer support.

If all boot tests pass and no failure condition exists, then the unit checks to see if
the serial download cable is connected. If it is, then the unit waits for download
commands from the configuration utility (Update Tool).

If the serial download cable is not connected, then the unit will attempt to run
the project currently stored in memory, if any. If there is no project in memory or
if the project fails to run, then the red LED flashes rapidly without pauses to
indicate that user action is required.

Chapter 9: Troubleshooting Pointe Controller User Guide

230

9.2 Hardware Reset
In some cases, it may be necessary to perform a full hardware reset on the Pointe
Controller unit. This will bypass any password set on the controller, reset the IP
address and node name settings to factory defaults, and erase any control
program currently saved in flash memory.

The reset is performed by powering off the controller, turning the Modbus
address switches to “99,” and powering on the controller. Upon startup, the
controller will detect the new address and immediately reset itself. After that,
you can reconfigure the controller as if it was brand new. (See Chapter 2, “Initial
Setup,” starting on page 22.)

To get to the address switches, you must first remove the end cover from the base
unit. To do this, simply squeeze the latching tabs, shown in the figure below, and
lift the cover off.

Removing the end cover will expose the base motherboard. The address switches
will be found near the connector for slot 0. To set the address, rotate both
switches to the “9” position. A small flat blade screwdriver is the only tool you
need.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

231

Appendix A: OptiLogic Technical Specifications
This appendix provides complete technical descriptions and configuration
instructions for all of the OptiLogic I/O modules and operator panels that can be
used with the Pointe Controller system.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

232

A.1 OL2104 Relay Output Module
The OL2104 Relay Output Module provides four (4)
optically isolated mechanical relay outputs that can
be used for switching a variety of AC and DC loads.
Individual LED indicators provide visual feedback of
output state.

Technical Specifications

Card Cage Power Required 250 mA

Output Type Mechanical relay

Outputs 4

Status Indicators Logic Side LED

Contact resistence 0.1 ohm (initial)

Contact voltage rating 0 - 60 VDC
0 - 120 VAC

Contact rating 2A (resistive) / point @24 VDC,
1A / point @120 VAC

Minimum load 10 mA

Contact type Form A (SPST)

Contact arrangement 4 isolated normally open contact relays

Mechanical life 10,000,000 operations per relay (at no load)

Electrical life 100,000 operations per relay (at full load)

Terminal Strip Plug In (removable)

Terminal Screws Slotted (0.1” blade max)

Max. terminal wire gauge 18 AWG (use copper conductors)

Terminal block torque 2.2 lb-in

Required Temp. rating of
field installed conductors

60°C / 75°C

Weight 1.6 oz (46 g)

Type 8

Subtype 1

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

233

Connection Diagram

Terminal

8 Out 3 C

7 Out 3 NO

6 Out 2 C

5 Out 2 NO

4 Out 1 C

3 Out 1 NO

2 Out 0 C

1 Out 0 NO

A.1.1 OL2104 Configuration Options
The OL2104 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/O, see page 118.) Selecting an OL2104 module and clicking the I/O button opens
the OL2104 I/O Map dialog window…

Outputs tab

Each Output point, from 0 through 3, is associated with a single Output Bit tag
(%QX).

To configure an Output, click the to the right and select an Output Bit tag
from the pop-up menu. Each tag can be used only once.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

234

NOTE: You can leave any or all Outputs unconfigured, but if you do, those I/O
points will not be available to your project.

Failsafe tab

If, during runtime, your project fails to respond for a given timeout interval, then
the Pointe Controller unit will automatically set all Output points to
preconfigured failsafes. Parameters for this tab include:

� Timeout Interval (ms) – Wait time in milliseconds after project failure
before Outputs switch to configured Output Actions.

NOTE: This value of Timeout Interval is taken from the project’s
preferences and is not editable in this window. To edit this value, see Edit
Preferences.

� Output n Action – Each Output has three possible failsafe actions:

o Fail ON – On Fail condition, turn this Output OFF.

o Fail OFF – On Fail condition, turn this Output ON.

o Last Value (default) – On Fail condition, leave this Output in its
current state.

To configure an Output Action, click the to the right and select an
action from the pop-up menu.

When you have finished configuring the module, click OK to save your changes
and close the window.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

235

A.2 OL2108 Relay Output Module
The OL2108 Relay Output Module provides eight (8) optically
isolated mechanical relay outputs that can be used for
switching a variety of AC and DC loads. Individual LED
indicators provide visual feedback of output state.

Technical Specifications

Card Cage Power Required 375 mA

Output Type Mechanical relay

Outputs 8

Status Indicators Logic Side LED

Contact resistence 0.1 ohm (initial)

Contact voltage rating 0 - 60 VDC
0 - 120 VAC

Contact rating 2A (resistive) / point @24 VDC,
1A / point @120 VAC

Minimum load 10 mA

Contact type Form A (SPST)

Contact arrangement 4 relays per common

Mechanical life 10,000,000 operations per relay (at no load)

Electrical life 100,000 operations per relay (at full load)

Terminal Strip Plug In (removable)

Terminal Screws Slotted (0.1” blade max)

Max. terminal wire gauge 18 AWG (use copper conductors)

Terminal block torque 2.2 lb-in

Required Temp. rating of
field installed conductors

60°C / 75°C

Weight 2.1 oz (58 g)

Type 9

Subtype 1

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

236

Connection Diagram

Terminal

10 Out 7

9 Out 6

8 Out 5

7 Out 4

6 Out 3

5 Out 2

4 Out 1

3 Ou1 0

2 Common
Out 4-7

1 Common
Out 0-3

A.2.1 OL2108 Configuration Options
The OL2108 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/O, see page 118.) Selecting an OL2108 module and clicking the I/O button opens
the OL2108 I/O Map dialog window…

Outputs tab

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

237

Each Output point, from 0 through 7, is associated with a single Output Bit tag
(%QX).

To configure an Output, click the to the right and select an Output Bit tag
from the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Outputs unconfigured, but if you do, those I/O
points will not be available to your project.

Failsafe tab

If, during runtime, your project fails to respond for a given timeout interval, then
the Pointe Controller unit will automatically set all Output points to
preconfigured failsafes. Parameters for this tab include:

� Timeout Interval (ms) – Wait time in milliseconds after project failure
before Outputs switch to configured Output Actions.

NOTE: This value of Timeout Interval is taken from the project’s
preferences and is not editable in this window. To edit this value, see Edit
Preferences.

� Output n Action – Each Output has three possible failsafe actions:

o Fail ON – On Fail condition, turn this Output OFF.

o Fail OFF – On Fail condition, turn this Output ON.

o Last Value (default) – On Fail condition, leave this Output in its
current state.

To configure an Output Action, click the to the right and select an
action from the pop-up menu.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

238

When you have finished configuring the module, click OK to save your changes
and close the window.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

239

A.3 OL2109 DC Sinking Output Module
The OL2109 DC Sinking Output Module provides eight
(8) optically isolated transistor outputs that can be used
for switching small DC loads. Individual LED indicators
provide visual feedback of output state.

Technical Specifications

Card Cage Power Required 140 mA

Output Type NPN open collector transistor

Outputs 8

Status Indicators Logic Side LED

Voltage Rating 0 – 40VDC

Peak Voltage 80VDC

On voltage drop 0.75V @ 100mA

0.95V @ 300mA

Max. continuous load 300 mA

Maximum surge current 1.0A for 5 seconds

Commons 2 (connected internally)

Terminal Strip Plug In (removable)

Terminal Screws Slotted (0.1” blade max)

Max. terminal wire gauge 18 AWG (use copper conductors)

Terminal block torque 2.2 lb-in

Required Temp. rating of
field installed conductors

60°C / 75°C

Weight 1.1 oz (30 g)

Type 9

Subtype 2

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

240

Connection Diagram

Terminal

10 Out 7

9 Out 6

8 Out 5

7 Out 4

6 Out 3

5 Out 2

4 Out 1

3 Ou1 0

2 Common

1 Common

A.3.1 OL2109 Configuration Options
The OL2109 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/O, see page 118.) Selecting an OL2109 module and clicking the I/O button opens
the OL2109 I/O Map dialog window…

Outputs tab

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

241

Each Output point, from 0 through 7, is associated with a single Output Bit tag
(%QX).

To configure an Output, click the to the right and select an Output Bit tag
from the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Outputs unconfigured, but if you do, those I/O
points will not be available to your project.

Failsafe tab

If, during runtime, your project fails to respond for a given timeout interval, then
the Pointe Controller unit will automatically set all Output points to
preconfigured failsafes. Parameters for this tab include:

� Timeout Interval (ms) – Wait time in milliseconds after project failure
before Outputs switch to configured Output Actions.

NOTE: This value of Timeout Interval is taken from the project’s
preferences and is not editable in this window. To edit this value, see Edit
Preferences.

� Output n Action – Each Output has three possible failsafe actions:

o Fail ON – On Fail condition, turn this Output OFF.

o Fail OFF – On Fail condition, turn this Output ON.

o Last Value (default) – On Fail condition, leave this Output in its
current state.

To configure an Output Action, click the to the right and select an
action from the pop-up menu.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

242

When you have finished configuring the module, click OK to save your changes
and close the window.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

243

A.4 OL2111 AC Solid State Relay Module
The OL2111 AC Solid-state Relay Module provides eight (8)
solid-state relay outputs. This module is ideally suited for
switching small AC loads. As a solid-state device, switch
wear will not be a factor. Each output is optocoupled for
system isolation. Individual LED indicators provide visual
feedback indicating the state that each relay is being
driven.

Technical Specifications

Card Cage Power Required 120 mA

Output Type Solid state relay (Trice)

Outputs 8

Status Indicators Logic Side LED

Voltage Rating 12 – 132 VAC

Maximum load current 0.5 A / point @ 120VAC

Minimum load current 10 mA

On state voltage drop 1V (typical)

Peak surge current, 1 cycle 15 A

Commons 2 (connected internally)

Terminal Strip Plug In (removable)

Terminal Screws Slotted (0.1” blade max)

Max. terminal wire gauge 18 AWG (use copper conductors)

Terminal block torque 2.2 lb-in

Required Temp. rating of
field installed conductors

60°C / 75°C

Weight 1.3 oz (38 g)

Type 9

Subtype 3

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

244

Connection Diagram

Terminal

10 Out 7

9 Out 6

8 Out 5

7 Out 4

6 Out 3

5 Out 2

4 Out 1

3 Ou1 0

2 Common

1 Common

A.4.1 OL2111 Configuration Options
The OL2111 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/O, see page 118.) Selecting an OL2111 module and clicking the I/O button opens
the OL2111 I/O Map dialog window…

Ouput tab

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

245

Each Output point, from 0 through 7, is associated with a single Output Bit tag
(%QX).

To configure an Output, click the to the right and select an Output Bit tag
from the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Outputs unconfigured, but if you do, those I/O
points will not be available to your project.

Failsafe tab

If, during runtime, your project fails to respond for a given timeout interval, then
the Pointe Controller unit will automatically set all Output points to
preconfigured failsafes. Parameters for this tab include:

� Timeout Interval (ms) – Wait time in milliseconds after project failure
before Outputs switch to configured Output Actions.

NOTE: This value of Timeout Interval is taken from the project’s
preferences and is not editable in this window. To edit this value, see Edit
Preferences.

� Output n Action – Each Output has three possible failsafe actions:

o Fail ON – On Fail condition, turn this Output OFF.

o Fail OFF – On Fail condition, turn this Output ON.

o Last Value (default) – On Fail condition, leave this Output in its
current state.

To configure an Output Action, click the to the right and select an
action from the pop-up menu.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

246

When you have finished configuring the module, click OK to save your changes
and close the window.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

247

A.5 OL2201 Digital Input Simulator Module
The OL2201 Digital Input Simulator Module is designed to be an aid to
program development. Use the OL2201 to simulate real world inputs
during your design and debug process. The OL2201 enables the
program developer to cause a change in input status at will to simulate
a system action. In doing so, you are able to see the program’s
response. Use of the OL2201 is an aid in the process of thoroughly
testing and debugging a system prior to “going live” with real
hardware.

When it becomes time to move to real hardware, replace the OL2201
with the appropriate digital input module. The logic of your program
will remain the same.

Technical Specifications

Card Cage Power Required 60mA

Input Type Toggle Switch

Inputs 8

Status Indicators Logic side LED

Weight 1.1 oz (30 g)

Type 1

Subtype 3

Connection Diagram

Because this module simulates inputs using toggle switches, there is no
connection diagram.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

248

A.5.1 OL2201 Configuration Options
The OL2201 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/O, see page 118.) Selecting an OL2201 module and clicking the I/O button opens
the OL2201 I/O Map dialog window…

Configuring the OL2201 module is very simple: each Input point, from 0 through
7, is associated with a single Input Bit tag (%IX).

To configure an Input, click the to the right and select an Input Bit tag from
the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Inputs unconfigured, but if you do, those I/O
points will not be available to your project.

When you have finished configuring the module, click OK to save your changes
and close the window.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

249

A.6 OL2205 AC/DC Input Module
The OL2205 Digital Input module senses up to four (4) AC or
DC input signals. All inputs are individually optocoupled for
isolation. Inputs are also individually isolated from each
other by separate terminal connections. Filtering is provided
for zero crossover. Individual LED indicators provide visual
feedback of current status.

Technical Specifications

Card Cage Power Required 100 mA

Input Type AC Optocoupled

Inputs 4

Status Indicators Logic Side LED

Voltage Range 10-30 V AC or DC

Input Impedence 2.7K ohms

Inputs DC sinking or sourcing / or AC

Min. On Current (per point) 3.3 mA

Max. On Current (per point) 11 mA

Terminal Strip Plug In (removable)

Terminal Screws Slotted (0.1” blade max.)

Max. terminal wire gauge 18 AWG (use copper conductors)

Terminal block torque 2.2 lb-in

Required Temp. rating of
field installed conductors

60°C / 75°C

Weight 1.2 oz (34g)

Type 5

Subtype 1

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

250

Connection Diagram

Terminal

8 In 3

7 In 3

6 In 2

5 In 2

4 In 1

3 In 1

2 In 0

1 In 0

A.6.1 OL2205 Configuration Options
The OL2205 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/O, see page 118.) Selecting an OL2205 module and clicking the I/O button opens
the OL2205 I/O Map dialog window…

Configuring the OL2205 module is very simple: each Input point, from 0 through
3, is associated with a single Input Bit tag (%IX).

To configure an Input, click the to the right and select an Input Bit tag from
the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Inputs unconfigured, but if you do, those I/O
points will not be available to your project.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

251

When you have finished configuring the module, click OK to save your changes
and close the window.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

252

A.7 OL2208 DC Digital Input Module
The OL2208 DC Digital Input module can be used in either
sourcing or sinking application. (All eight inputs must be
used in the same manner.) Each input is optocoupled to
provide system isolation. Individual LED indicators provide
a visual feedback of current status.

Technical Specifications

Card Cage Power Required 60 mA

Input Type DC Optocoupled

Inputs 8

Status Indicators Logic Side LED

Voltage Range 10 – 30 VDC

Input Impedence 2.7K ohms

Min. On Current (per point) 3.3 mA

Max. On Current (per point) 11 mA

Commons 2 (connected internally)

Terminal Strip Plug In (removable)

Terminal Screws Slotted (0.1” blade max.)

Max. terminal wire gauge 18 AWG (use copper conductors)

Terminal block torque 2.2 lb-in

Required Temp. rating of
field installed conductors

60°C / 75°C

Weight 1.2 oz (34g)

Type 1

Subtype 1

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

253

Connection Diagram

The OL2208 DC Digital Input module can be used in either sourcing or sinking
application. All eight inputs must be used in the same manner.

Terminal

10 In 7

9 In 6

8 In 5

7 In 4

6 In 3

5 In 2

4 In 1

3 In 0

2 Common

1 Common

Terminal

10 In 7

9 In 6

8 In 5

7 In 4

6 In 3

5 In 2

4 In 1

3 In 0

2 Common

1 Common

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

254

A.7.1 OL2208 Configuration Options
The OL2208 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/O, see page 118.) Selecting an OL2208 module and clicking the I/O button opens
the OL2208 I/O Map dialog window…

Configuring the OL2208 module is very simple: each Input point, from 0 through
7, is associated with a single Input Bit tag (%IX).

To configure an Input, click the to the right and select an Input Bit tag from
the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Inputs unconfigured, but if you do, those I/O
points will not be available to your project.

When you have finished configuring the module, click OK to save your changes
and close the window.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

255

A.8 OL2211 AC Digital Input Module
The OL2211 AC Digital input module senses up to eight (8)
AC input signals. All inputs are individually optocoupled for
isolation. Filtering is provided for zero crossover. Individual
LED indicators provide visual feedback of current status.

Technical Specifications

Card Cage Power Required 100 mA

Input Type AC Optocoupled

Inputs 8

Status Indicators Logic Side LED

Voltage Range 80 – 132 VAC

Input Impedence 47K ohms

Min. On Current (per point) 1.7 mA

Max. On Current (per point) 2.8 mA

Commons 2 (connected internally)

Terminal Strip Plug In (removable)

Terminal Screws Slotted (0.1” blade max.)

Max. terminal wire gauge 18 AWG (use copper conductors)

Terminal block torque 2.2 lb-in

Required Temp. rating of
field installed conductors

60°C / 75°C

Weight 1.3 oz (38g)

Type 1

Subtype 2

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

256

Connection Diagram

Terminal

10 In 7

9 In 6

8 In 5

7 In 4

6 In 3

5 In 2

4 In 1

3 In 0

2 Common

1 Common

A.8.1 OL2211 Configuration Options
The OL2211 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/O, see page 118.) Selecting an OL2211 module and clicking the I/O button opens
the OL2211 I/O Map dialog window…

Configuring the OL2211 module is very simple: each Input point, from 0 through
7, is associated with a single Input Bit tag (%IX).

To configure an Input, click the to the right and select an Input Bit tag from
the pop-up menu. Each tag can be used only once.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

257

NOTE: You can leave any or all Inputs unconfigured, but if you do, those I/O
points will not be available to your project.

When you have finished configuring the module, click OK to save your changes
and close the window.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

258

A.9 OL2252 Dual Pulse Counter
The OL2252 module provides two independent high
speed pulse counter inputs. Each input counter will
accurately count pulse inputs up to 15KHz. Inputs may be
sourcing or sinking type. There are a number of operating
options available with the OL2252. The six remaining
inputs can be used as predefined control signals or as
general purpose inputs. These options are detailed below.

Input Connections

The following is a list of the input connections on the module:

Terminal Label Description

1 Common Sourcing or sinking return line

2 Common Sourcing or sinking return line

3 Pulse 1 Square wave input, up to 15 KHz

4 Pulse 2 Square wave input, up to 15 KHz

5 Reset 1 If configured as “reset” input, will clear the Pulse 1 count
when activated. If not configured as “reset” input, can be
used as a general purpose input.

6 Reset 2 If configured as “reset” input, will clear the Pulse 2 count
when activated. If not configured as “reset” input, can be
used as a general purpose input.

7 Enable 1 If configured as an “enable” input, enables the Pulse 1
counter when active. If not configured as an “enable” input,
can be used as a general purpose input.

8 Enable 2 If configured as an “enable” input, enables the Pulse 2
counter when active. If not configured as an “enable” input,
can be used as a general purpose input.

9 Input 1 General purpose input

10 Input 2 General purpose input

Theory of Operation

The OL2252 Pulse Counter has two independent pulse counter inputs. These pulse
counter inputs will accurately count pulses between 0 and 15KHz.

All counts begin at zero and count up to the maximum number the counter can
hold (4,294,967,295). If the count should ever get that high, it will roll over to
zero.

In order to count, the count input must be enabled. A message with an enable
must come from the runtime program. The module can also be set up to use the
local hardware input enable (in addition to the enable message).

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

259

The count can be reset to 0 at any time. Again there is both a reset message that
can be sent from the PC and an optional hardware reset signal.

Whether the hardware “reset” and “enable” are used is determined by how the
module is configured in the PointeControl development framework (see below).

Input Signal

The input pulse train is a repetitive square wave input that looks something like
the following:

If you know the maximum frequency of the pulse train, you can configure the
pulse counter to count pulse up to that pulse rate. In doing so, the counter will
consider anything above the maximum rate that you have defined to be noise
and will ignore it.

Technical Specifications

Card Cage Power Required 100 mA

Inputs (all) 8

Pulse Inputs 2

Status Indicators Logic Side LED

Input Voltage 10 – 30 VDC

Input Impedence 2.7K ohms

Input frequency (on pulses) 15 KHz maximum

Min. On Current (per point) 3.3 mA

Max. On Current (per point) 11 mA

Commons 2 (connected internally)

Terminal Strip Plug In (removable)

Terminal Screws Slotted (0.1” blade max.)

Max. terminal wire gauge 18 AWG (use copper conductors)

Terminal block torque 2.2 lb-in

Required Temp. rating of
field installed conductors

60°C / 75°C

Weight 1.2 oz (34g)

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

260

Type 1

Subtype 2

Connection Diagram

Terminal

10 Input 2

9 Input 1

8 Enable 2

7 Enable 1

6 Reset 2

5 Reset 1

4 Pulse 2

3 Pulse 1

2 Common

1 Common

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

261

A.9.1 OL2252 Configuration Options
The OL2252 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/O, see page 118.) Selecting an OL2252 module and clicking the I/O button opens
the OL2252 I/O Map dialog window…

Inputs tab

Each Input point, from 0 through 7, is associated with a single Input Bit tag
(%IX).

