

Parker Hannifin

Important User Information
It is important that motion control equipment is installed and operated in such a way
that all applicable safety requirements are met. It is your responsibility as an installer to
ensure that you identify the relevant safety standards and comply with them; failure to
do so may result in damage to equipment and personal injury. In particular, you
should study the contents of this user guide carefully before installing or operating the
equipment.

The installation, setup, test, and maintenance procedures given in this guide should
only be carried out by competent personnel trained in the installation of electronic
equipment. Such personnel should be aware of the potential electrical and
mechanical hazards associated with mains-powered motion control equipment—
please see the safety warnings below. The individual or group having overall
responsibility for this equipment must ensure that operators are adequately trained.

Under no circumstances will the suppliers of the equipment be liable for any
incidental, consequential or special damages of any kind whatsoever, including but
not limited to lost profits arising from or in any way connected with the use of the
equipment or this guide.

Warning — High-performance motion control equipment is capable of producing rapid
movement and very high forces. Unexpected motion may occur especially during the
development of controller programs. KEEP WELL CLEAR of any machinery driven by
stepper or servo motors. Never touch any part of the equipment while it is in operation.

This product is sold as a motion control component to be installed in a complete system
using good engineering practice. Care must be taken to ensure that the product is
installed and used in a safe manner according to local safety laws and regulations. In
particular, the product must be positioned such that no part is accessible while power
may be applied.

This and other information from Parker Hannifin Corporation, its subsidiaries, and
authorized distributors provides product or system options for further investigation by users
having technical expertise. Before you select or use any product or system, it is important
that you analyze all aspects of your application and review the information concerning
the product in the current product catalog. The user, through its own analysis and testing,
is solely responsible for making the final selection of the system and components and
assuring that all performance, safety, and warning requirements of the application are
met.

If the equipment is used in any manner that does not conform to the instructions given in
this user guide, then the protection provided by the equipment may be impaired.

The information in this user guide, including any apparatus, methods, techniques, and
concepts described herein, are the proprietary property of Parker Hannifin or its
licensors, and may not be copied disclosed, or used for any purpose not expressly
authorized by the owner thereof.

Since Parker Hannifin constantly strives to improve all of its products, we reserve the
right to modify equipment and user guides without prior notice. No part of this user
guide may be reproduced in any form without the prior consent of Parker Hannifin.
Since Parker Hannifin constantly strives to improve all of its products, we reserve the

2

Parker Hannifin

 3

right to modify equipment and user guides without prior notice. No part of this user
guide may be reproduced in any form without the prior consent of Parker Hannifin.

Warning — ACR Series products are used to control electrical and
mechanical components of motion control systems. You should
test your motion system for safety under all potential conditions.
Failure to do so can result in damage to equipment and/or serious
injury to personnel.

ACR series products and the information in this guide are the proprietary property
of Parker Hannifin Corporation or its licensers, and may not be copied, disclosed,
or used for any purpose not expressly authorized by the owner thereof.

Since Parker Hannifin constantly strives to improve all of its products, we reserve
the right to change this guide, and software and hardware mentioned therein, at
any time without notice.

In no event will the provider of the equipment be liable for any incidental,
consequential, or special damages of any kind or nature whatsoever, including
but not limited to lost profits arising from or in any way connected with the use of
the equipment or this guide.

Technical Assistance
Contact your local automation technology center (ATC) or distributor.

North America and Asia
Parker Hannifin
5500 Business Park Drive
Rohnert Park, CA 94928
Telephone: (800) 358-9070 or (707) 584-7558
Fax: (707) 584-3793
Email: emn_support@parker.com
Internet: http://www.parkermotion.com

Germany, Austria, Switzerland
Parker Hannifin
Postfach: 77607-1720
Robert-Bosch-Str. 22
D-77656 Offenburg
Telephone: +49 (0) 781 509-0
Fax: +49 (0) 781 509-176
Email: sales.hauser@parker.com
Internet: http://www.parker-emd.com

Europe (non-German speaking)
Parker Hannifin plc
Electromechanical Automation, Europe
Arena Business Centre
Holy Rood Close
Poole
Dorset, UK
BH17 7BA
Telephone: +44 (0) 1202 606300
Fax: +44 (0) 1202 606301
Email: support.digiplan@parker.com
Internet: http://www.parker-emd.com

Italy
Parker Hannifin
20092 Cinisello Balsamo
Milan, Italy via Gounod, 1
Telephone: +39 02 6601 2478
Fax: +39 02 6601 2808
Email: sales.sbc@parker.com
Internet: http://www.parker-emd.com

Technical Support E-mail

 emn_support@parker.com

© 2003-2010 Parker Hannifin Corporation
All Rights Reserved

mailto:emn_support@parker.com
http://www.parker.com/
mailto:sales.hauser@parker.com
http://www.parker-emd.com/
http://www.parker-emd.com/
mailto:support.digiplan@parker.com
http://www.parker-emd.com/
http://www.parker-emd.com/
mailto:sales.sbc@parker.com
http://www.parker-emd.com/
http://www.parker-emd.com/
mailto:emn_support@parker.com

Parker Hannifin

Table of Contents
Important User Information 2

Table of Contents... 4

Introduction .. 5

ACR-View IEC PLC Tools .. 6
ACR-View..6
Browser ..7
Catalog ... 13
Declaration Editor .. 15
ST Editor... 20
Ladder Diagram Editor .. 23
CFC Editor ... 27
IEC PLC Debug... 45
Documentation .. 48
Libraries.. 52
IEC61131-3... 54
Online Features.. 78

Reference Listings ... 81
Keywords (by category) .. 81
Keywords (A..Z)... 86
Errors and Warnings ... 134
Shortcuts .. 182

Index ... 184

4 IEC61131 User Guide

Parker Hannifin

Introduction
The ACR9600, ACR9630, and ACR9640 Programmable Automation
Controllers (PAC) combine the proven, powerful motion control feature set
of the ACR90x0 series with the industry standard PLC programming
languages of IEC61131-3. This user guide details the features and
commands available for programming the ACR96x0 controller using
IEC61131-3.

NOTE: This manual uses the nomenclature ACR96x0 to indicate the group
of controllers which includes the ACR9600, ACR9630, and ACR9640.

Introduction 5

Parker Hannifin

ACR-View IEC PLC Tools

ACR-View
The project is shown in the Project-Browser on the left side. The editor-pane
is located in the center. Most editors will use split screen technology to edit
declarations in the upper pane and instructions in the lower pane. While
declarations look the same for all programming languages, instructions
vary widely. ACR-View can host many files at the same time.

Diagnostic messages will be shown in the output window at the bottom.

Output Window
The output window is located at the bottom of ACR-View and is used to
display diagnostic messages.

6 IEC61131 User Guide

Parker Hannifin

Browser

Browser Introduction
The Project-Browser is the PLC File Manager of ACR-View. Using the Browser,
you will organize your work into files and programs. From the Browser, you
will create and edit files, compile, download and monitor your application:

The Browser user interface consists of four different windows (panes):

1. The File-Pane
2. The Resource-Pane
3. The Library-Pane
4. The Help-Pane

Browser Overview

The File-Pane

ACR-View IEC PLC Tools 7

Parker Hannifin

The File-Pane contains a directory-tree with all your source files, collected
under the current project. These are the files that you write yourself, with
one of the editors of ACR-View, or with different applications. All directories
and files under the current project-path are shown.

Resource-Pane

The Resource-Pane shows your controllers, the tasks running in these
controllers, the instances of functions and function blocks available within
these, and all variables defined in these.

In the instance tree, there are only "links" to files and objects defined in the
File-Pane: Tasks are referencing POUs of type PROGRAM, global variables
are referencing global declaration files etc.

The Library-Pane
The Library-Pane (Lib) contains a tree with all installed libraries of the
project. You can install new libraries with IEC PLC > Library > Install New…

You can use a library in a project by selecting it, right-clicking and
choosing Use in current project. The libraries that are currently used in the
project are shown with a red symbol.

8 IEC61131 User Guide

Parker Hannifin

ACR-View IEC PLC Tools 9

The Help-Pane
The Help-Pane contains help-topics.

Files

Creating New Files
Create new files within ACR-View by selecting File IEC PLC > New to see
the options:

POU for programs, function blocks and functions; the basic code blocks
defined by IEC61131-3.

Declarations for creating resource global, direct global, and type
declaration files.

Other for folders and watchlists.

File Operations
With the File IEC PLC menu you are able to:

• Move a file to another directory

• Copy a file

• Rename a file

• Import a file from another project/location

• Export a file to another project/location

Note: The action belongs to the file selected in the browser.

Resources and Tasks

Resources Introduction
In general, a resource is equivalent to a PLC or a micro controller. A
resource definition consists of a name for identification, the hardware
description, i.e. Information about the properties of your PLC which will be
used by ACR-View, and a connection name, i.e. Information about the kind

e maintains a list of tasks which are to be run on the control
system.

u

 network connection properties,
and enable or disable certain options:

of communication between ACR-View and the control system.

A resourc

Edit Resource
To edit the controller/resource, right-click on it from the Resource pane and
choose "Properties" in the context menu. A dialog box opens in which yo
can change the hardware module and

Parker Hannifin

Check "Enable Upload" to pack the sources of your application onto the
target. This is helpful if at the end of debugging you want to save the
project on the controller for future use.

Add Task
In general, a task is equivalent to a program plus the information about
how the program can be executed. The definition of a task consists of the
name, the Information about the execution of the task and a POU of type
PROGRAM which should be executed in this task.

To add a task, mark the program you want to create the task of, and
choose IEC PLC > Link to resource.

After adding of the task, you can double-click it in the Resource-Pane to
change the task specifications.

Note that the task name depends on the program name, and can't be
changed. To complete the task definition, you must specify the information,
how the task can be executed: Cyclic , Timer controlled , Interrupt
controlled. Task type, priority and time control the execution of this task
and in co-operation with other tasks. To do this, right-click on the task and
choose "Properties."

Compiler

Build Active Resource
Build only those parts of your resource that have changed since last build
due to modifications. Invoked by IEC PLC > Build active resource.

ACR-View will automatically build anything as necessary when going
online, but it is good practice to recompile from time to time when
programming to detect errors as early as possible.

10 IEC61131 User Guide

Parker Hannifin

Rebuild Active Resource
To rebuild all tasks of your active resource choose IEC PLC > Rebuild active
resource from the menu. This will completely recompile all parts of the
active resource.

Rebuild All Resources
Like "Rebuild active resource" but will rebuild all—active and inactive—
resources.

Online

Going Online
To get into online mode, choose IEC PLC > Online or press the "go-online"
button in the toolbar to go online with the active resource.

Repeat this to go offline again.

Download
ACR-View will automatically prompt whenever a download seems
necessary.

Watching Variables
To add variables to the watch list of IEC PLC Debug window, open the
resource tree of your application and double-click any of the variables:

ACR-View IEC PLC Tools 11

Parker Hannifin

Upload
ACR-View supports uploading of projects from the controller to a PC.
Therefore, it is not necessary to have the source code of the project when
updating the PLC, because the project can be uploaded.

To enable this feature, the "enable upload" box has to be checked in the
resource properties before compiling and downloading a resource to the
PLC as shown in the figure below:

For uploading the project, make sure that the resource properties are set as
described above. Then go to IEC PLC > Upload IEC Project.

Erase
This is only available in online mode. To remove the entire program from the
PLC, select IEC PLC > Erase from the menu.

Other Browser Features

Resource Global Variables
In ACR-View, there are two kinds of global resource variables:

Global variables: these are variables without hardware-addresses, for
example, for intermediate results.

Direct global variables: these are variables with direct hardware-addresses
together with the IO-declarations. These represent the interface to the
hardware.

To create a new file with resource global variables, select File > IEC PLC >
New > Declarations > Global or File > IEC PLC > New > Declarations >
Direct Global .

12 IEC61131 User Guide

Parker Hannifin

Type Definitions
By default, there is a file to hold user defined data types (usertype.typ) with
each ACR-View project. To have your own data types, edit this file or
create respective files of your own.

Add Files
ACR-View allows the addition of any kind of file to ACR-View projects. Use
File > File > Import… and select the file of your choice. Beside files you have
written with the editors of ACR-View (LD, ST, CFC), it is possible to import
type definition and type declaration files. Furthermore, it is possible to
register files in one project, even if they were created by other programs,
for example by: Microsoft Word, Microsoft Excel, Microsoft Project,
AutoCAD.

Select the desired file type in the popup menu and open the
corresponding directory. Select the file you want to copy. This file will be
copied to the current directory of the browser and can be edited by a
double-click.

Catalog

Catalog
The Catalog is a tool to insert function blocks to your programs. The
Catalog is visible below the project browser. If it is not there, go to View >
IEC PLC > Catalog.

With the catalog, you can insert function blocks to your programs by using
drag'n drop.

A double-click on an entry within the table opens the help on the function
block.

ACR-View IEC PLC Tools 13

Parker Hannifin

Using the Catalog, you do not have to write the names or go through the
menus to insert a function block

Variable Catalog
The Variable Catalog is part of the Catalog. All global variables are shown
in the Variable Catalog. You can see their names, datatypes, addresses,
comments (if available) and their scopes. At the moment the used flag is
only supported by the CFC-Editor.

14 IEC61131 User Guide

Parker Hannifin

The Variable Catalog enables you to insert global variables to your
program by drag'n drop and also to filter global variables. You can filter
names, datatypes and also scopes, to see which variables are available.

Just insert the name and you will see all variables that fit to your input. You
can also use asterisks (for example, write "*A*" to the name field and you
will get all variables which have an "A" in their names) and also use a
combined filtering: First enter a name and then change the dataype.

When you create new global variables, they will not automatically be
shown after saving the global variables file. Use a right-click into the
variable grid and select refresh to update the Variable_Catalog.

Declaration Editor

Declaration Editor Introduction
IEC61131-3 requires all data objects to be declared as variables. A set of
different declaration sections is available to define variables on different
scopes. IEC61131-3 comes with a set of predefined data-types, called
elementary data types. And, there are some means to define user-defined,
so called derived data types, using structures, arrays and enumerations.

With most variables, storage is assigned by the compiler, without any
programmer activity. For inputs, outputs, markers and potentially more
types of variables, the programmer may specify a memory location, using
directly represented variables.

Declarations are entered in text-form just as defined by IEC61131-3.

Declaration Sections
Variables are declared in different sections called declaration blocks. A
declaration block starts with a keyword and ends with END_VAR (for
example, VAR_GLOBAL ... END_VAR).

ACR-View IEC PLC Tools 15

Parker Hannifin

VAR_INPUT: If a variable block should only be read inside a POU, you must
declare this variable as input-variable. It thereby is not allowed to modify
this variable in this POU. An input-variable can be used for the parameter
transfer in a function or function block.

VAR_IN_OUT: An input-/ output-variable is accessed under the same name
by a function block. The variable gets a reference (pointer) to the
transferred variable and its memory location during the parameter transfer
by the block-call. Because a write-operation has a direct effect to the
content of an In_Out-variable, it isn't allowed to use a write-protected type
for the transferred variable as INPUT-variables or variables with attribute
CONSTANT.

VAR_OUTPUT: The Output-variables are declared in the function block that
uses them for the return of values. The calling POU can access them.

VAR_GLOBAL: A variable should be declared as global variable in the POU
´program´ if this variable should be valid in this POU and in the function
blocks called by this POU. This variable must be declared as external
variable (VAR_EXTERNAL) in all function blocks which intend to use this
variable.

VAR_EXTERNAL: If a declared global variable will be used inside a function
block, this variable must be declared as external variable inside this
function block.

VAR: A local variable is only valid inside the POU in which it was declared.
The declaration of local variables can be supplemented by the attributes
´RETAIN´ or ´CONSTANT´, or by an address.

TYPE: The keyword ´TYPE´ is used for declaration of user defined (derived)
data types with local scope in the POU-types ´program´ and ´function
block´, or with global scope in the type definitions.

According to the POU-type only certain variable-sections can be used:

• A POU of type Program may use Type, Local, Global and External

• A POU of type Function block may contain Type, Input, Output,
In_Out, Local and External

• A POU of type Function may use Type, Input and Local.

CONSTANT may be used as a modifier to the keyword (for example,
VAR_GLOBAL CONSTANT) to declare all variables declared in this section as
not to be modified by the application. The compiler will issue a warning if
such a variable is used in a context where it will or could be modified.

RETAIN may be used as a modifier for the keyword (for example, VAR
RETAIN) to declare all variables in this section as retentive; i.e., these
variables will not be re-initialized on hot- or warm-start. The system's
retentive memory keeps variable values during power failures.

16 IEC61131 User Guide

Parker Hannifin

Structure of a Declaration Line
A declaration line has the following form, where optional parts are set in
[square] brackets, and expressions are set between <sharp> brackets:

<variable name> [AT <Address>]: <Type> [:= <Initial value>]; [(*
<Comment> *)]

First the variable name is given, followed by a colon. Behind the colon is
the type, and eventually the hardware address introduced by the attribute
´AT´. Should the variable have a definite value on start, this value will be
given after a ´:=´. A line ends always with a semicolon (;). The line can be
commented, and comments are set between (* and *).

Example
Expvariable1 AT %B0: BOOL; (* variable of type BOOL at the
address %BIT0 *)

Expvariable2 : BOOL := TRUE; (* variable of type BOOL with
the start value TRUE *)

Variable with no initial value: InterMedSum : INT;

Variable with initial value: Pieces : INT := 5;

Directly represented variable with name and with no initial value: Valve AT
%BW32 : BOOL;

Example function block: Counter1 : CTU;

Note: 1) Initial Values can only be given as literals. It is not possible to use
other variables to initialize variables during declaration.

 2) The significant length of a variable name is 64.

Elementary Data Types
Keyword Name Range Size in Bits

BOOL Boolean 0 (FALSE), 1 (TRUE) 1 or 8

SINT Short Integer -128 to +127 8

USINT Unsigned Short Integer 0 to 255 8

INT Integer -32 768 to +32 767 16

DINT Double Integer -2.147.483.648 to
+2.147.483.647

32

UINT Unsigned Integer 0 to 65 535 16

UDINT Unsigned Double Integer 0 to 4.294.967.295 32

REAL Real number +/-3,4E+/-38 32

TIME Time duration 00:00:00:000 to
23:59:59.999

32

STRING Character String length of
string plus
2 bytes

ACR-View IEC PLC Tools 17

Parker Hannifin

18 IEC61131 User Guide

Keyword Name Range Size in Bits

WSTRNG 2-byte-character String length of

wstring
plus 2
bytes

BYTE Sequence of 8 bits 8

WORD Sequence of 16 bits 16

DWORD Sequence of 32 bits 32

Directly Represented Variables
Directly represented variables are those variables that are mapped to a
certain input, output or memory address specified by the programmer. The
keyword AT is used to declare this, and the address is specified in a string
starting with a percent sign (%).

Direct variables supported in ACR controllers:

• AT%Bnnn A read-only flag, where nnn is the bit number

• AT%BWnnn A read/write flag, where nnn is the bit number

• AT%Pnnn A read-only parameter, where nnn is the parameter
number

• AT%PWnnn A read/write parameter, where nnn is the parameter
number

Direct variables must be designated BW or PW (read/write) in order for
them to be written back out to the controller at the end of a PLC scan.

Note: Directly represented variables may only be defined in POUs of type
"program."

ACR-View does not support the mapping to a physical PLC address (using
AT%) for variables of types ARRAY, STRUCT and STRING.

Derived Datatypes
Derived data types are defined by the manufacturer of your controller, or
by yourself. These new data types are defined using keywords TYPE ...
END_TYPE based on the elementary data types. After definition, they may
be used just like predefined or elementary data types.

Example: Derived Data Types
In the following sample code, a new data type is defined to represent a
"Pressure" value
TYPE
 Pressure : INT;
END_TYPE

VAR
 PreValvePressure: Pressure;
ND_VAR E

Parker Hannifin

ACR-View IEC PLC Tools 19

It is possible to combine different datatypes in a derived datatype. Arra
and structs can be integrated as well. The following example defines a
struct Athe struct itself consists of another struct called B and an integer
array of size 5. Three new datatypes are

ys

 derived within B: Stationname as
g and Value1, Value2 as reals.

TRING

EAL

ARRAY [1..5] OF INT;
UCT

YPE

: A;
END_VAR

e an array. Each element of an array can be an
elementary variable.

 hold five elements of type INT
M feld

:ARRAY [1..5] OF INT;
YPE

rr_5_INT;
VAR

END_PROGRAM

al

by writing the structure, followed by a dot and the name of the
member.

ed Data Type
M struktur

L;

 INT;
;

YPE

RobotArm;

strain
TYPE
 A :
 STRUCT
 B :
 STRUCT
 Stationname : S
 Value1 : REAL
 Value2 : R
 END STRUCT
 Arr_5_INT:
 END_STR
END_T
VAR
 Data1

Declaration of Array Datatypes
Arrays contain multiple elements of the same data type. The keyword
ARRAY is used to defin

Example: Array Data Type
Type Arr1 will
PROGRA
TYPE
 Arr_5_INT
END_T
VAR
 Arr1 : A
END_
 .

Declaration of Structured Datatypes
A structure holds multiple elements of same or different data types,
elementary. Key word STRUCT is used to define a structure. The individu
elements of a structure are called members of that structure, and are
accessed

Example: Structur
PROGRA
TYPE
 RobotArm :
 STRUCT
 Angle_1 : REAL;
 Angle_2 : REA
 Grip: BOOL;
 Length:
END_STRUCT
END_T
VAR
 Robot1 : RobotArm;
 Robot2:

Parker Hannifin

20 IEC61131 User Guide

 EN
 LD
.

D_VAR
Robot1.Grip

 .

Decla

e

en, the first value will be the de fault.

 TrafficLight can be "red", "yellow" or "green." "Yellow" shall be the

ht:

,
reen):= yellow;

ight;
Road : TrafficLight;

StopCar: BOOL;
END_VAR

END_PROGRAM

ration of Enumeration Datatypes
A variable of an enumerated data type can take any one of a fixed list of
values. The list of legal values is listed in the declaration of the enumeration
data type, separated by commas. An initial value may be given after th
closing ")"; if no initial value is giv

Example: Enumeration Data Type
Data type
default.
TYPE TrafficLig
 (red,
 yellow
 g
END_TYPE
VAR
 MainRoad : TrafficL
 Cross

ST Editor

ST Ed
 enter

the declarations of the POU. In the lower pane, enter ST instructions:

itor Introduction
The ST-Editor is hosted in ACR-View. In the upper part of the ST-Editor,

okmarks (for marking lines of interest while editing
a file) and Breakpoints.
The ST Editor supports bo

Parker Hannifin

Instructions in ST
Code written in ST is a sequence of ST-instructions. ST-instructions are
terminated with a semi colon.

Linefeeds are not significant, i.e. more than one instruction can be on one
line, and one instruction can use one or more line.

For a list of all instructions supported in ST, please see the reference section,
Structured Text Keywords.

Expressions in ST
Operands known in ST are:

• Literal variables, for example: 14, "abc", t#3d_5h

• Variables, for example: Var1, Var[2,3]

• Function Call, for example: Max(a,b)

While operators are parts of ST-language, expressions are constructions
which must be constructed by aid of ST-elements. Operators need
operands to build expressions.

Element Symbol

Parentheses ()

function call

Exponentiation **

Negation -

Complement NOT

Multiplication *

Division /

Modulo MOD

Addition +

Subtraction -

Comparison <, >, <=, >=

Equality =

Inequality <>

boolean AND &, AND

boolean exclusive OR XOR

boolean OR OR

Comments in ST
Like all modern programming languages, ST supports comments. A
comment is any text included between ´(*´ and ´*)´, for example:

 (* Comments are helpful *)

ACR-View IEC PLC Tools 21

Parker Hannifin

The compiler will ignore comments when generating executable code, so
your program will not accelerate in any way if you omit comments.
Comments may span multiple lines, for example:
 (* This comment
 is long and
 needs more than one
 line
 *)

ST Editor Online
To debug and monitor code written in ST, use the ST Editor in monitor mode.

There are three main ways to debug and monitor ST code:

• Use Breakpoints to stop execution, single-step through your code. Use
this to understand, follow and find problems in the logic flow of the
application.

• Move the mouse cursor over a variable and see a tiny "toolbox" appear,
displaying the variable's name, type and value. The value is
permanently updated. Use this to quickly examine the current value of
different variables within a region of your code, with or without stopping
execution, at a breakpoint or while single-stepping.

• Use the watch list in the IEC PLC Debug window to monitor a set of
variables, which may be from any part of your applications. Use this to
keep an eye on a set of variables while examining different parts of
your application's code.

ACR-View supports online edit. For further information see the section
Online Edit.

Tooltips for Structs and Elements of Structs
It is possible to watch the whole structure information in any depth in the ST
Editor tooltips.

If the Editor is in Edit mode, the struct and its first level members will be
shown with datatype information. In Online mode, the values will be shown
behind the resolvable members.

22 IEC61131 User Guide

Parker Hannifin

Ladder Diagram Editor

Ladder Logic Introduction
The basic principle of Ladder Logic is currency flow through networks.
Generally, Ladder Logic is restricted to processing boolean signals (1=True,
0=False).

A Network is restricted by so called margin connectors to the left and to
the right within the Ladder Editor. The left margin connector has the logical
value 1 (current). There are connections that conduct currency to
elements (variables) that conduct currency to the right hand side or isolate
depending on their logical state. The result of the procedure depends on
the arrangement of elements and the way they are connected (AND =
serial; OR = parallel).

Networks consist of the following graphical objects:

• Connections (horizontal or vertical lines, and soldered points).

• Contacts, Coils, Control Relays

• Function blocks and Functions

• Jumps (Graphical elements for control flow).

Network
The instruction section of the Ladder Diagram Editor is subdivided into so
called networks, which help structuring the graphic.

A network consists of: Network label, Network comment and Network
graphic.

Network label: Each network that may be a jump target from within another
network will automatically be assigned a preceding alphanumerical
identifier or an unsigned decimal integer. By default, networks will be
numbered. This numbering of all networks will be automatically updated
whenever a new network is inserted. The numbering simplifies finding a
certain network an corresponds to line numbers of textual programming
languages.
Network comment: The Network Comment is represented as a square area in
the ladder diagram. To enter a commentary text, double click on this
square. The comment is always placed below the network label. Note that
the first network additionally contains a ladder diagram comment above

nthe network label a d the network comment.
Network graphic: The network graphic consist of graphical objects,
which may be graphical symbols or connections. Connections transport
data between graphical symbols, which process the data at their inputs
and transfer the processed data to their outputs. Note that the connections
may also cross.

Operators
Within a ladder diagram, the term operator designates the graphical
objects contact, coil and jump.

ACR-View IEC PLC Tools 23

Parker Hannifin

24 IEC61131 User Guide

• Contacts: A contact associates the value of an incoming connection
with the value of an assigned variable. The kind of association
depends on the type of contact. The result value will be transferred to
the connection on the right hand side. There are triggers and
interruptors (The boolean value of the variable will not be changed).

• Coils: Coils serve to assign values to output variables of networks. A
coil copies the state of the connector on its left hand side to its
connector on its right hand side without any changes. Furthermore, the
coil saves a function of the state or the transition of the left connector
into a boolean variable.

• Jumps: Jumps manipulate the control flow of programs. They make it
possible to directly invoke certain networks in a defined order. When
encountering a jump operator, control flow continues at a different
network. Thus, jumps are an exception from the basic principle that
networks are always processed in a top down fashion.

Contacts
There are two contact symbols for boolean input variables:

• Left is the contact symbol for a variable that must have the value "1" to
make the corresponding boolean connection true. If the variable is
associated with a physical address, the state "1" corresponds to a
released interruptor or a pressed trigger.

•
e is

ate "0" corresponds to a
pressed interruptor or a released trigger.

 right hand side of the network
and is connected to the right currency rail.

Right is the contact symbol for a variable that must have the value "0"
to make the corresponding boolean connection true. If the variabl
associated with a physical address, the st

Coils
The output variable is always situated to the

Parker Hannifin

ACR-View IEC PLC Tools 25

• The result of the logical connection will directly be assigned to the
output variable.

• The output variable will be assigned the negation of the result of the
logical connection.

• The result of the logical connection will "permanently set" the output
variable: If the result of the logical connection is "1", the output variable
will be set to "1". If, however, the result of the logical connection is "0",
this will have no implications.

• The result of the logical connection will "permanently reset" the output
variable: If the result of the logical connection is "1", the output variable
will be set to "0". If, however, the result of the logical connection is "0",
this will have no implications.

Jumps

• Jump operations manipulate control flow. With jumps, networks may be
executed only if certain conditions hold. Jumps may be conditioned by
a binary combination result, or not conditioned," i.e., obligatory. The
jump target must always be the beginning of a network, designated by

may be conditioned by a binary connection result, or unconditioned.

r example. There can

Use this command to insert a control relay additional
to the logical symbol.

of

n block can only be added to a network if it satisfies the following

s
to have the name "EN". If this parameter is set to FALSE in a network,

its network label.

• Return jumps stop program execution within the current POU, and
continue at the point where the POU was invoked from. Return jumps

Control Relay
Control relays are contacts that are inserted in front of coils. Control relays
may be used as breakpoints in manual execution, fo
always be one control relay before each coil only.

Insert-> Control Relay:

Functionblocks and Functions
To insert Function Blocks or Functions to a network, click on a connection
and use Insert > Functionblock… or Insert > Function… to insert it at this
position. You can then choose the desired block or function from a list
available blocks/functions. Only predefined functions can be chosen.

A functio
criteria:

• The first input-parameter of the block has to be of type BOOL and ha

Parker Hannifin

the corresponding block won't be started or even get parameters
passed.

• The first output-parameter of the block has to be of type BOOL and
has to have the name "ENO". This parameter has to be set to TRUE if
the block has worked correctly and without errors.

Ladder Editor Online
When you have the Ladder Editor in monitor mode, it will automatically
start displaying live values of contacts, coils, function and function block
inputs and outputs as far as possible.

If the online editor can't get a value of a variable from the runtime system,
it will display "-!-".

Displaying values in the online editor of variable types, that use more than
4 bytes (strings, arrays, structs), is not supported by the current version of
the Ladder Editor. To view them use the IEC PLC Debug.

ACR-View supports online edit. For further information see the section
Online Edit.

Check over Variable
The Ladder Editor contains a comment check method, that marks
comments if the semantic of a program has changed. To mark comments
that might be wrong, ACR-View pre-writes „[CHECK!] to such comments.
Then it's up to you to check if these comments are still correct.

The reason is that when using the ladder editor, it is possible to replace a
function (block) by a contact with a variable or vice versa. This changes
the semantic of the program and so the comments above the function
(block) or variable might be wrong.

To illustrate this, look at the following figures. Choose a function that you
want to be replaced by a contact with a variable. Select it with the right
mouse button and choose Insert Variable from the context menu.

26 IEC61131 User Guide

Parker Hannifin

After replacing this function by a contact, the comment above the
function is changed. Now, there is pre-written [CHECK!].

The main reason, therefore, is that the semantic of the program has
changed, but the comment is still the same. This is a hint, to verify if this
comment is still correct.

CFC Editor

CFC Editor Introduction
The Continuous Function Chart Editor is an engineering tool used to create
automation programs graphically.

The main elements of a CFC chart are Blocks (firmware blocks, user defined
blocks, compound blocks), that can be freely arranged on the chart,
Margin Bars (left and right), which provide links to IEC61131 variables and
virtual links within the chart, and connections, to connect one output
(block or margin bar) to one or more inputs (block or margin bar).

Working with Blocks
To add blocks to your CFC chart, use Insert > Block for firmware or user-
defined blocks, Insert > Textblock for text blocks, or Insert > CompoundBlock
for compound blocks.

The mouse cursor will change, click the chart where you want to insert the
new block.

To re-arrange blocks, select the blocks and drag-and-drop them to their
new location.

When adding new blocks or moving existing blocks, the CFC Editor will
make room by moving aside existing blocks as appropriate.

To remove blocks from your chart, select them and press DEL.

Click twice on a block give it an alias name.

ACR-View IEC PLC Tools 27

Parker Hannifin

Connections
To connect two objects, first select the output object (output of a block, or
item on the left margin bar), then select the input (input of a function
block, or item on the right margin bar), then press Insert > Connection.

ACR-View also supports Multiple Connections

Margin Bars
Margin Bars connect the logic contained in the CFC chart to other parts of
the same CFC chart, or to other parts of the application or the process to
be controlled.

To configure any element of the margin bar, right-click it and select
"Properties" from the context menu:

In Name, enter the name of the object. This should be a valid IEC61131-3
variable name.

If you want the CFC-Editor to declare a variable for this margin bar object,
select IEC61131-Variable. Otherwise, if you select "CFC-Connector", the
object is used only virtually, and all information is immediately propagated

28 IEC61131 User Guide

Parker Hannifin

to the connected outputs. This may be more economic in runtime and
memory consumption, but it prevents online monitoring.

For IEC61131-3 variables, select the declaration section from the combo-
box. The selection offered here depends on the type of block and the type
of margin bar. For some kinds of variables, you may choose to select a
physical address or an initial value.

For CFC-connectors, you can choose "compound block connector," i.e., a
connection from within a compound block to the outside, "(connect to)
internal connector", i.e., virtually connecting one entry on the right margin
bar back to one on the left margin bar. "Internal connector" and "connect
to internal connector" are similar, but the first is only available on a right
margin bar (where internal connectors are defined), whereas the latter is
available only at a left margin bar, where internal connectors may be
used.

CFC Editor Online
When you have the CFC Editor in monitor mode, it will automatically start
displaying live values of blocks, connections and margin bar entries as far
as possible.

If the online editor can't get a value of a variable from the runtime system,
it will display "-!-".

ACR-View supports "online edit. For further information see the section
Online Edit.

Advanced CFC topics

Text Block
Use Insert > Textblock to insert a text block into your chart. A text block is
only for documentation purposes and does not add anything to the code
being executed.

Printing CFC Charts
The CFC-Editor offers you several possibilities for printing. Use File > Print to
print the current level of a chart, and File > Print All to print all levels of the
loaded CFC chart.

Using Constants as Inputs
To use a constant value as the input to a block, select the input (or margin
bar entry), right click it with the mouse, select "properties" and enter the
constant value in the edit field "value" on sheet "default value."

Execution Order
The arrangement of the blocks on a chart is directly related to the
sequence of execution: Blocks are executed first column first from top to
bottom, then second column top to bottom, and so on. To modify
execution sequence, rearrange the blocks as required.

ACR-View IEC PLC Tools 29

Parker Hannifin

Compound blocks will be executed as a whole at that moment in the
execution order where the compound block is located. The contents of the
compound block will be executed in itself following the same rules. This is
very similar to subroutines in modern programming languages.

Multiple Connections
The CFC editor supports connections between one output and multiple
inputs To create a multiple connection first create a connection between
the desired output and one input. Now, mark the next input and click in the
output. The connection, created in the first step and the output are now
marked. Choose Insert > Connection to create the multiple connection
between the output and the two inputs. You can now add more inputs the
same way.

