

- ii -

User Information

Warning — ACR Series products are used to control electrical and mechanical components of
motion control systems. You should test your motion system for safety under all potential conditions.
Failure to do so can result in damage to equipment and/or serious injury to personnel.

The ComACRsrvr Communications Server product and the information in this user guide are the
proprietary property of Parker Hannifin Corporation or its licensers, and may not be copies,
disclosed, or used for any purpose not expressly authorized by the owner thereof.

Since Parker Hannifin constantly strives to improve all of its products, we reserve the right to
change this guide, and software and hardware mentioned therein, at any time without notice.

In no event will the provider of the equipment be liable for any incidental, consequential, or
special damages of any kind or nature whatsoever, including but not limited to lost profits arising
from or in any way connected with the use of the equipment or this guide.

© 2004-2005 Parker Hannifin Corporation
All Rights Reserved

ACR–View is a trademark of Parker Hannifin Corporation.
Microsoft and MS–DOS are registered trademarks, and Windows, Visual Basic, Visual C++,
Visual Basic .NET, Visual C++ .NET, and C# .NET are trademarks of Microsoft Corporation.

Technical Assistance
Contact your local automation technology center (ATC) or distributor.

North America and Asia
Parker Hannifin
5500 Business Park Drive
Rohnert Park, CA 94928
Telephone: (800) 358-9070 or (707) 584-7558
Fax: (707) 584-3793
Email: emn_support@parker.com
Internet: http://www.parkermotion.com

Germany, Austria, Switzerland
Parker Hannifin
Postfach: 77607-1720
Robert-Bosch-Str. 22
D-77656 Offenburg
Telephone: +49 (0) 781 509-0
Fax: +49 (0) 781 509-176
Email: sales.hauser@parker.com
Internet: http://www.parker-emd.com

Europe (non-German speaking)
Parker Hannifin plc
Electromechanical Automation, Europe
Arena Business Centre
Holy Rood Close
Poole
Dorset, UK
BH17 7BA
Telephone: +44 (0) 1202 606300
Fax: +44 (0) 1202 606301
Email: support.digiplan@parker.com
Internet: http://www.parker-emd.com

Italy
Parker Hannifin
20092 Cinisello Balsamo
Milan, Italy via Gounod, 1
Telephone: +39 02 6601 2478
Fax: +39 02 6601 2808
Email: sales.sbc@parker.com
Internet: http://www.parker-emd.com

Technical Support E-mail

 emn_support@parker.com

mailto:emn_support@parker.com
http://www.parker.com/
mailto:sales.hauser@parker.com
http://www.parker-emd.com/
mailto:support.digiplan@parker.com
http://www.parker-emd.com/
mailto:sales.sbc@parker.com
http://www.parker-emd.com/
mailto:emn_support@parker.com

- iii -

Table of Contents
Change Summary .. v
Change Summary .. v

Revision C Changes..v
Revision B Changes..v

Communications Server ... 1
Communications Overview..1
ComACRsrvr.dll Overview...2

ACR Legacy Support... 7
Using the ACR Legacy Support Kit ...7

Shared Properties and Methods .. 8
Properties ..9

bOnConnectTest ... 9
bstrIP ... 9
bstrUSBSerialNumber... 10
bstrVersion .. 10
isOffline ... 10
nBPS ... 11
nBus .. 11
nCard... 12
nPort .. 12

Methods...13
Connect ... 13
Disconnect... 14
SetWatchdog... 14
TestConnect .. 15

STATUS Properties and Methods .. 16
Properties ..18

nStatusWaitRate ... 18
Methods...18

AddACRCustom.. 18
AddACRGroup .. 18
AddACRGroupRaw ... 19
AddACRMemory ... 19
DelStatus... 20
GetACRCustom... 20
GetACRGroup ... 20
GetACRGroupRaw.. 21
GetACRMemory .. 21
GetLocalAddr .. 22
GetLocalArrayAddr.. 23
GetStatus .. 24
IsFlagSet ... 24
GetParmAddr .. 24
GetP armType ... 25
GetParmInfo .. 25
StatusWaiting .. 26
WatchdogReconnect ... 26
WatchdogTimeout ... 26

UTILITY Properties and Methods ... 27

- iv -

Methods...28
FindACR.. 28
DownloadFile... 28
DownloadOS ... 29
GetStatusDL.. 30
StopDownload ... 30
UploadFile ... 30

TERMINAL Properties and Methods .. 31
Properties ..31

nDataWaitRate .. 31
Methods...32

DataWaiting... 32
Read.. 32
Write .. 32

CONTROL Properties/Methods .. 33
Properties ..34

bAcrAbsolute ... 34
bAcrCCW .. 34
bMoveAbsolute.. 35
fMoveACC ... 35
fMoveFVEL.. 36
fMoveVEL.. 36
nArcMode .. 37
nMoveCounter... 37
nMoveMode... 38
nMoveProfile ... 38

Methods...39
Arc ... 39
Move.. 39
SendRES... 40
SetFlag .. 41
SetGlobal... 41
SetParmFloat .. 42
SetParmLong .. 43
Stop ... 43
GetMoveCounter ... 44
SetMoveCounter ... 45
SetAcrMemory... 45
SetAcrMemoryMask.. 45
SetParmLongMask.. 46
SetFOV.. 46
SetROV ... 46
MoveBatch .. 47
InitPerformance ... 47
GetPerformance.. 48

Error Messages.. 49

- v -

Change Summary
Change Summary

Revision C Changes

This document, 88-025359-01C, supercedes 88-025359-1B. Changes
associated with ACR9000 User Guide revisions, and document clarifications
and corrections are as follows:

Topic Description

WatchdogTimout Added an event to notify when the watchdog has timed out.

WatchdogReconnect Added an event to reconnect the watchdog after it has timed out.

bstrUSBSerialNumber Added a property for retrieving the USB serial number of the ACR
controller.

Revision B Changes

This document, 88-025359-01B, supercedes 88-025359-1A. Changes
associated with ACR9000 User Guide revisions, and document clarifications
and corrections are as follows:

Topic Description

Legacy example Corrected example for section titled “Using the ACR legacy Support
Kit”.

nCard Expanded explanation.

AddACRCustom Expanded explanation.

AddACRGroup Expanded explanation.

GetACRCustom Expanded explanation.

GetLocalAddr Expanded example.

GetLocalArrayAddr Corrected example

DownloadFile Corrected example.

DownloadOS Added warning.

fMoveACC Expanded explanation.

ComACRsrvr User’s Guide for ACR Series Products - 1 -

Communications Server
The Communications Server (ComACRsrvr.dll) is a 32-bit OLE automation
server that provides communications between ACR controllers and PC
software applications. It is compatible with any 32-bit software application or
programming environment that uses an OLE automation component,
including:

• Microsoft .NET

• Visual Basic

• Visual C++

• Delphi

• Software packages that support Microsoft’s Component Object Model
(COM):

 Wonderware’s Factory Suite 2000
 National Instruments LabVIEW

The ACR-View installation program installs the ComACRsrvr.dll file in the
Windows\System (Windows 95/98/XP) or WinNt\System32 (Windows
NT/2000) directory.

Communications Overview

To begin communications, an application requests a connection to the ACR
controller through the Communications Server. The Communications Server
manages the actual connection to each controller, and can feed information
from a particular controller to all client applications that require the
information.

The Communications Server makes one connection for each ACR controller
per communication media (Ethernet, Bus, USB or Serial, depending on the
communication options available for your particular controller). This
connection is then shared across all client users of that connection/controller
pair. For example, a terminal application created in Visual Basic and a
terminal in ACR–View can maintain connections to the same ACR
controller’s USB connection. Both applications receive the responses coming
from the controller and do not compete for data.

Alternatively, a status application created in C++ can use the communication
server to get information from one ACR controller while ACR-View uses the
communication server to talk to a different ACR controller.

Note: For more information, see the Hardware Installation Guide for your
controller.

RS-232
You must specify for the Communications Server the COM port and speed
on the PC (personal computer) to use for the connection. The
Communications Server supports up to 32 simultaneous serial connections
(any ports between COM1 to COM256).

- 2 - Overview

Ethernet
You will need to specify the controller’s IP address to the Communications
Server, and the IP address must be reachable on the network. Each ACR
controller is setup with a default IP address (192.168.10.40) and network
mask (255.255.0.0) at the factory. You can change the IP address and
network mask with the IP and IP MASK commands. The Communications
Server supports up to 32 simultaneous Ethernet connections (each to
different IP addresses).

USB
You will need to specify the controller’s unique serial number to the
communication server. The serial number is printed on the side of the ACR
controller. By default, if the Communications Server is given a serial number
of zero, it will connect to the first ACR controller it finds attached using USB.
The client application can then query the communication server and save the
serial number for later use. The Communications Server supports up to 32
simultaneous USB connections.

Bus
You will need to specify the bus controller’s card number and bus type (ISA
or PCI) to the communication server. When installed into the PC, each bus
controller is assigned a unique index; this index is the card number. The
Communications Server supports up to 32 simultaneous Bus connections.

ComACRsrvr.dll Overview

The ACR motion controllers provide a common collection of services and
functions across the product series. For a typical application, motion control
programs are written in the AcroBasic language using the ACR-View
development environment, and run on the controller.

In some cases, a custom program running on a PC might need to
communicate and interact directly with an ACR controller. To aid PC
communications with the ACR Series controllers, you can use the set of OLE
(Object Linking and Embedding) automation interfaces that are installed
along with the ACR-View application. The four interfaces are part of the
Communication Server (ComACRsrvr.dll). The interfaces (Status, Control,
Terminal, and Utility) provide access to the ACR motion controller
independent of the physical communications layer.

The Communications Server provides two layers of abstraction: The first
aggregates the physical communication layers into a functional API
(Application Program Interface) that contains the combined properties and
methods of the four interfaces. The second removes the dependency of
using a specific programming language, by providing a COM component
through which many Windows based programming environments can access
the API.

For example, using any OLE/COM compatible language, an application can
use the Status Interface to request the value of parameter P6415. This is
performed without regard to the underlying communication method (Serial,
Ethernet, USB, PCI or ISA Bus). The following diagram illustrates this
concept:

ComACRsrvr User’s Guide for ACR Series Products - 3 -

Communications Server API Overview
Before using the Communication Server API, it helps to understand the
underlying design. The features available in the ACR Communication Server
are sorted into four Interfaces. Each Interface covers a specific area of
functionality.

• The Terminal Interface provides a freeform, ASCII character based,
input and output stream.

• The Status Interface allows the retrieval of specific parameters, flags
and other data items.

• The Control Interface lets a client application change parameters, flags,
and other data, as well as perform moves.

• The Utility Interface contains miscellaneous functions, including
Uploading and Downloading files and firmware.

The functionally of each Interface is specific, but all four share a common set
of properties and methods for dealing with communications. This replication
of communication properties and methods provides you with the flexibility to
use any Interface on a connected ACR device, independent of the other
interfaces. While flexible, each instance of an Interface must first Connect()
to an ACR series product before using the interface.

Internal to the Communication Server, there is only one connection to an
ACR device. After the first Interface connects (which ever interface that may
be), each call to Connect() just shares the single connection. For this
reason, there is no extra overhead to having to call Connect(). For example,
if an application will use three of the four interfaces, you must create and
then connect each interface using the same connection information.

Communications
All of the Communications Server’s interfaces share properties and methods
related to communication. These properties and methods provide enough
information for each interface to independently establish a communications
link with the ACR controller.