To configure an Input, click the to the right and select an Input Bit tag from
the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Inputs unconfigured, but if you do, the pulse
counters may not work as intended.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

262

Channel tabs

The first six Inputs on the OL2252 module are grouped into two channels, which
correspond with and control the two pulse counters on the module. (The last two
Inputs – 6 and 7 – are generic DC inputs.) The Inputs are grouped as follows:

Channel Counter Input Hardware Reset Hardware Enable

1 Input 0 Input 2 Input 4

2 Input 1 Input 3 Input 5

These channels are configured via the Channel 1 and Channel 2 tabs. Both tabs
have the same parameters:

� Frequency – The maximum frequency range for the channel to count
pulses. Available frequencies: 15 KHz (default), 10 KHz, 5 KHz, 2.5 KHz, 1
KHz.

To configure Frequency, click the to the right and select a frequency
from the pop-up menu.

� Hardware Enable – Option to use value received on the Hardware
Enable input (Input 4 for Channel 1, Input 5 for Channel 2) to determine
when the channel starts and stops counting.

o If Disabled (default), then the Hardware Enable input can be
used as a generic DC input and will not have any effect on the
channel.

o If Enabled, then the value received on the Hardware Enable
input controls the corresponding channel’s behavior: a value of
ON starts counting, while a value of OFF stops counting.

To configure Hardware Enabled, click the to the right and select an
option (Disabled or Enabled) from the pop-up menu.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

263

NOTE: If you use the Hardware Enable option, then you must also have
the Enable bit set (see below). If you do not, the channel cannot count.

� Hardware Reset – Option to use value received on the Hardware Reset
input (Input 2 for Channel 1, Input 3 for Channel 2) to determine when
the channel resets the counter to 0.

o If Disabled (default), then the Hardware Reset input can be
used as a generic DC input and will not have any effect on the
channel.

o If Enabled, then the value received on the Hardware Reset input
controls the corresponding channel’s behavior: a value of ON
resets the counter to 0, while a value of OFF resumes counting
as normal.

To configure Hardware Reset, click the to the right and select an
option (Disabled or Enabled) from the pop-up menu.

� Counter Value – The 32-bit Unsigned Input tag (%IUD) to which the
channel’s actual counter total is written.

To configure Counter Value, click the to the right and select a tag from
the pop-up menu. Each tag can be used only once.

� Enable – Bit to enable and disable the counter from within the project.
This bit takes precedence over the Hardware Enable input (above). When
the bit is ON, the counter is enabled. When the bit is OFF, the counter is
disabled. Mapped to an Output Bit tag (%QX).

To configure Enable, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

� Reset – Bit to reset and resume the counter from within the project. This
bit takes precedence over the Hardware Reset input (above). When the
bit is ON, the counter is reset. When the bit is OFF, the counter is
resumed. Mapped to an Output Bit tag (%QX).

To configure Reset, click the to the right and select a tag from the pop-
up menu. Each tag can be used only once.

When you have finished configuring the module, click OK to save your changes
and close the window.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

264

A.10 OL2258 High Speed Pulse Counter
The OL2258 High Speed Counter Module provides for direct
pulse counting for a variety of high speed pulse interface
applications. Typical applications include motion control,
metering and velocity measurement. The OL2258 contains
on-board intelligence necessary for processing and counting
pulse information as well as automatically triggering control
outputs.

The OL2258 can be configured to operate in one of three
pulse counting modes: Pulse & Direction, Up/Down Count, or
Quadrature. Pulse & Direction and Up/Down Count will
operate at up to 80KHz input pulse rates. Quadrature inputs
count each quadrature state transitions at up to 160 KHz.
Additionally, the OL2258 will return frequency information.

The counter has a 32-bit resolution and a total range of
–2,147,483,648 to +2,147,483,648.

General Overview

The OL2258 is configurable. It can be used with pulse & direction, up/down count
or quadrature type pulse encoders. These signals may come from shaft encoders,
flow meters or any other signal source that produces a pulse train output. When
operating, the OL2258 maintains a current cummulative count as a 32 bit integer
value. It also makes available frequency snapshot data as the most recent count
over either 1 second or 200 milliseconds. The Z and LS inputs can be used to
automatically reset the count to a user defined value. Each transistor output can
be configured to turn on when the count value is within its related count range.

Pulse and Direction

In this configuration, pulses are input to “A”. The counter direction is controlled
by input “B”. The operation is illustrated below.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

265

Quadrature Encoder Input

The counting process for quadrature type encoding is determined by the phase
angle between input A and input B. If A leads B, the counter increments. If B
leads A, the counter decrements. The count is incremented or decremented on
each pulse transition as shown below.

Up/Down Count

For this type of configuration, the count increments on pulses input to “A” and
decrements on pulses input to “B”. This is illustrated in the figure below.

Z and LS Presetting

The count can be preset to a value that you define based on either or both inputs
LS and Z. It can also be forced to a preset value on command via a message.

Through the configuration message, the counter can be set up to force a preset
value when Z is active, LS is active, both Z and LS are active or on software
command.

Output Control

The two open collector outputs can each be progammed to trigger within a
programmable (via an ethernet message) count range. This range can be changed
at any time via a “Send Output Range” message, effectively providing and
unlimited number of ranges, under user program control.

Outputs will trigger within immediately, when the count enters the related
range.

Frequency Measurement

Frequency data can be read back as a 16 bit signed integer value. The value will
correspond to the most recent 1 second or 200 millisecond (configurable) pulse
count.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

266

Technical Specifications

Card Cage Power Required 400 mA

Inputs (all) 4

Pulse Inputs 2

Status Indicators Logic Side LED

Counting Modes Pulse & Direction, Up/Down Count, Quadrature

Count Value 32 Bit Signed

Frequency Data 16 Bit Signed (configurable for 1 sec or 200 msec)

Input Signal Type Sinking, sourcing, or differential

Input Impedence 2.0K ohms nominal

Input frequency (on pulses) 80/160 KHz maximum

Min. Input On Voltage
(or differential)

4.00V

Min. Input Off Voltage
(or differential)

3.00V

Maximum Input Voltage 28V

Outputs 2

Output Type Open collector

Commons 1 (connected internally)

Terminal Strip Plug In (removable)

Terminal Screws Slotted (0.1” blade max.)

Max. terminal wire gauge 18 AWG (use copper conductors)

Terminal block torque 2.2 lb-in

Required Temp. rating of
field installed conductors

60°C / 75°C

Weight 1.24 oz (35g)

Type 82

Subtype 2

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

267

Connection Diagram

Terminals

10 Out 2 Open collector output 2

9 Out 1 Open collector output 1

8 Common Common for LS and two outputs

7 LS Limit Switch input (optional)

6 Z2

5 Z1

Z input (optional)

4 B2

3 B1

Pulse input B (quadrature) /
Direction input (pulse & direction) /
Down pulse (up/down count)

2 A2

1 A1

Pulse input A (quadrature) /
Pulse input (pulse & direction) /
Up pulse (up/down count)

The OL2258 High Speed Pulse counter is designed to interface to a variety of
standard pulse encoder devices: differential, sourcing, or sinking. The figures
below illustrate connections for each type of encoder.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

268

A.10.1 OL2258 Configuration Options
The OL2258 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/O, see page 118.) Selecting an OL2258 module and clicking the I/O button opens
the OL2258 I/O Map dialog window…

Inputs tab

Each of the four inputs on the OL2258 module is written to a separate bit.

� Input A – Bit to which the current status of Input A is written. When A
becomes ON, the bit is set to 1. When A becomes OFF, the bit is set to 0.
Mapped to an Input Bit tag (%IX).

To configure Input A, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

� Input B – Bit to which the current status of Input B is written. When B
becomes ON, the bit is set to 1. When B becomes OFF, the bit is set to 0.
Mapped to an Input Bit tag (%IX).

To configure Input B, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

� Input Z – Bit to which the current status of Input Z is written. When Z
becomes ON, the bit is set to 1. When Z becomes OFF, the bit is set to 0.
Mapped to an Input Bit tag (%IX).

To configure Input Z, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

� Input LS – Bit to which the current status of Input LS is written. When LS
becomes ON, the bit is set to 1. When LS becomes OFF, the bit is set to 0.
Mapped to an Input Bit tag (%IX).

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

269

To configure Input LS, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

NOTE: These inputs do not necessarily need to be mapped to tags in Logic
Memory for the pulse counter itself to function. The counter will still count pulses
and write out the counter value, as configured in the Counter tab (below).
However, it is sometimes useful to have access to these I/O points independent of
the counter function.

Counter tab

General configuration parameters for pulse counter.

� Counter Type – The mode in which the counter will operate (see above).
Options include:

o Pulse/Direction (default) – In this mode, pulses are counted by
Input A and the counter direction is determined by Input B.

o Up/Down Count – In this mode, pulses received by Input A
increment the counter and pulses received by Input B
decrement the counter.

o Quadrature – In this mode, counting is determined by the phase
angle between Input A and Input B. If A leads B, then the
counter increments. If B leads A, then the counter decrements.

To configure Counter Type, click the to the right and select a mode
from the pop-up menu.

� Frequency Selection – The frequency at which pulses will be received
and counted. Options include:

o Up to 30 KHz – The maximum pulse frequency will be less than
or equal to 30 KHz.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

270

o Over 30 KHz – The maximum pulse frequency will be greater
than or equal to 30 KHz.

To configure Frequency Selection, click the to the right and select a
frequency option from the pop-up menu.

� Counter Value – Tag to which the current value of the pulse counter will
be written. Mapped to a 32-bit Signed Input tag (%ID).

To configure Counter Value, click the to the right and select a tag from
the pop-up menu. Each tag can be used only once.

� Frequency – A sample of counted pulses taken over a predetermined
time period. The length of the period depends on the Frequency Selection
(above). If “Up to 30 KHz” is selected, then the period is the most recent 1
second. If “Over 30 KHz” is selected, then the period is the most recent
200 milliseconds (msecs). The total number of pulses counted during that
period is written to the Frequency tag. Mapped to a 16-bit Signed Input
tag (%IW).

To configure Frequency, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

� Hold Count – Bit to pause and resume the counter. When the bit
becomes ON, the counter is paused. When the bit becomes OFF, the
counter is resumed from its last value. Mapped to an Output Bit tag
(%QX).

To configure Hold Count, click the to the right and select a tag from
the pop-up menu. Each tag can be used only once.

� Preset Value – Value to which Counter Value will be forced whenever Z
Preset, LS Preset, or Force Preset becomes ON (see below). Mapped to any
32-bit Signed tag (%ID, %MD, or %QD).

To configure Preset Value, click the to the right and select a tag from
the pop-up menu. Each tag can be used only once.

� Z Preset – Option to allow the status of Input Z to force the Preset Value.

o If Disabled (default), then Input Z can be used as a generic DC
input.

o If Enabled, then Counter Value will be forced to Preset Value
when Input Z becomes ON.

To configure Z Preset, click the to the right and select an option
(Disabled or Enabled) from the pop-up menu.

� LS Preset – Option to allow the status of Input LS to force the Preset
Value.

o If Disabled (default), then Input LS can be used as a generic DC
input.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

271

o If Enabled, then Counter Value will be forced to Preset Value
when Input LS becomes ON.

To configure LS Preset, click the to the right and select an option
(Disabled or Enabled) from the pop-up menu.

� Force Preset – Bit to force Counter Value to Preset Value. Whenever the
bit is set to 1, the value is forced. Mapped to an Output Bit tag (%QX).

To configure Force Preset, click the to the right and select a tag
from the pop-up menu. Each tag can be used only once.

Output tabs

The OL2258 module includes two (2) DC open collector outputs that are
automatically turned on/off according on the current value of the pulse counter.
When the counter value is inside an output’s specified range, the output is turned
on. When the counter value goes outside (above or below) an output’s specified
range, the output is turned off.

Each output is configured separately through its own tab: Output 1 and Output
2. Both tabs have the same configuration parameters…

� Enable Output – Bit to enable and disable the output. When the bit is
set to 1, the output is enabled. When the bit is set to 0, the output is
disabled. Mapped to an Output Bit tag (%QX).

To configure Enable Output, click the to the right and select a tag
from the pop-up menu. Each tag can be used only once.

� Output Status – Bit to which the current status of the output is copied.
(The actual status of the output is automatically controlled by the module
itself.) When the output becomes ON, the bit is set to 1. When the output
becomes OFF, the bit is set to 0. Mapped to an Input Bit tag (%IX).

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

272

To configure Output Status, click the to the right and select a tag from
the pop-up menu. Each tag can be used only once.

� Max Value – The maximum value of the range in which the output will
be ON. When the counter value is above this maximum, the output will be
OFF. Mapped to any 32-bit Signed tag (%IX, %MX, or %QX).

To configure Max Value, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

� Min Value – The minimum value of the range in which the output will be
ON. When the counter value is below this minimum, the output will be
OFF. Mapped to any 32-bit Signed tag (%IX, %MX, or %QX).

To configure Min Value, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

When you have finished configuring the module, click OK to save your changes
and close the window.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

273

A.11 OL2304 Analog Voltage Output Module
The OL2304 Analog Voltage Output Module provides four (4) output channels
that are range configurable, on a channel by channel basis, to any of four
common output ranges: 0-5 V, 0-10 V, +/-5 V, or +/-10 V. The voltage range for
each channel can be configured through your PointeControl project rather than
using physical jumpers. The module generates its own isolated output power
supply, eliminating any need for an outside source.

To control the voltage output, the module receives an output value from the
program and converts it to an actual voltage. The output value has a 12-bit
resolution and is scaled from 0 to 4095 (0x0 to 0xFFF); i.e., the minimum voltage is
equal to 0, the maximum voltage is equal to 4095, and all other voltages are
scaled in between.

To find the correct output value for a given voltage, you must configure a Flow
Chart block or Ladder Diagram rung to perform the following calculations:

� For a range of 0-5 V…

Output Value = (Actual Voltage x 4095) / 5

� For a range of 0-10 V…

Output Value = (Actual Voltage x 4095) / 10

� For a range of +/-5 V…

Output Value = [(Actual Voltage + 5) / 10] x 4095

� For a range of +/-10 V…

Output Value = [(Actual Voltage + 10) / 20] x 4095

Example 1: A channel is configured for a range of 0-10 V and a 3.3V output is
required. The output value is calculated as…

Output Value = (3.3 x 4095) / 10 = 1351

Example 2: A channel is configured for a range of +/-5 V and a –2.5V output is
required. The output value is calculated as…

Output Value = [(-2.5 + 5) / 10] x 4095 = 1024

Technical Specifications

Card Cage Power Required 700 mA

Ouptuts 4

Output Ranges 0-5V, 0-10V, +/-5V, +/-10V (configurable by channel)

Resolution 12 bit (1 in 4096)

Output Type Single-ended, 1 common

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

274

External Power Required none

Output Current +/-5 mA

Short Circuit Current +/-15 mA

Offset Calibration Error +/- 32 counts @ 0-5V

+/- 16 counts @ 0-10V

+/- 16 counts @ +/-5V

+/- 8 counts @ +/-10V

Nonlinearity +/- 1 count

Terminal Strip Plug In (removable)

Terminal Screws Slotted (0.1” blade max.)

Max. terminal wire gauge 18 AWG (use copper conductors)

Terminal block torque 2.2 lb-in

Required Temp. rating of
field installed conductors

60°C / 75°C

Type 25

Subtype 1

Connection Diagram

Terminal

8 Out 4

7 Common

6 Out 3

5 Common

4 Out 2

3 Common

2 Out 1

1 Common

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

275

A.11.1 OL2304 Configuration Options
The OL2304 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/O, see page 118.) Selecting an OL2304 module and clicking the I/O button opens
the OL2304 I/O Map dialog window…

Each of the four output channels on the OL2304 module can be configured
separately. To use a channel, you must configure both its Channel and its
Voltage Range.

� Channel n – Tag from which the output value for the specified channel is
taken. Mapped to a 16-bit Unsigned Output tag (%QUW).

To configure a Channel, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

� Voltage Range n – Voltage range for the specified channel. This option
is configured separately for each output channel. Options include 0-5 V
(default), 0-10 V, +/-5 V or +/-10 V.

To configure a Voltage Range, click the to the right and select a range
from the pop-up menu.

NOTE: You can leave any or all output channels unconfigured, but if you do,
those I/O points will not be available to your project.

When you have finished configuring the module, click OK to save your changes
and close the window.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

276

A.12 OL2408 Analog Voltage Input
The OL2408 Analog Voltage Input Module provides eight (8) voltage sensors.
Each sensor reads the current input voltage, scales it, and writes the scaled value
to a Logic Memory tag. The value has 14-bit resolution and is scaled from 0 to
16383 (0x0 to 0x3FFF); i.e., the minimum voltage is equal to 0, the maximum
voltage is equal to 16383, and all other voltages are scaled in between.

NOTE: The OL2408 comes factory configured for 0-5VDC input range and cannot
be changed through software. If you need 0-10VDC input range, you must
physically set a jumper on the module board.

To convert the scaled value back to an actual voltage input, you must configure a
Flow Chart block or Ladder Logic rung to perform the following calculation:

Voltage Input = Maximum Voltage x (Scaled Value / 16383)

Remember that Maximum Voltage can be either 5 or 10, depending on the
jumper setting.

Technical Specifications

Card Cage Power Required 700 mA

Inputs 4

Input Type 0-5 VDC or 0-10 VDC

Input Impedence 10 MOhm

Maximum Voltage Input +/- 15VDC

Conversion Type Successive approximation

Resolution 14 bit (1 in 16384)

Full Scale Calibration Error +/- 15 counts maximum

+/- 5 counts typical

Offset Calibration Error +/- 2 counts maximum

Linearity Error +/- 1.25 count maximum

Input Stability +/- 2 counts

Terminal Strip Plug In (removable)

Terminal Screws Slotted (0.1” blade max.)

Max. terminal wire gauge 18 AWG (use copper conductors)

Terminal block torque 2.2 lb-in

Required Temp. rating of
field installed conductors

60°C / 75°C

Type 17

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

277

Subtype 1

Connection Diagram

Terminal

10 Channel 8

9 Channel 7

8 Channel 6

7 Channel 5

6 Channel 4

5 Channel 3

4 Channel 2

3 Channel 1

2 Common

1 Common

A.12.1 OL2408 Configuration Options
The OL2408 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/O, see page 118.) Selecting an OL2408 module and clicking the I/O button opens
the OL2408 I/O Map dialog window…

The OL2408 module has eight input channels. Each channel is configured
separately.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

278

Channel n – Tag to which the scaled value of the input voltage is written.
Mapped to a 16-bit Unsigned Input tag (%IUW).

To configure a Channel, click the to the right and select a tag from the pop-up
menu. Each tag can be used only once.

NOTE: You can leave any or all Channels unconfigured, but if you do, those I/O
points will not be available to your project.

When you have finished configuring the module, click OK to save your changes
and close the window.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

279

A.13 OL2418 Analog Current Input
The OL2418 Analog Current Input Module
provides eight (8) amperage sensors. Each
sensor reads the current input amperage,
scales it, and writes the scaled value to a Logic
Memory tag. The value has 14-bit resolution
and is scaled from 0 to 16383 (0x0 to 0x3FFF);
i.e., the minimum amperage is equal to 0, the
maximum amperage is equal to 16383, and all
other amperages are scaled in between.

NOTE: The OL2408 module is currently designed for an amperage range of 4 to 20
mA. This range cannot be changed.

To convert the scaled value back to an actual amperage input, you must
configure a Flow Chart block or Ladder Logic rung to perform the following
calculation:

Amperage Input = [16 x (Scaled Value / 16383)] + 4

Technical Specifications

Card Cage Power Required 700 mA

Inputs 8

Input Type 4-20 mA

Input Impedence 250 Ohms +/- 0.05%

Conversion Type Successive approximation

Resolution 14 bit (1 in 16384)

Full Scale Calibration Error +/- 15 counts maximum

+/- 5 counts typical

Offset Calibration Error +/- 2 counts maximum

Power Isolation Transformer

Signal Isolation Optical

Terminal Strip Plug In (removable)

Terminal Screws Slotted (0.1” blade max.)

Max. terminal wire gauge 18 AWG (use copper conductors)

Terminal block torque 2.2 lb-in

Required Temp. rating of
field installed conductors

60°C / 75°C

Type 18

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

280

Subtype 2

Connection Diagram

Terminal

10 Channel 8

9 Channel 7

8 Channel 6

7 Channel 5

6 Channel 4

5 Channel 3

4 Channel 2

3 Channel 1

2 Common

1 Common

A.13.1 OL2418 Configuration Options
The OL2418 module is configured through the Configure I/O menu command in
the PointeControl development framework. (For more information on Configure
I/O, see page 118.) Selecting an OL2418 module and clicking the I/O button opens
the OL2418 I/O Map dialog window…

The OL2418 module has eight input channels. Each channel is configured
separately.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

281

Channel n – Tag to which the scaled value of the input amperage is written.
Mapped to a 16-bit Unsigned Input tag (%IUW).

To configure a Channel, click the to the right and select a tag from the pop-up
menu. Each tag can be used only once.

NOTE: You can leave any or all Channels unconfigured, but if you do, those I/O
points will not be available to your project.

When you have finished configuring the module, click OK to save your changes
and close the window.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

282

A.14 OL2602 Dual Serial Port Module
The OL2602 Dual Serial Port Module provides two (2) standard RS232 serial ports
– in addition to the built-in port on the Pointe Controller unit itself – that can be
used to connect to and communicate with a wide variety of device networks and
control hardware.

