ACR Motion Controllers
88-030044-01A

ComACRServer6 User’s Guide

Effective: October 2009

m ENGINEERING SUCCESS.

Parker Hannifin

User Information

Warning — ACR series products are used to control electrical and mechanical
components of motion control systems. You should test your motion
system for safety under all potential conditions. Failure to do so can
result in damage to equipment and/or serious injury to personnel.

ACR series products, including the ComACRServer communications server, and the information in
this guide are the proprietary property of Parker Hannifin Corporation or its licensers, and may
not be copied, disclosed, or used for any purpose not expressly authorized by the owner thereof.
Since Parker Hannifin constantly strives to improve all of its products, we reserve the right to
change this guide, and software and hardware mentioned therein, at any time without notice.

In no event will the provider of the equipment be liable for any incidental, consequential, or
special damages of any kind or nature whatsoever, including but not limited to lost profits
arising from or in any way connected with the use of the equipment or this guide.

© 2003-2007 Parker Hannifin Corporation

All Rights Reserved

ACR-View is a trademark of Parker Hannifin Corporation.

Microsoft and MS-DOS are registered trademarks, and Windows, Visual Basic, Visual C++, Visual
Basic .NET, Visual C++ .NET, and C# .NET are trademarks of Microsoft Corporation.

Technical Assistance
Contact your local automation technology center (ATC) or distributor.

North America and Asia Germany, Austria, Switzerland
Parker Hannifin Corporation Parker Hannifin GmbH&Co.KG
5500 Business Park Drive Postfach: 77607-1720
Rohnert Park, CA 94928 Robert-Bosch-Str. 22
Telephone: (800) 358-9068 or (707) D-77656 Offenburg

584-7558 Telephone: +49 (0) 781 509-0
Fax: (707) 584-3793 Fax: +49 (0) 781 509-98176

Email: sales.hauser@parker.com
Internet: http://www.parker-emd.com

Email: emn_support@parker.com
Internet: http://www.parkermotion.com

Europe (non-German speaking) Italy

Parker Hannifin plc Parker Hannifin

Electromechanical Automation, Europe 20092 Cinisello Balsamo

Arena Business Centre Milan, Italy via Gounod, 1

Holy Rood Close Telephone: +39 02 66012478

Poole Fax: +39 02 66012808

Dorset, UK Email: sales.sbc@parker.com

BH17 7BA Internet: http://www.parker-emd.com

Telephone: +44 (0) 1202 606300

Fax: +44 (0) 1202 606301

Email: support.digiplan@parker.com
Internet: http://www.parker-emd.com

Y I s ED Il KT IE IR ol lallHGEIH € Mn_support@parker.com -

ii User's Guide

mailto:emn_support@parker.com
http://www.parker.com/
mailto:sales.hauser@parker.com
http://www.parker-emd.com/
mailto:support.digiplan@parker.com
http://www.parker-emd.com/
mailto:sales.sbc@parker.com
http://www.parker-emd.com/
mailto:emn_support@parker.com

Paker Hannifin

Table of Contents

CoOMMUNICAtIONS SEIVEI ... 4
Supported CONErOIIEIS ...vieieie e 4
Legacy Communications Server: COmMACRSIVI.AIl......cviiiiiiiiii e 5
Getting Startedovieieii e 5

ACR-VIBW it et e e e 5
TNSTAlAtiON et 6
Creating a Project with the COMACRSEIVEN .. .vviviiiiiiiie e eaeas 6
Classes and INTErfaCeSivivieiiiiii e 7
CommuUNICAtiONS OVEIVIEW .u.uiuisiiiiiirriis e 8
User GUIde EXAMPIES ...t 8

Connection Properties and Methods 9
[LT o) o o 1= PP 10
CONNECLION EXAMPIE. .ttt 14

Terminal Properties and Methods................cooeeee.. 15
DS I PEIONS .t ettt e 15
B g T Lo T T I =0t o] = PP 17

Status Properties and Methods............cooiiiiieeennnn... 18
10T 0= =T 18
MEENOAS vttt 18
Properties DeSCHiPLiONS ..uuiiiti i 19
=Yl g Yo E B L=t ol o o 1= PPN 20
SEAtUS EXAMIPIE oottt e 27

Control Methods ... 28
MEENOAS ..ouiviiii i 29
DESCIIPLIONS ..t 29
(o] 1 u go] I & [g1 o] L= PP PPN 33

EXAMIPIE L ot 33
EX AP 2 oot e 34
EXAMIPIE 3 o 34

Move Properties and Methods..............cooooooiiiiil 34
10 01T =T 35
MEENOAS vttt 35

X AP et e 36
[7= of '] o) 0] o = PN 36

Alarm EVENTS ... 45
EVENES. e 46
[LT Yo g o) o To] 1= PP 46
AlarM EX@MIPIE et e 47

Utility Methods ..o 48
[] o= == PP 48
MEENOAS ..iveieii 48
[LT o) o o 1= PP 48

ErrOr MESSageS ..ottt 53
LN L= =T= T [N 53
DS I PEIONS .t ettt e 54

User’'s Guide i

Parker Hannifin

Communications Server

The communications server, ComACRServer.exe, is a 32-bit OLE
automation server that provides communications between ACR
controllers and PC (personal computer) software applications. It
is compatible with any 32-bit software application or
programming environment that uses an OLE automation
component, including the following:

e Microsoft .NET
e Visual Basic

e Visual C++

e Visual C#

e Delphi

e Software packages that support Microsoft’s Component
Object Model (COM):

¢ Wonderware's Factory Suite 2000
¢ National Instruments LabVIEW

The ACR-View 6.x installation program installs the
ComACRServer.exe file in the ACR-View 6.0 directory, typically
\Program Files\Parker\ACR-View 6.0.

Supported Controllers

The ComACRServer.exe communications server (comserver)
supports the following ACR family conftrollers using available
Ethernet, USB, and RS232 communication ports:

e ACR9000
e ACR9030
e ACR9040
e ACR9600
e ACR9630
e ACR9640
Aries Controller (AR-xxCE)

Note: PC card (1505, 8020) controllers are not supported by the
ComACRServer.exe.

4 User's Guide

Legacy

Paker Hannifin

Communications Server:

ComACRsrvr.dli

The ComACRServer.exe is based on the previous generation of
ACR communications server known as the ComACRsrvr.dll.
Significant changes to the underlying architecture result in
increased performance and robustness. The format of properties
and methods available in the ComACRsrvr.dll has been retained
to allow an easy transition for existing users.

Getting Started

ACR-View

Before developing a ComACRServer application, users should
become familiar with the ACR controller by using ACR-View, the
development software for the controllers.

e Verify PC to controller communication.

e Configure the conftroller (how many axes, stepper or servo,
scaling, etfc.).

e Tune servo axes.

e Test axis connections and I/O functions (e.g., limit and home
switches).

e Develop any programs fo be stored on the conftroller.

e Monitor values as they are sent and received from the
ComACRServer application.

ACR-View Online Help contains information about AcroBasic
commands, the controller’'s native language. Most of these
commands can be sent thru the ComACRServer using the Write
method. The bit and parameter reference describes all of the
available data elements on the controller, which can be
accessed thru the Control and Status methods. Figure 1 shows
the reference and programmer’s guides available in the online
help.

User’'s Guide 5

Parker Hannifin

E? ACR User’s Guides

TR -
Hiqe 5 Frint Optiohs

Contents II dex] 5 ar:h1 Favnr_\tes]

>
Impartant L zer Information
Change Summary - Command Language Refere|
+ @ Introduction
+ 0 System Reference
i+ @ Command Reference ACR Motion Controllers
% @ Expression Reference BE-028756-01E

@ PLC Refarence
Change Summary - Parameter and Bit Referenc|
i+ @ Parameter Reference
+ 0 Bit Reference
+ @@ Aries Cantraller Parameter Reference

E P ‘s Guidh
m éjgéz::;zu;:ﬂ:w - Programmer's Guide Ac R-v i ew o n I i n e H el p

el 9 Getting Started

Effective: Seplember 2008

Figure 1: ACR-View Online Help

Installation

The ComACRServer.exe is installed and registered with ACR-View
6. The default installation folder for ACR-View and
ComACRServer.exe is C:\Program Files\Parker\ACR-View 6.

Creating a Project with the ComACRServer

To create a project, select Project on the Visual Studio main
menu, and then select Add Reference. In the Add Reference
dialog box, select ComACRServer x.x Type Library, and click OK.
Figure 2 illustrates these steps.

Add Reference

MET |COM |Pr0jects Browse | Recent

Component Name Typelibve... Path ~
Cliscan Type Library 1.0 Ci\Program Files\Symar
CMProps 1.0 Type Library 1.0 CWINDOWS Systems
CoDeSys Type Library 1.3 1.3 C:\Program Files) 35 Sof
COLBCAT 1.0 Type Library 1.0 CAWTNDOW S Sy stem3
Projact | Buld Debug Data Tooks ‘Wini coloader 5.0 Twpe Library 3.0 C:\Program Files\Comm
] Add Wirsdows Form, COM + 1,0 Admin Type Library 1.0 CHWINDOWS Ty stem3
@ Addeer Cortral Z0OM MakeCab 1.0 Tvpe Library 1.0 CWINDOW S system,
COM+ Services Type Library 1.0 CAWINDOWS| System3
2] hdd Module... :
#% Add Class.., Fer 1.|:|T':.-'|:IE Library 1.0 C g -
ComExp 1.0 Type Library 1.0 CHWINDOWS\system3:
2l Add New Ttem... Ctrbshit+a ComExps 1.0 Type Library 1.0 CWINDOWS systems;
i Add Existing Them, . CtrD CommalelimitedEventLogger 1.0 Ty... 1.0 C:\Program Files\PC-Dao
Common Language Funtime Executi... 1.1 CAWINDOW S Microsof
1 Show AllFes Common Language Runtime Executi... 2.0 cWINDCWS \Microsoft s
fdd Reference. ., ¢ s

Add Service Refererce, .,

[K] [Cancel

B windowsapplication] Properties. ..

Figure 2: ComACRServer Project Menu: Add Reference

6 User's Guide

Paker Hannifin

Object Browser
Browse: All Companents

<5earch=

-

=3 Interop. ComaCRServerLib
=4} ComACRServerLib
i Channel
=% IChannel
=2 _IChannelEvents

Formi.wb [Design]

-

-

%5
W AddaCRCustomiString) As Inkeger

W AddACRGroupdString) As Integer

W AddaCRGroupRaw(Integer, Inkeger, Integer) As Integer
W AddaCRMemorw(Integer, Integer, Inkeger) As Inkeger
W AddalarmEvent(Inteqger, Inkeger)

8larmEvent{Integer, Integer, Integer)

W Arc{Inteqger, Object)

™

-

3]

=2 IContrl
= IStatus
=2 ITerminal
=0 TUkiliby

ﬁ} barcabsoluted) As Boolean
ﬁ} barcCCW) As Boolean

ﬁ} brovesbsolute) As Boolean
“A honCannectTesHY A Bnnlean

Figure 3: ComACRServerLib Channel Class

Classes and Interfaces

The ComACRServerlib contains all the available properties and
methods in a single class called Channel (See Figure 3). A single
object can be declared to access all the properties and
methods.

Dim WithEvents Controller As ComACRServerLib.Channel

The previous version of the comserver (BoxBridgelib) separated
the properties and methods into four separate classes, Terminal,
Status, Control, and Utility. This required declaring and
connecting to up to four separate objects to access all the
functionality of the comserver.