To connect to a controller, a program sets the properties for the
communication layer (i.e. set the COM port and speed for serial
communication; set the IP address for Ethernet; etc.) and then calls the
Connect() method.

- 4 - Overview

The above connection procedure is required for each instantiation of an
Interface. Each instantiation can connect to a different ACR device or a
different communication transport, up to the limits of the underlying generic
communication server.

Connecting to an ACR Controller
For an application to communicate with an ACR Controller, the application
must first call the Connect() method on an interface. When calling the
Connect() method there are two steps that the Communications Server
performs.

1. The Communications Server establishes a connection with the physical
medium (serial, Ethernet, etc.) using the device drivers on the system to
secure the communication resource (ports, sockets, etc.) needed to talk
to the connected ACR Controller. This is only performed by the very first
Interface to call the Connect() method. Subsequent calls to the
Connect() method do not perform this step. Instead, subsequent
interfaces register themselves as users. When the last user closes
down, the resources are freed.

2. By default, the Communications Server tries to verify that an ACR
Controller is connected to the PC. To do this, the Communications
Server sends information to the ACR Controller and inspects the reply.
You can turn off this behavior, and not perform the check. Prior to
calling the Connect() method, set the bOnConnectTest to FALSE. For
example, you can do this when you know the ACR Controller is present.

Alternatively, you can call the TestConnect() method to test at any time
whether a connection is present. See examples three and four below.

After successfully executing the Connect() method, all other methods on that
interface are available. In the examples below, the Control Interface is
connected and then the “cntl” object is available to call any method on the
Control Interface. For example, through the Control Interface you can change
p-Parameters.

For expanded examples of how to code using the Communications Server,
see the sample programs on the ACR CD.

Example 1
Following is an example in VB6 using early binding to connect using
Ethernet, Serial and Bus, and then using the Interface to change the values
of the Jog Limits for Axis0:
‘// Initialize the Interface
Public cntl As Control
Set cntl = New Control

‘// Connect to the Interface in one of the three(3) protocols
‘// Ethernet
cntl.bstrIP = “192.168.10.40” ‘// Use IP the ACR is setup with
cntl.Connect 3, 0 ‘// The 3 = Transport type Ethernet
‘// Or Serial
cntl.nBPS = 38400 ‘// Set the baud rate
cntl.nPort = 1 ‘// Using Com Port 1
cntl.Connect 2, 0 ‘// The 2 = Transport type Serial
‘// Or Bus
cntl.nBus = 0 ‘// Using a PCI type bus card
cntl.Connect 1, 0 ‘// The 1 = Transport type Bus

ComACRsrvr User’s Guide for ACR Series Products - 5 -

‘// Change the Jog Limits for Axis0 for any Connection Type
cntl.SetParmFloat 12334, 50, True '// Set Pos Jog Limit
cntl.SetParmFloat 12335, -50, True '// Set Neg Jog Limit

Example 2
Following is an example in C#.NET using Ethernet, Serial and Bus, and then
using the Interface to change the values of the Jog Limits for Axis0:
‘// Initialize the Interface
BOXBRIDGELib.Control cntl;

‘// Connect to the Interface in one of the three(3) protocols
// Ethernet
cntl.bstrIP = “192.168.10.40”; // Use IP the ACR is setup with
cntl.Connect(3,
0);

// The 3 = Transport type Ethernet

‘// Or Serial
cntl.nBPS = 38400 ‘// Set the baud rate
cntl.nPort = 1 ‘// Using Com Port 1
cntl.Connect 2, 0 ‘// The 2 = Transport type Serial
‘// Or Bus
cntl.nBus = 0 ‘// Using a PCI type bus card
cntl.Connect 1, 0 ‘// The 1 = Transport type Bus

‘// Change the Jog Limits for Axis0 for any Connection Type
cntl.SetParmFloat 12334, 50, True '// Set Pos Jog Limit
cntl.SetParmFloat 12335, -50, True '// Set Neg Jog Limit

Example 3
In this VB6 Example using early binding, the ACR verification test is turned
off and done manually by the client application.
‘// Initialize the Interface
Public WithEvents term As Terminal
Set term = New Terminal

‘// Connect to the Interface but do not verify the ACR
‘// Ethernet
term.bOnConnectTest = False
term.bstrIP = “192.168.10.40” ‘// Use IP the ACR is setup with
term.Connect 3, 0 ‘// The 3 = Transport type Ethernet

‘// Manually verify the connection
if term.TestConnect() then

MsgBox “Found ACR!”
end if

Example 4
In this C# Example, the ACR verification test is turned off and done manually
by the client application.
‘// Initialize the Interface
BOXBRIDGELib.Terminal term;

‘// Connect to the Interface but do not verify the ACR
// Ethernet
term.bOnConnectTest = false
term.bstrIP = “192.168.10.40”; // Use IP the ACR is setup with
term.Connect(3, 0); / The 3 = Transport type Ethernet

‘// Manually verify the connection
if (term.TestConnect()){

MessageBox.Show (“Found ACR!”,””, MessageBoxButtons.OKCancel,

MessageBoxIcon.Asterisk)
}

- 6 - Overview

Syntax
The syntax for requesting a connection to the Communications Server varies,
depending on the programming environment used.

The following connection examples are provided for Visual Basic, C++,
Visual Basic .NET, C++ .NET, and C# .NET. To disconnect, see the
Disconnect method.

After having created the object variable and established a connection, you
can use the set of standard methods and properties for use by client
applications.

ComACRsrvr User’s Guide for ACR Series Products - 7 -

ACR Legacy Support
The ACR Legacy Support kit allows many existing user-created applications
to run over the new ACR OLE Server without modification. You can
transparently redirect device communications to any of the OLE Server's
available devices.

The kit provides the following:

• Acrownt.dll (updated file)

• ACRStart.exe launcher

• An optional ALS.ini configuration file.

Using the ACR Legacy Support Kit

For more information about determining the correct settings, see the ACR
OLE Server documentation.

Note: You can automatically start your legacy application, bypassing the
acrstart.exe application. To do this, add -a or /a in the path of a
shortcut to the acrstart.exe file. When you double-click the shortcut,
the last legacy application run by the acrstart.exe file is automatically
run.

1. Copy the acrownt.dll to your system directory
 For Windows 2000— \winnt\system32
 For Windows XP— \windows\system32

2. Copy ACRStart.exe to the directory where your existing application is
installed.

3. Run ACRStart.
4. To locate your application, click Browse. Having found the application,

click Ok. The ACRStart.exe program remembers the location of your
legacy application.

5. Optional: You can redirect communications to another communications
device by creating an ALS.ini file in the same folder as your legacy
application.

Example
The contents of the file look like this:
[Card0]
bstrIP=192.168.1.25
nPort=1
nBPS=115200
nBus=1
nDataWaitRate=100
nTransport=3

- 8 – Status Properties and Methods

Shared Properties and Methods
The following properties and methods are shared by all interfaces.

Properties
• BSTR bstrVersion

• Long nPort

• Long nBPS

• Long nBus

• Long nCard

• BSTR bstrIP

• BSTR bstrUSBSerialNumber

• Bool bOnConnectTest

• Bool isOffline

Methods
• Connect(long nTransport, long nIndex)

• bool TestConnect()

• SetWatchdog(long interval, long retries)

• Disconnect()

ComACRsrvr User’s Guide for ACR Series Products - 9 -

Properties

bOnConnectTest

Description This allows (or disallows) automatic ACR verification as part of Connect()

Property bOnConnectTest

Return Type bool

Range N/A

Default TRUE

Value If TRUE, the Communications server verifies there is an ACR device present during
the call to the Connect() method.
If FALSE, the Communications server provides no extra verification when calling
Connect() method.

Remarks When bOnConnectTest is set to TRUE, the Connect() method verifies that an ACR
device is physically connected and responding after successfully connecting to a
communications transport. This extra verification is done using an implicit call to
TestConnect(). See TestConnect() for more information. If no controller is found,
the Connect() method throws and exception.
If bOnConnectTest is set to false, some communication transports will not fail when
using Connect(), even when no ACR device is physically connected. For example,
a serial port only needs to be present on the PC at the nPort communication port
address for Connect() to return success.
Some applications may not need to perform this extra check, in which case set this
value to FALSE. Setting this value to FALSE will slightly speed up Connect().

bstrIP

Description The Ethernet IP address of the ACR device.

Property bstrIP

Return Type BSTR

Range N/A

Default 192.168.10.40

Value Ethernet address string in dot notation—xxx.xxx.xxx.xxx

Remarks To communicate over a network using TCP/IP, you must configure the network
settings for the personal computer and ACR device. For more information, see the
IP and IP MASK commands for the ACR Series controller.

- 10 – Status Properties and Methods

bstrUSBSerialNumber

Description The USB serial number of the ACR controller.

Property bstrUSBSerialNumber

Return Type BSTR

Range N/A

Default 0

Value USB serial number string

Remarks The USB serial number is the same as the manufacturing serial number of the ACR
controller. The USB serial number can also be auto-detected by ACR-View before
connecting. This property must be set before calling Connect() on an ACR
controller over USB.

bstrVersion

Description Holds the version number of the ComACRsrvr.dll file

Property bstrVersion

Return Type BSTR

Range N/A

Default N/A

Value String is in the format X.X.X.X, where X represents some number.

Remarks The value comes dynamically from the version resource in the .dll file.

isOffline

Description Indicates whether the Transport type is set to Offline.

Property isOffline

Return Type bool

Range N/A

Default TRUE

Value If TRUE, the transport type is set to Offline, which indicates that the interface is not
connected to an ACR device. See Connect() for the transport types.

Remarks The default for each Interface is Offline mode. After a successful connection, it can
return to an Offline mode by either explicitly calling Connect() with the Offline
transport type, or calling Disconnect().
Many methods throw an exception if called in the Offline mode; You can check this
property first to avoid throwing an exception.

ComACRsrvr User’s Guide for ACR Series Products - 11 -

nBPS

Description The speed of the serial port in Bits Per Second, to set the Communications Port
(COM1, etc.) for Serial communications.

Property nBPS

Return Type Long

Range 9600, 19200, 38400

Default 38400

Value Communications speed.

Remarks The Communication Server can use any BPS rate that is supported by the PC, but
the ACR Controller can only auto-detect at rates 9600, 19200, and 38400 BPS.

nBus

Description Indicates the type of PC Bus Card (ISA or PCI) being used

Property nBus

Return Type long

Range 0-1

Default 0 (PCI)

Value To indicate an ACR Bus card:

Value Description
0 ACR PCI Bus Card
1 ACR ISA Bus Card

Remarks The ACR8020, ACR1505 and any newer bus based controllers are PCI bus based.
All earlier ACR bus based controllers use the ISA bus.

- 12 – Status Properties and Methods

nCard

Description The index number of the ACR Controller

Property nCard

Return Type long

Range N/A

Default 0

Value This is the value of the index parameter in the Connect() method. It is updated after
calling Connect().

Remarks This is a read only property. It is only valid after the Connect() method is called, and
stores the value used as the index parameter.
This is useful when connecting to USB if the card index is not known. After calling
Connect(4, 0), the Communication Server will find the first USB attached ACR
device and then place the device’s card number in this property. That card number
can then be stored and used later to directly connect to the USB attached ACR
device. Calling Connect() with a specific card number is useful if more than one
ACR device is connected to the PC using USB.

nPort

Description Communications Port (COM1, etc.) on the personal computer

Property nPort

Return Type long

Range 1-256

Default 1

Value

Remarks Sets the communications port of the personal computer to which the serial ACR
device is connected.