Connection Diagram

Terminal, Top Port

3 Receive (RX)

2 Transmit (TX)

1 Signal Ground

Terminal, Bottom Port

3 Receive (RX)

2 Transmit (TX)

1 Signal Ground

Technical Specifications

Card Cage Power Required 110 mA

Communications Ports 2

Type RS232C

Baud Rates 1200, 2400, 4800, 9600, 19200 (selectable)

Parity Even, odd or none

Data Bits 7 or 8

Transmit Buffer 48 bytes

Receive Buffer 48 bytes

Terminal Strip Plug In (removable)

Terminal Screws Slotted (0.1” blade max.)

Max. terminal wire gauge 18 AWG (use copper conductors)

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

283

Terminal block torque 2.2 lb-in

Required Temp. rating of
field installed conductors

60°C / 75°C

Weight 1.0 oz (29g)

Type 112

Subtype 2

A.14.1 OL2602 Configuration Options
This module cannot be configured through the Configure I/O dialog. To configure
and use this module, see Serial Commands on page 321.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

284

A.15 OL3406 Pushbutton/Indicator Panel
The OL3406 Pushbutton/Indicator Panel has four user-definable pushbuttons and
six white indicator bars. The buttons can be configured for either momentary or
alternate-action operation. The button LEDs normally reflect button on/off status.
The momentary buttons can also be configured for LED separation (direct on/off
control). Every button LED and indicator bar can be turned on, off, or flashed.

A.15.1 OL3406 Configuration Options
The OL3406 panel is configured through the Configure I/O menu command in the
PointeControl development framework. (For more information on Configure I/O,
see page 118.) Selecting an OL3406 panel and clicking the I/O button opens the
OL3406 I/O Map dialog window…

Indicators tab

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

285

This tab configures the six white indicator bars on the OL3406 panel.

� Indicator n – Bit that turns the indicator on/off. When the bit becomes
ON, the indicator is turned on. When the bit becomes OFF, the indicator is
turned OFF. Mapped to an Output Bit tag (%QX).

To configure an Indicator, click the to the right and select a tag from
the pop-up menu. Each tag can be used only once.

� Indicator n Flash – Bit that quickly flashes the indicator. (The indicator
itself must already be on.) When the bit becomes ON, the indicator starts
flashing. When the bit becomes OFF, the indicator stops flashing. Mapped
to an Output Bit (%QX).

To configure an Indicator Flash, click the to the right and select a tag
from the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Indicators unconfigured, but if you do, those I/O
points will not be available to your project.

Buttons tab

This tab controls the four white pushbuttons on the OL3406 panel.

� LED Separation – Option to control the red LEDs embedded in the
pushbuttons, separate from the actual ON/OFF states of the buttons. (The
setting applies to all four buttons.)

o If Disabled (default), then each button’s LED directly reflects the
current ON/OFF state of the button.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

286

o If Enabled, then each button LED can be turned on/off
independently using the LED parameter (below).

To configure LED Separation, click the to the right and select an option
(Disabled or Enabled) from the pop-up menu.

NOTE: This configuration applies to a button only if the button is also set
Momentary (see below).

Button n – Each pushbutton can be configured separately, using its own
Button sub-tab. The buttons on the panel are numbered 1 through 4, from
left to right. All four sub-tabs have the same parameters:

� Type – Option to change the responsiveness of the button.

o If Momentary (default), then the button is ON only so long as it
is pressed and held by the operator.

o If Alternate Action, then the button toggles between ON and
OFF every time it is pressed by the operator.

To configure Type, click the to the right and select an option
(Momentary or Alternate Action) from the pop-up menu.

� Value – The current ON/OFF state of the button. Mapped to an Input
Bit tag (%IX).

To configure Value, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

NOTE: The current value of the button should always be read as an
input; the associated tag should never be directly set by the program
logic. To change the state of the button from within the program, use
the Button On and Button Off commands.

� LED – Bit that turns the button LED on/off, if LED Separation is
enabled and the button is set Momentary (see above). Mapped to an
Output Bit tag (%QX).

To configure LED, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

� LED Flash – Bit that quickly flashes the button LED, if LED Separation
is enabled and the button is set Momentary (see above). The LED must
already be on before it can be flashed. Mapped to an Output Bit tag
(%QX).

To configure LED Flash, click the to the right and select a tag from
the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Buttons unconfigured, but if you do, those I/O
points will not be available to your project.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

287

When you have finished configuring the panel, click OK to save your changes and
close the window.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

288

A.16 OL3420 Operator Terminal
The OL3420 Operator Terminal has four user-definable pushbuttons and a 2 line x
20 character LCD display. The buttons can be configured for either momentary or
alternate-action operation. The button LEDs normally reflect button on/off status.
The momentary buttons can also be configured for LED separation (direct on/off
control). Every button LED can be turned on, off, or flashed.

A.16.1 OL3420 Configuration Options
The OL3420 panel is configured through the Configure I/O menu command in the
PointeControl development framework. (For more information on Configure I/O,
see page 118.) Selecting an OL3420 panel and clicking the I/O button opens the
OL3420 I/O Map dialog window…

Buttons tab

This tab controls the four white pushbuttons on the OL3420 panel.

� LED Separation – Option to control the red LEDs embedded in the
pushbuttons, separate from the actual ON/OFF states of the buttons. (The
setting applies to all four buttons.)

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

289

o If Disabled (default), then each button’s LED directly reflects the
current ON/OFF state of the button.

o If Enabled, then each button LED can be turned on/off
independently using the LED parameter (below).

To configure LED Separation, click the to the right and select an option
(Disabled or Enabled) from the pop-up menu.

NOTE: This configuration applies to a button only if the button is also set
Momentary (see below).

Button n – Each pushbutton can be configured separately, using its own
Button sub-tab. The buttons on the panel are numbered 1 through 4, from
left to right. All four sub-tabs have the same parameters:

� Type – Option to change the responsiveness of the button.

o If Momentary (default), then the button is ON only so long as it
is pressed and held by the operator.

o If Alternate Action, then the button toggles between ON and
OFF every time it is pressed by the operator.

To configure Type, click the to the right and select an option
(Momentary or Alternate Action) from the pop-up menu.

� Value – The current ON/OFF state of the button. Mapped to an Input
Bit tag (%IX).

To configure Value, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

NOTE: The current value of the button should always be read as an
input; the associated tag should never be directly set by the program
logic. To change the state of the button from within the program, use
the Button On and Button Off commands.

� LED – Bit that turns the button LED on/off, if LED Separation is
enabled and the button is set Momentary (see above). Mapped to an
Output Bit tag (%QX).

To configure LED, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

� LED Flash – Bit that quickly flashes the button LED, if LED Separation
is enabled and the button is set Momentary (see above). The LED must
already be on before it can be flashed. Mapped to an Output Bit tag
(%QX).

To configure LED Flash, click the to the right and select a tag from
the pop-up menu. Each tag can be used only once.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

290

NOTE: You can leave any or all Buttons unconfigured, but if you do, those I/O
points will not be available to your project.

Messages tab

This tab controls to two lines of the LCD on the OL3420 panel. The lines on the
panel are numbered 1 and 2, from top to bottom. Each line is mapped to a
separate 20-character String variable.

To configure a Line, click the to the right and select a String variable from the
pop-up menu. Each variable can be used only once.

Lines can be set and changed independently of each other; text does not wrap
from one line to the next. To display text on the panel, use String commands
(Flow Chart or Ladder Block) to write the desired text to the associated String
variables.

NOTE: You can leave any or all Lines unconfigured, but if you do, those I/O points
will not be available to your project.

When you have finished configuring the panel, click OK to save your changes and
close the window.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

291

A.17 OL3440 Display Panel
The OL3440 Display Panel is a 4 line x 20 character LCD display. You can send text
to any line.

A.17.1 OL3440 Configuration Options
The OL3440 panel is configured through the Configure I/O menu command in the
PointeControl development framework. (For more information on Configure I/O,
see page 118.) Selecting an OL3440 panel and clicking the I/O button opens the
OL3440 I/O Map dialog window…

This tab controls to four lines of the LCD on the OL3440 panel. The lines on the
panel are numbered 1 through 4, from top to bottom. Each line is mapped to a
separate 20-character String variable.

To configure a Line, click the to the right and select a String variable from the
pop-up menu. Each variable can be used only once.

Lines can be set and changed independently of each other; text does not wrap
from one line to the next. To display text on the panel, use String commands
(Flow Chart or Ladder Block) to write the desired text to the associated String
variables.

NOTE: You can leave any or all Lines unconfigured, but if you do, those I/O points
will not be available to your project.

When you have finished configuring the panel, click OK to save your changes and
close the window.

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

292

A.18 OL3850 Keypad Terminal
The OL3850 Keypad Terminal has a 2 line x 20 character LCD display, a numeric
keypad w/ up and down arrows, five user-definable pushbuttons, and three
colored indicator bars. The buttons can be configured for either momentary or
alternate-action operation. The button LEDs normally reflect button on/off status.
The momentary buttons can also be configured for LED separation (direct on/off
control). Every button LED and indicator bar can be turned on, off, or flashed.

A.18.1 OL3850 Configuration Options
The OL3850 panel is configured through the Configure I/O menu command in the
PointeControl development framework. (For more information on Configure I/O,
see page 118.) Selecting an OL3850 panel and clicking the I/O button opens the
OL3850 I/O Map dialog window…

Indicators tab

This tab configures the green (Indicator 1), yellow (Indicator 2), and red (Indicator
3) bars on the OL3850 panel.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

293

� Indicator n – Bit that turns the indicator on/off. When the bit becomes
ON, the indicator is turned on. When the bit becomes OFF, the indicator is
turned OFF. Mapped to an Output Bit tag (%QX).

To configure an Indicator, click the to the right and select a tag from
the pop-up menu. Each tag can be used only once.

� Indicator n Flash – Bit that quickly flashes the indicator. (The indicator
itself must already be on.) When the bit becomes ON, the indicator starts
flashing. When the bit becomes OFF, the indicator stops flashing. Mapped
to an Output Bit (%QX).

To configure an Indicator Flash, click the to the right and select a tag
from the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Indicators unconfigured, but if you do, those I/O
points will not be available to your project.

Buttons tab

This tab controls the five white pushbuttons on the OL3850 panel.

� LED Separation – Option to control the red LEDs embedded in the
pushbuttons, separate from the actual ON/OFF states of the buttons. (The
setting applies to all five buttons.)

o If Disabled (default), then each button’s LED directly reflects the
current ON/OFF state of the button.

o If Enabled, then each button LED can be turned on/off
independently using the LED parameter (below).

To configure LED Separation, click the to the right and select an option
(Disabled or Enabled) from the pop-up menu.

NOTE: This configuration applies to a button only if the button is also set
Momentary (see below).

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

294

Button n – Each pushbutton can be configured separately, using its own
Button sub-tab. The buttons on the panel are numbered 1 through 5, from
left to right. All five sub-tabs have the same parameters:

� Type – Option to change the responsiveness of the button.

o If Momentary (default), then the button is ON only so long as it
is pressed and held by the operator.

o If Alternate Action, then the button toggles between ON and
OFF every time it is pressed by the operator.

To configure Type, click the to the right and select an option
(Momentary or Alternate Action) from the pop-up menu.

� Value – The current ON/OFF state of the button. Mapped to an Input
Bit tag (%IX).

To configure Value, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

NOTE: The current value of the button should always be read as an
input; the associated tag should never be directly set by the program
logic. To change the state of the button from within the program, use
the Button On and Button Off commands.

� LED – Bit that turns the button LED on/off, if LED Separation is
enabled and the button is set Momentary (see above). Mapped to an
Output Bit tag (%QX).

To configure LED, click the to the right and select a tag from the
pop-up menu. Each tag can be used only once.

� LED Flash – Bit that quickly flashes the button LED, if LED Separation
is enabled and the button is set Momentary (see above). The LED must
already be on before it can be flashed. Mapped to an Output Bit tag
(%QX).

To configure LED Flash, click the to the right and select a tag from
the pop-up menu. Each tag can be used only once.

NOTE: You can leave any or all Buttons unconfigured, but if you do, those I/O
points will not be available to your project.

Pointe Controller User Guide Appendix A: OptiLogic Technical Specifications

295

Messages tab

This tab controls to two lines of the LCD on the OL3850 panel. The lines on the
panel are numbered 1 and 2, from top to bottom. Each line is mapped to a
separate 20-character String variable.

To configure a Line, click the to the right and select a String variable from the
pop-up menu. Each variable can be used only once.

Lines can be set and changed independently of each other; text does not wrap
from one line to the next. To display text on the panel, use String commands
(Flow Chart or Ladder Block) to write the desired text to the associated String
variables.

NOTE: You can leave any or all Lines unconfigured, but if you do, those I/O points
will not be available to your project.

Data Entry tab

Appendix A: OptiLogic Technical Specifications Pointe Controller User Guide

296

This tab is used to configure two variables that are required to enter data
through the numeric keypad on the OL3850 panel.

� Data Value – When the user inputs a numeric value and presses the
ENTER key on the keypad, the value is saved to Data Value. Mapped to a
32-bit Real Input tag (%IF).

To configure Data Value, click the to the right and select a tag from
the pop-up menu. Each tag can be used only once.

� Data Available – When the user inputs a numeric value and presses the
ENTER key on the keypad, the Data Available flag is set. Mapped to an
Input Bit tag (%IX).

To configure Data Available, click the to the right and select a tag
from the pop-up menu. Each tag can be used only once.

For more information on entering data through the numeric keypad, see
Operator Panel Commands on page 333.

When you have finished configuring the panel, click OK to save your changes and
close the window.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

297

Appendix B: Flow Chart Command Reference
This appendix provides complete descriptions and configuration instructions for
all of the Flow Chart process commands that are available in the PointeControl
development framework. (For more information on building Flow Charts, see
page 129.)

TIP: The information provided in this appendix is also available via the
PointeControl Framework online help. To access the help, choose Contents from
the Framework’s Help menu.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

298

B.1 General Commands
General commands (in a Process block) are used to set and clear Logic Memory
tags, to enable and disable Flow Charts, and to insert a timed delay in the chart
execution.

B.1.1 Turn On and Turn Off
These commands can be selected from the General commands list.

When used in a Flow Chart, the Turn On and Turn Off commands set a specified
Bit tag to 1 or 0, respectively.

Parameters for these commands include:

� Tag – The Bit tag to be turned on or off by the command. Bit-type tags
include Input Bits (%IX), Memory Bits (%MX), and Output Bits (%QX).

To configure the Tag parameter, click the button to open a standard
Select Tag dialog.

B.1.2 Assign
This command can be selected from the General commands list.

When used in a Flow Chart, the Assign command writes a value to a specified tag.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

299

Parameters for this command include:

� Statement – The statement which specifies the tag to be set and
describes the value to written.

The value of may be an Input/Memory/Output tag, a literal numeric value,
or some other logical expression that is evaluated every time the block is
executed.

To configure the Statement parameter, click the button to open a
standard Build Assignment dialog.

B.1.3 Increment and Decrement
These commands can be selected from the General commands list.

When used in a Flow Chart, the Increment and Decrement commands increase or
decrease a specified non-Bit tag's value by 1.

Parameters for this command include:

� Tag – The tag to be incremented or decremented by the command. Any
non-Bit Input, Memory, or Output tag can be specified. String and Timer
variables, as well as Bit tags, cannot be specified.

To configure the Tag parameter, click the button to open a standard
Select Tag dialog.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

300

B.1.4 Clear
This command can be selected from the General commands list.

When used in a Flow Chart, the Clear command resets a specified tag to 0.

Parameters for this command include:

� Tag – The tag to be reset to 0 by the command. Any Input, Memory, or
Output tag can be specified. Strings and Timers cannot be specified.

To configure the Tag parameter, click the button to open a standard
Select Tag dialog.

B.1.5 Enable and Disable
These commands can be selected from the General commands list.

When used in a Flow Chart, the Enable and Disable commands change whether a
specified Flow Chart is scanned. An enabled chart is scanned normally, while a
disabled chart is not scanned. Using these commands is equivalent to toggling the
Default State property in the specified chart’s Start block.

Parameters for this command include:

� Chart – The Flow Chart to be enabled or disabled by the command. Any
regular Flow Chart can be enabled or disabled. Ladder Diagrams, as well
as Flow Charts which have been made Subcharts, cannot be enabled or
disabled.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

301

To configure the Chart parameter, click the button and select a chart
from the drop-down menu.

B.1.6 Get Tag Name
This command can be selected from the General commands list.

When used in a Flow Chart, the Get Tag Name command retrieves the name
(alias) of a specified tag and saves it to a string.

Parameters for this command include:

� Source Tag – The tag from which the name is retrieved. Any Input,
Memory, or Output tag can be selected, as well as any String variable.
Timers cannot be selected.

To configure the Source Tag parameter, click the button to open a
standard Select Tag dialog.

� Destination String – The String tag to which the name of Source Tag is
written. If the name is longer than the defined Element Length of the
String, then it will be truncated.

To configure the Destination String parameter, click the button to
open a standard Select String Tag dialog.

� Name Type – Since all tags are referenced by Alias, this parameter cannot
be configured in PointeControl.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

302

B.1.7 Wait
This command can be selected from the General commands list.

When used in a Flow Chart, the Wait command inserts a delay of specified
duration into the execution of the chart.

Parameters for this command include:

� Wait Value – The number of specified time units in the delay. (Wait
Value is combined with Units below to get the actual duration. For
example, 3 Seconds or 3000 Milliseconds.)

The value of Wait Value may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Wait Value parameter, click the button to open a
standard Build Argument dialog.

� Units – The time units in which the Wait Value above is counted.
Available units include Milliseconds, Seconds, and Minutes.

To configure the Units parameter, click the button and select a unit
from the drop-down menu.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

303

B.2 Timer Commands
Timer commands (in a Process block) are used to start, stop, and reset Timers. (For
more information on defining Timers in Logic memory, see page 117.)

B.2.1 Timer Start and Timer Stop
These commands can be selected from the Timer commands list.

When used in a Flow Chart, the Timer Start and Timer Stop commands start and
stop a specified Timer.

Parameters for these commands include:

� Timer – The Timer to be started or stopped by the command.

To configure the Timer parameter, click the button to open a standard
Build Timer ID dialog.

NOTE: If the Timer was previously stopped, the Timer Start command resumes the
Timer from its last value. To start the Timer from 0, it must first be reset using the
Timer Reset command.

B.2.2 Timer Reset
This command can be selected from the Timer commands list.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

304

When used in a Flow Chart, the Timer Reset command resets the specified Timer
to 0 msecs.

Parameters for this command include:

� Timer – The Timer to be reset by the command.

To configure the Timer parameter, click the button to open a standard
Build Timer ID dialog.

B.2.3 Timer Preset
This command can be selected from the Timer commands list.

When used in a Flow Chart, the Timer Preset command assigns a new Preset value
to a specified Timer. This value overwrites whatever Preset was set when the
Timer was originally defined in Logic Memory, and it is retained until the
program is restarted or until the Preset is overwritten again by another Timer
Preset command.

Parameters for this command include:

� Timer – The Timer for which the Preset is to be defined.

To configure the Timer parameter, click the button to open a standard
Build Timer ID dialog.

� Preset Value – The number of specified time units in the Preset. (Preset
Value is combined with Units below to get the actual Preset. For example,
3 Seconds or 3000 Milliseconds.)

The value of Preset Value may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Preset Value parameter, click the button to open a
Build Preset Value dialog.

� Units – The time units in which the Preset Value above is counted.
Available units include Milliseconds, Seconds, and Minutes.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

305

To configure the Units parameter, click the button and select a unit
from the drop-down menu.

NOTE: Although other time units can be selected when using this
command, the Timer itself still counts in milliseconds during runtime. (The
Preset value that is entered is recalculated in milliseconds.)

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

306

B.3 String Commands
String commands (in a Process block) are used to manipulate strings and String
tags.

NOTE: All String outputs are NULL-terminated.

B.3.1 String Copy
This command can be selected from the String commands list.

When used in a Flow Chart, the String Copy commands directly copies one String
into another.

Parameters for this command include:

� Destination String – The String tag to which the Source String will be
copied.

To configure the Destination String parameter, click the button to
open a standard Select String Tag dialog.

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

� Source String – The string to be copied into the Destination String.

The value of Source String may be a String tag, a literal string enclosed in
single quotes (‘ ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Source String parameter, click the button to open a
standard Build String Argument dialog.

NOTE: Source String is not modified by the execution of this command.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

307

B.3.2 String Concat
This command can be selected from the String commands list.

When used in a Flow Chart, the String Concat command appends one string to
the end of another.

Parameters for this command include:

� Destination String – The string onto which the Source String will be
appended. Also, the String tag to which the output will be written.
(Essentially, old Destination String + Source String = new Destination
String.)

To configure the Destination String parameter, click the button to
open a standard Select String Tag dialog.

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

� Source String – The string to be appended to the end of the Destination
String.

The value of Source String may be a String tag, a literal string enclosed in
single quotes (‘ ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Source String parameter, click the button to open a
standard Build String Argument dialog.

NOTE: Source String is not modified by the execution of this command.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

308

B.3.3 String Left and String Right
These commands can be selected from the String commands list.

When used in a Flow Chart, the String Left and String Right commands extract a
sub-string of a specified length from a given string. The String Left command
extracts from the left side of the string. The String Right command extracts from
the right side of the string.

Parameters for these commands include:

� Destination String – The String tag to which the extracted sub-string
will be written.

To configure the Destination String parameter, click the button to
open a standard Select String Tag dialog.

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

� Source String – The string from which the sub-string will be extracted.

The value of Source String may be a String tag, a literal string enclosed in
single quotes (‘ ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Source String parameter, click the button to open a
standard Build String Argument dialog.

