Operating instructions Compax3 I30T11

Positioning via Ethernet Powerlink

192-120115 N3 C3I30T11

November 2007

Windows NT®, Windows 2000™, Windows XP™, Windows Vista are trademarks of Microsoft Corporation.

Nonwarranty clause

We checked the contents of this publication for compliance with the associated hard and software. We can, however, not exclude discrepancies and do therefore not accept any liability for the exact compliance. The information in this publication is regularly checked, necessary corrections will be part of the subsequent publications.

Production site:

Parker Hannifin GmbH & Co. KG Electromechanical Automation Europe [EME] Robert-Bosch-Strasse 22 77656 Offenburg (Germany)

Tel.: + 49 (0781) 509-0 Fax: + 49 (0781) 509-98176

Internet: www.parker-automation.com http://www.parker-automation.com E-mail: sales.automation@parker.com mailto:sales.automation@parker.com

Parker Hannifin GmbH & Co. KG - registered office: Bielefeld - Amtsgericht: Bielefeld HRA 14808
Personally liable shareholder: Parker Hannifin Management GmbH - Amtsgericht: Bielefeld HRB 35489
executive board: Dr. Gerd Scheffel, Günter Schrank, Christian Stein, Kees Veraart, Hans Wolfs - Chairman of the board: Hansgeorg
Greuner

Headquarters:

England:

Parker Hannifin plc
Electromechanical Automation
Arena Business Centre
Holy Rood Close

Poole, Dorset BH17 7FJ UK Tel.: +44 (0)1202 606300 Fax: +44 (0)1202 606301

E-mail:

sales.automation@parker.com mailto:sales.automation@parker.com Internet:

www.parker-automation.com http://www.parker-automation.com

USA:

Parker Hannifin Corporation Electromechanical Automation 5500 Business Park Drive Rohnert Park, CA 94928 Phone #: (800) 358-9068 FAX #: (707) 584-3715

E-mail:

CMR_help@parker.com mailto:emn_support@parker.com Internet:

www.compumotor.com http://www.compumotor.com

Worldwide sales

 $http://www.parker.com/euro_emd/EME/Contact_sites/Sales\%20Channel_Parker-EME.pdf$

Contents

	Intro	duction	10			
	1.1	Device assignment 10				
	1.2	Type specification plate	11			
	1.3	Packaging, transport, storage	12			
	1.4	Safety Instructions	13 13			
	1.5	Warranty conditions	15			
	1.6	Conditions of utilization 1.6.1. Conditions of utilization for CE-conform operation	16 19 20 21			
2.	Com	pax3 Xxxx I30T11 Introduction	22			
3.	Com	Compax3 device description2				
	3.1	Meaning of the status LEDs - Compax3 axis controller				
	3.2 Meaning of the status LEDs - Compax3MP (mains module)					
	3.3					
	3.3	Connections of Compax3S	25			
	3.3	Connections of Compax3S	25 25			
	3.3	Connections of Compax3S	25 25 26			
	3.3	Connections of Compax3S	25 25 26 28			
	3.3	Connections of Compax3S	25 25 26 28 29			
	3.3	Connections of Compax3S	25 25 26 28 29			
	3.3	Connections of Compax3S	25 25 26 28 29 30			
	3.3	Connections of Compax3S 3.3.1. Compax3S connectors 3.3.2. Connector and pin assignment C3S 3.3.3. Control voltage 24VDC / enable connector X4 C3S 3.3.4. Motor / Motor brake (C3S connector X3) 3.3.5. C3Sxxx V2 3.3.5.1 Main voltage supply C3S connector X1 3.3.5.2 Braking resistor / high voltage DC C3S connector X2	25 25 26 28 29 30 30			
	3.3	Connections of Compax3S 3.3.1. Compax3S connectors 3.3.2. Connector and pin assignment C3S 3.3.3. Control voltage 24VDC / enable connector X4 C3S 3.3.4. Motor / Motor brake (C3S connector X3) 3.3.5. C3Sxxx V2 3.3.5.1 Main voltage supply C3S connector X1 3.3.5.2 Braking resistor / high voltage DC C3S connector X2	25 25 26 28 29 30 30 31			
	3.3	Connections of Compax3S 3.3.1. Compax3S connectors 3.3.2. Connector and pin assignment C3S 3.3.3. Control voltage 24VDC / enable connector X4 C3S 3.3.4. Motor / Motor brake (C3S connector X3) 3.3.5. C3Sxxx V2 3.3.5.1 Main voltage supply C3S connector X1 3.3.5.2 Braking resistor / high voltage DC C3S connector X2 3.3.6.1 Power supply connector X1 for 3AC 400VAC/480VAC-C3S devices 3.3.6.2 Braking resistor / high voltage supply connector X2 for 3AC	25 25 26 28 29 30 30 31 33			
	3.3	Connections of Compax3S 3.3.1. Compax3S connectors 3.3.2. Connector and pin assignment C3S 3.3.3. Control voltage 24VDC / enable connector X4 C3S 3.3.4. Motor / Motor brake (C3S connector X3) 3.3.5. C3Sxxx V2 3.3.5.1 Main voltage supply C3S connector X1 3.3.5.2 Braking resistor / high voltage DC C3S connector X2 3.3.6. C3Sxxx V4 3.3.6.1 Power supply connector X1 for 3AC 400VAC/480VAC-C3S devices	25 25 26 28 30 30 31 33 33			
	3.3	Connections of Compax3S 3.3.1. Compax3S connectors 3.3.2. Connector and pin assignment C3S 3.3.3. Control voltage 24VDC / enable connector X4 C3S 3.3.4. Motor / Motor brake (C3S connector X3) 3.3.5. C3Sxxx V2 3.3.5.1 Main voltage supply C3S connector X1 3.3.5.2 Braking resistor / high voltage DC C3S connector X2 3.3.6. C3Sxxx V4 3.3.6.1 Power supply connector X1 for 3AC 400VAC/480VAC-C3S devices 3.3.6.2 Braking resistor / high voltage supply connector X2 for 3AC 400VAC/480VAC_C3S devices	25 25 26 28 30 30 31 33 33 33 33			
		Connections of Compax3S 3.3.1. Compax3S connectors 3.3.2. Connector and pin assignment C3S 3.3.3. Control voltage 24VDC / enable connector X4 C3S 3.3.4. Motor / Motor brake (C3S connector X3) 3.3.5. C3Sxxx V2 3.3.5.1 Main voltage supply C3S connector X1 3.3.5.2 Braking resistor / high voltage DC C3S connector X2 3.3.6. C3Sxxx V4 3.3.6.1 Power supply connector X1 for 3AC 400VAC/480VAC-C3S devices 3.3.6.2 Braking resistor / high voltage supply connector X2 for 3AC 400VAC/480VAC_C3S devices 3.3.6.3 Connection of the power voltage of 2 C3S 3AC devices.	25 25 26 28 30 30 31 33 33 33 35 36			
		Connections of Compax3S 3.3.1. Compax3S connectors	25 25 26 28 30 30 31 33 33 34 35 36			
		Connections of Compax3S 3.3.1. Compax3S connectors 3.3.2. Connector and pin assignment C3S 3.3.3. Control voltage 24VDC / enable connector X4 C3S 3.3.4. Motor / Motor brake (C3S connector X3) 3.3.5. C3Sxxx V2 3.3.5.1 Main voltage supply C3S connector X1 3.3.5.2 Braking resistor / high voltage DC C3S connector X2 3.3.6. C3Sxxx V4 3.3.6.1 Power supply connector X1 for 3AC 400VAC/480VAC-C3S devices 3.3.6.2 Braking resistor / high voltage supply connector X2 for 3AC 400VAC/480VAC_C3S devices 3.3.6.3 Connection of the power voltage of 2 C3S 3AC devices Compax3MP/Compax3M connections 3.4.1. Front connector	25 25 26 28 30 30 31 33 33 34 35 36 36 36 37			
		Connections of Compax3S 3.3.1. Compax3S connectors 3.3.2. Connector and pin assignment C3S 3.3.3. Control voltage 24VDC / enable connector X4 C3S 3.3.4. Motor / Motor brake (C3S connector X3) 3.3.5. C3Sxxx V2 3.3.5.1 Main voltage supply C3S connector X1 3.3.5.2 Braking resistor / high voltage DC C3S connector X2 3.3.6.1 Power supply connector X1 for 3AC 400VAC/480VAC-C3S devices 3.3.6.2 Braking resistor / high voltage supply connector X2 for 3AC 400VAC/480VAC_C3S devices 3.3.6.3 Connection of the power voltage of 2 C3S 3AC devices Compax3MP/Compax3M connections 3.4.1. Front connector 3.4.2. Connections on the device bottom	25 25 26 28 30 30 31 33 33 34 35 36 36 36 37 38			