ComACRsrvr User’s Guide for ACR Series Products - 13 -

Methods

Connect

Description Establish a connection of type transport to an ACR Controller.

Signature Connect(long nTransport, long nIndex)

Return Type N/A

Parameters nTransport: Indicates the physical communication layer being used, or no
layer when Offline.

Transport Types
Value Description
0 Offline
1 Bus
2 Serial
3 Ethernet
4 USB

nIndex: Transport Type dependent data. For more information about this

value, see Remarks below. The default nIndex (sometimes
called the card number) is zero. When nTransport=Offline, the
nIndex can be anything.

Return After Connect() is successfully called (except for nTransport=Offline), the ACR
device is connected and ready. To ensure an ACR device is physically present, you
can use set the bOnConnectTest property to TRUE (the default) or call the
TestConnect() method once connected.

Remarks All Interfaces initially come up with transport = Offline. Each transport type has its
own data requirements for connecting.

Transport Connection Requirements
Parameter Description
Offline The nIndex value can be any value.
Bus The nIndex value must be the card index assigned during

installation. To find this card number see parameter P7041,
or DIP switch setting on some cards. The nBus property
must be set to ISA or PCI depending on the card type.

Serial The nIndex value is the index of the card, which is typically
zero. In a daisy chain configuration, this number identifies the
specific controller. The nPort must be set to the PC
communications port that will be used, and the nBPS must
be set to the desired bits per second rate.

Ethernet The nIndex value can be any value. The nIP property must
be set to the IP address of the ACR controller.

USB The nIndex value is the unique Serial ID of the ACR device.
If this is set to zero, the first ACR USB device found will be
connected. After connection, the Serial ID connected can be
found in the nCard property.

Any transport specific properties (i.e. bstrIP for Ethernet, etc.) should be set prior to
calling Connect().
All Interfaces initially (prior to the Connect() call) come up with transport equal to
Offline. In addition to establishing a connection to the physical layer, the ACR card
is sent specific characters on the first connection, describe as follows:
Ethernet: USB and Bus Cards an "echo1<cr>" is sent to wake up the card and turn
echo on.
Serial: Two <cr> are sent to establish a BPS rate (Auto-Baud Detect). Then <ctrl-
B><ctrl-A> nIndex<cr> to activate the specified device, and finally an "echo1<cr>"

- 14 – Status Properties and Methods

is sent to turn echo on.
The nIndex value is used to distinguish multiple cards using the same transport.
For example, two ISA Bus cards in a single computer, more than one ACR
connected using the USB, or a multi-drop Serial configuration. Outside of these
configurations, the Card number should be left zero in the Connect() call.

Disconnect

Description Disconnect from the current communication transport

Signature Disconnect()

Return Type N/A

Parameters N/A

Return Implicitly calls Connect(0,0) to switch to Offline mode.

Remarks When using the Status Interface, it is recommended that the DelStatus(-1) method
be called prior to Disconnect(). This stops pending status requests, and provides a
more graceful shutdown of the component.

SetWatchdog

Description Modifies the Watchdog values.

Signature SetWatchdog(long nInterval, long nRetries)

Return Type N/A

Parameters nInterval: The time, in milliseconds, between sending test keep-alive strings
to the ACR device.

nRetries: The number of times the keep-alive test string message is sent to
the ACR device, with no valid reply, before attempting to re-
connect to the ACR device.

Return The Ethernet transport currently has Watchdog functionality. The ACR controller
uses a separate port to receive a coded command string (keep-alive message), and
echoes it back to the sender. If the Communications Server fails to get a response
to a keep-alive message in nInterval*nRetries milliseconds, the
Communications Server attempts to reconnect (until the Disconnect() method is
called.)
The ACR controller also expects the keep-alive packets in the specified time
window. If the ACR controller does not receive the keep-alive, a successful
command string in nInterval*nRetries milliseconds, the ACR controller
disconnects the regular ACR Ethernet connection it is watching and stops
responding to the PC watchdog. If the Communications server fails to get a
successful command string in nInterval*nRetries milliseconds, the
Communications Server attempts to reconnect both connections (until the
Disconnect () method is called.)

Remarks This method has no effect on any transport except Ethernet.
The initial settings of the Ethernet Watchdog are as follows:

• nInterval=2000 ms(2 seconds)

• nRetries=4

To change these defaults settings used by the Communications Server, add the
following registry values:
HKEY_CURRENT_USER\Software\Parker Hannifin\ACR-View\Settings
HBInterval=x :: where x is the value to default nInterval
HBRetries=y :: where y is the value to default nRetries

ComACRsrvr User’s Guide for ACR Series Products - 15 -

TestConnect

Description Verifies that an ACR Controller is connected.

Signature TestConnect()

Return Type bool

Parameters N/A

Return A command is sent and the return value verified. If this process succeeds, an ACR's
presence is presumed and TRUE is returned. Otherwise FALSE is returned. When
the transport type = Offline, this method always returns FALSE.

Remarks The TestConnect() method sends a binary command to the controller and verifies
the returned data.
This is the same test as done by Connect() when bOnConnectTest is set to TRUE.

- 16 – Status Properties and Methods

STATUS Properties and Methods
The ACR Controllers provide access to large amount of status information, most of
which can be acquired only using p-Parameters. The p-Parameter values can be
read using the Terminal Interface by simply issuing an AcroBasic print command
followed by the p-Parameter (?P12291<cr>) or they can be read using the ACR
Binary command syntax.

Using ACR Binary syntax, a single value or a related group of 8 values can be read
at one time (the Groups of specific p-Parameters are documented in ACR-View
online help). The Status methods in this interface know how to convert p-Parameters
into their binary equivalent commands. The methods in the Status Interface use the
ACR Binary syntax to get parameter information.

To aid in the quick retrieval and notification of changes in specific p-Parameters, the
Status Interface is implemented as a request queue that polls the ACR Device for
status in short increments. This allows a program to be alerted when a status item
changes, so it can be read, and makes reading status very quick since it does not
have to block for the entire request/response time period. Conversely, the more
status that a client program requests to be in the queue, the longer it will take to
refresh the data.

The Status Interface can be used in two ways, in a simple request/reply form or as an
event driven alerting request queue. The request/reply method is straightforward. Call
a method that begins with GetACR*, and receive the information requested. The
event driver method requires more steps. First use the AddACR* methods to put a
request into the queue. Second, wait for the COM event StatusWaiting() to fire.
When StatusWaiting() fires, use GetStatus() to get the information. When done
watching the status, use DelStatus() to remove the status from the request queue.

Note: Retrieving status from an ACR controller using the PC can take tens to
hundreds of milliseconds. For many statuses, this is not an issue but for high-
speed information changes, say the position of an axis during a move,
reading data using the PC in real time may not be effective. Instead, the ACR
products support an internal logging feature that can capture data as fast as
the controller can change it. These internal logs can be saved in local arrays
and then read, after the fact, into the PC using the methods in this interface
(see GetLocalArrayAddr() and GetACRMemory() for examples.)

For examples on reading status, see the sample programs.

Warning — Before sending a REBOOT command, resetting, or cycling power to an ACR series controller,
close the Status interface by sending DelStatus(-1) in your software application. Otherwise, the Status
interface continues sending data, which can interfere with the boot sequence of the controller.

ComACRsrvr User’s Guide for ACR Series Products - 17 -

Properties
• long nStatusWaitRate

Methods
• SAFEARRAY GetACRCustom (BSTR bstrRequest)

• SAFEARRAY GetACRGroup(BSTR bstrRequest)

• SAFEARRAY GetACRGroupRaw(long nType, long nCode, long
nIndex)

• SAFEARRAY GetACRMemory (long nType, long nAddress, long
nCount)

• long GetLocalAddr(long nProg, long nType, long nSize)

• long GetLocalArrayAddr(long nProg, long nType, long nArray,
long nSize)

• long AddACRGroup(BSTR bstrRequest)

• long AddACRGroupRaw(long nType, long nCode, long nIndex)

• long AddACRCustom(BSTR bstrRequest)

• long AddACRMemory (long nType, long nAddress, long nCount)

• SAFEARRAY GetStatus(long nMsgid)

• DelStatus(long nMsgid)

• bool GetParmInfo(long nParameter, long nType, long nCode,
long nIndex, BSTR bstrCatagory, BSTR bstrDesc)

• long GetParmType(long nParameter)

• long GetParmAddr(long nParameter)

• bool IsFlagSet(long nFlagGrp, long nFlagNdx)

• StatusWaiting(long msgID, long error)

• WatchdogReconnect()

• WatchdogTimeout()

Note: For the methods in this Interface that return a SAFEARRAY of Variants, the
client software should clean up the program memory (some environments,
like Visual Basic, do this automatically.) In addition, for this return type it is
possible that a single, empty Variant (VT_EMPTY) will be returned instead of
a SAFEARRAY. The calling program should verify the Variant type returned is
a SAFEARRAY and not an empty Variant before processing.

- 18 – Status Properties and Methods

Properties

nStatusWaitRate

Description The minimum time between status alerts in milliseconds.

Property nStatusWaitRate

Return Type long

Range N/A

Default 10 ms

Value If a status request has new data available, a COM event is generated in the time
between when a status changes and nStatusWaitRate milliseconds past the time a
status changes. Setting this value to zero will disable alerts. Use this property to set
the minimum time in milliseconds between alert events.

Remarks Changes to this value only take affect if you have set the nStatusWaitRate property
before calling the Connect() method.

Methods

AddACRCustom

Description Add a custom p-Parameter request into the status queue.

Signature AddACRCustom(BSTR bstrRrequest)

Return Type long

Parameters bstrRrequest: String of up to 32 p-Parameters, comma delimited. These
parameters are used to look up individual or custom p-Parameter
values (for example P6144,P6160 would return the encoder
positions for Axis0 and Axis1).

Return A key identifying the request in the queue. The key can be used to retrieve data
using GetStatus() (for example, when the alert is signaled).

Remarks Calling the Add routines places the specific status request into a constantly updated
queue of requests. As data is retrieved from the device for each request in the
queue, that data is compared to existing data. If the retrieved data is different, an
event (callback) is generated with a key.

AddACRGroup

Description Add a group request into the status queue.

Signature AddACRGroup(BSTR bstrRrequest)

Return Type long

Parameters bstrRrequest: String of up to 4 p-Parameters, comma delimited. These
parameters are used to look up the group, which is then used to
return the 8 p-Parameter values for each group. Any p-Parameter
in a group can be used to identify a group. Up to 4 groups can be
requested and any undocumented/reserved items in a group are
returned as zero (for example P6144 would return 8 values
starting with the encoder position for Axis0).

Return A key identifying the request in the queue. The key can be used to retrieve data
using GetStatus() (for example, when the alert is signaled).

Remarks Calling the Add routines places the specific status request into a constantly updated
queue of requests. As the data from each request in the queue is retrieved from the
device, it is compared against existing data, and if different, an event (callback) is
generated with a key.

ComACRsrvr User’s Guide for ACR Series Products - 19 -

AddACRGroupRaw

Description Add a group request into the status queue.

Signature AddACRGroupRaw(long nType, long nCode, long nIndex)

Return Type long

Parameters nType: The data type of the values being read:

Transport Types
Value Description
0 Long
1 Float(64)
2 Float(32)

nCode: The ACR Group Code as documented in the ACR-View online

help.
nIndex: The ACR Group Index as documented in the ACR-View online

help.