Dim cntl As BOXBRIDGELib.Control

Dim WithEvents stat As BOXBRIDGELib.Status
Dim WithEvents term As BOXBRIDGELib.Terminal
Dim util As BOXBRIDGELib.Utility

In order to minimize development time when upgrading projects
developed using the BoxBridgelib, the ComACRServerlLib
includes interfaces that group properties and methods in a
similar way.

cntl As
stat As
term As
util As

ComACRServerLib.IContrl
ComACRServerLib. 1Status
ComACRServerLib.I1Terminal
ComACRServerLib.IUtility

Dim
Dim
Dim
Dim

for each Interface

ComACRServerLib.Channel
ComACRServerLib.Channel
ComACRServerLib.Channel
ComACRServerLib.Channel

"Create new object
cntl New
stat New
term New

util New

Connect for each Interface
“192.168.10.40”
“192.168.10.40”
term.bstriP '"192.168.10.40"
util.bstriP '"192.168.10.40"

cntl _Connect(3, 0)

stat.Connect(3, 0)

"Requires a call to
cntl _bstriP
stat._bstriP

User’s Guide

Parker Hannifin

term.Connect(3, 0)
util.Connect(3, 0)

Alternatively, create only one Channel object and reference the
other interfaces. This allows the application to call Connect only
one time.

"Create new object for each Interface

cntl = New ComACRServerLib.Channel
stat = cntl
term = cntl
util = cntl

"Connect
cntl.bstriIP = "192.168.10.40"
cntl _Connect(3, 0)

Events are only available in the Channel interface:

Dim WithEvents stat As ComACRServerLib.Channel
Dim WithEvents term As ComACRServerLib.Channel

Communications Overview

To begin communications, an application requests a connection
to the ACR controller through the comserver. The comserver
manages the actual connection to each controller, and can
feed information from a particular controller to all client
applications that require the information.

The comserver makes one connection for each ACR conftroller
per communication media (Ethernet, USB, or serial, depending
on the communication options). This connection is then shared
across all client users of that connection/controller pair. For
example, a terminal application created in Visual Basic and a
terminal in ACR-View can maintain connections to the same ACR
confroller’s USB connection. Both applications receive the
responses coming from the controller and do not compete for
data.

Alternatively, a status application created in C++ can use the
comserver to get information from one ACR confroller while ACR-
View uses the comserver to talk to a different ACR conftroller.

User Guide Examples

Programming examples are provided at the end of each
chapter. Examples may contain only the portion of the code
needed to illustrate the functionality. All examples are written in
VB.NET. For simplicity, the examples do not include exceptions
handling, which is recommended for most applications.
Complete example applications in VB.NET, C#, C++, and VB6 are
provided on the ACR-View CD and can be downloaded from
www.parkermotion.com.

8 User's Guide

http://www.parkermotion.com/

Paker Hannifin

Connection Properties and
Methods

For an application to communicate with an ACR conftroller, the
application must first call the Connect() method. When calling
the Connect() method, the comserver performs two steps.

The comserver establishes a connection with the physical
medium (serial, Ethernet, efc.) using the device drivers on the
system to secure the communication resource (ports, sockets,
etc.) needed to talk to the connected ACR controller. This is only
performed by the very first Channel to call the Connect()
method. Subsequent calls to the Connect() method do not
perform this step. Instead, subsequent Channels register
themselves as users. When the last user closes down, the
resources are freed.

By default, the comserver fries to verify that an ACR controller is
connected fo the PC. To do this, the comserver sends
information to the ACR controller and inspects the reply.

This behavior can be disabled, and the check not performed.
Prior fo calling the Connect() method, set the bOnConnectTest to
False. For example, do this when you know the ACR controller is
present.

Alternatively, call the TestConnect() method to test, at any time,
if a connection is present.

After successfully executing the Connect() method, all other
methods on that interface are available.

The following properties and methods are used tfo connect fo a
controller. Descriptions of each one follow the list:

e Property nPortErrorl Bookmark not defined.() As Integer
e Property bstrIPError! Bookmark not defined.() As String
e Property nBPS() As Integer

e Property bOnConnectTest() As Boolean

e ReadOnly Property isOffline() As Boolean

e Connect (ByVal nTransport As Integer, ByVal nindex As
Integer)

e Sub Disconnect()
e TestConnect() As Boolean

e SetWatchdog(ByVal ninterval As Integer, ByVal nRetries As
Intfeger)

User's Guide 9

Parker Hannifin

e FEvent WatchdogReconnect()

e Event WatchdogTimeout()

Property nPort() As Integer

Summary: Retfurns or sets the communications port on the PC
used for connection to the controller

Range: 1-30
Default: 1

Remarks:

e Sef this value when using serial or USB communications.

Property bstrlP() As String

Summary: The Ethernet IP address of the ACR device in dot
NOTAtioN—XXX. XXX. XXX.XXX

Default: 0.0.0.0

Remarks:

e To communicate over a network using TCP/IP, the network
settings must be configured for the PC and ACR device. For
more information, see the IP and IP MASK commands for
the ACR Series conftroller.

Property nBPS() As Integer

Summary: The speed of the serial port in bits per second (BPS); to
set the communications port (COMI1, etc.) for serial
communications.

Range: 9600, 19200, 38400
Default: 38400

Remarks:

e The comserver can use any BPS rate that is supported by
the PC; however, the ACR controllers can only support rates
of 9600, 19200, and 38400 BPS.

10 User’'s Guide

Paker Hannifin

Property bOnConnectTest() As Boolean

Summary: This allows (or disallows) automatic ACR verification as
part of Connect

Default: True

Remarks:

e When bOnConnectTest is set to True, the Connect method
verifies that an ACR device is physically connected and
responding after successfully connecting fo a
communications transport. This extra verification is done
using an implicit call fo TestConnect. See the TestConnect
description for more information. If no controller is found,
the Connect method throws an exception.

e |[f bOnConnectTest is set to False, some communication
tfransports will not fail when using Connect, even when no
ACR device is physically connected. For example, a serial
port only needs to be present on the PC at the nPort
communication port address for Connect to return success.

e Some applications may not need to perform this extra
check, in which case set this value to False. Setting this
value to False will slightly speed up Connect.

ReadOnly Property isOffline() As Boolean
Summary: Indicates whether the Transport type is set to Offline
Default: True

Remarks:

e [f True, the transport type is set to Offline, which indicates
that the interface is not connected to an ACR device. See
the Connect description, which follows, for the transport

types.

e Affer asuccessful connection, return to Offline mode by
either explicitly calling Connect with the Offline fransport
type, or calling Disconnect().

e Many methods throw an exception if called in the Offline
mode; Check this property first fo avoid throwing an
exception.

e isOffline=False does not indicate that the comserver is
communicating with the conftroller, only that connection is
open and frying to connect. Use the TestConnect method
when trying to defermine if the controller is actively
communicating and ready to accept commands.

User's Guide 11

Parker Hannifin

Connect(ByVal nTransport As Integer, ByVal nindex As Integer)
Summary: Establishes a connection to an ACR confroller
Parameters:

nTransport: Indicates the physical communication layer
being used. Valid values are the following:

nTransport Description
0 Offline

2 Serial

3 Ethernet
4 usB

nindex: Parameter is not used; provided for compatibility
with legacy code.

Remarks:

e Each transport type has its own data requirements for
connecting. Any transport-specific properties (i.e., bstrlP for
Ethernet, etc.) should be set prior to calling Connect.

e Affer Connect is successfully called (except for
nTransport=0Offline), the ACR device is connected and
ready.

e To ensure an ACR controller is physically present, set the
bOnConnectTest property to True (the default) or call the
TestConnect method once connected.

e |f the comserver cannot complete a connection only
because it does notf receive a response from the device,
the following happens:

¢ |f bOnConnectTest=True, an E_PENDING error will be
signaled.

¢ The comserver will periodically attempt to reconnect
to the control and will fire the WatchdogReconnect
event when it succeeds.

¢ isOffline will return False.

¢ The client must expressly disconnect a Channel after
receiving E_PENDING if it no longer wants to connect
to the control.

e |f a Channelis connected when Connect is called, the old
Channel will be disconnected before the new Channel is
connected.

e Calling Connect with nTransport=Offline is the equivalent of
calling Disconnect.

12 User’'s Guide

Paker Hannifin

Sub Disconnect()

Summary: Disconnects from the current communication
tfransport

Remarks: Implicitly calls Connect(0,0) to switch to Offline mode

TestConnect() As Boolean
Summary: Verifies that an ACR controller is connected

Remarks:

e The TestConnect method sends a binary command to the
controller and verifies the returned data.

e |[f this process succeeds, the confroller’s presence is
presumed and True is returned. Otherwise False is returned.
When the Transport type = Offline, this method always returns
False.

e This is the same test as done by Connect() when
bOnConnectTest is set to True.

SetWatchdog(ByVal ninterval As Infeger, ByVal nRetries As
Integer)

Summary: Modifies the ACR conftroller’'s Ethernet Watchdog
values

Parameters:

ninterval: The time, in milliseconds, between sending test
keep-alive strings to the ACR device

nRetries: The number of times the keep-alive test string
message is sent to the ACR device, with no valid reply,
before attempting to re-connect to the ACR device

Remarks:

e The Ethernet tfransport currently has Watchdog functionality.
The ACR conftroller uses a separate port fo receive a coded
command string (keep-alive message).

e |f the ACR controller does not receive the keep-alive, a
successful command string in ninterval * nRetries
milliseconds, the ACR controller disconnects the regular ACR
Ethernet connection it is watching.

e This method has no effect on any transport except Ethernet,
and now serves only to provide the heartbeat for the ACR
Ethernet watchdog mechanism.

e This seffing no longer has an effect on the timing of the
comserver's WatchdogTimeout event, which occurs when
fwo successive polls 500 milliseconds apart fail.

e The initial settings of the Ethernet Watchdog are as follows:

User's Guide 13

Parker Hannifin

¢ ninterval=2000 ms (2 seconds)

¢ nRetries=4

Event WatchdogReconnect()

Summary: Callback method acts as an event signaling that
Ethernet communications has been re-established after
watchdog timer previously fimed out.

Remarks:

e The COM event model uses a callback mechanism to
generate events. The client program implements and
registers this method.

e The comserver calls the method after the watchdog timer
reconnects to the controller after a previous
WatchdogTimeout event.

Event WatchdogTimeout()

Summary: Callback method acts as an event signaling that the
watchdog timer has timed out on an Ethernet connection

Remarks:

e The COM event model uses a callback mechanism to
generate events. The client program implements and
registers this method.

e The comserver watchdog times out when two successive
polls 500 milliseconds apart fail.

e The comserver calls the method after the watchdog timer
tfimes out due to a loss of Ethernet communications.