	3.4.6.	Mains supply Compax3MP (mains module)	41		
	3.4.7.	Braking resistor / temperature switch Compax3MP (mains module) 3.4.7.1 Temperature switch Compax3MP (mains module)			
	3.4.8.	Motor / motor brake Compax3M (axis controller)	43		
		3.4.8.1 Measurement of the motor temperature of Compax3M (axis controller)	44		
3.5	Conn	postions of Compay3H	45		
3.3		nections of Compax3H			
	3.5.1.	Compax3H plugs/connections			
	3.5.2.	Terminal clamps – max. line cross section C3H			
	3.5.3.	Plug and pin assignment C3H			
	3.5.4.	Motor / Motor brake C3H			
	3.5.5.	Control voltage 24 VDC C3H			
	3.5.6.	Mains connection Compax3H			
	3.5.7.	5			
		3.5.7.1 Connect braking resistor C3H			
		3.5.7.2 Power supply voltage DC C3H			
		3.5.7.3 Connection of the power voltage of 2 C3H 3AC devices	54		
3.6	Com	munication interfaces	. 55		
	3.6.1.	RS232 / RS485 interface (plug X10)	55		
	3.6.2.	Communikation Compax3M			
		3.6.2.1 PC - Compax3MP (mains module)			
		3.6.2.2 Communication in the axis combination (connector X30, X31)			
		3.6.2.3 Adjusting the basic address	57		
		3.6.2.4 Setting the axis function	57		
	3.6.3.	Ethernet Powerlink X23, X24 (Option I30)	58		
		3.6.3.1 Adjusting the bus address			
		3.6.3.2 Meaning of the Bus LEDs (Ethernet Powerlink)	59		
3.7	Signa	al interfaces	. 60		
_	3.7.1.				
	3.7.2.	Analog / Encoder (plug X11)			
	017121	3.7.2.1 Wiring of analog interfaces			
		3.7.2.2 Connections of the encoder interface			
	3.7.3.	Digital inputs/outputs (plug X12)	62		
		3.7.3.1 Connection of the digital Outputs/Inputs			
3.8	Incta	llation and dimensions Compax3	61		
3.0	3.8.1.	•			
		Installation and dimensions of Compax3 S0xx V2			
	3.8.2.	Monting and dimensions Compax3S100V2 and S0xxV4			
	3.8.3.	Monting and dimensions Compax3S150V2 and S150V4			
	3.8.4.	Mounting and dimensions Compax3S300V4			
	3.8.5.	Mounting and dimensions C3MP/C3M			
	3.8.6.	Mounting and dimensions C3H			
		3.8.6.1 Mounting distances, air currents Compax3H050V4			
		3.8.6.2 Mounting distances, air currents Compax3H090V4			
		3.8.6.3 Mounting distances, air currents Compax3H1xxV4	/ 1		
3.9	Safet	y function – safe standstill – Compax3S	. 72		
	3.9.1.	Safe standstill with Compax3 principle	72		
	3.9.2.	Devices with the "Safe Standstill" safety function	73		
	3.9.3.	Safety instructions for the "safe standstill" function	74		
	3.9.4.	Application example for "safe standstill"			

			3.9.4.1	Safe standstill with bus option	75
4.	Setti	ng up	Compa	ax3	8′
	4.1		_		
	4.1		_		
		4.1.1.		mmissioning of a Compax3 axis	
		4.1.2.		on of the supply voltage used	
		4.1.3.	Motor S	election	83
		4.1.4.		e motor reference point and switching frequency of the urrent	8/1
		4.1.5.		Resistor	
		_	_	Drive	
		4.1.6.			
		4.1.7.		g the reference system	
				Measure reference	
				Machine Zero	
				Travel Limit Settings	
				Change initiator logic	
		4.1.8.	_	g jerk / ramps	
		4.1.0.	•	Speed for positioning	
				Acceleration for positioning and velocity control	
				Acceleration / deceleration for positioning	
				Jerk limit for positioning	
			4.1.8.5	Ramp upon error and de-energize	115
			4.1.8.6	Jerk for STOP, JOG and error	116
		4.1.9.	Limit ar	nd Monitoring Settings	116
			4.1.9.1	Current (Torque) Limit	116
			4.1.9.2	Positioning window - Position reached	117
			4.1.9.3	Following error limit	118
			4.1.9.4	Maximum operating speed	118
		4.1.10.	Encode	r Simulation	119
				Encoder bypass with Feedback module F12 (for direct drives)	
				ignment	
		4.1.12.	Position	n mode in reset operation	121
			4.1.12.1	Examples in the help file	121
		4.1.13.	_	ated positioning / defining ignore zone	
		4.1.14.		to set table	
			4.1.14.1	Programmable status bits (PSBs)	123
		4.1.15.		functions	
				MoveAbs and MoveRel	
				Reg-related positioning (RegSearch, RegMove)	
				Electronic gearbox (Gearing)	
				Speed specification (Velocity)	
				Stop command (Stop)	
		4.1.16.		sponse	
		4.1.17.	_	iration name / comments	
		4.1.18.	Dynami	c positioning	134
	4.2	Confi	_	ne signal Source	
		4.2.1.		signal source for Gearing	
				Signal source HEDA	
				Encoder A/B 5V, step/direction or SSI feedback as signal source	
				+/-10V analog speed setpoint value as signal source	
		4.2.2.	Load co	ontrol	139

4.2.2.1 Configuration of load control	otor
feedback too high	
4.2.2.3 Load control signal image	142
4.3 Optimization	144
4.3.1. Optimization window	145
4.3.2. Scope	146
4.3.2.1 Monitor information	147
4.3.2.2 User interface	• • • • • • • • • • • • • • • • • • • •
4.3.2.3 Example: Setting the Oscilloscope	
4.3.3. Controller optimization	
4.3.3.1 Introduction	
4.3.3.2 Configuration	
4.3.3.3 Automatic controller design	
·	
4.3.5. Input simulation	
4.3.5.1 Calling up the input simulation	
4.3.6. Setup mode	
4.3.6.1 Motion objects in Compax3	
4.3.6.2 Commissioning the load control	
4.3.7. Load identification	
4.3.7.1 Principle	
4.3.7.2 Boundary conditions	
4.3.7.3 Process of the automatic determination of the load chara	acteristic
value (load identification)	
4.3.7.4 Tips	
4.3.8. Alignment of the analog inputs	
4.3.8.1 Offset alignment	
4.3.8.2 Gain alignment	
4.3.9. C3 ServoSignalAnalyzer	
4.3.9.1 ServoSignalAnalyzer – function range4.3.9.2 Signal analysis overview	
4.3.9.3 Installation enable of the ServoSignalAnalyzer	
4.3.9.4 Analyses in the time range	
4.3.9.5 Measurement of frequency spectra	
4.3.9.6 Measurement of frequency responses	
4.3.9.7 Overview of the user interface	248
4.3.9.8 Basics of frequency response measurement	
4.3.9.9 Examples are available as a movie in the help file	
4.3.10. ProfileViewer for the optimization of the motion profile	
4.3.10.1 Mode 1: Time and maximum values are deduced from input values	266
4.3.10.2 Mode 2: Compax3 input values are deduced from times maximum values	
4.3.11. Turning the motor holding brake on and off	268
5. Communication	260
5. Communication	209
5.1 COM port protocol	
5.1.1. RS485 setting values	270
5.1.2. ASCII - record	270
5.1.3. Binary record	271

	5.2	Remote diagnosis via Modem	275
		5.2.1. Structure	275
		5.2.2. Configuration of local modem 1	276
		5.2.3. Configuration of remote modem 2	277
		5.2.4. Recommendations for preparing the modem operation	278
	5 0	Ethamat Dawariah	070
	5.3	Ethernet Powerlink	
		5.3.1. Ethernet Powerlink - Operating mode	
		5.3.1.1 CN (Controlled Node) in the Velocity Mode - velocity control5.3.1.2 CN (Controlled Node) in the Position Mode - direct positioning	
		5.3.1.3 CN (Controlled Node) with set selection	
		5.3.1.4 Error reaction to a bus failure	
		5.3.2. CN Controlled Node (Slave)	
		5.3.3. Status machine	
		5.3.4. Controlword /Statusword	
		5.3.4.1 Control word 1 (Controlword 1)	
		5.3.4.2 Statusword 1 (Statusword)	
		5.3.4.3 Interpolated Position Mode	
		5.3.5. Acyclic parameter channel	
		5.3.5.1 Service Data Objects (SDO)	
		5.3.5.2 Object up-/download via Ethernet Powerlink	297
		5.3.5.3 Ethernet Powerlink Objects	298
		5.3.6. Ethernet Powerlink - Communication profile	310
6.	Statu	ıs values	311
	6.1	D/A-Monitor	311
	6.2	Status values	311
	0.2		•
7.	Erro	T	242
1.	EIIO	l	312
	7.1	Error list	312
			•
0	Ordo	er code	212
Ο.	Orde	er code	
	8.1	Order code device: Compax3	314
	0.0	•	
	8.2	Order code for mains module: Compax3MP	315
	8.3	Accessories order code	315
9.	Com	pax3 Accessories	319
-	0 0 1 1 1		
	9.1	Parker servo motors	320
		9.1.1. Direct drives	
		9.1.1.1 Feedback systems for direct drives	
		9.1.1.2 Linear motors	
		9.1.1.3 Torque motors	
		9.1.2. Rotary servo motors	321
	9.2	EMC measures	322
		9.2.1. Mains filter	_