Return A key identifying the request in the queue. The key can be used to retrieve data
using GetStatus() (for example, when the alert is signaled).

Remarks Calling the Add routines places the specific status request into a constantly updated
queue of requests. As the data from each request in the queue is retrieved from the
device, it is compared against existing data, and if different, an event (callback) is
generated with a key.
This method is provided for backward compatibility with existing programs. It is
recommended that AddACRGroup() be used to access group status.

AddACRMemory

Description Add a memory value request into the status queue.

Signature AddACRMemory(long nType, long nAddress, long nCount)

Return Type long

Parameters nType: The data type of the values being read:

Transport Types
Value Description
0 Long
1 Float(64)
2 Float(32)

nAddress: The starting physical memory address on the ACR product.
nCount: The number of values to read (starting at the memory location.)

The values of each memory location will be placed in a
corresponding position in the returned array.

Return A key identifying the request in the queue. The key can be used to retrieve data
using GetStatus() (for example, when the alert is signaled).

Remarks Calling the Add routines places the specific status request into a constantly updated
queue of requests. As data is retrieved from the device for each request in the
queue, that data is compared to existing data. If the retrieved data is different, an
event (callback) is generated with a key.
Use a value retrieved with GetLocalAddr() or GetLocalArrayAddr() or
GetParmAddr() in the nAddress parameter.

- 20 – Status Properties and Methods

DelStatus

Description Delete a status request from the status queue.

Signature DelStatus(long nMsgId)

Return Type N/A

Parameters nMsgID: The key to a specific status request as returned by one of the Add
routines.

Return N/A

Remarks Removing unused status requests will speed up the update of the other requests in
the queue. To clear all status requests in a queue, use DelStatus(-1).

GetACRCustom

Description Return the p-Parameter values requested.

Signature GetACRCustom (BSTR bstrRequest)

Return Type SAFEARRAY

Parameters bstrRrequest: String of up to 32 p-Parameters, comma delimited. These
parameters are used to look up the individual, or custom, p-
Parameter values (for example P6144,P6160 would return the
encoder positions for Axis0 and Axis1).

Return The GetACRCustom method returns a SAFEARRAY of up to 32 Variants (return
type: long or float). Each p-Parameter in the request returns the values of the
type as defined in the Parameters Reference section of the ACR User’s Guide-View
online help.

Remarks Example
If the bstrRequest parameter is set equal to "P4096,P8960" then it will return an
array of 1 long and 1 float, stored in Variants, which will be in a SAFEARRAY
structure.

GetACRGroup

Description Return the p-Parameter group values requested.

Signature GetACRGroup(BSTR bstrRrequest)

Return Type SAFEARRAY

Parameters bstrRrequest: String of up to 4 p-Parameters, comma delimited. These
parameters are used to look up the group, which is then used to
return the 8 p-Parameter values for each group. Any p-Parameter
in a group can be used to identify a group. Up to 4 groups can be
requested and any undocumented/reserved items in a group are
returned as zero (for example P6144 would return 8 values
starting with the encoder position for Axis0).

Return Returns a SAFEARRAY containing up to 32 Variants, each of which are of type long
or float. Each p-Parameter in the request results in a group of 8 values of the
same type.

Remarks If the bstrRequest parameter is set to "P4096,P8960" then an array of 8 longs
and 8 floats, stored in Variants, will be returned in the SAFEARRAY structure.
Example: for request = "P4096,P8960", an array of 8 longs (p-parameters 4096-
4103) and 8 floats (p-parameters 8192, 8448, 8704, 8960, 9216, 9472, 9728, 9984),
stored in Variants, are returned, because the individual p-parameters all share the
same group/index coding.

ComACRsrvr User’s Guide for ACR Series Products - 21 -

GetACRGroupRaw

Description Return the p-Parameter group values requested.

Signature GetACRGroupRaw(long nType, long nCode, long nIndex)

Return Type SAFEARRAY

Parameters nType: The data type of the values being read:

Transport Types
Value Description
0 Long
1 Float(64)
2 Float(32)

nCode: The ACR Group Code as documented in the ACR-View online

help.
nIndex: The ACR Group Index as documented in the ACR-View online

help.

Return Returns a SAFEARRAY containing up to 8 Variants, all of which are of type long or
float.

Remarks This method is for backward compatibility. It is recommended that GetACRGroup()
method should used for getting group data.

GetACRMemory

Description Return the values requested at the specified memory location.

Signature GetACRMemory (long nType, long nAddress, long nCount)

Return Type SAFEARRAY

Parameters nType: The data type of the values being read:

Transport Types
Value Description
0 Long
1 Float(64)
2 Float(32)

nAddress: The starting physical memory address on the ACR product.
nCount: The number of values to read (starting at the memory location.)

The values of each memory location will be placed in a
corresponding position in the returned array.

Return The returned array can be of any size but is limited to a single data type.

Remarks The floating-point values returned in an array are always 32-bit. However, as this
reads memory locations, the data type on the ACR must be specified exactly, either
32-bit or 64-bit floating point.
This method uses the binary PEEK command. While that command only supports up
to 256 returned values per call, this method breaks up requests larger than 256
items into a series of requests containing 255 items (or fewer).
Use a value retrieved with GetLocalAddr() or GetLocalArrayAddr() or
GetParmAddr() in the nAddress parameter.

- 22 – Status Properties and Methods

GetLocalAddr

Description Get the address of local variables in a specific program.

Signature GetLocalAddr(long nProg, long nType, long nSize)

Return Type long

Parameters nProg: Provide the program number—local variables are dimensioned in
a program space.

nType: The data type of the values being read:

Transport Types
Value Description
0 Long
1 Float(64)
2 Float(32)

nSize: After the call, this parameter holds the number of dimensioned

variables available.

Return The return value is a valid ACR memory address (or zero if no memory is
dimensioned for the requested variable type.)

Remarks The returned address can be used in either the GetACRMemory() or
AddACRMemory() method to access local variables. GetACRMemory() and
AddACRMemory() allow the communication server to query "count" number of
values following the address. Be sure to make the value for "count" less than or
equal to the nSize parameter.
After using GetACRMemory() and AddACRMemory(), you can access the status
SAFEARRAY that is returned to get the corresponding local values.
Following is an example of getting a local variable of type long from program 0.
'\\ In the ACR Prog0, dimension three local longs
PROG0
Dim LV(3)
LV0 = 33
LV1 = 456
LV2 = 44

\\ In your program, access them (Note: SAFEARRAY is pseudo-code to make the
example easier to read)
const long PROG0 = 0;
const long TYPE_LONG = 0;
long totalElements = 0;
long localAddress = GetLocalAddr(PROG0, TYPE_LONG, &totalElements);

\\ Get all the values
SAFEARRAY localLongs = GetACRMemory(TYPE_LONG, localAddress,
totalElements);
\\ Instead of GetACRMemory(), the AddACRMemory() method
\\ could also have been used.
In the array localLongs, the three values in the array are 33, 456, and 44. Just as
they were assigned in the ACR Prog0. This example requests the total number of
dimensioned variables. Fewer can be requested safely, but if more are requested
than are dimensioned, the behavior is undefined.

ComACRsrvr User’s Guide for ACR Series Products - 23 -

GetLocalArrayAddr

Description Get the address of a local variable array in a specific program.

Signature GetLocalArrayAddr(long nProg, long nType, long nArray, long
nSize)

Return Type long

Parameters nProg: Provide the program number—local variables are dimensioned in
a program space.

nType: The data type of the values being read:

Transport Types
Value Description
0 Long
1 Float(64)
2 Float(32)

nArray: The specific array being looked for.
nSize: After the call, this parameter holds the number of dimensioned

variables available.

Return The return value is a valid ACR memory address (or zero if no memory is
dimensioned for the requested variable type.)

Remarks The returned address can be used in either the GetACRMemory() or
AddACRMemory() method to access the local variable arrays. GetACRMemory()
and AddACRMemory() allow the Communications Server.dll to query "count"
number of values following the address. Be sure to make the value for "count" less
than or equal to the nSize parameter.
After using GetACRMemory() and AddACRMemory(), you can access the status
SAFEARRAY that is returned to get the corresponding local value.
Following is an example of getting a local variable of type long from program 0.
'\\ In the ACR Prog0, dimension a local array of longs
PROG0
Dim LA(0)
Dim LA0(3)
LA0(0) = 33
LA0(1) = 456
LA0(2) = 44

\\ In your program, access them (Note: SAFEARRAY is fictionalized here to make it
easier to read)
const long PROG0 = 0;
const long TYPE_LONG = 0;
const long ARRAY_NBR = 0;
long totalElements = 0;
long localAddress = GetLocalArrayAddr(PROG0, TYPE_LONG, ARRAY_NBR,
&totalElements);

\\ Get all the values
SAFEARRAY localLongs = GetACRMemory(TYPE_LONG, localAddress,
totalElements);
\\ Instead of GetACRMemory(), the AddACRMemory() method
\\ could also have been used.
In the array localLongs, the three values in the array are 33, 456, and 44. Just as
they were assigned in the ACR Prog0. This example requests the total number of
dimensioned variables. Fewer can be requested safely, but if more are requested
than are dimensioned, the behavior is undefined.

- 24 – Status Properties and Methods

GetStatus

Description Retrieve the specified status information.

Signature GetStatus(long nMsgId)

Return Type SAFEARRAY

Parameters nMsgID: The key to a specific status request as returned by one of the Add
routines.

Return The returned array can be any size. It holds the values in Variants, either type long
or float.

Remarks The order of the data returned is dependent on the original request. For example, if
the original request asked for status on P4099 and P4096 in that order, then the
returned values are also in that order.

IsFlagSet

Description Utility for identifying a bit in a 32-bit long.

Signature isFlagSet(long nFlagGrp, long nFlagNdx)

Return Type bool

Parameters nFlagGrp: A value of type Long containing flags (as bits.)
nFlagNdx: Index of the flag.

Return Returns TRUE if bit at nFlagNdx is 1, and returns FALSE when the bit is 0.

Remarks This method is helpful in finding the value of a flag when using the Communications
Server interface with languages that do not normally use bits.
ACR Flag values are stored in 32-bit longs, which is the lowest level of granularity
provided by the Status methods. The nFlagGrp is the long value, the nFlagNdx is
the position of the flag in the long.
Example
The following Visual Basic code determines if ACR BIT128 is set or clear in
parameter 4100 (which contains ACR Flags BIT128 through BIT159).
Dim rtnStat as Variant
Dim bit128 as Boolean
rtnStat = GetACRCustom ("P4100")
bit128 = isFlagSet (rtnStat(0), 0)

GetParmAddr

Description Get the address of a p-Parameter.

Signature GetParmAddr(long nParameter)

Return Type long

Parameters nParameter: A numeric p-Parameter.

Return Returns the address of the p-Parameter.

Remarks The returned address can be used in either the GetACRMemory() or
AddACRMemory() method to access p-Parameter values. GetACRMemory() and
AddACRMemory() allow the Communications Server to query "count" number of
values following the address. Be sure to make the value for "count" one (1), since
you are requesting a single value.

ComACRsrvr User’s Guide for ACR Series Products - 25 -

GetP armType

Description Utility for identifying data type of a p-Parameter.

Signature GetParmType(long nParameter)

Return Type long

Parameters nParameter: A numeric p-Parameter.