Connection Example

Dim WithEvents Controller As ComACRServerLib.Channel
Public Sub New()
Controller = New ComACRServerLib.Channel
End Sub
Public Sub ConnectEthernet()
Dim strlP As String
striP = "192.168.10.40"
Controller.bstriIP = strliP
Controller.Connect(3, 0)
End Sub
Public Sub ConnectUSB(Q)
Dim USBPort As Integer
USBPort = 10
Controller.nPort = USBPort
Controller.Connect(4, 0)
End Sub
Public Sub ConnectSerial()
Dim ComPort As Integer
Dim BaudRate As Integer
ComPort = 2

14 User's Guide

Paker Hannifin

BaudRate = 38400
Controller.nBPS = BaudRate
Controller._.nPort = ComPort
Controller._.Connect(2, 0)

End Sub

Public Sub CloseConnection()
IT Controller.isOffline = False Then

Controller._Disconnect()

End If

End Sub

Terminal Properties and Methods

The following Terminal properties and methods provide
functionality for doing simple request/reply with the conftroller
using ASCII characters. Details of each one follow the list. Refer
to the ACR User's Guide, Command Reference for information
about valid commands and syntax used with the controller. To
send ASCIlI character strings fo the ACR controller, use Write(). To
receive data from the ACR controller, use Read(). A COM event,
DataWaiting(), is included for alerting the client program that
data is ready to be read.

e Property bTerminalLock() As Boolean
e Property nDataWaitRate() As Integer
e Function Read() As String

e Sub Write(ByVal send As String)

e Event DataWaiting()

Property bTerminalLock() As Boolean

Summary: Prevents competing accesses to a control’s ASCII
stream

Default: False

Remarks:

e While bTerminalLock is True, all Writes from competing
Channels connected to the same controller are locked out.
They will wait briefly for bTerminalLock to be cleared, but
then they return with E_PENDING timeout status.

e When an application sends the controller an ASCIl request
via Write() and expects to read the resulting status via
Read(), it must lock the terminal stream via bTerminalLock.
Otherwise, a competing Channel can also write data

User's Guide 15

Parker Hannifin

causing the terminal thread to show interleaved results,
making interpretation very difficult or impossible.

Property nDataWaitRate() As Integer

Summary: The minimum time between status alerts in
milliseconds

Default: 50 ms

Remarks:

e |f the read buffer has new data available, a COM event is
generated between the time the data comes into the read
buffer and nDataWaitRate milliseconds past that time. Using
this property, you can set the minimum time between
events, in milliseconds. The default setting is well below the
perceivable time a user would notice a delay, but well
above the value that would tax PC resources. Setting this
value to zero will disable alerts, and the client software will
be required to poll the Read() method for data.

e Changes to this value only take effect if set before the
Connect() method is called.

Read() As String
Summary: Retrieves ASCIl data from the controller
Remarks:

e This returns the data in the controller's output buffer.

e Typically, call this method when a DataWaiting() event is
received.

Write (ByVal send As String) As String
Summary: Sends ASCII data to the conftroller

Remarks:

e Most ACR commands require a carriage return <cr> (hex
x0D) to execute.

e ASCIl commands will be buffered behind any Move or Arc
commands that are currently waiting in the buffer. Binary
commands (see the Control Methods section) are
executed immediately ahead of Moves and ASCIl in the
buffer and should be utilized when possible.

e In certain cases (during a file or OS download) the Write()
method is locked out; subsequently, the function fimes out.
In this instfance, characters may not get to the controller.

16 User's Guide

Paker Hannifin

Event DataWaiting()

Summary: Callback method acts as an event signaling that
there is data to read

Remarks:

e The COM event model (also know as Connection Poinfts)
uses a callback mechanism to generate events. The client
program implements and registers this method. The
ComACRServer calls the method when there is data in the
read buffer, suggesting to the client to call Read().

e DataWaiting Events are launched on a separate thread. In
.NET, the event should not try to directly access a Form
Control, otherwise a "Cross-thread operation not valid”
error may result. Delegates can be used in this case. See
the example below.

Terminal Example

Example 1
Dim WithEvents Controller As ComACRServerLib.Channel

Private Sub SendAxisSettings()
Dim strSend As String
strSend = "AXISO JOG VEL 10"
SendASCI I (strSend)
strSend = "AXISO JOG ACC 100"
SendASCI I (strSend)

End Sub

Private Sub SendASClI1(ByVal strSend As String)
strSend += vbCr " add carriage return to end of string
Controller _Write(strSend)

End Sub

Private Function ReadASCI1() As String
Dim strRead As String
strRead = Controller.Read
Return strRead

End Function

Example 2

® use Delegate to output controller responses to RichTextBox
Private Delegate Sub DelegateTexttoTerm(ByVal strTerm As String)

Private Sub TexttoTerm(ByVal strTerm As String)
RichTextBox1.Text = strTerm
End Sub

Private Sub Controller_DataWaiting() Handles Controller_DataWaiting
Dim textTerm As New DelegateTexttoTerm(AddressOf TexttoTerm)
Dim strRead As String
strRead = ReadASCI1()
"RichTextBox1l.Text = strRead
* above code will result in "Cross-thread operation not valid" error
RichTextBox1. Invoke(textTerm, strRead)
End Sub

User's Guide 17

Parker Hannifin

Status Properties and Methods

The ComACRServer provides an efficient method of retfrieving
conftroller p-Parameters using ACR Binary syntax. A single value or
a related group of 8 values can be read at one time (the Groups
of specific p-Parameters are documented in ACR-View online
help). The Status methods convert p-Parameters into their binary
equivalent commands.

The Status Interface can be used in two ways: in a simple
request/reply form or as an event driven alerting request queue.
The request/reply method is straightforward. Call a method that
begins with GetACR*, and receive the information requested.

The event driver method requires more steps. First use the
AddACR* methods to put a request into the queue. Second, wait
for the COM event StatusWaiting() to fire. When StatusWaiting()
fires, use GetStatus() fo get the information. When done
watching the status, use DelStatus() to remove the status from
the request queue.

e Property nStatusWaitRate() As Integer
e Property SupressStatusDelete() As Integer

e Property SendSynchronousEvents() As Boolean

e GetACRCustom(ByVal bstrRequest As String) As Object
e GetACRGroup(ByVal bstrRequest As String) As Object

e GetACRMemory(ByVal nType As Integer, ByVal nAddress As
Intfeger, ByVal nCount As Integer) As Object

e GetlLocalAddr(ByVal nProg As Integer, ByVal nType As
Integer, ByRef nSize As Integer) As Integer

e GetlLocalArrayAddr(ByVal nProg As Integer, ByVal nType As
Integer, ByVal nArray As Integer, ByRef nSize As Integer) As
Integer

e GetParmAddr(ByVal nParameter As Integer) As Integer

e |[sFlagSet(ByVal nFlagGrp As Integer, ByVal nFlagNdx As
Infeger) As Boolean

e AddACRCustom(ByVal bstrRequest As String) As Integer

18 User’'s Guide

Paker Hannifin

e AddACRGroup(ByVal bstrRequest As String) As Integer

e AddACRMemory(ByVal nType As Integer, ByVal nAddress As
Integer, ByVal nCount As Integer) As Integer

e DelStatus(ByVal nMsgid As Integer)
e GetStatus(ByVal nMsgid As Infeger) As Object

e Event StatusWaiting(ByVal msgID As Integer, ByVal error As
Integer)

Properties Descriptions

Property nStatusWaitRate() As Integer

Summary: The minimum time between status alerts in
milliseconds.

Default: 10 ms

Remarks:

e |f astatus request has new data available, a COM event is
generated in the time between when a status changes and
nStatusWaitRate milliseconds past the time a status
changes. Setting this value to zero will disable alerts. Use
this property to set the minimum time in milliseconds
between alert events.

e Changes to this value only take effect if set before calling
the Connect() method.

Property SupressStatusDelete() As Integer

Summary: Indicates the action the comserver should take when
an attempt to read a Status Queue data item fails

Default: O

Range: 0-2
0: Fire Error StatusWaiting and Delete Entry
1: Fire Error StatusWaiting Event only
2: Do Not Fire StatusWaiting or Delete

Remarks:

e [f aread error occurs when SupressStatusDelete is 0, a
StatusWaiting event is fired with an error value specified in
the error parameter. Then the failed status entry is
automatically deleted from the queue.

e [f aread error occurs when SupressStatusDelete is 1, a
StatusWaiting event is fired with an error value specified in

User's Guide 19

Parker Hannifin

the error parameter. The failed status entry is not
automatically deleted, and the error StatusWaiting event
will continue to be fired at the poll interval until the outage
is rectified or the event deleted through DelStatus().

e |[f aread error occurs when SupressStatusDelete is 2, no
StatusWaiting event is fired. The client application can learn
about the outage by fielding WatchdogTimeout events.

e Errors reading status queue items typically occur when
communications have temporarily been lost. A
WatchdogTimeout event is also fired for new
communication outages.

e Changes to this value only take effect if set before calling
the Connect method.

Property SendSynchronousEvents() As Boolean

Summary: Indicates whether the comserver should send
WatchdogTimeout and WatchdogReconnect events that occur in
response to client requests

Default: True

Remarks:

e When True, the server will both send a WatchdogTimeout
event and signal E_PENDING when a communications
outage is first detected in response to a client command.

e When False, the WatchdogTimeout event is suppressed and
the client application is expected to derive Channel status
from the E_PENDING state.

e The property has a similar effect when a Channel is
determined to have reconnected after an outage.

e The server always fires Timeout and Reconnect events when
there is no corresponding noftification on the Channel, such
as when the outage is detected during a heartbeat poll or
on another Channel’s request.

Methods Descriptions

GetACRCustom(ByVal bstrRequest As String) As Object

Summary: Returns the value(s) of requested p-Parameter(s)
Parameters:

bstrRequest: String of up to 32 p-Parameters, comma
delimited.

20 User’'s Guide

Paker Hannifin

Remarks:

e The GetACRCustom method returns an array of up to 32
data elements.

e Requested data can be either Float or Long parameters.
Data types can be mixed within a single GetACRCustom
request.

e Each p-Parameter in the request refurns the values of the
type as defined in the Parameters Reference section of the
ACR-View User’'s Guide online help.

GetACRGroup(ByVal bstrRequest As String) As Object
Summary: Returns the values of requested p-Parameter group(s)
Parameters:

bstrRequest: String of up to 4 p-Parameters, comma
delimited. Parameters in the request are used to look up the
parameter group, which contains 8 similar parameters.

Remarks:

e Refurns an array of up to 32 data elements. Each
p-Parameter in the request results in a group of 8 values of
the same type.

e Requested data can be either Float or Long parameters.
Data types can be mixed within a single request.

e Each p-Parameter in the request refurns the values of the
type as defined in the Parameters Reference section of the
ACR-View User’'s Guide online help.

e Any p-Parameter within a group can be used to identify the
group.

GetACRMemory(ByVal nType As Integer, ByVal nAddress As
Intfeger, ByVal nCount As Integer) As Object

Summary: Returns values of parameters or variables from a
specified memory location

Parameters:
nType: ACR Data type of the values being requested
0 =LV, LA (Long)
1 =DV, DA (Float 64-bit)
2 =SV, SA (Float 32-bit)
nAddress: Memory address of the data requested

nSize: The number of values to be read from memory,
starting at nAddress.

User's Guide 21

Parker Hannifin

Remarks:

e The refurned array can be of any size but is limited to a
single data type.

e nAddress is the value retrieved from GetParmAddr,
GetlLocalAddr, or GetLocalArrayAddr.

e nSize should be set equal or less than the value returned
from GetLocalAddr or GetLocalArrayAddr.

GetLocalAddr(ByVal nProg As Integer, ByVal nType As Integer,
ByRef nSize As Integer) As Integer

Summary: Gets the memory address for AcroBasic program local
variables

Parameters:

nProg: Program number of where the requested local
variables are dimensioned

nType: ACR Data type of the values being requested
0 =LV (Long)
1 = DV (Float 64-bit)
2 = SV (Float 32-bit)

nSize: Method returns the count of the variables
dimensioned

Remarks:

The returned address can be used in either the GetACRMemory,
AddACRMemory, or SetACRMemory methods.

A return value of 0 indicates that this variable type is not
dimensioned in the selected program.