		9.2.1.1	Mains filter NFI01/01	322
		9.2.1.2	Mains filter NFI01/02	
		9.2.1.3	Mains filter for NFI01/03	323
		9.2.1.4	Mains filter NFI02/0x	
		9.2.1.5	Mains filter NFI03/01	
		9.2.1.6	Mains filter NFI03/02	325
	9.2.2.	Motor	output filter	
		9.2.2.1	Motor output filter MDR01/04	
		9.2.2.2	Motor output filter MDR01/01	
		9.2.2.3	Motor output filter MDR01/02	
		9.2.2.4	Wiring of the motor output filter	
	9.2.3.	Mains	filter	327
9.3	Conn	ections	to the motor	328
	9.3.1.	Resolv	/er cable	329
	9.3.2.	SinCos	s© cable	330
	9.3.3.	EnDat	cable	331
	9.3.4.	Overvi	ew of motor cables	331
	9.3.5.		cable with plug	
	9.3.6.		cable for terminal box	
	0.0.0.	9.3.6.1	Connection of terminal box MH145 & MH205	
	9.3.7.		er cable	
0.4				
9.4	Exter 9.4.1.		king resistorsssible braking resistorsssible braking pulse powers of the braking resistors	
	9.4.1.	9.4.1.1	Calculation of the BRM cooling time	
		9.4.1.2	Permissible braking pulse power: BRM08/01 with C3S015V4 /	
		· · · · · · ·	C3S038V4	340
		9.4.1.3	Permissible braking pulse power: BRM08/01 with C3S025V2	
		9.4.1.4	Permissible braking pulse power: BRM09/01 with C3S100V2	341
		9.4.1.5	Permissible braking pulse power: BRM10/01 with C3S150V4	
		9.4.1.6	Permissible braking pulse power: BRM05/01 with C3S063V2	
		9.4.1.7	Permissible braking pulse power: BRM05/01 with C3S075V4	
		9.4.1.8	Permissible braking pulse power: BRM05/02 with C3S075V4	
		9.4.1.9	Permissible braking pulse power: BRM04/01 with C3S150V2	
			Permissible braking pulse power: BRM04/01 with C3S300V4	
			Permissible braking pulse power: BRM04/02 with C3S150V2 Permissible braking pulse power: BRM04/02 with C3S300V4	
			Permissible braking pulse power: BRM04/03 with C3S300V4	
			Permissible braking pulse power: BRM11/01 with C3H0xxV4	
			Permissible braking pulse power: BRM12/01 with C3H1xxV4	
			Permissible braking pulse power: BRM13/01 with C3MP10D6	
			Permissible braking pulse power: BRM14/01 with C3MP10D6	
	9.4.2.	Dimen	sions of the braking resistors	347
		9.4.2.1	BRM8/01braking resistors	
		9.4.2.2	BRM5/01 braking resistor	347
		9.4.2.3	Braking resistor BRM5/02, BRM9/01 & BRM10/01	
		9.4.2.4	Braking resistor BRM4/0x	
		9.4.2.5	Braking resistor BRM11/01 & BRM12/01	
		9.4.2.6	Braking resistor BRM13/01 & BRM14/01	
9.5	Conn	ection s	set for Compax3S	350
9.6	Conn	ection s	set for Compax3MP/Compax3M	352
9.7	Opera	ator con	ntrol module BDM	353

9.8 EAM06: Terminal block for inputs and output	uts 353
9.9 Interface cable	356
9.9.1. RS232 cable	356
9.9.2. RS485 cable to Pop	357
9.9.3. I/O interface X12 / X22	358
9.9.4. Ref X11	359
9.9.5. Encoder coupling of 2 Compax3 axes	360
9.9.6. Modem cable SSK31	361
9.10 Options M1x	362
9.10.1. Input/output option M12	
9.10.1.1 Assignment of the X22 connector	362
9.10.2. HEDA (motion bus) - Option M11	364
9.10.3. Option M10 = HEDA (M11) & I/Os (M12)	
10. Technical data	366
11. Index	381

1. Introduction

10
11
12
13
15
16

1.1 Device assignment

This manual applies to the following devices:

- ◆Compax3S025V2 + supplement
- ◆Compax3S063V2 + supplement
- ◆Compax3S100V2 + supplement
- ◆ Compax3S150V2 + supplement
- ◆Compax3S015V4 + supplement
- ◆ Compax3S038V4 + supplement
- ◆Compax3S075V4 + supplement
- ◆Compax3S150V4 + supplement
- ◆Compax3S300V4 + supplement
- ◆Compax3H050V4 + supplement
- ◆Compax3H090V4 + supplement
- ◆Compax3H125V4 + supplement
- ◆Compax3H155V4 + supplement
- ◆ Compax3M050D6 + supplement
- ◆ Compax3M100D6 + supplement
- ◆ Compax3M150D6 + supplement
- ◆Compax3MP10D6

With the supplement:

- ◆F10 (Resolver)
- ♦F11 (SinCos®)
- ◆F12 (linear and rotary direct drives)
- ♦ I30 T11

1.2 Type specification plate

You will find the exact description of the device on the type specification plate, which can be found on the device:

Compax3 - Type specification plate:

Explanation:

Exp	lanation:
1	Type designation
	The complete order designation of the device (2, 5, 6, 9, 8).
2	C3: Abbreviation for Compax3
	S025: Single axis device, nominal device current in 100mA (025=2.5A)
	M050: Multi-axis device, nominal device current in 100mA (050=5A)
	H050: High power device, nominal device current in 1A (050=50A)
	MP10: Mains module 3AC230480V, nominal power in 1kW (10=10kW)
	D6: Nominal supply voltage (6=560VDC)
	V2: Mains supply voltage (2=230VAC/240VAC, 4=400VAC/480VAC)
3	Unique number of the particular device
4	Nominal supply voltage: 1AC = single phase, 3AC = three phase / input current
5	Designation of the feedback system
	F10: Resolver
	F11: SinCos© / Single- or Multiturn
	F12:Feedback module for direct drives
6	Device interface
	I10: Analog, step/direction and encoder input
	I11 / I12: Digital Inputs / Outputs and RS232 / RS485
	I20: Profibus DP
	I21: CANopen
	I22: DeviceNet
	I30: Ethernet Powerlink
	C10:integrated controller C3 powerPLmC
	C13:integrated controller C3 powerPLmC with Profibus
7	Date of factory test
8	Options
	Mxx:I/O extension, HEDA
	Sx: optional safety technology on the C3M
9	Technology function
	T10: Servo controller
	T11: Positioning
	T30: Motion control programmable according to IEC61131-3
	T40: Electronic cam generation
10	CE compliance
11	Certified safety technology
12	UL certification

1.3 Packaging, transport, storage

Packaging material and transport

Caution!

The packaging material is inflammable, if it is disposed of improperly by burning, lethal fumes may develop.

The packaging material must be kept and reused in the case of a return shipment. Improper or faulty packaging may lead to transport damages. Make sure to transport the drive always in a safe manner and with the aid of suitable lifting equipment (**Weight** (see page 376, see page 366)). Do never use

the electric connections for lifting. Before the transport, a clean, level surface should be prepared to place the device on. The electric connections may not be damaged when placing the device.

First device checkup

- Check the device for signs of transport damages.
- ◆ Verify, if the indications on the **Type identification plate** (see page 11) correspond to your requirements.
- ◆ Check if the consingment is complete.

Storage

If you do not wish to mount and install the device immediately, make sure to store it in a dry and clean **environment** (see page 377). Make sure that the device is not stored near strong heat sources and that no metal chippings can get into the device.

Disposal

This product contains materials that fall under the special disposal regulation from 1996, which corresponds to the EC directory 91/689/EEC for dangerous disposal material. We recommend to dispose of the respective materials in accordance with the respectively valid environmental laws. The following table states the materials suitable for recycling and the materials which have to be disposed of separately.