Return Returns the data type of the p-Parameter:

Transport Types
Value Description
0 Long
1 Float(64)
2 Float(32)

Remarks On the ACR Controller, data elements are stored in one of three types: Long
Integer, 64-bit Floating point, and 32-bit Floating point. When specifying the data
type that will be in use on the controller, the communications Server expects one of
the three codes: 0 for long, 1 for 64-bit float, and 2 for 32-bit float.

GetParmInfo

Description Utility for getting information on specific p-Parameters.

Signature GetParmInfo(long nParameter, long nType, long nCode, long
nIndex, BSTR bstrCatagory, BSTR bstrDesc)

Return Type bool

Parameters nParameter: A numeric p-Parameter.
nType: The data type of the values being read:

Transport Types
Value Description
0 Long
1 Float(64)
2 Float(32)

nCode: The ACR Group Code as documented in the ACR-View online

help.
nIndex: The ACR Group Index as documented in the ACR-View online

help.
bstrCatagory: A textual description of the category a p-Parameter is in.
bstrDesc: A textual description of the p-Parameter.

Return Returns TRUE if p-Parameter found.

Remarks The Communications Server keeps a database of information on all the p-
Parameters of the ACR product. This method gets the information for a specific p-
Parameter from that database.

- 26 – Status Properties and Methods

StatusWaiting

Description Callback method acts as an event signaling that a status changed

Signature StatusWaiting(long msgID, long error)

Return Type N/A

Parameters msgID: The key to a specific status request as returned by one of the Add
routines.

error: If an error occurred getting a status update, it is reported in the
error parameter. When a request encounters an error, the
request is deleted from the queue.

Return N/A

Remarks The COM event model (also know as Connection Points) uses a callback
mechanism to generate events. The Client program implements and registers this
method. The Status Interface calls the method when a status request (key=msgID)
has been updated and is ready to read using the GetStatus() method.

WatchdogReconnect

Description Callback method acts as an event signaling that Ethernet communications has been
re-established after watchdog timer previously timed out.

Signature WatchdogReconnect()

Return Type N/A

Parameters N/A

Return N/A

Remarks The COM event model (also know as Connection Points) uses a callback
mechanism to generate events. The Client program implements and registers this
method. The Status Interface calls the method after the watchdog timer times out
due to a loss of Ethernet communications.

WatchdogTimeout

Description Callback method acts as an event signaling that the watchdog timer has timed out
on an Ethernet connection

Signature WatchdogTimeout()

Return Type N/A

Parameters N/A

Return N/A

Remarks The COM event model (also know as Connection Points) uses a callback
mechanism to generate events. The Client program implements and registers this
method. The Status Interface calls this method when the watchdog timer has timed
out on an Ethernet socket connection.

ComACRsrvr User’s Guide for ACR Series Products - 27 -

UTILITY Properties and Methods
The Utility Interface provides functionality for transferring files between the PC and
the ACR product. The File transfer to the ACR Controller (both OS and Program
Files) is non-blocking. This allows the transfers to be monitored for status and
canceled by the user. The File transfer from the ACR Controller to the PC, file
upload, is a blocking transfer.

The non-blocking transfers allow the client software to be responsive during a
download and inform the user of progress, but they also imply that code running after
a transfer has started should not assume the transfer has completed. The code
should check the status before attempting to talk to the controller. For example, a
function that downloaded a program cannot expect to run that program after returning
from the download call, but must wait until the status information indicates the
transfer is complete.

Properties
None (other than the common properties)

Methods
• FindACR(long nTransport)

• DownloadOS(long nDevice, BSTR bstrFile)

• DownloadFile(BSTR bstrPrg, BSTR bstrFile)

• UploadFile(BSTR bstrPrg, BSTR bstrFile)

• GetStatusDL(long nTotal, long nBytes)

• StopDownload()

- 28 – Utility Properties and Methods

Methods

FindACR

Description Finds all ACR controllers attached to a PC.

Signature FindACR(long nTransport)

Return Type SAFEARRAY

Parameters nTransport: Indicates the physical communication layer being used, or no
layer when Offline.

Transport Types
Value Description
0 Offline
1 Bus
2 Serial
3 Ethernet
4 USB

* Only the USB Transport Type is supported. Other types return an empty list.

Return Returns the nIndex value used in the Connect() method for all ACR controllers
attached to the PC.

Remarks For transports that require an nIndex value in Connect(), this method can be used
to find all the possible values of nIndex. For example, USB requires the Serial
number be used as nIndex to directly connect to a controller. To discover what
nIndex is, call this method.

DownloadFile

Description Transfers a text file to the ACR Controller.

Signature DownloadFile(BSTR bstrPrg, BSTR bstrFile)

Return Type N/A

Parameters bstrPrg: Specifies the location to which files are downloaded (for example:
SYS or PROG01 or PLC01). This parameter is not required and
can be an empty string.

bsrFile: Specifies the fully qualified name of the file to download.

Return For information about download progress, see the GetStatusDL() method.

Remarks If there is any value in the bstrPrg parameter, the following sequence of events
takes place. First, an attempt is made to halt all running programs (this is done by
setting the flag parameter for each program, e.g. to stop PROG0, set flag 1033.)
After trying to halt any running programs, the bstrPrg parameter is inspected for
the string PROG or PLC. If either string is present, a NEW command is first sent to
the controller. Finally, the bstrPrg value itself is sent to the controller.
After any initial processing, DownloadFile() reads in the text file specified in
bstrFile and passes it, line by line, to the controller. This method is non-blocking,
returning as soon as the file has started to transfer. Check the GetStatusDL() for
completion updates during the use of this method.

Note: Once downloaded, a program/plc is in memory but has not been saved to
flash. For information on permanently saving a downloaded program or plc, see the
FLASH SAVE / FLASH IMAGE commands. Remember that these flash
commands only work if no programs are currently running.

ComACRsrvr User’s Guide for ACR Series Products - 29 -

DownloadOS

Description Download a new OS to the ACR (field upgrade.)

Signature DownloadOS(long nDevice, BSTR bstrFile)

Return Type N/A

Parameters nDevice: Specifies the ACR model. Not all ACR Controllers are field
upgradeable, and those that are have different mechanisms in
place to upgrade their firmware.

Device Types
Value Controller
0 ACR1200
1 ACR1500
2 ACR2000
3 ACR8010
4 ACR8020
5 ACR8020 (16-axis)
6 ACR1505
7 Reserved
8 ACR9000

bstrFile: Specifies the fully qualified file name of the new operating system.

Return For information about download progress, see the GetStatusDL() method.

Remarks Warning—The DownloadOS() method requires the full attention of the ACR
Controller and the Communication Server. Any other tasks should be stopped,
including any use of the Status Interface. The GetStatusDL() method is safe to use
once the Download has started.
The ACR1505, ACR8020 and ACR8020 (16 axis) controllers allow firmware updates
using an ASCII file transfer in either serial or bus communication modes. The file
transfer places the new firmware in flash, but does not load it into dynamic memory.
A user must then physically cycle power or reset the ACR controller once the
download is complete for these cards.

Note: The communications server is unable to recognize a download failure for
these cards. The file transfer method is not monitored. After you cycle power or
reset the ACR controller, verify the firmware has loaded correctly. To do this,
open a terminal in ACR-View, send the VER command and verify the new
firmware is loaded. If the new firmware is not present, the backup firmware has
loaded; Attempt to download the new firmware again.

The ACR9000 controller allows a firmware update using serial communications,
Ethernet, or USB. After the file transfer process is complete, the controller loads and
runs the new firmware—no additional user input is necessary.

Note: When using serial communications, if the operating system download
fails, the ACR controller, after cycling power, may display the OSP> prompt in a
terminal. The communications Baud BPS will be set at 9600 bps. Use the same
call to this method to try and download again. To manually get to an OSP>
prompt use the FIRMWARE UPGRADE command. In other communication
modes, the controller will stop responding and require a power cycle.

When is the download complete?
All ACR Series controllers save the downloaded operating system to flash. To
determine the state of the download process, use the return value of the
GetStatusDL() method. Call the GetStatusDL() method continually until either the
transfer is complete or the status indicates an error. This allows the GetStatusDL()
method to reconnect to the device after determining the flash save is complete.
Otherwise, the client must manually call the Connect() method.

- 30 – Utility Properties and Methods

GetStatusDL

Description Current status of the active Download.

Signature long GetStatusDL(long nTotal, long nBytes)

Return Type N/A

Parameters nTotal: Total bytes to be transferred.
nBytes: Total number of bytes transferred so far.

Return Return value is the status of the active Download.

Download Status
Value Description
0 No Transfer in progress
1 Transfer in progress
2 End of transfer
3 User cancelled Transfer
4 Error reading from file
5 Too many errors during Transfer
6 Transfer has timed out waiting for response
7 The ACR OS failed to verify against the

hardware description file (config image)
8 Save to flash of OS in progress.
9 Problem encountered in saving OS to flash
Negative
number

Unexpected error

Remarks If an OS download is in process, the nBytes parameter value is continually updated
with the amount of data sent to the ACR controller. The return value indication the
state of the download.

StopDownload

Description Aborts the file transfer to the Controller

Signature StopDownload()

Return Type N/A

Parameters N/A

Return See GetStatusDL() for download progress.

Remarks Call this method to cancel a download. The status value of 3 will be returned from
GetStatusDL() after this method is called.

UploadFile

Description Uploads an AcroBasic program or PLC program from the ACR to the PC.

Signature UploadFile(BSTR bstrPrg, BSTR bstrFile)

Return Type N/A

Parameters bstrPrg: Specifies the location to which files are uploaded from (for
example: PROG01 or PLC01).

bstrFile: Specifies the fully qualified path and name of the file to download.

Return This method blocks any other instructions from running until the upload is complete.
There is no checking of the code uploaded.

Remarks When uploading, the bstrPrg parameter is sent to change the command prompt
prior to sending a LIST command and capturing all the data returned.

ComACRsrvr User’s Guide for ACR Series Products - 31 -

TERMINAL Properties and Methods
The Terminal Interface provides functionality for doing simple request / reply with the
controller using ASCII characters. To send ASCII character strings to the ACR
Controller, use Write(). To receive data from the ACR Controller, use Read(). The
Interface supports a COM event, DataWaiting(), for alerting the client program that
data is ready to be read.

Properties
• long nDataWaitRate

Methods
• BSTR Read()

• Write(BSTR send)

• DataWaiting()

Properties

nDataWaitRate

Description The minimum time between status alerts in milliseconds.

Property nDataWaitRate

Return Type long

Range N/A

Default 50 ms

Value If the read buffer has new data available, a COM event is generated in the time
between when it comes into the read buffer and nDataWaitRate milliseconds past
that time it comes into the read buffer. Using this property, you can set the minimum
time between events, in milliseconds. The default setting is well below the
perceivable time a user would notice a delay, but well above the value that would
tax PC resources. Setting this value to zero will disable alerts, and the client
software will be required to poll the Read() method for data.

Remarks Changes to this value only take affect if To take affect, this should be set done
before the Connect() method is called.

- 32 – Terminal Properties and Methods

Methods

DataWaiting

Description Callback method acts as an event signaling that a there is data to read.

Signature DataWaiting()

Return Type N/A

Parameters N/A

Return N/A

Remarks The COM event model (also know as Connection Points) uses a callback
mechanism to generate events. The Client program implements and registers this
method. The Terminal Interface calls the method when there is data in the read
buffer, suggesting to the client to call Read().