GetlLocalArrayAddr(ByVal nProg As Integer, ByVal nType As
Intfeger, ByVal nArray As Integer, ByRef nSize As Integer) As
Integer

Summary: Gets the memory address for AcroBasic program local
array variables

Parameters:

nProg: Program number of where the requested local
variables are dimensioned

nType: ACR Data type of the arrays being requested
0 = LA (Long)
1 = DA (Float 64-bit)
2 = SA (Float 32-bit)

22 User’'s Guide

Paker Hannifin

nArray: Specific array number within the program
nSize: Method returns the size of the array

Remarks:
e The returned address can be used in either the

GetACRMemory, AddACRMemory, or SetACRMemory
methods.

e Areturn value of 0 indicates that this variable type is not
dimensioned in the selected program.

GetParmAddr(ByVal nParameter As Infeger) As Integer
Summary: Gets the memory address for a p-Parameter
Parameters:

nParameter. Any numeric p-Parameter

Remarks:

e The returned address can be used in either the
GetACRMemory, AddACRMemory, or SetACRMemory
methods.

IsFlagSet(ByVal nFlagGrp As Integer, ByVal nFlagNdx As Integer)
As Boolean

Summary: Utility for identifying a bit in a 32-bit Long
Parameters:
nFlagGrp: A value of type Long containing flags (as bits)
nFlagNdx: Index of the flag

Remarks:

e IsFlagSetreturns True if bit at nFlagNdx is 1, and returns
False when the bit is 0.

e ACR Flag values are stored in 32-bit Longs, which is the
lowest level of granularity provided by the Status methods.
nFlagGrp is the Long value, nFlagNdx is the position of the
flag in the Long.

e This function can also be called when the comserver is
offline.

User's Guide 23

Parker Hannifin

AddACRCustom(ByVal bstrRequest As String) As Integer

Summary: Adds a custom p-Parameter request intfo the status
quevue.

Parameters:

bstrRequest: String of up to 32 p-Parameters, comma
delimited.

Remarks:
e Refurns a key (msglID) identifying the request in the queue.
e The key can be used to retrieve data using GetStatus()

e Calling the Add routines places the specific status request
info a constantly updated queue of requests. As data is
retrieved from the conftroller for each request in the queue,
that data is compared to existing data.

e The first time data is retrieved, and whenever the retrieved
data has changed, a StatusWaiting event is generated with
a key (msglID)

AddACRGroup (ByVal bstrRequest As String) As Integer
Summary: Add a group request into the status queue
Parameters:

bstrRequest: String of up to 4 p-Parameters, comma
delimited. These parameters are used to look up the group,
which is then used to return the 8 p-Parameter values for
each group.

Remarks:
e Refurns a key (msglID) identifying the request in the queue.
e The key can be used to retrieve data using GetStatus()

e Any p-Parameter in a group can be used to identify a
group. Up to 4 groups can be requested and any
undocumented/reserved items in a group are returned as
zero.

e Calling the Add routines places the specific status request
info a constantly updated queue of requests. As data is
retrieved from the conftroller for each request in the queue,
that data is compared to existing data.

e The first time data is retrieved, and whenever the retrieved
data has changed, a StatusWaiting event is generated with
a key (msglID).

24 User's Guide

Paker Hannifin

AddACRMemory(ByVal nType As Integer, ByVal nAddress As
Integer, ByVal nCount As Integer) As Integer

Summary: Adds a memory value request into the status queue

Parameters:

nType: ACR Data type of the values being requested
0 =LV, LA (Long)
1 =DV, DA (Float 64-bit)
2 =SV, SA (Float 32-bif)

nAddress: Memory address of the data requested

nCount: The number of values to be read from memory,
starting at nAddress

Remarks:

Returns a key (msglD) identifying the request in the queue.
The key can be used to retrieve data using GetStatus().

nAddress is the value retrieved from GetParmAddr,
GetLocalAddr, or GetLocalArrayAddr.

nCount should be set equal or less than the value returned
from GetLocalAddr or GetLocalArrayAddr.

Calling the Add routines places the specific status request
info a constantly updated queue of requests. As data is
retrieved from the conftroller for each request in the queue,
that data is compared to existing data. The first time data is
retrieved, and whenever the retrieved data has changed,
a StatusWaiting event is generated with a key (msgID).

DelStatus(ByVal nMsgid As Integer) As Object

Summary: Deletes a status request from the status queue

Parameters:

nMsglD: The key to a specific status request as returned by
one of the ADD routines

Remarks:

Removing unused status requests will speed up the update
of the other requests in the queue.

To clear all status requests in a queue, use DelStatus(—1).

User's Guide 25

Parker Hannifin

GetStatus(ByVal nMsgid As Integer) As Object
Summary: Reftrieves the specified status information
Parameters:

nMsgID: The key to a specific status request as returned by
one of the ADD routines

Remarks:

e The returned array can be any size. It holds the values in
Variants, either type Long or Float.

Event StatusWaiting (ByVal msgID As Integer, ByVal error As
Integer)

Summary: Callback method acts as an event signaling that a
there is data to read

Parameters:

msgID: The key to a specific status request as refurned by
one of the Add routines

error: If an error occurred getting a status update, it is
reported in the error parameter. When a request encounters
an error, the request is deleted from the queue.

Remarks:

e The COM event model (also know as Connection Points)
uses a callback mechanism to generate events. The client
program implements and registers this method.

e The ComACRServer calls the method when a status request
(key=msgID) has been updated and is ready to read using
the GetStatus() method.

e [f an error occurred getting a status update, it is reported in
the error parameter. When a request encounters an error
the SuppressStatusDelete property value determines
whether the error is ignored or if the item is deleted from
the status queue.

e StatusWaiting events are launched on a separate thread. In
.NET, the event should not try to directly access a Form
Control, otherwise a "Cross-thread operation not valid”
error may result. Delegates can be used in this case.

26 User's Guide

Paker Hannifin

Status Example

Example 1

Dim objData As Object

Dim ACRClock As Integer

Dim OnBoardlnputs As Integer
Dim blnput3 As Boolean

Dim CANInputs As Integer

"get the ACR system clock value in milliseconds
objData = Controller.GetACRCustom(''P6916'")
ACRClock = objData(0)

"get input on-board and CANopen inputs

objData = Controller.GetACRCustom('P4096,P4456'")
OnBoardInputs = objData(0)

CANInputs = objData(l)

"check state of On-board input 3
blnput3 = Controller.IsFlagSet(OnBoardlnputs, 3)

Example 2

A program is created on the controller to teach position values.
The values are captured as encoder counts in a Long array, LAO.
The values are uploaded to the PC, scaled by the AXIS PPU then
returned to the controller in floating point array, SA1. The local
variables in Program 1 are as follows:

PO1>DIM

DIM SV(3)
DIM SA(2)
DIM SAO(10)
DIM SA1(10)
DIM LV(10)
DIM LA(2)
DIM LAO(CL0)
DIM LA1(10)

Const nLONG = O

Const nSINGLE = 2

Dim MemAddr As Integer

Dim returnArr As System.Array
Dim iDataSize As Integer

Dim nProgram As Integer

Dim iPositions As System.Array
Dim arrPPU As System.Array

Dim PPU As Single

Dim fVel As Single
Dim fAcc As Single

"get the axis scaling factor: PPU
arrPPU = Controller.GetACRCustom(*'P12375")
PPU = arrPPU(0)

nProgram = 1

"get values stored in local single variables SV

“these values will be used for a move profile

MemAddr = Controller.GetLocalAddr(nProgram, nSINGLE, iDataSize)
returnArr = Controller.GetACRMemory(nSINGLE, MemAddr, iDataSize)
fVel=returnArr(0)

fAcc=returnArr(1)

User's Guide 27

Parker Hannifin

"get values stored in local long array LAO
MemAddr = Controller.GetLocalArrayAddr(nProgram, nLONG, O, iDataSize)
iPositions = Controller.GetACRMemory(nLONG, MemAddr, iDataSize)

"create new Object to contain scaled values

Dim fPositions(iDataSize - 1) As Object

For 1 As Integer = 0 To iDataSize - 1
fPositions(i) = iPositions(i) 7/ PPU

Next

"send these values back to controller, store in local single array SAl
MemAddr = Controller.GetLocalArrayAddr(nProgram, nSINGLE, 1, iDataSize)
Control ler.SetACRMemory(nSINGLE, MemAddr, fPositions)

Control

Methods

The ComACRServer provides methods for updating the ACR
conftroller’s state and action. Use the methods and their
descriptions provided in this section to set and clear conftroller
flags/bits and assign values to parameters. Refer fo ACR-View
online help for complete listing of parameters and flags, along
with data types and read/write availability.

All updates can be sent via binary commands (immediate).
Methods with a bFast parameter have the option of utilizing
binary command or the ASCIl interface (queued). In most cases,
binary commands are preferred.

When the bFast parameter is True, a binary command is
sent to the controller. Binary commands are executed prior
to any ASCIl commands and will be executed even if
Move/Arc commands are queued in the move buffer. The
Terminal does not see binary commands.

When the bFast parameter is False, an ASCIl command is
sent to the controller. ASCIl commands queue in a
command stack; they are visible in the Terminal interface.
The command stack includes any ASCIl commands (Write)
and any Move/Arc commands.

Setting bFast to False is the equivalent of using the Write
method.

Use care to change only p-Parameters that are allowed to
change. Modifying read-only parameter values has undefined
behavior (and generally will not do what is infended).

28 User’'s Guide

Paker Hannifin

e SetFlag

e SetParmFloat

e SetParmlLong

e SetParmLongMask
e SetGlobal

e SetACRMemory

e SetACRMemoryMask

SetFlag(ByVal nBit As Integer, ByVal bValue As Boolean, ByVal
bFast As Boolean)

Summary: Changes the value of a specific bit/flag on the ACR
controller

Parameters:
nBit: Bit number on the ACR controller
bValue: Value of the bit to set
True: Sets the bit
False: Clears the bit
bFast: How to send the command
True: Binary
False: ASCII

Remarks:

e Many ACR commands have a bit/flag to perform the same
action; for example, Write(*AXISO DRIVE ON") could be
replaced by SetFlag (8465, True,True).

e Whenever possible, utilize control flags in place of Writes.

e See the Control Example section for common control flags.

User's Guide 29

Parker Hannifin

SetParmFloat(ByVal nPparm As Integer, ByVal fValue As Single,
ByVal bFast As Boolean)

Summary: Changes the value of a specific p-Parameter of type
Float

Parameters:
nPparm: p-Parameter number to change
dValue: Value to assign p-Parameter
bFast: How to send the command
True: Binary
False: ASCII

Remarks:

e On the ACR controller, parameters can have the following
types: Long, Float, or Double. Use this method to assign a
value to Floats and Doubles. All Floats and Doubles are sent
to the controller as Floats.

e Modifying p-Parameters that are é4-bit (e.g., the user
global P-variables, PO through P4095) using the binary
command (bFast=True) results in a less than exact
translation of the fractional part of the number. In addition,
because SetParmFloat() only allows a 32-bit number in
fValue, the bFast=False setfing will not be able to take
advantage of the extra precision provided in the 64-bit
values.

e The SetGlobal() method can also be used to set global user
p-Parameters.

SetParmLong(ByVal nPparm As Integer, ByVal nValue As Integer,
ByVal bFast As Boolean)

Summary: Changes the value of a specific p-Parameter of type
Long

Parameters:
nPparm: p-Parameter number to change
nValue: Value to assign fo p-Parameter
bFast: How to send the command
True: Binary
False: ASCII

Remarks:

e On the ACR controller, parameters can have the following
types: Long, Float, or Double. Use this method to assign a
value to Longs.