To remove an input from a multiple connection, mark the input and hit the
delete-key. Only the connection between this input and the output will be
removed.

Replacement of Blocks
The CFC editor supports the replacement of a firmware or user-defined
block by a block of another type by selecting the block(s) and choosing
Edit > Replace Block from the menu.

30 IEC61131 User Guide

Parker Hannifin

A dialog box analogue to the Insert > Block dialog will appear, allowing the
user to select the desired new block type from a list of known firmware and
user-defined blocks.

Additionally the user may check the option automatically replace all
instances of the block type in current plan", which causes the replacement
of all instances (even the non-marked ones) of the currently marked block's
block type inside the entire CFC-plan.

After selection of a new block type, another dialog box is shown, allowing
the user to map the connectors of the old and new block type for
reconnection after replacement. The left column of the displayed table lists
the connectors of the old block type together with the type and kind
(VAR_INPUT/VAR_OUTPUT) of the connector (*1). The right-hand column
displays a list of adequate connectors of the new block type.

The user can assign a corresponding connector for each connector of the
old block type. Note that each connector of the new block may only
assigned once.

If a connector shall or can not be reconnected, do not reconnect
automatically" can be chosen.

After clicking OK the CFC editor replaces the block(s) by (a) block(s) of the
new block type and rewires the connectors as specified in the assignment
dialog.

(*1): VAR_IN_OUT connectors will show twice in the list of connectors:
Once as VAR_INPUT& and once as VAR_OUTPUT&. The &" marker signals,
that the connector actually represents an VAR_IN_OUT parameter.

Finding Errors in CFC
Double-click the error message in the output window to locate an error.

Block Specific Help
It is possible to get a block specific help. Right-click on the block, you want
help for, and select the menu-item Show documentation." If ACR-View finds
no reference, you will be prompted. If one reference is found, it will be
displayed and if more than one reference you will be prompted to choose
which one to display.

Extensible Inputs
The following CFC (and FBD) functions are extensible. This means we can
add one ore more inputs as a copy of the first input:
AND, ANDN, OR, ORN, XOR, XORN, MUL, ADD, MUX, MIN, MAX, CONCAT
Appending an input is done by selecting one of those functions and calling
(context) menu entry "Append Input." If you want to delete again an
added input, select input and call (context) menu entry "Delete Input."

Functions with Negatable Inputs
For all of the following logical CFC (FBD) functions you can negate each
boolean input:
AND, ANDN, OR, ORN, XOR, XORN, NOT

ACR-View IEC PLC Tools 31

Parker Hannifin

Negating an input is done via selecting the input and calling (context)
menu entry "Negate Input." A negation circle is drawn at the connector.

The next call of (context) menu entry Negate Input" removes the negation.

Syntax Check at CFC Connections
After inline editing values or IEC identifiers on all CFC connectors the user
input is checked for correct syntax: If a constant value is entered that does
not fit the data type of the connector a message like the following is
shown, and the value is accepted in spite of the syntax error.

Syntax error: Invalid constant for data type xxx."

Connection Flag
To reduce the number of connection lines we can suppress single
connections and force so called connection flags via (context) menu entry
Toggle force connection flag":

Use connection flags for this single connection.

The suppression of connection lines is saved with plan and restored after
reloading.

Copying Blocks with Inputs
If at least one block is selected, there is a new (context) menu entry active:
Duplicate blocks. Calling it copies the selected block(s) into the internal
plan clipboard and sets editor into duplicate mode - mouse cursor and
caret style behave and look like they do in paste mode: Everywhere you
click or press the space bar, the duplicate(s) of the block(s) is(are) inserted
and all input connections are duplicated. Until you right-click the mouse,

32 IEC61131 User Guide

Parker Hannifin

press ESCAPE, or click into a "no-paste-allowed" area, the editor stays in
duplicate mode so you can insert more duplicates.

Alias Names
The user can enter alias names for blocks to mark and quick find special
blocks. Alias names for functions and function blocks are drawn and inline
editable above the block body. Alias names for compound blocks are
drawn and inline editable within the block body.

Exception: The Operators SET and RESET cannot have alias names because
the boolean variable that is set/reset is located above the block body.

Masking of Unused Connectors
For more clarity there is a new (contex) menu entry "Toggle Unused
Connectors." Calling it hide/shows all unused block connectors. Unused
connectors are connectors without any connections and values.

ACR-View IEC PLC Tools 33

Parker Hannifin

Unused connectors are not shown.

34 IEC61131 User Guide

Parker Hannifin

ACR-View IEC PLC Tools 35

If unused connectors are hidden, the following conditions result:

• Connectors cannot be found by searching.

• Mouse and keyboard cannot be used for navigation.

• They can be found by double clicking on a compiler/syntax
error/warning.

Keyboard Handling for CFC and FBD Editor

Fundamentals for Keyboard Usage
For keyboard navigation, a small caret is displayed which shows the current
input focus for the user.

The CFC/FBD editor can be used with mouse and keyboard simultaneouly.
The cursor will not follow the caret. The form of the cursor will not
automatically change due to the state of the caret. The state of the cursor
will of course follow the position of the cursor and not the position of the
caret

Caret and Selection
The c re: urrent selection follows the caret. Exceptions or special cases a

• If the caret is navigated to an empty grid cell, the selection is
canceled (nothing is selected).

• To detach the caret position from the current selection for gene
a connection, the caret must be navigated while <shift>-key is
pressed. As the <shift>-key is released the selection is enlarged by the
element at the current caret position (aquivalent to a left-click on t
element in the caret). The current implementation

rating

he
 takes care that

(Multiple selections consisting of isolated blocks are
not allowed.)

isible, even if the element on which the caret is

selection is done by mouse.

 off.

rinted.

t by left or right mouse click. It
follows in general the selection by mouse.

only permitted states of selections can be made.

• Multiple selections with other elements can be made using <ctrl>
while navigating.

Representation of the Caret
The caret is always v
located is selected.

• In special cases the caret is represented in a different way.

• The caret is always visible even if the

• The caret can not be switched

• The caret will not be p

Positioning of the Caret
The caret is positioned at the marked poin

Parker Hannifin

36 IEC61131 User Guide

Caret Position by Selected Moves
It must be grantueed that (even in co-use of mouse and keyboard) there is
always a valid caret position. The caret position is defined for the following
actions which remove the element at a valid caret position:

• Selection by mouse: The caret follows in general the selection by
mouse and automatic functions

• Removing/cutting a block: Thereafter the caret will expand to the
whole grid cell which was occupied by the removed/cutted block.

• Removing/cutting a set of blocks: Thereafter the caret will select the
left upper grid cell which was occupied by the set of blocks.

• Removing/Cutting the input of a block: The caret will jump to the
input that is above the removed/cutted input. If there isn't any, the
caret will expand to the whole block.

• Removing/cutting a network: The caret will jump to the network
above the removed/cutted network. If there isn't any, the caret will

ppest network. If there isn't any, it will jump

et refers

 the same method is called as by

A to
• r left grid cell.

• mpound block, the caret will be placed at

•

 are listed, depending on
the driven CFC/FBD element. How the navigate between these positions is
described in a future chapter (Caret navigation).

jump to next possible network below.

• Removing/cutting a set of networks: The caret will jump to the
network that is above the u
to the first network below.

• Decreasing the number of rows in a network: The caret will jump to
the grid row above, the grid column will be the same. The car
at first to the grid cell even if there is a block contained in it.

• Caret position after „select all: After the call of „select all, the caret
jumps to left uppest grid cell in the map. The map is scrolled upwards
for uncovering the caret. Internally
using the shortcut <ctrl>+<pos1>.

u matic Positioning of the Caret
After a file is loaded, the caret is placed at the uppe
The position of the caret is not saved with the map.

After the entering of a co
the upper left grid cell.

By using undo/redo, the caret follows the position which is provided
by the operation. For this purpose, the caret position is saved before
undo/redo and will be restored according to network number and
position (row, column). If the network or the concerning cell doesn't
exist anymore, the caret will jump to the next network/cell above.

Below, the defaults for the positioning of the caret

Parker Hannifin

Caret IN Empty Grid Cells

In empty grid cells, the caret takes the size and position of the whole cell.

Caret and Comments

At grid cells with comments, the caret takes the position and size
according to the selected comment.

Caret at the (FBD) Network Label

At the network label, the caret takes the position and the size according to
the network title line (according to the measures of the selected network
label).

Caret at a Margin Connector

ACR-View IEC PLC Tools 37

Parker Hannifin

38 IEC61131 User Guide

At a margin connector, the caret takes the position and size according to
the measures of the selected margin connector.

Caret in Grid Cells with Blocks

The caret surrounds either the block field or a connector. The size of the
caret at a connector/block corresponds to the selection of a
connector/block. The name of an entity will not be surrounded by the
caret.

Caret Navigation
In the following is described how to navigate with the caret inside a
CFC/FBD map.

Navigating at Margin
At margin, you can jump to the underlying margin element or the element
above by using <UP> or <DOWN> arrow keys.

Navigating between (FBD) Networks and Network Labels
• If the caret is on the upper or lower margin connector, you can jump

to the network label of the underlying network or network above by
using <UP> or <DOWN> arrow keys (see picture below).

• If the caret is on a grid cell or element in the upper row of a network
you can jump to the network label of the network above by using
<UP>

• If the caret is on a grid cell or element in the lower row of a network,
you can jump to the network label of the underlying network by using
<DOWN>

• If the caret is on a network label, you can jump to the left lower grid
cell (resp. grid element or connector) of the network above by using
<UP>

• If the caret is on a network label, you can jump to the left upper gird
cell (resp. grid element or connector) of the network belonging to the
network label by using <DOWN>. With <RIGHT> or <LEFT> the caret
jumps to the upper connecter of the left or right margin.

Parker Hannifin

Changeover Margin to Block
By using <RIGHT> or <LEFT> when the caret is located at left or right margin,
the caret jumps to the grid cell resp. element of the grid cell which is
opposite to the margin connector. A margin connector at the level of a
connection channel is always assigned to the grid cell above the
connection channel. If the grid cell contains a block, the caret jumps to
the closest connector in consideration of the starting position (margin
connector).

If the caret is positioned on a grid cell or on a block connector besides the
margin, it jumps to the closest margin connector.

Up and Down at Inputs and Outputs
<UP> or <DOWN> navigates the caret to the input or output of a block.
If the caret is located on the lowest input/output, you jump to the
underlying grid cell or the label of the next network by using <DOWN>.

ACR-View IEC PLC Tools 39

Parker Hannifin

Left and Right at Inputs and Outputs
<LEFT> or <RIGHT> navigates the caret between input/output and the block
field itself.

Observe the behavior of the caret by navigating from the inputs/outputs of
a block to the outputs/inputs of the same block.

For this purpose, the last caret connector row/column is buffered. Thus, a
behavior as in the following picture is possible.

By navigating onto the block field, the caret connector row is not changed
and will be evaluated by the next usage of <RIGHT>. The same behavior
happens for the caret connector column how we will see in one of the
following chapters.

For navigating faster between grid cells with blocks, you can jump directly
to the block field by using <ALT> + <UP/DOWN/LEFT/RIGHT>.

Navigating between Grid Cells
Observe the behavior by navigating between grid cells with blocks. By
navigating on an empty cell or a cell with a comment, the caret is placed
on the comment or the whole grid element with no respect to the starting
position. For navigating between grid cells with blocks, the principle of
buffering the caret connector row/column as described above is essential.

40 IEC61131 User Guide

Parker Hannifin

If there is no connector which fits to the current connector row or column
(for example, JMPC), the caret will jump to the block field.

Navigating along Connections
The caret can jump to all connected inputs starting at an output
connector. With the methods defined in the chapter „Methods for
navigating the caret, you can jump from every input connector to all
connected output connectors and vice versa.

Attention: The next output connector is always that one which was
connected to the input connector with respect to time.

For these actions, there are entries in the (context) menu:

• Goto Data Source : jump to data source

• Goto Next Data Destination : jump to next data sink

• Goto Previous Data Destination :jump to previous data sink

Fast Navigation with the Caret

Pos1 and End
Pos1 and End refer only to the grid itself (the margin is excluded) and
locate the caret on the grid in the current row far left or far right.

ACR-View IEC PLC Tools 41

Parker Hannifin

Ctrl+Pos1 and Ctrl+End
Ctrl+Pos1 and Ctrl+End refer only to the grid itself (the margin is excluded)
and locate the caret at the upper left or lower right corner of the grid. I.e.
Ctrl+Pos1 in FBD jumps to the upper left corner of the first network and
Ctrl+End to the lower right corner of the last network.

Page Up and Down
By using Page Up/Down, the visible clip is always aligned to the top edge
of a grid cell. It is scrolled only by the number of visible grid cells.

Automatic Post Scrolling
While navigating, the visible clip shall always be scrolled in that way, that
the caret (plus a certain amount of tolerance) is visible.

Revoking the Selection
The usage of the <ESC> key revokes the current selection but doesn't
change the position of the caret.

Selecting Multiple Elements
By using <CTRL>+<LEFT/RIGHT/UP/DOWN>, multiple elements can be
selected. Still, only consistent and valid selections are permitted. (for
example,: blocks and border line connectors cannot be selected at the
same time)

Attention: While working with the caret, there is no rectangle selection
(rubber band selection) possible!

Inline Edit at the Caret Position
If the caret is located on an element, which is inline editable, the element
will be selected and opened in the inline edit modus as soon as the user
starts to write an alphanumeric sign.

However, if another inline editable element is already selected, that
element, which is currently covered by the caret, is set to the inline edit
modus.

Insertion of Blocks by Keyboard Usage
The insertion of blocks by keyboard works according to the following
procedure:

Call the choosing block dialog by shortcut.

Chose the block type to be inserted.

Close the choosing block dialog and the insert modus is automatically
activated.

For finally inserting the block, the caret must be moved to the insert
position. Navigation is only allowed between grid cells. The caret will be
shown as described as in Caret in empty grid cells (EVEN if there is a block
in it).

42 IEC61131 User Guide

Parker Hannifin

If the caret is moved to a position at which inserting a block is not allowed,
the caret will change its figure according to properties for exception
situations (see caret properties).

If a valid location for inserting a block was chosen, the block is inserted by
using <SPACE> and the caret is placed on the block field.

If an invalid position was chosen and < SPACE > pressed, an event is sent to
the automation suite that the insert operation was not successful. The insert
operation is aborted and the standard caret is shown.

Moving or Copying Blocks and Margin Connectors by Keyboard
• Blocks can be moved by using

<CTRL>+<SHIFT>+<UP/DOWN/LEFT/RIGHT>. As soon as the
<CTRL>+<SHIFT> keys are released, the insert operation at the current
caret position is made (equivalent to releasing the left mouse button
while moving a block/margin connector by mouse). The figure of the
caret on invalid positions is according to inserting blocks.

• Margin connectors can by moved by using
<CTRL>+<SHIFT>+<UP/DOWN>. As soon as the <CTRL>+<SHIFT> keys are
released, the insert operation at the current position of the caret is
made. (equivalent to releasing the left mouse button while moving a
block/margin connector by mouse). The figure of the caret on invalid
position is according to inserting blocks.

• Copying blocks and margin connectors is made by using copy and
paste. Thereby you can only move between grid cells.

Insert Connections by Keyboard
For inserting a connection by keyboard, two „compoundable elements
(block connectors and/or margin connectors) have to be marked by the
caret. Afterwards a new connection can be inserted by using the shortcut
for the menu „Insert -> Connection.

More comfortable and faster: If the shift key is released while two or more
connectors are selected, which allow a connection, this connection is
inserted automatically.

Keyboard Combinations for Navigating the Caret
Alt + arrow keys : fast navigation for blocks
Ctrl + arrow keys : multiple selection (for example, connectors
or blocks)

eys cks Alt + Ctrl + arrow k : fast multiple selection only for blo
Shift + arrow keys : release the caret from selection
Shift + Alt + arrow keys : release the caret from selection using fast
navigation
Ctrl + shift + arrow keys : moving of blocks or margin connectors

ACR-View IEC PLC Tools 43

Parker Hannifin

44 IEC61131 User Guide

Com

ber of blocks that can be placed

hy chart. Compound Blocks are a

ted

ompound Block are not visible to the

e
und Block is being invoked.

und
 delete blocks, rewire connections,

add, modify or delete connections leaving or entering the Compound

tor of a Compound Block is
 can easily distinguish a

ges.

 and outputs to the
ntents later using the already provided

to a Compound Block:

• CFC-Editor will prompt you to verify you want to convert the blocks to a
Compound Block.

pound Blocks

Compound Blocks Introduction
Compound Blocks are a way to structure your application.

The work area of the CFC-Editor is limited to one page width. By selecting
the paper size, you determine the num
horizontally. Vertically, a function chart can grow unlimited.

Although in fact you are not limited in the length of your CFC chart, it is
easy to loose overview on a too lengt
means to finer structure your application, hiding groups of logically rela
blocks inside one `Compound Block`.

Signals between the blocks inside a C
outside. Outside a Compound Block, only those signals are visible that
enter or leave the Compound Block.

On screen, double-click the Compound Block to see it's contents. Use
`View > Level up` or in the toolbar to get back to the location where th
Compo

Compound Blocks can be nested, i.e. inside a Compound Block you can
define, or use, other com pound blocks. The contents of a Compo
Block can be edited, you can add or

Block.

On screen, the last input and output connec
shorter than any other con nector, so you
Compound Block from other Blocks.

Create Compound Block
To create a new, empty Compound Block,

• Select `Insert > Compound block...`

• The mouse cursor chan

• Click the mouse where you want to insert the new Compound Block.

You can now fill the Compound Block first, by double-clicking and editing it
just like any other function chart. Or, add inputs
Compound Block first, editing its co
inputs and outputs then.

Whenever you run out of space on a chart, or think readability would be
increased by more hierarchically grouping, you can collapse some of your
already wired blocks in

• Have the Block(s) selected.

• Select `Insert > Compound block...`

Parker Hannifin

ACR-View IEC PLC Tools 45

• The selected Blocks will be removed from the chart and replaced by a
Compound Block. All signals between these blocks will be moved with

 Blocks, all signals to other blocks will be kethe pt and changed to
interface signals of the Compound Block.

Note: Currently there is no support for reverting the process of converting
a group of blocks to a compound block.

Adding Input or Output to Compound Block
You can edit the contents of a Compound Block just like any other function

 you need to provide additional inputs, or need to provide

e left side
as an input, one on the right side as an output.

 last input or output
th,

 block inside the compound block to the left or

x

rk the items ´CFC-Connector´ and ´Compound block connector´
ose the dialog box by clicking ´OK´.

up by clicking the appropriate symbol you see that
connector has been added to the compound

block.

chart. When
additional outputs, you need to change the interface of the Compound
Block accordingly. You can do this from the surrounding (top-down) or from
within the Compound Block (bottom-up).

Top-Down
1. Any Compound Block has one very last connector which is shorter

than the others. This is always the last connector, one on th

2. Wire this
3. As soon as you use this last connector, it will be shown in full leng

and another shorter connector will be added to the end.

Bottom-Up
1. Double-click a compound block you want to add a connector.
2. Wire a connection of a

right margin bar (depending whether you want create an in- or
output)

3. Click right on the connector and open the ´Properties...´ dialog bo
via the context menu.

4. Ma
name it and cl

If you go one level
another shorter unused

IEC PLC Debug

Introduction
Test and Commissioning is the tool to maintain all online operation of ACR-

your

Start
Test and Commissioning supports three different ways of starting the
application: "Cold Start" will reset all variables to their initial value, "Hot

View. Use the T+C to monitor the value of variables, to start and stop
controller, and to change online blocks while running the application.

and Stop

Parker Hannifin

46 IEC61131 User Guide

Start" will not reset any variable, while a "Warm Start" will re-initialize only

Watc
 know which values the variables
 Therefore, we have the possibility to

nge to the Resource-Pane.

anently
a

ave three possibilities as well. Mark

 `Edit`.

k on an array variable opens a dialog where you should enter
u want to watch. Indexes for multi-dimensional arrays have to

Set V

 specific values. Mark the variable in the T+C, and select the
→ Set variable`, or click directly on the variable in the T+C.

bles

Force

d, the value will be reset to the
value specified at the end of each cycle (before writing to the outputs).
Forcing is controlled by three buttons labelled "set", "enable force" and
"disable force" in the variable set dialog:

those variables which are not declared RETAIN.

h Variables
During a program test, it is important to
have, or which value produce an error.
watch variables.

• Cha

• Open the branch of the task the variables you want to watch belong
to.

• Double click on the variable which you want to watch.

The variable appears in the IEC PLC Debug window where instance path,
type, value, and status are displayed. These variables are perm
updated during the program execution on the PLC. If ACR-View can't get
value for a variable from the runtime system (for example, the variable is
not available in the currently running program), a "-!-" is shown

To remove variables from the list you h
the variable by clicking it with the left mouse button then: click on the
corresponding symbol in the toolbar or use the `del`-key or select the item
Remove Variable in the menu

Double clic
the index yo
be comma separated.

ariables
To influence the behavior of your control program for test cases, you can
set variables to
menu item `PLC
Enter the new value and accept by `Set`-button. See also Force Varia

 Variables
Besides watching and setting values of variables, ACR-View supports
"forcing" of variables. If a variable is force

Parker Hannifin

In the column "Force" of the IEC PLC Debug window, ACR-View will display
if a variable is currently forced or not.

The action performed when pressing OK depends on which of the three
buttons "set", "enable force" and "disable force" is selected:

if the variable is currently not forced, "set" will once set the variable to the
value specified. If the variable is modified by the application, this might
have a very short effect only. "enable force" will force the variable to the
value specified, i.e. set the variable to the specified value at the end of
each cycle, "disable force" will have no effect

if the variable is currently forced, "set" will disable forcing for this variable
and set the variable once to the value specified, "enable force" will
continue to force the variable, but with the value specified now, "disable
force" will not set the variable, but only disable forcing for the variable

Please note the following:

• Forcing only resets the variable at the end of each cycle.
Modifications during one cycle are possible and not prevented.

• Forcing is not restricted to directly represented variables (AT %…)

• Removing a variable from the watchlist will automatically disable
forcing this variable

Working with Watchlists
The Test & Comissioning's list of variables can be saved to a so-called
Watch List file. This allows for switching between different Watch Lists while
being online.

There is always a default Watch List file with the name <name of your
resource>.WL in the project root directory.

While online, a Watch List is saved through the main menu command: SPS -
> Save Watch List As…

ACR-View IEC PLC Tools 47

Parker Hannifin

The saved Watch List will then show up in the Browser's File pane. After
saving, all subsequent modifications of the variable list will be stored in this
Watch List.

To restore a different saved Watch List simply open it by double-clicking it in
the Browser. Or by choosing File->Open while the Watch List is selected in
the Browser.

An empty Watch List can be created by selecting File->New / Others /
Watch List.

Documentation

Cross-Reference
See also Cross-Reference (per variable) and CFC Cross-reference.

To create a cross reference list for your project, right-click the active
resource and select "crossreference list…" from the context menu.

A preview of the cross reference will be displayed, which can either be
viewed and navigated online, or printed.

Cross-Reference (per variable)
Use Cross-Reference list for visualising Cross-Reference information.

Print IEC61131 Configuration
In order to get a printed documentation of the configuration of your
resource and tasks, select the configuration in the Browser's resource view
an choose "Print Configuration" in the context-menu.

CFC Cross Reference
The CFC cross-reference is a valuable aid in debugging and understanding
execution of CFC charts.

The ACR-View standard cross-reference is of limited use to CFC
programmers, as most symbols listed in that cross-reference will be symbols
which names have been created automatically by the CFC Editor and
have no meaning to the programmer.

To create the CFC cross-reference, select File --> Crossreference, or print
the chart to see the cross-reference on paper. The cross-reference stored in
file is less legible, but better suited to automatic post-processing with third
party tools (like grep, awk).

The CFC cross-reference is listed in the form:

source: name [chart] page line

destination1: name [chart] page line

destination2: name [chart] page line

where

48 IEC61131 User Guide

Parker Hannifin

ACR-View IEC PLC Tools 49

• source is a name on the right margin bar, i.e., designs a signal leaving
one compound block

• destination is a name on the left margin bar, i.e. designs a signal
entering a compound block

• name is the variable name automatically generated by the CFC
editor for that signal. Use that name to find this signal in the IEC and
PLC Debug Tool to monitor the value of that signal.

• chart is a path of names of compound blocks. Use that to find the
location either in CFC-Editor by opening one sub-compound block
after the other in the specified order, or by locating the printed chart
via the table of contents.

• page is the page of the printout, where the corresponding

n of the connection at the block corresponding to

rce/destination, refer to the file stored if you

 there maybe more
They have the following form:

e{scope}: …

n section of the variable.

UB), to add 23 to
one input variable, then subtracting one from the result:

source/destination is found.

• line is the positio
the marginbar.

The entries are sorted by sou
need other sort sequences.

Note: If IEC61131-variables are used as connectors,
than one sourceline.

varnam

where

• varname is just the name of the variable.

• scope is represents the declaratio

CFC Cross Reference sample
We use a small sample to demonstrate the CFC cross reference.

Set up a small CFC program, using two blocks (ADD and S

r all margin bar
entries. If you open all blocks, the result will look like that:

Now move block ADD into a compound block A and block SUB into a
compound block C. Open block A and move ADD further down into a new
compound block B. Open block C and move the SUB block further down
into a new compound block D. Enter reasonable names fo

Parker Hannifin

With this small sample, output of the CFC cross-reference will look like this:
B_Out: FCT_10_10_10_1_ADD_OUT [SAMPLE.chart 1.Block A.Block B] page 4 line 5

 D_1: FCT_10_30_10_1_SUB.IN0 [SAMPLE.chart 1.Block C.Block D] page 6 line 5

B_Out: FCT_10_10_10_1_ADD_OUT [SAMPLE.chart 1.Block A.Block B] page 4 line 5

 D_1: FCT_10_30_10_1_SUB.IN0 [SAMPLE.chart 1.Block C.Block D] page 6 line 5

In1{VAR}:

 B_1: FCT_10_10_10_1_ADD.IN0 [SAMPLE.chart 1.Block A.Block B] page 4 line 5

in2{VAR}:

 B_2: FCT_10_10_10_1_ADD.IN1 [SAMPLE.chart 1.Block A.Block B] page 4 line 6

With this, the following questions are easily answered:

Looking at the ADD block: where does this output signal go to? Find the
name of the output signal, B_Out. See cross-reference to find it goes to
nameD_1 in block chart1.BlockC.BlockD.

looking at the SUB-block: where does the input signal come from? Find the
name of the input signal D_1, locate D_1 in the cross-reference and find it

50 IEC61131 User Guide

Parker Hannifin

comes from B_Out. (as the list is sorted by source names, this is easier to find
by opening the file with some editor than by looking at the printed cross-
reference)

How can I monitor that signal entering the SUB-block online? Find the name
of the SUB-blocks input in the margin bar (D_1), locate that in the cross-
reference and read the name of the IEC61131-variable associated to it
(FCT_10_30_10_1_SUB.IN0). Find that variable in the Browser's instance tree
and double click it to have it added to the watch list.

Print Form
All ACR-View tools support forms for printing, and will automatically use the
currently "active" print form. To change the active print form, choose
Project > Settings > Set active form. You can now choose an available print
form (*.wmv).

Active Document Server
ACR-View contains an Active Document Server Interface, this means that
all registred active documents are supported by ACR-View, can be
opened by ACR-View and can be edited by ACR-View.

When opening such a file, the document is opened in the editor window
part of ACR-View as in the figure below.

Attention: Depending on the system configuration and installed
applications with active document server, the files that can be edited by
ACR-View may vary from PC to PC.

ACR-View IEC PLC Tools 51

Parker Hannifin

Warning: If the active document server is not stable, this will also
lead to an unstable performance of ACR-View.

Libraries

Library Overview
Libraries are collections of functions and function blocks that can be re-
used over different ACR-View projects.

Working with libraries involves several steps: a library is first created, pretty
much like any other ACR-View project. If creator and user are different, it is
then distributed via Floppy Disk, CD-ROM, or Internet, and made available
to the user. The user will install the library, i.e. transfer the library to his own
PC. To use a library with an ACR-View project, the library has to be added
to this project, this making the contents of the library available for use.

To get rid of a library within a project, the library can be removed form this
project. This can be necessary if a different implementation of the same
library should be used instead.

To remove a library completely from a PC, the library can be uninstalled.
This can be necessary if the library should be used on a different PC and
licensing conditions require it to be removed prior.

The following chapters will give a sample on how to do a library of your
own.

Create a Library
To create a library, proceed just like creating any normal ACR-View
project. Be sure to perform a syntax check when finished creating POUs
(functions or function blocks) in your library project.

Example
Start the Browser and create a new project named `MyLib` using Project > New...
Create a function block named `det_edge` (for edge detection): New >
Functionblock > IL. Implement this function block as shown below:
VAR_INPUT
 input : BOOL ;
END_VAR
VAR_OUTPUT
 output : BOOL ;
END_VAR
VAR
 tempvar : BOOL ;
END_VAR
LD input
ANDN tempvar
ST output
LD input
ST tempvar

Invoke a syntax check with File > Syntaxcheck .

52 IEC61131 User Guide

Parker Hannifin

Install a Library
Before you can use a library, you have to install it on your PC. Use Project >
Library > Install New…

Use the `browse`-button to locate the .VAR file representing your project. If
you created the library yourself, this will be in the directory you specified
when creating the library project with Project > New.... If you received the
library on a disk, this can be something beginning with `A:\`. During
installation, the library project will be copied into a sub-directory of
<windows>\ openpcs.500\Lib.

Example
Create a new project in the Browser using Project > New.... Name that new
project `TEST`.

Select Project > Library > Install New....

Now use the browse-button to locate the MyLib-project you created just
before and press `Ok`.

Adding a Library to a Project
After installation, all files needed for the library will be present on your
computer. But the functions and function blocks in that library will not be
automatically available in your projects. You have to `add` the library to
the project first using Project > Library > Use in current project.

Example
Mark the Library "MyLib" in the Library-Pane and select Project > Library >
Use in current project .

Create a new POU of type PROGRAM, named `main`. Select Insert >
Functionblocks.... to see your library functions. To use your function block
DET_EDGE, implement program `main` as shown below:
VAR
 sig1 AT %I0.0 : BOOL ;
 anEdge : DET_EDGE;
 count : UINT ;
END_VAR

CAL anEdge (
 input := sig1
 |
 :=output
)
LDN anEdge.output
JMPC ende

LD count
ADD 1
ST count

ende:

Compile that program, add it to a resource of your choice and execute it.
Change input %i0.0 and see variable count incremented.

ACR-View IEC PLC Tools 53

Parker Hannifin

Uninstall Library
If you want to get rid of a library installed on your PC, make sure the library
is not used any more, mark it and select Project > Library > Uninstall. In the
dialog shown, select the library to get rid of and press OK.

Example
Mark the Library "MyLib" in the Library-pane.

Select Project > Library > Uninstall. In the dialog, select <Windows>\
openpcs.500\MyLib`.

Press OK, and `MyLib` is no longer available as a library.

IEC61131-3

IEC61131-3 Details

Character String Literals
A string constant is sequence of characters enclosed in ‘’’. Special
characters can be embedded within a character string literal by using
escape sequences starting with the $ sign, as listed in the following table:
Predefined character
constants

Meaning

 '$''’ The Apostrophe ‘’’

 '$$' The $ sign itself

 '$L' or '$l' Line Feed

 '$N' or '$n' New Line

 '$P' or '$p' Form Feed

 '$R' or '$r' Carriage Return

 '$T' or '$t' Tabulator

Example
Character Constant Meaning and Length

 'A' Single character A, length=1

 ' ' Blank character, length=1

 '' No character, length=1

'RL' Carriage Return, Line Feed,
length=2

 '$0D$0A' Carriage Return, Line Feed,
length=2

54 IEC61131 User Guide

Parker Hannifin

Maximum String Length
Each string is delimited by a maximum length. The default maximum length
of a string is 32 characters. It can be changed setting an individual
maximum string length in round brackets immediately after the keyword
STRING.

The maximum string length can be set to all values from 0 to 251. However
this may differ at other hardwares.

Examples
TYPE
 name: STRING(15) := 'John Q. Public'; (*maximum string length 15*)
 address: STRING(50) := 'Main Street 1, 12345 Springfield, ???'; (*maximum
string length 50*)
END_TYPE

VAR
 user: name; (*maximum string length 15*)
 id: string(8) := '12345678'; (*maximum string length 8*)
 phone : STRING; (*maximum string length 32*)
END_VAR

Constants
Within a literal constant, underscores are allowed to increase readability.
Such underscores have no meaning regarding the value of a constant.
Literal constants for some data types require a special prefix.

Constant
Data Type

Example Meaning

INT -13

45165 or 45_165
+125

Integer -13

Integer 45165 (both)
Integer 125

REAL -13.12

123.45
0.123
-1.23E-3

Real -13,12

Real 123,45
Real 0,123
Real -0,00123

Dual number 2#0111_1110 or 126 126

Octal number 8#123 or 83 83

Hexadecimal

number

16#123 or 291 291

BOOL 0 and 1

TRUE and FALSE

Boolean TRUE and FALSE

values

STRING 'ABC' Character string ABC

WSTRING ABC" 2-byte-character string ABC

TIME T#12.3ms or

TIME#12.3ms

Time duration of 12,3

milliseconds

 T#12h34m or

T#12h_34m

Time duration of 12 hours

and 34 minutes

 T#-4m Negative time duration of 4

minutes

ACR-View IEC PLC Tools 55

Parker Hannifin

56 IEC61131 User Guide

Constant
Data Type

Example Meaning

DATE DATE#1995-12-24 or
D#1995-12-24

Date 24.12.1995

TIME_OF_DAY TOD#12:05:14.56 or
TIME_OF_DAY#12:05:14.56

12 hours05 minutes and
14,56 seconds PM

DATE_AND_TIME DT#1995-12-24-12:05:14.56 or
DATE_AND_TIME#1995-12-24-
12:05:14.56

Date and time: 12 hours05
minutes and 14,56 seconds
PM on 24.12.1995

Literal constants of data types TIME, DATE and DATE_AND_TIME uses
keywords plus a hash sign "#". The keywords can be written in long (for
example, DATE_AND_TIME) or short form (for example, DT).

Note: DATE, TIME_OF_DAY and DATE_AND_TIME are currently not supported
by ACR-View.

See also Elementary Data Types

Single Bit Access
With ACR-View, each individual bit of BYTE or WORD variable can be
accessed by writing the bitnumber, separated by a dot, after the variable
name

Example
PROGRAM Only_1_Bit
VAR
 Bitpattern1 : BYTE := 2#10101010;
 Bitpattern2 AT %IW0.0 : WORD;
END_VAR
LD Bitpattern2.15 (* Copy bit 15 *)
 ST Bitpattern1.0 (* into bit 0 *)
 .
 .
END_PROGRAM

Please note that this feature might not be available on all hardware
platforms for all data types due to implementation restrictions.