Read

Description Get any ASCII data from the ACR Controller

Signature Read()

Return Type BSTR

Parameters N/A

Return This returns the data in the ACR Controller's output buffer.

Remarks Typically, call this method when a DataWaiting() event is received.

Write

Description Sends data to the ACR Controller.

Signature Write(BSTR send)

Return Type N/A

Parameters send: ASCII string to send to ACR Controller.

Return N/A

Remarks Most ACR commands require a carriage return <cr> (hex x0D) to execute.
In certain cases the Write() method is locked out; subsequently, the function times
out. In this instance, characters may not get to the controller. For example, during a
file or OS download.

ComACRsrvr User’s Guide for ACR Series Products - 33 -

CONTROL Properties/Methods
The Control interface is meant to provide the ability to update and control the ACR's
state and action. Using the methods provided here, a program can set and clear
flags, assign values to parameters, and perform moves. All updates can be sent via
the binary commands (immediate) and some have the option of utilizing the ASCII
interface (queued.)

Moves can be sent on an individual basis or in a batch as a single command. The
individual move methods (Move() and Arc()) assume most of the move settings are
stable and provides a group of properties to set them before the move. All properties
in this interface starting with “Move” or “Acr” affect the Move() and Arc() methods.

For moves that are unpredictable and constantly changing in their settings, the
MoveBatch() method is provided. The MoveBatch() method allows all move
settings, and all moves, to be sent in a single command.

Properties
• long nMoveProfile

• float fMoveVEL

• float fMoveFVEL

• float fMoveACC

• long nMoveMode

• bool bMoveAbsolute

• long nMoveCounter

• long nArcMode

• bool bArcAbsolute

• bool bArcCCW

Methods
• SetFlag(long nBit, bool bValue, bool bFast)

• SetParmFloat(long nPparm, float fValue, bool bFast)

• SetParmLong(long nPparm, float fValue, bool bFast)

• SetGlobal(long nCard, long nGlobal, double dValue, bool
bFast)

• Move(long nMask, SAFEARRAY targets)

• Arc(long nMask, SAFEARRAY targets)

• Stop(bool bDecel)

• SendRES(long nMask)

• GetMoveCounter(long nCounter, long nIncrement)

• SetMoveCounter(long nCounter, long nIncrement)

- 34 – Control Properties and Methods

• SetACRMemory(long nType, long nAddress, SAFARRAY values)

• SetACRMemoryMask(long nAddress, long nNAND, long nOR)

• SetParmLongMask(long nPparm, long nNAND, long nOR)

• SetFOV(long nMask, float fValue)

• SetROV(long nMask, float fValue)

• MoveBatch(long nType, SAFEARRAY moves)

• InitPerformance()

• GetPerformance(SAFEARRAY data)

Properties

bAcrAbsolute

Description Determines if arc centers are treated in absolute terms (TRUE) or in relative terms
(FALSE.)

Property bArcAbsolute

Return Type bool

Range N/A

Default TRUE (Absolute arc centers)

Value

Remarks When TRUE, the target parameter of the Arc method becomes the new center of
the arc.
When FALSE, the target parameter of the Arc method is adjusted incrementally,
relative to the current position.

bAcrCCW

Description Determines the direction of the Arc move.

Property bArcCCW

Return Type bool

Range N/A

Default TRUE (CCW)

Value Arc Direction is CCW if this property is TRUE, CW if FALSE.

Remarks When TRUE, a counter-clockwise (CCW) arc is defined from the positive primary
axis toward the positive secondary axis.
When FALSE, a clockwise (CW) arc is defined from the positive primary axis toward
the negative secondary axis.

ComACRsrvr User’s Guide for ACR Series Products - 35 -

bMoveAbsolute

Description Determines if move targets are treated in absolute (TRUE) or relative (FALSE)
terms.

Property bMoveAbsolute

Return Type bool

Range N/A

Default TRUE (Absolute moves)

Value When TRUE, the target parameter of the Move() method is treated as the new
absolute position.
When FALSE, the move is relative to the current position (either backwards or
forwards from the current position by the target amount).

Remarks

fMoveACC

Description Set a new Profile Acceleration/Deceleration for the next move.

Property fMoveACC

Return Type float

Range N/A

Default -1 (use preset velocity)

Value Part of a motion profile is the acceleration and deceleration, which can be set prior
to the move, e.g. during configuration.
If you do not want to use the current acceleration setting in the controller, use this
property to set a new acceleration. If this value is negative (default), it will be
ignored and the existing profile velocity will be used.

Remarks The effect of setting this value to a value other than -1 will be to permanently
change the ACC for the profile, as if the ACC command had been issued.
Warning—There is no provision in the move command structure to adjust the JRK
(jerk or S-curve) or Feedrate Override (FOV or ROV). If the JRK, FOV, or ROV has
been calculated and set based on an existing VEL and ACC/DEL, changing the
velocity using this property can result in an unexpected motion profile. The FOV
and ROV can be set independently with FOV and ROV commands.

- 36 – Control Properties and Methods

fMoveFVEL

Description Set a new Profile Final Velocity for the next move.

Property fMoveFVEL

Return Type float

Range N/A

Default -1 (use preset velocity)

Value Part of a motion profile is the final velocity, which can be set prior to the move, for
example during configuration.
If do not want to use the current, final velocity setting in the controller, use this
property to set a new final velocity. If this value is negative (default), it will be
ignored and the existing profile velocity will be used.

Remarks The effect of setting this value to a value other than -1 will be to permanently
change the FVEL for the profile, as if the FVEL command had been issued.
Warning—There is no provision in the move command structure to adjust the JRK
(jerk or S-curve) or Feedrate Override (FOV or ROV). If the JRK, FOV, or ROV has
been calculated and set based on an existing VEL and ACC/DEL, changing the
velocity using this property can result in an unexpected motion profile. The FOV
and ROV can be set independently with FOV and ROV commands.

fMoveVEL

Description Set a new Profile Velocity for the next move.

Property fMoveVEL

Return Type float

Range N/A

Default -1 (use preset velocity)

Value Part of a motion profile is the target velocity, which can be set prior to the move, for
example during configuration.
If do not want to use the current velocity setting in the controller, use this property to
set a new velocity. If this value is negative (default), the default is ignored and the
existing profile velocity on the controller is used.

Remarks The effect of setting this value to a value other than -1 will be to permanently
change the VEL for the profile, as if the VEL command had been issued.
Warning—There is no provision in the move command structure to adjust the JRK
(jerk or S-curve) or Feedrate Override (FOV or ROV). If the JRK, FOV, or ROV has
been calculated and set based on an existing VEL and ACC/DEL, changing the
velocity using this property can result in an unexpected motion profile. The FOV
and ROV can be set independently with FOV and ROV commands.

ComACRsrvr User’s Guide for ACR Series Products - 37 -

nArcMode

Description Determines primary and secondary axes when performing an arc move.

Property nArcMode

Return Type long

Range 0-3

Default 0

Value The arc mode defines the primary and secondary axes for the arc as follows:

Arc Modes

Value Description

0 Primary is Axis 0, Secondary Axis 1
1 Primary is Axis 1, Secondary Axis 2
2 Primary is Axis 2, Secondary Axis 0

Remarks To define an arc, first assign the axes that will produce the compound motion to a
Master. Using the nArcMode property, you can then set which are the primary and
secondary axes: The primary axis is usually the X axis; the secondary axis is usually
the Y axis.
All axes references are relative to the profile in use. For example, Axis 0 is the first
axis attached to the profile specified in the nMoveProfile method.

nMoveCounter

Description Turns on the Move Counter.

Property nMoveCounter

Return Type long

Range N/A

Default 1 (ON, count UP)

Value The Move Counter has three (3) possible modes:

Move Counter Modes

Value Description

-1 Counter ON and counting DOWN

0 Counter OFF

1 Counter ON and countering UP

Remarks The nMoveCounter property sets the mode for the move counter on a device (not
the Bus Device Driver Move Counter as stated in some ACR documentation. The
Bus Device Driver Move Counter is manipulated using the GetMoveCounter() and
SetMoveCounter() methods.
When in mode -1 or 1, the move counter parameter is updated when a move starts,
and can be monitored through the (LONG) parameter values below.
Move Counter in Master Parameters (Profile 0 - 15):

P8208, P8464, P8720, P8976, P9232, P9488, P9744, P10000, P10256,
P10512, P10768, P11024, P11280, P11536, P11792, P12048

- 38 – Control Properties and Methods

nMoveMode

Description Selects move mode.

Property nMoveMode

Return Type long

Range N/A

Default 2 (Start/Stop)

Value There are four (4) possible move modes:

Move Modes

Value Description

0 Continuous
Uses ACC to get to VEL * FOV and stays there

1 Cornering
Uses ACC to get to VEL * FOV and DEC to get
to FVEL

2 Start/Stop
Uses ACC to get to VEL * FOV and DEC to Stop
(VEL=0)

3 Rapid Start/Stop
Uses ACC to get to VEL * ROV and DEC to Stop
(VEL=0)

Remarks The move mode determines the type of motion the controller generates.

nMoveProfile

Description This specifies the master profile to use for the move.

Property nMoveProfile

Return Type long

Range 0-15

Default 0

Value There are up to 16 Master Profiles available for configuration and use on ACR
Series controllers. This property stores the motion profile used by the next Move() or
Arc() method.

Remarks For a move to succeed a Master Profile must be configured and have the physical
axes attached. The profile must also include information about velocity,
acceleration, deceleration, jerk and feedrate override. These settings, except for jerk
and federate override, can be explicitly set using the properties in the Control
Interface. If they are not set (for example set to -1), the default rates existing in the
device will apply.

Note: All axes referenced in this Interface are relative to the profile specified in this
property. For example, when a reference is made to Axis 0, it means the profile will
"use the first axis attached to this profile."

ComACRsrvr User’s Guide for ACR Series Products - 39 -

Methods

Arc

Description Generate an arc move.

Signature Arc(long nMask, SAFEARRAY targets)

Return Type N/A

Parameters nMask: Specifies which axes to use for the move.
targets: The arc centers and target position information for each axis.
As a convenience to the caller, the SAFEARRAY passed into this method will be
destroyed before it returns. To keep this from happening, use SafeArrayLock() on
the passed in data before calling this method. Then call SafeArrayUnlock() once
the method completes.

Return N/A

Remarks The Arc method allows from 1 to 16 attached axes to be part of a move. This
happens by setting one or more target positions for each axis.
To perform a move, the profile defined in nMoveProfile property must have one or
more axes attached. The axes are represented by numbers 0, 1, 2, etc., based on
the order they were attached to the profile. In the Arc() method, the target positions
are stored in the SAFEARRAY targets parameter, while the nMask specifies to
which axes the data is linked.
The nMask and targets parameters operate just as they do in the Move() method
with one exception: the first two elements of the targets array are the Primary and
Secondary Centers for the arc. At the third element, place the target information.

Note: To use the Arc() method, you must first set the Enable Rapid Move Modes
flag*. By default, the flag is zero. Therefore, prior to sending a move to the
controller, the flag is set by Arc() method. Once set for a motion profile, and for as
long as that instance of the Control Interface is alive, subsequent calls to the Arc()
method for the profile will not try to set the flag (they will assume it stays set).

* See the Secondary Master Flags, bit index 5 in the Parameter Reference.

Move

Description Generate a move.