NOTE: Source String is not modified by the execution of this command.

� Number Chars – The length of the sub-string, in characters, to be
extracted.

The value of Number Chars may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Number Chars parameter, click the button to open a
standard Build Argument dialog.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

309

B.3.4 String Mid
This command can be selected from the String commands list.

When used in a Flow Chart, the String Mid command extracts a sub-string, of a
specified length and starting from a specified position, from a given string.

Parameters for this command include:

� Destination String – The String tag to which the extracted sub-string
will be written.

To configure the Destination String parameter, click the button to
open a standard Select String Tag dialog.

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

� Source String – The string from which the sub-string will be extracted.

The value of Source String may be a String tag, a literal string enclosed in
single quotes (‘ ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Source String parameter, click the button to open a
standard Build String Argument dialog.

NOTE: Source String is not modified by the execution of this command.

� Number Chars – The length of the sub-string, in characters, to be
extracted.

The value of Number Chars may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Number Chars parameter, click the button to open a
standard Build Argument dialog.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

310

� Start Position – The starting position from which the sub-string will be
extracted. The first character of the Source String is equivalent to a Start
Position of 1.

The value of Start Position may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Start Position parameter, click the button to open a
standard Build Argument dialog.

B.3.5 String Insert
This command can be selected from the String commands list.

When used in a Flow Chart, the String Insert command inserts one string into
another, starting at a specified position, and writes the result to separate String
tag.

Parameters for this command include:

� Destination String – The String tag to which the result of the command
will be written.

To configure the Destination String parameter, click the button to
open a standard Select String Tag dialog.

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

� Source String – The string into which the String to Insert will be inserted.

The value of Source String may be a String tag, a literal string enclosed in
single quotes (‘ ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Source String parameter, click the button to open a
standard Build String Argument dialog.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

311

NOTE: Source String is not modified by the execution of this command.

� String to Insert – The string that will be inserted into the Source String.

The value of String to Insert may be a String tag, a literal string enclosed
in single quotes (‘ ’), or some other logical expression that is evaluated
every time the block is executed.

To configure the Source String parameter, click the button to open a
standard Build String Argument dialog.

� Start Position – The starting position at which the String to Insert will be
inserted. The first character of the Source String is equivalent to a Start
Position of 1.

The value of Start Position may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Start Position parameter, click the button to open a
standard Build Argument dialog.

B.3.6 String Delete
This command can be selected from the String commands list.

When used in a Flow Chart, the String Delete command deletes a specified
number of characters from a given string and writes the result to separate String
tag. This is different from the String Left, String Right, and String Mid commands
above; the output is the remainder of the given string rather than the characters
that were deleted from it.

Parameters for this command include:

� Destination String – The String tag to which the result of the command
will be written.

To configure the Destination String parameter, click the button to
open a standard Select String Tag dialog.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

312

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

� Source String – The string from which the specified characters will be
deleted.

The value of Source String may be a String tag, a literal string enclosed in
single quotes (‘ ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Source String parameter, click the button to open a
standard Build String Argument dialog.

NOTE: Source String is not modified by the execution of this command.

� Number Chars – The number of characters to be deleted from the Source
String.

The value of Number Chars may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Number Chars parameter, click the button to open a
standard Build Argument dialog.

� Start Position – The starting position from which the specified characters
will be deleted. The first character of the Source String is equivalent to a
Start Position of 1.

The value of Start Position may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Start Position parameter, click the button to open a
standard Build Argument dialog.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

313

B.3.7 String Replace
This command can be selected from the String commands list.

When used in a Flow Chart, the String Replace command replaces a specified
number of characters in a given string with the contents of another string. The
result is written to a separate String tag. This is different from the String Insert
command above; the specified characters are completely overwritten rather than
simply displaced.

Parameters for this command include:

� Destination String – The String tag to which the result of the command
will be written.

To configure the Destination String parameter, click the button to
open a standard Select String Tag dialog.

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

� Source String – The string in which the specified characters will be
replaced.

The value of Source String may be a String tag, a literal string enclosed in
single quotes (‘ ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Source String parameter, click the button to open a
standard Build String Argument dialog.

NOTE: Source String is not modified by the execution of this command.

� Replacement String – The string which will replace the specified
characters in the Source String.

The value of Replacement String may be a String tag, a literal string
enclosed in single quotes (‘ ’), or some other logical expression that is
evaluated every time the block is executed.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

314

To configure the Source String parameter, click the button to open a
standard Build String Argument dialog.

� Number Chars – The number of characters to be replaced in the Source
String.

The value of Number Chars may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Number Chars parameter, click the button to open a
standard Build Argument dialog.

� Start Position – The starting position after which the specified characters
will be replaced. The first character of the Source String is equivalent to a
Start Position of 1.

The value of Start Position may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Start Position parameter, click the button to open a
standard Build Argument dialog.

B.3.8 String Format Integer
This command can be selected from the String commands list.

When used in a Flow Chart, the String Format Integer command formats an
integer value as a string using the specified radix (base). The result is written to a
separate String tag. This is especially useful for converting Input, Memory, and
Output tags to equivalent String tags for further manipulation.

Parameters for this command include:

� Destination String – The String tag to which the result of the command
will be written.

To configure the Destination String parameter, click the button to
open a standard Select String Tag dialog.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

315

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

� Integer Value – The integer value to be formatted.

The value of Integer Value may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Number Chars parameter, click the button to open a
standard Build Argument dialog.

� Radix (Base) – The base system by which the Integer Value will be
formatted. For example, a Radix of 10 will format the Integer Value as a
decimal, while a Radix of 16 will format the Integer Value as a
hexidecimal.

The value of Radix (Base) may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Start Position parameter, click the button to open a
standard Build Argument dialog.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

316

B.4 Diagnostics Commands
Diagnostics commands (in a Process block) are used to read from and write to the
diagnostic items that are associated with each Input, Memory, and Output tag.

About Diagnostic Items

Every Input, Memory, and Output tag has associated with it three metadata
registers, plus a fourth register for Input and Output tags only. These registers are
allocated automatically when each tag is defined in Logic Memory, and they can
be manipulated independently of the tag’s primary value.

The four metadata registers – also called “diagnostic items” – are:

� Diag Fault Bit – This item is used simply to indicate whether a fault
condition exists on the specified tag. The item occupies a single bit, which
can be toggled between 0 and 1.

� Diag Fault Level – This item can be used to indicate escalating levels of
fault on the specified tag. The item occupies a 32-bit register.

� Diag Status Code – This item can be used to record more complex error
codes on the specified tag. The item occupies a 32-bit register.

� Error Status Bit – This item, available only on Input and Output tags, is a
special flag that is used to notify the program when an I/O error has been
encountered (see below). The item occupies a single bit, which can be
toggled between 0 and 1.

PointeControl itself does not utilize the Diag Fault Bit and Diag Fault Level items;
you are free to implement your own custom routines that write to and read from
these items, using the Diagnostics commands described below as well as the Diag
Fault Bit Test option of decision-type blocks (If/Then, Repeat/Until, and While
Loop).

However, PointeControl does internally utilize the Diag Status Code and Error
Status Bit items. For each I/O point on the Pointe Controller unit (and on any
connected OptiLogic RTUs), the controller automatically notes I/O errors
encountered during runtime and logs them on the Input or Output tag associated
with the affected point. When an error is encountered, the tag’s Error Status Bit is
set to 1 and the error code is copied to the tag’s Diag Status Code. Possible error
codes include:

CODE DESCRIPTION

0x00000200 (512) I/O module or operator panel not found

0x00000400 (1024) OptiLogic RTU not found

0x00004000 (16384) No value read yet

0x00040000 (262144) System error

0x00200000 (2097152) Communication error

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

317

For all other errors, please contact Nematron Technical Support.

NOTE: The Pointe Controller unit updates a given tag’s Error Status Bit and Diag
Status Code only when a new error is encountered at the tag’s associated I/O
point. As such, the values currently stored in the items should always be handled
as merely the last error encountered, not as an ongoing error condition. To
actually clear the items, use the Diag Clear Tag Status command.

Also, clearing one item does not clear the other. Each item must be cleared
individually using separate commands.

B.4.1 Diag Get Tag Status
This command can be selected from the Diagnostics commands list.

When used in a Flow Chart, the Diag Get Tag Status command retrieves the
current value of any diagnostic item on a specified tag.

Parameters for this command include:

� Source Tag – The Input, Output, or Memory tag for which the diagnostic
item will be retrieved.

To configure the Source Tag parameter, click the button to open a
standard Select Tag dialog.

� Diag Item – The type of diagnostic item that will be retrieved by the
command. Available items include Diag Fault Bit, Diag Fault Level, Diag
Status Code, and Error Status Bit (input and Output tags only).

To configure the Diag Item parameter, click the button and select an
item from the drop-down menu.

� Destination Tag – The Memory or Output tag to which the retrieved
value will be saved. If the Diag Fault Bit or Error Status Bit will be
retrieved, then the value should be saved to a Bit tag (%MX or %QX). If
the Diag Fault Level or Diag Status Code will be retrieved, then the value
should be saved to a 32-bit Unsigned tag (%MUD or %QUD).

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

318

To configure the Destination Tag parameter, click the button to open a
standard Select Tag dialog.

B.4.2 Diag Set Tag Status
This command can be selected from the Diagnostics commands list.

When used in a Flow Chart, the Diag Set Tag Status command assigns a new value
to any diagnostic item on a specified tag.

Parameters for this command include:

� Destination Tag – The Input, Output, or Memory tag on which the
diagnostic item will be assigned.

To configure the Destination Tag parameter, click the button to open a
standard Select Tag dialog.

� Diag Item – The type of diagnostic item that will be assigned by the
command. Available items include Diag Fault Bit, Diag Fault Level, Diag
Status Code, and Error Status Bit (input and Output tags only).

To configure the Diag Item parameter, click the button and select an
item from the drop-down menu.

� The third parameter varies depending on which Diag Item is selected:

o If Diag Fault Bit is selected, then the third parameter is Fault
Bit. The parameter is not configurable since it simply toggles
the bit from 0 to 1. (To reset the bit to 0, use the Diag Clear Tag
Status command described below.)

o If Diag Fault Level is selected, then the third parameter is New
Fault Level. You can define your own fault levels in your
diagnostic routines.

The value of Diag Fault Level may be an Input/Memory/Output
tag, a literal numeric value, or some other logical expression
that is evaluated every time the block is executed.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

319

To configure the Diag Fault Level parameter, click the button
to open a standard Build Argument dialog.

o If Diag Status Code is selected, then the third parameter is New
Status Code. You can define your own status codes in your
diagnostic routines, but PointeControl does automatically
record I/O errors (see above).

The value of Diag Status Code may be an Input/Memory/Output
tag, a literal numeric value, or some other logical expression
that is evaluated every time the block is executed.

To configure the Diag Status Code parameter, click the
button to open a standard Build Argument dialog.

o If Error Status Bit is selected, then the third parameter is Error
Status Bit. The parameter is not configurable since it simply
toggles the bit from 0 to 1. (To reset the bit to 0, use the Diag
Clear Tag Status command described below.)

B.4.3 Diag Clear Tag Status
This command can be selected from the Diagnostics commands list.

When used in a Flow Chart, the Diag Clear Tag Status command clears the current
value of any diagnostic item (resets to 0) on a specified tag.

Parameters for this command include:

� Destination Tag – The Input, Output, or Memory tag on which the
diagnostic item will be cleared.

To configure the Destination Tag parameter, click the button to open a
standard Select Tag dialog.

� Diag Item – The type of diagnostic item that will be cleared by the
command. Available items include Diag Fault Bit, Diag Fault Level, Diag
Status Code, and Error Status Bit (input and Output tags only).

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

320

To configure the Diag Item parameter, click the button and select an
item from the drop-down menu.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

321

B.5 Serial Commands
The Serial commands are used to initiate serial communications through the
Pointe Controller I/O system.

NOTE: Read/Write commands do not normally block or wait. Read gets all bytes
which have been buffered on the port; write queues the byte(s) for output. The
command does not wait until the characters are physically transmitted.

About COM Ports

The Pointe Controller unit has one serial port built into the base unit itself, and
more ports can be added by installing a Dual Port RS232 Serial module (OL2602)
in one of the unit’s slots.

The built-in port is COM Port 0. The rest of the port numbers are determined by
which slot the OL2602 module is installed in:

Controller Slot 1 2 3 4 5 6 7 8

Top COM Port 1 3 5 7 9 11 13 15

Bottom COM Port 2 4 6 8 10 12 14 16

As such, if you had an OL2602 module installed in slot 4, then the top port would
be COM Port 7 and the bottom port would be COM Port 8.

NOTE: If you attempt to use a COM Port number that does not exist – because no
OL2602 module is installed in that slot – then the Pointe Controller will return a
Status Tag error.

B.5.1 Serial Configure Port
This command can be selected from the Serial commands list.

When used in a Flow Chart, the Serial Configure Port command configures the
specified COM port for serial communications.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

322

NOTE: This command also enables (opens) the specified port.

Parameters for this command include:

� COM Port – Specify which serial communications port to configure. For
more information on how the ports are numbered, see page 321.

The value of COM Port may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the COM Port parameter, click the button to open a
standard Build Argument dialog.

� Baud – 300, 1200, 2400, 4800, 9600, or 19200 baud; default is 9600.

To configure the Baud parameter, click the button and select a setting
from the drop-down menu.

� Parity – None, Even, or Odd parity; default is None.

To configure the Parity parameter, click the button and select a setting
from the drop-down menu.

� Data Bits – 7 or 8 data bits; default is 8.

To configure the Data Bits parameter, click the button and select a
setting from the drop-down menu.

� Stop Bits – 1, 1.5, or 2 stop bits; default is 1.

To configure the Stop Bits parameter, click the button and select a
setting from the drop-down menu.

� Status Tag – The Serial Configure Port command checks for a
communication error at the time of command execution. The Status Tag is
the tag to which the error code, if any, is saved. For more information on
interpreting error codes, see “Serial Get Comm Errors” on page 328.

The value of Status Tag may be any 16-bit Unsigned tag (%IUW, %MUW,
or %QUW).

To configure the Status Tag parameter, click the button to open a
standard Select Tag dialog.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

323

B.5.2 Serial Enable Port and Serial Disable Port
These commands can be selected from the Serial commands list.

When used in a Flow Chart, the Serial Enable Port and Serial Disable Port
commands open and close the specified COM port, respectively.

Parameters for these commands include:

� COM Port – Specify which serial communications port to enable (open) or
disable (close). For more information on how the ports are numbered, see
page 321.

The value of COM Port may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the COM Port parameter, click the button to open a
standard Build Argument dialog.

� Status Tag – The Serial Enable and Serial Disable commands check for a
communication error at the time of command execution. The Status Tag is
the tag to which the error code, if any, is saved. For more information on
interpreting error codes, see “Serial Get Comm Errors” on page 328.

The value of Status Tag may be any 16-bit Unsigned tag (%IUW, %MUW,
or %QUW).

To configure the Status Tag parameter, click the button to open a
standard Select Tag dialog.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

324

B.5.3 Serial Read Byte
This command can be selected from the Serial commands list.

When used in a Flow Chart, the Serial Read Byte command reads a single
byte/character from the specified COM port and saves it to a Logic Memory tag.

NOTE: If you need to convert the read byte into an ASCII character, you can use
the Integer to Character ladder block.

Parameters for this command include:

� COM Port – Specify which serial communications port to read from. For
more information on how the ports are numbered, see page 321.

The value of COM Port may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the COM Port parameter, click the button to open a
standard Build Argument dialog.

� Destination Tag – The tag to which the read byte will be saved.

The value of Destination Tag may be any 8-bit Unsigned tag (%IUB,
%MUB, or %QUB).

To configure the Destination Tag parameter, click the button to open a
standard Select Tag dialog.

� Status Tag – The Serial Read Byte command checks for a communication
error at the time of command execution. The Status Tag is the tag to
which the error code, if any, is saved. For more information on
interpreting error codes, see “Serial Get Comm Errors” on page 328.

The value of Status Tag may be any 16-bit Unsigned tag (%IUW, %MUW,
or %QUW).

To configure the Status Tag parameter, click the button to open a
standard Select Tag dialog.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

325

B.5.4 Serial Write Byte
This command can be selected from the Serial commands list.

When used in a Flow Chart, the Serial Write Byte command writes a single
byte/character (as defined in the Build Argument dialog) to the specified COM
port.

NOTE: String characters are automatically converted into their equivalent ASCII
values.

Parameters for this command include:

� COM Port – Specify which serial communications port to write to. For
more information on how the ports are numbered, see page 321.

The value of COM Port may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the COM Port parameter, click the button to open a
standard Build Argument dialog.

� Source Char – The byte/character that will be written to the COM port.

The value of Source Char may be an Input/Memory/Output tag, a String
variable, a literal numeric value, a literal string enclosed in single quotes (‘
’), or some other logical expression that is evaluated every time the block
is executed. If the given value is more than one byte long, then only the
first byte will be written.

To configure the Source Char parameter, click the button to open a
standard Build Argument dialog.

� Status Tag – The Serial Write Byte command checks for a communication
error at the time of command execution. The Status Tag is the tag to
which the error code, if any, is saved. For more information on
interpreting error codes, see “Serial Get Comm Errors” on page 328.

The value of Status Tag may be any 16-bit Unsigned tag (%IUW, %MUW,
or %QUW).

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

326

To configure the Status Tag parameter, click the button to open a
standard Select Tag dialog.

B.5.5 Serial Read MultiBytes
This command can be selected from the Serial commands list.

When used in a Flow Chart, the Serial Read MultiBytes command reads a string
from the specified COM port and saves it to a String variable in Logic Memory.
The command will read up to defined Element Length of the variable and will not
block until the variable is full.

NOTE: The read bytes will be automatically converted into a string, regardless of
how they were originally sent.

Parameters for this command include:

� COM Port – Specify which serial communications port to read from. For
more information on how the ports are numbered, see page 321.

The value of COM Port may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the COM Port parameter, click the button to open a
standard Build Argument dialog.

� Destination String – The String variable to which the read bytes will be
saved.

To configure the Destination String parameter, click the button to
open a standard Select String Tag dialog.

� Status Tag – The Serial Read MultiBytes command checks for a
communication error at the time of command execution. The Status Tag is
the tag to which the error code, if any, is saved. For more information on
interpreting error codes, see “Serial Get Comm Errors” on page 328.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

327

The value of Status Tag may be any 16-bit Unsigned tag (%IUW, %MUW,
or %QUW).

To configure the Status Tag parameter, click the button to open a
standard Select Tag dialog.

B.5.6 Serial Write MultiBytes
This command can be selected from the Serial commands list.

When used in a Flow Chart, the Serial Write MultiBytes command writes a string
(as defined in the Build String Argument dialog) to the specified COM port. It will
write only up to the actual length of the given string.

Parameters for this command include:

� COM Port – Specify which serial communications port to write to. For
more information on how the ports are numbered, see page 321.

The value of COM Port may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the COM Port parameter, click the button to open a
standard Build Argument dialog.

� Source String – The string that will be written to the COM port.

The value of Source String may be a String variable, a literal string
enclosed in single quotes (‘ ’), or some other logical expression that is
evaluated every time the block is executed.

To configure the Source String parameter, click the button to open a
standard Build String Argument dialog.

� Status Tag – The Serial Write MultiBytes command checks for a
communication error at the time of command execution. The Status Tag is
the tag to which the error code, if any, is saved. For more information on
interpreting error codes, see “Serial Get Comm Errors” on page 328.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

328

The value of Status Tag may be any 16-bit Unsigned tag (%IUW, %MUW,
or %QUW).

To configure the Status Tag parameter, click the button to open a
standard Select Tag dialog.

B.5.7 Serial Get Comm Errors
This command can be selected from the Serial commands list.

When used in a Flow Chart, the Serial Get Comm Errors command simply checks
the specified COM port for communication errors.

Parameters for this command include:

� COM Port – Specify which serial communications port to check. For more
information on how the ports are numbered, see page 321.

The value of COM Port may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the COM Port parameter, click the button to open a
standard Build Argument dialog.

� Errors Tag – The tag to which the error code, if any, is saved.

The value of Errors Tag may be any 16-bit Unsigned tag (%IUW, %MUW,
or %QUW).

To configure the Errors Tag parameter, click the button to open a
standard Select Tag dialog.

Error Codes

To interpret a serial communication error code, get the value that was saved to
the Status/Errors Tag and check it against the table below:

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

329

VALUE NAME DESCRIPTION

0x0000 (0) n/a No error; good communication

0x0001 (1) PARITY_ERROR OptiLogic parity error

0x0002 (2) FRAMING_ERROR OptiLogic framing error

0x0004 (4) OVERRUN_ERROR OptiLogic overrun error

0x0010 (16) READ_ERROR Serial read error

0x0020 (32) WRITE_ERROR Serial write error

0x0040 (64) BAD_CONFIG_ERROR Invalid configuration error

0x0080 (128) BAD_PORT_ERROR Non-existent serial port error

0x0100 (256) OVERFLOW_ERROR Buffer overflow error

0x8000 (32768) NO_DATA No data available on read

For all other errors, please contact Nematron Technical Support.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

330

B.6 Date/Time Commands
Date/Time commands (in a Process block) are used to retrieve the system time on
the Pointe Controller unit.

NOTE: The controller’s internal clock is updated whenever a compiled project is
downloaded from your PC to the controller. The time is taken from your PC’s
system time.

B.6.1 Date/Time Get
This command can be selected from the Date/Time commands list.