Material	suitable for recycling	Disposal
Metal	yes	no
Plastic materials	yes	no
Circuit boards	no	yes

Please dispose of the circuit boards according to one of the following methods:

- ◆ Burning at high temperatures (at least 1200°C) in an incineration plant licensed in accordance part A or B of the environmental protection act.
- Disposal via a technical waste dump which is allowed to take on electrolytic aluminium condensers. Do under no circumstances dump the circuit boards at a place near a normal waste dump.

1.4 Safety Instructions

In this chapter you can read about:	
General hazards	13
Safety-conscious working	13
Special safety instructions	

1.4.1. General hazards

General Hazards on Non-Compliance with the Safety Instructions
The device described in this manual is designed in accordance with the latest
technology and is safe in operation. Nevertheless, the device can entail certain
hazards if used improperly or for purposes other than those explicitly intended.
Electronic, moving and rotating components can

- ◆ constitute a hazard for body and life of the user, and
- ◆ cause material damage

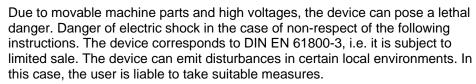
Usage in accordance with intended purpose

The device is designed for operation in electric power drive systems (VDE0160). Motion sequences can be automated with this device. Several motion sequences can be combined by interconnecting several of these devices. Mutual interlocking functions must be incorporated for this purpose.

1.4.2. Safety-conscious working

This device may be operated only by qualified personnel.

Qualified personnel in the sense of these operating instructions consists of:


- ◆Persons who, by virtue to their training, experience and instruction, and their knowledge of pertinent norms, specifications, accident prevention regulations and operational relationships, have been authorized by the officer responsible for the safety of the system to perform the required task and in the process are capable of recognizing potential hazards and avoiding them (definition of technical personnel according to VDE105 or IEC364),
- Persons who have a knowledge of first-aid techniques and the local emergency rescue services.
- Persons who have read and will observe the safety instructions.
- ◆ Those who have read and observe the manual or help (or the sections pertinent to the work to be carried out).

This applies to all work relating to setting up, commissioning, configuring, programming, modifying the conditions of utilization and operating modes, and to maintenance work.

This manual and the help information must be available close to the device during the performance of all tasks.

1.4.3. Special safety instructions

- ◆ Check the correct association of the device and its documentation.
- ◆ Never detach electrical connections while voltage is applied to them.
- Safety devices must be provided to prevent human contact with moving or rotating parts.
- ◆ Make sure that the device is operated only when it is in perfect condition.
- ◆ Implement and activate the stipulated safety functions and devices.
- ◆ Operate the device only with the housing closed.
- ◆ Make sure that all axes are sufficiently fixed.
- Attention during configuration downloads with master slave couplings (electronic gear, cam)
 - Deactivate the drive before starting the configuration download: Master and Slave axis
- ◆ Check that all live terminals are secured against contact. Fatal voltage levels of to 850V occur.
- ◆ Do not bypass power direct current

- ◆ The drive motor must be grounded with a suitable protective lead.
- ◆ The devices are equipped with high voltage DC condensers. Before removing the protective cover, the discharging time must be awaited. After switching off the energy, it may take up to 5 minutes to discharge the capacitors. Danger of electric shock in case of non respect.
- ◆ Before you can work on the device, the supply voltage must be switched off at the L1, L2 and L3 clamps. Wait at least 3 minutes so that the power direct current may sink to a secure value (<50V). Check with the aid of a voltmeter, if the voltage at the DC+ and DC- clamps has fallen to a value below 50V (not possible on the Compax3M).
- ◆ Do never perform resistance tests with elevated voltages (over 690V) on the wiring without separating the circuit to be tested from the drive.
- ◆ In the event of a device exchange it is absolutely necessary to transfer the configuration determining the correct operation of the drive to the device, before the device is put into operation.
- ◆ The device contains electrostatically sensitive components. Please heed the electrostatic protection measures while working at/with the device as well as during installation and maintenance.

Attention hot surface!

The heat dissipator can reach very high temperatures (>70°C)

Protective covers

The user is responsible for protective covers and/or additional safety measures in order to prevent damages to persons and electric accidents.

1.5 Warranty conditions

- ◆The device must not be opened.
- Do not make any modifications to the device, except for those described in the manual.
- Make connections to the inputs, outputs and interfaces only in the manner described in the manual.
- ◆ Fix the devices according to our **mounting instructions.** (see page 64) We cannot provide any guarantee for any other mounting methods.

Note on exchange of options

Compax3 options must be exchanged in the factory to ensure hardware and software compatibility.

- When installing the device, make sure the heat dissipators of the device receive sufficient air and respect the recommended mounting distances of the devices with integrated ventilator fans in order to ensure free circulation of the cooling air.
- Make sure that the mounting plate is not exposed to external temperature influences.

1.6 Conditions of utilization

In this chapter you can read about:	
Conditions of utilization for CE-conform operation	.16
Conditions of utilization for UL certification Compax3S	
Current on the mains PE (leakage current)	.20
Supply networks	.21

1.6.1. Conditions of utilization for CE-conform operation

- Industry and trade -

The EC guidelines for electromagnetic compatibility 2006/95/EC and for electrical operating devices for utilization within certain voltage limits 2004/108/EC are fulfilled when the following boundary conditions are observed:

Operation of the devices only in the condition in which they were delivered, i.e. with all housing panels.

In order to ensure contact protection, all mating plugs must be present on the device connections even if they are not wired.

Mains filter:

A mains filter is required in the mains input line if the motor cable exceeds a certain length. Filtering can be provided centrally at the plant mains input or separately at the mains input to each device or with C3M for each axis combination.

<u>Devices in a commercial and residential area (limit values of Class C2 in accordance with EN 61800-3)</u>

The following mains filters are available for independent utilization:

Device: Compax3	Order No.:	Condition:
S0xxV2	NFI01/01	Only for motor lines > 10m
S1xxV2,	NFI01/02	Only for motor lines > 10m
S0xxV4, S150V4		
S300V4	NFI01/03	independent of the length of the
		motor cable (always required)
Device: Compax3	Order No.:	Condition:
H050V4	NFI02/01	Only for motor lines > 10m
H090V4	NFI02/02	Only for motor lines > 10m
H1xxV4	NFI02/03	Only for motor lines > 10m

Industrial area (limit values class C3 in accordance with EN 61800-3)

Longer motor cable lengths are possible in industrial areas.

<u>Devices in the industrial area (limit values class C3 in accordance with EN 61800-3)</u>

The following mains filters are available for independent utilization:

Device: Compax3	Order No.:	Condition:
MP10	NFI03/01	Reference axis combination 6x10m
MP10	NFI03/02	Reference axis combination 6x50m

Connection length: Connection between mains filter and device:

unshielded: < 0.5m

shielded: < 5m (fully shielded on ground – e.g. ground of control cabinet)

Parker EME Introduction

Motor and Feedback cable:

Operation of the devices only with motor and feedback cables whose plugs contain a special full surface area screening.

Requirements for Compax3S motor cable

<100 m (the cable must not be rolled up!)

A motor output filter (see page 326) is required for motor cables >20m:

- ◆MDR01/04 (max. 6.3A rated motor current)
- ◆MDR01/01 (max. 16A rated motor current)
- ♦ MDR01/02 (max. 30A rated motor current)

Requirements for Compax3H motor cable Requirements for

Compax3M motor

cable

A motor output filter is required for motor cables >50m. Please contact us.

<80m per axis (the cable must not be rolled up!

The entire length of the motor cable per axis combination may not exceed 300m.

A motor output filter (see page 326) is required for motor cables >20m:

- ◆MDR01/04 (max. 6.3A rated motor current)
- ◆MDR01/01 (max. 16A rated motor current)
- ◆MDR01/02 (max. 30A rated motor current)

Shielding connection of the motor cable

The cable should be fully screened and connected to the Compax3 housing. We offer a special Shield connecting terminal as accessory item (ZBH,/...).

The shield of the cable must also be connected with the motor housing. The fixing (via plug or screw in the terminal box) depends on the motor type.

Requirements for

encoder cable Compax3:

Requirements for

encoder cable Compax3M:

Requirements for other cables

<100m

<80m

Corresponding to the specifications of the terminal clamp with a temperature range of up to 60°C.

Motors: Operation with standard motors.

Control: Use only with aligned controller (to avoid control loop oscillation).

Grounding: Connect the filter housing and the Compax3 to the cabinet frame, making sure that

the contact area is adequate and that the connection has low resistance and low

inductance.

Never mount the filter housing and the device on paint-coated surfaces!

Cable installation: Signal lines and power lines should be installed as far apart as possible.

Signal leads should never pass close to excessive sources of interference (motors,

transformers, contactors etc.).