Passing Output Parameters
IEC61131 defines two ways of passing parameters. ACR-View provides, as a
legal extension to IEC61131, a means to directly pass output parameters.
You can pass output parameters within the line of the CAL instruction by
using a vertical slash "|" instead of a comma, and giving the actual
parameter on the left side of the assignment:

Example
CAL SR_Instance_1(SET1 := On,
 RESET := Off
 |
 Result := Q1)

Parker Hannifin

Nested Comments
Comments may be nested, which eases out-commenting of entire program
sections which should contain comments on their own.

Block Type: Program, Function, Function Block
A program in ACR-View has the following characteristic properties, as
defined by IEC61131: Only the program is allowed to declare variables to
be mapped to physical addresses; A program is allowed to call functions
and instances of function blocks.

A function block, as defined by IEC61131, has the following characteristic
properties: It may have one, more than one, or no inputs; It may have one,
more than one, or no outputs; Multiple instances can be created of a
function block, and each instance will keep a private copy of all data
associated with that function block (input, output, intermediate data); a
func tion block cannot be called, only instances can be called. The
function block has a `memory`, i.e. all data (input, output, local) will keep
it's value from one call to the next. On a call, it is not necessary to supply all
input data; those not provided will simply keep the value from the previous
call (or the default value if there was no call before). A function block can
call functions and instances of other function blocks.

A function, as defined by IEC61131, has the following characteristic
properties: It has one or more inputs (but no input is not allowed); It has
exactly one output value (which may be a structure); A function has no
`memory` from one call to the next, and it will return always the same out
put when given the same inputs. On every call to a function, all inputs have
to be supplied. A function may use local variables for intermediate storage,
but the value of these local vari ables will not be kept from one call to the
next. A function may call other functions, but it is not allowed to call
instances of function blocks.

IEC61131-3 Compliance Statement

Compliance Statement
The following tables have the same numbering as those in the IEC61131-
3/EN 61131-3 standard. Tables showing features not yet supported by this
version of ACR-View are not listed. Some tables in IEC61131-3 do not
contain features, so missing table numbers do not necessarily imply missing
features. To understand this document, you will want to consult IEC61131-3.

This version of ACR-View complies with the requirements of IEC61131-3, for
the following language features:

No. Description Yes No

1 Required character set x

2 Lower case x

3a

3b

Number sign (#)
or
Pound sign (£)

x

x

ACR-View IEC PLC Tools 57

Parker Hannifin

58 IEC61131 User Guide

No. Description Yes No

4a

4b

Dollar sign ($)

or
Currency sign

x

x

5a

5b

Vertical bar (|)

or
Exclamation mark (!)

x

x

6a

6b

Subscript delimiters:

brackets []
or
parentheses ()

x

x

Table 1: Character Set Features

No. Description Yes No

1 Upper case and numbers x

2 Upper and lower case, numbers, embedded
underlines

x

3 Upper and lower case, numbers, leading or
embedded underlines

x

Table 2: Identifier Features

No. Description Yes No

1 Comments x

Table 3: Comment Features

No. Description Yes No

1 Integer literals x

2 Real literals x

3 Real literals with exponents x

4 Base 2 literals x

5 Base 8 literals x

6 Base 16 literals x

7 Boolean zero and one x

8 Boolean FALSE and TRUE x

Table 4: Numeric Literals

Parker Hannifin

No. Description Yes No

1 Empty string (length zero)

String of length one containing the single character
A

String of length one containing the `space`
character

String of length one containing the `single quote`
character

String of length two containing CR and LF

String of length five which would print as `$1.00`

x

x

x

x

x

x

Table 5: Character String Literal Features

No. Description Yes No

2 Dollar sign ($$) x

3 Single quote ($´) x

4 Line feed ($L or $l) x

5 New line ($N or $n) x

6 New page ($P or $p) x

7 Carriage return ($R or $r) x

8 Tab ($T or $t) x

Table 6: Two Character Combinations in Character Strings

No. Description Yes No

1a
1b

Duration literals without underlines:

Short prefix
Long prefix

x
x

2a
2b

Duration literal with underlines

Short prefix
Long prefix

x
x

Table 7: Duration Literal Features

No. Description Yes No

1 Date literals (long prefix: DATE#) x

2 Date literals (short prefix: D#) x

3 Time of day literals (long prefix: TIME_OF_DAY#) x

4 Time of day literals (short prefix: TOD#) x

ACR-View IEC PLC Tools 59

Parker Hannifin

60 IEC61131 User Guide

No. Description Yes No

5 Date and time literals

(long prefix: DATE_AND_TIME#)

 x

6 Date and time literals (short prefix: DT#) x

Table 8: Date and Time of Day Literals

No. Keyword Data type Yes No

1 BOOL Boolean x

2 SINT Short integer x

3 INT Integer x

4 DINT Double integer x

5 LINT Long integer x

6 USINT Unsigned short integer x

7 UINT Unsigned integer x

8 UDINT Unsigned double integer x

9 ULINT Unsigned long integer x

10 REAL Real numbers x

11 LREAL Long real numbers x

12 TIME Duration x

13 DATE Date (only) x

14 TIME_OF_DAY
or
TOD

Time of day (only) x

15 DATE_AND_
TIME or TD

Date and time x

16 STRING Variable-length character string x

17 BYTE Bit string of length 8 x

18 WORD Bit string of length 16 x

19 DWORD Bit string of length 32 x

20 LWORD Bit string of length 64 x

Table 9: Elementary Data Types

No. Description Yes No

1 Direct derivation from elementary types x

2 Enumerated data types x

3 Subrange data types x

4 Array data types x

5 Structured data types x

Table 10: Data Type Declaration Feature

Parker Hannifin

Description Initial value Yes No

BOOL, SINT, INT DINT, LINT, 0 x

USINT, UINT, UDINT, ULINT 0 x

BYTE, WORD, DWORD, LWORD 0 x

REAL, LREAL 0.0 x

TIME T#0s x

DATE D#0001-01-01 x

TIME_OF_DAY TOD#00:00:00 x

DATE_AND_TIME DT#0001-01-01-
00:00:00

 x

STRING `(the empty string) x

Table 11: Default Initial Values

No. Description Yes No

1 Initialization of directly derived types x

2 Initialization of enumerated data types x

3 Initialization of subrange data types x

4 Initialization of array data types x

5 Initialization of structured data types x

6 Initialization of derived structured data types x

Table 12: Data Type Initial Value Declaration Features

No. Description Yes No

1 I: Input location x

2 Q: Output location x

3 M: Marker location x

4 X: (Single) bit size x

5 None: (Single) bit size x

6 B: Byte (8 bits) size x

7 W: Word (16 bits) size x

8 D: Double word (32 bits) size x

9 L: Long word (64 bits) size x

Table 13: Location and size prefix features for directly represented variables

Keyword Yes No

VAR x

VAR_INPUT x

VAR_OUTPUT x

ACR-View IEC PLC Tools 61

Parker Hannifin

62 IEC61131 User Guide

Keyword Yes No

VAR_IN_OUT x

VAR_EXTERNAL x

VAR_GLOBAL x

VAR_ACCESS x

RETAIN x

CONSTANT x

AT x

Table 14: Variable keywords for variable declaration

No. Description Yes No

1 Declaration of directly represented, non-retentive
variables

x

2 Declaration of directly represented, retentive
variables

x

3 Declaration of locations of symbolic variables x

4 Array location assignment x

5 Automatic memory allocation of symbolic variables x

6 Array declaration x

7 Retentive array declaration x

8 Declaration of structured variables x

Table 15: Variable type assignement features

No. Description Yes No

1 Initialization of directly represented, non-retentive
variables

 x

2 Initialization of directly represented, retentive
variables

 x

3 Location and initial value assignment to symbolic
variables

 x

4 Array location assignment and initialization x

5 Initialization of symbolic variables x

6 Array initialization x

7 Retentive array declaration and initialization x

8 Initialization of structured variables x

9 Initialization of constants x

Table 16: Variable initial value assignment features

Parker Hannifin

ACR-View IEC PLC Tools 63

No. Description Yes No

1 Negated input x

2 Negated output x

Table 17 Graphical negation of Boolean signals

No. Description Yes No

1 Use of EN and ENO x

2 Use of EN and ENO x

3 FBD without EN and
ENO

x

Table 18: Use EN input an ENO output

No. Description Yes No

1 Overloaded functions (non type-dependent) x

2 Typed functions x

Table 19: Typed and overloaded functions

No. Description Yes No

1 *_TO_** x

2 TRUNC x

3 BCD_TO_** x

4 *_TO_BCD x

Table 20: Type conversion function features

Comment:

If you are using TIME-values, only TIME_TO_DINT and DINT TO_TIME are
implemented. Other TIME-cast-functions are only available within the
Ladder-Diagram-Editor.

For no. 1, (*) is the input variable data type and (**) is the output variable
data type. The following data types are supported:

• BOOL

• BYTE

• DINT

• DWORD

• INT

• REAL

• SINT

• STRING

Parker Hannifin

64 IEC61131 User Guide

• TIME

• UDINT

W

• UINT

• ORD

No. Description Yes No

1 ABS x

2 SQRT x

3 LN x

4 LOG x

5 EXP x

6 SIN x

7 COS x

8 TAN x

9 ASIN x

10 ACOS x

11 ATAN x

Table 21: Standard fu of one nume iable

nctions ric var

No. Name Symbol Yes No

12 ADD + x

13 MUL * x

14 SUB - x

15 DIV / x

16 MOD x

17 EXPT x **

18n MOVE x

18s := x

Ta 2: etic st rd f s

ble 2 Arithm anda unction

No. Name Yes No

1 SHL x

2 SHR x

3 ROR x

4 ROL x

Ta 3: rd bit fun s

ble 2 Standa shift ction

Parker Hannifin

ACR-View IEC PLC Tools 65

No. Name Yes No

5 AND x

6 OR x

7 XOR x

8 NOT x

Ta e 24: ise Boo n functions

bl Standard bitw lea

No. Name Yes No

1 SEL x

2a MAX x

2b MIN x

3 LIMIT x

4 MUX x

Ta e 25: dard sel ion functions

bl Stan ect

No. Name Yes No

5 GT x

6 GE x

7 EQ x

8 LE x

9 LT x

10 NE x

Ta e 26: ard com ison tions

bl Stand par func

No. Name Yes No

1 LEN x

2 LEFT x

3 RIGHT x

4 MID x

5 CONCAT x

6 INSERT x

7 DELETE x

8 REPLACE x

9 FIND x

Ta e 27: ard cha

bl Stand racter string functions

Parker Hannifin

66 IEC61131 User Guide

No. Name Operation Yes No

1

2

3

ADD x TIME + TIME = TIME

TOD + TIME = TOD

DAT + TIME = DAT

x

x

4

5

6

7

8

9

SUB

E

x

TIME - TIME = TIME

DATE - DATE = TIM

TOD - TIME = TOD

TOD - TOD = TIME

DAT - TIME = DAT

DAT - DAT = TIME

x

x

x

x

x

10 MUL

DIV

IME * ANY_NUM = TIME x

11

T

TIME / ANY_NUM = TIME x

12 CONCAT DATE TOD = DAT x

 Type conversion

 functions

A TIME_TO_TIME_OF_DAY

A TIME_TO_DATE

x

x

13

14

DATE_

DATE_

ND_

ND_

Table 28: tions o me data types

 Func f ti

No. Name Yes No

1 SR x

2 RS x

3 SEMA x

Ta e 29: ard bis ble fun on blocks

bl Stand ta cti

No. Name Yes No

1 SEL x

2 MUX x

3 EQ x

4 NE x

Ta e 30:

bl Functions of enumerated data types

No. Description Yes No

1 RETAIN qualifier on internal variables x

2 RETAIN qualifier on output variables x

3 RETAIN qualifier on internal function blocks x

4a Input/output declaration (textual) x

4b Input/output declaration (graphical) x

5a Function block instance name as input (textual) x

5b ck instance name as input (graphical) x Function blo

Parker Hannifin

ACR-View IEC PLC Tools 67

No. Description Yes No

6a Function block instance name as input/output

(textual)

 x

6b Function block instance name as input/output

(graphical)

 x

7a name as external variable Function block instance

(textual)

 x

7b Function block instance name as external variable

(graphical)

 x

8a

8b

f

- falling edge inputs

x

x

Textual declaration o

- rising edge inputs

 Graphical declaration of

9a - rising edge inputs

g edg uts

x

x 9b - fallin e inp

Table 31: bloc claration features

 Function k de

No. Name Yes No

1 R_TRIG x

2 F_TRIG x

Table 32: ec ion function blocks

 Standard edge det t

No. Name Yes No

1 R_TRIG x

2 F_TRIG x

Tab 3: r function bloc

le 3 Standard counte ks

No. Name Yes No

1 TP (Pulse) x

2a TON (on-delay) x

2b T---0 (on-delay) x

3a TOF (off-delay) x

3b 0---T (off-delay) x

4 RTC (real-time clock) x

Table 34:

 Standard timer function blocks

Parker Hannifin

68 IEC61131 User Guide

No. Description Yes No

1 RETAIN qualifier on internal variable x

2 RETAIN qualifier on output variable x

3 alifier on internal function blocks x RETAIN qu

4a Input/output declaration (textual) x

4b Input/output declaration (graphical) x

5a lock instance name as input (textual) Function b x

5b Function block instance name as input (graphical) x

6a ck instance name as input/output x Function blo

(textual)

6b Function block instan

(graphical)

ce name as input/output x

7a me as external variable Function block instance na

(textual)

x

7b Function block instance name as external variable

(graphical) x

8a ge inputs x
 8b

Textual declaration of:

- rising ed
- falling edge inputs

x

9b

declaration of:

- falling edge inputs

x

9a

Graphical

- rising edge inputs x

10 Formal input and output parameters x

11 n of directly represented, non-retentive

variables

x Declaratio

12 n of directly represented, retentive

variables

x Declaratio

13 n of locations of symbolic variables x Declaratio

14 Array location assignment x

15 Initialization of directly represented, non-retentive

variables

 x

16 ted, retentive

variables

x Initialization of directly represen

17 ment to symbolic

variables

 x Location and initial value assign

18 Array location assignment and initialization x

19 Use of directly represented variables x

20 VAR_GLOBAL .. END_VAR

in a PROGRAM Declaration with

x

21 AR

ithin a PROGRAM

 VAR_ACCESS .. END_V

Declaration w

x

Table 35: Program declaration features

Parker Hannifin

ACR-View IEC PLC Tools 69

No. Description Yes No

1 Step graphical

Initial step graphical

x

x

2 Step textual

tual

 x

x Initial Step tex

3a Step flag general form x

3b Step flag - direct connection of boolean variable x

4 x Step elapsed time

Ta e 36:

bl Step features

No. Description Yes No

1 Transition condition using ST languageFehler!

Textmarke nicht definiert.

 x

2 Transition condition using LD language x

3 Transition condition using FBD language x

4 Use of connector x

4a n using LD languageFehler! Transition conditio
Textmarke nicht definiert.

 x

4b Transition condition using FBD language x

5 Textual transition in ST x

6 Textual transition in IL x

7 Transition name x

7a Transition condition using LD language x

7b Transition condition using FBD language x

7c Transition condition using IL language x

7d Transition condition using ST language x

Ta 37:

ble Transitions and Transition conditions

No. Description Yes No

1 boolean variable as action x

2l graphical declaration in LD language x

2s inclusion of SFC elements in action x

2f graphical declaration in FBD language x

3s textual declaration in ST language x

3i graphical declaration in IL language x

Ta e 38:

bl Declaration of actions

Parker Hannifin

70 IEC61131 User Guide

No. Description Yes No

1 action block x

2 concatenated action blocks x

3 textual step body x

4 action block `d` field x

Table 39: ssociation

 Step/action a

No. Description Yes No

1 qualifier as per 2.6.4.4 x

2 action name x

3 boolean indicator variables x

4 IL language x

5 ST language x

6 LD language x

7 FBD language x

8 action blocks in ladder diagrams x

9 action block in function block diagrams x

Ta e 40: Act res

bl ion block featu

No. Description Yes No

1 None x

2 N (non-stored) x

3 R (overriding reset) x

4 S (set stored) x

5 L (time limited) x

6 D (time delayed) x

7 P (pulse) x

8 SD (stored and time delayed) x

9 DS (delayed and stored) x

10 SL (stored and time limited) x

Table 41:

 Action qualifiers

No. Description Yes No

1 single sequence x

2a divergence of sequence selection (left-to-right) x

2b divergence of sequence selection (with priorities) x

2c divergence of sequence selection (with mutual x

exclusion)

3 Convergence of sequence evolution x

Parker Hannifin

ACR-View IEC PLC Tools 71

No. Description Yes No

4 simultaneous sequence divergence x

5 simultaneous sequence convergence x

5a sequence skip (left-to-right) x

5b sequence skip (with priorities) x

5c sequence ski utu clus x p (with m al ex ion)

6a ence loo eft-to-rig x sequ p (l ht)

6b ence loo ith prior x sequ p (w ities)

6c uence loo (with mutu exclu n) x seq p al sio

7 directional arrows x

Ta e 42: Sequence evol

bl ution

No. Operator Modifiers Yes No

1 LD N x

2 ST N x

3 S
R

 x
x

4 AND N,(x

5 & N,(x

6 OR N,(x

7 XOR (N, x

8 ADD (x

9 SUB (x

10 MUL (x

11 DIV (x

12 GT (x

13 GE (x

14 EQ (x

15 NE (x

16 LE (x

17 LT (x

18 x JMP C, N

19 CAL C, N x

20 x RET C, N

21) x

Table 43: Instruction list (IL) operators

Parker Hannifin

72 IEC61131 User Guide

No. Description Yes No

1 CAL with input list x

2 CAL with load/store of inputs x

3 Use of input operators x

Table 44: block invocation features for IL language

 Function

No. Description Yes No

1 Parenthesation x

2 Function evaluation x

3 Exponentiation x

4 Negation x

5 Complement x

6 Multiply x

7 Divide x

8 Modulo x

9 Add x

10 Subtract x

11 Comparison x

12 Equality x

13 Inequality x

14 Boolean AND x

15 D Boolean AN x

16 lean Exclusive XOR Boo x

17 n OR Boolea x

Ta e 45: Op ors of the ST language

bl erat

No. Description Yes No

1 Assignment x

2 Function block invocation and FB output usage x

3 RETURN x

4 IF x

5 CASE x

6 FOR x

7 WHILE x

8 REPEAT x

9 EXIT x

10 Empty Statement x

Ta e 46: ST language stbl atements

Parker Hannifin

ACR-View IEC PLC Tools 73

No. Description Yes No

1

2

Horizontal lines:

ISO/IEC 646 `minus` character

graphic or semigraphic

x

x

3

4

Vertical lines:

ISO/IEC 646 `vertical line` character

graphic or semigraphic

x

x

5

6

Horizontal/vertical connection:

ISO/IEC 646 `plus` character

graphic or semigraphic

x

x

7

ection:

8

Line crossing without conn

ISO/IEC 646 characters

graphic or semigraphic

x

x

9 ISO/IEC 646 characters

10

te corners:

graphic or semigraphic

x

x

Connected and non-connec

11

12

onnecting lines

6 characters

ic

Blocks with c

ISO/IEC 64

graphic or semigraph

x

x

13

14

646 characters:

ntinuation of a connected line

x

Connectors using ISO/IEC

Connector, Co

graphic or semigraphic

x

Ta e 47: R and block

bl epresentation of lines

No. Description Yes No

1

2

Unconditional Jump

FBD language

LD language

x

x

3 Conditional Jump (FBD language) x

4 Conditional Jump (LD language) x

 Conditional Return

e

5

6

LD languag

FBD language

x

x

7

8

urn

from Function

on Block

Alternative Representation in LD language

x

x

x

 from Functi

Unconditional Ret

Ta 48: ecution control elements

ble Graphic ex

Parker Hannifin

74 IEC61131 User Guide

No. Description Yes No

1 Left power rail x

2 Right power rail x

Table 49: Power rails

No. Description Yes No

1 Horizontal link x

2 vertical link with attached horizontal links x

Ta e 50: Link Elements

bl

No. Description Yes No

1

2

Normally open contact

x

x

 Normally closed contact

3

4

x

x

5

6

Positive transition-sensing contact

x

x

7

8

Negative transition-sensing contact

x

x

Ta e 51:

bl Contacts

No. Description Yes No

1 Coil x

2 Negated Coil x

3 SET (latch) coil x

4 RESET (unlatch) coil x

5 Retentive (Memory) coil x

6 SET retentive (Memory) coil x

7 RESET retentive (Memory) coil x

8 Positive transition-sensing coil x

9 Negative transition-sensing coil x

Table 52: Coils

Parker Hannifin

ACR-View IEC PLC Tools 75

N of d t be used for file able names. The
foll ng names are d for variables les:

ames ata types canno or vari
owi also not allowe and/or fi

Names Not Allowed for
Variables and Files

D

L

N

P

Q

Table 53: Rese mes

rved Na

Clause Parameter Values

1.5.1 ndling procedures see next chapter Error ha

2.1.1 see table 1 above National characters used

2.1.2 Maximum l

Sig ant length identifiers

ength identifiers

nific

6

25

64

2.1.5 Maximum comment length >512

2.2.3.1 nge oRa f values of duration +/- 24,85 days

2.3.1

AY and

+/- 24,85 days

Range of values for variables of
type
TIME

Precision of representation of
seconds
in type

TIME_OF_D
DATE_AND_TIME

-

2.3.3 Maxi
s

array size
number of structure

ion

< 4KB per POU
< 8KB per POU

mum
- number of array subscript
-
-
elements
- structure size
- number of variables per
declarat

6

2.3.3.1 ed B per POU Maximum number of enumerat
values

< 64 K

2.3.3.2 Default maximum length of STRING
variables
Maximum permissible length of
STRING variables

32

253 [see note 1]

2.4.1.1 mber of hierarchical 5 Maximum nu
levels

Logical or physical mapping

2.4.1.2 Maximum number of subscripts -

Parker Hannifin

76 IEC61131 User Guide

Clause Parameter Values

Maximum number of subscript
values

Maximum number of levels of
structures

-

>512

2.4.2 inputs The value of the system

inputs corresponds to
al values

Initialization of system

their physic

2.4.3 number of variables per < 64 KB per POU Maximum

declaration

2.5 n No Information to determine executio

times of program organization
units

2.5.1.1 Method of function representation Textual

2.5.1.3 Maximum number of function

specifications

limited only by available

memory

2.5.1.5 Maximum number of inputs of LD/FBD: unlimited

extensible functions

IL: 2,

2.5.1.5.1 Effects of type conversions on

accuracy

Truncated

2.5.1.5.2 Currently not supported Accuracy of functions of one

variable

Implementation of arithmetic
functions

2.5.2 Maximum number of function
blocks and instantiations

. 8000 ca

2.5.2.3.3 nimum/maximum
f respective data

pe

PVmin, PVmax of counters mi
value o
ty

2.5.3 Program size limitations limited only by available
mory me

2.6 fects of - Timing and postability ef
execution control elements

2.6.2 Precision of step elapsed time

er SFC Maximum number of steps p

-

2.6.3 sitions per - Maximum number of tran
SFC and per step

2.6.4 - Action control mechanism

2.6.4.2 mber of action blocks - Maximum nu
per step

2.6.5 e
aring time

Graphic indication of step stat
Transition cle
Maximum width of
diverge/converge constructs

-

2.7.1 ESOURCE libraries - Content of R

Parker Hannifin

ACR-View IEC PLC Tools 77

Clause Parameter Values

2.7.2 Maximum number of t

T

asks

ask interval resolution

Pre-emptive or non-pre-emptive
scheduling

-

3.3.1 Maximum length of expressions

Part

unlimited

ial evaluation of Boolean
expressions

no

3.3.2 Maximum length of statements Unlimited

3.3.2.3 Maximum number of CASE

s

Unlimited

elections

4.1.1 G ic

representation

R

raphic/semigraph

estrictions on network topology

Graphic

4.1.3 E ack loops valuation order of feedb -

Note 1: ACR- is pa

depending on . If in doubt, consult t
your hardwar

View is highly configurable, so th

 your hardware

rameter may vary

he documentation of
e.

Table 54: Imple nt parameters

mentation-depende

2.3.3.1 Value of a variable exceeds the
specified subrange

Syntax error reported for
initialization in declaration;
ignored at runtime

2.4.2 t doesn't
match the number of array entries

Syntax error Length of initialization lis

2.5.1.5.1 conversion errors Type Ignored

2.5.1.5.2 blocks report
that at ENO, ignored
elsewhere

Numerical result exceeds range
for data type

Division by zero

firmware

2.5.1.5.4 pes to a

r MUX

not supported Mixed input data ty
selection function

Selector (K) out of range fo
function

2.5.1.5.5

eeds

Invalid character position

specified. Result exc
maximum string length

-

2.5.1.5.6

ue (see 2.2.3.1)

Result exceeds range for data

type

Restriction to maximum

val

2.6.2 Zero or more than one initial step

in the SFC network

User program attempts to modify
step state or time

-

2.6.2.5 - Simultaneously true, non-

Parker Hannifin

78 IEC61131 User Guide

2.3.3.1 Value of a variable exceeds the
specified subrange

Syntax error reported for
initialization in declaration;
ignored at runtime

prioritized transitions in a
selection divergence

2.6.3 Side effects in evaluation of
transition condition

-

2.6.4.5 Action control contention error -

2.6.5 achable` SFC - `Unsafe` or `Unre

2.7.1 Data type conflict in VAR_ACCESS -

2.7.2 Tasks require too many processor
resources

Execution deadline not met

Other task scheduling conflicts

-

3.2.2 lt exceeds range Scan via functions Numerical resu
for data type

3.3.1 Division by z

Invalid data t

ero

ype for operation

Syntax error can be
monitored

3.3.2.1 Return fr
value ass

om function without
igned

-

3.3.2.4 Iteration fails to terminate -

4.1.1 Same identifier as connector label -
and element name

4.1.4 Uninitialized feedback variable -

4.1.5 Numerical result exceeds range
for data type

Division by 0

-

Table 55: Error conditions

Online Features

Break

e."
ts are not supported with all targets due to hardware restrictions.

Breakpoints are not saved, so set new breakpoints before starting a newly
ded application.

. When single-stepping,

points
ACR-View supports Breakpoints in textual languages ST and IL. Breakpoints
are currently not supported in Native Code, so set optimzation to "siz
Breakpoin

downloa

If a breakpoint is reached in any one task of the ACR-View application,
execution of all tasks immediately will be stopped
continuing to the next breakpoint, etc., it is undefined and left to the
controller whether other tasks should be executed in the meantime.
Therefore, it is recommended to have one task only when single-stepping
intuitively.

Parker Hannifin

ACR-View IEC PLC Tools 79

Stopping a controller with breakpoints and single-stepping can disable
tion, so

line Change) is a feature whereby program changes are

t and the changes are
rogram is still

xt

t

 the impacts of Online Edit is given

Online Mode, switch an editor to edit mode by PLC->Monitor/Edit

required

 back t r by using Monitor/Edit

• Now you will b mpted to update the controller. Select "Yes" to
 any modifications, recompile the application, and download

ifica to th .

• Select "No" to abort On and to discard all changes (also: no
modifications will be sa

Impact of Changes
Online Edit applies to two co and (firmware) function
blocks.

These are unified under the t tion Units (POUs). A POU
consists of a declaration sec

many of the safety precautions in your controller and your applica
be sure to take appropriate measures so guarantee damage to be
avoided.

Online Edit
Online Edit (or On
applied to the PLC without the need to restart it.

The system should be saved afterward via PLC > Save System… if the
changes should be maintained on the controller. For further Information see
the respective section.

Online Edit consists of the following steps:

• The user starts the application of the changes.

• The compilation process is carried ou
downloaded asynchronously to the controller while the p
being executed.

• Once the download has finished, the changes are applied at the ne
cycle end.

As a restart is not necessary, variable values of program parts that are no
affected by the changes will keep their current values (i.e. they will not be
reset to their initial values). This, however, is dependent on the complexity
of the changes. A detailed description of
below.

To perform an Online Edit, proceed as follows:

• In
(or use toolbar button Monitor/Edit)

• Modify declarations and code in the editor as

• Switch o Monito

e pro

 Mode

save
your mod tions e controller without stopping the program

line Edit
ved to file).

mponents: programs

erm Program Organiza
tion and code section.

Parker Hannifin

80 IEC61131 User Guide

POU Change POU's
Variables
Reset?

Details

Program

 Declaration YES

local variable (VAR section)

It does not apply to:

, VAR_GLOBAL or
VAR_EXTERNAL section)

The program's variables are reset to their initial

values.

This applies to:

global variables (VAR_GLOBAL section)

external variables (VAR_EXTERNAL section)

function block instances (VAR

Since both are external POUs.

 Code NO ges never lead to a reset of any variable
values.
Code chan

Function Block

 Declaration YES A change affects all instances of the function b

lock!

Apart from that, the same as for programs applies:

Local variables of the function block will be reset, while
external variables and sub function block instances will
not be reset.

 Code NO Code changes never lead to a reset of any variable
values.

Resource Global
Declarations

YES

Variables in the VAR_GLOBAL section will be reset.
Again, this does not include globally defined function
block instances (see above).

Functions - Strictly, functions are also POUs. Since they are
stateless, they need not be treated by Online Edit,
however.

Save System
PLC > Save System… writes the complete system persistent on the
controller. This needs to be done if changes were made via online edit.

Error Logs
A detailed Error Log can be uploaded from the controller via PLC > Upload
Error Log. The uploaded file will be named yymmdd_hhmmssErrorlog.txt and
will be stored in the current project directory.

Parker Hannifin

Reference Listings

Keywords (by category)

IEC61131 Standard Function Blocks
ACR-View implements the following function blocks of IEC61131-3:

CTD

CTU

CTUD

F_TRIG

R_TRIG

RS

SR

TOF

TON

TP

IEC61131-3 Standard Functions
ACR-View implements the following functions of IEC61131-3:

ABS

ACOS

AND

ASIN

ATAN

CONCAT

COS

DELETE

EQ

EXP

FIND

GE

GT

INSERT

LE

Reference Listings 81

Parker Hannifin

LEFT

LEN

LIMIT

LN

LOG

LT

MAX

MID

MIN

MOD

MUX

NE

NEG

OR

REAL_TO_*

RIGHT

ROL

ROR

SHL

SIN

SHR

SQRT

TAN

TIME_TO_*

TRUNC

XOR

RIGHT

IEC61131-3 Operations
ACR-View implements the following operations of IEC61131-3:

ADD

ADD (time)

DIV

DIV (time)

MUL

MUL (time)

82 IEC61131 User Guide

Parker Hannifin

SUB

SUB (time)

ACR-View Functions and Function Blocks
The following functions and function blocks are provided by ACR-View in
addition to IEC61131-3:

GetTaskInfo

GetTime

GetVarData

GetVarFlatAddress

Data Types
The following elementary data types are defined by IEC61131-3:

BOOL

BYTE

DATE_AND_TIME

DATE

DINT

DWORD

INT

REAL

SINT

STRING

TIME_OF_DAY

TIME

UDINT

UINT

WORD

The following data types are defined by ACR-View in addition to IEC61131-
3:

POINTER

VARINFO

Declaration Keywords

END_TYPE

END_VAR

RETAIN

Reference Listings 83

Parker Hannifin

TYPE

VAR_GLOBAL

VAR_IN_OUT

VAR_INPUT

VAR_OUTPUT

VAR

Structured Text Keywords

ACR-View uses the following keywords in Programming Language
Structured Text:

:= (Assignment)

BY

CASE

DO

ELSE

ELSIF

END_CASE

END_FOR

END_IF

END_REPEAT

END_WHILE

EXIT

FOR

IF

OF

REPEAT

RETURN

TO

UNTIL

WHILE

Others
ACTION

ANY

84 IEC61131 User Guide

Parker Hannifin

ANY_BIT

ANY_DATE

ANY_INT

ANY_NUM

ANY_REAL

CD

CDT

CLK

CONFIGURATION

CU

CV

D(DATE)

D(Action Qualifier)

DS

DT

END_ACTION

END_CONFIGURATION

END_RESOURCE

END_STEP

END_STRUCT

END_TRANSITION

ET

EXPT

FROM

IN

INITIAL_STEP

Interval

L(Action Qualifier)

Lreal

Lword

N (Action Qualifier)

On

P(Action Qualifier)

Priority

PT

Reference Listings 85

Parker Hannifin

PV

Q(Parameter)

Q1

QD

QU

R(Action Qualifier)

R1

READ_ONLY

READ_WRITE

Release

Resource

RTC

S(Action Qualifier)

S1

SD

SEL

SEMA

Single

SL

STEP

Task

TOD

Transition

ULINT

USINT

VAR_ACCESS

WITH

Keywords (A..Z)

)" (Right-paranthesis-operator)
The right-parenthesis-operator executes an instruction, deferred by the left-
parenthesis-modifier.

Example
LD a

OR(b (* Execution of instruction "OR" is deferred *)

86 IEC61131 User Guide

Parker Hannifin

AND c

) (* "OR" will be executed now *)

OR(d

AND e

)

ST f

Notes: This is an instruction in language Instruction List. It is defined by
IEC61131-3

*_to_bool
0 is converted to false, everthing else to true.
The conversions String_to_bool and Real_to_bool are described in the respective
sections.

ABS

Input

In: ANY_NUM

Returns

ANY_NUM
Notes: Returns the absolute value of the input.

Please note the following anomaly of the ABS function: The mathematical
understanding of the ABS function is that it will never return a negative
value. The signed integer data types in IEC61131-3 have a defined range of
values which is asymmetric, for example, SINT from -128..+127. As defined
by IEC61131-3, the ABS function will return the same data type that it is
provided as an input; for example, when called with an SINT input, ABS will
return an SINT output. The absolute value of -128 obviously is +128, but
when passed to ABS for type SINT, exceeds the range of SINT and hence
cannot be expressed. This overflow is, for performance reasons, silently
ignored by ACR-View, the result returned being undefined. If you need to
rely on the negative maximum value to be properly handled, use a data
type with a wider range, or check inputs.

This does not apply to the ABS function as called by the Ladder Diagram
Editor, this ABS function will signal overflow via the ENO output.

ACOS

Input

In: REAL

Returns

REAL: arcus cosine of input

Reference Listings 87

Parker Hannifin

ACTION
This keyword is defined by IEC61131-3 for the textual representation of
programming language SFC. ACR-View does not support the textual
representation of SFC, hence you will not be able to enter this keyword.
You will see this when printing SFC.

ADD
Inputs

In1: ANY_NUM

In2: ANY_NUM

Returns

ANY_NUM sum

Addition of two numbers. See Table E.1: Error conditions for result on
overflow.

Notes: Standardization: this is an operation defined by IEC61131-3.

ADD (time)
Inputs

In1: TIME time duration value

In2: TIME

Returns

TIME Addition of the two time values provided

Addition of TIME values

Notes: Standardization: this is an operation defined by IEC61131-3.