When used in a Flow Chart, the Date/Time Get command retrieves the current
system time on the Pointe Controller unit. The time is expressed as the number of
whole seconds and remaining milliseconds elapsed since January 1, 1970. The
Seconds and Milliseconds values are both returned as 32-bit unsigned integers.

Parameters for this command include:

� Seconds Tag – The Logic Memory tag to which the number of seconds
will be written. The tag should be a 32-bit Unsigned Input, Memory, or
Output tag.

To configure the Seconds Tag parameter, click the button to open a
standard Select Tag dialog.

� Milliseconds Tag – The Logic Memory tag to which the number of
remaining milliseconds will be written. The tag should be a 32-bit
Unsigned Input, Memory, or Output tag.

To configure the Milliseconds Tag parameter, click the button to open
a standard Select Tag dialog.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

331

B.6.2 Date/Time Format
This command can be selected from the Date/Time commands list.

When used in a Flow Chart, the Date/Time Format command formats a given time
as a string and writes the result to a String tag. The format of the string is <ddd
mmm DD HH:MM:SS.sss YYYY>.

Parameters for this command include:

� Date/Time Type – The time to be formatted, either the current system
time or some user-specified time. If the current system time is selected,
then it will be retrieved automatically when the block is executed. If a
user-specified time is selected, then the Seconds and Milliseconds
parameters below must also be configured.

To configure the Date/Time Type parameter, click the button and
select a type from the drop-down menu.

� Seconds – The number of whole seconds elapsed since January 1, 1970.

The value of Seconds may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Seconds parameter, click the button to open a
standard Build Argument dialog.

� Milliseconds – The number of remaining milliseconds (total time elapsed
minus whole seconds).

The value of Milliseconds may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Milliseconds parameter, click the button to open a
standard Build Argument dialog.

� Destination String – The String tag to which the result of the command
will be written.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

332

To configure the Destination String parameter, click the button to
open a standard Select String Tag dialog.

NOTE: If the defined length of the Destination String is not long enough
to receive the result of the command, then the output will be truncated.
No error will be generated.

B.6.3 Get Elapsed Time
This command can be selected from the Date/Time commands list.

When used in a Flow Chart, the Get Elapsed Time command retrieves the total
time elapsed, in milliseconds, since the Pointe Controller unit was last powered
on. The Milliseconds value is returned as a 32-bit unsigned integer.

Parameters for this command include:

� Milliseconds Tag – The Logic Memory tag to which the number of
milliseconds will be written. The tag should be a 32-bit Unsigned Input,
Memory, or Output tag.

To configure the Milliseconds Tag parameter, click the button to open
a standard Select Tag dialog.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

333

B.7 Operator Panel Commands
Operator Panel commands (in a Process block) are used to control the OL3406,
OL3420, and OL3850 operator panels. You must have one of these panels
connected to your Pointe Controller unit and properly configured in order to use
these commands. For more information, see “Configuring operator panels” on
page 128.

NOTE: The Keypad Data Entry and Arrow Adjust Data Entry commands work only
with the OL3850 operator panel. The Button On and Button Off commands work
with all three panel models.

B.7.1 Keypad Data Entry
This command can be selected from the Operator Panel commands list.

When used in a Flow Chart, the Keypad Data Entry command displays a message
prompting the user to enter a value using the panel’s numeric keypad. After the
user enters a value and presses the ENTER key, the entered value is saved to the
Data Value tag and the Data Available tag is set to 1.

NOTE: This command works only with the OL3850 operator panel.

Parameters for this command include:

� Message Line – Which line of the operator panel that will be used to
display the message. The top line is 1, the bottom line is 2.

The value of Message Line may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Message Line parameter, click the button to open a
standard Build Argument dialog.

� Message – The text of the message, as specified in the Build String
Argument dialog. Carets “^” must be included in the message text as a

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

334

place holders for the data entry field. A typical message may be ‘Enter
value: ^^^^^^^’, allowing up to seven digits to be entered.

The value of Message may be a String tag, a literal string enclosed in
single quotes (‘ ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Message parameter, click the button to open a
standard Build String Argument dialog.

� Initial Value – The initial value that is displayed in the entry field. It can
be any integer or real number, as specified in the Build Argument dialog.
The value entered by the user overwrites this value.

The value of Initial Value may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Initial Value parameter, click the button to open a
standard Build Argument dialog.

� Decimal Digits – The number of decimal places to which the Initial Value
is displayed. Integers are padded, reals are truncated.

The value of Decimal Digits may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Decimal Digits parameter, click the button to open a
standard Build Argument dialog.

B.7.2 Arrow Adjust Data Entry
This command can be selected from the Operator Panel commands list.

When used in a Flow Chart, the Arrow Adjust Data Entry command displays a
message prompting the user to enter a value using the panel’s arrow buttons.
After the user enters a value and presses the ENTER key, the entered value is
saved to the Data Value tag and the Data Available tag is set to 1.

Pointe Controller User Guide Appendix B: Flow Chart Command Reference

335

NOTE: This command works only with the OL3850 operator panel.

Parameters for this command include:

� Message Line – Which line of the operator panel that will be used to
display the message. The top line is 1, the bottom line is 2.

The value of Message Line may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Message Line parameter, click the button to open a
standard Build Argument dialog.

� Message – The text of the message, as specified in the Build Argument
dialog. Carets “^” must be included in the message text as a place holders
for the data entry field. A typical message may be ‘Enter value: ^^^^^^^’,
allowing up to seven digits to be entered.

The value of Message may be a String tag, a literal string enclosed in
single quotes (‘ ’), or some other logical expression that is evaluated every
time the block is executed.

To configure the Message parameter, click the button to open a
standard Build String Argument dialog.

� Minimum Value – The minimum possible value that can be entered. If
the user presses and holds the down arrow, the entry field will stop
decrementing at this value.

The value of Minimum Value may be an Input/Memory/Output tag, a
literal numeric value, or some other logical expression that is evaluated
every time the block is executed.

To configure the Minimum Value parameter, click the button to open
a standard Build Argument dialog.

� Maximum Value – The maximum possible value that can be entered. If
the user presses and holds the up arrow, the entry field will stop
incrementing at this value.

The value of Maximum Value may be an Input/Memory/Output tag, a
literal numeric value, or some other logical expression that is evaluated
every time the block is executed.

To configure the Maximum Value parameter, click the button to open
a standard Build Argument dialog.

� Initial Value – The initial value that is displayed in the entry field. It can
be any integer or real number, as specified in the Build Argument dialog.
The value entered by the user overwrites this value.

The value of Initial Value may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

Appendix B: Flow Chart Command Reference Pointe Controller User Guide

336

To configure the Initial Value parameter, click the button to open a
standard Build Argument dialog.

� Decimal Digits – The number of decimal places to which the Initial Value
is displayed. Integers are padded, reals are truncated.

The value of Decimal Digits may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Decimal Digits parameter, click the button to open a
standard Build Argument dialog.

NOTE: In both Data Entry commands, the message is removed from the display as
soon as the user presses the ENTER key. It is replaced with the current value of
String variable associated with the I/O point.

B.7.3 Button On and Button Off
These commands can be selected from the Operator Panel commands list.

When used in a Flow Chart, the Button On and Button Off commands force the
specified pushbutton on or off, respectively. The pushbutton is specified by the
Button parameter, and the buttons on each panel are numerically addressed from
left to right. For example, to force the second pushbutton on an OL3850 panel to
turn on, you would use the Button On command and set the Button parameter
to 2.

NOTE: The buttons should already be set “alternate action.” For more
information, see “Configuring operator panels” on page 128.

Parameters for this command include:

� Button – Which button on the panel that will be forced on/off by the
command. The buttons on each panel are numbered from left to right.

The value of Button may be an Input/Memory/Output tag, a literal
numeric value, or some other logical expression that is evaluated every
time the block is executed.

To configure the Button parameter, click the button to open a
standard Build Argument dialog.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

337

Appendix C: Ladder Diagram Block Reference
This appendix provides complete descriptions and configuration instructions for
all of the Ladder Diagram function blocks that are available in the PointeControl
development framework. (For more information on building Ladder Diagrams,
see page 163.)

TIP: The information provided in this appendix is also available via the
PointeControl Framework online help. To access the help, choose Contents from
the Framework’s Help menu.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

338

C.1 Relays and Coils

C.1.1 Normally Open Contact (XIC)
When used in a Ladder Diagram, this block acts as a relay that controls the
passing of the rung state from the left to the right. The state is passed only if the
value of the associated Bit tag is true or 1.

Select the tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When the input state from the left becomes on, the value of the associated Bit
tag is checked. If the tag is true or 1, then the output state to the right is turned
on. If the tag is false or 0, then the output state is kept off.

The relay is checked every time the ladder is scanned, so long as the input state
remains on.

Configuration Reference

Any Bit tag may be associated with the block: %IX, %MX, %QX, or T_DONE.

C.1.2 Normally Closed Contact (XIO)
When used in a Ladder Diagram, this block acts as a relay that controls the
passing of the rung state from the left to the right. The state is passed only if the
value of the associated Bit tag is false or 0.

Select the tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

339

Functional Description

When the input state from the left becomes on, the value of the associated Bit
tag is checked. If the tag is false or 0, then the output state to the right is turned
on. If the tag is true or 1, then the output state is kept off.

The relay is checked every time the ladder is scanned, so long as the input state
remains on.

Configuration Reference

Any Bit tag may be associated with the block: %IX, %MX, %QX, or T_DONE.

C.1.3 Rising Edge Relay (LEC)
When used in a Ladder Diagram, this block acts as a relay that controls the
passing of the rung state from the left to the right. The state is passed only when
the value of the associated Bit tag changes from 0 to 1.

Select the tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When the value of the associated Bit tag transitions from 0 to 1, the input state
from the left is momentarily passed through the the output state to the right.

The state is passed only once, on the first scan immediately following the
transition. After that, the output state is turned off and kept off until the
associated Bit tag transitions again from 0 to 1.

Configuration Reference

Any Bit tag may be associated with the block: %IX, %MX, %QX, or T_DONE.

C.1.4 Falling Edge Relay (TEC)
When used in a Ladder Diagram, this block acts as a relay that controls the
passing of the rung state from the left to the right. The state is passed only when
the value of the associated Bit tag changes from 1 to 0.

Select the tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

340

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When the value of the associated Bit tag transitions from 1 to 0, the input state
from the left is momentarily passed through the the output state to the right.

The state is passed only once, on the first scan immediately following the
transition. After that, the output state is turned off and kept off until the
associated Bit tag transitions again from 1 to 0.

Configuration Reference

Any Bit tag may be associated with the block: %IX, %MX, %QX, or T_DONE.

C.1.5 Output Coil (OC)
When used in a Ladder Diagram, this block acts as a coil that sets an associated Bit
tag to match the state of the rung.

Select the tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the input state through to the output state without
change; when the input state becomes on, the output state is turned on, and
when the input state becomes off, the output state is turned off.

When the input state from the left becomes on, the associated Bit tag is set to 1.
When the input state becomes off, the tag is set to 0.

The coil is checked every time the ladder is scanned, regardless of whether the
input state is on or off.

Configuration Reference

Any Memory Bit (%MX) or Output Bit (%QX) tag may be associated with the
block.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

341

C.1.6 Negated Output Coil (NEGOC)
When used in a Ladder Diagram, this block acts as a coil that sets an associated Bit
tag to the inverse of the state of the rung.

Select the tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the input state through to the output state without
change; when the input state becomes on, the output state is turned on, and
when the input state becomes off, the output state is turned off.

When the input state from the left becomes on, the associated Bit tag is set to 0.
When the input state becomes off, the tag is set to 1.

The coil is checked every time the ladder is scanned, regardless of whether the
input state is on or off.

Configuration Reference

Any Memory Bit (%MX) or Output Bit (%QX) tag may be associated with the
block.

C.1.7 Latched Coil (LOC)
When used in a Ladder Diagram, this block acts as a coil that sets an associated Bit
tag to 1 and maintains it until it is explicitly reset to 0 by an external action.

Select the tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the input state through to the output state without
change; when the input state becomes on, the output state is turned on, and
when the input state becomes off, the output state is turned off.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

342

When the input state from the left becomes on, the associated Bit tag is set to 1.
The tag is maintained, or “latched, at 1 until it is explicitly reset to 0 by an
external action (either an I/O change or another PointeControl block). The tag is
not changed when the input state becomes off.

The coil is checked every time the ladder is scanned, so long as the input state
remains on. However, the associated Bit tag cannot be set (latched) unless it is
already 0.

Configuration Reference

Any Memory Bit (%MX) or Output Bit (%QX) tag may be associated with the
block.

C.1.8 Unlatched Coil (UOC)
When used in a Ladder Diagram, this block acts as a coil that sets an associated Bit
tag to 0 and maintains it until it is explicitly reset to 1 by an external action.

Select the tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the input state through to the output state without
change; when the input state becomes on, the output state is turned on, and
when the input state becomes off, the output state is turned off.

When the input state from the left becomes off, the associated Bit tag is set to 0.
The tag is maintained, or “unlatched, at 0 until it is explicitly reset to 1 by an
external action (either an I/O change or another PointeControl block). The tag is
not changed when the input state becomes on.

The coil is checked every time the ladder is scanned, so long as the input state
remains off. However, the associated Bit tag cannot be set (unlatched) unless it is
already 1.

Configuration Reference

Any Memory Bit (%MX) or Output Bit (%QX) tag may be associated with the
block.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

343

C.1.9 Rising Edge Coil (LEOC)
When used in a Ladder Diagram, this block acts as a coil that momentarily sets an
associated Bit tag to 1 when the rung state changes from 0 to 1.

Select the tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the input state through to the output state without
change; when the input state becomes on, the output state is turned on, and
when the input state becomes off, the output state is turned off.

When the input state from the left transitions from 0 to 1, the associated Bit tag
is momentarily set to 1. The tag is only maintained for a single execution of the
block, after which it is reset to 0.

Configuration Reference

Any Memory Bit (%MX) or Output Bit (%QX) tag may be associated with the
block.

C.1.10 Falling Edge Coil (TEOC)
When used in a Ladder Diagram, this block acts as a coil that momentarily sets an
associated Bit tag to 1 when the rung state changes from 1 to 0.

Select the tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the input state through to the output state without
change; when the input state becomes on, the output state is turned on, and
when the input state becomes off, the output state is turned off.

When the input state from the left transitions from 1 to 0, the associated Bit tag
is momentarily set to 1. The tag is only maintained for a single execution of the
block, after which it is reset to 0.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

344

Configuration Reference

Any Memory Bit (%MX) or Output Bit (%QX) tag may be associated with the
block.

C.1.11 Falling Edge Detector (F_TRIG)
When used in a Ladder Diagram, the F_TRIG block waits for an input bit to
change from 1 to 0 and triggers an output bit when it does.

Select the tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Clock input (CLK) is
monitored for a transition from 1 to 0. When a transition is detected, the Output
(Q) is triggered; i.e., Q is set to 1 for a single execution of the block, after which it
is immediately reset to 0.

The block function is executed every time the ladder is scanned, so long as EN
remains on. However, Q is triggered only when a transition in CLK is detected.
After Q has been triggered, CLK must be reset to 1 and transition again to 0
before Q can be triggered again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

345

Param Name Config Var Type Description

CLK Clock req %IX
%MX
%QX

T_DONE

The input value.

Q Output req %IX
%MX
%QX

The output value that is triggered
when the input value transitions
from 1 to 0.

C.1.12 Rising Edge Detector (R_TRIG)
When used in a Ladder Diagram, the R_TRIG block waits for an input bit to
change from 0 to 1 and triggers an output bit when it does.

Select the tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Clock input (CLK) is
monitored for a transition from 0 to 1. When a transition is detected, the Output
(Q) is triggered; i.e., Q is set to 1 for a single execution of the block, after which it
is immediately reset to 0.

The block function is executed every time the ladder is scanned, so long as EN
remains on. However, Q is triggered only when a transition in CLK is detected.
After Q has been triggered, CLK must be reset to 0 and transition again to 1
before Q can be triggered again.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

346

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

CLK Clock req %IX
%MX
%QX

T_DONE

The input value.

Q Output req %IX
%MX
%QX

The output value that is triggered
when the input value transitions
from 0 to 1.

C.1.13 Set-Dominant Bistable (SR)
When used in a Ladder Diagram, the SR block switches an output bit between 0
and 1 depending on the values of two input bits. The block is “set-dominant,
meaning that a decision to set the output bit to 1 will override a decision to reset
the output bit to 0.

Select the tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a new value for the Output
(Q) is determined based on the Set and Reset inputs (S1 and R), as well as the
existing value of Q. If S1 is true or 1, then Q is set to 1. If R is true or 1, then Q is
reset to 0. (However, the block is set-dominant, so S1 will override R.) If both S1
and R are false or 0, then Q is left at its existing value regardless of what it is.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

347

Therefore, the block function is evaluated according to the following table:

SET 0 1 0 1

RESET 0 0 1 1

OUTPUT existing
value

1 0 1

The block function is executed every time the ladder is scanned, so long as EN
remains on.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

S1 Set req %IX
%MX
%QX

T_DONE

The “set” input. This will override
the “reset” input.

R Reset req %IX
%MX
%QX

T_DONE
Numeric

The “reset” input.

Q Output req %IX
%MX
%QX

The output value determined by
the “set” and “reset” inputs.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

348

C.1.14 Reset-Dominant Bistable (RS)
When used in a Ladder Diagram, the SR block switches an output bit between 0
and 1 depending on the values of two input bits. The block is “reset-dominant,
meaning that a decision to reset the output bit to 0 will override a decision to set
the output bit to 1.

Select the tool (from the Relays and Coils toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a new value for the Output
(Q) is determined based on the Set and Reset inputs (S and R1), as well as the
existing value of Q. If S is true or 1, then Q is set to 1. If R1 is true or 1, then Q is
reset to 0. (However, the block is reset-dominant, so R1 will override S.) If both S
and R1 are false or 0, then Q is left at its existing value regardless of what it is.

Therefore, the block function is evaluated according to the following table:

SET 0 1 0 1

RESET 0 0 1 1

OUTPUT existing
value

1 0 0

The block function is executed every time the ladder is scanned, so long as EN
remains on.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

349

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

S Set req %IX
%MX
%QX

T_DONE

The “set” input.

R1 Reset req %IX
%MX
%QX

T_DONE
Numeric

The “reset” input. This will override
the “set” input.

Q Output req %IX
%MX
%QX

The output value determined by
the “set” and “reset” inputs.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

350

C.2 Timer and Counter Blocks

C.2.1 Timer, Pulse (TP)
When used in a Ladder Diagram, the TP block turns on the output state for a
fixed-width pulse.

Select the tool (from the Timers and Counters Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When the Input State (IN) becomes on, the Output State (Q) is turned on and the
associated Timer variable (TIMER) is started. When the Timer equals the Preset
Time input (PT), the Timer is stopped and Q is turned off.

When both IN and Q become off, the Timer is reset to 0.

The Timer cannot be stopped once it is started, even if IN becomes off before the
Timer equals PT.

The Elapsed Time output (ET) shows the time passed since IN became on; in other
words, it shows the current value of the Timer itself. When the Timer reaches PT,
ET remains equal to PT until it is reset. When the Timer is reset to 0, ET is reset to
0.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

IN Input
State

no - The state of the rung (off/on)
received from the left.

Q Output
State

no - The state of the rung (off/on)
passed to the right.

TIMER Timer req Timer The Timer variable on which the
function is based.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

351

Param Name Config Var Type Description

PT Preset
Time

opt %IUD
%QUD
%MUD
Numeric

The length of the pulse, in msecs. If
no Preset Time is defined, then the
preset value of Timer variable is
used instead.

ET Elapsed
Time

opt %QUD
%MUD

The time elapsed since the Input
State became on, in msecs. In most
instances, the Elapsed Time equals
the current value of the Timer
variable.

C.2.2 Timer, ON Delay (TON)
When used in a Ladder Diagram, the TON block turns on the output state after a
specified time delay has elapsed.

Select the tool (from the Timers and Counters Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When the Input State (IN) becomes on, the associated Timer variable (TIMER) is
started and continues while IN remains on. When the Timer equals the Preset
Time input (PT), the Output State (Q) is turned on.

When IN becomes off, Q is turned off and the Timer is reset to 0.

If IN becomes off while the Timer is counting but before it equals PT, then the
Timer is reset to 0 and Q remains off.

The Elapsed Time output (ET) shows the time passed since IN became on; in other
words, it shows the current value of the Timer itself. When the Timer reaches PT,
ET remains equal to PT until it is reset. When the Timer is reset to 0, ET is reset to
0.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

352

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

IN Input
State

no - The state of the rung (off/on)
received from the left.

Q Output
State

no - The state of the rung (off/on)
passed to the right.

TIMER Timer req Timer The Timer variable on which the
function is based.

PT Preset
Time

opt %IUD
%QUD
%MUD
Numeric

The length of the delay, in msecs. If
no Preset Time is defined, then the
preset value of Timer variable is
used.

ET Elapsed
Time

opt %QUD
%MUD

The time elapsed since the Input
State became on, in msecs. In most
instances, the Elapsed Time equals
the current value of the Timer
variable.

C.2.3 Timer, OFF Delay (TOF)
When used in a Ladder Diagram, the TOF block turns off the output state after a
specified time delay has elapsed.

Select the tool (from the Timers and Counters Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When the Input State (IN) becomes on, the Output State (Q) is turned on and the
associated Timer variable (TIMER) is reset to 0.

When IN becomes off, the Timer is started and continues while IN remains off.
When the Timer equals the Preset Time input (PT), Q is turned off.