Signature Move(long nMask, SAFEARRAY VARIANT targets)

Return Type N/A

Parameters nMask: Specifies which axes to use for the move.
targets: The target position information for each specified axis.
As a convenience to the caller, the SAFEARRAY passed into this method will be
destroyed before it returns. To keep this from happening, use SafeArrayLock() on
the passed in data before calling this method. Then call SafeArrayUnlock() once
the method completes.

Return N/A

Remarks The Move() method allows from 1 to 16 attached axes to be part of a move. This
happens by setting one or more target positions for each axis.
To perform a move, the profile defined in nMoveProfile property must have one or
more axes attached. The axes are represented by numbers 0, 1, 2, etc., based on
the order they were attached to the profile. The nMask parameter is treated as a
field of 32 bits, or flags. Each flag corresponds to an axis. Setting the nMask to 1
(binary 01) tells the Move() method that only Axis0 is moved. (As mentioned above,
Axis0 is the first axis attached to the profile or master, Axis1 is the second axis
attached, etc.) Setting the nMask to 8 (binary 1000) tells the Move() method that
only Axis3 is moved.

- 40 – Control Properties and Methods

The targets SAFEARRAY contains the data used to make the move, e.g. the target
of the move. The SAFEARRAY should only hold data for axes that are flagged in the
nMask property.
For example, setting nMask to 5 (binary 0101) tells the Move() method to move
Axis0 and Axis2. Therefore, the targets array needs to hold two values. The
targets array value at index 0 applies to the Axis0 move, the value at index 1 applies
to the Axis2 move. The targets SAFEARRAY contains Variants because the target
data can be either float or long, but not a combination of floats or longs. The first
data type found is the data type used for all data in the array.

Example
// To move 3 axes - axis0, axis1, and axis4 use the following pseudo-code as a
guide.
nMask = 19 // 10011 binary
targets(0) = 5 // move axis0 5
targets(1) = 15 // move axis1 15
targets(2) = -5 // move axis4 -5
Move(nMask, targets) // execute all three moves

—or—
nMask = 1 // 01 binary
targets(0) = 5 // move axis0 5
Move(nMask, targets) // execute move 1
nMask = 2 // 10 binary
targets(0) = 15 // move axis1 15
Move(nMask, targets) // execute move 2
nMask = 16 // 10000 binary
targets(0) = -5 // move axis4 -5
Move(nMask, targets) // execute move 3

Note: To use the Move() method , you must first set the Enable Rapid Move Modes
flag*. By default, the flag is zero. Therefore, prior to sending a move to the
controller, the flag is set by Move() method. Once set for a motion profile, and for as
long as that instance of the Control Interface is alive, subsequent calls to the Move()
method for the profile will not try to set the flag (they will assume it stays set).

*See the Secondary Master Flags, bit index 5 in the Parameter Reference.

SendRES

Description Send a RES command to an axis. Typically used during initialization to set all
counters to zero.

Signature SendRES(long nMask)

Return Type N/A

Parameters nMask: Specifies which axes to apply the RES.

Return N/A

Remarks The RES command resets the encoder and other counters on the drive to zero on
the controller for the specified axes attached to the profile defined in the
nMoveProfile property. The nMask is treated as a field of 32 bits, or flags. Each flag
corresponds to an axis.
The axes are represented by numbers 0, 1, 2, etc., based on the order they were
attached to the profile. The nMask parameter is treated as a field of 32 bits, or flags.
Each flag corresponds to an axis. Setting the nMask to 1 (binary 01) tells the
SendRES() method that only Axis0 of profile nMoveProfile is moved. (As
mentioned above, Axis0 is the first axis attached to the profile or master, Axis1 is
the second axis attached, etc.)
This command does not use the binary syntax, so it will be queue up in the
command stack behind moves, etc.

ComACRsrvr User’s Guide for ACR Series Products - 41 -

SetFlag

Description Changes the value of a specific bit flag, as defined on the ACR Device.

Signature SetFlag(long nBit, bool bValue, bool bFast)

Return Type N/A

Parameters nBit: Bit number on card (different from p-Parameter.)
bValue: Value of bit:

Value Description
TRUE Set
FALSE Clear

bFast: How to send the command:

Value Description
TRUE Binary
FALSE ASCII

Return

Remarks ASCII commands queue in a command stack; they are visible in the Terminal
interface. Binary commands are executed prior to any ASCII commands and are not
seen by the Terminal.
When the bFast parameter is TRUE, a binary command is sent to the card.
When the bFast parameter is FALSE, an ASCII command is sent to the card.

SetGlobal

Description Changes the value of a specific, pre-dimensioned global parameter.

Signature SetGlobal(long nCard, long nGlobal, double dValue, bool bFast)

Return Type N/A

Parameters nCard: Code value for type of card. This information is needed if using a
binary command (bFast=TRUE) to find the memory address.
Use zero if using ASCII (bFast=FALSE).

Device Types
Value Controller
0 ACR1200
1 ACR1500
2 ACR2000
3 ACR8010
4 ACR8020
5 ACR8020 (16-axis)
6 ACR1505
7 Reserved
8 ACR9000

nGlobal: Global p-Parameter number that is to be changed
dValue: Value to assign p-Parameter.
bFast: How to send the command:

Value Description
TRUE Binary
FALSE ASCII

Return The range of global parameters is 0 through 4095. They are optionally allocated
(using the DIM command) and are stored internally as 64-bit floating-point values.
The bFast parameter of this method determines if the parameters are to be
assigned a value using a binary (bFast=TRUE) or an ASCII (bFast=FALSE)

- 42 – Control Properties and Methods

command.

Remarks ASCII: Does not require the nCard parameter value to be meaningful, and supports
access to the full precision of the 64-bit number. However, the command will be
displayed in the terminal and is sent without knowing if the global parameter has
been dimensioned (see DIM command).
Binary: The command will not show up in the terminal and will throw an exception if
the parameter is not valid. On the down side it can only provide a 32-bit precision
number to the card, requires the user to know what card is in use, and can result in
small variations in the data as it is converted from IEEE32 format to the internal 64-
bit number.

SetParmFloat

Description Changes the value of a specific p-Parameter of type Float.

Signature SetParmFloat(long nPparm, float fValue, bool bFast)

Return Type N/A

Parameters nPparm: p-Parameter number that you want to change
fValue: Value to assign p-Parameter.
bFast: How to send the command:

Value Description
TRUE Binary
FALSE ASCII

Return On the ACR controller, parameters can have the following types: long, float, or
double. Use this method to assign a value to floats and doubles. All floats and
doubles are sent to the card as floats.
When the bFast parameter is TRUE, a binary command is sent to the card.
When the bFast parameter is FALSE, an ASCII command is sent to the card (for
example P5456=x<cr> where x is the new value).

Remarks Be careful to change only p-Parameters that are allowed to change. Modifying read-
only parameter values has undefined behavior (and generally will not do what is
intended).
Modifying p-Parameters that are 64-bit (e.g. the user defined variables) using the
binary command (bFast=TRUE) results in a less than exact translation of the
fractional part of the number. In addition, because SetParmFloat() only allows a 32-
bit number in fValue, the bFast=FALSE setting will not be able to take advantage
of the extra precision provided in the 64-bit values.
The SetGlobal() method can be used to set global p-Parameters and it has a
double as input (which will be used if bFast=FALSE).

ComACRsrvr User’s Guide for ACR Series Products - 43 -

SetParmLong

Description Changes the value of a specific p-Parameter of type Long.

Signature SetParmLong(long nPparm, float fValue, bool bFast)

Return Type N/A

Parameters nPparm: p-Parameter number that is to be changed
fValue: Value to assign p-Parameter.
bFast: How to send the command:

Value Description
TRUE Binary
FALSE ASCII

Return On the ACR controller, parameters can have the following types: long, float, or
double. Use this method to assign a value to longs.
When the bFast parameter is TRUE, a binary command is sent to the card.
When the bFast parameter is FALSE, an ASCII command is sent to the card (for
example P5456=x<cr> where x is the new value)

Remarks Be careful to change only p-Parameters that are allowed to change. Modifying read
only parameter values has undefined behavior (and generally will not do what is
intended).
Do not use this method to set a parameter defined as floating point even if it is going
to contain a whole number. The floating point values undergo special processing
when sent using the binary syntax, and the result will not be what is expected,

Stop

Description Stops commanded motion with or without using the DEC and JRK values for the
profile specified in nMoveProfile.

Signature Stop(bool bDecel)

Return Type N/A

Parameters bDecel: How to stop motion:

Value Description
TRUE Stop all Moves
FALSE Kill all Moves

Return When the bDecel parameter is TRUE, a Stop All Moves flag is set using the binary
command.
When the bDecel parameter is FALSE, a Kill All Moves flag is set using binary.
Stop All Moves
Possible Bitsvalues for nMoveProfile 0-15::

Master Flags: BIT523, BIT555, BIT587, BIT619, BIT651, BIT683, BIT715,
BIT747, BIT7435, BIT7467, BIT7499, BIT7531, BIT7563, BIT7595, BIT7627,
BIT7659.

Kill All Moves
Possible valuesBits for nMoveProfile 0-15:

Master Flags: BIT522, BIT554, BIT586, BIT618, BIT650, BIT682, BIT714,
BIT746, BIT7434, BIT7466, BIT7498, BIT7530, BIT7562, BIT7594, BIT7626,
BIT7658.

Remarks The Stop All Moves or the Kill All Moves Request flag stops commanded motion at
the Master level. It is equivalent to calling SetFlag(BITx, TRUE), where x=a Stop All
Moves or Kill All Moves flag number.
Stop All Moves: Uses the existing DEC and JRK values.
Kill All Moves: Ignores the existing DEC and JRK values. .

- 44 – Control Properties and Methods

After using Stop(), you must manually clear the Kill All Moves flag before any new
move can be made. This is the case for either value of bDecel, the Stop All Moves
flag self clears and sets the Kill All Moves flag.

Note: To stop "axis" based moves like JOG, CAM, and GEAR requires knowledge of
which axis is moving. The Communication Server does not maintain that information.
Therefore, the Stop method is only able to stop motion for at the Master level. There
are specific bit flags for stopping JOG, CAM, and GEAR, which can be set using
SetFlag().
Another option available to kill commanded motion and/or JOG, CAM, and GEAR on the
ACR9000, is to use SetFlag(KAMR flag, TRUE, TRUE) with the KAMR flag
associated with any axis attached to the master profile. The Kill All Motion Request
(KAMR) flag (Axis0-15: BIT8467 – BIT8947) stops all motion, without regard to
deceleration, on all axis connected to the common master profile of the axis this
command is issued for. This flag must be cleared on all axes it is set on before any
motion can be commanded (or anything else done.) The Kill All Moves flag (Axis0-7:
BIT522 - BIT746, Axis8-15: BIT7434 - BIT7658) for the profile will also be set, and
must be cleared prior to doing motion.

GetMoveCounter

Description Retrieve the index of the currently executing move in a set of moves sent down
using MoveBatch().

Signature GetMoveCounter(long nCounter, long nIncrement)

Return Type N/A

Parameters nCounter: The index value of the move currently active on the controller.
nIncrement: The step used to increment the nCounter.

Return The nCounter and nIncrement are both updated after calling this method.