30 User’'s Guide

Paker Hannifin

SetParmLongMask(ByVal nPparm As Integer, ByVal nNAND As
Integer, ByVal nOR As Integer)

Summary: Changes the value of a specific parameter on the
ACR controller

Parameters:
nPparm: p-Parameter number to change
NNAND: Used to clear bits
nOR: Used to set bits

Remarks:

e nPparm must point to a variable of type Long for the mask
to properly work.

e The nNAND mask is used to clear bits, and the nOR mask is
used to set bits.

e The data is modified as follows: data = (data AND NOT
nNAND) OR nOR.

SetGlobal(ByVal nCard As Integer, ByVal nGlobal As Integer,
ByVal dValue As Double, ByVal bFast As Boolean)

Summary: Changes the value of a specific, pre-dimensioned
global parameter

Parameters:

nCard: This parameteris no longer used. It has been
retained for backward compatibility

nGlobal: Global p-Parameter number that is fo be changed
dValue: Value to assign p-Parameter
bFast: How to send the command

True: Binary

False: ASCII

Remarks:

e The range of global parameters is 0 through 4095. They are
optionally allocated (using the DIM command) and are
stored internally as 64-bit floating-point values.

e The bFast parameter of this method determines if the
parameters are tfo be assigned a value using a binary
(bFast=True) or an ASCII (bFast=False) command.

e SetGlobal is now equivalent to SetParmFloat().

e In previous versions of the comserver (BoxBridgelib), nCard
was used to determine the controller hardware type. The

User's Guide 31

Parker Hannifin

hardware type is now determined automatically; nCard is
ignored. Set nCard=0 in new applications.

SetACRMemory(ByVal nType As Integer, ByVal nAddress As
Infeger, ByVal values As Object)

Summary: Changes the value of a specific memory address on
the ACR controller

Parameters:
nType: Data type of the values being set
0 = Integer (Long)
1 = Float (64-bit)
2 = Float (32-bit)

nAddress: The starting physical memory address on the ACR
product

values: The data to be placed in memory starting at the
address

Remarks:

e Any number of values can be placed into the ACR
memory, but they must be all of the same type.

e nAddress is the memory address location returned from
GetParmAddr, GetLocalAddr, or GetLocalArrayAddress.

SetACRMemoryMask(ByVal nAddress As Integer, ByVal nNAND As
Infeger, ByVal nOR As Integer)

Summary: Changes the value of a specific memory address on
the ACR controller

Parameters:

nAddress: The starting physical memory address on the ACR
product. This address must point to a variable of type Long
for the mask to properly work.

NNAND: Used to clear bits
nOR: Used to set bits

Remarks:

e The two bit masks are combined with the value at the
address to result in a new bit image for the data.

e The address must point to a Long integer storage area.

e The nNAND mask is used to clear bits; the nOR mask is used
to set bits.

32 User’s Guide

Paker Hannifin

e The datais modified as follows: data = (data AND NOT
nNAND) OR nOR

e nAddress is the memory address location returned from
GetParmAddr, GetLocalAddr, or GetLocalArrayAddress.

Control Example

Examplel

Controller bits/flags are grouped to allow for easy access to
mulfiple objects (axes, Masters, programs, etc) by simply
applying an offset. For example, the drive enable flag of axisO is
8465, Axis 1is 8497, Axis2= 8529. The offset between axes is 32:
BaseFlag + (32 x Axis#).

Private Sub DriveEnable(ByVal AxNumb As Integer, ByVal bEnable As
Boolean)
Dim bitOffset As Integer = 32 * AxNumb
Controller.SetFlag(8465 + bitOffset, bEnable, True)
End Sub

Private Sub RunProgram(ByVal ProgNumb As Integer, ByVal bStart As
Boolean)
Dim bitOffset As Integer = 32 * ProgNumb
If bStart = True Then
"Run Request Flag
Controller.SetFlag(1032 + bitOffset, True, True)
Else
"Halt Request Flag
Controller.SetFlag(1033 + bitOffset, True, True)
End If

End Sub

Private Sub EPLNetwork(ByVal bStart As Boolean)
If bStart = True Then
"EPL Start Flag
Controller._SetFlag(16640, True, True)
Else
"EPL Reset Flag
Controller._SetFlag(16641, True, True)
End If
End Sub

Private Sub CANNetwork(ByVal bStart As Boolean)
If bStart = True Then
“CAN Start Flag
Controller.SetFlag(11265, True, True)
Else
"CAN Reset Flag
Controller._SetFlag(11266, True, True)
End If
End Sub

Private Sub KillAxis(ByVal AxNumb As Integer, ByVal bKill As Boolean)
Dim bitOffset As Integer = 32 * AxNumb
Controller.SetFlag(8469 + bitOffset, bKill, True)

Catch ex As Exception

End Sub

Private Sub JogFwd(ByVal AxNumb As Integer, ByVal bOn As Boolean)
Dim bitOffset As Integer = 32 * AxNumb
Controller._SetFlag(796 + bitOffset, bOn, True)

User's Guide 33

Parker Hannifin

End Sub

Private Sub JogRev(ByVal AxNumb As Integer, ByVal bOn As Boolean)
Dim bitOffset As Integer = 32 * AxNumb
Controller.SetFlag(797 + bitOffset, bOn, True)

End Sub

Example 2
Parameters are grouped to allow for easy access to multiple
objects (axes, Masters, programs, etc) by simply applying an
offset. For example, the Jog Velocity parameter of AxisO =
P12348, Axis1 = P12604, Axis2 = P12860. The offset between axes is
256.

Private Sub SetJogVelocity(ByVal AxNumb As Integer, ByVal vel As
Single)
Dim pOffset As Integer = 256 * AxNumb
Controller.SetParmFloat(12348, vel, True)
End Sub

Example 3

Controller bits and flags are stored as a group of 32 within a P-
parameter. Bits can be conftrolled by using SetFlag for an
individual bit, by setting the P-parameter with SetParmlLong, or
by using SetParmLongMask. The following example refers to User
Flags 128 thru 159, stored in P4100.

"set bits 128-135, clears bits 136-143
For 1 As Integer = 0 To 7 Step 1
Controller.SetFlag(128 + i, True, True)

Controller.SetFlag(136 + i, False, True)
Next

“clears bits 128-135, sets bits 136-143
For i1 As Integer = 0 To 7 Step 1
Controller._SetFlag(128 + i, False, True)
Controller._SetFlag(136 + i, True, True)
Next

"set bits 128-135, clears all others in P4100
Controller.SetParmLong(4100, 255, True)

"set bits 136-143, clears all others in P4100
Controller.SetParmLong(4100, 65280, True)

“clears bits 128-135, sets bits 136-143
Controller.SetParmLongMask(4100, 255, 65280)

"set bits 128-135, clears bits 136-143
Control ler.SetParmLongMask(4100, 65280, 255)

Move Properties and Methods

The ComACRServer provides the following properties and
methods for sending move commands to the conftroller. The
conftroller should be fully configured, typically using ACR-View,

34 User’'s Guide

Paker Hannifin

before sending any moves. Descriptions of the properties and
methods follow the list.

bArcAbsolute() As Boolean
bArcCCW() As Boolean
bMoveAbsolute() As Boolean
fMoveACC() As Single
fMoveFVEL() As Single
fMoveVEL() As Single
nMoveProfile() As Infeger
nArcMode() As Integer
nMoveCounter() As Infeger

nMoveMode() As Integer

Arc(ByVal nMask As Integer, ByVal targets As Object)
Move(ByVal nMask As Integer, ByVal targets As Object)
SendRES(ByVal nMask As Integer)

Stop(ByVal bDecel As Boolean)

Example
The following sample configuration describes the use of the
ComACRServer Move and Arc commands.

Using
to ret

the terminal in ACR-View, type ATTACH at the SYS> prompt
urn the conftroller configuration.

SYS> ATTACH

PROGO

ATTACH
ATTACH
ATTACH
ATTACH
PROG1

ATTACH
ATTACH
ATTACH
ATTACH
ATTACH
ATTACH
ATTACH

MASTERO

SLAVEO AXISO "X
SLAVE1 AXIS1 *'Y*
SLAVE2 AXIS2 *z"

N <>

MASTER1

SLAVEO AXIS3 A"
SLAVE1 AXIS4 'B"
SLAVE2 AXIS7
MASTER2
SLAVEO AXIS5 **C*
SLAVE1 AXIS6 U

<@z

Q

User's Guide 35

Parker Hannifin

Remarks:

e nMoveProfile refers to the Master number which designates
the group of axes to move.

e The nMask parameter in Arc and Move commands is
treated as a field of 32 bits, created using the Slave
numbers of the axes attached to the Master. Each bit in the
mask corresponds to an attached Slave. The axis number is
not considered, only the order in which the axes are
attached as Slaves to the Master.

Slave # Value in nMask

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

11 2048

12 4096

13 8192

14 16384

15 32768

Example
nProfile(Master#) Axes included in move nMask Binary Mask

0 Oand 1 1+2=3 0011
0 0,1and?2 1+2+4=7 0111
0 2and 3 2+4=6 0110
1 3and4 1+2 =3 0011
1 3,4and 7 1+2+4=7 0111
1 3and 7 1+4=5 0101
2 6 2 0010

Property bArcAbsolute() As Boolean

Summary: Determines if arc centers are treated in absolute or
relative terms

Default: True

36 User's Guide

Paker Hannifin

Remarks:

When True, the target parameters of the Arc method
becomes the new center of the arc.

When False, the target parameters of the Arc method are
adjusted incrementally, relative to the current position.

Property bArcCCW() As Boolean
Summary: Determines the direction of the Arc move

Default: True

Remarks:

When True, a counter-clockwise (CCW) arc is defined from
the positive primary axis toward the positive secondary axis.

When False, a clockwise (CW) arc is defined from the
positive primary axis toward the negative secondary axis.

nArcMode defines the primary and secondary axes.

TRUE= Counter Clockwise FALSE= Clockwise
+ ot
8
‘\ é
< Primary (x)

B Primary (x) + J

(A) K1epuodas

Figure 4: Arc Move Directions

Property bMoveAbsolute() As Boolean

Summary: Determines if Move() targets are treated in absolute
or relative terms

Default: True

Remarks:

When True, the target values of the Move() method are
treated as the new absolute position.

When False, the move is relative to the current position
(either backward or forward from the current position by
the target amount).

User's Guide 37

Parker Hannifin

Property fMoveACC() As Single

Summary: Sets a new Profile Acceleration/Deceleration for the
next move

Default: -1

Remarks:

Part of a motion profile is the acceleration and
deceleration, which can be set prior to the move, e.g.,
during configuration. Use this property to set a new
acceleration.

Refer to the ACC, DEC, and STP commands in the ACR
user's guide and command reference for additional
information about Master profiles.

If this value is negative (default), it will be ignored and the
existing profile acceleration will be used.

The value is not sent to the conftroller until the next Move()
or Arc() command is sent. Once a Move or Arc command is
sent, and fMoveACC is a value other than -1, the ACC for
the profile will be changed, as if the ACC command had
been issued.

fMoveACC is a global setting and is not directly associated
with a Master.

Warning—There is no provision in the move command structure to adjust the

JRK (jerk or S-curve) or Feedrate Override (FOV or ROV). If the JRK,
FOV, or ROV has been calculated and set based on an existing VEL
and ACC/DEL, changing the acceleration using this property can result
in an unexpected motion profile. The FOV and ROV can be set
independently with FOV and ROV commands.