Accessories: Make sure to use only the accessories recommended by Parker

Connect all cable shields at both ends, ensuring large contact areas!

Warning:

This is a product in the restricted sales distribution class according to EN 61800-3. In a domestic area this product can cause radio frequency disturbance, in which case the user may be required to implement appropriate remedial measures.

Parker EME Introduction

1.6.2. Conditions of utilization for UL certification Compax3S

UL certifiction for Compax3S

conform to UL:	◆according to UL508C
Certified	◆E-File_No.: E235 342

The UL certification is documented by a "UL" logo on the device (type specification plate).

"UL" logo

Conditions of utilization

- ◆The devices are only to be installed in a degree of contamination 2 environment (maximum).
- ◆ The devices must be appropriately protected (e.g. by a switching cabinet).
- ◆The X2 terminals are not suitable for field wiring.
- ◆ Tightening torque of the field wiring terminals (green Phoenix plugs)

 ◆C3S0xxV2
 0.57 - 0.79Nm
 5 - 7Lb.in

 ◆C3S1xxV2, C3S0xxV4, C3S150V4
 0.57 - 0.79Nm
 5 - 7Lb.in

 ◆C3S300V4
 1.25 - 1.7Nm
 11 - 15Lb.in

◆Temperature rating of field installed conductors shall be at least 60°C Use copper lines only

Please use the cables described in the **accessories chapter** (see page 313, see page 315), they do have a temperature rating of at least 60°C.

- ◆ Maximum ambient temperature: 45°C.
- ◆ Suitable for use on a circuit capable of delivering not more than 5000 rms symmetrical amperes and 480 volts maximum.

ATTENTION

Danger of electric shock.

Discharge time of the bus capacitator is 5 minutes.

- ◆The drive provides internal motor overload protection.

 This must be set so that 200% of the motor nominal current are not exceeded.
- ◆ Cable cross-sections
 - ◆ Mains input: corresponding to the recommended fuses.
 - ◆ Motor cable: (see page 332) corresponding to the nominal output currents (see page 367)
 - ◆ Maximum cross-section limited by the terminals mm² / AWG

 ◆C3S0xxV2
 2.5mm²
 AWG 12

 ◆C3S1xxV2, C3S0xxV4, C3S150V4
 4.0mm²
 AWG 10

 ◆C3S300V4
 6.0mm²
 AWG 7

◆ Fuses

In addition to the main fuse, the devices must be equipped with a S 201 K or S 203 K fuse made by ABB.

- ◆C3S025V2: ABB, nominal 480V 10A, 6kA
- ◆C3S063V2: ABB, nominal 480V, 16A, 6kA
- ◆C3S100V2: ABB, nominal 480V, 16A, 6kA
- ◆C3S150V2: ABB, nominal 480V, 20A, 6kA
- ◆C3S015V4: ABB, nominal 480V, 6A, 6kA
- ◆C3S038V4: ABB, nominal 480V, 10A, 6kA
- ◆C3S075V4: ABB, nominal 480V, 16A, 6kA
- ♦ C3S150V4: ABB, nominal 480V, 20A, 6kA
- ◆C3S300V4: ABB, nominal 480V, 25A, 6kA

1.6.3. Current on the mains PE (leakage current)

This product can cause a direct current in the protective lead. If a residual current device (RCD) is used for protection in the event of direct or indirect contact, only a type B (all current sensitive) RCD is permitted on the current supply side of this product . On the other hand a different protective measure must be taken, such as for example separation from the environment by double or enforced insulation or separation from the supply network by a transformer.

Please heed the connection instructions of the RCD supplier.

Mains filters do have high leakage currents due to their internal capacity. An internal mains filter is usually integrated into the Compax3 servo controllers. Additional leakage currents are caused by the capacities of the motor cable and of the motor windings. Due to the high clock frequency of the power output stage, the leakage currents do have high-frequency components. Please check if the FI protection switch is suitable for the individual application.

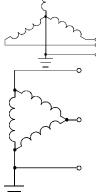
If an external mains filter is used, an additional leakage current will be produced. The figure of the leakage current depends on the following factors:

- ◆ Length and properties of the motor cable
- Switching frequency
- ◆Operation with or without external mains filter
- ◆ Motor cable with or without shield network
- Motor housing grounding (how and where)

Remark:

- ◆ The leakage current is important with respect to the handling and usage safety of the device.
- ◆ A pulsing leakage current occurs if the supply voltage is switched on.

Please note:


The device must be operated with effective grounding connection, which must comply with the local regulations for high leakage currents (>3.5mA). Due to the high leakage currents it is not adviseable to operate the servo controller with an earth leakage circuit breaker.

1.6.4. Supply networks

The Compax3 servo controller series is designed for fixed connection to TN networks (TN-C, TN-C-S or TN-S). Please note that the line-earth voltage may not exceed 300VAC.

◆When grounding the neutral conductor, mains voltages of up to 480VAC are permitted.

 When grounding an external conductor (delta mains, two-phase mains), mains voltages (external conductor voltages) of up to 300VAC are permitted.

Servo controllers which are to be connected to an IT network must be provided with a separating transformer. Then the Compax3 device is operated locally like in a TN network. The secondary sided center of the separating transformer must be grounded and connected to the PE connector of the Compax3.

2. Compax3 Xxxx I30T11 Introduction

Due to its high functionality, the Positioning version of Compax3 forms an ideal basis for many applications in high-performance motion automation. Up to 31 motion profiles with the motion functions:

- ◆ Absolute or relative positioning,
- ◆ electronic gearing
- register-related positioning,
- ◆ speed control,
- ◆ Stop Set

can be created with the help of the PC software.

Via different operating modes:

- ◆ Speed Control
- Direct positioning
- Positioning with set selection

the motion functions can be triggered via the bus.

A number of different transfer telegrams, which can be conveniently adjusted with the Compax3 ServoManager), can be used to adjust cyclic bus communication to the requirements of specific applications.

Compax3 control technology

High-performance control technology and openness for various sender systems are fundamental requirements for a fast and high-quality automation of movement.

Model / standards / auxiliary material

The structure and size of the device are of considerable importance. High-quality electronics are a fundamental requirement for the particularly small and compact form of the Compax3 devices. All connectors are located on the front of the Compax3S.

Partly ingegrated mains filters permit connection of motor cables up to a certain length without requiring additional measures. EMC compatibility is within the limits set by EN 61800-3, Class A. The Compax3 is CE-conform.

The intuitive user interface familiar from many applications, together with the oscilloscope function, wizards and online help, simplifies making and modifying settings via the PC.

The optional **Operator control module (BDM01/01** (see page 353)) for Compax3S makes it possible to exchange devices quickly without requiring a PC.

Configuration

Configuration is made on a PC using the Compax3 ServoManager. **General proceeding** (see page 83)

Ethernet Powerlink - characteristics

Profile	◆ Motion Control CiADS402	
Baud rate	◆100MBits (FastEthernet)	
EDS file	◆C3_EPL_cn.EDS	
Service data object	◆SDO	
Cycle time	◆<200μs, up to 240 nodes	
Synchronicity precision of the SYNC telegram	◆maximum jitter: +/-25μs	
telegram	◆Typical cycle times: >= 1ms	
Typical cycle times	♦>= 1ms	
Deviations from the Device Profile DSP402	◆ For the velocity mode profile the setpoint acceleration is also applicable when braking.	
	◆Only one rotation speed is possible for machine zero run start (objects 0x6099.1 and .2 are the same).	

3. Compax3 device description

In this chapter you can read about:	
Meaning of the status LEDs - Compax3 axis controller	24
Meaning of the status LEDs - Compax3MP (mains module)	24
Connections of Compax3S	25
Compax3MP/Compax3M connections	36
Connections of Compax3H	45
Communication interfaces	55
Signal interfaces	
Installation and dimensions Compax3	64
Safety function – safe standstill – Compax3S	

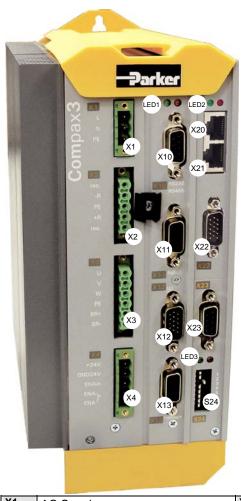
3.1 Meaning of the status LEDs - Compax3 axis controller

Device status LEDs	Right LED (red)	Left LED (green)
Voltages missing	off	off
During the booting sequence	alternately flashing	
- No configuration present.	Flashes slowly	off
- SinCos [©] feedback not detected.		
- Compax3 IEC61131-3 program not compatible with		
Compax3 Firmware.		
- no Compax3 IEC61131-3 program		
- For F12: Hall signals invalid.		
Axis without current excitation	off	Flashes slowly
Power supplied to axis; commutation calibration running	off	Flashes quickly
Axis with current excitation	off	on
Axis in fault status / fault present / axis energized (error reaction 1)	Flashes quickly	on
Axis in fault status / fault present / axis deenergized (error reaction 2)	on	off
Compax3 faulty: Please contact us.	on	on

Note on Compax3H:

The **internal** device status LEDs are only connected to the **external** housing LEDs, if the RS232 jumper at X10 is fitted to the control and the upper dummy cover is fitted.