If IN becomes on while the Timer is counting but before it equals PT, then the
Timer is reset to 0 and Q remains on.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

353

The Elapsed Time output (ET) shows the time passed since IN became on; in other
words, it shows the current value of the Timer itself. When the Timer reaches PT,
ET remains equal to PT until it is reset. When the Timer is reset to 0, ET is reset to
0.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

IN Input
State

no - The state of the rung (off/on)
received from the left.

Q Output
State

no - The state of the rung (off/on)
passed to the right.

TIMER Timer req Timer The Timer variable on which the
function is based.

PT Preset
Time

opt %IUD
%QUD
%MUD
Numeric

The length of the delay, in msecs. If
no Preset Time is defined, then the
preset value of Timer variable is
used.

ET Elapsed
Time

opt %QUD
%MUD

The time elapsed since the Input
State became on, in msecs. In most
instances, the Elapsed Time equals
the current value of the Timer
variable.

C.2.4 Counter, Up (CTU)
When used in a Ladder Diagram, the CTU block increments a counter by 1. It also
sets a “done bit when the counter reaches a preset value.

Select the tool (from the Timers and Counters Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

354

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed and the following
conditions are evaluated in order:

1. If the Reset input (R) is true, then the Counter Value output (CV) is reset
to 0.

2. If R is false and the Count Up input (CU) is true, then CV is incremented
by 1.

3. If CV is greater than or equal to the Preset Value input (PV), then the
Output Up bit (QU) is set to true. If CV is less than PV, then QU is set to
false.

The block function is executed every time the ladder is scanned, so long as EN
remains on.

NOTE: Because the frequency of the count is based on the project’s Scan Interval,
it should not be used to gauge real time. To gauge real time, use a Timer.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

CU Count Up req %IX
%QX
%MX

T_DONE

The enable bit which must be set in
order for the counter to increment.

R Reset req %IX
%QX
%MX

T_DONE

The reset bit; if this bit is set, then
the counter is set to 0.

PV Preset
Value

req %IUD
%QUD
%MUD
Numeric

The preset or target value of the
counter.

QU Output
Up

req %QX
%MX

The “done” bit which is set when
the counter reaches the preset
value.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

355

Param Name Config Var Type Description

CV Counter
Value

req %QUD
%MUD

The current value of the counter.

C.2.5 Counter, Down (CTD)
When used in a Ladder Diagram, the CTD block decrements a counter by 1. It also
sets a “done bit when the counter reaches 0.

Select the tool (from the Timers and Counters Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed and the following
conditions are evaluated in order:

1. If the Preset input (L) is true, then the Counter Value output (CV) is reset
to the Preset Value input (PV).

2. If L is false and the Count Down input (CD) is true, then CV is
decremented by 1.

3. If CV is less than or equal to 0, then the Output Down bit (QD) is set to
true. If CV is greater than 0, then QD is set to false.

The block function is executed every time the ladder is scanned, so long as EN
remains on.

NOTE: Because the frequency of the count is based on the project’s Scan Interval,
it should not be used to gauge real time. To gauge real time, use a Timer.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

356

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

CD Count
Down

req %IX
%QX
%MX

T_DONE

The enable bit which must be set in
order for the counter to
decrement.

L Preset req %IX
%QX
%MX

T_DONE

The preset bit; if this bit is set, then
the counter is set to the preset
value.

PV Preset
Value

req %IUD
%QUD
%MUD
Numeric

The preset value of the counter.

QD Output
Down

req %QX
%MX

The “done” bit which is set when
the counter reaches 0.

CV Counter
Value

req %QUD
%MUD

The current value of the counter.

C.2.6 Counter, Up/Down (CTUD)
When used in a Ladder Diagram, the CTUD block either increments or decrements
a counter by 1, depending on which enable bit is set. It also sets “done bit when
the counter reaches either a preset value or 0.

Select the tool (from the Timers and Counters Blocks toolbar) and click on a
ladder rung to insert the following block:

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

357

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed and the following
conditions are evaluated in order:

1. The Reset and Preset inputs (R and L) are checked and the Counter Value
output (CV) is changed accordingly:

� If R is true and L is false, then CV is set to 0 and the function skips to
#3 below.

� If R is false and L is true, then CV is set to the Preset Value input (PV)
and the function skips to #3 below.

� If R and L are both true, then R takes precedence (see above).

� If R and L are both false, then CV is not changed and the function
proceeds to #2 below.

2. The Count Up and Count Down inputs (CU and CD) are checked and CV is
changed accordingly:

� If CU is true, CD is false, and CV is less than PV, then CV is
incremented by 1 and the function proceeds to #3 below.

� If CU is false, CD is true, and CV is greater than 0, then CV is
decremented by 1 and the function proceeds to #3 below.

� In all other conditions, CV is not changed.

3. The Output Up and Output Down bits (QU and QD) are set according to
the current value of CV:

� If CV is greater than or equal to PV, then QU is set to true and QD is
set to false.

� If CV is less than or equal to 0, then QU is set to false and QD is set to
true.

� If CV is between 0 and PV, then both QU and QD are set to false.

The block function is executed every time the ladder is scanned, so long as EN
remains on.

NOTE: Because the frequency of the count is based on the project’s Scan Interval,
it should not be used to gauge real time. To gauge real time, use a Timer.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

358

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

CU Count Up req %IX
%QX
%MX

T_DONE

The enable bit which must be set in
order for the counter to increment.

CD Count
Down

req %IX
%QX
%MX

T_DONE

The enable bit which must be set in
order for the counter to
decrement.

R Reset req %IX
%QX
%MX

T_DONE

The reset bit; if this bit is set, then
the counter is set to 0.

L Preset req %IX
%QX
%MX

T_DONE

The preset bit; if this bit is set, then
the counter is set to the preset
value.

PV Preset
Value

req %IUD
%QUD
%MUD
Numeric

The preset value of the counter.

QU Output
Up

req %QX
%MX

The “done bit which is set when
the counter reaches the preset
value.

QD Output
Down

req %QX
%MX

The “done bit which is set when
the counter reaches 0.

CV Counter
Value

req %QUD
%MUD

The current value of the counter.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

359

C.3 Math Blocks

C.3.1 Add (ADD)
When used in a Ladder Diagram, the ADD block finds the sum of two inputs and
sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Values 1 and 2
(IN1 and IN2) are added together and the result is placed in the Output Value
(OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

360

Param Name Config Var Type Description

IN1 Input
Value 1

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The first input value.

IN2 Input
Value 2

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

OUT Output
Value

req any Input
any Output
any Memory

The result of adding the two input
values together.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes – for example, a 32-bit input and an
8-bit output – may result in unusable output.

C.3.2 Subtract (SUB)
When used in a Ladder Diagram, the SUB block subtracts one input from another
and sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value 2 (IN2) is
subtracted from the Input Value 1 (IN1) and the result is placed in the Output
Value (OUT).

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

361

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN1 Input
Value 1

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The first input value.

IN2 Input
Value 2

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

OUT Output
Value

req any Input
any Output
any Memory

The result of subtracting the
second input value from the first
input value.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes – for example, a 32-bit input and an
8-bit output – may result in unusable output.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

362

C.3.3 Divide (DIV)
When used in a Ladder Diagram, the DIV block divides one input by another and
sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
divided by the Input Value 2 (IN2) and the result is placed in the Output Value
(OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN1 Input
Value 1

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The first input value.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

363

Param Name Config Var Type Description

IN2 Input
Value 2

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

OUT Output
Value

req any Input
any Output
any Memory

The result of dividing the first input
value by the second input value.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes – for example, a 32-bit input and an
8-bit output – may result in unusable output.

NOTE: This function cannot perform division by zero. Floating point division by
zero generates an overflow condition. Integer division by zero causes an
exception and shuts down the application.

C.3.4 Multiply (MUL)
When used in a Ladder Diagram, the MUL block multiplies two inputs and sends
the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
multiplied by the Input Value 2 (IN2) and the result is placed in the Output Value
(OUT).

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

364

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN1 Input
Value 1

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The first input value.

IN2 Input
Value 2

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

OUT Output
Value

req any Input
any Output
any Memory

The result of multiplying the first
input value by the second input
value.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes – for example, a 32-bit input and an
8-bit output – may result in unusable output.

C.3.5 Square Root (SQRT)
When used in a Ladder Diagram, the SQRT block finds the square root of an input
and sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

365

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the square root of the
Input Value (IN) is calculated and the result is placed in the Output Value (OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req real only*
Numeric

The input value. If a Numeric value
is manually entered, it must be real
/ floating.

OUT Output
Value

req real only* The result of calculating the square
root of the input value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: This function cannot calculate the square root of a negative input value. If
the input value is negative, the value “1.#IND00” (indefinite) is placed in the
output. No error is generated.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

366

C.3.6 Modulus (MOD)
When used in a Ladder Diagram, the MOD block finds the remainder from
dividing one input value by another input value and sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: Input Value 1 (IN1) is
divided by Input Value 2 (IN2) and the remainder is placed in the Output Value
(OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN1 Input
Value 1

req any integer*
T_DONE
T_VALUE
T_PREVAL
Numeric

The first input value, which is
divided by the second input value.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

367

Param Name Config Var Type Description

IN2 Input
Value 2

req any integer*
T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value, which is
divided into the first input value.

OUT Output
Value

req any integer* The result of calculating the square
root of the input value.

* Any Input, Output, or Memory tag except 32-bit Real (F) or Bit (X). For more information, see
“Defining Input, Output, Memory tags” on page 114.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes – for example, a 32-bit input and an
8-bit output – may result in unusable output.

C.3.7 Sine (SIN)
When used in a Ladder Diagram, the SIN block finds the sine of an input and
sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the sine of the Input Value
(IN) is calculated and the result is placed in the Output Value (OUT). The input
must be specified in radians.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

368

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req real only*
Numeric

The input value, in radians. If a
Numeric value is entered, it must
be real / floating.

OUT Output
Value

req real only* The result of calculating the sine of
the input value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

C.3.8 Cosine (COS)
When used in a Ladder Diagram, the COS block finds the cosine of an input and
sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the cosine of the Input
Value (IN) is calculated and the result is placed in the Output Value (OUT). The
input must be specified in radians.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

369

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req real only*
Numeric

The input value, in radians. If a
Numeric value is entered, it must
be real / floating.

OUT Output
Value

req real only* The result of calculating the cosine
of the input value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

C.3.9 Tangent (TAN)
When used in a Ladder Diagram, the TAN block finds the tangent of an input and
sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the tangent of the Input
Value (IN) is calculated and the result is placed in the Output Value (OUT). The
input must be specified in radians.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

370

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req real only*
Numeric

The input value, in radians. If a
Numeric value is entered, it must
be real / floating.

OUT Output
Value

req real only* The result of calculating the
tangent of the input value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

C.3.10 Arc Sine (ASIN)
When used in a Ladder Diagram, the ASIN block finds the arc sine of an input and
sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the arc sine of the Input
Value (IN) is calculated and the result is placed in the Output Value (OUT). The
result is expressed in radians.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

371

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req real only*
Numeric

The input value. If a Numeric value
is entered, it must be real /
floating.

OUT Output
Value

req real only* The result of calculating the arc
sine of the input value, expressed
in radians.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

C.3.11 Arc Cosine (ACOS)
When used in a Ladder Diagram, the ACOS block finds the arc cosine of an input
and sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the arc cosine of the Input
Value (IN) is calculated and the result is placed in the Output Value (OUT). The
result is expressed in radians.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

372

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req real only*
Numeric

The input value. If a Numeric value
is entered, it must be real /
floating.

OUT Output
Value

req real only* The result of calculating the arc
cosine of the input value, expressed
in radians.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

C.3.12 Arc Tangent (ATAN)
When used in a Ladder Diagram, the ATAN block finds the arc tangent of an
input and sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the arc tangent of the
Input Value (IN) is calculated and the result is placed in the Output Value (OUT).
The result is expressed in radians.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

373

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req real only*
Numeric

The input value. If a Numeric value
is entered, it must be real /
floating.

OUT Output
Value

req real only* The result of calculating the arc
tangent of the input value,
expressed in radians.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

C.3.13 Absolute Value (ABS)
When used in a Ladder Diagram, the ABS block finds the absolute value of an
input and sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the absolute value of the
Input Value (IN) is calculated and the result is placed in the Output Value (OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

374

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req signed only*
T_DONE
T_VALUE
T_PREVAL
Numeric

The input value.

OUT Output
Value

req signed only* The result of calculating the
absolute value of the input value.

* Any Input, Output, or Memory tag labeled as “signed. For more information, see “Defining Input,
Output, Memory tags” on page 114.

C.3.14 Logarithm (LOG)
When used in a Ladder Diagram, the LOG block finds the base-10 logarithm of an
input and sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the logarithm of the Input
Value (IN) is calculated and the result is placed in the Output Value (OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

375

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req real only*
Numeric

The input value. If a Numeric value
is manually entered, it must be real
/ floating.

OUT Output
Value

req real only* The result of calculating the
logarithm of the input value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: This function cannot process a zero or negative input value. If the input
value is zero, then the value “1.#INF00” (infinite) is placed in the output. If the
input value is negative, then the value “- 1.#QNAN0” (not available) is placed in
the output. No error is generated.

C.3.15 Natural Logarithm (LN)
When used in a Ladder Diagram, the LN block finds the natural logarithm of an
input and sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the natural log of the Input
Value (IN) is calculated and the result is placed in the Output Value (OUT).

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

376

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req real only*
Numeric

The input value. If a Numeric value
is manually entered, it must be real
/ floating.

OUT Output
Value

req real only* The result of calculating the
natural log of the input value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: This function cannot process a zero or negative input value. If the input
value is zero, then the value “1.#INF00” (infinite) is placed in the output. If the
input value is negative, then the value “- 1.#QNAN0” (not available) is placed in
the output. No error is generated.

C.3.16 Exponential (EXPT)
When used in a Ladder Diagram, the EXPT block raises the base input to the
power of the exponent input and sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

377

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
raised to the power of the Input Value 2 (IN2) and the result is placed in the
Output Value (OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN1 Input
Value 1

req real only*
Numeric

The base input value. If a Numeric
value is manually entered, it must
be real / floating.

IN2 Input
Value 2

req real only*
Numeric

The exponent input value. If a
Numeric value is manually entered,
it must be real / floating.

OUT Output
Value

req real only* The result of raising the base input
value to the exponent input value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: This function does not check for bit register overflow. If overflow occurs,
the value “1.#INF00” (infinite) is placed in the output.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

378

C.3.17 Natural Exponential (EXP)
When used in a Ladder Diagram, the EXP block find the natural exponential of
the input and sends the result to output.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the natural exponential of
the Input Value (IN) is calculated and the result is placed in the Output Value
(OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req real only*
Numeric

The input value. If a Numeric value
is manually entered, it must be real
/ floating.

OUT Output
Value

req real only* The result of calculating the
natural exponential of the input
value.

* Any 32-bit Real (F) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

379

NOTE: This function does not check for bit register overflow. If overflow occurs,
the value “1.#INF00” (infinite) is placed in the output.

C.3.18 Expression (EXPR)
As it is currently implemented, the EXPR block simply assigns the value of the
input to the output. In future releases this function will allow expressions to be
defined and executed as part of the diagram.

Select the tool (from the Math Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is
directly assigned (copied) to the Output Value (OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

380

Param Name Config Var Type Description

IN Input
Value

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL

Literal
Numeric

The input value.

OUT Output
Value

req any Input
any Output
any Memory

The result of assigning the input
value.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes – for example, a 32-bit input and an
8-bit output – may result in unusable output.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

381

C.4 Comparison Blocks

C.4.1 Greater Than (GT)
When used in a Ladder Diagram, the GT block checks to see if one input is greater
than another and uses the result — false or true — to set the output rung state.

Select the tool (from the Comparison Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
compared with the Input Value 2 (IN2) and the result is placed in the Output (Q).

If IN1 is greater than IN2, then “true is placed in Q. If IN1 is not greater than IN2,
then “false is placed in Q.

The result placed in Q determines the state of the rung passed to the right: a
“true result turns the rung on and a “false result turns the rung off.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then Q is immediately turned off regardless of the
values of IN1 and IN2.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

Q Output no - The result — false or true — of
comparing the two input values.
The result becomes the state of the
rung (off/on) passed to the right.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

382

Param Name Config Var Type Description

IN1 Input
Value 1

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL

The first input value. The function
checks to see if this value is greater
than the second input value.

IN2 Input
Value 2

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

C.4.2 Greater Than or Equal to (GE)
When used in a Ladder Diagram, the GE block checks to see if one input is greater
than or equal to another and uses the result — false or true — to set the output
rung state.

Select the tool (from the Comparison Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
compared with the Input Value 2 (IN2) and the result is placed in the Output (Q).

If IN1 is greater than or equal to IN2, then “true is placed in Q. If IN1 is not
greater than or equal to IN2, then “false is placed in Q.

The result placed in Q determines the state of the rung passed to the right: a
“true result turns the rung on and a “false result turns the rung off.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then Q is immediately turned off regardless of the
values of IN1 and IN2.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

383

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

Q Output no - The result — false or true — of
comparing the two input values.
The result becomes the state of the
rung (off/on) passed to the right.

IN1 Input
Value 1

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL

The first input value. The function
checks to see if this value is greater
than or equal to the second input
value.

IN2 Input
Value 2

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

C.4.3 Equal to (EQ)
When used in a Ladder Diagram, the EQ block checks to see if one input is equal
to another and uses the result — false or true — to set the output rung state.

Select the tool (from the Comparison Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
compared with the Input Value 2 (IN2) and the result is placed in the Output (Q).

If IN1 is equal to IN2, then “true is placed in Q. If IN1 is not equal to IN2, then
“false is placed in Q.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

384

The result placed in Q determines the state of the rung passed to the right: a
“true result turns the rung on and a “false result turns the rung off.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then Q is immediately turned off regardless of the
values of IN1 and IN2.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

Q Output no - The result — false or true — of
comparing the two input values.
The result becomes the state of the
rung (off/on) passed to the right.

IN1 Input
Value 1

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL

The first input value. The function
checks to see if this value is equal
to the second input value.

IN2 Input
Value 2

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes – for example, a 32-bit input and an
8-bit output – may result in unusable output.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

385

C.4.4 Not Equal to (NE)
When used in a Ladder Diagram, the NE block checks to see if one input is not
equal to another and uses the result — false or true — to set the output rung
state.

Select the tool (from the Comparison Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
compared with the Input Value 2 (IN2) and the result is placed in the Output (Q).

If IN1 is not equal to IN2, then “true is placed in Q. If IN1 is not not equal to IN2,
then “false is placed in Q.

The result placed in Q determines the state of the rung passed to the right: a
“true result turns the rung on and a “false result turns the rung off.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then Q is immediately turned off regardless of the
values of IN1 and IN2.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

Q Output no - The result — false or true — of
comparing the two input values.
The result becomes the state of the
rung (off/on) passed to the right.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

386

Param Name Config Var Type Description

IN1 Input
Value 1

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL

The first input value. The function
checks to see if this value is not
equal to the second input value.

IN2 Input
Value 2

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

C.4.5 Less than or Equal to (LE)
When used in a Ladder Diagram, the LE block checks to see if one input is less
than or equal to another and uses the result — false or true — to set the output
rung state.

Select the tool (from the Comparison Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
compared with the Input Value 2 (IN2) and the result is placed in the Output (Q).

If IN1 is less than or equal to IN2, then “true is placed in Q. If IN1 is not less than
or equal to IN2, then “false is placed in Q.

The result placed in Q determines the state of the rung passed to the right: a
“true result turns the rung on and a “false result turns the rung off.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then Q is immediately turned off regardless of the
values of IN1 and IN2.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

387

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

Q Output no - The result — false or true — of
comparing the two input values.
The result becomes the state of the
rung (off/on) passed to the right.

IN1 Input
Value 1

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL

The first input value. The function
checks to see if this value is less
than or equal to the second input
value.

IN2 Input
Value 2

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

C.4.6 Less Than (LT)
When used in a Ladder Diagram, the LT block checks to see if one input is less
than another and uses the result — false or true — to set the output rung state.

Select the tool (from the Comparison Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

When EN becomes on, the block function is executed: the Input Value 1 (IN1) is
compared with the Input Value 2 (IN2) and the result is placed in the Output (Q).

If IN1 is less than IN2, then “true is placed in Q. If IN1 is not less than IN2, then
“false is placed in Q.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

388

The result placed in Q determines the state of the rung passed to the right: a
“true result turns the rung on and a “false result turns the rung off.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then Q is immediately turned off regardless of the
values of IN1 and IN2.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

Q Output no - The result — false or true — of
comparing the two input values.
The result becomes the state of the
rung (off/on) passed to the right.

IN1 Input
Value 1

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL

The first input value. The function
checks to see if this value is less
than the second input value.

IN2 Input
Value 2

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

389

C.5 Logical and Bit Shift Blocks

C.5.1 And (AND)
When used in a Ladder Diagram, the AND function block performs a bit-for-bit
“and comparison between two inputs and sends the result to output.

Select the tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a bit-for-bit logical
comparison is made between the Input Values 1 and 2 (IN1 and IN2) and the
result is placed in the Output Value (OUT).

Each set of bits in IN1 and IN2 is evaluated according to the following table:

IN1 0 1 0 1

IN2 0 0 1 1

OUT 0 0 0 1

Therefore, a 16-bit example of AND would be:

IN1: 1010010101011101

IN2: 0101011010101110

OUT: 0000010000001100

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

390

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN1 Input
Value 1

req any integer*
T_DONE
T_VALUE
T_PREVAL

The first input value.

IN2 Input
Value 2

req any integer*
T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

OUT Output
Value

req any integer* The result of a bit-for-bit AND
comparison between the input
values.