Property fMoveFVEL() As Single

Summary: Sets a new Profile Final Velocity for the next move

Default: -1

Remarks:

Part of a motion profile is the final velocity, which can be
set prior to the move, e.g., during configuration. Use this
property to set a new final velocity.

If this value is negative (the default), it will be ignored and
the existing profile final velocity will be used.

The effect of setting this value to a value other than -1 will
be to permanently change the FVEL for the profile, as if the
FVEL command had been issued.

38 User’s Guide

Paker Hannifin

fMoveFVEL is a global setting and is not directly associated
with a Master. The value is not sent to the controller until

the next Move() or Arc() command is sent.

Property fMoveVEL() As Single

Summary: Setfs a new Profile Velocity for the next move

Default: -1

Remarks:

Part of a motion profile is the target velocity, which can be
set prior to the move, e.g., during configuration. Use this
property to set a new velocity.

If this value is negative (default), it will be ignored and the
existing profile velocity will be used.

The effect of setting this value to a value other than -1 will
be to permanently change the VEL for the profile, as if the
VEL command had been issued.

fMoveVEL is a global setting and is not directly associated
with a Master. The value is not sent to the controller until
the next Move() or Arc() command is sent.

Warning—There is no provision in the Move command structure to adjust the

JRK (jerk or S-curve) or FOV or ROV (feedrate override). If the JRK,
FOV, or ROV has been calculated and set based on an existing VEL
and ACC/DEL, changing the acceleration using this property can
result in an unexpected motion profile. The FOV and ROV can be set
independently with FOV and ROV commands.

Property nMoveProfile() As Integer

Summary: Specifies the Master profile to use for the move

Default: 0

Range: 0-15

Remarks:

nMoveProfile refers to the Master number, which designates
the group of axes to move

For a move to succeed a Master profile must be configured
and have the physical axes attached.

The profile must also include information about velocity,
acceleration, deceleration, jerk, and feedrate override.

User's Guide 39

Parker Hannifin

Property nArcMode() As Integer

Summary: Determines primary and secondary axes when
performing an arc move

Default: O
Range: 0-2

The arc mode defines the primary and secondary axes for
the arc as follows:

0 Primary is Axis 0, Secondary Axis 1
1 Primary is Axis 1, Secondary Axis 2
2 Primary is Axis 2, Secondary Axis 0

Remarks:

e To define an arc, first assign the axes that will produce the
compound motion to a Master.

e Using the nArcMode property defines the primary and
secondary axes: the primary axis is usually the X-axis; the
secondary axis is usually the Y-axis.

e Axesreferences are relative to the profile in use in the same
way as nMask is defined.

Property nMoveCounter() As Integer
Summary: Activates and sets the direction of the move counter
Default: 1
Range: —-11to 1
The move counter has three (3) possible modes:
-1 Counter ON and counting DOWN
0 Counter OFF
1 Counter ON and counting UP

Remarks:

e Whenin mode -1 or 1, the move counter parameter is
updated when a move starts, and can be monitored
through the (Long) parameter values below.

e Monitor the move counter through these Master Parameters
(Profile 0—15): P8208, P8464, P8720, P8976, P9232, P9488,
P9744, P10000, P10256, P10512, P10768, P11024, P11280,
P11536, P11792, P12048.

e The nMoveCounter property sets the mode for the move
counter on a device (not the Bus Device Driver Move
Counter as stated in some ACR documentation. The Bus
Device Driver Move Counter is manipulated using the
GetMoveCounter() and SetMoveCounter() methods.

40 User's Guide

Paker Hannifin

Property nMoveMode() As Integer
Summary: Selects the move mode
Default: 2
Range: 0-3
There are four (4) possible move modes:
Continuous: Uses ACC fto get to VEL * FOV and stays there.

Cornering: Uses ACC to get fo VEL * FOV and DEC fo gef to
FVEL

Start/Stop: Uses ACC to get to VEL * FOV and STP to Stop
(VEL=0)

Rapid Start/Stop: Uses ACC to get to VEL * ROV and STP to
Stop (VEL=0)

Remarks:

e Figure 5, which follows, shows the four move modes.

User's Guide 41

Parker Hannifin

Mode 0 Continuous Mode 1 Cornering
VEL YEL
O A i S R R R R) E2 0 (i s st VEL = 100.0
FVEL = 20.0
FOV 0:5
ROV = 0,25
50 - - 50 +--- N —
T o I N T FYEL -_.\/. \/\..
Mode 2 Start/Stop Mode 3 Rapid
VET
100 msrrmmmmmsssmmmmms oo oo VEL = 100.0
FVEL = 2G.0
VEL Fov 0.5
R (e a VEL = 100.0 ROV = 0,25
FVEL = 20.0
FOV 0:5
ROV = [.25
50 opeer 25 | o
FVEL -f-------k-- e Ao
"VEL

Figure 5: nMoveMode Move Modes

Arc(ByVal nMask As Integer, ByVal targets As Object)
Summary: Generates an arc move
Parameters:

nMask: Specifies which axes to use for the arc move

targets: The arc centers and target position information for
each axis

Remarks:
e The Arc method allows from 1 to 16 attached axes to be
part of a move. This happens by setting one or more target
positions for each axis.

42 User's Guide

Paker Hannifin

To perform an Arc move, the profile defined in nMoveProfile
property must have one or more axes atfached.

In the Arc() method, the target positions are stored in the
targets array parameter, while the nMask specifies fo which
axes the data is linked.

The first two elements of the targets array are the primary
and secondary centers for the arc. The target positions are
placed beginning at the third element of the array.

Move(ByVal nMask As Integer, ByVal targets As Object)

Summary: Generates a move

Parameters:

nMask: Specifies which axes to use for the move

targets: The target position information for each axis

Remarks:

The Move() method allows from 1 to 16 attached axes to
be part of a move. This happens by setting one or more
target positions for each axis.

To perform a move, the Master (axis group) defined in
nMoveProfile property must have one or more axes
attached.

The targets array contains the data used to make the
move, e.g. the target positions of the move. The array
should only hold data for axes that are flagged in the
nMask parameter. For example, setting nMask to 5 (binary
0101) tells the Move() method to move AxisO and Axis2.
Therefore, the targets array needs to hold two values. The
targets array value at index 0 applies to the AxisO move,
the value at index 1 applies fo the Axis2 move.

If the number of target values does not match the number
of axes in nMask, the comserver will throw a {"Value does
not fall within the expected range."} error.

The targets array contains variants because the target data
can be either Float or Long, but not a combination of Floats
or Longs. The first data type found is the data type used for
all data in the array.

SendRES(ByVal nMask As Integer)

Summary: Send a RES command to an axis

Parameters:

nMask: Specifies which axes to apply the RES

User's Guide 43

Parker Hannifin

Remarks:

The RES command resets the encoder and other position
counters on the axis to zero for the specified axes attached
to the profile defined in the nMoveProfile property.

See the notes about nMask in the previous general remarks
about Move properties and methods.

This command does not use the binary syntax, so it will be
gueued up in the command stack behind moves, efc.

Stop(ByVal bDecel As Boolean)

Summary: Stops commanded motion for the profile specified in
nMoveProfile

Parameters:

bDecel: How to stop motion

True: Stop All Moves

False: Kill All Moves

Remarks:

When the bDecel parameter is True, a Stop All Moves flag is
set using the binary command. It uses the existing DEC and
JRK values.

When the bDecel parameter is False, a Kill All Moves flag is
set using binary command. Ignores the existing DEC and
JRK values.

After using Stop(), the application must clear the Kill All
Moves flag before any new move can be made. This is the
case for either value of bDecel, the Stop All Moves flag self
clears and sets the Kill All Moves flag.

Stop All Moves Bits values for nMoveProfile: 0-15 Master
Flags are: BIT523, BIT555, BIT587, BIT619, BIT651, BIT683,
BIT715, BIT747, BIT7435, BIT7467, BIT7499, BIT7531, BIT7563,
BIT7595, BIT7627, BIT7659.

Kill All Moves Bits Values for nMoveProfile: 0-15 Master Flags
are: BIT522, BIT554, BIT586, BIT618, BIT650, BIT682, BIT714,
BIT746, BIT7434, BIT7466, BIT7498, BIT7530, BIT7562, BIT75%94,
BIT7626, BIT7658.

The Stop All Moves or the Kill All Moves Request flag stops

commanded motion at the Master level. It is equivalent to
calling SetFlag(BITx, True), where x=a Stop All Moves or Kill

All Moves flag number.

44 User's Guide

Paker Hannifin

Note: To stop axis-based moves like JOG, CAM, and GEAR requires
knowing which axis is moving. The comserver does not
maintain that information. Therefore, the Stop method is only
able to stop motion for at the Master level. There are specific
bit flags for stopping JOG, CAM, and GEAR, which can be set
using SetFlag().

e Another option available to kill commanded motion and/or
JOG, CAM, and GEAR is to use SetFlag(KAMR flag, True,
True) with the KAMR flag associated with any axis attached
to the Master profile. The Kill All Motion Request (KAMR) flag
(AxisO-15: BIT8467-BIT8947) stops all motion, without regard
to deceleration, on all axes connected to the common
Master profile of the axis this command is issued for. This
flag must be cleared on all axes it is set on before any
motfion can be commanded (or anything else done). The
Kill All Moves flag (AxisO-7: BIT522-BIT746, Axis8-15:
BIT7434-BIT7658) for the profile will also be set, and must be
cleared prior to doing motion.

Alarm Events

The ComACRServer provides users with the ability to subscribe to
controller-generated events. These events are only available
when connecting via Ethernet. Alarm events utilize the ACR
conftroller’s alarm logic to subscribe to events specified in the
previous table. Alarm entries resemble status enftries in that an
event is fired whenever the monitored data value changes. The
difference is that alarm entries are monitored by the controller
itself and every fransition is guaranteed to be detected and
counted. (Status events require server polling, and events are lost
if fwo or more transitions occur during a single polling interval.)
When the conftroller detects that a monitored alarm value has
transitioned a signal is sent to the comserver, which fires an
AlarmEvent. Since it is possible that multiple transitions can occur
in the time it takes to generate an event, the AlarmEvent returns
the number of alarms since the last Alarm Event, so the client
software can take the appropriate action.

Note: Controller-generated events are only available when
connecting through Ethernet.

User's Guide 45

Parker Hannifin

e Sub AddAlarmEvent(ByVal iAlarmEvent As Integer, ByVal
iAlarmParm As Integer)

e Sub DeleteAlarmEvent(ByVal iAlarmEvent As Integer, ByVal
iAlarmParm As Integer)

e FEvent AlarmEvent(ByVal iAlarmType As Integer, ByVal
iAlarmParm As Integer, ByVal iAlarmCnt As Integer)

Descriptions

Sub AddAlarmEvent(ByVal iAlarmEvent As Integer, ByVal
iAlarmParm As Integer)

Summary: Subscribes to an ACR alarm event

Parameters:

iAlarmEvent: The type of control alarm being subscribed to

iAlarmParm: Adds qualifiers to iAlarmEvent, defining the axis,
Master, or program associated with the alarm

Alarm Types

iAlarmEvent Description iAlarmParm

0 Move Started Master #

1 Move Ended Master #

2 Enable Lost 0

3 Drive Fault AXxis #

4 Limit Hit AXxis #

5 Stall Detect AXxis #

6 Program Done Program #

7 Encoder Disconnected Encoder #

8 Encoder Fail Encoder #

9 CANOpen Fail 0

10 Move Counter Update Master #
Remarks:

e Add events after a connection has been established.

e This eventis only available for Ethernet connections.