3.2 Meaning of the status LEDs - Compax3MP (mains module)


C3MP10 Status LEDs	Left LED (green)	Right LED (red)
Control voltage 24 VDC iss missing	off	off
Error of mains module*	off	on
DC power voltage is built up	-	Flashes quickly
Phase failure / mains power supply undervoltage	on	Flashes slowly
Address assignment CPU active	Flashes quickly	-
Address assignment CPU completed	Flashes slowly	-
C3MPxx Ready - State	on	off

^{*}can be read out in each axis controller

3.3 Connections of Compax3S

In this chapter you can read about:	
Compax3S connectors	25
Connector and pin assignment C3S	
Control voltage 24VDC / enable connector X4 C3S	28
Motor / Motor brake (C3S connector X3)	
C3Sxxx V2	30
C3Sxxx V4	33

3.3.1. Compax3S connectors

X1	AC Supply	X20	HEDA in (Option)	
X2	Ballast / DC power voltage	X21	HEDA out (Option)	
Х3	Motor / Brake	X22	Inputs Outputs (Option M10/12)	
X4	24VDC / Enable	X23	Bus (Option) connector type depends on the bu system!	
X10	RS232/RS485	S24	bus settings	
X11	Analog/Encoder	LED1	Device status LEDs	
X12	Inputs/Outputs	LED2	HEDA LEDs	
X13	Motor position feedback	LED3	Bus LEDs	

Always switch devices off before wiring them!

Dangerous voltages are still present until 5 minutes after switching off the power supply!

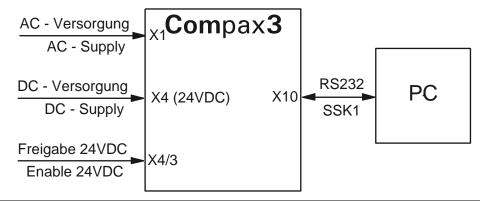
Caution!

When the control voltage is missing there is no indication whether or not high voltage supply is available.

PE connection

The PE connection is made with 10mm² via a grounding screw at the bottom of the device.

Attention hot surface!


The heat dissipator can reach very high temperatures (>70°C)

Line cross sections of the line connections X1, X2, X3

Compax3 device:	Cross-section: Minimum Maximum[mm²]
S025V2, S063V2	0,25 2.5 (AWG: 24 12)
S100V2, S150V2	0,25 4 (AWG: 24 10)
S015V4, S038V4, S075V4, S150V4	
S300V4	0,5 6 (AWG: 20 7)

3.3.2. Connector and pin assignment C3S

Overview:

Further information on the assignment of the plug mounted at the particular device can be found below!

Compax3 1AC RS485 +5V X10/1 X20/1 RS485 +5V X10/1 X10/1 EnableRS232 0V Power supply RxD X10/2 X20/2 X10/2 X10/2 Rx/ RxD res. **X1** X20/3 TxD/ X10/3 TxD_RxD/ X10/3 X10/3 vierdrahi zweidrah X1/2 res. X10/4 res. X10/4 X10/4 _ N DTR M11(M10=+I/Os X20/5 GND X10/5 GND X10/5 X1/3 X10/5 PF **GND** 0 X20/6 RS485 RS485 RS232 res. X10/6 X10/6 X10/6 Lx/ DSR res. X20/7 TxD X10/7 X10/7 X10/7 res. X20: TxD RxD/ X20/8 RxD/ X10/8 res. X10/8 Compax3 3AC X10/8 X10: X 10 10 CTS Power supply +5V X10/9 +5V X10/9 X10/9 option +5V X21/1 X1/1 **X**1 X21/2 X1/2 Tx/ X11/1 L2 Output +24V X21/3 **HEDA-motionbus** X1/3 X11/2 X21/4 Ain1 X1/4 X11/3 PΕ D/A-channel1 X21/5 X11/4 HEDA D/A-channel0 X21/6 Lx/ X11/5 X21/7 +5V res. X11/6 2 X21/8 res. X11: Analog/Encode Ballast resistor (1AC) X11/7 X11/8 X23/1 X2/1 Tx+ В X11/9 X23/2 X2/2 Ain0+ X11/10 X23/3 X2/3 Ain1+ 0 PE X23/4 X11/11 X2/4 Ain0-0 +R Etherne X23/5 X11/12 <u>30</u> X2/5 res. B/ - res 0 Powerlink Interface X23/6 X11/13 Rx-N/ X23/7 X11/14 res. X23/8 Ballast resistor (3AC) X11/15 res. GND X2/1 X2 X24/1 0 X12/1 X22/1 X2/2 Output+24V X24/2 0 -R Tx-X12/2 X22/2 M12(M10=+HEDA) X2/3 00/10 Output 0 X24/3 PE 0 Ethernet Rx+ X22/3 X2/4 O1/I1 Output 1 X24/4 res. 0 Inputs/Outputs X22/4 X12/4 02/12 X24/5 X2/5 Output 2 -HV res. 0 Ether X22/5 X12/5 X24/6 O3/I3 Output 3 X12/6 X22/6 04/14 Input 0 X24/7 X12/7 X24 X22/7 X24/8 O5/I5 Input 1 option res. X22/8 X12/8 Motor/Brake 06/16 Input 2 Digital X22/9 X23/1 07/17 Input 3 res. Х3 X3/1 X22/10 X12/10 X23/2 O8/I8 Input 4 res. Input/Output 2 X3/2 X12 X22/11 X12/11 X23/3 Input24VDC Input+24V Data line-B Profibus X3/3 X12/12 X22/12 X23/4 · w Input 5 RTS O9/I9 X3/4 X22/13 X12/13 X23/5 PE GND O10/I10 Input 6 X3/5 X22/14 X12/14 X23/6 0 +5V O11/I11 Input 7 or (MN-INI) X23: X3/6 X23/7 Br-X22/15 X12/15 res InputGND GND24V X23/8 Data line-A X23/9 res X13/1 X13/1 X13/1 res. Sense- -X13/2 X13/2 X23/1 X13/2 Sense+ res. res. 24VDC Control voltage/ X13/3 X13/3 X13/3 X23/2 GND GND CAN_L Hall1 Enable 2 X13/4 X23/3 X13/4 X13/4 DirectDrive REF+Resolver **GNDfb** Vcc(+5V) Vcc(+8V) CANopen Ť X4/1 X23/4 X13/5 X13/5 +24V Input X13/5 +5V +5V res. +5V SinCos X4/2 X23/5 X13/6 X13/6 X13/6 SHIELD CLKfbk Hall2 CLKfbk X4/3 F10 X23/6 X13/7 X13/7 X13/7 SIN-SIN-Sin-/A-83 X4/4 X23/7 X13/8 X13/8 X13/8 Feedback CAN H Enable_out_a SIN+ SIN+ 0 Sin+/A+ Resolver X4/5 X23/8 X13/9 X13/9 X13/9 CLKfbk/ res. Enable_out_b Hall3 CLKfbk/ X23/9 X13/10 X13/10 X13/10 Tmot Tmot res 22 X13/11 X13/11 X13/11 COS-COS-/B-COS-X13: X23/1 -VDC DeviceNet X13/12 X13/12 COS+ X13/12 X23/2 COS+/B+ -COS+ CAN L X13/13 X13/13 X13/13 X23/3 N+ -DATAfbk Shield X13/14 X13/14 X13/14 X23/4 N-DATAfbk/ CAN_H X13/15 X13/15 X13/15 ä +VDC X23/5

In detail: The fitting of the different plugs depends on the extension level of Compax3. In part, the assignment depends on the Compax3 option implemented.

The jumper drawn in at X4 (at the left side in red) is used to enable the device for testing purposes. During operation, the enable input is in most cases swtiched externally.