* Any Input, Output, or Memory tag except 32-bit Real (F). For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: No restrictions are placed on the sizes of input or output variables. If the
inputs differ in size (for example, an 8-bit byte compared with a 16-bit word),
then the smaller input is bit-extended with zeros to match the size of the larger
input.

Furthermore, if the result is larger than the output variable (for example, a 16-bit
result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

391

C.5.2 Or (OR)
When used in a Ladder Diagram, the OR block performs a bit-for-bit “or
comparison between two inputs and sends the result to output.

Select the tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a bit-for-bit logical
comparison is made between the Input Values 1 and 2 (IN1 and IN2) and the
result is placed in the Output Value (OUT).

Each set of bits in IN1 and IN2 is evaluated according to the following table:

IN1 0 1 0 1

IN2 0 0 1 1

OUT 0 1 1 1

Therefore, a 16-bit example of OR would be:

IN1: 1010010101011101

IN2: 0101011010101110

OUT: 1111011111111111

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

392

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN1 Input
Value 1

req any integer*
T_DONE
T_VALUE
T_PREVAL

The first input value.

IN2 Input
Value 2

req any integer*
T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

OUT Output
Value

req any integer* The result of a bit-for-bit OR
comparison between the input
values.

* Any Input, Output, or Memory tag except 32-bit Real (F). For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: No restrictions are placed on the sizes of inputs or output variables. If the
inputs differ in size (for example, an 8-bit byte compared with a 16-bit word),
then the smaller input is bit-extended with zeros to match the size of the larger
input.

Furthermore, if the result is larger than the output variable (for example, a 16-bit
result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

393

C.5.3 Exclusive Or (XOR)
When used in a Ladder Diagram, the XOR block performs a bit-for-bit “exclusive
or comparison between two inputs and sends the result to output.

Select the tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a bit-for-bit logical
comparison is made between the Input Values 1 and 2 (IN1 and IN2) and the
result is placed in the Output Value (OUT).

Each set of bits in IN1 and IN2 is evaluated according to the following table:

IN1 0 1 0 1

IN2 0 0 1 1

OUT 0 1 1 0

Therefore, a 16-bit example of XOR would be:

IN1: 1010010101011101

IN2: 0101011010101110

OUT: 1111001111110011

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

394

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN1 Input
Value 1

req any integer*
T_DONE
T_VALUE
T_PREVAL

The first input value.

IN2 Input
Value 2

req any integer*
T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

OUT Output
Value

req any integer* The result of a bit-for-bit XOR
comparison between the input
values.

* Any Input, Output, or Memory tag except 32-bit Real (F). For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: No restrictions are placed on the sizes of inputs or output variables. If the
inputs differ in size (for example, an 8-bit byte compared with a 16-bit word),
then the smaller input is bit-extended with zeros to match the size of the larger
input.

Furthermore, if the result is larger than the output variable (for example, a 16-bit
result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output.

C.5.4 Not (NOT)
When used in a Ladder Diagram, the NOT block performs a bit-for-bit inversion
upon an input and sends the result to output.

Select the tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

395

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a bit-for-bit logical
inversion is made upon the Input Values (IN) and the result is placed in the
Output Value (OUT).

Each bit in IN is evaluated according to the following table:

IN 0 1

OUT 1 0

Therefore, a 16-bit example of NOT would be:

IN1: 1010010101011101

OUT: 0101101010100010

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req any integer*
T_DONE
T_VALUE
T_PREVAL

The input value.

OUT Output
Value

req any integer* The result of a bit-for-bit NOT
inversion upon the input value.

* Any Input, Output, or Memory tag except 32-bit Real (F). For more information, see “Defining Input,
Output, Memory tags” on page 114.

NOTE: If the function result is larger than the output variable (for example, a 16-
bit result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output.

Also, this function does not negate or invert the sign of a signed variable. To
invert the sign of a signed variable, configure an XOR function with the variable
to be inverted as the first input value and –1 as the second input variable.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

396

C.5.5 Shift bits Left (SHL)
When used in a Ladder Diagram, the SHL block shifts the bits of the input a
specified number of places to the left and sends the result to output.

Select the tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is shifted the specified
Number of Places (N) to the left and zeroes are placed in the vacated registers. The resulting bit
pattern is placed in the Output Value (OUT).

Therefore, a 16-bit example of SHL would be:

 IN: 1010010101011101

 N: 5

OUT: 1010101110100000

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

397

Param Name Config Var Type Description

IN Input
Value

req any integer*
T_DONE
T_VALUE
T_PREVAL

The input value.

N Number
of Places

req unsigned**
T_DONE
T_VALUE
T_PREVAL
Numeric

The number of places to be shifted.

OUT Output
Value

req any integer* The result of shifting the input
value n places to the left.

* Any Input, Output, or Memory tag except 32-bit Real (F) or Bit (X). For more information, see
“Defining Input, Output, Memory tags” on page 114.

** Any unsigned (UB, UW, UD, X) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the function result is larger than the output variable (for example, a 16-
bit result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output. No overflow
error is generated.

C.5.6 Shift bits Right (SHR)
When used in a Ladder Diagram, the SHR block shifts the bits of the input a
specified number of places to the right and sends the result to output.

Select the tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is shifted the specified
Number of Places (N) to the right and zeroes are placed in the vacated registers. The resulting bit
pattern is placed in the Output Value (OUT).

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

398

Therefore, a 16-bit example of SHL would be:

 IN: 1010010101011101

 N: 5

OUT: 0000010100101010

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req any integer*
T_DONE
T_VALUE
T_PREVAL

The input value.

N Number
of Places

req unsigned**
T_DONE
T_VALUE
T_PREVAL
Numeric

The number of places to be shifted.

OUT Output
Value

req any integer* The result of shifting the input
value n places to the right.

* Any Input, Output, or Memory tag except 32-bit Real (F) or Bit (X). For more information, see
“Defining Input, Output, Memory tags” on page 114.

** Any unsigned (UB, UW, UD, X) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the function result is larger than the output variable (for example, a 16-
bit result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output. No overflow
error is generated.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

399

C.5.7 Rotate bits Left (ROL)
When used in a Ladder Diagram, the ROL block rotates the bits of the input a
specified number of places to the left and sends the result to output.

Select the tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is rotated the specified
Number of Places (N) to the left. The bits rotated off the left are added back on the right. The
resulting bit pattern is placed in the Output Value (OUT).

Therefore, a 16-bit example of ROL would be:

 IN: 1010010101011101

 N: 5

OUT: 1010101110110100

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

400

Param Name Config Var Type Description

IN Input
Value

req any integer*
T_DONE
T_VALUE
T_PREVAL

The input value.

N Number
of Places

req unsigned**
T_DONE
T_VALUE
T_PREVAL
Numeric

The number of places to be
rotated.

OUT Output
Value

req any integer* The result of rotating the input
value n places to the left.

* Any Input, Output, or Memory tag except 32-bit Real (F) or Bit (X). For more information, see
“Defining Input, Output, Memory tags” on page 114.

** Any unsigned (UB, UW, UD, X) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the function result is larger than the output variable (for example, a 16-
bit result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output. No overflow
error is generated.

C.5.8 Rotate bits Right (ROR)
When used in a Ladder Diagram, the ROR block rotates the bits of the input a
specified number of places to the left and sends the result to output.

Select the tool (from the Logical and Bit Shift Blocks toolbar) and click on a
ladder rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is rotated the specified
Number of Places (N) to the right. The bits rotated off the right are added back on the left. The
resulting bit pattern is placed in the Output Value (OUT).

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

401

Therefore, a 16-bit example of ROR would be:

 IN: 1010010101011101

 N: 5

OUT: 1110110100101010

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req any integer*
T_DONE
T_VALUE
T_PREVAL

The input value.

N Number
of Places

req unsigned**
T_DONE
T_VALUE
T_PREVAL
Numeric

The number of places to be
rotated.

OUT Output
Value

req any integer* The result of rotating the input
value n places to the right.

* Any Input, Output, or Memory tag except 32-bit Real (F) or Bit (X). For more information, see
“Defining Input, Output, Memory tags” on page 114.

** Any unsigned (UB, UW, UD, X) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the function result is larger than the output variable (for example, a 16-
bit result to be placed in an 8-bit output variable), then the high-order bits of the
result are discarded and the low-order bits are placed in the output. No overflow
error is generated.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

402

C.6 Selection Blocks

C.6.1 Select minimum value (MIN)
When used in a Ladder Diagram, the MIN block finds the smaller of two inputs
and sends the result to output.

Select the tool (from the Selection Blocks toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Values 1 and 2
(IN1 and IN2) are compared and the smaller is placed in the Output Value (OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

403

Param Name Config Var Type Description

IN1 Input
Value 1

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The first input value.

IN2 Input
Value 2

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

OUT Output
Value

req any Input
any Output
any Memory

The result of finding the smaller of
the two input values.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes – for example, a 32-bit input and an
8-bit output – may result in unusable output.

C.6.2 Select maximum value (MAX)
When used in a Ladder Diagram, the MAX block finds the larger of two inputs
and sends the result to output.

Select the tool (from the Selection Blocks toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Values 1 and 2
(IN1 and IN2) are compared and the larger is placed in the Output Value (OUT).

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

404

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN1 Input
Value 1

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The first input value.

IN2 Input
Value 2

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The second input value.

OUT Output
Value

req any Input
any Output
any Memory

The result of finding the larger of
the two input values.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes – for example, a 32-bit input and an
8-bit output – may result in unusable output.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

405

C.6.3 Limit value (LIM)
When used in a Ladder Diagram, the LIM block limits an input to a specified
range.

Select the tool (from the Selection Blocks toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is
compared to both the Minimum and Maximum Values (MIN and MAX) and the
limit is placed in the Output Value (OUT). When IN is less than MIN, MIN is
placed in OUT. When IN is greater than MAX, MAX is placed in OUT. Otherwise,
IN is placed directly in OUT.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

406

Param Name Config Var Type Description

IN Input
Value

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The input value.

MIN Minimum
Value

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The minimum value against which
the input value is compared.

MAX Maximum
Value

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The maximum value against which
the input value is compared.

OUT Output
Value

req any Input
any Output
any Memory

The result of finding the limit.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes – for example, a 32-bit input and an
8-bit output – may result in unusable output.

C.6.4 Select one of two values (SEL)
When used in a Ladder Diagram, the SEL block selects one of two input values,
depending on the rung state received from the left, and sends the result to
output.

Select the tool (from the Selection Blocks toolbar) and click on a ladder rung
to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

407

Functional Description

This block always passes the Select input state (SEL) through to the Enable Out
output state (ENO) without change; when SEL becomes on, ENO is turned on,
and when EN becomes off, ENO is turned off.

The block function is executed every time the ladder is scanned, regardless of
whether SEL is on or off. The state of SEL determines which Input Value (IN0 or
IN1) is selected and placed in the Output Value (OUT). If SEL is on, then IN1 is
placed in OUT. If SEL is off, then IN0 is placed in OUT.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

SEL Select no - The state of the rung (off/on)
received from the left. Also
determines which input value is
selected to place in the output.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN0 Input
Value
OFF

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The input value that is selected if
the rung is off.

IN1 Input
Value ON

req any Input
any Output
any Memory

T_DONE
T_VALUE
T_PREVAL
Numeric

The input value that is selected if
the rung is on.

OUT Output
Value

req any Input
any Output
any Memory

The result of selecting one of two
input values.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes – for example, a 32-bit input and an
8-bit output – may result in unusable output.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

408

C.7 String Blocks

C.7.1 Set string (SET)
When used in a Ladder Diagram, the SET block copies a string (variable or literal)
from an input to an output.

Select the tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input String (IN) is
copied directly to the Output String (OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
String

req String
Literal

The input string. Literals must be
enclosed in single quotes (‘ ’).

OUT Output
String

req String The result of copying the input
string. The output is always NULL-
terminated.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

409

NOTE: If the defined Element Length of the String variable configured to OUT is
smaller than the result of the function, then the result is truncated to fit. No
overflow error is generated.

C.7.2 Find string length (LEN)
When used in a Ladder Diagram, the LEN block finds the character length of a
string (variable or literal) and send it to output.

Select the tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the length (i.e., the
number of characters) of the Input String (IN) is determined and the result is
placed in the Output Value (OUT).

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
String

req String
Literal

The input string. Literals must be
enclosed in single quotes (‘ ’).

OUT Output
Value

req any integer* The result of finding the length the
input string.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

410

* Any Input, Output, or Memory tag except 32-bit Real (F) or Bit (X). For more information, see
“Defining Input, Output, Memory tags” on page 114.

C.7.3 Extract sub-string from left (LEFT)
When used in a Ladder Diagram, the LEFT block extracts a sub-string of specified
length from the left end of a string (variable or literal) and sends the result to an
output.

Select the tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a sub-string of up to
specified Length (LEN) is extracted from the Input String (IN) and placed in the
Output String (OUT). The sub-string is extracted from the left end of IN.

For example:

 IN: ‘Hello world. This is PointeControl.’

LEN: 8

OUT: ‘Hello wo’

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

411

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
String

req String
Literal

The input string. Literals must be
enclosed in single quotes (‘ ’).

LEN Length req unsigned*
Numeric

The length (i.e., the number of
characters) of the sub-string to be
extracted.

OUT Output
String

req String The result of extracting the sub-
string. The output is always NULL-
terminated.

* Any unsigned (UB, UW, UD) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the configured length of the string variable assigned to OUT is smaller
than the result of the function, then the result is truncated to fit. No overflow
error is generated.

C.7.4 Extract sub-string from right (RIGHT)
When used in a Ladder Diagram, the RIGHT block extracts a sub-string of
specified length from the right end of a string (variable or literal) and sends the
result to an output.

Select the tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

412

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a sub-string of up to
specified Length (LEN) is extracted from the Input String (IN) and placed in the
Output String (OUT). The sub-string is extracted from the right end of IN.

For example:

 IN: ‘Hello world. This is PointeControl.’

LEN: 8

OUT: ‘Control.’

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
String

req String
Literal

The input string. Literals must be
enclosed in single quotes (‘ ’).

LEN Length req unsigned*
Numeric

The length (i.e., the number of
characters) of the sub-string to be
extracted.

OUT Output
String

req String The result of extracting the sub-
string. The output is always NULL-
terminated.

* Any unsigned (UB, UW, UD) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the configured length of the string variable assigned to OUT is smaller
than the result of the function, then the result is truncated to fit. No overflow
error is generated.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

413

C.7.5 Extract sub-string from middle (MID)
When used in a Ladder Diagram, the MID block extracts a sub-string of specified
length from the middle of a string (variable or literal) and sends the result to an
output.

Select the tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a sub-string of up to
specified Length (LEN) is extracted from the Input String (IN), starting at the
specified Position (POS). The result is placed in the Output String (OUT).

For example:

 IN: ‘Hello world. This is PointeControl.’

POS: 9

LEN: 8

OUT: ‘rld. Thi’

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

NOTE: If there are fewer than POS characters in the Input String, then the output
will be a null string.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

414

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
String

req String
Literal

The input string. Literals must be
enclosed in single quotes (‘ ’).

POS Position req unsigned*
Numeric

The starting position of the sub-
string to be extracted. The first
character corresponds to a Position
of 1.

LEN Length req unsigned*
Numeric

The length (i.e., the number of
characters) of the sub-string to be
extracted.

OUT Output
String

req String The result of extracting the sub-
string. The output is always NULL-
terminated.

* Any unsigned (UB, UW, UD) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the configured length of the string variable assigned to OUT is smaller
than the result of the function, then the result is truncated to fit. No overflow
error is generated.

C.7.6 Concatenate strings (CAT)
When used in a Ladder Diagram, the CAT block concatenates two strings (variable
or literal) and send the resulting string to an output.

Select the tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

415

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Strings 1 and 2
(IN1 and IN2) are concatenated and the resulting string is placed in the Output
String (OUT).

For example:

IN1: ‘Hello world.’

IN2: ‘ This is PointeControl.’

OUT: ‘Hello world. This is PointeControl.’

NOTE: This function does not insert any spaces between the concatenated strings.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN1 Input
String 1

req String
Literal

The first input string. Literals must
be enclosed in single quotes (‘ ’).

IN2 Input
String 2

req String
Literal

The second input string. Literals
must be enclosed in single quotes (‘
’).

OUT Output
String

req String The result of concatenating the
input strings. The output is always
NULL-terminated.

NOTE: If the configured length of the string variable assigned to OUT is smaller
than the result of the function, then the result is truncated to fit. No overflow
error is generated.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

416

C.7.7 Compare strings (CMP)
When used in a Ladder Diagram, the CMP block compares two strings (variable or
literal) and send the result to an output.

Select the tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Strings 1 and 2
(IN1 and IN2) are compared and the result is placed in the Output Value (OUT).

Values for OUT are determined as follows:

When… OUT is…

IN1 < IN2 -1

IN1 = IN2 0

IN1 > IN2 1

When two strings are identical up to the NULL terminator in the shorter string
(‘ain1’ and ‘ain100’ for example) the shorter string is considered less than the
longer.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

417

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN1 Input
String 1

req String
Literal

The first input string. Literals must
be enclosed in single quotes (‘ ’).

IN2 Input
String 2

req String
Literal

The second input string. Literals
must be enclosed in single quotes (‘
’).

OUT Output
Value

req signed* The result of comparing the input
strings.

* Any signed (B, W, D) Input, Output, or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

C.7.8 Insert sub-string (INS)
When used in a Ladder Diagram, the INS block inserts a sub-string into an input
string (variable or literal) at a specified position and sends the resulting string to
an output.

Select the tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

418

When EN becomes on, the block function is executed: the Input String 2 (IN2) is
inserted into the Input String 1 (IN1) at the specified Position (POS). The resulting
string is placed in the Output String (OUT).

For example:

IN1: ‘Hello world.’

IN2: ‘This is PointeControl.’

POS: 9

OUT: ‘Hello woThis is PointeControl.rld.’

NOTE: If there are fewer than POS characters in IN1, then IN1 and IN2 are simply
concatenated.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN1 Input
String 1

req String
Literal

The input string into which the sub-
string is inserted. Literals must be
enclosed in single quotes (‘ ’).

IN2 Input
String 2

req String
Literal

The sub-string to be inserted.
Literals must be enclosed in single
quotes (‘ ’).

POS Position req unsigned*
Numeric

The starting position where the
sub-string will be inserted. The first
character corresponds to a Position
of 1.

OUT Output
String

req String The result of inserting the sub-
string. The output is always NULL-
terminated.

* Any unsigned (UB, UW, UD) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the configured length of the string variable assigned to OUT is smaller
than the result of the function, then the result is truncated to fit. No overflow
error is generated.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

419

C.7.9 Delete sub-string (DEL)
When used in a Ladder Diagram, the DEL block deletes a sub-string of specified
length from the middle of a string (variable or literal) and sends the resulting
string to an output.

Select the tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a sub-string of specified
Length (LEN) is deleted from the Input String (IN), starting at the specified
Position (POS). The resulting string is placed in the Output String (OUT).

For example:

 IN: ‘Hello world. This is PointeControl.’

POS: 9

LEN: 8

OUT: ‘Hello wos is PointeControl.’

NOTE: If there are fewer than POS characters in IN, then IN is copied without
changes to OUT.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

420

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
String

req String
Literal

The input string. Literals must be
enclosed in single quotes (‘ ’).

POS Position req unsigned*
Numeric

The starting position of the sub-
string to be extracted. The first
character corresponds to a Position
of 1.

LEN Length req unsigned*
Numeric

The length (i.e., the number of
characters) of the sub-string to be
deleted.

OUT Output
String

req String The result of deleting the sub-
string. The output is always NULL-
terminated.

* Any unsigned (UB, UW, UD) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the configured length of the string variable assigned to OUT is smaller
than the result of the function, then the result is truncated to fit. No overflow
error is generated.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

421

C.7.10 Replace sub-string (REPL)
When used in a Ladder Diagram, the REPL block replaces part of an input string
with a specified number of characters from another input string, starting at a
specified position. The resulting string is sent to output.

Select the tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: a sub-string in Input String
1 (IN1), starting at the specified Position (POS) and of specified Length (LEN), is
replaced with Input String 2 (IN2). The resulting string is placed in the Output
String (OUT).

For example:

IN1: ‘Hello world.’

IN2: ‘GOODBYE’

POS: 4

LEN: 5

OUT: ‘HelGOODBYErld.’

NOTE: If there are fewer than POS characters in IN1, then IN1 and IN2 are simply
concatenated.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

422

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN1 Input
String 1

req String
Literal

The input string into which the sub-
string is inserted. Literals must be
enclosed in single quotes (‘ ’).

IN2 Input
String 2

req String
Literal

The sub-string to be inserted.
Literals must be enclosed in single
quotes (‘ ’).

POS Position req unsigned*
Numeric

The starting position where the
sub-string will be replaced. The first
character corresponds to a Position
of 1.

LEN Length req unsigned*
Numeric

The length (i.e., the number of
characters) of the sub-string to be
replaced.

OUT Output
String

req String The result of replacing the sub-
string. The output is always NULL-
terminated.

* Any unsigned (UB, UW, UD) Input, Output, or Memory tag. For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: If the configured length of the string variable assigned to OUT is smaller
than the result of the function, then the result is truncated to fit. No overflow
error is generated.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

423

C.7.11 Find sub-string (FIND)
When used in a Ladder Diagram, the FIND block finds the first occurance, if any,
of a sub-string within a given string. The position of the sub-string is sent to
output.

Select the tool (from the String Blocks toolbar) and click on a ladder rung to
insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input String 1 (IN1) is
searched for the first occurance, if any, of the Input String 2 (IN2). If IN2 is found
within IN1, then the starting position is placed in the Output Value (OUT). If IN2
is not found, then 0 is placed in OUT.