46 User's Guide

Paker Hannifin

Sub DeleteAddAlarmEvent(ByVal iAlarmEvent As Integer, ByVal
iAlarmParm As Integer)
Summary: Cancels the subscription to ACR alarm event
Parameters:

iAlarmEvent: The type of control alarm being cancelled

iAlarmParm: Adds qualifiers to iAlarmEvent, defining the axis,
Master, or program associated with the alarm

Event AlarmEvent(ByVal iAlarmType As Integer, ByVal iAlarmParm
As Integer, ByVal iAlarmCnt As Integer)

Summary: Callback method acts as an event signaling that a
conftroller alarm has occurred at least once since the last alarm
event

Parameters:

iAlarmEvent: |dentifies the type of alarm occurring. See the
parameter table in the AddAlarmEvent description.

iAlarmParm: Provides further identification about the alarm
occurring

iAlarmEvent: Provides the number of times the conftroller
detected the alarm since this alarm was last generated

Alarm Example

Dim WithEvents Controller As ComACRServerLib.Channel

Controller.Connect(3, 0)
Controller.AddAlarmEvent(2, 0)

*// Add alarm for ACR9000 Motion Enable input
Controller.AddAlarmEvent(6, 2)

*// Add alarm for Program Done, Program #2
Controller_AddAlarmEvent(6, 3)

*// Add alarm for Program Done, Program #3

Private Sub Controller_AlarmEvent(ByVal iAlarmType As Integer, ByVal
iAlarmParm As Integer, ByVal iAlarmCnt As Integer) Handles
Controller._AlarmEvent
IT iAlarmType = 2 Then
MsgBox(*"Motion Enable Input is Open™)
End If
IT 1AlarmType = 6 Then
IT iAlarmParm = 2 Then
MsgBox(*'Program 2 is done™)
Elself iAlarmParm = 3 Then
MsgBox(**Program 2 is done')
End If
End If
End Sub

User's Guide 47

Parker Hannifin

Utility Methods

The Utility Interface provides functionality for tfransferring files
between the PC and the ACR product. The File transfer to the
ACR conftroller (both OS and program files) is non-blocking. This
allows the transfers to be monitored for status and canceled by
the user. The file tfransfer from the ACR controller to the PC, file
upload, is a blocking transfer.

The non-blocking transfers allow the client software to be
responsive during a download and inform the user of progress,
but they also imply that code running after a fransfer has started
should not assume the fransfer has completed. The code should
check the status before attempting to talk to the controller. For
example, a function that downloaded a program cannot expect
to run that program after returning from the download call, but
must wait until the status information indicates the transfer is
complete.

Properties

e Property nProgramDownloadEcho() As Integer

Methods

e Sub DownloadFile(ByVal bstrPrg As String, ByVal bstrFile As
String)

e GetStatusDL(ByRef nTotal As Integer, ByRef nBytes As
Integer) As Integer

e GetStatusDLEXx(ByRef nTotal As Integer, ByRef nBytes As
Integer, ByRef bstrExtendedErrorMessage As String) As
Integer

e StopDownload()

e UploadFile(ByVal bstrPrg As String, ByVal bstrFile As String)

Descriptions

Property nProgrambDownloadEcho() As Infeger

Summary: Determines the echo settings used during file
downloads

Default: 3

48 User's Guide

Paker Hannifin

Range: 1-3
Echo Types
Value Description ACR ECHO Mode
1 Full Echo 1
2 Silent Mode 6
3 Errors Only 4
Remarks:

This property will set the conftroller’'s ECHO (see the ACR
command reference for details) mode. Normally, the
controller will echo back all ASCIl characters, the
command prompt, and any error messages (e.g., Syntax
Error). The comserver defaults to only echoing back errors
when downloading programs. This increases the
downloading speed.

After the program download, the controller is returned to
the current ECHO settfing.

nProgramDownloadEcho=1 corresponds to ECHO1,
returning command prompt, all characters and error
messages.

nProgrambDownloadEcho=2 corresponds to ECHO, turning
off all echos.

nProgramDownloadEcho=3 corresponds to ECHOA4,
returning only error messages.

Sub DownloadFile(ByVal bstrPrg As String, ByVal bstrFile As String)

Summary: Transfers a text file to the ACR conftroller

Parameters:

bstrPrg: Specifies the location to which files are downloaded
(for example: SYS or PROGO1 or PLCO1). This parameter is not
required and can be an empty string.

bstrFile: Specifies the fully qualified name of the file to
download.

Remarks:

If the program or PLC download is attempted (e.g.,
bstrPrg=PROG2):

¢ bTerminalLock is set to True.

¢ That ProgramPLC is stopped using the Halt Request
flag.

¢ NEW command is sent to clear the existing program.

User's Guide 49

Parker Hannifin

¢ bstrgPrg is sent to the controller.

¢ Program fext is sent line by line.

e This method is non-blocking, returning as soon as the file
has started to transfer.

e Check the GetStatusDLEx() for completion updates during
the use of this method.

e When receiving a downloaded AcroBasic or PLC program,
the conftroller may issue error messages in response to
program lines. These may result from coding errors in the
program, or they may result from communication glitches.

e The download will continue until ten of these errors are
detected, at which time the server will stop the download
and erase the partfial program. GetStatusDLEx() will return a
value of 21 in this case.

e |f the conftrol reports 1-9 errors, the download will continue,
and GetStatusDLEx() will have a return value of 21 and
return an error string containing the program line
contfaining the error and the error text returned by the
control.

Note: Once downloaded, a program/PLC is in memory but has not
been saved to flash. For information on permanently saving a
downloaded program or PLC, see the FLASH SAVE/FLASH
IMAGE commands in the ACR command reference.
Remember that these flash commands only work if no
programs are currently running.

GetStatusDL(ByRef nTotal As Integer, ByRef nBytes As Integer) As
Integer

Summary: Returns current status of the active download
Parameters:
nTotal: Total bytes to be transferred
nBytes: Total number of bytes transferred so far
Return:
Download Status

Value Description

No transfer in progress

Transfer in progress

End of transfer

Error reading from file

0
1
2
3 User cancelled transfer
4
5

Too many errors during transfer

50 User’s Guide

Paker Hannifin

6 Transfer has timed out waiting for response

7 The ACR OS failed to verify against the hardware
description file (config image)

8 Save to flash of OS in progress.

9 Problem encountered in saving OS to flash

16 Program space dimensioned too small

21 Download complete, but control reported errors

22 Attempt to dimension program space failed

Negative number Unexpected error

Remarks:

e [f an OS download is in process, the nBytes parameter
value is continually updated with the amount of data sent
to the ACR controller.

e The return value indicates the state of the download.

GetStatusDLEx(ByRef nTotal As Integer, ByRef nBytes As Integer,
ByRef bstrExtendedErrorMessage As String) As Integer

Summary: Returns current status of the active download
Parameters:

nTotal: Total bytes to be transferred.

nBytes: Total number of bytes tfransferred so far

bstrExtendedErrorMessage: A message providing more
information about an error refurn

Return:

0 . No transfer in progress

1 _ Transfer in progress

2 End of transfer

3 ~User cancelled transfer

4 _ Error reading from file

5 . Too many errors during transfer

6 Transfer has timed out waiting for response

7 The ACR OS failed to verify against the hardware
_ description file (config image)

8 Save to flash of OS in progress.

User's Guide 51

Parker Hannifin

Download Status

Value Description

9 _ Problem encountered in saving OS to flash

16 _ Program space dimensioned too small

21 _ Download complete, but control reported errors
22 Attempt to dimension program space failed

Negative number Unexpected error

Remarks:

e |f an OS download is in process, the nBytes parameter
value is continually updated with the amount of data sent
to the ACR controller.

e The return value indicates the state of the download.

e When receiving a downloaded AcroBasic or PLC program,
the conftroller may issue error messages in response to
program lines. These may result from coding errors in the
program, or they may result from communication glitches.

e When the controller returns an error in response to a
program line, bstrExtendedErrorMessage has the format
[program line with error] >>> [error message].

e Note that an error line will not appear in an upload or LIST
listing.

StopDownload|()
Summary: Aborts the file transfer to the controller

Remarks:

e Call this method to cancel a download. The status value of
3 will be returned from GetStatusDL() or GetStatusDLex()
after this method is called.

UploadFile(ByVal bstrPrg As String, ByVal bstrFile As String)

Summary: Uploads an AcroBasic program or PLC program from
the conftroller fo the PC

Parameters:

bstrPrg: Specifies the location to which files are uploaded
from (for example: SYS or PROGO1 or PLCO1)

bstrFile: Specifies the fully qualified name of the file to
receive the upload

52 User’s Guide

Paker Hannifin

Remarks:

e This method blocks any other instructions from running untfil
the upload is complete. There is no checking of the code
uploaded.

e When uploading, the bstrPrg parameter is sent to change
the command prompt prior fo sending a LIST command
and capturing all the data refurned.

Error Messages

The ComACRServer uses the standard COM/OLE error codes
found in the following table when it encounters problems. These
error values are returned as part of a Microsoft COM exception.

Error Code and Name Description

X8000000A Operation requires connection to an inaccessible device
E_PENDING ("disconnected" return)

X80004001 Interface defined but not implemented. This can be returned
E_NOTIMPL for denigrated interfaces, such as bstrUSBSerialNumber.
X80004004 Unrecoverable communications failure (Non-existent COM
E_ABORT port, for instance)

X80004005 Controller rejected requested operation.

E_FAIL

X8007000E Could not allocate sufficient memory for operation

E_OUTOFMEMORY

X80070057 One or more call arguments is invalid
E_INVALIDARG

X8000FFFF Internal ComACRServer error
E_UNEXPECTED

Messages

e ReadOnly Property bstrLastError() As String
e ReadOnly Property nLastErrorCode() As Integer

User's Guide 53

Parker Hannifin

ReadOnly Property bstrLastError() As String

Summary: Refurns legacy error code of last error occurring
Default: True

Remarks:

e The bstrLastError property returns a textual description of
the last error reported. Most often, it is an error message
from the table below, but in cases where ASCIl commands
are sent fo the ACR conftrol, it may be an ASCII error
message created by the control.

e Sometimes when the comserver issues ASCIl commands (as
it does during file download and upload), bstrLastError is setf
to the literal error message returned by the ACR control.

ReadOnly Property nLastErrorCode() As Integer
Summary: Returns legacy error code of last error occurring
Default: True

Remarks:

e When the ComACRServer encounters an error, it generates
an exception using standard COM/OLE error codes.

e The Legacy Error code (also described in the Error
Messages section) of the last error detected may be
retrieved through the nLastErrorCode property.

The comserver will provides more detailed information about
each error condition after it throws one of the above exceptions.
The nLastErrorCode property returns a code from the following
table describing the last error reported.

Error Code Error Message

17000 Unknown Error Intercepted.

17001 The value requested is not present in Resource file.

17002 The PPU must be a number greater than zero.

17003 The valid range for the encoder resolution multiplier is between
-4 and 4.

17004 The minimum value for a stream is 256.

17005 The value is out of range.

17006 The file prefix number must be positive.

17007 The data collected failed to pass final validation.

17008 The file name is not valid.

54 User’'s Guide

Error Code

17009

17010
17011
17012
17013
17014
17015
17016
17017

17018

17049
17050

17051
17052

17053
17054

17055
17056

17057
17058

17059

17060
17061

17062
17063
17064
17065
17066

17067

Paker Hannifin

Error Message

Cannot open file, check that directory exists and you have the
correct permissions access the file.

The expected Map Index within the file was not found.

The space reserved for storing loop information has become full.