AND
Inputs

IN1: ANY_BIT Input 1

IN2: ANY_BIT Input 2

Returns

ANY_BIT logical, bit by bit AND of Input 1 and Input 2

Notes: Standardization: this function is defined by IEC61131-3.

ANDN
Inputs

IN1: ANY_BIT Input 1

IN2: ANY_BIT Input 2

Returns

ANY_BIT logical, bitwise AND of Input 1 and negated Input 2

Notes: Standardization: this function is defined by IEC61131-3.

88 IEC61131 User Guide

Parker Hannifin

ANY
ANY_BIT is a "generic" data type defined by IEC61131-3. You are not
allowed to use this data type to declare variables. Wherever this data type
is used, it is understood to mean any one of the following: ANY_BIT,
ANY_DATE, ANY_INT, ANY_REAL

ANY_BIT
ANY_BIT is a "generic" data type defined by IEC61131-3. You are not
allowed to use this data type to declare variables. Wherever this data type
is used, it is understood to mean any one of the following: BOOL, BYTE,
WORD, DWORD, LWORD.

ANY_DATE
ANY_DATE is a "generic" data type defined by IEC61131-3. You are not
allowed to use this data type to declare variables. Wherever this data type
is used, it is understood to mean any one of the following: DATE,
DATE_AND_TIME, TIME_OF_DAY.

ANY_INT
ANY_INT is a "generic" data type defined by IEC61131-3. You are not
allowed to use this data type to declare variables. Wherever this data type
is used, it is understood to mean any one of the following: SINT, USINT, INT,
UINT, DINT, UDINT, LINT, ULINT.

ANY_NUM
ANY_NUM is a "generic" data type defined by IEC61131-3. You are not
allowed to use this data type to declare variables. Wherever this data type
is used, it is understood to mean any one of the following: ANY_INT,
ANY_REAL.

ANY_REAL
ANY_REAL is a "generic" data type defined by IEC61131-3. You are not
allowed to use this data type to declare variables. Wherever this data type
is used, it is understood to mean any one of the following: REAL, LREAL.

ARRAY
ARRAY is the keyword to declare arrays of elements, see Derived Data
Types

Examples
The following declares an array of five integers and assigns initial values:
VAR
x1: ARRAY[0..4] of INT := [1,2,3,4,5];
END_VAR

A three-dimensional array of 300 booleans:
VAR
x2: ARRAY[0..4, 15..20, 1..10] of BOOL;
END_VAR

Reference Listings 89

Parker Hannifin

An array of 100 structures:
TYPE
x3: STRUCT
member1: BOOL;
member2: INT;
 END_STRUCT;
END_TYPE
VAR
x4 : ARRAY[1..10,1..10] of x3;
END_VAR

Initializing of multidimensional arrays:
To initialize arrays with more than one dimension, give a list of list of initial
values, each dimension enclosed in brackets. The dimension given first in
declaration will correspond to the outermost brackets.
VAR
 x2: ARRAY[0..4, 1..2] of INT := [[1,2], [3,4], [5,6], [7,8], [9,10]];
 x3: ARRAY[0..1, 0..2, 0..3] of INT :=
[[[1,2,3,4],[5,6,7,8],[9,10,11,12]],[[13,14,15,16],[17,18,19,20],[21,22,23,24]]];
END_VAR

Note: ACR-View uses 16bit integers to represent array subscripts for
performance reasons. Arrays should not be declared in a way to use
subscripts exceeding 16bit address limits, as this would lead to undefined
behavior.

ASIN

Input

In: REAL

Returns

REAL: arcus sine of input

Assignment
An Assignment will assign the result of an expression to a variable.

Example
VAR
 a: INT;
 b: ARRAY [0..5] OF INT;
 c: REAL;
 e: INT;
END_VAR
 a := 5;
 (* assign 5 to a *)
 b[1]:= a*2; e := a; (* two assignments *)
 e:= REAL_TO_INT(c);
 (* assignment with function call *)
The assignment instruction will evaluate the expression on the right side and
assign the resulting value to the variable given on the left.

Notes: This is a keyword only for language ST. Τhis is defined by IEC61131-3.

90 IEC61131 User Guide

Parker Hannifin

Reference Listings 91

AT
AT is the keyword to define the memory location where ACR-View should
allocate memory for a given variable.
Very first input bit:
VAR
x1 at %ix0.0: bool;
END_VAR

Output word starting at second output byte:
VAR
x2 at %qw1.0: word;
END_VAR

ATAN

Input

In: REAL

Returns

REAL: arcus tangens of input

BOOL

See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

Bool_to_*
Inputs

original data type bool

Returns

converted data type *

The function block converts the first value of type bool into the same value
of type *.

The following data types can be converted:

DINT, INT and SINT

BYTE, DWORD, WORD and USINT, UINT, UDINT

true 1

false 0

REAL

true 1.0

false 0.0

Parker Hannifin

STRING

true 'true'

false 'false'

BY

See FOR

BYTE
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

CAL
The program will be continued at the function block whose name is passed
as operand. The unconditioned invocation may only be used as the end of
a sequence and is not permitted within bracketing operations.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3. See also EN.

CALC
If the CR holds the value TRUE, the function block specified as operand will
be called. If it holds the value 0, there is no invocation. The program flow
continues with the instruction following the jump instruction.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3.

CALCN
If the CR holds the value FALSE, the function block specified as operand will
be called. If it holds the value "1!, there is no invocation. The program flow
continues with the instruction following the jump instruction.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3.

CASE
Though IF instructions may be nested, checking for one of many conditions
can look quite compli cated using IF. CASE, instead, can check for more
than one value with one instruction. The ´ex pression´ of the CASE-
instruction is of type INT, and only the instruction will be executed that
corresponds to this INT-value. After that the first instruction behind
END_CASE will be executed.

IF the expression does not match any of the case-values, the first instruction
(block) behind the ELSE will be executed. This partial instruction is optional.

CASE expression OF
 case_value1: { instructions; }
 case_value2: { instructions; }

92 IEC61131 User Guide

Parker Hannifin

 ...
 case_valueN: { instructions; }
[ELSE instructions;]
END_CASE;

Example
VAR
 number : INT:= 10;
 amount : INT :=2;
END_VAR
CASE number OF
 10: amount := amount +1;
 11: amount := amount -1;
ELSE
 amount := number;
END_CASE;

In this example, the value of ´number´ will be determined, and if it is equal
to 10, ´amount´ will be incremented, if it is equal to ´11´, ´amount´ will be
decreased. In any other case, ´amount´ will be set to equal ´number´.

Notes: This is a keyword only for language ST. Τhis is defined by IEC61131-3.

CD
This is the name of a formal parameter of a standard function block (CTD),
and as such defined to be a keyword.

CDT
This is the name of a formal parameter of a standard function block (RTC),
and as such defined to be a keyword.

CLK
This is the name of a formal parameter of a standard function block
(R_TRIG), and as such defined to be a keyword.

CONCAT
Inputs

In1: STRING First String

In2: STRING Second String

Returns

STRING Concatenation of both StringsPosition of first
occurrence

Description

The character strings ´IN1´ and ´IN2´ in the working register are chained to
form one character string which is loaded into the working register. The
strings IN1 to IN2 are written from the left to the right in ascending order.

Reference Listings 93

Parker Hannifin

Configuration
This keyword is defined by IEC61131-3 for the textual definition of
configurations, resources and tasks. With ACR-View, these are defined and
configured using property-dialog boxes . You will see this keyword in ACR-
View only when printing the definition of a configuration.

CONSTANT
CONSTANT is the keyword to declare variables that should not be modified
by the application code. The ACR-View compiler will give an error message
if you intent to write to such a variable:

VAR CONSTANT x1 : INT := 15; END_VAR

See declaration sections.

COS
Input

In: REAL

Returns

REAL: Cosine of input

CR
CR is the abbreviation of Current Result, the virtual accumulator used in
IEC61131-3 programming languages.

CTD
The function block "CTD" serves for counting down impulses received from
the input operand "CD." On initialization, the counter will be set to "0".

If the operand "LOAD" is "1", the value received by the operand "PV" will be
taken over as a value into the counter.

Each rising edge at the input "CD" will decrease the counter by "1".

The output operand "CV" contains the current value of the counter. If the
counter value is positive, the output operand "Q" will have the boolean
value "0". If the counter value reaches zero or becomes negative, the
output "Q" will be set to "1".

Inputs

CD: bool Counter pulse

LOAD: bool Set initial value

PV: int Reset value

Outputs

Q: bool Signal when zero reached

CV: int Counter value

Notes: Standardization—this function block is defined by IEC61131-3.

94 IEC61131 User Guide

Parker Hannifin

CTU
The function block "CTU" serves for counting up impulses received from the
input operand "CU". On initialization, the counter will be set to "0".

The counter value will be reset if the operand "RESET" receives the value "1".

Each rising edge at the input "CU" will increase the counter by "1".

The output operand "CV" contains the current value of the counter. If the
counter value is below the margin value "PV", the output operand "Q" will
have the boolean value "0". If the counter value reaches or passes the
margin, the output "Q" will be set to "1".

Inputs

CU: bool COUnter pulse

RESET: bool Reset counter

PV: int Counter upper limit

Outputs

Q: bool Signals if counter has reached upper limit

CV: int Current counter value

Notes: Standardization—this function block is defined by IEC61131-3.

CTUD
The function block "CTUD" serves for counting up and down impulses. On
initialization, the counter will be set to the value "0". Every rising edge at the
input operand "CD". will increase the counter by "1", while every falling
edge at the input "CD" will decrease it by "1".

If the operand "LOAD" is "1", the value received by the operand "PV" will be
taken over as a value into the counter.

The counter value will be reset if the operand "RESET" receives the value "1".
While the static state of the operand "RESET" remains unchanged, the
counting conditions or the load condition will have no implication,
independent of their value.

The output operand "CV" contains the current value of the counter. If the
counter value is below the margin value "PV", the output operand "Q" will
have the boolean value "0". If the counter value reaches or passes the
margin, the output "Q" will be set to "1". If the counter value is positive, the
output operand "QD" will have the boolean value "0". If the counter value
reaches zero or becomes negative, the output "QD" will be set to "1".

Inputs

CU:bool Counting impulses for counting up, rising edge

CD:bool Counting impulses for counting down, rising edge

RESET: bool Reset condition

LOAD: bool Load condition

PV: int Load value

Reference Listings 95

Parker Hannifin

Outputs

QU: bool Signals whether counter state has reached PV

QD: bool Signals whether counter state has reached "0"

CV: int Counter state

Notes: Standardization—this function block is defined by IEC61131-3.

CU
This is the name of a formal parameter of a standard function block (CTU),
and as such defined to be a keyword.

CV
This is the name of a formal parameter of a standard function block (CTD),
and as such defined to be a keyword.

D(Date)
nD can be used as an abbreviation to DATE when specifying the data type
of a literal constant. As data type DATE is not implemented in ACR-View,
you will not be able to use this keyword with ACR-View.

D(Action Qualifier)
This is an Action qualifier, see Table 45 in the compliance statement. As
ACR-View only supports actions of type N, you will not need to use this
keyword with ACR-View.

DATE
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

DATE_AND_TIME
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

DELETE
Inputs

IN1: STRING Basic character string in which a part should be
deleted

L: UINT Length of the substring which should be deleted

P: UINT Starting position of substring

Returns

STRING Shortened string

The function "DELETE"deletes a substring of length "L" starting at position "P"
within the given string "IN1".

Notes: Standardization—this function is defined by IEC61131-3.

96 IEC61131 User Guide

Parker Hannifin

DINT
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

DIV
Inputs

In1: ANY_NUM Value to be divided

In2: ANY_NUM Value to divide by

Returns

ANY_NUM Quotient

Divides two numbers. See Table E.1: Error conditions for result if divisor is
zero.

Notes: Standardization—this is an operation defined by IEC61131-3.

DIV (time)
Inputs

In1: TIME Time duration value

In2: ANY_NUM Divisor

Returns

TIME Divided time value

Division of TIME Values

Notes: Standardization—this is an operation defined by IEC61131-3.

DO

See FOR and WHILE

DS
This is an Action qualifier, see Table 45 in the compliance statement. As
ACR-View only supports actions of type N, you will not need to use this
keyword with ACR-View.

DT
DT can be used as an abbreviation to DATE_AND_TIME when specifying the
data type of a literal constant. As data type DATE_AND_TIME is not
implemented in ACR-View, you will not be able to use this keyword with
ACR-View.

DWORD
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

Reference Listings 97

Parker Hannifin

ELSE

See CASE and IF

ELSIF

See IF

EN
Function Blocks may have an input variable of type BOOL named EN. If this
is the case, an invocation of an instance of this function block is performed
if and only if the value of the input variable EN of that instance is TRUE.

See also CAL and ENO.

Notes:

5. "EN" is an abbreviation of "Enable."
6. If input and/or output variables are assigned in the same statement

as the CAL instruction, these assignments are performed even if the
CAL is not taken due to EN=FALSE.

7. By default, EN is TRUE

END_ACTION
This keyword is defined by IEC61131-3 for the textual representation of
programming language SFC. ACR-View does not support the textual
representation of SFC, hence you will not be able to enter this keyword.
You will see this when printing SFC.

END_CASE

See CASE

END_CONFIGURATION
This keyword is defined by IEC61131-3 for the textual definition of
configurations, resources and tasks. With ACR-View, these are defined and
configured using property-dialog boxes. You will see this keyword in ACR-
View only when printing the definition of a configuration.

END_FOR

See FOR

END_FUNCTION
See Function.

98 IEC61131 User Guide

Parker Hannifin

END_FUNCTION_BLOCK

See Function Block.

END_IF

See IF

END_PROGRAM
See PROGRAM

END_REPEAT
See REPEAT

END_RESOURCE
This keyword is defined by IEC61131-3 for the textual definition of
configurations, resources and tasks. With ACR-View, these are defined and
configured using property-dialog boxes. You will see this keyword in ACR-
View only when printing the definition of a configuration.

END_STEP
This keyword is defined by IEC61131-3 for the textual representation of
programming language SFC. ACR-View does not support the textual
representation of SFC, hence you will not be able to enter this keyword.
You will see this when printing SFC.

END_STRUCT
See STRUCT.

END_TRANSITION
This keyword is defined by IEC61131-3 for the textual representation of
programming language SFC. ACR-View does not support the textual
representation of SFC, hence you will not be able to enter this keyword.
You will see this when printing SFC.

END_TYPE

See Declaration Sections

Notes: This is a keyword only for declaration parts of POUs. Τhis is defined
by IEC61131-3.

Reference Listings 99

Parker Hannifin

END_VAR

See Declaration Sections

Notes: This is a keyword only for declaration parts of POUs. Τhis is defined
by IEC61131-3.

END_WHILE

See WHILE

ENO
Function Blocks may have an output variable of type BOOL named ENO.
This typically is set to TRUE to signal correct execution and to FALSE to signal
errors during execution. Typically, this ENO is wired to the EN input of
another function block.

Notes: ENO" is abbreviated for Enable Output"

EQ
Inputs

IN1: ANY Input 1

IN2: ANY Input 2

Returns

BOOL TRUE if Input 1 is equal to Input 2

Notes: Standardization—this function is defined by IEC61131-3.

ET
This is the name of a formal parameter of a standard function block (TOF),
and as such defined to be a keyword.

ETRC
Generally an event task will be executed only once. Since the reaction on
a special event can last longer than one cycle, it is necessary to restart the
current task again. To perform this action the firmware function block ETRC
(Event Task Run Control) can be used. It prolongs the execution of its own
event task for another cycle. Additionally the function block provides at its
outputs information like the cycle count or elapsed time since the first call
on this the ETRC instance. With this information a reaction on errors, which
would end up in an endless loop, could be handled.

Input:

IN : BOOL TRUE: The event task should be started for another cycle
FALSE: The event task should not be started again. The function block is
called only to get the output information;

100 IEC61131 User Guide

Parker Hannifin

Output:

Q : BOOL TRUE: The event task will be executed for one cycle
more

FALSE: the event task will be stopped after the current cycle

EVC : USINT The event code (EVC) describes the internal reason for
the event task to be called.

ERT : TIME The elapsed runtime (ERT) returns the time since the
first start of the current event task

CCV : UDINT The cycle counter value defines the count of event
task cycles already executed

ERROR : USINT Return values of the ETRC execution.

0 : successful execution,

1 : execution not possible since function has been called out of a task
(not a valid call)

Event codes of the function block:

Code Description

0 The called task is unknown

1 Cold start executed

2 Warm start executed

3 Hot start executed

4 Single cycle start executed

5 PLC has been stopped by hardware RUN/STOP switch

6 PLC has been stopped by software stop

7 After executing a single cycle the PLC changes to status STOP

8 General error while PLC program execution

9 Division by zero

10 Invalid array index access

11 Error while executing a firmware function block

EXIT
Any of the loops can be ´left´ under program control before the loop
condition dictates so. The EXIT instruction will jump to the first instruction
after the innermost loop.

Example
VAR
 start: INT :=0;
 summe: INT :=0;
 ende : INT := 10;
END_VAR
FOR Start := 1 TO Ende BY 2 DO
 Summe := Summe + 1;
 IF Summe > 4 THEN
 EXIT;

Reference Listings 101

Parker Hannifin

 END_IF;
END_FOR;

(* Will continue here *)

As soon as ´Summe´ is greater than 4, the FOR loop will be left.

Notes: This is a keyword only for language ST. It is defined by IEC61131-3.

EXP
Input

In : REAL

Returns

REAL : e ** In

EXPT
Inputs :

In1 : ANY_REAL

In2 : ANY_NUM

Returns

ANY_REAL : In1 ** In2

F_EDGE
F_EDGE is used to indicate a falling edge detection function on Boolean
inputs. This leads to an implicit declaration of a function block of type
F_TRIG .

Example
FUNCTION_BLOCK AND_EDGE
 VAR_INPUT
 X : BOOL R_EDGE;
 Y : BOOL F_EDGE;
 END_VAR

 VAR_OUTPUT
 Z : BOOL ;
 END_VAR

 Z := X AND Y ; (* ST language example *)
END_FUNCTION_BLOCK

F_TRIG
Inputs

CLK: bool Input operand whose falling edge is detected

Outputs

Q: bool Output operand; indicates the falling edge of ´CLK´

102 IEC61131 User Guide

Parker Hannifin

The function block ´F_TRIG´ detects the status of the input operand ´CLK´.
The status change from ´1´ to ´0´ in a processing cycle is detected and
indicated in the subsequent cycle with the Boolean value ´1´ via the output
´Q´. The output is ´1´ only in the processing cycle in which the change of
the status of ´CLK´ is detected and a falling edge is indicated.

Notes: Standardization—this function block is defined by IEC61131-3.

FALSE
Constant value of type BOOL.

FBD
FBD is the abbreviation of Function Block Diagram, one of the programming
languages of IEC61131-3.

FIND
Find one character string within another character string.

Inputs

In1: String Basic Character string in which a special character
sequence is searched for; the string is made available via the working
register

IN2: STRING Character sequence which is searched for in the ´IN1´
basic character string.

Returns

INT Position of first occurrence

A special character sequence is searched for in the ´IN1´ basic character
string. If this string is found, the position of the first character of this
sequence is entered into the working register or, otherwise, the value ´0´ is
entered. If there are more than one in the basic character string, the string
which was found first is entered.

Invocation of the FIND function in the program "search":
PROGRAM search
VAR
Basic_Text : STRING := 'StartupCondition';
Search_Text : STRING := 'Switch';
Position : INT;
END_VAR
LD Basic_Text
FIND Search_Text
ST Position (* Position: 4 *)
END_PROGRAM

Notes: Standardization—this function is defined by IEC61131-3.

FOR
With the FOR loop, a loop control variable will be set to a specified starting
value, then incre mented (or decreased), and the loop will be terminated
when a given end value is reached.

The syntax is:

Reference Listings 103

Parker Hannifin

FOR assignment TO Endvalue BY Increment DO
 Instructions;
END_FOR;

Example
VAR
 Field : ARRAY[1..5] OF INT :=[2,14,8,12,5];
 Index : INT;
 MaxIndex : INT :=5;
 Maximum : INT :=0;
END_VAR
FOR Index :=1 TO MaxIndex BY 1 DO
 IF Field[Index] > Maximum THEN
 Maximum := Field[Index];
 END_IF;
END_FOR;

The loop control variable ´Index´ will start with ´1´, and will be incremented
´BY 1´ on each execution of the loop. This will be done until the end value
´MaxIndex´ (=5) will be reached.

Note: the BY-term is optional and can be omitted. Default then is to
increment by 1.

Execution of the FOR-loop:
Initializing of the control variables.

Check of the termination criterion and termination if necessary.

Execution of the instruction block.

Increase/decrease of the control variable about the step size.

Go to step 2.

Notes: This is a keyword only for language ST. It is defined by IEC61131-3.

FROM
See Transition.

Function
IEC61131-3 defines three block types: PROGRAM, FUNCTION and FUNCTION
BLOCK. See block types under "Advanced Topics" for more details.

Functions return values by assignment to a variable having the same name
and type as the function, for example:
FUNCTION MyFun : INT
…
MyFun := 999;
END_FUNCTION

Notes:

• Some IEC61131 dialects take the current result at the END_FUNCTION or
RETURN as the value to be returned by the function. ACR-View will
ignore this value and only use the value assigned to the function name.

• The keywords FUNCTION and END_FUNCTION are typically invisible within
ACR-View, as they are maintained by the Editors internally.

104 IEC61131 User Guide

Parker Hannifin

• The function return type (INT in the example shown above) is selected in
the same dialog box where you specify the function name, at the very
bottom. The default is BOOL.

• You can also enter user-defined data types (STRUCT's, ARRAY's, etc.) by
entering the name of the data type manually into the input-field.

• To change a return type of a function, open the file in the project
browser. Open the change return type dialog by selecting Edit >
Change Return Type….

The following dialog will pop up:

You can chose one of the given types or type in a user specific one.

FUNCTION BLOCK
IEC61131-3 defines three block types: PROGRAM, FUNCTION and
FUNCTION_BLOCK. See block types under "Advanced Topics" for more
details.

The keywords FUNCTION_BLOCK and END_FUNCTION_BLOCK are typically
invisible within ACR-View, as they are maintained by the editors internally.

GE
Inputs

IN1: ANY Input 1

IN2: ANY Input 2

Returns

BOOL TRUE if Input 1 is greater or equal than Input 2

Notes: Standardization—this function is defined by IEC61131-3.

GETSYSTEMDATEANDTIME
Inputs

EN: BOOL

Outputs

ENO: BOOL

ODT: DATE_AND_TIME

The function "GetSystemDateAndTime" returns the actual system time in
ODT.

Notes: Standardization—this function block is not defined by IEC61131-3

Reference Listings 105

Parker Hannifin

GetTaskInfo
Output

 Count: DWORD; (*number of cycles this task is executed *)

 LastCT: TIME; (*time needed for last cycle*)

 AverageCT: TIME; (*average time needed for execution*)

 MinCT: TIME; (*minimum time needed for execution*)

 MaxCT: TIME; (*maximum time needed for execution*)

 State: DWORD; (*not yet used

GetTaskInfo returns information about the execution time of the last cycle
of the current task. This function block has no input parameters.

GetTime
Input

IN1: TIME previous time

Returns

TIME: Time elapsed since power on, minus IN1

GETTIME will retrieve the time elapsed since the controller has last been
switched on, less the time value supplied as an input. This can be used to
easily measure time spans.

Example „Stop Watch
PROGRAM StopW
VAR
 begin, result : TIME;
END_VAR
start:
 LD t#0ms
 GETTIME
 ST begin
 ...

stop:
 LD begin
 GETTIME
 ST result
END_PROGRAM

GetVarData
InOut

VarName: STRING Name of variable requested

Output

Q: bool TRUE if VarInfo is valid

VarData: VarInfo Information on variable

The variable specified as input is located within the memory address space
and information on that variable is returned. If the variable cannot be
located, Q is returned as FALSE.

106 IEC61131 User Guide

Parker Hannifin

Note that for ACR-View to be able to locate variables by name, a MAP file
must be generated (resource options).

For the definition of VARINFO, see VARINFO under "keywords".

GetVarFlatAddress
InOut

VarName: STRING Name of variable requested

Output

Q: bool TRUE if VarInfo is valid

Address: DWORD Flat memory address of specified variable

The variable specified as input is located within the memory address space
and the address of its location is returned. If the variable cannot be
located, Q is returned as FALSE.

Please note:

• For ACR-View to be able to locate variables by name, a MAP file has
to be generated (resource options).

• The memory location returned must not be stored and used in
another but the current execution cycle.

GT
Inputs

IN1: ANY Input 1

IN2: ANY Input 2

Returns

BOOL TRUE if Input 1 is greater than or equal to Input 2

Notes: Standardization: this function is defined by IEC61131-3.

IF
The IF-instruction has following syntax:

IF expression THEN Block
 { ELSIF expression THEN Block}
 [ELSE Block]
END_IF;

If the expression after IF evaluates to ´true´, the instructions given after
THEN will be executed. If the expression after IF evaluates to ´false´, the
instructions after ELSE will be executed or the ELSEIF-condition will be
checked. In any case, execution will then continue with the next instruc
tion after END_IF.

Note: It is recommanded to use the absolute value ABS() of a floating
point number if a comparision with 0.0 is to be done since –0.0 == 0.0 will
not return true.

The following IF instruction will compute the maximum of two numbers:

Reference Listings 107

Parker Hannifin

IF a>b THEN
 maximum := a;
 ELSE
 maximum := b;
END_IF;

IF instructions may be nested, i.e. the THEN-part as well as the ELSE-part
may contain other IF instructions.

Example
The following program will again compute the maximum of two numbers,
but if this maximum is ´a´ and ´a´ is greater than 10, it will be reduced by 1:
VAR
 a: INT :=12;
 b: INT :=5;
 maximum: INT;
END_VAR
IF a>b THEN
 maximum :=a;
 IF (a>10) THEN
 a:=a-1;
 ELSE
 a:=a+1;
 END_IF;
ELSE
 maximum :=b;
END_IF;

Notes: This is a keyword only for language ST. It is defined by IEC61131-3.

IL
IL is the abbreviation of Instruction List, one of the programming languages
of IEC61131-3.

IN
This is the name of a formal parameter of a standard function block (TOF),
and as such defined to be a keyword.

INITIAL_STEP
This keyword is defined by IEC61131-3 for the textual representation of
programming language SFC. ACR-View does not support the textual
representation of SFC, hence you will not be able to enter this keyword.
You will see this when printing SFC.

INSERT
Inputs

IN1: STRING Character string

IN2: STRING Charcter string to be inserted

P: UINT Starting position

Returns

STRING Composed string

108 IEC61131 User Guide

Parker Hannifin

The ´INSERT´ function inserts the string ´IN2´ into ´IN1´. The concatenated
string consists of the first ´P-1´ charcters of ´IN1´, the completet string
´IN2´and the rest of ´IN1´.

Notes: Standardization—this function is defined by IEC61131-3.

INT
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

Interval
This keyword is defined by IEC61131-3 for the textual definition of
configurations, resources and tasks. With ACR-View, these are defined and
configured using property-dialog boxes. You will see this keyword in ACR-
View only when printing the definition of a configuration.

JMP
The program flow continues at the position specified by the jump target. The jump target
must be a sequence start uniquely identified by a label. A jump is possible only within a POU.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3.

JMPC

If the CR holds the value TRUE, the program flow continues at the position
specified by the jump target. If it holds the value 0, there is no jump. The
program flow continues with the instruction following the jump instruction.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3.

JMPCN

If the CR holds the value FALSE, the program flow continues at the position
specified by the jump target. If it holds the value 1, there is no jump. The
program flow continues with the instruction following the jump instruction.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3.

L(Action Qualifier)
This is an Action qualifier, see Table 45 in the compliance statement. As
ACR-View only supports actions of type N, you will not need to use this
keyword with ACR-View.

LD
The value of the operand is evaluated and loaded into the current result.
This overwrites data stored in CR. The operand is not modi fied. The data

Reference Listings 109

Parker Hannifin

type of the operand determines the permissible data type for consecutive
operands.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3.

LD (Ladder Diagram)
LD is the abbreviation of Ladder Diagram, one of the programming
languages of IEC61131-3.

LDN
The operand is evaluated, and the current result is loaded with the
negated value. The operand is not modified. The data type of the operand
determines the permissible data type for consecutive operands.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3.

LEFT
Inputs

In: STRING character string

L: UINT Number of characters to retrieve

Returns

STRING the 'L' leftmost characters of IN

The ´LEFT´ function enters the left part of the currently loaded character
string into the working register. The input operand ´L´ defines the number of
characters to be entered.

LE
Inputs

IN1: ANY Input 1

IN2: ANY Input 2

Returns

BOOL TRUE if Input 1 is less or equal than Input 2

Notes: Standardization—this function is defined by IEC61131-3.

LEN
Inputs

In: STRING character string

Returns

INT length of IN

The function ´LEN´ determines the length of the character string in the
working register (input operand of data type ´STRING´) and enters the
determined value as INT number into the working register.

110 IEC61131 User Guide

Parker Hannifin

LIMIT
Inputs

MN: Any_Num lower limit

IN: Any_Num Test value

MX: Any_Num Upper Limit

Returns

Any_Num One of the input values, see description

The ´MN´ and ´MX´ values define the lowest and highest limit value. The
function compares the test value ´IN´ with ´MN´ and ´MX´. If ´IN´ is between
the two limit values, it is loaded into the working register. If ´IN´ is smaller
than ´MN´, the ´MN´ value is output. If ´IN´ is greater than ´MX´, the ´MX´
value is loaded.

Notes: Standardization—this function is defined by IEC61131-3.

LINT
This is the name of an elementary data type, which is defined by IEC61131-
3, but not supported by ACR-View. See Table 10 in the compliance
statement.

LN
Input

In: REAL

Returns

REAL: logarithm to the base of e

LOG
Input

In: REAL

Returns

REAL: logarithm to the base of 10

LREAL
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

LT

Inputs

IN1: ANY I Input 1

IN2: ANY Input 2

Returns

Reference Listings 111

Parker Hannifin

BOOL TRUE if Input 1 is less than Input 2

Notes: Standardization—this function is defined by IEC61131-3.

Lword
This is the name of an elementary data type, which is defined by IEC61131-
3, but not supported by ACR-View. See Table 10 in the compliance
statement.

MUX
ACR-View does not implement the MUX function.

Notes: Standardization—this function is defined by IEC61131-3.

MAX
Inputs

In1: Any_Num Input Value1

In2: Any_Num Input Value2

…

InN: Any_Num Input ValueN

Returns

Any_Num Maximum of all input values

The ´MAX´ function determines which input operand has the highest value.
The selected operand is loaded into the working register.

Notes: Standardization—this function is defined by IEC61131-3.

MID
Inputs

In: STRING Character string

L: UINT Number of characters to retrieve

P: UINT Starting position

Returns

STRING The next "L" characters of IN, starting at the P-th
character

The ´MID´ function enters a middle part of the currently loaded character
string into the working register. The input operand ´P´ defines the first
character to be entered, ´L´ defines the number of characters to be
entered

Notes: Standardization—this function is defined by IEC61131-3.

112 IEC61131 User Guide

Parker Hannifin

MIN
Inputs

In1: Any_Num Input Value1

In2: Any_Num Input Value2

…

InN: Any_Num Input ValueN

Returns

Any_Num Minimum of all input values

The ´MIN´ function determines which input operand has the smallest value.
The selected operand is loaded into the working register.

Notes: Standardization—this function is defined by IEC61131-3.

MOD
Input

In1: ANY_INT

In2: ANY_INT

Returns

ANY_INT

The first input will be divided by the second input. MOD delivers the residue
to current result.

MOVE
Inputs

In: ANY

Outputs

Out: ANY

The function "MOVE" is an arithmetic function that serves for assigning a
value.

MUL
Inputs

In1: ANY_NUM Value to be multiplied

In2: ANY_NUM Value to multiply with

Returns

ANY_NUM product

Multiplies two numbers. See Table E.1: Error conditions for result on overflow.

Notes: Standardization—this is an operation defined by IEC61131-3.

Reference Listings 113

Parker Hannifin

MUL (time)
Inputs

In1: TIME time duration value

In2: ANY_NUM multiplicand

Returns

TIME multiplied time value

Multiplication of TIME values

Notes: Standardization—this is an operation defined by IEC61131-3.

N (Action Qualifier)
This is an Action qualifier, see Table 45 in the compliance statement. As
ACR-View only supports actions of type N, you will not need to use this
keyword with ACR-View.

NCC
NCC is an acronym for native code compiler.

NE
Inputs

IN1: ANY Input 1

IN2: ANY Input 2

Returns

BOOL TRUE if Input 1 is not equal to Input 2

Notes: Standardization—this function is defined by IEC61131-3.

NEG
Input

In: ANY_NUM

Returns

ANY_NUM: negated numeric value of input

NOT
Inputs

IN1: ANYBIT Input

Returns

ANYBIT logical negation (1-complement) of Input

Notes: Standardization—this function is defined by IEC61131-3.

OF
See CASE

114 IEC61131 User Guide

Parker Hannifin

On
See RESOURCE.

OPC
The var qualifier OPC allows a user, to mark dedicated variables, to
become part of the variable table, already within the declaration editor of
ACR-View.

See Declaration Sections

OR
Inputs

IN1: ANY_BIT Input 1

IN2: ANY_BIT Input 2

Returns

ANY_BIT logical, bit by bit OR of Input 1 and Input 2

Notes: Standardization—this function is defined by IEC61131-3.

ORN
Inputs

IN1: ANY_BIT Input 1

IN2: ANY_BIT Input 2

Returns

ANY_BIT Logical, bitwise OR of Input 1 and negated Input 2

Notes: Standardization—this function is defined by IEC61131-3.

P(Action Qualifier)
This is an Action qualifier, see Table 45 in the compliance statement. As
ACR-View only supports actions of type N, you will not need to use this
keyword with ACR-View.

POINTER
The datatype pointer is defined by ACR-View in addition to IEC61131-3.
Using this datatype, it is now possible to call Functions or Functionblocks
with arrays of different sizes. A pointer must be declared as follows:
VAR
 IntVar : INT;
pInt : POINTER;
END_VAR

To access the adress of a variable, the adress operator ("&") must be
written in front of the variable's name.

Example IL: LD &IntVar

Example ST: pInt := &IntVar;

Reference Listings 115

Parker Hannifin

POU
POU is the abbreviation of Program Organization Unit, meaning a Program,
Function or Function Block written in one of the programming languages of
IEC61131-3.

Priority
This keyword is defined by IEC61131-3 for the textual definition of
configurations, resources and tasks. With ACR-View, these are defined and
configured using property-dialog boxes. You will see this keyword in ACR-
View only when printing the definition of a configuration.

PROGRAM
IEC61131-3 defines three block types: PROGRAM, FUNCTION and FUNCTION
BLOCK. See block types under "Advanced Topics" for more details.

The keywords PROGRAM and END_PROGRAM are typically invisible within
ACR-View, as they are maintained by the editors internally.