REF-Resolver

GND(Vcc) -

GND(Vcc) -

3.3.3. Control voltage 24VDC / enable connector X4 C3S

PIN	Description	
1	+24V (supply)	
2	Gnd24 V	
3	Enable_in	
4	Enable_out_a	
5	Enable_out_b	

Line cross sections: minimum: 0.25mm² maximum: 2.5mm² (AWG: 24 ... 12)

Control voltage 24VDC Compax3S and Compax3H

Controller type	Compax3
Voltage range	21 - 27VDC
Mains module	with switch-on current limitation, due to capacitive load
Fuse	MTP miniature circuit breaker or "delayed action fuse", due to capacitive load
Current drain of the device	0.8A
Total current drain	0.8 A + Total load of the digital outputs + current for the motor holding brake
Ripple	0.5Vpp
Requirement according to safe extra low voltage (SELV)	yes
Short-circuit proof	conditional (internally protected with 3.15AT)

Hardware - enable (input X4/3 = 24VDC)

This input is used as safety interrupt for the power output stage.

Tolerance range: $18.0V - 33.6V / 720\Omega$

Safe standstill (X4/3=0V)

For implementation of the "Safe standstill" safety feature in accordance with the "protection against unexpected start-up" described in EN1037. Observe instructions in the corresponding **section** (see page 72) with the circuitry examples!

The energy supply to the drive is reliably shut off, the motor has no torque. A relay contact is located between X4/4 and X4/5 (normally closed contact)

Enable_out_a - Enable_out_b	Power output stage is
Contact opened	activated
Contact closed	disabled

Series connection of these contacts permits certain determination of whether all drives are de-energized.

Relay contact data:

Switching voltage (AC/DC): 100mV -60V

Switching current: 10mA - 0.3A Switching power: 1mW...7W

3.3.4. Motor / Motor brake (C3S connector X3)

PIN	Design	nation	
1	U (mot	U (motor)	
2	V (motor)		
3	W (motor)		
4	PE (motor)		
5	BR+	Motor holding brake *	
6	BR-	Motor holding brake *	

* Please note that Compax3 will report error "open circuit at holding brake" (5481h / 2163d) if the current is < 150mA.

If needs be, use a parallel resistor of 1500hm for relay control!

Requirements for motor cable

<100 m (the cable must not be rolled up!)

A motor output filter (see page 326) is required for motor cables >20m:

Shielding connection of the motor cable

The cable should be fully screened and connected to the Compax3 housing. We offer a special Shield connecting terminal as accessory item (ZBH./...). The shield of the cable must also be connected with the motor housing. The fixing (via plug or screw in the terminal box) depends on the motor type.

Motor holding brake!

Connect the brake only on motors which have a holding brake! Otherwise make no brake connections at all.

Requirements cables for motor holding brake

If a motor holding brake is present, **a cable** of the motor holding brake must be fed on the device side through the toroidal core ferrite provided as accessory ZBH0x/xx (63Ω @1MHz, di=5.1mm), in order to ensure error-free switching on and off of the motor holding brake.

Motor holding brake output

Motor holding brake output	Compax3
Voltage range	21 – 27VDC
Maximum output current (short circuit proof)	1.6A
Minimum output current	150 mA

Motor cable (see page 332)

3.3.5. C3Sxxx V2

In this chapter you can read about:	
Main voltage supply C3S connector X1	30
Braking resistor / high voltage DC C3S connector X2	31

3.3.5.1 Main voltage supply C3S connector X1

In this chapter you can read about:	
Power supply plug X1 for 1 AC 230VAC/240VAC devices	.30
Power supply plug X1 for 3AC 230VAC/240VAC devices	.31

Device protection

By cyclically switching on and off the power voltage, the input current limitation can be overloaded, which will cause a device error.

Therefore please wait at least 2 minutes after switching off before you switch the device on again!

Power supply plug X1 for 1 AC 230VAC/240VAC devices

PIN	Designation
1	
2	N
3	PE

Mains connection Compax3S0xxV2 1AC


Controller type	S025V2	S063V2
Supply voltage	Single phase 230VAC/240VAC	
	80-253 VAC/50-60Hz	
Input current	6Aeff	13Aeff
Maximum fuse rating per device (=short circuit rating)	10 A (circuit breaker K)	16 A (circuit breaker K)

Always switch devices off before wiring them!

Dangerous voltages are still present until 5 minutes after switching off the power supply!

Power supply plug X1 for 3AC 230VAC/240VAC devices

PIN	Designation
1	L1
2	L2
3	L3
4	PE

Mains connection Compax3S1xxV2 3AC

Controller type	S100V2	S150V2
Supply voltage	Three phase 3* 230VAC/240VAC	
	80-253 VAC/50-60Hz	
Input current	10Aeff	13Aeff
Maximum fuse rating per device (=short circuit rating)	16 A (circuit breaker K)	20 A (circuit breaker K)

Caution!

The 3AC V2 – devices must only be operated with three phases!

Always switch devices off before wiring them!

Dangerous voltages are still present until 5 minutes after switching off the power supply!

3.3.5.2 Braking resistor / high voltage DC C3S connector X2

In this chapter you can read about:

Braking resistor / high voltage supply plug X2 for 1AC 230VAC/240VAC devices	31
Braking resistor / high voltage supply plug X2 for 3AC 230VAC/240VAC devices	32
Connection of a braking resistor	

The energy generated during braking operation is absorbed by the Compax3 storage capacity.

If this capacity is too small, the braking energy must be drained via a braking resistor.

Braking resistor / high voltage supply plug X2 for 1AC 230VAC/240VAC devices

PIN	Designation
1	Reserved
2	- braking resistor (not short-circuit protected!)
3	PE
4	+ braking resistor (not short-circuit protected!)
5	Reserved

Braking operation Compax3S0xxV2 1AC

Controller type	S025V2	S063V2
Capacitance / storable energy	560μF / 15Ws	1120μF / 30Ws
Minimum braking- resistance	100Ω	56Ω
Recommended nominal power rating	20 60W	60 180W
Maximum continuous current	8A	15A

Caution!

The power voltage DC of two Compax3 1AC V2 devices (230VAC/240VAC devices) must not be connected.

Braking resistor / high voltage supply plug X2 for 3AC 230VAC/240VAC devices

PIN	Description		
1	+ Braking resistor no short-circuit		
2	- Braking resistor	protection!	
3	PE		
4	+ DC high voltage supply		
5	- DC high voltage supply		

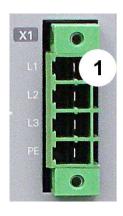
Braking operation Compax3S1xxV2 3AC

Controller type	S100V2	S150V2
Capacitance / storable energy	780μF / 21Ws	1170μF / 31Ws
Minimum braking- resistance	22Ω	15Ω
Recommended nominal power rating	60 450W	60 600W
Maximum continuous current	20A	20A

Connection of a braking resistor

Mimimum line cross section: 1.5mm²
Maximum line length: 2m
Maximum output voltage: 800VDC

3.3.6. C3Sxxx V4


In this chapter you can read about:	
Power supply connector X1 for 3AC 400VAC/480VAC-C3S devices	.33
Braking resistor / high voltage supply connector X2 for 3AC 400VAC/480VAC_C3S devices	.34
Connection of the power voltage of 2 C3S 3AC devices	.35

3.3.6.1 Power supply connector X1 for 3AC 400VAC/480VAC-C3S devices

Device protection

By cyclically switching on and off the power voltage, the input current limitation can be overloaded, which will cause a device error.

Therefore please wait at least 2 minutes after switching off before you switch the device on again!

PIN	Designation
1	L1
2	L2
3	L3
4	PE

Mains connection Compax3SxxxV4 3AC

Controller type	S015V4	S038V4	S075V4	S150V4	S300V4
Supply voltage	Three phase 3*400VAC/480VAC				
	80-528VAC	/ 50-60Hz			
Input current	3Aeff	6Aeff	10Aeff	16Aeff	22Aeff
Maximum fuse rating per	6A	10A	16A	20A	25A
device(=short circuit rating)	MT	D*			
* (111 (. ,	40) 1470			00=01/

^{*} for **UL conform operation** (see page 19): MTP miniature circuit breaker S273-K.

Caution!

The 3AC V4 – devices must only be operated with three phases!

Always switch devices off before wiring them!

Dangerous voltages are still present until 5 minutes after switching off the power supply!

3.3.6.2 Braking resistor / high voltage supply connector X2 for 3AC 400VAC/480VAC_C3S devices

PIN	Description	
1	+ Braking resistor	no short-circuit protection!
2	- Braking resistor	protections
3	PE	
4	+ DC high voltage supply	,
5	- DC high voltage supply	

Braking operation Compax3SxxxV4 3AC

Controller type	S015V4	S038V4	S075V4	S150V4	S300V4
Capacitance / storable energy	235μF / 37Ws	235μF / 37Ws	470μF / 75Ws	690μF / 110Ws	1100μF / 176Ws
Minimum braking- resistance	100Ω	100Ω	56Ω	33Ω	15Ω
Recommended nominal power rating	60 100W	60 250W	60 500 W	60 1000 W	60 1000 W
Maximum continuous current	10A	10A	15A	20A	30A

Connection of a braking resistor

Mimimum line cross section: 1.5mm²
Maximum line length: 2m
Maximum output voltage: 800VDC

3.3.6.3 Connection of the power voltage of 2 C3S 3AC devices

Caution!