Remarks The move counter this method gets is only implemented on some ACR products,
using some communication mediums. If it is not supported, it will always return zero
for both values.
On the bus-based products, this is an interrupt-driven mechanism to track the
number of binary moves started on the controller (and not to be confused with the
move counter registers present for each of the motion masters in the system
parameter map and referenced in the nMoveCounter property). The interrupt
functionality is used to take this communication "out of band". You can use this in
high-performance applications to rapidly and accurately track the number of binary
moves held in queue by the card.
There are two reasons to track this information. First, to enable the application to
feed more moves into the controller in time to keep the internal move buffer from
running dry. This is essential when running huge blended motion profiles. Second,
to enable the controlling application to know the exact execution point in the series
of moves, for recovery after a program interruption.

ComACRsrvr User’s Guide for ACR Series Products - 45 -

SetMoveCounter

Description Changes the intial value of the move counter.

Signature SetMoveCounter(long nCounter, long nIncrement)

Return Type N/A

Parameters nCounter: The index value of the move currently active on the controller.
nIncrement: The step used to increment the nCounter.

Return N/A

Remarks This is generally used to initialize the move counter by populating both parameters
with zero.
See GetMoveCounter() for information of the functionality of the move counter.

SetAcrMemory

Description Changes the value of a specific memory address on the ACR controller.

Signature SetAcrMemory(long nType, long nAddress, SAFEARRAY values)

Return Type N/A

Parameters nType: The data type of the values being read:

Transport Types
Value Description
0 Long
1 Float(64)
2 Float(32)

nAddress: The starting physical memory address on the ACR product.
values: The data to be placed in memory starting at the address.

Return N/A

Remarks Any number of values can be placed into the ACR memory, but they must be all of
the same type.

SetAcrMemoryMask

Description Changes the value of a specific memory address on the ACR controller.

Signature SetAcrMemoryMask(long nAddress, long nNAND, long nOR)

Return Type N/A

Parameters nAddress: The starting physical memory address on the ACR product. This
address must point to a variable of type long for the mask to
properly work.

nNAND: Used to clear bits.
nOR: Used to set bits.

Return N/A

Remarks The two bit masks are combined with the value at the address to result in a new bit
image for the data. The address must point to a long integer storage area. The
nNAND mask is used to clear bits, and the nOR mask is used to set bits. The data is
modified as follows:
data = (data AND NOT nNAND) OR nOR

- 46 – Control Properties and Methods

SetParmLongMask

Description Changes the value of a specific parameter on the ACR controller.

Signature SetParmLongMask(long nPparm, long nNAND, long nOR)

Return Type N/A

Parameters nPparm: The parameter on the ACR product. This address must point to a
variable of type long for the mask to properly work.

nNAND: Used to clear bits.
nOR: Used to set bits.

Return N/A

Remarks The two bit masks are combined with the value at the p-Parameter to result in a new
bit image for the data. The p-Parameter must be a long integer storage area. The
nNAND mask is used to clear bits and the nOR mask is used to set bits. The data is
modified as follows:
data = (data AND NOT nNAND) OR nOR

SetFOV

Description Changes the value of the Feedrate Override for the specified axes.

Signature SetFOV(long nMask, float fValue)

Return Type N/A

Parameters nMask: Specifies which axes to use for the FOV.
fValue: Set FOV of all specified axes to this value.

Return N/A

Remarks Causes an immediate setting of Feedrate Override for any or all axes specified in
the nMask. The command is not queued and the FOV occurs when the command is
first seen by the board.

SetROV

Description Changes the value of the Rapid Feedrate Override for the specified axes.

Signature SetROV(long nMask, float fValue)

Return Type N/A

Parameters nMask: Specifies which axes to use for the ROV.
fValue: Set ROV of all specified axes to this value.

Return N/A

Remarks Causes an immediate setting of rapid Feedrate Override for any or all axes specified
in the nMask. The command is not queued and the ROV occurs when the command
is first seen by the board.

ComACRsrvr User’s Guide for ACR Series Products - 47 -

MoveBatch

Description Sends a set of fully defined moves for batch processing to the ACR Controller.

Signature MoveBatch(long nType, SAFEARRAY moves)

Return Type N/A

Parameters nType: The data type of the values being read:

Transport Types
Value Description
0 Long
1 Float(64)
2 Float(32)

moves: All data required to complete any number of moves.

Return N/A

Remarks This method allows any number of moves of a specific type (long or float) to be
batched and sent to the controller. This move method is completely separate from
the Move() and Arc() move methods. All data used in MoveBatch is contained in
the moves array, and multiple moves can be commanded in a single call.

InitPerformance

Description Initializes the performance counters for the ISA card to zero.

Signature InitPerformance()

Return Type N/A

Parameters N/A

Return N/A

Remarks See GetPerformance()

- 48 – Control Properties and Methods

GetPerformance

Description Get the performance counters for the ISA card.

Signature GetPerformance()

Return Type SAFEARRAY

Parameters N/A

Return Returned array contains 38 longs that match up to the following C structure:
unsigned long pNumMovesArrived,
unsigned long pNumMovesStarted,
unsigned long pNumStatusFastSent,
unsigned long pNumStatusSent,
 unsigned long pNumStatusBack,
unsigned long pNumTimesWriteServiceCalled,
unsigned long pNumTimesReadServiceCalled,
unsigned long pNumTimesBinServiceCalled,
unsigned long pNumTimesStatusServiceCalled,
unsigned long pNumBytesTransfWriteService,
unsigned long pNumBytesTransfReadService,
unsigned long pNumBytesTransfBinService,
unsigned long pNumBytesWriteStatusService,
unsigned long pNumBytesReadStatusService,
unsigned long pNumTimesWriteCalled,
unsigned long pNumTimesReadCalled,
unsigned long pNumBytesTransfWrite,
unsigned long pNumBytesTransfRead,
unsigned long pNumTimesBinaryWriteCalled,
unsigned long pNumTimesBinaryReadCalled,
unsigned long pNumBytesTransfBinaryWrite,
unsigned long pNumBytesTransfBinaryRead,
__int64 pTimeSpentWriteService,
__int64 pTimeSpentReadService,
__int64 pTimeSpentBinService,
__int64 pTimeSpentStatusService,
__int64 pTimeSpentRead,
__int64 pTimeSpentWrite,
__int64 pTimeSpentBinaryRead,
__int64 pTimeSpentBinaryWrite,

Remarks This method returns data pertinent only to the ACR ISA bus card controller. The
data is returned in an array of longs that matches up to a preexisting C++ data
structure of longs, shown in the Return section. Note that the final 8 values are 64
bit longs—they take up two longs in the returned array and must be recreated as 64-
bit values.

ComACRsrvr User’s Guide for ACR Series Products - 49 -

Error Messages
Internally, the Communications Server uses the error codes found in the table below
when it encounters problems. These error values are returned as part of a Microsoft
COM exception. See the code samples for examples of properly handling such
exceptions.

Note: When an error occurs, the communications server throws a COM exception
with an HRESULT. The standard for an error HRESULT sets its most
significant bit (S in the Bit Layout) to 1, the Facility value to FACILITY_ITF (4)
and the Code value to the error number in the table. The COM exception
also includes the IErrorInfo Interface. This Interface consists of a Description
property that contains free form text that includes the error number in decimal
form, the error message text and internal communications server reference.
When coding to handle specific errors, use the HRESULT; however, to
display an error, it is easier to use IErrorInfo.

Figure 1 Bit Layout of the HRESULT

Error Code Error Message

17000 Unknown Error Intercepted.

17001 The value requested is not present in Resource file.

17002 The PPU must be a number greater than zero.

17003 The valid range for the encoder resolution multiplier is between -4 and 4.

17004 The minimum value for a stream is 256.

17005 The value is out of range.

17006 The file prefix number must be positive.

17007 The data collected failed to pass final validation.

17008 The file name is not valid.

17009 Cannot open file, check that directory exists and you have the correct
permissions access the file.

17010 The expected Map Index within the file was not found.

17011 The space reserved for storing loop information has become full.

17012 The line positioning information for the loop is not present.

17013 Problem trying to calculate value, Right Parentheses expected.

17014 Problem trying to calculate value, Function is not defined.

17015 Problem trying to calculate value, expected a primary expression.

17016 Problem trying to calculate value, trying to divide by zero.

17017 Problem trying to calculate value, an unrecognized character is being used.

17018 There is insufficient space to store the generated PLC programs. As much as
possible has been stored.

17049 Some precondition for transferring the file has not been met.

17050 The Port is already connected. Only call the Open() method once per object or

- 50 – Error Messages

Error Code Error Message
after a Close().

17051 The serial port number must be between 1 and 36.

17052 The maximum number of concurrently opened ports has been reached.

17053 There is a problem allocating memory for the port connection.

17054 Problem accessing port. Check that no other application is using the port and
that the port settings are valid.

17055 Unable to create the read thread for the port.

17056 To perform read or write operations on the port, it must first be open.

17057 The Settings for the port are incorrect.

17058 The change to the BPS rate encountered some problem. BPS rate is
unchanged.

17059 No file name provided. To transfer a file a file name must be provided.

17060 The File Transfer method requested is not provided at this time.

17061 Only one file transfer per port at one time. Please wait until the current file
transfer has completed and retry.

17062 Unable to create the file transfer thread.

17063 Unable to create the mutex for the read thread.

17064 The file name provided could not be read.

17065 Unable to create or set the file transfer event for the port.

17066 The function has terminated because it encountered too many errors.

17067 The write function has timed out. Check that communications are working, or
reduce the amount of data being written.

17068 The program is unable to process incoming data fast enough and is losing it.
Make sure external device is using flow control.

17069 The communications flow control could not be changed due to some error.

17070 Unable to set the specified flow control characters.

17071 Unable to resize the Transmit or Receive buffers.

17072 The data provided to populate the object state failed in some way. The data
appears to be corrupt.

17073 The expected return value for the transfer was not found.

17074 Unable to create the status thread.

17075 Unable to create or set the status event.

17076 The key provided to collect status is invalid or improperly formed.

17077 There is no status information available for the specified message key.

17078 Unable to create the mutex for the status.

17079 The specified device type or index is invalid.

17080 Problem communicating with controller. Check the port settings are valid and
that the controller is powered up and connected.

17081 There was a problem reported while trying to wake up the device. The device
may not be responding.

17082 The transfer was canceled by the user.

17083 The communication attempt has timed out because it did not get the expected
response.

17084 One of the p-Parameters provided in the status request is unknown or poorly

ComACRsrvr User’s Guide for ACR Series Products - 51 -

Error Code Error Message
formed.

17085 The provided hex data string representation contains characters that are not
valid hex numbers.

17086 The data provided in the array did not match the expected conditions or is not
there at all.

17087 The socket type provided is not currently supported by the software.

17088 The Application Window cannot be found. The application may not be running.

17089 Old version of file found and read. New items and features added since this file
was created will be set at their defaults.

17090 The destination device on the Network is not reachable at this time.

17091 There was a time out trying to communicate with the device on the Network.

17092 Some failure caused the echo request to fail.

17093 This version of the Ping Request requires the icmp.dll file be present on the
computer. It was not found.

17094 The Host name or IP address cannot be resolved to a know host device. Check
that IP or Host name is correct.

17095 The transfer was canceled at the other end of the connection.

17096 Failed to Create the desired Thread.

17097 Unable to Start the desired Thread.

17098 Unable to Create the desired Thread Event.

17200 Foreign Error Source

17201 Standard Library Exception

17202 Windows Socket Architecture Library Exception

	Change Summary
	Change Summary
	Communications Server
	ACR Legacy Support
	Shared Properties and Methods
	STATUS Properties and Methods
	UTILITY Properties and Methods
	TERMINAL Properties and Methods
	CONTROL Properties/Methods
	Error Messages