PT
This is the name of a formal parameter of a standard function block (TOF),
and as such defined to be a keyword.

PV
This is the name of a formal parameter of a standard function block (CTD),
and as such defined to be a keyword.

Q(Parameter)
This is the name of a formal parameter of a standard function block (CTD),
and as such defined to be a keyword.

Q1
This is the name of a formal parameter of a standard function block, and as
such defined to be a keyword.

QD
This is the name of a formal parameter of a standard function block
(CTUD), and as such defined to be a keyword.

QU
This is the name of a formal parameter of a standard function block
(CTUD), and as such defined to be a keyword.

R(Action Qualifier)
This is an Action qualifier, see Table 45 in the compliance statement. As
ACR-View only supports actions of type N, you will not need to use this
keyword with ACR-View.

116 IEC61131 User Guide

Parker Hannifin

R(eset)
The operand is reset, if the content of the CR equals 1. If this precondition is
not met, operands will not be changed. The CR is not modified.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3.

R_EDGE
R_EDGE is used to indicate a rising edge detection function on Boolean
inputs. This leads to an implicit declaration of a function block of type
R_TRIG.

Example
FUNCTION_BLOCK AND_EDGE
VAR_INPUT
X : BOOL R_EDGE;
Y : BOOL F_EDGE;
END_VAR

VAR_OUTPUT
Z : BOOL ;
END_VAR

Z := X AND Y ; (* ST language example *)

END_FUNCTION_BLOCK

R_TRIG
Inputs

CLK: bool Input operand whose rising edge is detected

Outputs

Q: bool Output operand; indicates the rising edge of ´CLK´

The function block ´R_TRIG´ detects the status of the input operand ´CLK´.
The status change from ´0´ to ´1´ in a processing cycle is detected and
indicated with the Boolean value ´1´ via the output ´Q´. The output is ´1´
only in the processing cycle in which the change of the status of ´CLK´ is
detected and a rising edge is indicated.

Notes: Standardization—this function block is defined by IEC61131-3.

R1
This is the name of a formal parameter of a standard function block, and as
such defined to be a keyword.

READ_ONLY
This keyword is defined by IEC61131-3 for the definition of Access Paths.
ACR-View does not support Access Paths, hence you will not be able to use
this keyword with ACR-View.

Reference Listings 117

Parker Hannifin

READ_WRITE
This keyword is defined by IEC61131-3 for the definition of Access Paths.
ACR-View does not support Access Paths, hence you will not be able to use
this keyword with ACR-View.

REAL
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

Real_to_*
Inputs

original data type real

Returns

converted data type *

The function block converts the first value of type real into the same value
of type *.

The following data types can be converted:

BOOL

Values within the interval ±1,175494351e-38 are cast to false all other
values to true.

Examples
1.1 true

-22.33 true

1.1e-39 false

DINT, INT and SINT

Values are rounded off, therefore values smaller than x.5 are rounded
to the absolute smaller number else to the next larger one.

Examples
0.3 0

-0.6 -1

-1.5 -2

BYTE, DWORD, WORD and USINT, UINT, UDINT

The conversion is analog to an integer-conversion for positive values
Negative values are cast to the new size and the generated bit pattern is
interpreted as a positive number

Examples
-1.6 254 (USINT), 65534 (UINT), 4294967294 (UDINT); (A sint -2 has the
bit pattern: 1111 1110 which is interpreted as 254)

33.3 33

STRING

118 IEC61131 User Guide

Parker Hannifin

For converting string function Sprintf(str, %#g", value); is used.

Examples
0.0 '0.000000'

123.45678 ' 123.456'

-12.345678 ' –12.3456'

12345678.9 ' 1.23457e+007'

0.000000123 ' 1.23000e-007'

Release
This is the name of a formal parameter of a standard function block
(SEMA), and as such defined to be a keyword.

REPEAT
In contrast to the other loop types, REPEAT will check the loop expression
after execution of the loop. The syntax is:

REPEAT
 instructions;
UNTIL expression
END_REPEAT;

So, the REPEAT loop will always be executed at least once.

Example
VAR
 i : INT := -1;
END_VAR
REPEAT
 i:=i-1;
UNTIL i < 0
END_REPEAT;
(* now, i = -2 *)

Although ´i´ will meet the loop condition from the beginning, the REPEAT
loop will be executed once anyway.

Notes: This is a keyword only for language ST. Τhis is defined by IEC61131-3.

REPLACE
Inputs

IN1: STRING Basic character string in which a part should be
replaced

IN2: STRING New character string

L: UINT Length of the substring which should be cut out off
"IN1"

P: UINT Starting position of the inserted string

Returns

STRING New composited

Reference Listings 119

Parker Hannifin

The function "REPLACE" replaces a substring of length "L" starting at position
"P" within the given string "IN1" by the string "IN2".

Notes: Standardization: this function is defined by IEC61131-3.

Resource
This keyword is defined by IEC61131-3 for the textual definition of
configurations, resources and tasks. With ACR-View, these are defined and
configured using property-dialog boxes. You will see this keyword in ACR-
View only when printing the definition of a configuration.

RET
The RET instruction causes an unconditioned return jump to the calling POU
– if this POU is the program POU, a return jump to the system program.
When jumping back, the calling POU is resumed at the point of interruption.
Delayed operations will be executed.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3.

RETAIN
RETAIN is the keyword to declare variables as retentive, and is optional
after VAR, VAR_GLOBAL. Implementation of retentiveness depends on your
controller. See declaration sections.

RETC
Conditional Return

Instruction does not take any operands.

If the CR holds the value 1, a return jump to the calling POU is performed –
i.e. to the system program if calling POU is of type program. If the CR holds
the value 0, there is no return jump. The program flow continues with the
instruction following the jump instruction.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3.

RETCN
Conditional Return

Instruction does not take any operands.

Conditioned return jump depending on the Boolean content of the CR.

If the CR holds the value 0, a return jump to the calling POU is performed –
i.e. to the system program if calling POU is of type program. If the CR holds
the value 1, there is no return jump. The program flow continues with the
instruction following the jump instruction.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3.

120 IEC61131 User Guide

Parker Hannifin

RETURN
The RETURN instruction will cause the current POU to be left, transferring
control back to the caller of the current POU. Note that on working with
functions, the function value (variable with the name of the function) must
be assigned. If output values of function blocks aren't assigned by local
values of the function block, they have the predefined values of their data
types.

Example
IF a<b THEN
 RETURN;
END_IF;

Notes: This is a keyword only for language ST. Τhis is defined by IEC61131-3.

RIGHT
Inputs

In: STRING character string

L: UINT Number of characters to retrieve

Returns

STRING the "L" rightmost characters of IN

The ´RIGHT´ function enters the right part of the currently loaded character
string into the working register. The input operand ´L´ defines the number of
characters to be entered.

ROL
Inputs

IN: ANY_BIT Bit Pattern

N: UINT Number of bits to shift

Returns

ANY_BIT IN, rotated left N bits

The leftmost bits will be rotated in from right

Notes: Standardization: this function is defined by IEC61131-3.

ROR
Inputs

IN: ANY_BIT Bit Pattern

N: UINT Number of bits to shift

Returns

ANY_BIT IN, rotated right N bits

The rightmost bits will be rotated in from left.

Notes: Standardization: this function is defined by IEC61131-3.

Reference Listings 121

Parker Hannifin

RS
Inputs

Set: bool Set condition

Reset1: bool Reset condition

Outputs

Q1: bool Output state of the bistable element

The characteristic feature of the ´RS´ function module is to statically set a
data element - the output Q1 - to the Boolean status ´1´ or ´0´. Depending
on the Boolean input operands ´Set1´ and ´ReSet1´ it is changed between
the two states.

The output ´Q1´ is initialized with the value ´0´ when starting the process.
The first processing of the function block with the value ´1´ of the operand
´Set´ causes the output ´Q1´ to be set to ´1´. A change of the value of ´Set´
no longer then effects the output ´Q1´. The value ´1´ of the input operand
´ReSet1´ sets the output ´Q1´ to ´0´ - the output is reset.

If both input operands have the value ´1´, the fulfilled set condition is
dominant, i.e. Q1 is reset with priority.

Notes: Standardization—this function block is defined by IEC61131-3.

RTC
The RTC funtion block sets the output CDT to the inpu PDT if EN=1. Otherwise
CDT is unvalid

Inputs:

EN: BOOL

PDT: DATE_AND_TIME Present date and time

Outputs

Q: BOOL copy of EN

CDT: DATE_AND_TIME Current date and time, valid when EN=1

Notes: Standardization—this function block is defined by IEC61131-3

S(Action Qualifier)
This is an Action qualifier, see Table 45 in the compliance statement. As
ACR-View only supports actions of type N, you will not need to use this
keyword with ACR-View.

S(et)
The operand is set, if the content of the CR equals 1. If this precondition is
not met, operands will not be changed. The CR is not modified.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3.

122 IEC61131 User Guide

Parker Hannifin

S1
This is the name of a formal parameter of a standard function block, and as
such defined to be a keyword.

SD
This is an Action qualifier, see Table 45 in the compliance statement. As
ACR-View only supports actions of type N, you will not need to use this
keyword with ACR-View.

SEL
This is the name of a standard function block, which is defined in IEC61131-
3, but not provided by ACR-View. See Table 31 in the compliance
statement.

SEMA
This is the name of a standard function block, which is defined in IEC61131-
3, but not provided by ACR-View. See Table 34 in the compliance
statement.

SETSYSTEMDATEANDTIME
Inputs

EN: BOOL

IDT: DATE_AND_TIME

Outputs

ENO: BOOL

The function "SetSystemDateAndTime" sets the actual system time in IDT.

Notes: Standardization: this function block is not defined by IEC61131-3.

SFC
SFC is the abbreviation of Sequential Function Chart, one of the
programming languages of IEC61131-3.

SHL
Inputs

IN: ANY_BIT Bit Pattern

N: UINT Number of bits to shift

Returns

ANY_BIT IN, shifted left N bits

Rightmost bits will be filled with zeros

Notes: Standardization: this function is defined by IEC61131-3.

Reference Listings 123

Parker Hannifin

SHR
Inputs

IN: ANY_BIT Bit Pattern

N: UINT Number of bits to shift

Returns

ANY_BIT IN, shifted right N bits

Leftmost bits will be filled with zeros

Notes: Standardization: this function is defined by IEC61131-3

Signed_to_Unsigned
Positive values stay untouched. The most significant bits are cut, if the
converted variable is smaller than the original one.

The bit pattern of negative values is interpreted as a positive integer.

Note: The value is first converted to the new size then to an unsigned
integer

Examples
(sint uint)

3 (0000 0011) 3 (0000 0000 0000 0011)

3 (1111 1101) 65534 (1111 1111 1111 1101)

SIN
Input

In: REAL

Returns

REAL: sine of input

Single
This keyword is defined by IEC61131-3 for the textual definition of
configurations, resources and tasks. With ACR-View, these are defined and
configured using property-dialog boxes. You will see this keyword in ACR-
View only when printing the definition of a configuration.

SINT
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

SL
This is an Action qualifier, see Table 45 in the compliance statement. As
ACR-View only supports actions of type N, you will not need to use this
keyword with ACR-View.

124 IEC61131 User Guide

Parker Hannifin

SQRT
Input

In: REAL

Returns

REAL: square root of input

SQRT will compute the square root of the input

SR
Inputs

Set1: bool Set condition

Reset: bool Reset condition

Outputs

Q1: bool Output state of the bistable element

The characteristic feature of the ´SR´ function module is to statically set a
data element - the output ´Q1´ - to the Boolean status ´1´ or ´0´.

Depending on the Boolean input operands ´Set1´ and ´ReSet´ it is changed
between the two states.

The output ´Q1´ is initialized with the value ´0´ when starting the process.
The first processing of the function block with the value ´1´ of the operand
´Set1´ causes the output ´Q1´ to be set to ´1´. A change of the value of
´Set1´ no longer then effects the output ´Q1´. The value ´1´ at the input
operand ´ReSet´ sets the output ´Q´ to ´0´ - the output is reset.

Notes: Standardization—this function block is defined by IEC61131-3.

ST
The content of the CR register is assigned to the operand. This overwrites
the value of the operand. The data type of the operand must match the
data type of the data element in the register. The data type of the CR is
determined by the data type of the variable first assigned a value. Further
assignments will then be possible only if the types of further variables
match. An assignment may be followed by another assignment.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3,

ST (Structured Text)
ST is the abbreviation Structured Text, one of the programming languages
of IEC61131-3.

STEP
This keyword is defined by IEC61131-3 for the textual representation of
programming language SFC. ACR-View does not support the textual
representation of SFC, hence you will not be able to enter this keyword.
You will see this when printing SFC.

Reference Listings 125

Parker Hannifin

STN
The negated content of the CR register is assigned to the operand. This
overwrites the value of the operand. The data type of the operand must
match the data type of the data element in the register. The CR register is
not modified by this operation. An assignment STN may be followed by
another ST or STN instruction.

Notes: This is a keyword in language Instruction List. Τhis is defined by
IEC61131-3.

STRING
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

String_to_*
Inputs

original data type string

Returns

converted data type *

The function block converts the first value of type string into the same value
of type *.

The following data types can be converted:

BOOL

The strings '1' and 'true' are converted to true, the rest to false.

DINT, INT and SINT

The string is read from left to right until an illegal charcter or the word is
finished.

Examples
'-1' -1

'213hallo' 213

'23.5' 23

BYTE, DWORD, WORD and USINT, UINT, UDINT

The conversion is analog to an integer-conversion for positive values

Negative values are cast to the new size and the generated bit pattern is
interpreted as a positive number

Examples
'-1.6' 254 (USINT), 65534 (UINT), 4294967294 (UDINT); (A sint -2 has the
bit pattern: 1111 1110 which is interpreted as 254)

'33.3' 33

REAL

Analog the above conversion. The e-Notation is permitted

126 IEC61131 User Guide

Parker Hannifin

Examples
'-123.456' -123.456

'0.23' 0.23

'-1.2e-2' ' –0.012

STRUCT
STRUCT is the keyword to define structured data types, see and Derived
Data Types

A variable consisting of two members:
VAR
x1: STRUCT
x2: INT;
x3: BOOL;
END_STRUCT;
END_VAR

A variable of user defined type:
TYPE
x4: STRUCT
x5: REAL;
x6 : BOOL;
END_STRUCT;
END_TYPE
VAR
x7: x4;
END_VAR

SUB
Inputs

In1: ANY_NUM

In2: ANY_NUM

Returns

ANY_NUM Difference In1-In2

Subtraction of two numbers.

Notes: Standardization: this is an operation defined by IEC61131-3.

SUB (time)
Inputs

In1: TIME time duration value

In2: TIME

Returns

TIME difference between the two time values provided

Subtraction of TIME values

Notes: Standardization: this is an operation defined by IEC61131-3.

Reference Listings 127

Parker Hannifin

TAN
Input

In: REAL

Returns

REAL: tangent of input

Task
This keyword is defined by IEC61131-3 for the textual definition of
configurations, resources and tasks. With ACR-View, these are defined and
configured using property-dialog boxes. You will see this keyword in ACR-
View only when printing the definition of a configuration.

THEN

See IF

TIME
See Elementary Data Types

See also Constants on how to create TIME-constants.

Notes: Standardization—this is a data type defined by IEC61131-3.

TIME_OF_DAY
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

TIME_TO_*
Inputs

original data type time

Returns

converted data type *

The function block onverts the first value of type time into the same value
of type *.

The following data types can be converted:

BOOL

BYTE

DINT

DWORD

INT

REAL

SINT

128 IEC61131 User Guide

Parker Hannifin

STRING

UDINT

UINT

USINT

WORD

Notes: Standardization: this function is defined by IEC61131-3. Except
TIME_TO_DINT and TIME_TO_REAL, all TIME convert functions are only
available within the Ladder-Diagram-Editor.

TO

See FOR

TOD
TOD can be used as an abbreviation to TIME_OF_DAY when specifying the
data type of a literal constant. As data type TIME_OF_DAY is not
implemented in ACR-View, you will not be able to use this keyword with
ACR-View.

TOF
If the state of the input operand "IN" is "1", this will be passed to the output
operand "Q" without any delay. If there is a falling edge, a timer function
will be started lasting as long an interval as specified by the operand "PT"

It is after the time is up that the operand "Q" will change to the state "0". If
the "PT" value changes after the start, it will have no implications until there
is the next rising edge of the operand "IN".

The operand "ET" contains the current timer value. If the time is up, the
operand "ET" will keep its value as long as the operand "IN" has the value
"0". If the state of the "IN" operand changes to "1", the value of "ET" will
switch to "0".

If the input "IN" is switched off, this will switch off the output "Q" after an
interval specified by the delay value.

Inputs:

IN: Start condition

PT: time Initial time value

Outputs

Reference Listings 129

Parker Hannifin

Q: bool binary state of the timer

ET: time current time value

Notes: Standardization—this function block is defined by IEC61131-3

TON
The rising edge of the input operand "IN" will start the timer "TON", and it will
run as long a time interval as specified by the operand "PT".

While the timer is running, the output operand "Q" will have the value "0". If
the time is up, the state will change to "1" and keep this value until the
operand "IN" changes to "0".

If the "PT" value changes after the timer has been started, this will have no
implications until the next rising edge of the operand "IN".

The output operand "ET" contains the current timer value. If the time is up,
the operand "ET" will keep its value as long as the operand "IN" has the
value "1". If the state of the "IN" operand changes to "0", the value of "ET"
will switch to "0".

If the input "IN" is switched on, this will switch on the output "Q" after an
interval specified by the delay value.

Inputs:

IN: Start condition

PT: time Initial time value

Outputs

Q: bool binary state of the timer

ET: time current time value

Notes: Standardization—this function block is defined by IEC61131-3.

TP
A rising edge of the input operand "IN" will start the timing function of the
timer "TP", and it will run as long an interval as specified by the operand
"PT".

While the timer is running, the output operand "Q" will have the state "1".
Any changes of state at the input "IN" will have no implication on the
procedure.

If the "PT" value changes after the start, this will not have any implication
before the next rising edge of the "IN" operand.

130 IEC61131 User Guide

Parker Hannifin

The output operand "ET" contains the current timer value. If the operand
"IN" has the state "1" after the time is up, the operand "ET" will keep its value.

Every edge occurring while the timer is not running will cause an impulse at
the output Q that lasts as long as specified.

Inputs

IN: bool start timer

PT: time initial time value

Outputs

Q: bool binary state of timer

ET: time elapsed time

Notes: Standardization—this function block is defined by IEC61131-3.

Transition
This keyword is defined by IEC61131-3 for the textual representation of
programming language SFC. ACR-View does not support the textual
representation of SFC, hence you will not be able to enter this keyword.
You will see this when printing SFC.

TRUE
Constant value of type BOOL.

TRUNC
Inputs

In: REAL

Returns

ANY_INT

Returns the integer part of the supplied real value.

Notes: Standardization—this function is defined by IEC61131-3.

TYPE
See Declaration Sections and Derived Data Types

Notes: This is a keyword only for declaration parts of POUs. This is defined
by IEC61131-3.

Reference Listings 131

Parker Hannifin

Keywords TYPE .. END_TYPE should not be nested within a VAR..END_VAR
block, but rather be on top level in the declaration section, or in a type
declaration file on project level.

UDINT
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

UINT
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

ULINT
This is the name of an elementary data type, which is defined by IEC61131-
3, but not supported by ACR-View. See Table 10 in the compliance
statement.

UNTIL
See REPEAT

USINT
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3

VAR
See Declaration Sections

Notes: This is a keyword only for declaration parts of POUs. Τhis is defined
by IEC61131-3.

VAR_ACCESS
This keyword is defined by IEC61131-3 for the definition of Access Paths.
ACR-View does not support Access Paths, hence you will not be able to use
this keyword with ACR-View.

VAR_INPUT
See Declaration Sections

Notes: This is a keyword only for declaration parts of POUs. Τhis is defined
by IEC61131-3.

VAR_OUTPUT
See Declaration Sections

Notes: This is a keyword only for declaration parts of POUs. Τhis is defined
by IEC61131-3.

132 IEC61131 User Guide

Parker Hannifin

VAR_IN_OUT
See Declaration Sections

Notes: This is a keyword only for declaration parts of POUs. Τhis is defined
by IEC61131-3.

VAR_GLOBAL
See Declaration Sections

Notes: This is a keyword only for declaration parts of POUs. Τhis is defined
by IEC61131-3.

VAR_EXTERNAL
See Declaration Sections

Notes: This is a keyword only for declaration parts of POUs. Τhis is defined
by IEC61131-3.

VARINFO
VARINFO is defined as
VARINFO : Struct
 TYP : UINT;
 SIZE : UINT;
 PROG : UINT;
 SEG : UINT;
 OFFSET:UINT;
 BIT: UINT;
 SCOPE: UINT;
end_struct;

WHILE
The WHILE loop will execute the loop body as long as the given expression
evaluates to ´true´. Syntax:

WHILE expression DO
 instructions;
END_WHILE;

The expression given after the keyword WHILE will be evaluated before
entering the loop. If it is true, the loop body will be executed. This will
terminate only when the expression evaluates to ´false´.

Example
VAR
 i : INT := 3;
END_VAR
WHILE i > 0 DO
 i:=i-1;
END_WHILE;

Initially, ´i´ equals 3. 3 is greater than 0, so the expression after WHILE is true
and the loop body executed. This will decrement the value of ´i´ to 2. 2 is
still greater than 0, so the loop body will be executed again. Some time
later, the loop body will decrement ´i´ from 1 to 0. On the next check, the
expression after WHILE will be false, hence the loop body will not be
executed again.

Reference Listings 133

Parker Hannifin

Notes: This is a keyword only for language ST. Τhis is defined by IEC61131-3.

WITH
This keyword is defined by IEC61131-3 for the textual definition of
configurations, resources and tasks. With ACR-View, these are defined and
configured using property-dialog boxes. You will see this keyword in ACR-
View only when printing the definition of a configuration.

WORD
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

WSTRING
See Elementary Data Types

Notes: Standardization—this is a data type defined by IEC61131-3.

XOR
Inputs

IN1: ANY_BIT Input 1

IN2: ANY_BIT Input 2

Returns

ANY_BIT logical, bitwise XOR of Input 1 and Input 2

Notes: Standardization: this function is defined by IEC61131-3.

XORN
Inputs

IN1: ANY_BIT Input 1

IN2: ANY_BIT Input 2

Returns

ANY_BIT logical, bitwise XOR of Input 1 and inverted Input 2

Notes: Standardization: this function is defined by IEC61131-3.

Errors and Warnings

How to Read Error Messages
In the Output Window you will find any error messages from the compiler.

134 IEC61131 User Guide

Parker Hannifin

Reference Listings 135

Each error message line fits the following style:

• The file name including path of the source code that caused the error
message.

• A triple of numbers where the first number indicates the section the
error occurred ("2" for "Declaration" and "3" for "Instruction"), the second is
the line and the last the column (within the section mentioned before).

• A capital letter indicates the type of message:

letter stands for

I Info

E Error

W Warning

F Fatal Error

• The error number code that allows you to find a detailed error
description here in the documentation.

• A short description of the error.

 from

 always be renamed by using the ACR-
View function File->File->Rename.

ible version. In this version nested
comments are not allowed.

orted character was used. See also Table 1: Character set
features

closed. Please close the comment before calling the syntax check.

General Errors

G10001
Warning G10001: The file [file name] is inconsistent. You should not use it.
The File is inconsistent. A reason might be that the file name is different
the POU name within the file. This is normally caused by renaming files
outside of ACR-View. POUs should

Syntax Errors

S1000
Nested comments are not allowed.

You are using an IEC61131-3 compat

S1001
Invalid character.

An unsupp

S1002
End of file found in comment.

The end of the file was reached before an open comment has been

Parker Hannifin

S1003
Reserved keyword.

A reserved keyword was used an identifier.

S1004
Invalid value for hour.

The numeric value for the hour unit of a TIME_OF_DAY or a DATE_AND_TIME
literal must be an integer in the range [0, 23].

S1005
Invalid value for minute.

The numeric value for the minute unit of a TIME_OF_DAY or a
DATE_AND_TIME literal must be an integer in the range [0, 59].

S1006
Invalid value for second.

The numeric value for the seconds unit of a TIME_OF_DAY or a
DATE_AND_TIME literal must be a fixed point number in the range [0, 60).

S1008
Invalid value for month.

The numeric value for the month unit of a TIME_OF_DAY or a
DATE_AND_TIME literal must be an integer in the range [1, 12].

S1009
Invalid day range.

The numeric value for the day unit of a TIME_OF_DAY or a DATE_AND_TIME
literal must be an integer in the range [1, 31], giving the day of the month.
I. e. if the respective month has less than 31 days, the maximum number of
days in the month is the greatest valid value for the day literal.

S1010
Exponent too large.

The numeric value for the exponent of a real literal must be an integer in
the range [–37, 38] and for a LREAL literal an INT in the range [–307, 308].

S1011
Incorrect direct address.

The numeric value for a location field in the hierarchical address of a
directly represented variable is hardware dependent integer, but must not
exceed 4294967295. Please consult your hardware documentation to
determine the maximum value for each field in the address hierarchy.

136 IEC61131 User Guide

Parker Hannifin

S1012
Invalid day entry.

The numeric value for the day unit of a TIME literal must be a fixed point
number in the range [0, 255].

S1013
Invalid hour entry.

The numeric value for the hour unit of a TIME literal must be a fixed point
number in the range [0, 24] if the hour is not the most significant unit of the
duration literal. An overflow is only permitted if the hour unit is the most
significant unit of the TIME literal.

Example
T#25h_15m is permitted.

T#1d_25h_15m is not allowed. The correct representation of this
duration literal is: T#2d_1h_15m.

S1014
Invalid minutes entry.

The numeric value for the minute unit of a TIME literal must be a fixed point
number in the range [0, 60] if minute is not the most significant unit of the
duration literal. An overflow is only permitted if the minute unit is the most
significant unit of the TIME literal.

Example
T#75m is permitted.

T#5h_75m is not allowed. The correct representation of this duration
literal is: T#6h_15m.

S1015
Invalid seconds entry.

The numeric value for the seconds unit of a TIME literal must be a fixed
point number in the range [0, 60] if seconds are not the most significant unit
of the duration literal. An overflow is only permitted if the seconds unit is the
most significant unit of the TIME literal.

Example
T#75s is permitted.

T#5m_75s is not allowed. The correct representation of this duration
literal is: T#6m_15s.

S1016
Invalid milliseconds entry.

The numeric value for the milliseconds unit of a TIME literal must be a fixed
point number in the range [0, 1000] if the milliseconds are not the most

Reference Listings 137

Parker Hannifin

significant unit of the duration literal. An overflow is only permitted if the
milliseconds unit is the only unit of the TIME literal.

Example
T#1200s is permitted.

T#1s_1200ms is not allowed. The correct representation of this duration
literal is: T#2s_200ms.

S1017
Direct address too complex.

The maximum number of location fields in the address hierarchy of a
directly represented variable is hardware dependent but must not exceed
8. Please consult your hardware documentation to determine the maximum
depth of the address hierarchy.

S1018
Integer constant too large/small.

A constant's value must be in the range of representable values for its type.
The type of an integer constant depends on the type of the variable the
constant is assigned to but must not exceed the range of a LINT/ULINT (8
byte integer/unsigned integer) constant.

S1019
Integer constant too large/small (does not fit into 32 bits).

The numeric value of the given constant exceeds the range of values of
type DINT/UDINT.

S1020
Numeric value too large/small.

A constant's value must be in the range of representable values for its type.
The type of a signed integer constant depends on the type of the variable
the constant is assigned to but must not exceed the range of a LINT (8 byte
integer) constant.

S1021
Error while processing a floating-point function of the math library.

S1022
Invalid string constant.

The given string constant contains an invalid character. A character string
literal is a sequence of zero or more characters prefixed and terminated by
the single quote character ('). Valid characters are any printable character
except '$'. The three-character combination of the dollar sign ($) followed
by two hexadecimal digits shall be interpreted as an hexadecimal
representation of the eight bit character code as shown in table Character
string literal feature.

138 IEC61131 User Guide

Parker Hannifin

Additionally, two-character combinations beginning with the dollar sign
shall be interpreted as shown in table Two-character combinations in
character strings when they occur in character strings.

S1023
Invalid number (i.e., numerical constant).

The given numeric constant contains an invalid character. See table
Numeric literals for examples of valid numeric literals.

S1024
Invalid constant.

The given constant contains invalid characters.

For a list of valid constant representations see Table 53: Function block
invocation features for IL language.

S1025
Invalid direct address.

A directly represented variable contains invalid characters.

The direct representation of a variable shall be provided by the
concatenation of the percent sign "%", a location prefix, an optional size
prefix and one or more unsigned integers separated by periods (.)

The manufacturer shall specify the correspondence between the direct
representation of a variable and the physical or logical location of the
addressed item in memory, input or output. When a direct representation is
extended with additional integer fields separated by periods, it shall be
interpreted as a hierarchical physical or logical address with the leftmost
field representing the highest level of the hierarchy, with successively lower
levels appearing to the right. For instance, the variable %IW2.5.7.1 may
represent the first "channel" (word) of the seventh "module" in the fifth
"rack" of the second "I/O bus" of a programmable controller system.

The use of directly represented variables is only permitted in programs. The
maximum number of levels of hierarchical addressing is hardware
dependent and must not exceed 8.

Please consult your hardware documentation to determine the maximum
levels of hierarchical addressing.

S1026
Invalid identifier (name, variable, parameter,...)

An identifier contains one ore more invalid characters.

An identifier is a string of letters, digits, and underline characters which shall
begin with a letter or underline character. The letters can be upper or lower
case. Multiple leading or multiple embedded underlines are not allowed.

Imbedded space characters are not allowed.

Reference Listings 139

Parker Hannifin

S1027
End of file found in file header.

An error occurred while reading the file header. You can fix this error, by
opening the file with a text editor and removing all lines preceding the
PROGRAM, FUNCTION or FUNCTION_BLOCK keyword. If this error occurs
more often, please contact your manufacturer.

S1028
This identifier is too long (> 64 characters).

The length of an identifier is greater than the maximum supported length. In
this implementation only identifiers up to 64 characters are supported.

S1029
This word (identifier, constant literal, string, comment) is too long (> 1024
characters).
A token (identifier, constant literal, string, comment) exceeds 1024
characters. In this implementation only tokens up to 1024 characters are
supported.

S1030
Too many identifiers.

The maximum number of identifiers has been exceeded. Maximum 65535
identifiers are supported.

S1031
Unallowed usage of EN. Just allowed as an identifier for a bool variable in
input section.

A variable with the name "EN" has been declared in the wrong variable
section or with incorrect type.

The name "EN" (enable) is reserved for Boolean input variables.

If the value of EN is FALSE when the function or function block is invoked
the operations defined by the function/function block shall not be
executed. If the Boolean output parameter ENO has been defined too than
the value of ENO is reset to FALSE.

If the value of EN is TRUE when the function or function block is invoked the
operations defined by the function/function block are executed. These
operations can include the assignment of a Boolean value to the Boolean
output parameter ENO, if this parameter has been defined too.

S1032
Unallowed usage of ENO. Just allowed as an identifier for a bool variable in
output section.

A variable with the name "ENO" has been declared in the wrong variable
section or with incorrect type.

140 IEC61131 User Guide

Parker Hannifin

The name "ENO" (Enable Out) is reserved for Boolean output variables. The
variable "ENO" requires the Boolean input variable "EN".

If the value of EN is FALSE when the function or function block is invoked
the operations defined by the function/function block shall not be
executed and the output parameter ENO is reset to FALSE.

If the value of EN is TRUE when the function or function block is invoked the
operations defined by the function/function block are executed. These
operations can include the assignment of a Boolean value to ENO.

S3000
Function block not declared.

A CAL to an unknown function block instance has been found.

An instance of a function block must be declared before it can be used.

Tips:

Make sure that an instance of the requested function block is declared
in one of the variable declaration sections.

Make sure the name of the name of the function block instance is
spelled correctly.

S3001
Function not present.

A call to an unknown function has been found.

A function must be declared before it can be used. The parameters that a
function uses must be specified in a declaration, or prototype, before the
function can be used.

Tips:

Make sure that the file containing the declaration or prototype of the
function is in the scope of the project or that the function is part of the
firmware.

Make sure the name of the name of the function is spelled correctly.

S3002
Incorrect parameter.

The requested parameter was not found in the formal parameter list of the
function block.

Tips:

Make sure the name of the name of the parameter is spelled correctly.

Make sure that the parameter list of the function block-definition
contains a parameter with the name used in the assignment.

Reference Listings 141

Parker Hannifin

S3003
Jump label not present.

A JMP instruction to an unknown label has been found.

A label has to be defined in the instruction part of the program unit in
which it is used.

Tips:

Make sure that a the label is defined in the same program unit.

Make sure the name of the name of the label is spelled correctly.

S3004
Multiple assignment of a variable/name.

The given identifier was defined more than once.

Tips:

Make sure the identifier has not been defined twice in the same
program unit.

Make sure the identifier has not been used in a user type declaration, a
global type declaration or as a function, function block or program
name.

S3005
This is not a function block instance.

A variable with the name used in a CAL-statement has been found but is
not an instance of a function block.

Tips:

Make sure that the identifier is spelled correctly.

Make sure that a function block instance with the specified name has
been declared either in the scope of the program unit or in the global
scope.

S3006
This is not a struct variable or a function block instance.

An access to a member of a struct or function block variable has been
attempted, but the variable specified by the identifier is not a function
block or a struct.

Tips:

Make sure that the identifier is spelled correctly.

Make sure that the variable with the given name is a struct or a
function block.

142 IEC61131 User Guide

Parker Hannifin

S3007
This is not a FUNCTION-POU.

An identifier used as a function name has been defined but is not a
function name.

Tips:

Make sure that the identifier is spelled correctly.

Make sure that the identifier is the name of a function and not the
name of a function block.

Make sure that a function invocation and not a call of a function block
instance has been desired on the specified position.

S3008
No structure element or block parameter.

An access to a member of a struct or function block variable has been
attempted, but the member specified by the identifier is not a parameter
of the accessed function block or struct instance.

Tips:

Make sure that the identifier is spelled correctly.

Make sure that the right function block or struct instance is used.

If the accessed variable is an instance of a function block make sure
that the function block has a parameter with the name given by the
identifier.

If the accessed variable is an instance of a struct, make sure that the
struct has a member with the name given by the identifier.

S3009
No jump label.

The identifier used in the JMP/JMPC/JMPCN-statement at the given position
has been found but is not a label name.

Tips:

Make sure that the identifier is spelled correctly.

Make sure that identifier used after the JMP/JMPC/JMPCN-statement is
a label name.

S3010
Type or function block name expected.

A type or a function block name has been expected. The identifier has
been found in the current scope but is neither a type nor a function block
name.

Tips:

Check if the name is spelled correctly.

Reference Listings 143

Parker Hannifin

Make sure that the identifier is not a variable name (e. g. a function
block name).