For example:

IN1: ‘This is OpenControl.’

IN2: ‘is’

OUT: 3

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

424

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN1 Input
String 1

req String
Literal

The input string to be searched.
Literals must be enclosed in single
quotes.

IN2 Input
String 2

req String
Literal

The sub-string to be found in the
input string. Literals must be
enclosed in single quotes.

OUT Output
Value

req any integer* The resulting position of the sub-
string, if found.

* Any Input, Output, or Memory tag except 32-bit Real (F) or Bit (X). For more information, see
“Defining Input, Output, Memory tags” on page 114.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

425

C.8 Flow Control Blocks

C.8.1 Call sub-ladder diagram (CALL)
When used in a Ladder Diagram, this block executes a specified Sub-Ladder.

Select the tool (from the Flow Control Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

NOTE: This block is configured differently than other Ladder Diagram blocks. See
“Configuration Reference” below.

Functional Description

This block always passes the input state through to the output state without
change; when the input state becomes on, the output state is turned on, and
when the input state becomes off, the output state is turned off.

When the input state from the left becomes on, the Sub-Ladder referenced by the
block is executed. Ladder diagram execution continues on the right of the CALL
object only after execution of the Sub-Ladder is completed.

Configuration Reference

This block may reference any Ladder Diagram which has been defined as a Sub-
Ladder. The Sub-Ladder is selected using the dialog below:

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

426

All valid Sub-Ladders in the current project will be listed in the dialog. A selection
may be made from the list or entered directly into the LD Name field.

The OK button will be enabled when a valid selection has been made or entered.
Click it to save your selection and close the dialog.

C.8.2 Return to main diagram (RETN)
When used in a Sub-Ladder, this block stops execution of the Sub-Ladder and
returns to the Ladder Diagram which called it. Use of this block is required only if
the logic flow of your program requires an early return from the Sub-Ladder (i.e.,
the Sub-Ladder must be aborted before its normal end). Use of the block is
optional in the last rung of a Sub-Ladder.

Select the tool (from the Flow Control Blocks toolbar) and click on a ladder
rung to insert the following block:

This block cannot be configured.

NOTE: This block can only be used in a properly defined Sub-Ladder. If a Return
block is inserted in a regular Ladder Diagram, it will be detected and reported
when the diagram’s integrity is checked.

Functional Description

This block does not pass the rung state in any situation. When the input state
from the left becomes on, execution of the Sub-Ladder is immediately stopped
and returned to the Ladder Diagram which originally called the Sub-Ladder.

Configuration Reference

The are no configurable parameters for this block.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

427

C.9 Miscellaneous Blocks

C.9.1 Convert to Boolean (TO_BOOL)
When used in a Ladder Diagram, the TO_BOOL block converts any input value
into an equivalent boolean (bit) tag. All non-zero inputs are converted to 1, while
zero inputs are converted to 0.

Select the tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is
converted into its equivalent boolean (bit) value and the result is sent to the
Output Value (OUT). If IN is any non-zero value, then OUT is set to 1. If IN is zero,
then OUT is set to 0.

NOTE: When IN is a String, conversion to a numeric representation is attempted.
If the conversion succeeds, then OUT is set to 1. If the conversion fails, then OUT is
set to 0.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

428

Param Name Config Var Type Description

IN Input
Value

req any Input
any Memory
any Output

 Numeric
String

The input value.

OUT Output
Value

req %MX
%QX

The result of converting the input
value into an equivalent boolean
(bit) tag.

C.9.2 Convert to Integer (TO_INT)
When used in a Ladder Diagram, the TO_INT block converts any input value into
an equivalent integer. It is used primarily to convert floating-point variable types
into integer variable types of the same approximate value. However, any input
values can be given.

NOTE: Floating point numbers are rounded when converted in this way.

Select the tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is
converted into an equivalent integer and the result is sent to the Output Value
(OUT).

NOTE: When IN is a String, conversion to a numeric representation is attempted.
If the conversion succeeds, then OUT is set to 1. If the conversion fails, then OUT is
set to 0.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

429

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req any Input
any Memory
any Output

 Numeric
String

The input value.

OUT Output
Value

req any integer* The result of converting the input
value into an equivalent integer.

* Any Output or Memory tag except 32-bit Real (F) or Bit (X). For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes – for example, a 32-bit input and an
8-bit output – may result in unusable output.

C.9.3 Convert to Float (TO_FLT)
When used in a Ladder Diagram, the TO_FLT block converts any input value into
an equivalent floating point number. It is used primarily to convert integer
variable types into floating-point variable types of the same value. However, any
input values can be given.

Select the tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

430

When EN becomes on, the block function is executed: the Input Value (IN) is
converted into an equivalent floating point and the result is sent to the Output
Value (OUT).

NOTE: When IN is a String, conversion to a numeric representation is attempted.
If the conversion succeeds, then OUT is set to 1. If the conversion fails, then OUT is
set to 0.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req any Input
any Memory
any Output

 Numeric
String

The input value.

OUT Output
Value

req %MF
%QF

The result of converting the input
value into an equivalent floating
point.

C.9.4 Convert to String (TO_STRG)
When used in a Ladder Diagram, the TO_STRG block converts any input value into
an equivalent string. It is used primarily to convert non-String variables into String
variables which can then be stored, edited, or displayed. However, any input
values can be given, including other Strings.

Select the tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

431

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is
converted into an equivalent string and the result is sent to the Output Value
(OUT).

For example, the numeric value 123 is converted into a three-character string
‘123’.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req any Input
any Memory
any Output

 Numeric
String

The input value.

OUT Output
Value

req String The result of converting the input
value into an equivalent string. The
output is always NULL-terminated.

NOTE: No restrictions are placed on the size of the output string. If the string
resulting from a non-string IN is longer than the defined Element Length of the
String variable configured to OUT, then a NULL string is placed in OUT. String-to-
string “conversions will simply truncate excess characters. In neither case will an
overflow error be generated.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

432

C.9.5 Truncate (TRUNC)
When used in a Ladder Diagram, the TRUNC block truncates a floating-point
input value and discards its fractional (decimal) part. This is effectively the same
as rounding the value down to the nearest integer, although the value always
remains a floating-point number.

Select the tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is
truncated and its fractional (decimal) part is discarded. The result is sent to the
Output Value (OUT).

For example, the floating-point value 123.45 is truncated to 123.00.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req %IF
%MF
%QF

The input value.

OUT Output
Value

req %MF
%QF

The result of truncating the input
value.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

433

C.9.6 Integer to Character (TO_CHR)
When used in a Ladder Diagram, the TO_CHR block converts a decimal value into
the equivalent ASCII character.

Select the tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the Input Value (IN) is
converted into an equivalent ASCII character and the result is placed in the first
character position of the Output Value (OUT).

For example, the decimal value 65 is converted into the ASCII character ‘A’.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req %IUB
%MUB
%QUB

The input value.

OUT Output
Value

req String The result of converting the input
value into an equivalent ASCII
character.

NOTE: The output string is not NULL-terminated, as this is not a string operation.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

434

C.9.7 Character to Integer (CHR_TO)
When used in a Ladder Diagram, the CHR_TO block converts the first character of
a string into the equivalent ASCII decimal value.

Select the tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the first character of the
Input Value (IN) is converted into an equivalent ASCII decimal value and the
result is placed in the Output Value (OUT).

For example, the character ‘A’ is converted into the ASCII decimal value 65.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req String
Literal

The input value. Literals must be
enclosed in single quotes (‘ ’).

OUT Output
Value

req any integer* The result of converting the first
character of the input value into an
equivalent decimal value.

* Any Memory or Output tag except 32-bit Real (F) or Bit (X). For more information, see “Defining
Input, Output, Memory tags” on page 114.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

435

C.9.8 Integer to BCD (TO_BCD)
When used in a Ladder Diagram, the TO_BCD block converts a regular integer
value into an equivalent binary coded decimal (BCD).

Select the tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: each digit of the Input
Value (IN) is separately converted into a 4-bit “nibble, and then the nibbles are
concatenated into a single binary which is placed in the Output Value (OUT).

For example, an integer value of 5319 would be converted in the following
manner:

DIGIT 5 3 1 9

NIBBLE 0101 0011 0001 1001

The resulting BCD is 0101001100011001.

NOTE: Given the 32-bit limit on the size of Logic Memory variables, the largest
integer that can be practically converted into a BCD is 99999999.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

436

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req unsigned* The input value.

OUT Output
Value

req any integer** The result of converting the input
value into a binary coded decimal
(BCD). NOTE: Although the variable
type is an integer, the value stored
in the variable is still a BCD.

* Any unsigned (UB, UW, UD) Input or Memory tag. For more information, see “Defining Input,
Output, Memory tags” on page 114.

** Any Memory or Output tag except 32-bit Real (F) or Bit (X). For more information, see “Defining
Input, Output, Memory tags” on page 114.

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but if the size of the resulting BCD exceeds the available space
in the output variable, then the high-order nibbles are discarded.

C.9.9 BCD to Integer (BCD_TO)
When used in a Ladder Diagram, the BCD_TO block converts a binary coded
decimal (BCD) into an equivalent integer value.

Select the tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

437

When EN becomes on, the block function is executed: each 4-bit “nibble of the
Input Value (IN) is separately converted into a base-10 digit, and then the digits
are concatenated into a single integer which is placed in the Output Value (OUT).

For example, a BCD of 0101001100011001 would be converted in the following
manner:

NIBBLE 0101 0011 0001 1001

DIGIT 5 3 1 9

The resulting integer is 5319.

NOTE: Checks are not performed on the magnitude of the decimal digits in the
BCD input value. Values within each nibble are multiplied by the appropriate
power of 10 whether they exceed 9 or not. No “out-of-range indication is made
when invalid BCD digits are present.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then OUT remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

IN Input
Value

req any integer* The input value, read as a BCD.

OUT Output
Value

req any integer** The result of converting the input
value into an integer.

* Any Input or Memory tag except 32-bit Real (F) or Bit (X). For more information, see “Defining
Input, Output, Memory tags” on page 114.

** Any Memory or Output tag except 32-bit Real (F) or Bit (X). For more information, see “Defining
Input, Output, Memory tags” on page 114.

Appendix C: Ladder Diagram Block Reference Pointe Controller User Guide

438

C.9.10 Move (MOVE)
When used in a Ladder Diagram, the MOVE block directly copies the value from a
source variable to a destination variable.

Select the tool (from the Miscellaneous Blocks toolbar) and click on a ladder
rung to insert the following block:

Once the block is inserted, you can double-click on it to configure it.

Functional Description

This block always passes the Enable input state (EN) through to the Enable Out
output state (ENO) without change; when EN becomes on, ENO is turned on, and
when EN becomes off, ENO is turned off.

When EN becomes on, the block function is executed: the current value in the
Source input (SRC) is moved (copied) to the Destination output (DST). No other
manipulation is performed on the value.

The block function is executed every time the ladder is scanned, so long as EN
remains on. If EN becomes off, then DST remains at its last calculated value until
EN becomes on and the block function is executed again.

Configuration Reference

The parameters of this block are described in the following table:

Param Name Config Var Type Description

EN Enable no - The state of the rung (off/on)
received from the left.

ENO Enable
Out

no - The state of the rung (off/on)
passed to the right.

SRC Source req any Input
any Memory
any Output

 Numeric

The input value.

DST Desti-
nation

req any Input
any Memory
any Output

The result of moving (copying) the
input value.

Pointe Controller User Guide Appendix C: Ladder Diagram Block Reference

439

NOTE: This function does not check for bit register overflow. You can assign any
variables you wish, but mixing variable sizes – for example, a 32-bit input and an
8-bit output – may result in unusable output.

	Introducting the Pointe Controller
	The Node Controller Concept
	Typical Applications
	Architecture Options
	Stand-alone Operation
	Master Controller
	Network Node

	Available Parts and Accessories

	Initial Setup
	Getting to Know the Pointe Controller Base
	Supplying Power to the Pointe Controller
	Installing the PointeControl Software
	Configuring the Controller's Network Settings
	Installing I/O Modules in the Controller
	Connecting the Controller to Your PC

	Quickstart Project
	Starting a New Project
	Defining Input, Output, and Memory Tags
	Defining input bits
	Defining output bits
	Defining memory tags

	Associating Tags with I/O Points
	Creating Your First Flow Chart
	Inserting a Second Decision Block
	Assigning Outputs
	Adding a Time Delay
	Checking the Chart Integrity
	Building the Project Runtime
	Downloading and Running Your Program
	Monitoring Your Program While It Runs
	Setting Breakpoints

	System Design and Installation
	Safety Guidelines
	Getting to Know the Pointe Controller Base
	PTC-5800 Pointe Controller Technical Description

	Supplying Power to the Controller
	Installing the PointeControl Software
	Addressing the Pointe Controller
	IP Address
	Modbus Address

	Overview of OptiLogic I/O
	Digital Inputs
	Digital Outputs
	Analog Inputs

	Determining Your I/O Needs
	Available I/O Modules
	Available Operator Panels
	Calculating Your Power Budget

	Installing I/O Modules in the Controller
	Slot Numbering
	Installing Modules

	Mounting the Pointe Controller
	Mounting the Base on a DIN Rail
	Mounting the Base to an Operator Panel

	Connecting the Controller to Your Network
	Point-to-Point Connection
	Single Hub and Switched Connections

	Ethernet Connection Guide
	UTP Cable Characteristics
	Cable Connectors
	10Base-T Connections
	Straight-through Patch Cable
	Crossover Patch Cable

	Developing Controller Programs
	Basic Concepts in PointeControl
	Multiple Programming Languages
	Memory Allocation and Access
	The Scan Cycle

	The Visual Framework Editor (VFE)
	The Framework Editor toolbar
	The Project Workspace pane
	The Object Editor pane
	The Messages pane

	Managing PointeControl Projects
	Creating and opening projects
	Importing and exporting projects
	Documenting your project

	Defining Variables in Logic Memory
	Java reserved words
	Defining Input, Memory, and Output tags
	Defining strings in Logic Memory
	Defining timers in Logic Memory
	Importing and exporting databases

	Associating Tags with I/O Points
	Specifying your installed hardware
	Configuring I/O modules
	Configuring operator panels
	Configuring additional OptiLogic RTUs

	Building and Editing Flow Charts
	Creating a new Flow Chart
	Navigating the Flow Chart editor
	Placing and configuring Flow Chart blocks
	Building logical expressions
	Moving, resizing, and deleting blocks
	Adding comments to a Flow Chart
	Logging changes in a Flow Chart
	Making a Flow Chart a reusable Subchart

	Types of Flow Chart Blocks
	Process Block
	Terminator Block
	Condition (If/Then/Else) Block
	Repeat/Until Loop Block
	While/Do Loop Block
	Subchart Block

	Building and Editing Ladder Diagrams
	Creating a new Ladder Diagram
	Navigating the Ladder Diagram editor
	Adding new rungs and branches
	Placing and configuring a Ladder Diagram block
	Moving, copying, and deleting elements
	Adding comments to a Ladder Diagram
	Making a Ladder Diagram a reusable Sub-Ladder

	Types of Ladder Diagram Blocks
	Relays and Coils
	Timer and Counter Blocks
	Math Blocks
	Comparison Blocks
	Logical and Bit Shift Blocks
	Selecting Blocks
	String Blocks
	Flow Control Blocks
	Miscellaneous Blocks

	Other Framework Editor Tools
	Finding and replacing text
	Zooming in and out on a chart
	Viewing tag cross references

	Compiling Your PointeControl Project
	Configuring your project's Chart List
	Setting your project's scan interval
	Checking your project's chart integrity
	Building your project's runtime module
	Activating the PointeControl Monitor

	Downloading to the Controller
	Launching the PointeControl Monitor
	Selecting and Attaching a Controller
	Detaching from a controller

	Downloading a Project to the Controller
	Unloading a project

	Starting and Stopping a Loaded Project
	Stopping a project
	Restarting a stopped project
	Enabling and disabling I/O

	Assigning a Password to the Controller
	Overriding a password

	Saving a Project from the Controller

	Monitoring and Debugging
	Monitoring a Running Project
	The Charts tab
	The Browser tab
	The Console tab
	The Controller Log tab

	Checking System Performance
	Scanning
	Loading
	Errors

	Viewing and Debugging Charts
	The Debugger window
	Zooming In and Out on a chart
	Viewing Subcharts within a chart
	Enabling Logic Flow in a chart
	Enabling Debug Trace in a chart
	Inserting breakpoints in a chart
	Continuing execution after a breakpoint
	Forcing new tag values
	Additional tools for Flow Charts only

	Networked Operations
	Networking via OptiLogic Remote I/O
	Networking via Modbus Data Mapping
	Modbus Address
	Types of Modbus data
	Enabling the Modbus driver
	Mapping variables to Modbus addresses

	Troubleshooting
	LED Boot Indicators
	Hardware Reset

	Appendix: OptiLogic Technical Specs
	OL2104 Relay Output Module
	OL2108 Relay Output Module
	OL2109 DC Sinking Output Module
	OL2111 AC Solid State Relay Module
	OL2201 Digital Input Simulator Module
	OL2205 AC/DC Input Module
	OL2208 DC Digital Input Module
	OL2211 AC Digital Input Module
	OL2252 Dual Pulse Counter
	OL2258 High Speed Pulse Counter
	OL2304 Analog Voltage Output Module
	OL2408 Analog Voltage Input Module
	OL2418 Analog Current Input Module
	OL2602 Dual Serial Port Module
	OL3406 Pushbutton/Indicator Panel
	OL3420 Operator Terminal
	OL3440 Display Panel
	OL3850 Keypad Terminal

	Appendix: Flow Chart Command Reference
	General Commands
	Turn On and Turn Off
	Assign
	Increment and Decrement
	Clear
	Enable and Disable
	Get Tag Name
	Wait

	Timer Commands
	Timer Start and Timer Stop
	Timer Reset
	Timer Preset

	String Commands
	String Copy
	String Concat
	String Left and String Right
	String Mid
	String Insert
	String Delete
	String Replace
	String Format Integer

	Diagnostics Commands
	Diag Get Tag Status
	Diag Set Tag Status
	Diag Clear Tag Status

	Serial Commands
	Serial Configure Port
	Serial Enable Port and Serial Disable Port
	Serial Read Byte
	Serial Write Byte
	Serial Read MultiBytes
	Serial Write MultiBytes
	Serial Get Comm Errors

	Date/Time Commands
	Date/Time Get
	Date/Time Format
	Get Elapsed Time

	Operator Panel Commands
	Keypad Data Entry
	Arrow Adjust Data Entry
	Button On and Button Off

	Appendix: Ladder Diagram Block Reference
	Relays and Coils
	Normally Open Contact (XIC)
	Normally Closed Contact (XIO)
	Rising Edge Relay (LEC)
	Falling Edge Relay (TEC)
	Output Coil (OC)
	Negated Output Coil (NEGOC)
	Latched Coil (LOC)
	Unlatched Coil (UOC)
	Rising Edge Coil (LEOC)
	Falling Edge Coil (TEOC)
	Falling Edge Detector (F_TRIG)
	Rising Edge Detector (R_TRIG)
	Set-Dominant Bistable (SR)
	Reset-Dominant Bistable (RS)

	Timer and Counter Blocks
	Timer, Pulse (TP)
	Timer, ON Delay (TON)
	Timer, OFF Delay (TOF)
	Counter, Up (CTU)
	Counter, Down (CTD)
	Counter, Up/Down (CTUD)

	Math Blocks
	Add (ADD)
	Subtract (SUB)
	Divide (DIV)
	Multiply (MUL)
	Square Root (SQRT)
	Modulus (MOD)
	Sine (SIN)
	Cosine (COS)
	Tangent (TAN)
	Arc Sine (ASIN)
	Arc Cosine (ACOS)
	Arc Tangent (ATAN)
	Absolute Value (ABS)
	Logarithm (LOG)
	Natural Logarithm (LN)
	Exponential (EXPT)
	Natural Exponential (EXP)
	Expression (EXPR)

	Comparison Blocks
	Greater Than (GT)
	Greater than or Equal to (GE)
	Equal to (EQ)
	Not Equal to (NE)
	Less than or Equal to (LE)
	Less Than (LT)

	Logical and Bit Shift Blocks
	And (AND)
	Or (OR)
	Exclusive Or (XOR)
	Not (NOT)
	Shift bits Left (SHL)
	Shift bits Right (SHR)
	Rotate bits Left (ROL)
	Rotate bits Right (ROR)

	Selection Blocks
	Select minimum value (MIN)
	Select maximum value (MAX)
	Limit value (LIM)
	Select one of two values (SEL)

	String Blocks
	Set string (SET)
	Find string length (LEN)
	Extract sub-string from left (LEFT)
	Extract sub-string from right (RIGHT)
	Extract sub-string from middle (MID)
	Concatenate strings (CAT)
	Compare strings (CMP)
	Insert sub-string (INS)
	Delete sub-string (DEL)
	Replace sub-string (REPL)
	Find sub-string (FIND)

	Flow Control Blocks
	Call sub-ladder diagram (CALL)
	Return to main diagram (RETN)

	Miscellaneous Blocks
	Convert to Boolean (TO_BOOL)
	Convert to Integer (TO_INT)
	Convert to Float (TO_FLT)
	Convert to String (TO_STRG)
	Truncate (TRUNC)
	Integer to Character (TO_CHR)
	Character to Integer (CHR_TO)
	Integer to BCD (TO_BCD)
	BCD to Integer (BCD_TO)
	Move (MOVE)