The line positioning information for the loop is not present.

Problem trying to calculate value, Right Parentheses expected.

Problem trying to calculate value, Function is not defined.

Problem trying to calculate value, expected a primary expression.

Problem trying to calculate value, trying to divide by zero.

Problem trying to calculate value, an unrecognized character is
being used.

There is insufficient space to store the generated PLC programs.
As much as possible has been stored.

Some precondition for transferring the file has not been met.

The Port is already connected. Only call the Open() method once
per object or after a Close().

The serial port number must be between 1 and 36.

The maximum number of concurrently opened ports has been
reached.

There is a problem allocating memory for the port connection.

Problem accessing port. Check that no other application is using
the port and that the port settings are valid.

Unable to create the read thread for the port.

To perform read or write operations on the port, it must first be
open.

The Settings for the port are incorrect.

The change to the BPS rate encountered some problem. BPS rate
is unchanged.

No file name provided. To transfer a file a file name must be
provided.

The File Transfer method requested is not provided at this time.

Only one file transfer per port at one time. Please wait until the
current file transfer has completed and retry.

Unable to create the file transfer thread.

Unable to create the mutex for the read thread.

The file name provided could not be read.

Unable to create or set the file transfer event for the port.

The function has terminated because it encountered too many
errors.

The write function has timed out. Check that communications are
working, or reduce the amount of data being written.

User's Guide 55

Error Code

17068

17069

17070
17071
17072

17073
17074
17075
17076
17077

17078
17079
17080

17081

17082
17083

17084

17085

17086

17087

17088

17089

17090

17091

17092
17093

Parker Hannifin

Error Message

The program is unable to process incoming data fast enough and
is losing it. Make sure external device is using flow control.

The communications flow control could not be changed due to
some error.

Unable to set the specified flow control characters.

Unable to resize the Transmit or Receive buffers.

The data provided to populate the object state failed in some way.
The data appears to be corrupt.

The expected return value for the transfer was not found.

Unable to create the status thread.

Unable to create or set the status event.

The key provided to collect status is invalid or improperly formed.

There is no status information available for the specified message
key.

Unable to create the mutex for the status.

The specified device type or index is invalid.

Problem communicating with controller. Check the port settings
are valid and that the controller is powered up and connected.

There was a problem reported while trying to wake up the device.
The device may not be responding.

The transfer was canceled by the user.

The communication attempt has timed out because it did not get
the expected response.

One of the p-Parameters provided in the status request is
unknown or poorly formed.

The provided hex data string representation contains characters
that are not valid hex numbers.

The data provided in the array did not match the expected
conditions or is not there at all.

The socket type provided is not currently supported by the
software.

The Application Window cannot be found. The application may not
be running.

Old version of file found and read. New items and features added
since this file was created will be set at their defaults.

The destination device on the Network is not reachable at this
time.

There was a time out trying to communicate with the device on
the Network.

Some failure caused the echo request to fail.

This version of the Ping Request requires the icmp.dll file be
present on the computer. It was not found.

56 User’'s Guide

Paker Hannifin

Error Code Error Message

17094 The Host name or IP address cannot be resolved to a know host
device. Check that IP or Host name is correct.

17095 The transfer was canceled at the other end of the connection.
17096 Failed to Create the desired Thread.

17097 Unable to Start the desired Thread.

17098 Unable to Create the desired Thread Event.

17200 Foreign Error Source

17201 Standard Library Exception

17202 Windows Socket Architecture Library Exception

User's Guide 57

Parker Hannifin

INDEX

AcCroBasiC.........covvvninnns 5, 22,50, 52 GEAR ... 45
ACR-View ...4, 5, 6, 8, 18, 21, 28, 34 GetACRCUStOM ...cvvvvviiiinainss 20, 27
AddACRCUSTOM ...cvvivviiiiieiieaeens 24 GetACRGIOUP «vivvvivviriiieiieinnnans 21
AddACRGIOUP ..cviviieiiieiieeane 24 GetACRMemorycccevvee. 21, 27
AddACRMEMOIY ..vvviiiiennans, 25 GetLocalAddrcoovvvene. 22, 27
AddAlarmEvent............ccceeveee. 47 GetLocalArrayAddr 22, 28
Alarm TYPeS...covviiiiiiiiiieieieiaensn 46 GetMoveCountercoveevivvnnnns 40
AlarmEvent.........coevviiiiiiinnns 46, 47 GetParmAddrcovvvvviiiiiiiinnnns 23
AlarmParm.......coevviviiiiinnnnnnns 46, 47 GetStatuS ..cvvvviiiiiiiiiiiienieeaeens 26
N o 35, 42 GetStatusDLccovvvivviiiiiiiiiinnnns 50
Assistance, Technical ii GetStatusDLEXcccvueven. 50, 51
ATTACH. ... 35 IAlarmEvVeNnt.......covviiiiiiiiieens 47
bArcAbsolutecvviiiiiennnns 36 iAlarmParmcovviiiiiiinnnns 47
DArCCCW....cvvviiiiiiiiiiiiiaas 37 IAlarmType.. .o 47
bDecel.....ccoviiiiiiiii 44 IsFlagSet.......cocvvviviiiiiinennnne. 23, 27
bFastcoovviiiiiiiienns 28, 29, 30, 31 isOfflinecoovviiiiiiiiinnns 11, 15
bMoveAbsolutecvvvennnns 37 JOG . i 45
bOnConnectTest 9,11 JRK i 39
BoxBridgeLib.........ccooviiiiiinnnns 7,31 Kill All Moves BitS......cocvvveveieinnnns. 44
bstrExtendedErrorMessage........... 51 Microsoft .NETcc.veee. 4,17, 26
bstrFile......ccoeviiiiiiiiiieens 49, 52 MOVE oo aaeas 35,43
DStriIP .o 10 MOdES .. 42
bstrLastErrorc.covvviiiniiennnns 54 Move Counter.......covvvviiniiiinininnnns 40
DStIPrg . ccviiiiiiiiiiiiiiiiieeens 49, 52 NAdAresS.....cocovvvviiiinnnnnnns 21, 25, 32
bstrRequestcocvvininnnn. 20, 24 NAFCMOodE.....ocvviviiiiiiiieiaeaens 37, 40
bTerminalLockc.coovvinnins 15 NATTAY coiiiiiiiiiii i 23
bValue......coovviiiiiiiiie 29 NBIt. .o 29
G e 4,8 NBPS . 10
A 4,8 NBYtES ..o 50, 51
CAM 45 NCArd ..o 31
Channel.......coceevenene. 8,9,12, 14, 20 NCOUNT ..vviieee e 25

Class . iiiiii i 7 nDataWaitRate.............ccocvvvnnn 16

(0] o)1 o 8 NFIAgGIP ..o 23
COM event modelccovvviniinnnnn. 17 NFIAgNAX v 23
ComACRServer.exe.........c.ouvueens 4,5 nGlobal......ccooviiiii 31
ComACRServerLib.........covvviviienens 7 NINAEX e v 12
ComACRsrvr.dll c..ccovviiiiiiiiiiiien 5 ninterval..........ooviiiiiiininnnns 13, 14
Connectccvvvvviiiniinnnnnns 9,12, 14 nLastErrorCodecovvvvviviinnnns 54
Controllers nMask.......coovviiiiiiiniinnens 36, 42, 43

non-supportedcccveviiiiiiiinnne. 4 nMoveCounter.........cccvvieininennns 40

supported.....cocvviiiiiii s 4 nMoveMode.........covveiiiiiinnnennn. 41
DataWaiting........c.cvcevvvnennnns 15, 17 nMoveProfile................oo.eee. 36, 39
Delphi ..o 4 NMSOID ..o 25
DelStatus......ccvvvviviiiiiiiiiineinns 25 NNAND ..o 31, 32
Disconnect.................... 11,12, 15 10 31, 32

Sub Disconnect..................... 13 nParametercovveviiiiniiininnans 23
Download NPOt . 10

Status.....oviiiiiiiiieees 50, 51 NPPArM .. 30, 31

StopDownload...........coevuenene 52 NPIOQ cviiiiiiiiiii e 22
DownloadFile.............cccvieinen, 49 nProgrambDownloadEcho.......... 48

Sub DownloadFile.................... 49 NRELNeS ... 13, 14
dvalue......cooviiiiiiiiiiiiiia 30, 31 NSIZE .t ieieanens 21,22, 23
E_PENDING 12, 15, 20, 53 nStatusWaitRates 19
(=15 g) SRR 26 NTotal....ooovvviiiiiii e 50, 51
Error Codes.........coovvviininenennns 53, 54 NTransSpPoOrtovviiiiiiiiineens 12
Error Messages........cvovvvviiinnnennnns 54 NTYPE v 21, 22, 25, 32
fMOVEACC ... 38 NValuecooiiiiiiii e 30
fMOVEFVEL ... 38 Read.........covvvviiiiiiiiiens 15, 16
fMOVEVELcviiiiiiiiiiiiiieieens 39 ReconNnNecCtcovvvviviiiiiiiiiiiiaenns 20
L 39 ROV i e e aes 39

58 User’s Guide

Paker Hannifin

SendREScooviiiiii 43
SendSynchronousEvents.......... 20
SetACRMEMOrycovvvvvinnnnnns 28, 32
SetACRMemoryMask................ 32
57=] { =1 F- To [29, 33, 45
SetGlobalcoceviiiininnnns 30, 31
SetMoveCountercoovvvvnens 40
SetParmFloat................ 30, 31, 34
SetParmLongccvevvvvnnnns 30, 34
SetParmLongMask.............. 31, 34
SetWatchdogc.covvvvviiiinnnnnnnn 13
Status Interfacecccveieinnen. 18
StatusWaiting...........cceeueneee 19, 26
SEOP i 44
Stop All Moves Bitscoovvvinenn. 44
StopDownloadcoevvvininnnn 52
Sub AddAlarmEvent.................. 46
Sub DeleteAddAlarmEvent 47

Sub Disconnect...........cccvvvieenens 13
Sub DownloadFile..................... 49
SupressStatusDelete................ 19
targetsS.....cviviiiiiii 42,43
technical supportccovviiiiiiininnn, i
TestConnectcccvvviiinnnnnn. 9,13
TimMeout.......ovviiiiiias 20
UploadFile.........cocoiiiiiiiinnnnnn, 52
Values ..o 32
Visual BasiC.......ccvvviviiieiinnnnnne. 4,8
Warningscovvevvviieiinnnnnnns i, 38, 39
Watchdog, Ethernet..................... 13

initial settingscocvvvviinnnnnnn. 13

SEE . 13
WatchdogReconnect 12, 14
WatchdogTimeout............... 13, 14
VAV g o PR 15, 16

User's Guide 59

	Communications Server
	Supported Controllers
	Legacy Communications Server: ComACRsrvr.dll
	Getting Started
	ACR-View
	Installation
	Creating a Project with the ComACRServer
	Classes and Interfaces
	Communications Overview
	User Guide Examples

	Connection Properties and Methods
	Descriptions
	Connection Example

	Terminal Properties and Methods
	Descriptions
	Terminal Example

	Status Properties and Methods
	Properties
	Methods
	Properties Descriptions
	Methods Descriptions
	Status Example

	Control Methods
	Methods
	Descriptions
	Control Example
	Example1
	Example 2
	Example 3

	Move Properties and Methods
	Properties
	Methods
	Example

	Descriptions

	Alarm Events
	Events
	Descriptions
	Alarm Example

	Utility Methods
	Properties
	Methods
	Descriptions

	Error Messages
	Messages
	Descriptions