S3011
Identifier is not a variable or type name.

A variable or a function block instance has been expected. The identifier
has been found in the current scope but is neither a variable nor a function
block instance.

Tips:

Check if the name is spelled correctly.

Make sure that the identifier is not a type name (e. g. a function block
name).

S3012
Variable name or constant expected.

This error occurs, if an identifier, which is not a variable name or an enum
constant, is used where a variable name or a constant is expected.

Example
TYPE
 Colours : (red, yellow, blue) := red;
END_TYPE
VAR
 Colour : Colours := Colours; (* Error: Enum constant expected.
 EnumType is a type name *)
END_VAR

LD Colours (* Error: constant or variable name expected. EnumType is a
type name *)

ST Colour

S3014
Numeric data type expected.

Operator and operand type are incompatible. An operand of an ANYNUM
type has been expected.

S3016
Bit data type expected.

Operator and operand type are incompatible. An operand of an ANYBIT
type has been expected.

S3017
Boolean value expected.

Operator and operand type are incompatible. An operand of type BOOL
has been expected.

144 IEC61131 User Guide

Parker Hannifin

S3018
Numeric data type expected.

Illegal operand type. Operand of an ANYNUM type expected.

S3019
Operators of type incompatible.

Operand and result type are incompatible.

S3020
Operand types incompatible.

This error occurs if an illegal combination of time and date data types is
used for the input parameters of a SUB operation. For allowed combination
of the input and output data types for this operation see Table 30 -
Functions of time data types in the IEC61131-3 Compliance Statement.

Example
VAR
 TimeVar : TIME;
 DateVar : DATE;
END_VAR
LD DateVar
SUB TimeVar (* Error: SUB is not defined for the this combination of
input parameters *)
ST DateVar

S3022
Invalid operand type for this operation.

Invalid operand type for the operation on the specified position. An
operand of type TIME or of an ANYNUM type has been expected.

S3023
Invalid operand type for this operation.

Invalid operand type for the operation on the specified position. An
operand of type TIME, TIME_OF_DAY, DATE_AND_TIME or of an ANYNUM
type has been expected.

S3024
Invalid operand type for this operation.

Invalid operand type for the operation on the specified position. An
operand of an ANYBIT type has been expected.

S3025
Boolean result required.

Incompatible result type. Result should be of type BOOL.

Reference Listings 145

Parker Hannifin

S3026
Undeclared identifier.

This error occurs, if the identifier at the given position, has not been defined
in the scope valid for the compiled program organization unit.

Example
TYPE
 Colours : (red, yellow, blue) := red;
END_TYPE
VAR
 Colour : Colours := green; (* Error: green has not been declared as an
enum constant *)
END_VAR

LD IntVar (* Error: IntVar has not been declared. *)
ADD 5
ST IntVar

S3028
Comparison not defined for the data type of the current result.

The comparison on the given position is not defined for the type of the
current result. I. e. the type of the actual parameter is incompatible with
the type of the first formal parameter. For more information see Table 28 -
Standard comparison functions in the IEC61131-3 Compliance Statement.

Example
TYPE
 Day_of_Week : STRUCT
 Name : String;
 DayNo : INT(1..7);
 END_STRUCT;
END_TYPE
VAR
 DayVar1 : Day_of_Week;
 DayVar2 : Day_of_Week;
 BoolVar : BOOL;
END_VAR
LD DayVar1
GT DayVar2 (* Error: comparisons on structured variables are not allowed *)
ST boolVar

S3030
Comparison not defined for this type.

The type of the operand at the given position is not allowed for
comparisons. I. e. the type of the actual parameter is incompatible with
the type of the formal parameter. For more information see Table 28 -
Standard comparison functions in the 1131-3 Compliance Statement.

Example
TYPE
 Day_of_Week : STRUCT
 Name : String;
 DayNo : INT(1..7);
 END_STRUCT;
END_TYPE
VAR
 DayVar1 : Day_of_Week;
 DayVar2 : Day_of_Week;
 BoolVar : BOOL;

146 IEC61131 User Guide

Parker Hannifin

END_VAR
LD DayVar1
GT DayVar2 (* Error: comparisons on structured variables are not allowed *)
ST boolVar

S3032
Self-referencing (i.e., recursive) declarations are not allowed.

Recursion detected. A function can not invoke itself recursively, neither
directly nor indirectly (i. e. by invoking another function, that invokes one of
the functions in the calling hierarchy). Function blocks and programs can
not declare instances of themselves, neither directly nor indirectly (i. e. by
calling an instance of another function block that declares an instance of
a function block type in the calling hierarchy).

S3033
Operand of type TIME expected.

A constant or a variable of type TIME was expected and the operand at
the given position is of another type.

Example
VAR
 StartTime : TIME_OF_DAY;
 StopTime : TIME_OF_DAY;
 RunTime : TIME := T#10s;
END_VAR
LD StartTime
ADD 10000 (* Error: operand must be of type TIME *)
ST StopTime
 LD StartTime
ADD RunTime (* Correct *)
ST Stop Time

S3034
String too long for variable.

A string literal has been assigned to a string variable but the string literal
does not fit in the string variable. I. e. the length of the string literal is
greater than the allocated length of the string variable.

S3035
Unallowed operand type for this function! Numeric operand or operand of
date or time type expected.

The operation at the given position is not defined for the type of the current
result (i.e. the first actual parameter).

Example
VAR
 BitMake: WORD;
END_VAR
LD BitMask (* Error: operand must be of type TIME, ANY_DATE or ANY_NUM *)
SUB 3
ST BitMask

Reference Listings 147

Parker Hannifin

S3036
Integer constant is out of range.

The integer constant at the given position is not in the range of the
associated data type.

Example
VAR
 Range1 : UINT(-1..1000); (* Error: Sign mismatch. Values for UINT
must not be negative *)
 Range2 : INT(-1..36000); (* Error: Overflow: the upper range is greater
as the
 maximum valid INT value *)
END_VAR

S3037
The lower bound of the subrange must not be greater than the upper
bound.

The value of the upper bound in the subrange declaration on the specified
position is lower than the value of the lower bound. A subrange declaration
restricts the range of an integer type to values between and including the
specified upper and lower limits, where the upper limit has to be greater
than the lower limit.

S3038
Initialization is out of bounds of subrange (Data type is a subrange type).
A variable of a subrange type has been initialized with a value that is out of
the range of this subrange type. A subrange declaration specifies that the
value of any data element of this type can only take on values between
and including the specified upper and lower limits.

S3039
Index is out of bounds.

An access to a variable of an array type has been attempted with an
index whose value is out of the range specified in the type or variable
declaration.

S3040
Invalid data type. ANY_NUM required.

The operation at the given position is not defined for the type of the current
result (i.e. the first actual parameter).

Example
VAR
 BitMake: WORD;
END_VAR
LD BitMask (* Error: operand must be of type TIME, ANY_DATE or ANY_NUM *)
NEG
ST BitMask

148 IEC61131 User Guide

Parker Hannifin

S3041
Unallowed EN/ENO type. Must be of type bool. Must not be RETAIN.

An input variable with the name EN or an output variable with name ENO
has been declared with an illegal type or with the RETAIN qualifier.

The identifier "EN" is reserved for input variables of type BOOL

The identifier "ENO" is reserved for output variables of type BOOL This
variable must not be declared with RETAIN qualifier.

S3042
Missing EN. Use of ENO allowed only in combination with EN.

An output variable with the name "ENO" has been defined but no input
variable with name "EN" has been found. The output variable "ENO" can
only be used in combination with "EN".

S3044
Data missing. You either need a load or an expression.

The current result is undefined. Either a LD instruction or an expression must
precede the instruction on the current position. This error occurs as a
consequence of error Syntax Error S5010 . Please move the instruction out of
the parenthesis.

S3046
Type names can not be used as an instance names.

A type name or the name of a program organization unit has been used in
a declaration as a variable name. Program organization units and types
defined on project level are known in the whole project scope and their
names can not be used as identifiers for local variables.

Example
FUNCTION Power
(* function block declarations *)
(* statements *)
END_FUNCTION

PROGRAM main
VAR
 Power : REAL; (* Error: Power is not allowed as a variable name, because
it already has been
 used as a function name *)

END_VAR
(* Code *)
END_PROGRAM

S3047
Function parameters must be specified in the order as defined in the
Function prototype. Permutated parameter sequences will lead to
incorrect code even if parameter names are specified.

If a function block is called in ST, the ST compiler translates the given calling
parameter list directly to IL code since it has no knowledge of the function

Reference Listings 149

Parker Hannifin

block's declaration. Because of this, the specified order must match the
declaration order of the function blocks Input and Output variables.

Example
FUNCTION_BLOCK Example
VAR_INPUT
 In1 : int;
 In2 : int;
END_VAR
FUNCITON_BLOCK_END

Program:
VAR
 Instance : Example;
 Local1 : int;
 Local2 : int;
END_VAR

(* correct: parameter order matches declaration order *)

Example(In1 := Local1, In2 := Local2);

(* WRONG: does not match declaration order *)

Example(In2 := Local2, In1 := Local1);

S3048
Possible string truncation in assignment.

This warning is issued if the destination string in a string assignment has a
shorter overall length than the source string. This check is done at compile
time based on the declared lengths of both strings.

Example
VAR
 strDestination : string[10];
 strSource : string[40];
END_VAR

strDestination := strSource;

S4000
'AT%': Simultaneous declaration of several direct variables is invalid.

A list of identifiers has been used in a located variable declaration. Direct
representations can only be associated to a single identifier.

Example
The following declaration is not allowed:
VAR
 dirVar1, dirVar2, dirVar3 : at%I0.0;
END_VAR

S4001
Too many variables (identifiers). Maximum is 60 identifiers.

Too many identifiers in the identifier list of a variable declaration. Identifier
lists with maximum 60 identifiers are supported.

150 IEC61131 User Guide

Parker Hannifin

S4003
Array too big.

The element count of a dimension in an array declaration exceeds the
maximum number of elements supported by ACR-View. The maximum
element count is determined by the supported index range.

S4005
Upper bound must be greater or equal than lower bound.

The value of the upper bound index in the array declaration on the
specified position is lower than the value of the lower bound index of the
same dimension. The upper bound index of a dimension must be greater or
equal than the associated lower bound index.

S4006
Syntax error. [Hint: In some cases, the actual error is located in a previous
line (';' missing etc.)].

S4007
Self-referencing (i.e., recursive) declarations are invalid.

Recursion detected. A function can not invoke itself recursively, neither
directly nor indirectly (i. e. by invoking another function, that invokes one of
the functions in the calling hierarchy). Function blocks and programs can
not declare instances of themselves, neither directly nor indirectly (i. e. by
calling an instance of another function block that declares an instance of
a function block type in the calling hierarchy).

S4008
Too many attributes 'RETAIN' or 'CONSTANT'. You may use only one.

Too many qualifiers used in a variable declaration part.

S4009
A STRUCTure must contain at least one structure element (variable
declaration).

An empty structure has been declared. This is not allowed. A structure must
contain at least one member variable.

Example
The following is not allowed:
TYPE
 Mystruct : struct end_struct;
END_TYPE

Allowed:
TYPE
 Mystruct : STRUCT
 M1 : int;
 END_STRUCT
END_TYPE

Reference Listings 151

Parker Hannifin

S4010
Simultaneous type declarations are not allowed.

The type declaration on the specified position contains a list of identifiers.
This is not allowed. Please write a declaration for any new type.

Example
The following is not allowed:
TYPE
 MyInt1, MyInt2, MyInt3 : int;
END_TYPE

Allowed:
TYPE
MyInt1 : int;
MyInt2 : int;
MyInt3 : int;
END_TYPE

S4011
Valid only in PROGRAMs and there within VAR- and VAR_GLOBAL-Sections.

A directly represented variable has been declared in a program
organization unit or a variable declaration part in which it is not supported.
Located variable declarations are supported only in VAR- or VAR_GLOBAL-
declaration-parts of PROGRAMs.

S4012
Valid only in PROGRAMs, FUNCTION_BLOCKs, and in FUNCTIONs.

A variable declaration part (VAR <declarations> END_VAR) was found in a
unit where it is not supported. Variable declaration parts are allowed in
programs, functions and function blocks.

S4013
Valid only in PROGRAMs, FUNCTION_BLOCKs, and in FUNCTIONs.

An input variable declaration (VAR_INPUT <declarations> END_VAR) part
was found in a program organization unit where it is not supported.

S4014
Valid only in PROGRAMs and in FUNCTION_BLOCKs.

An in/out variable declaration part (VAR_IN_OUT <declarations> END_VAR)
was found in a program organization unit where it is not supported.

S4015
Valid only in PROGRAMs and in FUNCTION_BLOCKs.

An output variable declaration part (VAR_OUTPUT <declarations>
END_VAR) was found in a program organization unit where it is not
supported.

152 IEC61131 User Guide

Parker Hannifin

S4016
Valid only in PROGRAMs and in FUNCTION_BLOCKs.

An external variable declaration part (VAR_EXTERNAL <declarations>
END_VAR) was found in a program organization unit where it is not
supported. External variable declarations are supported in PROGRAMs and
FUNCTION_BLOCKs.

S4017
Valid only in PROGRAMs.

A global variable declaration part (VAR_GLOBAL <declarations> END_VAR)
was found in a program organization unit where it is not supported. Global
variable declarations are allowed in PROGRAMs only.

S4018
Valid only in VAR- and in VAR_GLOBAL-Sections.

The qualifier "CONSTANT" has been used in a variable declaration part in
which it is not supported.

S4019
Valid only in PROGRAMs or in FUNCTION_BLOCKs and there within VAR-,
VAR_OUTPUT-, or VAR_GLOBAL-Sections).

The qualifier "RETAIN" has been used in a variable declaration part in which
it is not supported.

S4020
Valid only in PROGRAMs or in FUNCTION_BLOCKs and there within VAR_INPUT-
Sections with Type "BOOL" without Initialization.
A variable has been declared with an edge qualifier in a program
organization unit or variable declaration part where this is not supported.

S4021
Valid only within VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT-Sections.
A variable has been declared with the ADDRESS qualifier in a program
organization unit or variable declaration part where this is not supported.

S4022
Valid only in FUNCTION_BLOCKs or FUNCTIONs and there within VAR..END_VAR-
Sections without CONSTANT/RETAIN-Modifiers.
A variable has been declared with the ATTRIBUTES qualifier in a program
organization unit or variable declaration part where this is not supported.
This attribute is supported only in VAR-Sections without CONSTANT or RETAIN
qualifiers of FUNCTIONs and FUNCTION_BLOCKs.

Note: Keyword ATTRIBUTES is supported by ACR-View only in custom versions
to define additional attributes for variables in extension to IEC61131-3. You
should not see this message in standard ACR-View.

Reference Listings 153

Parker Hannifin

S4023
Valid only in TYPE..END_TYPE-Sections.
A struct declaration was found in a declaration part where this is not
supported. Struct declarations are supported only in TYPE declaration parts.

S4024
Valid not within VAR_EXTERNAL-Sections.
A variable has been declared in an EXTERNAL declaration section with an
initial value. This is not allowed. Please assign the initial value in the
respective GLOBAL variable declaration.

Example
VAR_EXTERNAL
 A : INT := 5;
END_VAR

VAR_EXTERNAL
 A : INT;
END_VAR

VAR_GLOBAL
 A : INT := 5
END_VAR

S4033
Multiple initialization.
A member of a struct variable has been initialized more than once. This
error occurs when both an explicit struct initialization and a per element
initialization are made.

Example
The following initialization is not allowed:
TYPE
 StructType : Struct
 Member1 : int := 5;
 Member2 : bool;
 END_STRUCT := (Member1 := 4, Member2 := true);
END_TYPE

Use one of the following initializations instead:
TYPE
 StructType : Struct
 Member1 : int ;
 Member2 : bool;
 END_STRUCT := (Member1 := 4, Member2 := true);
END_TYPE

or

TYPE
 StructType : Struct
 Member1 : int := 5;
 Member2 : bool := true;
 END_STRUCT;
END_TYPE

154 IEC61131 User Guide

Parker Hannifin

S4034
Invalid POU name.
This error occurs when a keyword has been used as a POU name or if no
name has been defined.

S4035
Invalid type for function.
The function type must be a predefined type or an identifier. This error
occurs most commonly, when a reserved keyword, a IEC61131-3 character
string or a number is used as a function type or if no function type has been
defined.

S4036
FUNCTIONs need at least one input parameter VAR_INPUT.
A function has been defined without an input parameter. In IEC61131-3 a function needs
at least one input-parameter.

S5000
Wrong parameter type.
The type of an actual parameter of a function or a function block instance
is incompatible with the type of the formal parameter it has been assigned
to.

S5001
Array expected. This is not an array.
An indexed access has been attempted to a variable which is not an
array.

Example
PROGRAM
VAR
 x : INT;
 y : INT;
END_VAR

LD x[3] (* not allowed if the variable is not an array *)
ST y

END_VAR

S5002
This FUNCTION_BLOCK is called by CAL if EN=TRUE. CALC/CALCN are both invalid.
An instance of a function block with an "EN" input parameter has been
called via CALC/CALCN. This is not allowed. Use the CAL-statement
instead. The code of a function block with an "EN" parameter is invoked if
the value of this parameter is TRUE.

S5003
Function block instances may not be "CONSTANT".
An instance of a function block has been defined in a variable section with
CONSTANT attribute. This is not allowed. Please remove the attribute or

Reference Listings 155

Parker Hannifin

move the instance declaration in another variable section, which has no
CONSTANT attribute.

S5004
Function blocks instances are invalid in "FUNCTION"-POUs, STRUCTs, and in ARRAYs.
An instance of a function block has been defined in a variable section of a
function or as a member of a STRUCT or an ARRAY type. IEC61131-3 doesn't
allow declarations of function block instances in functions. Function block
instances as members of STRUCT and ARRAY types are not supported by
ACR-View.

S5005
Function block instances as function results are not supported.
Function block instances as result type of a function are not supported in
ACR-View.

S5006
Function block instances as parameters are not supported.
Parameters of a function block type are not supported in ACR-View.

S5008
Expected an integer or an enum. Invalid array index.
The type variable or constant used as an index in an indexed variable
access is invalid. An index must be of type INT or of an enumeration type.

S5009
Invalid sequence beginning. Current result is empty. Use "LD" to initialize current result.
This error occurs when a sequence of statements starts with an instruction
that uses the current result. The first instruction usually is a load statement.
This error can also occur, if the current result is used in the first instruction
after a CAL, a JMP or a label.

Example
PROGRAM main
VAR
 Switch : BOOL;

END_VAR
ST Switch (* Error: Current result is undefined. *)

LD Switch
EQ TRUE
JMPC NextStep

LD TRUE
JMP End (* The value loaded in the previous statement will be lost after the JMP-
statement *)

NextStep:
LD FALSE

END:
ST Switch (* Error: Current result is undefined after a label *)

(* Code *)
END_PROGRAM

156 IEC61131 User Guide

Parker Hannifin

S5010
Invalid instruction within a parentheses computation.
The instruction at the given position is not allowed between parentheses.
Please replace the instruction or move it out of the parentheses.

Example
FUNCTION_BLOCK Count
VAR_INPUT
 StartValue : DINT;
 FReset : BOOL;
END_VAR
VAR_OUTPUT
 CurrentCountValue : DINT;
END_VAR
VAR
 CountValue : DINT;
END_VAR
LD fReset
EQ TRUE
JMPCN Continue

LD StarValue
ST CountValue

Continue:
LD CountValue
ADD 1
ST CountValue
ST CurrentCountValue
END_FUNCTION_BLOCK

PROGRAM main
VAR
Counter : Count;
StartValue : DINT;
Result : DINT;

END_VAR
LD 5
ADD (StartValue
ST Counter.StartValue
EQ 1000
ST Counter.fReset
CAL Counter (* Error: CAL is not allowed between parentheses *)
LD Counter.CurrentCounter (* Error: Load is not allowed between parentheses
*)
)
ST Result
END_PROGRAM.

S5011
ARRAYs of function block instances are invalid.
Arrays of function blocks are not supported.

S5012
Result type and operand type are incompatible.
The result type of the preceding operation and the type of the variable in
which this result is stored are incompatible.

Reference Listings 157

Parker Hannifin

Example
VAR
 X : INT;
END_VAR
LD 65000
ST x (* 65000 is not of type INT *)

S5013
Result type and type of the first formal input parameter are incompatible.
The result type of the preceding operation and the type of the first input
parameter in a function or function block call are incompatible.

Example
FUNCTION Fun1
VAR
 InVar : INT;
END_VAR
(* Code *)
END_FUNCTION

PROGRAM main
VAR
 X : DINT;
END_VAR
LD x
ADD 1000
Fun1 (* Error: result type of the preceding operation is DINT, the type of the
first input parameter of Fun1 is INT *)
ST x
END_PROGRAM

S5014
Wrong number of parameters.
Too many parameters found in a call of a function or a function block.

S5015
Invalid type for direct address.

A located variable has been declared with an unsupported type. Only
located variables of type ANY_NUM or ANY_BIT are supported.

S5016
Variable is read-only. Write-access invalid.

A write access has been attempted to a variable, that has only read
access.

S5017
Variable is not a STRUCTure.

A initialization value for a structure has been assigned to a variable which is
not of a structured type.

Example
VAR
 A : INT := (m1 := 5, m2 := TRUE); (* not allowed *)
END_VAR

158 IEC61131 User Guide

Parker Hannifin

S5018
Variable is no array.
An array initialization has been assigned to a variable which is not of an
array type.

Example
VAR
 A : INT := [4]; (* not allowed *)
END_VAR

S5019
Initialization value and variable type incompatible.

The type of the initialization value and the type of the variable are
incompatible.

Example
VAR
 X : INT := 65000;
END_VAR

S5020
Too many initialization values.

The initialization value for an array type or variable has more elements as
provided by the array declaration.

Example
VAR
 A : ARRAY [1..5] OF INT := [1, 2, 3, 4, 5, 6]; (* too many
initialization values, array has only 5 elements *)
END_VAR

S5021
Formal parameter incorrectly declared.

The name of an output parameter has been expected. The identifier has
been found in the current scope but is not the name of an output
parameter.

Tips:

• Check if the name is spelled correctly.

• Make sure that the identifier is not an input or in/out parameter.

S5022
Multiple assignments to a parameter in a call of a function block instance.

This error occurs, when in a call of a function block instance a parameter is
initialized twice.

Example
FUNCTION_BLOCK Fb1
VAR_INPUT
 InParam1 : int;
 InParam2 : int;

Reference Listings 159

Parker Hannifin

160 IEC61131 User Guide

 InParam3 : bool;

D_FUNCTION_BLOCK

AM main

nst : fb1;

nParam3 := true
)

END_PROGRAM

ple

ber3 : bool;
STRUCT;

YPE

uctVar : StructType := (Member1 := 1, Member1 := 2, Member3 := FALSE);
END_VAR

: REAL;

(* The constant 1 can be converted implicitly to any integer or any

(* Error: LN is only defined for ANY_REAL types *)
ST X

the parameter at the given position.

: STRING;

END_VAR
(* Code *)
EN

PROGR
VAR
 fbI
END_VAR
(* Code *)
cal fbInst(InParam1 := 1,
 InParam1 := 2,
 I

(* Code *)

S5023
Too much initialization data.

This error occurs, when a member of a struct type or instance is initialized
twice in an explicit structure intialization.

Exam
TYPE
 StructType : STRUCT
 Member1 : int;
 Member2 : int;
 Mem
 END_
END_T
VAR
 Str

S5024
Unallowed type for this operation.

The operation on the given position is not defined for the type of the
current result. I. e. the type of the actual parameter is incompatible with
the type of the first formal parameter.

Example
VAR
 X
END_VAR
LD 1
bit type *)
LN

S5025
Unallowed parameter type for this function.

The type of the actual parameter is incompatible with any type allowed for

Example
VAR
 X
END_VAR

Parker Hannifin

Reference Listings 161

LD ‘EXAMPLE’
LEFT 3.0 (* Error: the second parameter of LEFT has type UINT *)

ent scope but is neither the name of an
 nor of an output parameter.

ke sure that the identifier is not an output parameter.

e., they must have the same type or, if at least one of the parameter is a
 an implicit cast to the type of the other operand has be possible.

ed implicitly to any integer or any
pe *)

(* Error: X is of type REAL *)

This error occurs, if the type of an actual parameter is not allowed for the
 at the given position.

(* Error: CONCAT expects a STRING operand as first input parameter *)
ar

This error occurs, if a call to a function block instance is attempted and this
s an input parameter of the calling function block or program.

 InParam2 : int;
aram3 : bool;

ST X

S5026
Invalid formal parameter type.

The name of an input or an in/out parameter has been expected. The
identifier has been found in the curr
input

Tips:

• Check if the name is spelled correctly.

• Ma

S5027
Incompatible operand types.

The operands for the operation at the given position must be compatible, i.

constant

Example
VAR
 X : REAL;
END_VAR
LD 1 (* The constant 1 can be convert
bit ty
MAX X
ST X

S5028
Data type not allowed for this operation.

operation

Example
VAR
 StringVar : STRING;
END_VAR
LD 1
CONCAT 'EXAMPLE'
ST StringV

S5029
Invalid function block call.

instance i

Example
FUNCTION_BLOCK Fb1
VAR_INPUT
 InParam1 : int;

 InP

Parker Hannifin

162 IEC61131 User Guide

END_VAR

N_BLOCK

 fbInstInput : Fb1;

s *)

InParam1 := 1,
 InParam2 := 2,
 InParam3 := true

)

M

has been attempted to a variable, that has only write

This error occurs if a bit selection is attempted on a variable that is not of a
pe or of type BOOL.

BOOL;

LD DintVar.4 (* Error: bit selection allowed only on variables of type ANY_BIT
L *)

sitions are counted from the least significant bit at position 0
st significant bit at position n – 1, where n is the number of bits in

 type.

: WORD := 5;

 e)
6 (* The selected variable is of type WORD. I. e. it has 16

t positions
 from 0 to 15. *)
ST fVar
(* Code *)

(* Code *)
END_FUNCTIO

FUNCTION_BLOCK Fb2
VAR_INPUT

 (* other input declarations *)
END_VAR
VAR
 (* local variable declaration
END_VAR
(* Code *)
cal fbInstInput(

(* Code *)
END_PROGRA

S5030
Variable is write-only. Read-access invalid.

A read access
access.

S5031
Bit access allowed only on bit data types.

bit data ty

Example
VAR
 DintVar : DINT;
 BoolVar :
END_VAR

except BOO
ST BoolVar

S5032
Bit position is greater than the number of bits in the selected variable.

This error occurs, when the bit position given in a bit selection is greater
than the number of the most significant bit of the selected variable. The
number of bits accessible in a bit selection depends on the variables data
type. The bit po
to the mo
the data

Example
VAR
 wVar
 fVar : BOOL := FALSE;
END_VAR
(* Cod *
LD wVar.1
bits with bi

Parker Hannifin

S5033
IN_OUT parameter missing. Please supply every formal IN_OUT parameter
with a an actual parameter.

This error occurs, if at least one of the IN_OUT parameters of a function
block is not supplied with an actual parameter, when calling an instance of
the respective function block. IN_OUT parameters are references and have
to be supplied with an actual parameter in every call of a function block
instance.

Example
FUNCTION_BLOCK Fb1
VAR_IN_OUT
 InOutParam1 : INT;
 InOutParam2 : BOOL;
END_VAR
(* Code *)
END_FUNCTION_BLOCK

PROGRAM main
VAR
 fbInst : fb1;
 IntVar1 : INT;
 IntVar2 : INT;
END_VAR
(* Code *)
cal fbInst() (* Error: none of the IN_OUT variables of FB1 is supplied with an
actual parameter *)
cal fbInst(InOutParam1 := IntVar1
) (* Error: the actual parameter for the second IN_OUT
parameter is missing *)

cal fbInst (InOutParam1 := IntVar1,
 InOutParam2 := IntVar2
) (* Correct: every formal IN_OUT parameter of FB1 is supplied with an
actual parameter *)
(* Code *)
END_PROGRAM

S5034
Invalid IN_OUT parameter. IN_OUT parameters must not be expressions or
constants.

This error occurs, if an IN_OUT parameter is supplied with an expression or a
constant value. This is not allowed because IN_OUT parameters are
references.

Example
FUNCTION_BLOCK Fb1
VAR_IN_OUT
 InOutParam1 : INT;
 InOutParam2 : BOOL;
END_VAR
(* Code *)
END_FUNCTION_BLOCK

PROGRAM main
VAR
 fbInst : fb1;
 IntVar1 : INT;
 IntVar2 : INT;
END_VAR
(* Code *)
cal fbInst(InOutParam1 := IntVar1,

Reference Listings 163

Parker Hannifin

 InOutParam2 := 5
) (* Error: the actual parameter for the second IN_OUT
parameter is a constant. *)

cal fbInst(InOutParam1 := IntVar1,
 InOutParam2 := (IntVar1
 ADD IntVar2)
) (* Error: the actual parameter for the second IN_OUT
parameter is an expression. *)

cal fbInst (InOutParam1 := IntVar1,
 InOutParam2 := IntVar2
) (* Correct: Both IN_OUT parameters of FB1 are supplied with variables.
*)
(* Code *)
END_PROGRAM

S5035
Generic data types are not allowed.

This error occurs, if an ANY data type is used in a variable or parameter
declaration. The use of generic data types is allowed only for function
overloading and type conversion in standard function or functions
provided by the manufacturer.

Example
FUNCTION IntegerToString : STRING
VAR_INPUT
 InVar : ANY_INT; (* Error: User-defined functions cannot be
overloaded *)
END_VAR
(* Code *)
END_FUNCTION

S5036
Local types are not allowed in this variable section.

This error occurs, if a local user defined type is used in the declaration of a
global or external variable or in the declaration of a parameter. Global
and external variables as well as parameters have to be of a predefined
type or of a global type. Global types are either hardware dependent
types, provided by the firmware or project global user defined types.

Example
PROGRAM main
TYPE
 StructType : STRUCT
 Member1 : BOOL;
 Member2 : STRING;
 END_STRUCT;
 (* Other type definitions *)
END_TYPE
VAR_GLOBAL
 GlobVar : StructType; (* Not allowed because StructType is not known in other
POU’s *)
 (* Other global variable definitions *)
END_VAR

VAR
 (* Local variable definitions *)
END_VAR
(* Code *)
END_PROGRAM

164 IEC61131 User Guide

Parker Hannifin

FUNCTION_BLOCK Fb1
TYPE
 StructType : STRUCT
 Member1 : BOOL;
 Member2 : STRING;
 END_STRUCT;
END_TYPE
VAR_EXTERNAL
 GlobVar : StructType; (* Not allowed because StructType is not known in other POU’s *)
 (* Other external declarations *)
END_VAR
VAR_INPUT
 InVar : StructType; (* Not allowed because StructType is not known in other
POU’s *)
 (* Other input declarations *)
END_VAR
(* Code *)
END_FUNCTION_BLOCK

S5037
Too many indices within the braces [....] of an array-access.

This error occurs, if an access to an array element is attempted with more
indices as dimensions provided in the type definition of the elements data
type.

Example
PROGRAM main
TYPE
 ArrayType : Array[1..5, 1..20] of INT;
 (* Other type definitions *)
END_TYPE
VAR
 ArrayVar : ArrayType;
 IntVar : INT;
 (* Other variable definitions *)
END_VAR
LD ArrayVar[1, 2, 3] (* Error: Variables of type ArrayType have only 2
dimensions *)
ST IntVar

 (* Code *)
END_PROGRAM

S5038
Directly represented variables are only allowed as parameters in
prototypes.

A directly represented variable has been declared in the VAR_INPUT,
VAR_OUTPUT or VAR_IN_OUT section of a program organization unit. This is
not allowed. Directly represented variables are not allowed in functions
and function blocks. VAR_INPUT, VAR_OUTPUT and VAR_IN_OUT variables
are not supported in programs.

If you want to access a directly represented variable from a function block,
declare the variable with a symbolic name in the VAR_GLOBAL section of a
program and use this symbolic name in a declaration in the VAR_EXTERNAL
section of the function block.

Functions cannot access directly represented variables.

Reference Listings 165

Parker Hannifin

Example
FUNCTION_BLOCK SetOutput
VAR_EXTERNAL
 OutputLocation : BOOL;
END_VAR
VAR_INPUT
 Value : BOOL;
END_VAR
LD Value
ST OutputLocation
END_FUNCTION_BLOCK

PROGRAM main
VAR_GLOBAL
 OutputLocation AT%Q0.0 : BOOL;
END_VAR
VAR
Switch : SetOutput;
CurrentValue : BOOL;
END_VAR
LD CurrentValue
NOT
CAL Switch(Value := CurrentValue)
END_PROGRAM.

S5039
'&x' is only allowed if x is a direct variable.

The identifier preceded by the &-operator is not the name of a directly
represented variable.

Tips:

• Make sure that the name is spelled correctly.

• Make sure that the variable is a directly represented variable.

S5040
Too few indices within the braces [....] of an array access.

This error occurs, if an access to an array element is attempted with less
indices as dimensions provided in the type definition of the elements data
type.

Example
PROGRAM main
TYPE
 ArrayType : Array[1..5, 1..10, 1..20] of INT;
 (* Other type definitions *)
END_TYPE
VAR
 ArrayVar : ArrayType;
 IntVar : INT;
 (* Other variable definitions *)
END_VAR
LD ArrayVar[1, 2] (* Error: Variables of type ArrayType have 3 dimensions
*)
ST IntVar

 (* Code *)
END_PROGRAM

166 IEC61131 User Guide

Parker Hannifin

Reference Listings 167

S5041
Values of type INT24 or REAL48 are invalid in this context.

e of a function block has been defined in a variable section with
RETAIN attribute. This is not supported. Please remove the attribute or move

nce declaration in another variable section, which has no RETAIN

alues
lease use a literal or enumeration value.

ations variables, constants or parameters cannot be used to

ype name has been used in a variable declaration or a

 active project.

• Recompile the whole project.

ase consult your hardware documentation if none of the above

grams can
ances of themselves, neither directly nor indirectly (i. e. by

n instance of another function block that declares an instance of

e

Operation not supported for this type.

S5042
Function block instances may not be 'RETAIN'.

An instanc

the insta
attribute.

S5043
Variables, constants and parameters are not allowed as initialization v
in declarations. P

In declar
initialize values.

S6002
No prototype.

An unknown t
function call.

Tips

• Make sure that a type a function or function block with this name is
declared in the context of the

• Make sure the name of the type, function or function block is spelled
correctly.

• Ple
actions eliminates the problem.

S6004
Recursion (i.e., direct or indirect self-reference) detected.

Recursion detected. A function can not invoke itself recursively, neither
directly nor indirectly (i. e. by invoking another function, that invokes one of
the functions in the calling hierarchy). Function blocks and pro
not declare inst
calling a
a function block type already used in the calling hierarchy).

S6005
Too many types and function blocks. For the maximum number of typ
definitions please consult your hardware documentation.

Parker Hannifin

168 IEC61131 User Guide

This error occurs
used in the callin

, if too many types functions or function blocks have been
g hierarchy of a program organization unit. For the

number of types, functions and function blocks supported see
D.1: Implementation-dependent parameters

Linke

 is declared in a PROGRAM POU, check if a resource

e

e of the above cases is true, change the name of one of the
bles or move the variable declaration in the PROGRAM POU in a

 you move the variable into the

04

r a

tion block instance, make sure that a
 with this name is declared in the VAR_GLOBAL section of the

g program or in a file with resource-global variable declarations.

e, make sure that the
or

this function block exists.

• Check if the syntax of the address description is correct. The syntax of
the address description is hardware dependent, but must be a string

maximum
the Table

r Messages

L10001
Variable declared twice: <Variable name>.

The variable with the specified name has been declared twice.

Tips:

• If the variable
global variable with the same name has been declared.

• If the variable is a resource global variable check if a global variabl
with the same name has been declared in a PROGRAM POU of the
resource.

• If on
varia
VAR_EXTERNAL section. Attention: if
external section, every access to the external variable accesses the
resource-global variable with the same name.

L100
Unresolved external: <Variable name>.

Either a global variable with the specified name has not been found, o
function block type with the specified name has not been found.

Tips:

• Make sure that the variable name is spelled correctly.

• If the variable is not a func
variable
callin

• If the variable is a function block instanc
function block has been compiled successfully, i. e. an object file f

L10026
Unsupported address: <AddressDescription>.

The address <AddressDescription> is not supported by this hardware.

Tips:

• Check if the address is spelled correctly.

Parker Hannifin

Reference Listings 169

formed of the percent sign "%" followed by a location prefix, a size
ed integers, separated by periods (.).
 For valid location and size prefixes

27

 description file for the hardware with name <hardware

k if the resource specification contains a valid hardware module
e.

esn't remove your error, consult your

ccurred while getting firmware information. Please check if the
 correct or if the DLL for the specified firmware
irectory.

t allowed.

is

ETAIN not supported for directly represented variables.

nd. This is

prefix and one or more unsign
The size prefix may be empty.
consult your hardware documentation.

L100
Invalid hardware description: %1..

The hardware
name> has not been found.

Tips:

• Chec
nam

• Reinstall ACR-View. If this do
hardware documentation or refer to your hardware manufacturer.

L10029
Hardware configuration error.

An error o
hardware configuration file is
is installed in your ACR-View d

ATTENTION: This file should be altered only by the manufacturer.

L10030
Invalid type for variable: %1.

A directly represented variable of a complex type (array, struct, string) has
been found. This is not supported by the hardware.

L10031
Initializations of directly represented variables are no

An initialization of a directly represented variable has been found. This
not supported by the hardware. Please remove the initialization.

L10032
Address <AddressDescription> invalid in this context.

The address with the specified description is a valid address but not
allowed in this context (Task, POU, Resource, Configuration).

L10033
Attribute R

A directly represented variable with RETAIN attribute has been fou
not supported by the hardware. Please move the variable declaration in
another section or remove the attribute from the section.

Parker Hannifin

170 IEC61131 User Guide

L10034
Attribute CONST not supported for directly represented variables.

his is

The maximum number of instances of the specified function block has
en exceed. The maximum number of instances of a firmware

y in

Invalid process image description. Please contact your manufacturer.

ption of the process image in the hardware configuration file is
, output and marker sections

are correct and if all size entries are of the same unit. They should be
ther in bits or bytes.

ror while loading function or DLL: <DLL/Function-Name>.

e, or your DLL has

ion or install a native code compiler.

ly" optimization is activated but no native code compiler is

he "Edit Resource Specifications"

A directly represented variable with CONST attribute has been found. T
not supported by the hardware. Please move the variable declaration in
another section or remove the attribute from the section.

L10035
Instance limit for function block <FunctionBlockName> reached.

already be
function block is hardware dependent and can be changed by the
hardware manufacturer by setting or changing the "MaxInstances" entr
the specification section of the function block in the hardware description
file. Please consult your hardware documentation, for the maximum
number of instances of a firmware function block.

L10036

The descri
invalid. Please check if the sizes for the input

specified ei

ATTENTION: This file should be altered only by the manufacturer.

L10063
An error occurred while opening a file: %1.

L10105
Internal er

The specified DLL or function could not be loaded. Either your ACR-View
directory does not contain a DLL with the specified nam
an invalid version. Please reinstall your system or consult your hardware
description.

L10106
Native code compiler needed for selected optimization. Please choose
another optimizat

 "Speed on
defined for this hardware. "Speed only" optimization is only valid, if a native
code compiler is installed. If you do not have a native code compiler
please select another optimization in t
dialog. For a native code compiler for your hardware please refer to your
manufacturer.

Parker Hannifin

Reference Listings 171

L12001
Type conflict. Type of external the variable doesn't match with type of the

A global variable with the same name as the external variable has been
e types of the global and the external variable are different.

ly.

Make sure that the type of the external variable is spelled correctly.

L12002
 access to this variable is not allowed: <Variable name>.

Make sure that the specified variable name is spelled correctly.

tput

at has only read access has been

• Make sure that the specified variable name is spelled correctly

ved from the variable.

t

ker error no.: <errorno>. Please contact your manufacturer.

global variable with the same name.

found, but th

Tips:

• Make sure that the external variable name is spelled correct

•

• Make sure that the global variable is the requested variable.

• Change the type of the external or the global variable.

Readable

A read access to a variable that has only write access has been
attempted.

Tips:

•

• The specified variable is an output location. A read access to ou
locations is not allowed.

L12003
Writable access to this variable is not allowed: <Variable name>.

A write access to a variable th
attempted.

Tips:

• The specified variable is a constant. Write access to a constant
variable is not allowed. Check if the CONSTANT attribute can be
remo

• The specified variable is an input location. A write access to inpu
locations is not allowed.

L12005
Internal lin

L12006
Memory allocation failure. Not enough memory to perform operation.

Parker Hannifin

172 IEC61131 User Guide

L12007
No object
The objec

 information found for task <TaskName>. Please rebuild all.
t file (<TaskName>.crd) for the specified task has not been found.

r stack overflow in task <TaskName>.

>.

1.

ntact your manufacturer.

uld not be initialized. Please ask the hardware manufacturer.

 an
 border."

gned address, in order
ontrollers that have an

WORD (W) or a DWORD (D) should be move to even addresses. With
 all variables having the size of a WORD (W) should be moved

ORD (D) should

L12996
ommand: <Command>.

K.

dSpecification>.

 object file has been found. Please rebuild the whole resource.

se rebuild the whole resource.

Please rebuild the whole resource.

L12008
Interprete

Interpreter call-stack-overflow. Please reduce the depth of the calling
hierarchy of <TaskName

L12064
Error exporting OPC variables to OPC server configuration. Error code: %
An OPC variable is erroneous. Please use a proper one.

L12065
Error initializing ConfOPC.DLL. Please co

The DLL co

L12066
Incorrect alignment for address <address>: variable must be placed at
alignment

The direct variable should be moved to a properly ali
to avoid potential erroneous behavior on some c
alignment of 2 or 4. With alignment 2, all variables having the size of a

alignment 4,
to even addresses and all variables having the size of a DW
be moved to adresses divisible by 4.

Unknown c

An unknown command line argument has been used with ITLIN

L12997
Unkown object kind: <ObjectKin

An invalid

L12998
Invalid object kind. Kind found/requested: <ObjectKind>.

An invalid object file has been found. Plea

Parker Hannifin

Reference Listings 173

L12999
Invalid object version found. Object version found/expected:
<ObjectVersion>.

ource global variable information failed.

information has not been found.

The object file (<pouname>.obj) for the specified POU has not been found.
ild the whole resource.

 for

onfiguration parameters of the properties of the task type. You
may also ask your hardware manufacturer.

Com

' is not supported by the active hardware. For a list of data
orted by ACR-View see the IEC61131-3 Compliance statement
sult your hardware documentation for a list of data types

r a list of data types supported by
see IEC61131-3 Compliance statement. Please consult your

ocumentation for a list of data types supported by your

OF_DAY' is not supported. For a list of data types
ACR-View see IEC61131-3 Compliance statement. Please

r hardware documentation for a list of data types supported by

The object file version and the compiler object version are different. The
object file has been created with a different compiler version. Please
recompile the whole resource.

L13000
Load of res

The object file with the resource global
Please rebuild the whole resource.

L13001
No object information found for pou <pouname>

Please rebu

L15001
An undefined task type has been used or no task type has been defined
task %1.

Check the c

piler Messages

C10006
Data type 'REAL' is not supported.

Data type ‚REAL
types supp
Please con
supported by your hardware.

C10007
Data type 'DATE' is not supported.

Data type ‚DATE' is not supported. Fo
ACR-View
hardware d
hardware.

C10008
Data type 'TIME_OF_DAY' is not supported.

Data type ‚TIME_
supported by
consult you
your hardware.

Parker Hannifin

174 IEC61131 User Guide

C10009
Data type 'STRING' is not supported.

Data type ‚STRING' is not supported by the active hardware. For a list of
data types supported by ACR-View see the IEC61131-3 Compliance

 Please consult your hardware documentation for a list of data

ported. For a list of data types
supported by ACR-View see the IEC61131-3 Compliance statement. Please

r hardware documentation for a list of data types supported by

The sections 'VAR_INPUT', 'VAR_OUTPUT' and 'VAR_IN_OUT' are not
in programs.

in programs are not
able types see the

t allowed in this POU.

owed in functions or function blocks. If you want to access a
variable from a function block, declare the variable

olic name in the VAR_GLOBAL section of a program and use
claration in the VAR_EXTERNAL section of the

esented resource global variables have to be declared in a
specific file.

statement.
types supported by your hardware.

C10010
Data type 'DATE_AND_TIME' is not supported.

Data type ‚DATE_AND_TIME' is not sup

consult you
your hardware.

C10012
Data type 'TIME' is not supported.

Data type ‚TIME' is not supported by the active hardware. For a list of data
types supported by ACR-View see the IEC61131-3 Compliance statement.
Please consult your hardware documentation for a list of data types
supported by your hardware.

C10017

supported

VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT sections
supported. For more information about supported vari
IEC61131-3 Compliance statement.

C10019
Directly represented variables are no

Either the program organization unit is a function or a function block or a
file with global symbolic variable definitions. Directly represented variables
are not all
directly represented
with a symb
this symbolic name in a de
function block. Functions cannot access directly represented variables.

Directly repr

C10020
Bit access not allowed for this variable/parameter.

Variable or parameter has to be of the ANY BIT type.

Parker Hannifin

Reference Listings 175

C10021
Constant must not be negative.

pe (if

al parameters.

t not
e.

 are references and must be supplied with an actual
parameter.

re.

d.

031
 supported by this hardware.

are doesn't support RETAIN variables. Please remove the
r ware

re. For a
 For

.

A negative constant has been found where an unsigned operand has
been expected. Please change the constant value or the variable ty
possible).

C10024
Constant is out of range.

The constant at the given position is not in the range of the associated
data type.

C10025
IN/OUT parameters must always be supplied with actu

A formal in/out parameter has been declared in a function block, bu
supplied with an actual parameter in the CAL statement of an instanc
In/out parameters

C10026
Unsupported address.

The address at the given position is not supported by the active hardware.
Please consult your hardware documentation for a list of addresses
supported by the hardwa

C10028
Inout-parameters of type struct are not supporte

Structured in/out-parameters are not supported. Please define an input
parameter and an output parameter of this kind.

C10
RETAIN-variables are not

Your hardw
attribute. Fo a list of supported variable types consult your hard
documentation.

C10034
Invalid command for this hardware.

The command at the given position is not supported by this hardwa
list of unsupported commands p consult your hardware documentation.
a list of commands not supported by ACR-View see the IEC61131-3
Compliance statement

Parker Hannifin

176 IEC61131 User Guide

C10035
The operand/parameter must be of type 'UINT'.

e

xample

e : STRING;

(* Error: this parameter must be of type UINT *)

This is not supported by the hardware. For more information
orted data types for your hardware, consult your hardware
tion.

iptions : ARRAY[1..100] OF DayOfWeek; (* Error: Day of Week is a
 type.

orted by the

cts of complex data types are not supported by the hardware *)

riable
d type with this constant and use the variable instead of the

as been found in a file with resource global variable
s. This is not allowed. Please declare the requested variable in

ogram organization unit as an external variable and move the

An actual parameter of type UINT has been expected in a function call
pera on), but th(o ti actual parameter is not of this type.

E
VAR

 StringVariabl
 Length : INT := 32;
END_VAR
LD ‘EXAMPLE’
LEFT length
ST StringVariable

C10036
Structs and arrays of complex data types are not supported by this hardware.
An array of a structured type, an array of an array type, a structure with a
structured member or a structure with an array member has been
declared.
about supp
documenta

Example
TYPE
 DayOfWeek : STRUCT
 Name : STRING;
 DayNumber : UINT;
 END_STRUCT;

 DayDescr
complex data
 Arrays of complex data types are not supp
hardware. *)

Presence : STRUCT
 Name : STRING;
 OursPerDay : ARRAY[1..31] OF UINT; (* Error: ARRAY is a complex data type.
 Stru
END_STRUCT;

C10038
Couldn't detect the type of the constant.

The type of a constant could not be determined. Please initialize a va
of the desire
constant.

C10043
Implementation code is not allowed.

Implementation code h
declaration
another pr
code in the respective file.

Parker Hannifin

Reference Listings 177

C10045
Function blocks instances are not allowed in this section.

An instance declaration of a function block has been found in a section
allowed. Please move the declaration in a section, where
stances are supported.

LOBAL sections are supported only in
 manufacturer may restrict the

eclaration section, which is not a VAR_GLOBAL section, has
been found in a file for resource global variable declaration. This is not

ease change the section kind or move the variable declaration
d of declarations are supported.

with a length specification, which exceeds the
maximum string length supported by the hardware.

ximum string length supported by ACR-View see the IEC61131-3
anufacturer can restrict

th"

Either an initialization of a directly represented variable has been found or
re doesn't support variable initializations. The initialization of

cturer
n

of the hardware description file to 0. Please consult your hardware
ion to find out, if variable initialization is supported by your

where this is not
function block in

C10046
'VAR_GLOBAL' is not allowed.

A VAR_GLOBAL section has been found in a program organization unit
where this section kind is not supported. Please change the section kind or
move the variable declaration in a file, where global variables are
supported.

According to the IEC61131-3 VAR_G
PROGRAMs. However the hardware
declaration of global variables to resource global variable files. I. e. global
variables are allowed only in specific files which contain only global
variable declarations.

C10047
Only 'VAR_GLOBAL' allowed.

A variable d

allowed. Pl
in another file, where this kin

C10049
String too long.

A string has been declared

For the ma
Compliance statement. However, the hardware-m
the maximum string length by changing the value of the "MaxStringLeng
entry in the [MODULE] section of the hardware description file.

C10055
This variable can not be initialized.

the hardwa
directly represented variables is not supported by ACR-View. The
initialization of symbolic variables can be forbidden by the manufa
by changing the value for the "InitVariables" entry in the [MODULE] sectio

documentat
hardware.

Parker Hannifin

178 IEC61131 User Guide

C10057
Data type is not supported.

The data type at the given position is not supported. For a list of data
supported by ACR-View see the IEC61131-3 Compliance statement. For a
list of data types supported by your hardware, please cons

types

ult your
hardware documentation.

facturer.

r.

 supported by ACR-View. The hardware
rer however, can forbid struct declarations by setting the value
ctAllowed" entry in the [MODULE] section of the hardware

n to find

ry in the [MODULE] section of the hardware

 file to 0. Please consult your hardware documentation to find
 declarations are supported by your hardware.

erated data type declarations are
by ACR-View. The hardware manufacturer however, can forbid
tions by setting the value of the "EnumAllowed" entry in the

 description file to 0. consult your
hardware documentation to find out if enumerated data type declarations
are supported by your hardware.

C10060
LD/ST of function block instances is not allowed.

A LD or ST instruction with a function block instance as an operand has
been found. This is not allowed.

C10063
An error occurred while opening a file.

C10064
Internal Compiler Error No. %1. Please contact your manu

An internal compiler error occurred. Please contact your manufacture

C10067
Struct declarations are not supported.

A struct declaration has been detected, but is not supported by the
hardware. Struct declarations are
manufactu
of the "Stru
description file to 0. Please consult your hardware documentatio
out if struct declarations are supported by your hardware.

C10068
Array declarations are not supported.

An array declaration has been detected, but is not supported by the
hardware. Array declarations are supported by ACR-View. The hardware
manufacturer however, can forbid array declarations by setting the value
of the "ArrayAllowed" ent
description
out if array

C10069
Enumerated data type declarations are not supported.

A enumerated data type declaration has been detected, but is not
supported by the hardware. Enum
supported
this declara
[MODULE] section of the hardware

Parker Hannifin

Reference Listings 179

C10075
Invalid array index. It has to range between -32767 and 32767.

An array index is out of the supported range [-32767, 32767].

riable of a complex or an user defined type has
pported. Global variable of structured types

ported.

d variables are allowed in this POU.

les are separated in two kind of files. Files which
ariables and files which contain the directly

ted variables. In these files symbolic and directly represented
must not be mixed up.

 not supported.

s variable in a local section and use input and output
, if the value should be changed by a function or function

e declaration for the desired structure must be done on
ject level.

e following structure has to be declared as a project global type*)

 Name : STRING;
yNumber : UINT;
T;

NCTION_BLOCK AdjustDayName

 DayIn : DayOfWeek;

In.DayNumber

PROGRAM main

C10078
d type of a global or directly represented variable. Invali

A directly represented va
been declared. This is not su
are also not sup

C10083
Only directly represente

Resource global variab
 only symbolic vcontain

represen
variables

C10084
Global structs are

Please declare thi
parameters
block. The typ
pro

Example
(* Th
TYPE
 DayOfWeek : STRUCT

 Da
 END_STRUC
END_TYPE

FU
VAR_INPUT

END_VAR
VAR_OUTPUT
 DayOut : DayOfWeek;
END_VAR
LD DayIn
ST DayOut

LD DayIn.DayNumber
EQ 1
LD ‘MONDAY’
ST DayOut.Name

LD Day
EQ 2
LD ‘TUESDAY’
ST DayOut.Name

END_FUNCTION_BLOCK

Parker Hannifin

180 IEC61131 User Guide

VAR
 Day : DayOfWeek;

justDayName(DayIn := Day | Day := DayOut)

location failure.

 block so the

struct the program/function block and put some
to other function blocks (FBs can be used as data containers) or
e global variables.

ta (for example, variables) for program or function block so the
 fit into a 64 kB segment. Segments are restricted to 64 kB.

ion blocks (FBs can be used as data containers) or
e global variables.

curs if the program code (UCode/Native Code) doesn't fit into
ment. The size for a segment is restricted to 64 kB.

o restruct the program (for example,
unction Blocks) so that the program

xpression has been passed as an actual parameter in a call of
 function block instance.

s supported by ACR-View see the IEC61131-3
Compliance statement.

 DayNumber : UINT;
END_VAR

LD DayNumber
ST Day.DayNumber
CAL Ad

END_PROGRAM

C10092
Memory al

C10093
Data Segment Out Of Memory

To much data (for example, variables) for program or function
data doesn't fit into a 64 kB segment. Segments are restricted to 64 kB.

Note:
If this error occurs, try to re
variables in
use resourc

C10094
Initial Data Segment Out Of Memory

To much da
data doesn't

Note:
If this error occurs, try to restruct the program/function block and put some
variables into other funct
use resourc

C10095
Code Segment Memory Allocation Failure

This error oc
a 64 kB seg

Note: If this error occurs, it is possible t
putting some parts of the code into F
decreases down to 64 kB.

C10100
Invalid expression for parameter.

An invalid e
a function or a

C10108
Constant of type TIME is out of range.
For the range of TIME constant

Parker Hannifin

Reference Listings 181

C10109
Invalid data type for this operation. Integer or real type expected.

ctions are not supported.

call of a

anization unit.

the
e

respective formal parameter.

n
s for this operation

see IEC61131-3 and the IEC61131-3 Compliance statement.

C10115
 for FB instances forbidden.

ion block instances are not supported. Please remove the
 move the instance declaration out of this section.

Can't determine unambiguously the type of constant -> take %1.

a numeric constant couldn't be determined unambiguously. In
sually the biggest supported data type of the expected data

type class (ANY_INT, ANY_REAL, ANY_BIT) is presumed.

ut parameter. Is this intended?
A call to a f hich has no parameters has been detected.
W ntend? ns do not contain internal state information

The operation at the given position is only supported for integer and real
operands.

C10110
Nested fun

A function call has been passed as an actual parameter in the
function or a function block instance. This is not supported. Please save the
return value of the function in a variable and pass this variable as an
actual parameter to the called program org

C10112
Type conflict.

Either the current result is incompatible with the expected data type or
type of an actual parameter is incompatible with the type of th

C10113
Operation not supported for this data type.

The data type of an operand is not allowed for the operation at the give
position. For more information about allowed data type

C10114
Parameter expressions are not supported for this operation.

An expression has been used as an actual parameter. This is not supported.
Please store the result of the expression in a variable and pass this variable
to the called function or function block.

Retain attribute

RETAIN funct
attribute or

C11001

The type of
this case u

C11007
Function has no inp

 function
as this the i

unction w
Functio

Parker Hannifin

182 IEC61131 User Guide

a e supplied ith input parameters. Generally the return value
i d by using meters. Because of this reasons a
f ithout inpu meters usually doesn't make sense. Please
c e called f sense.

Make Messages

U command:

A argument has been used with ITMAKE.

nd can b
s compute
unction w
heck if th

 only w
 the input para
t para
unction makes

M21004
nknown

n unknown comma

 %1.

nd line

Shortcuts

Common Shortcuts
File Submenu

ALT+F10:
Save
Syntax Check
Print

Edit Submenu

T+DEL:
CTRL+C/CTRL+INS:

:

:
:

:

Paste
ete

or

ll

ource
source

CTRL+N:
CTRL+F4:
CTRL+S:

CTRL+P:
CTRL+O:
ALT+F4:

CTRL+Z:

CTRL+Y:
CTRL+X/SHIF

New File
Close

Open Project
Exit

Undo
Redo
Cut
Copy

CTRL+V/SHIFT+INS:
DEL: Del

NexF4:
SHIFT+F4
CTRL+F:
CTRL+H
CTRL+G
CTRL+A:
ALT+RETURN

t Error
Previous Err
Find
Replace
Goto IL Line (SFC)
Select A
Properties

PLC Submenu
F7:
CTRL+F7:
F9:
F5:
F11:
F10:
SHIFT+F11:

Build Active Res
Rebuild Active Re
Toggle Breakpoint
Go
Step Into
Step Over
Step Out

Parker Hannifin

Reference Listings 183

ALT+ENTER: Resource Properties

Window Submenu
F6:
ALT+1:
ALT+2:
ALT+3:
ALT+4:

Next Pane

ng
Output

Fullscreen

I ble
ALT+SHIFT+V:

All Variables
Input Variables
Output Variables

riables
s

Editor depending Shortcuts

In
In

F12:
CTRL+ALT+F:
CTRL+ALT+B:

Insert Network
Insert Function
Insert Functionblock

SFC Editor
CTLR+ALT+S:
CTLR+ALT+L:
CTLR+ALT+R:
CTLR+ALT+J:
CTLR+ALT+B:
CTLR+ALT+F:

Insert Step/Transition
Insert Step/Transition left
Insert Step/Transition right
Insert Jump
Insert Functionblock
Insert Function

CFC/FBD Editor
CTRL+B:
CTRL+SHIFT+V:

Insert Connection
Switches between variable value and variable name
at the margins in online mode

Project
Document
Test and Comissioni

Ctrl+Enter:

nsert Varia Submenu

ALT+SHIFT+I:
ALT+SHIFT+O:
ALT+SHIFT+N:
ALT+SHIFT+L:
ALT+SHIFT+G:
ALT+SHIFT+E:
ALT+SHIFT+F:

In/Out Variables
Local Variables
Global Variables
External Va
FB-Instance Variable

IL/ST Editor
CTRL+ALT+F:
CTRL+ALT+B:

sert Function
sert Functionblock

LADDER Editor

Parker Hannifin

Index
) (Right-paranthesis-operator) 86
*_TO_**..128
*_to_bool.. 87
ABS.. 87
ABS_DINT ... 87
ABS_DINT_FBD.................................... 87
ABS_INT ... 87
ABS_INT_FBD...................................... 87
ABS_REAL ... 87
ABS_REAL_FBD 87
ABS_SINT ... 87
ABS_SINT_FBD.................................... 87
ABS_UDINT_FBD.................................. 87
ABS_UINT_FBD.................................... 87
ABS_USINT_FBD.................................. 87
ACOS.. 87
ACOS_REAL... 87
ACOS_REAL_FBD 87
ACTION... 88
Active Document Server...................51, 52
ADD ... 88
ADD (time).. 88
Add files.. 13
Add Task... 10
ADD_DINT .. 88
ADD_DINT_FBD 88
ADD_INT... 88
ADD_INT_FBD 88
ADD_REAL .. 88
ADD_REAL_FBD 88
ADD_SINT... 88
ADD_SINT_FBD 88
ADD_TIME... 88
ADD_TIME_FBD 88
ADD_UDINT .. 88
ADD_UDINT_FBD 88
ADD_UINT... 88
ADD_UINT_FBD 88
ADD_USINT... 88
ADD_USINT_FBD 88
Adding a Library to a project 53
Adding input or output to compound block

.. 45
Alias names... 33
AND ... 88
AND_BOOL_EN 88
AND_BOOL_FBD 88
AND_BYTE_FBD 88
AND_DWORD_EN................................. 88
AND_DWORD_FBD 88
AND_WORD_EN 88
AND_WORD_FBD 88
ANDN ... 88
ANDN_BOOL_FBD 88
ANDN_BYTE_FBD 88
ANDN_DWORD_FBD 88
ANDN_WORD_FBD 88
ANY.. 89
ANY_BIT ... 89
ANY_DATE... 89

ANY_INT ... 89
ANY_NUM.. 89
ANY_REAL ... 89
ARRAY ...89, 90
ASIN .. 90
ASIN_REAL.. 90
ASIN_REAL_FBD 90
Assignment ... 90
AT.. 91
ATAN.. 91
ATAN_REAL ... 91
ATAN_REAL_FBD.................................. 91
Automatic positioning of the caret 36
Block specific help 31
Block Type Program Function Function

Block... 57
BOOL.. 91
Bool_to_* ... 91
BOOL_TO_BYTE 91
BOOL_TO_BYTE_EN.............................. 91
BOOL_TO_dint 91
BOOL_TO_DINT_EN.............................. 91
BOOL_TO_DWORD 91
BOOL_TO_DWORD_EN.......................... 91
BOOL_TO_int....................................... 91
BOOL_TO_INT_EN................................ 91
BOOL_TO_REAL 91
BOOL_TO_REAL_EN.............................. 91
BOOL_TO_sint 91
BOOL_TO_SINT_EN.............................. 91
BOOL_TO_STRING_EN.......................... 91
BOOL_TO_TIME_EN.............................. 91
BOOL_TO_udint 91
BOOL_TO_UDINT_EN............................ 91
BOOL_TO_uint 91
BOOL_TO_UINT_EN.............................. 91
BOOL_TO_usint 91
BOOL_TO_USINT_EN............................ 91
BOOL_TO_WORD 91
BOOL_TO_WORD_EN............................ 91
Breakpoints78, 79
Browser Introduction 7
Build active resource 10
BY .. 92
BYTE .. 92
BYTE_TO_BOOL87, 92
BYTE_TO_BOOL_EN.........................87, 92
BYTE_TO_dint...................................... 92
BYTE_TO_DINT_EN 92
BYTE_TO_DWORD................................ 92
BYTE_TO_DWORD_EN 92
BYTE_TO_int 92
BYTE_TO_INT_EN 92
BYTE_TO_REAL.................................... 92
BYTE_TO_REAL_EN 92
BYTE_TO_sint 92
BYTE_TO_SINT_EN............................... 92
BYTE_TO_STRING_EN 92
BYTE_TO_TIME_EN 92
BYTE_TO_udint 92

184 IEC61131 User Guide

Parker Hannifin

Index

BYTE_TO_UDINT_EN 92
BYTE_TO_uint...................................... 92
BYTE_TO_UINT_EN 92
BYTE_TO_usint 92
BYTE_TO_USINT_EN............................. 92
BYTE_TO_WORD 92
BYTE_TO_WORD_EN 92
C10006..173
C10007..173
C10008..173
C10009..174
C10010..174
C10012..174
C10017..174
C10019..174
C10020..174
C10021..175
C10024..175
C10025..175
C10026..175
C10028..175
C10031..175
C10034..175
C10035..176
C10036..176
C10038..176
C10043..176
C10045..177
C10046..177
C10047..177
C10049..177
C10055..177
C10057..178
C10060..178
C10063..178
C10064..178
C10067..178
C10068..178
C10069..178
C10075..179
C10078..179
C10083..179
C10084..179
C10092..180
C10093..180
C10094..180
C10095..180
C10100..180
C10108..180
C10109..181
C10110..181
C10112..181
C10113..181
C10114..181
C10115..181
C11001..181
C11007..181
CAL .. 92
CALC .. 92
CALCN .. 92
Caret and selection............................... 35
Caret navigation 38
Caret position by selected moves 36
CASE ...92, 93
catalog ... 14
Catalog ..13, 14

CD ... 93
CDT.. 93
CFC Crossreference 48
CFC Editor Online 29
Character String Literals 54
Check over Variable.............................. 26
CLK .. 93
Coils ... 24
Comments in ST 21
Common Shortcuts..............................182
Compliance Statement.......................... 57
Compound Blocks Introduction.............. 44
CONCAT.. 93
CONCAT_STRING 93
CONFIGURATION 94
Connection flag.................................... 32
Connections... 28
CONSTANT .. 94
Constants.......................................55, 56
Contact... 24
Control Relay....................................... 25
Copying blocks with inputs 32
COS ... 94
COS_REAL... 94
COS_REAL_FBD 94
CR.. 94
Create a Library 52
Create compound block......................... 44
Creating new files 9
Cross-reference 48
Cross-Reference (per variable) 48
CTD.. 94
CTU.. 95
CTUD.. 95
CU.. 96
CV.. 96
D(Action Qualifier)................................ 96
Data Types.. 83
DATE .. 96
DATE_AND_TIME 96
Declaration Keywords 83
Declaration of array datatypes 19
Declaration of enumeration datatypes..... 20
Declaration of structured datatypes 19
Declaration Sections 15
DELETE... 96
Derived datatypes 18
DINT .. 97
dint_TO_BOOL................................87, 97
DINT_TO_BOOL_EN.........................87, 97
dint_TO_BYTE...................................... 97
DINT_TO_BYTE_EN 97
dint_TO_DWORD.................................. 97
DINT_TO_DWORD_EN 97
dint_TO_int ... 97
DINT_TO_INT_EN 97
dint_TO_REAL...................................... 97
DINT_TO_REAL_EN 97
dint_TO_sint.. 97
DINT_TO_SINT_EN............................... 97
DINT_TO_STRING_EN 97
DINT_TO_TIME_EN 97
dint_TO_udint............................... 97, 124
DINT_TO_UDINT_EN 97, 124
dint_TO_uint 97, 124
dint_TO_usint 97, 124

 185 Index

Parker Hannifin

DINT_TO_USINT_EN 97, 124
dint_TO_WORD.................................... 97
DINT_TO_WORD_EN 97
Directly represented variables................ 18
DIV .. 97
DIV (time)... 97
DIV_DINT ... 97
DIV_DINT_FBD 97
DIV_INT.. 97
DIV_INT_FBD 97
DIV_REAL ... 97
DIV_REAL_FBD 97
DIV_SINT.. 97
DIV_SINT_FBD 97
DIV_UDINT ... 97
DIV_UDINT_FBD 97
DIV_UINT.. 97
DIV_UINT_FBD 97
DIV_USINT.. 97
DIV_USINT_FBD 97
DO ... 97
Download.. 11
DS ... 97
DT.. 97
DWORD .. 97
DWORD_TO_BOOL87, 97
DWORD_TO_BOOL_EN.....................87, 97
DWORD_TO_BYTE................................ 97
DWORD_TO_BYTE_EN 97
DWORD_TO_dint.................................. 97
DWORD_TO_DINT_EN 97
DWORD_TO_int 97
DWORD_TO_INT_EN 97
DWORD_TO_REAL................................ 97
DWORD_TO_REAL_EN 97
DWORD_TO_sint 97
DWORD_TO_SINT_EN 97
DWORD_TO_STRING_EN 97
DWORD_TO_TIME_EN 97
DWORD_TO_udint................................ 97
DWORD_TO_UDINT_EN 97
DWORD_TO_uint.................................. 97
DWORD_TO_UINT_EN 97
DWORD_TO_usint 97
DWORD_TO_USINT_EN 97
DWORD_TO_WORD.............................. 97
DWORD_TO_WORD_EN 97
Edit resource ... 9
Editor depending Shortcuts182
Elementary Data Types 17
ELSE... 98
ELSIF.. 98
EN.. 98
END_ACTION....................................... 98
END_CASE .. 98
END_CONFIGURATION.......................... 98
END_FOR .. 98
END_FUNCTION 98
END_FUNCTION_BLOCK........................ 99
END_IF ... 99
END_PROGRAM.................................... 99
END_REPEAT 99
END_RESOURCE 99
END_STEP... 99
END_STRUCT....................................... 99
END_TRANSITION................................ 99

END_TYPE ... 99
END_VAR ...100
END_WHILE100
ENO ..100
EQ...100
EQ_BOOL_FBD....................................100
EQ_BYTE_FBD100
EQ_DINT_FBD100
EQ_DWORD_FBD100
EQ_INT_FBD100
EQ_REAL_FBD100
EQ_SINT_FBD.....................................100
EQ_STRING_FBD100
EQ_TIME_FBD100
EQ_UDINT_FBD100
EQ_UINT_FBD100
EQ_USINT_FBD100
EQ_WORD_FBD100
Erase .. 12
Error Logs ... 80
ET 100
ETRC ... 100, 101
Event Task Run Control........................100
Execution Order 30
EXIT ..101
EXP ...102
EXP_REAL ..102
Expressions in ST 21
EXPT ...102
EXPT_DINT...102
EXPT_INT...102
EXPT_REAL...102
EXPT_SINT...102
EXPT_UDINT.......................................102
EXPT_USINT.......................................102
Extensible inputs.................................. 31
F_EDGE ...102
F_TRIG ..103
FALSE..103
Fast navigation with the caret................ 41
FBD...103
File... 9
File Operations....................................... 9
File-Pane... 8
FIND..103
FIND_STRING.....................................103
FIND_STRING_FBD103
Finding Errors in CFC 31
FOR... 103, 104
Force Variables 46
FROM ..104
Function................................25, 104, 105
FUNCTION BLOCK105
Functionblock 25
Functionblocks 25
Functionblocks and Functions................. 25
Functions .. 25
Functions with negatable inputs 31
Fundamentals for keyboard usage 35
G10001..135
GE...105
GE_BOOL_FBD....................................105
GE_BYTE_FBD105
GE_DINT_FBD105
GE_DWORD_FBD105
GE_INT_FBD105

186 IEC61131 User Guide

Parker Hannifin

Index

GE_REAL_FBD105
GE_SINT_FBD.....................................105
GE_STRING_FBD105
GE_TIME_FBD105
GE_UDINT_FBD105
GE_UINT_FBD105
GE_USINT_FBD...................................105
GE_WORD_FBD105
GETSYSTEMDATEANDTIME105
GetTaskInfo..106
GetTime...106
GetVarData ..106
GetVarFlatAddress...............................107
Going Online.. 11
GT...107
GT_BOOL_FBD....................................107
GT_BYTE_FBD107
GT_DINT_FBD107
GT_DWORD_FBD107
GT_INT_FBD.......................................107
GT_REAL_FBD107
GT_SINT_FBD.....................................107
GT_STRING_FBD.................................107
GT_TIME_FBD107
GT_UDINT_FBD107
GT_UINT_FBD107
GT_USINT_FBD...................................107
GT_WORD_FBD107
Help-Pane ... 9
How to Read Error Message..................134
IEC61131 Standard Function Blocks 81
IEC61131-3 operations 82
IEC61131-3 Standard Functions............. 81
IF 107, 108
IL 108
IN 108
INITIAL_STEP108
Inline edit at the caret position 42
INSERT ..109
Insert connections by keyboard 43
Insertion of blocks by keyboard usage 42
Install a Library.................................... 53
Instructions in ST................................. 21
INT..109
int_TO_BOOL................................ 87, 109
INT_TO_BOOL_EN......................... 87, 109
INT_TO_BYTE_EN109
int_TO_DINT109
INT_TO_DINT_EN109
int_TO_DWORD109
INT_TO_DWORD_EN109
int_TO_REAL109
INT_TO_REAL_EN109
int_TO_sint ..109
INT_TO_SINT_EN................................109
INT_TO_STRING_EN............................109
INT_TO_TIME_EN................................109
int_TO_udint 109, 124
INT_TO_UDINT_EN 109, 124
INT_TO_UINT_EN........................ 109, 124
int_TO_usint............................... 109, 124
INT_TO_USINT_EN...................... 109, 124
int_TO_WORD109
INT_TO_WORD_EN..............................109
Interval..109
Introduction CFC Editor......................... 27

JMP ...109
JMPC ...109
JMPCN ...109
Keyboard combinations for navigating the

caret ... 43
L10001 ..168
L10004 ..168
L10026 ..168
L10027 ..169
L10029 ..169
L10030 ..169
L10031 ..169
L10032 ..169
L10033 ..169
L10034 ..170
L10035 ..170
L10036 ..170
L10063 ..170
L10105 ..170
L10106 ..170
L12001 ..171
L12002 ..171
L12003 ..171
L12005 ..171
L12006 ..171
L12007 ..172
L12008 ..172
L12064 ..172
L12065 ..172
L12066 ..172
L12996 ..172
L12997 ..172
L12998 ..172
L12999 ..173
L13000 ..173
L13001 ..173
L15001 ..173
Ladder Editor Online 26
Ladder Logic introduction 23
LD...109
LD (Ladder Diagram)110
LDN...110
LE 110
LE_BOOL_FBD110
LE_BYTE_FBD110
LE_DINT_FBD.....................................110
LE_DWORD_FBD.................................110
LE_INT_FBD110
LE_REAL_FBD.....................................110
LE_SINT_FBD110
LE_STRING_FBD110
LE_TIME_FBD110
LE_UDINT_FBD...................................110
LE_UINT_FBD110
LE_USINT_FBD110
LE_WORD_FBD110
LEFT ..110
LEFT_DINT ...110
LEFT_INT ...110
LEFT_SINT ...110
LEFT_STRING_FBD..............................110
LEFT_UDINT110
LEFT_UINT ...110
LEFT_USINT110
LEN ...110
LEN_STRING110

 187 Index

Parker Hannifin

LEN_STRING_FBD110
Lib-Pane ... 8
Library Overview................................. 52
Library-Pane.. 8
LIMIT...111
LIMIT_BOOL111
LIMIT_BYTE..111
LIMIT_DINT..111
LIMIT_DWORD....................................111
LIMIT_INT..111
LIMIT_REAL..111
LIMIT_SINT ..111
LIMIT_STRING....................................111
LIMIT_TIME..111
LIMIT_UDINT......................................111
LIMIT_UINT..111
LIMIT_USINT111
LIMIT_WORD......................................111
LINT ..111
LN...111
LN_REAL ..111
LN_REAL_FBD.....................................111
LOG...111
LOG_REAL..111
LOG_REAL_FBD111
Lreal..111
LT 111
LT_BOOL_FBD111
LT_BYTE_FBD111
LT_DINT_FBD111
LT_DWORD_FBD111
LT_INT_FBD111
LT_REAL_FBD111
LT_SINT_FBD111
LT_STRING_FBD111
LT_TIME_FBD111
LT_UDINT_FBD...................................111
LT_UINT_FBD111
LT_USINT_FBD111
LT_WORD_FBD111
Lword ..112
M21004 ...182
Margin Bars ... 28
Masking of unused connectors 33
MAX ..112
MAX_BOOL...112
MAX_DINT..112
MAX_DINT_FBD112
MAX_DWORD112
MAX_INT..112
MAX_INT_FBD112
MAX_REAL ...112
MAX_REAL_FBD112
MAX_SINT..112
MAX_SINT_FBD112
MAX_STRING......................................112
MAX_TIME..112
MAX_UDINT112
MAX_UDINT_FBD112
MAX_UINT..112
MAX_UINT_FBD112
MAX_USINT..112
MAX_USINT_FBD112
MAX_WORD..112
Maximum String Length 55
MID...112

MIN ...113
MIN_BOOL ...113
MIN_BYTE ..113
MIN_DINT ..113
MIN_DINT_FBD...................................113
MIN_DWORD113
MIN_INT ..113
MIN_INT_FBD.....................................113
MIN_REAL ..113
MIN_REAL_FBD...................................113
MIN_SINT ..113
MIN_SINT_FBD...................................113
MIN_STRING113
MIN_TIME ..113
MIN_UDINT ..113
MIN_UDINT_FBD.................................113
MIN_UINT_FBD...................................113
MIN_USINT ..113
MIN_USINT_FBD.................................113
MIN_WORD ..113
MOD..113
MOD_DINT ...113
MOD_DINT_FBD..................................113
MOD_INT ...113
MOD_INT_FBD....................................113
MOD_SINT ...113
MOD_SINT_FBD..................................113
MOD_UDINT113
MOD_UDINT_FBD................................113
MOD_UINT ...113
MOD_UINT_FBD..................................113
MOD_USINT113
MOD_USINT_FBD................................113
MOVE ..113
MOVE_DINT113
MOVE_INT..113
MOVE_REAL113
MOVE_SINT..113
MOVE_UDINT113
MOVE_UINT..113
MOVE_USINT......................................113
Moving/copying blocks and margin

connectors by keyboard..................... 43
MUL...113
MUL (time) ...114
MUL_DINT..113
MUL_DINT_FBD113
MUL_INT..113
MUL_INT_FBD113
MUL_REAL..113
MUL_REAL_FBD113
MUL_SINT ..113
MUL_SINT_FBD...................................113
MUL_UDINT..113
MUL_UDINT_FBD113
MUL_UINT..113
MUL_UINT_FBD113
MUL_USINT ..113
MUL_USINT_FBD.................................113
Multiple Connections............................. 30
MUX ..112
N (Action Qualifier)..............................114
NCC...114
NE...114
NE_BOOL_FBD....................................114
NE_BYTE_FBD114

188 IEC61131 User Guide

Parker Hannifin

Index

NE_DINT_FBD114
NE_DWORD_FBD114
NE_INT_FBD.......................................114
NE_REAL_FBD114
NE_SINT_FBD.....................................114
NE_STRING_FBD.................................114
NE_TIME_FBD.....................................114
NE_UINT_FBD.....................................114
NE_USINT_FBD...................................114
NE_WORD_FBD114
NEG...114
Nested Comments 57
Network .. 23
NOT...114
NOT_BOOL_FBD..................................114
NOT_BYTE_FBD114
NOT_DWORD_FBD114
NOT_WORD_FBD114
OF...114
On...115
Online Change 79
Online Edit .. 80
OPC...115
OpenPCS Function Blocks 83
Operators.. 23
OR ..115
OR_BOOL...115
OR_BOOL_FBD115
OR_BYTE..115
OR_BYTE_FBD115
OR_DWORD115
OR_DWORD_FBD115
OR_WORD..115
OR_WORD_FBD115
ORN ..115
ORN_BOOL_FBD115
ORN_BYTE_FBD115
ORN_DWORD_FBD115
ORN_WORD_FBD115
Others .. 84
Output Window 6
Passing Output Parameters.................... 56
POINTER ..115
Positioning of the caret 35
POU...116
Print Form... 51
Print IEC61131 Configuration................. 48
Printing CFC charts............................... 29
Priority...116
PROGRAM ..116
PT 116
PV ...116
Q1...116
QD ..116
QU ..116
R(Action Qualifier)...............................116
R(eset) ..117
R_EDGE ...117
R_TRIG..117
R1...117
READ_ONLY117
READ_WRITE......................................118
REAL ...118
Real_to_* ..118
REAL_TO_BOOL 87
REAL_TO_BOOL_EN.............................. 87

Rebuild active resource 11
Rebuild all resources............................. 11
Release..119
REPEAT..119
REPLACE ..119
Replacement of Blocks 30
Representation of the caret 35
Resource..120
Resource global variables 12
Resource-Pane....................................... 8
Resources introduction........................... 9
RET ...120
RETAIN ..120
RETC ...120
RETCN ...120
RETURN ...121
RIGHT ...121
RIGHT_DINT.......................................121
RIGHT_INT...121
RIGHT_SINT.......................................121
RIGHT_STRING_FBD121
RIGHT_UDINT.....................................121
RIGHT_UINT.......................................121
RIGHT_USINT.....................................121
ROL...121
ROL_BOOL ...121
ROL_BOOL_FBD..................................121
ROL_BYTE ..121
ROL_BYTE_FBD...................................121
ROL_DWORD......................................121
ROL_DWORD_FBD...............................121
ROL_WORD ..121
ROL_WORd_FBD121
ROR ..121
ROR_BOOL...121
ROR_BOOL_FBD121
ROR_BYTE..121
ROR_BYTE_FBD121
ROR_DWORD......................................121
ROR_DWORD_FBD121
ROR_WORD..121
ROR_WORD_FBD121
RS...122
RTC ...122
S(Action Qualifier)...............................122
S(et) ...122
S1...123
S1000..135
S1001..135
S1002..135
S1003..136
S1004..136
S1005..136
S1006..136
S1008..136
S1009..136
S1010..136
S1011..136
S1012..137
S1013..137
S1014..137
S1015..137
S1016..137
S1017..138
S1018..138
S1019..138

 189 Index

Parker Hannifin

S1020..138
S1021..138
S1022..138
S1023..139
S1024..139
S1025..139
S1026..139
S1027..140
S1028..140
S1029..140
S1030..140
S1031..140
S1032..140
S3000..141
S3001..141
S3002..141
S3003..142
S3004..142
S3005..142
S3006..142
S3007..143
S3008..143
S3009..143
S3010..143
S3011..144
S3012..144
S3014..144
S3016..144
S3017..144
S3018..145
S3019..145
S3020..145
S3022..145
S3023..145
S3024..145
S3025..145
S3026..146
S3028..146
S3030..146
S3032..147
S3033..147
S3034..147
S3035..147
S3036..148
S3037..148
S3038..148
S3039..148
S3040..148
S3041..149
S3042..149
S3044..149
S3046..149
S3047..149
S3048..150
S4000..150
S4001..150
S4003..151
S4005..151
S4006..151
S4007..151
S4008..151
S4009..151
S4010..152
S4011..152
S4012..152
S4013..152

S4014..152
S4015..152
S4016..153
S4017..153
S4018..153
S4019..153
S4020..153
S4021..153
S4022..153
S4023..154
S4024..154
S4033..154
S4034..155
S4035..155
S4036..155
S5000..155
S5001..155
S5002..155
S5003..155
S5004..156
S5005..156
S5006..156
S5008..156
S5009..156
S5010..157
S5011..157
S5012..157
S5013..158
S5014..158
S5015..158
S5016..158
S5017..158
S5018..159
S5019..159
S5020..159
S5021..159
S5022..159
S5023..160
S5024..160
S5025..160
S5026..161
S5027..161
S5028..161
S5029..161
S5030..162
S5031..162
S5032..162
S5033..163
S5034..163
S5035..164
S5036..164
S5037..165
S5038..165
S5039..166
S5040..166
S5041..167
S5042..167
S5043..167
S6002..167
S6004..167
S6005..167
Save System 80
SaveSystemCmd.................................. 80
SD ..123
SEL ...123
SEMA...123

190 IEC61131 User Guide

Parker Hannifin

Index

Set variables 46
SETSYSTEMDATEANDTIME123
SFC ...123
SHL ...123
SHL_BOOL ...123
SHL_BOOL_FBD123
SHL_BYTE ..123
SHL_BYTE_FBD...................................123
SHL_DWORD123
SHL_DWORD_FBD...............................123
SHL_WORD ..123
SHL_WORD_FBD.................................123
SHR...124
SHR_BOOL ...124
SHR_BOOL_FBD..................................124
SHR_BYTE..124
SHR_BYTE_FBD124
SHR_DWORD......................................124
SHR_DWORD_FBD124
SHR_WORD..124
SHR_WORD_FBD124
Signed_to_Unsigned............................124
SIN ...124
SIN_REAL ..124
SIN_REAL_FBD124
Single ..124
Single Bit Access 56
SINT..124
sint_TO_BOOL124
SINT_TO_BOOL_EN.............................124
sint_TO_BYTE124
SINT_TO_BYTE_EN..............................124
sint_TO_dint.......................................124
SINT_TO_DINT_EN..............................124
sint_TO_DWORD.................................124
SINT_TO_DWORD_EN124
sint_TO_int ..124
SINT_TO_INT_EN................................124
sint_TO_REAL.....................................124
SINT_TO_REAL_EN124
SINT_TO_STRING_EN..........................124
SINT_TO_TIME_EN..............................124
sint_to_udint124
sint_TO_udint124
SINT_TO_UDINT_EN124
sint_to_uint..124
sint_TO_uint.......................................124
SINT_TO_UINT_EN..............................124
sint_to_usint124
sint_TO_usint124
SINT_TO_USINT_EN............................124
sint_TO_WORD124
SINT_TO_WORD_EN............................124
SL 124
SQRT...125
SQRT_REAL..125
SQRT_REAL_FBD125
SR...125
ST...125
ST (Structured Text)............................125
ST Editor introduction 20
ST Editor Online................................... 22
Start and Stop 45
STEP ...125
STN...126
STRING..126

String_to_* ..126
STRING_TO_BOOL_EN................... 87, 126
STRING_TO_BYTE_EN126
STRING_TO_DINT_EN126
STRING_TO_DWORD_EN126
STRING_TO_INT_EN............................126
STRING_TO_REAL_EN126
STRING_TO_SINT_EN..........................126
STRING_TO_TIME_EN..........................126
STRING_TO_UDINT_EN126
STRING_TO_UINT_EN..........................126
STRING_TO_USINT_EN........................126
STRING_TO_WORD_EN........................126
STRUCT ...127
Structure of a Declaration Line............... 17
Structured Text Keywords 84
SUB...127
SUB (time) ...127
SUB_DINT..127
SUB_DINT_FBD127
SUB_INT ..127
SUB_INT_FBD.....................................127
SUB_REAL..127
SUB_REAL_FBD127
SUB_SINT ..127
SUB_SINT_FBD...................................127
SUB_TIME ..127
SUB_TIME_FBD...................................127
SUB_UDINT..127
SUB_UDINT_FBD127
SUB_UINT ..127
SUB_UINT_FBD...................................127
SUB_USINT ..127
SUB_USINT_FBD.................................127
Syntax check at CFC connections 32
Table 1 Character Set Features 57
Table 10 Data type declaration feature .. 60
Table 11 Default initial values 61
Table 12 Data type initial value declaration

features... 61
Table 13 Location and size prefix features

for directly represented variables........ 61
Table 14 Variable keywords for variable

declaration....................................... 61
Table 15 Variable type assignement

features... 62
Table 16 Variable initial value assignement

features... 62
Table 17 Graphical negation of Boolean

signals .. 62
Table 18 Use EN input an ENO output 63
Table 19 Typed and overloaded functions63
Table 2 Identifier features 58
Table 20 Type conversion function features

.. 63
Table 21 Standard functions of one numeric

variable ... 64
Table 22 Arithmetic standard functions .. 64
Table 23 Standard bit shift functions...... 64
Table 24 Standard bitwise Boolean

functions ... 64
Table 25 Standard selection functions.... 65
Table 26 Standard comparison functions 65
Table 27 Standard character string

functions ... 65
Table 28 Functions of time data types.... 65

 191 Index

Parker Hannifin

Table 29 Standard bistable function blocks
.. 66

Table 3 Comment features 58
Table 30 Functions of enumerated data

types .. 66
Table 31 Function block declaration

features... 66
Table 32 Standard edge detection function

blocks ... 67
Table 33 Standard counter function blocks

.. 67
Table 34 Standard timer function blocks 67
Table 35 Program declaration features ... 67
Table 36 Step features......................... 68
Table 37 Transitions and Transition

conditions .. 69
Table 38 Declaration of actions 69
Table 39 Step/action association 69
Table 4 Numeric Literals....................... 58
Table 40 Action block features 70
Table 41 Action qualifiers 70
Table 42 Sequence evolution 70
Table 43 Instruction list (IL) operators... 71
Table 44 Function block invocation features

for IL language................................. 71
Table 45 Operators of the ST language .. 72
Table 46 ST language statements.......... 72
Table 47 Representation of lines and block

.. 73
Table 48 Graphic execution control

elements ... 73
Table 49 Power rails 73
Table 5 Character string literal features . 58
Table 50 Link Elements 74
Table 51 Contacts 74
Table 52 Coils 74
Table 53 Reserved Names 75
Table 54 Implementation-dependent

parameters 75
Table 55 Error conditions 77
Table 6 Two character combinations in

character strings............................... 59
Table 7 Duration literal features 59
Table 8 Date and time of day literals 59
Table 9 elementary data types.............. 60
TAN...128
TAN_REAL ..128
TAN_REAL_FBD...................................128
Task ..128
technical support....................................3
Test and Commissioning Introduction 45
Text Block ... 29
THEN...128
TIME..128
TIME_OF_DAY128
TIME_TO_BOOL_EN.............................128
TIME_TO_BYTE_EN128
TIME_TO_DINT_EN128
TIME_TO_DWORD_EN128
TIME_TO_INT_EN................................128
TIME_TO_REAL_EN128
TIME_TO_SINT_EN..............................128
TIME_TO_STRING_EN..........................128
TIME_TO_UDINT_EN128
TIME_TO_UINT_EN..............................128
TIME_TO_USINT_EN............................128

TIME_TO_WORD_EN128
TO...................................... 103, 104, 129
TO_STRING... 63
TOD ..129
TOF ...129
TON...130
Tooltips for structs and elements of structs

.. 22
TP 130
Transition...131
TRUE ...131
TRUNC...131
TYPE..132
Type definitions 13
UDINT ...132
udint_TO_BOOL 87, 132
UDINT_TO_BOOL_EN..................... 87, 132
udint_TO_BYTE...................................132
UDINT_TO_BYTE_EN132
udint_TO_dint.....................................132
UDINT_TO_DINT_EN132
udint_TO_DWORD...............................132
UDINT_TO_DWORD_EN132
udint_TO_int132
UDINT_TO_INT_EN132
udint_TO_REAL...................................132
UDINT_TO_REAL_EN132
udint_TO_sint132
UDINT_TO_SINT_EN132
UDINT_TO_STRING_EN132
UDINT_TO_TIME_EN132
udint_TO_uint.....................................132
UDINT_TO_UINT_EN132
udint_TO_usint132
UDINT_TO_USINT_EN132
udint_TO_WORD132
UDINT_TO_WORD_EN132
UINT..132
uint_TO_BOOL.............................. 87, 132
UINT_TO_BOOL_EN....................... 87, 132
uint_TO_BYTE.....................................132
UINT_TO_BYTE_EN132
uint_TO_dint132
UINT_TO_DINT_EN132
uint_TO_DWORD.................................132
UINT_TO_DWORD_EN132
uint_TO_int ..132
UINT_TO_INT_EN................................132
uint_TO_REAL.....................................132
UINT_TO_REAL_EN132
uint_TO_sint.......................................132
UINT_TO_SINT_EN..............................132
UINT_TO_STRING_EN..........................132
UINT_TO_TIME_EN..............................132
uint_TO_udint.....................................132
UINT_TO_UDINT_EN132
uint_TO_usint132
UINT_TO_USINT_EN............................132
uint_TO_WORD...................................132
UINT_TO_WORD_EN132
ULINT ..132
Uninstall Library................................... 54
UNTIL ..132
Upload .. 12
Using constants as inputs...................... 29
USINT..132

192 IEC61131 User Guide

Parker Hannifin

Index 193 Index

usint_TO_BOOL 87, 132
USINT_TO_BOOL_EN..................... 87, 132
usint_TO_BYTE132
USINT_TO_BYTE_EN............................132
usint_TO_dint132
USINT_TO_DINT_EN132
usint_TO_DWORD132
USINT_TO_DWORD_EN132
usint_TO_int.......................................132
USINT_TO_INT_EN..............................132
usint_TO_REAL132
USINT_TO_REAL_EN132
usint_TO_sint132
USINT_TO_SINT_EN............................132
USINT_TO_STRING_EN........................132
USINT_TO_TIME_EN............................132
usint_TO_udint132
USINT_TO_UDINT_EN132
usint_TO_uint132
USINT_TO_UINT_EN............................132
usint_TO_WORD132
USINT_TO_WORD_EN..........................132
VAR...132
VAR_ACCESS......................................132
VAR_EXTERNAL133
VAR_GLOBAL......................................133
VAR_IN_OUT133
VAR_INPUT ..132
VAR_OUTPUT......................................132
Variablecatalog 14
Variablegrid... 14
Variabletable 14
VARINFO..133
Watch variables 46
Watching variables 11
Watchlist... 47
WHILE ...133
WITH...134
WORD..134

WORD_TO_BOOL 87, 134
WORD_TO_BOOL_EN..................... 87, 134
WORD_TO_BYTE134
WORD_TO_BYTE_EN134
WORD_TO_dint...................................134
WORD_TO_DINT_EN134
WORD_TO_DWORD.............................134
WORD_TO_DWORD_EN134
WORD_TO_int134
WORD_TO_INT_EN..............................134
WORD_TO_REAL134
WORD_TO_REAL_EN134
WORD_TO_sint134
WORD_TO_SINT_EN............................134
WORD_TO_STRING_EN........................134
WORD_TO_TIME_EN............................134
WORD_TO_udint134
WORD_TO_UDINT_EN134
WORD_TO_uint...................................134
WORD_TO_UINT_EN134
WORD_TO_usint134
WORD_TO_USINT_EN..........................134
Working with Blocks 27
Working with watchlists 47
WSTRING...134
XOR ..134
XOR_BOOL_EN134
XOR_BOOL_FBD134
XOR_BYTE_EN134
XOR_BYTE_FBD134
XOR_DWORD_EN134
XOR_DWORD_FBD134
XOR_WORD_EN134
XOR_WORD_FBD134
XORN ..134
XORN_BOOL_FBD134
XORN_BYTE_FBD134
XORN_DWORD_FBD134
XORN_WORD_FBD134

	Important User Information
	Technical Assistance

	Introduction
	ACR-View IEC PLC Tools
	ACR-View
	Output Window

	Browser
	Browser Introduction
	Browser Overview
	The File-Pane
	Resource-Pane
	The Library-Pane
	The Help-Pane

	Files
	Creating New Files
	File Operations

	Resources and Tasks
	Resources Introduction
	Edit Resource
	Add Task

	Compiler
	Build Active Resource
	Rebuild Active Resource
	Rebuild All Resources

	Online
	Going Online
	Download
	Watching Variables
	Upload
	Erase

	Other Browser Features
	Resource Global Variables
	Type Definitions
	Add Files

	Catalog
	Catalog
	Variable Catalog

	Declaration Editor
	Declaration Editor Introduction
	Declaration Sections
	Structure of a Declaration Line
	Elementary Data Types
	Directly Represented Variables
	Derived Datatypes
	Declaration of Array Datatypes
	Declaration of Structured Datatypes
	Declaration of Enumeration Datatypes

	ST Editor
	ST Editor Introduction
	Instructions in ST
	Expressions in ST
	Comments in ST
	ST Editor Online
	Tooltips for Structs and Elements of Structs

	Ladder Diagram Editor
	Ladder Logic Introduction
	Network
	Operators
	Contacts
	Coils
	Jumps

	Control Relay
	Functionblocks and Functions
	Ladder Editor Online
	Check over Variable

	CFC Editor
	CFC Editor Introduction
	Working with Blocks
	Connections
	Margin Bars
	CFC Editor Online
	Advanced CFC topics
	Text Block
	Printing CFC Charts
	Using Constants as Inputs
	Execution Order
	Multiple Connections
	Replacement of Blocks
	Finding Errors in CFC
	Block Specific Help
	Extensible Inputs
	Functions with Negatable Inputs
	Syntax Check at CFC Connections
	Connection Flag
	Copying Blocks with Inputs
	Alias Names
	Masking of Unused Connectors
	Keyboard Handling for CFC and FBD Editor
	Fundamentals for Keyboard Usage
	Caret and Selection
	Representation of the Caret
	Positioning of the Caret
	Caret Position by Selected Moves
	Automatic Positioning of the Caret
	Caret IN Empty Grid Cells
	Caret and Comments
	Caret at the (FBD) Network Label
	Caret at a Margin Connector
	Caret in Grid Cells with Blocks

	Caret Navigation
	Navigating at Margin
	Navigating between (FBD) Networks and Network Labels
	Changeover Margin to Block
	Up and Down at Inputs and Outputs
	Left and Right at Inputs and Outputs
	Navigating between Grid Cells
	Navigating along Connections

	Fast Navigation with the Caret
	Pos1 and End
	Ctrl+Pos1 and Ctrl+End
	Page Up and Down
	Automatic Post Scrolling
	Revoking the Selection
	Selecting Multiple Elements

	Inline Edit at the Caret Position
	Insertion of Blocks by Keyboard Usage
	Moving or Copying Blocks and Margin Connectors by Keyboard
	Insert Connections by Keyboard
	Keyboard Combinations for Navigating the Caret

	Compound Blocks
	Compound Blocks Introduction
	Create Compound Block
	Adding Input or Output to Compound Block
	Top-Down
	Bottom-Up

	IEC PLC Debug
	Introduction
	Start and Stop
	Watch Variables
	Set Variables
	Force Variables
	Working with Watchlists

	Documentation
	Cross-Reference
	Cross-Reference (per variable)
	Print IEC61131 Configuration
	CFC Cross Reference
	CFC Cross Reference sample

	Print Form
	Active Document Server

	Libraries
	Library Overview
	Create a Library
	Install a Library
	Adding a Library to a Project
	Uninstall Library

	IEC61131-3
	IEC61131-3 Details
	Character String Literals
	Maximum String Length
	Constants
	Single Bit Access
	Passing Output Parameters
	Nested Comments
	Block Type: Program, Function, Function Block

	IEC61131-3 Compliance Statement
	Compliance Statement

	Online Features
	Breakpoints
	Online Edit
	Impact of Changes

	Save System
	Error Logs

	Reference Listings
	Keywords (by category)
	IEC61131 Standard Function Blocks
	IEC61131-3 Standard Functions
	IEC61131-3 Operations
	ACR-View Functions and Function Blocks
	Data Types
	Declaration Keywords
	Structured Text Keywords
	Others

	Keywords (A..Z)
)" (Right-paranthesis-operator)
	*_to_bool
	ABS
	ANY_NUM
	ACOS
	ACTION
	ADD
	ADD (time)
	AND
	ANDN
	ANY
	ANY_BIT
	ANY_DATE
	ANY_INT
	ANY_NUM
	ANY_REAL
	ARRAY
	ASIN
	Assignment
	AT
	ATAN
	BOOL
	Bool_to_*
	BY
	BYTE
	CAL
	CALC
	CALCN
	CASE
	CD
	CDT
	CLK
	CONCAT
	Configuration
	CONSTANT
	COS
	CR
	CTD
	CTU
	CTUD
	CU
	CV
	D(Date)
	D(Action Qualifier)
	DATE
	DATE_AND_TIME
	DELETE
	DINT
	DIV
	DIV (time)
	DO
	DS
	DT
	DWORD
	ELSE
	ELSIF
	EN
	END_ACTION
	END_CASE
	END_CONFIGURATION
	END_FOR
	END_FUNCTION
	END_FUNCTION_BLOCK
	END_IF
	END_PROGRAM
	END_REPEAT
	END_RESOURCE
	END_STEP
	END_STRUCT
	END_TRANSITION
	END_TYPE
	END_VAR
	END_WHILE
	ENO
	EQ
	ET
	ETRC
	EXIT
	EXP
	EXPT
	F_EDGE
	F_TRIG
	FALSE
	FBD
	FIND
	FOR
	FROM
	Function
	FUNCTION BLOCK
	GE
	GETSYSTEMDATEANDTIME
	GetTaskInfo
	GetTime
	GetVarData
	GetVarFlatAddress
	GT
	IF
	IL
	IN
	INITIAL_STEP
	INSERT
	INT
	Interval
	JMP
	JMPC
	JMPCN
	L(Action Qualifier)
	LD
	LD (Ladder Diagram)
	LDN
	LEFT
	LE
	LEN
	LIMIT
	LINT
	LN
	LOG
	LREAL
	LT
	Lword
	MUX
	MAX
	MID
	MIN
	MOD
	MOVE
	MUL
	MUL (time)
	N (Action Qualifier)
	NCC
	NE
	NEG
	NOT
	OF
	On
	OPC
	OR
	ORN
	P(Action Qualifier)
	POINTER
	POU
	Priority
	PROGRAM
	PT
	PV
	Q(Parameter)
	Q1
	QD
	QU
	R(Action Qualifier)
	R(eset)
	R_EDGE
	R_TRIG
	R1
	READ_ONLY
	READ_WRITE
	REAL
	Real_to_*
	Release
	REPEAT
	REPLACE
	Resource
	RET
	RETAIN
	RETC
	RETCN
	RETURN
	RIGHT
	ROL
	ROR
	RS
	RTC
	S(Action Qualifier)
	S(et)
	S1
	SD
	SEL
	SEMA
	SETSYSTEMDATEANDTIME
	SFC
	SHL
	SHR
	Signed_to_Unsigned
	SIN
	Single
	SINT
	SL
	SQRT
	SR
	ST
	ST (Structured Text)
	STEP
	STN
	STRING
	String_to_*
	STRUCT
	SUB
	SUB (time)
	TAN
	Task
	THEN
	TIME
	TIME_OF_DAY
	TIME_TO_*
	TO
	TOD
	TOF
	TON
	TP
	Transition
	TRUE
	TRUNC
	TYPE
	UDINT
	UINT
	ULINT
	UNTIL
	USINT
	VAR
	VAR_ACCESS
	VAR_INPUT
	VAR_OUTPUT
	VAR_IN_OUT
	VAR_GLOBAL
	VAR_EXTERNAL
	VARINFO
	WHILE
	WITH
	WORD
	WSTRING
	XOR
	XORN

	Errors and Warnings
	How to Read Error Messages
	General Errors
	G10001

	Syntax Errors
	S1000
	S1001
	S1002
	S1003
	S1004
	S1005
	S1006
	S1008
	S1009
	S1010
	S1011
	S1012
	S1013
	S1014
	S1015
	S1016
	S1017
	S1018
	S1019
	S1020
	S1021
	S1022
	S1023
	S1024
	S1025
	S1026
	S1027
	S1028
	S1029
	S1030
	S1031
	S1032
	S3000
	S3001
	S3002
	S3003
	S3004
	S3005
	S3006
	S3007
	S3008
	S3009
	S3010
	S3011
	S3012
	S3014
	S3016
	S3017
	S3018
	S3019
	S3020
	S3022
	S3023
	S3024
	S3025
	S3026
	S3028
	S3030
	S3032
	S3033
	S3034
	S3035
	S3036
	S3037
	S3038
	S3039
	S3040
	S3041
	S3042
	S3044
	S3046
	S3047
	S3048
	S4000
	S4001
	S4003
	S4005
	S4006
	S4007
	S4008
	S4009
	S4010
	S4011
	S4012
	S4013
	S4014
	S4015
	S4016
	S4017
	S4018
	S4019
	S4020
	S4021
	S4022
	S4023
	S4024
	S4033
	S4034
	S4035
	S4036
	S5000
	S5001
	S5002
	S5003
	S5004
	S5005
	S5006
	S5008
	S5009
	S5010
	S5011
	S5012
	S5013
	S5014
	S5015
	S5016
	S5017
	S5018
	S5019
	S5020
	S5021
	S5022
	S5023
	S5024
	S5025
	S5026
	S5027
	S5028
	S5029
	S5030
	S5031
	S5032
	S5033
	S5034
	S5035
	S5036
	S5037
	S5038
	S5039
	S5040
	S5041
	S5042
	S5043
	S6002
	S6004
	S6005

	Linker Messages
	L10001
	L10004
	L10026
	L10027
	L10029
	L10030
	L10031
	L10032
	L10033
	L10034
	L10035
	L10036
	L10063
	L10105
	L10106
	L12001
	L12002
	L12003
	L12005
	L12006
	L12007
	L12008
	L12064
	L12065
	L12066
	L12996
	L12997
	L12998
	L12999
	L13000
	L13001
	L15001

	Compiler Messages
	C10006
	C10007
	C10008
	C10009
	C10010
	C10012
	C10017
	C10019
	C10020
	C10021
	C10024
	C10025
	C10026
	C10028
	C10031
	C10034
	C10035
	C10036
	C10038
	C10043
	C10045
	C10046
	C10047
	C10049
	C10055
	C10057
	C10060
	C10063
	C10064
	C10067
	C10068
	C10069
	C10075
	C10078
	C10083
	C10084
	C10092
	C10093
	C10094
	C10095
	C10100
	C10108
	C10109
	C10110
	C10112
	C10113
	C10114
	C10115
	C11001
	C11007

	Make Messages
	M21004

	Shortcuts
	Common Shortcuts
	Edit Submenu
	PLC Submenu
	Window Submenu
	Insert Variable Submenu

	Editor depending Shortcuts
	LADDER Editor
	SFC Editor
	CFC/FBD Editor

	Index