The power voltage DC of the single phase Compax3 servo axes must not be connected!

In order to improve the conditions during brake operation, the DC power voltage of 2 servo axes may be connected.

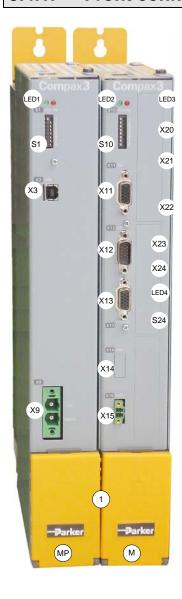
The capacity as well as the storable energy are increased; furthermore the braking energy of one servo axis may be utilized by a second servo axis, depending on the application.

It is not permitted to connect the power voltage in order to use one brake circuit for two servo axes, as this function cannot be ensured reliably.

Note the following:

Caution! In case of non-compliance with the following instructions, the device may be destroyed!

- You can only connect two similar servo axes (same power supply; same rated currents)
- ◆ Connected servo axes must always be fed separately via the AC power supply. If the external pre-fuse of one of the servo axes takes action, the second servo axis must also be disconnected automatically.


Please connect as follows:

Servo axis 1 X2/4 to servo axis 2 X2/4 Servo axis 1 X2/5 to servo axis 2 X2/5

3.4 Compax3MP/Compax3M connections

In this chapter you can read about:	
Front connector	36
Connections on the device bottom	37
Connections of the axis combination	38
Connector and pin assignment	39
Control voltage 24VDC Compax3MP (mains module)	41
Mains supply Compax3MP (mains module)	41
Braking resistor / temperature switch Compax3MP (mains module)	
Motor / motor brake Compax3M (axis controller)	

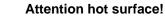
3.4.1. Front connector

MP	Power module
LED1	Status LEDs Mains module
S1	Basic address
X3	Configuraiton interface (USB)
X9	Supply voltage 24VDC
M	Axis controller
LED2	Status LEDs of the axis
S10	Function
X11	Analog/Encoder
X12	Inputs/Outputs
X13	Motor position feedback
X14	Safety technology (option)
X15	Motor temperature monitoring
LED3	HEDA LEDs
X20	HEDA in (Option)
X21	HEDA out (Option)
X22	Inputs Outputs (Option M10/12)
X23	Bus (option) connector type depends on the bus system!
X24	Bus (option) depends on the bus system!
LED4	Bus LEDs
S24	bus settings
1	Behind the yellow protective covers you can find the
	rails for the supply voltage connection.
	Supply voltage 24VDC
	DC power voltage supply

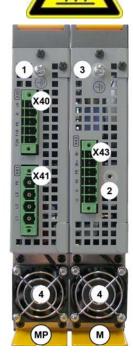
3.4.2. Connections on the device bottom

Always switch devices off before wiring them!

Dangerous voltages are still present until 5 minutes after switching off the power supply!


Caution!

When the control voltage is missing there is no indication whether or not high voltage supply is available.



PE connection

The PE connection is made with 10mm² via a grounding screw at the bottom of the device.

The heat dissipator can reach very high temperatures (>70°C)

MP	Power module
X40	Braking Resistor
X41	Mains supply VAC/PE
1	Central ground connection for the axis combination,
	with 10mm ² to the ground screw on the housing.
4	Fan*
M	Axis controller
X43	Motor / Brake
2	Fixing for motor shield clamp
4	Fan*
3	optinally, the axis controller features a ground screw
	on the housing, if the grounding is not possible via the
	back plate.

 $[\]ensuremath{^{\star}}$ is internally supplied.

Line cross-sections of the power connections (on the device bottoms)

Compax3 device:	Cross-section: Minimum Maximum[mm² with contactor	
	sleeve]	
M050, M100, M150	0,25 4 (AWG: 23 11)	
MP10	Mains supply: 0,5 6 (AWG: 20 10)	
	Braking resistor: 0,25 4 (AWG: 23 11)	

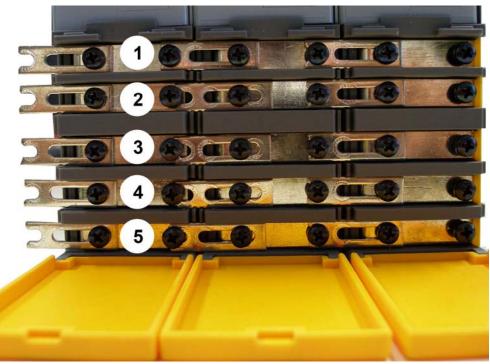
3.4.3. Connections of the axis combination

The Compax3M axis controllers are connected to the supply voltages via rails.

- ◆Supply voltage 24VDC
- ◆ DC power voltage supply

The rails can be found behind the yellow protective covers. In order to connect the rails of the devices, you may have to remove the yellow plastic device inserted at the side.

Protective covers



In order to secure the contact protection against the alive rails, it is absolutely necessary to respect the following:

Insert the yellow plastic device at the left or right of the rails.

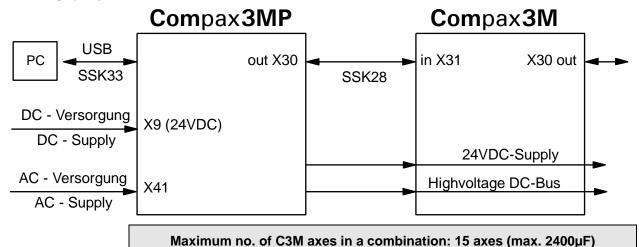
Make sure that the yellow plastic device is placed at the left of the first device and at the right of the last device in the combination and have not been removed.

Setup of the devices only with closed protective covers.

- 1 24VDC
- 2 Gnd 24 V
- 3 -HV DC 4 PE
- 5 +HV DC

Note:

External components **may not** be connected to the rail system.


Protective covers

The user is responsible for protective covers and/or additional safety measures in order to prevent damages to persons and electric accidents.

3.4.4. Connector and pin assignment

Overview:

Further information on the assignment of the plug mounted at the particular device can be found below!

Compax3MP Compax3M X31 X30 Rx X20/1 Communication Bus Communication Bus Rx/_X20/2 Lx X20/3 res. X20/4 X11/1 Output+24V res. X20/5 X11/2 Ain1-X11/3 Lx/_X20/6 D/A-channel1 -X11/4 X20/7 D/A-channel0 res. res. X20/8 X11/5 +5V X11/6 Tx X21/1 X11/7 X11: Analog/Encode Α -Tx/_X21/2 X11/8 В. Lx X21/3 X11/9 Ain0+ res. X21/4 X11/10 Programming Port X3: USB Ain1+ res. X21/5 X11/11 Ain0- -Lx/_X21/6 B/ X11/12 res. X21/7 X11/13 res. X21/8 X11/14 Ν -GND X11/15 Tx+__X23/1 Tx- X23/2 res. X22/1 Output+24V X12/1 Rx+ X23/3 O0/I0 X22/2 Output0 X12/2 res. X23/4 Ethernet O1/I1 X22/3 res. X23/5 Output1 X12/3 Output2 X12/4 O2/I2 X22/4 Rx- X23/6 O3/I3 X22/5 Output3 X12/5 res. X23/7 O4/I4 X22/6 Input0 X12/6 res. X23/8 O5/I5 X22/7 Input1 X12/7 O6/I6 X22/8 Input2_X12/8 X24/1 Tx- X24/2 Input3 X12/9 O7/I7 X22/9 Rx+ X24/3 Input4 X12/10 O8/I8 X22/10 res. X24/4 Input24VDC X22/11 Input+24V X12/11 Ethernet res. X24/5 Input5 X12/12 O9/I9 X22/12 Rx-__X24/6 O10/I10 X22/13 Input6 X12/13 res. X24/7 (22: O11/I11 X22/14 Input7 or (MN-INI) X12/14 X24/8 GND24V X12/15 res.-InputGND X22/15 X9: 24VDC-Supply res. X23/1 Sense- X13/1 res. X13/1 X9/1 +24V X13/1 res. X23/2 res. -X9/2 GND24V Sense+ X13/2 res. X13/2 res. X13/2 data line-B X23/3 Hall1 X13/3 GND X13/3 GND X13/3 RTS X23/4 Profibus Vcc(+8V) X13/4 REF+Resolver X13/4 Vcc(+5V) X13/4 GND X23/5 +5V X13/5 +5V X13/5 +5V X13/5 +5V X23/6 CLKfbk X13/6 SinCos CLKfbk X13/6 Hall2 X13/6 res. X23/7 Sin-/A- X13/7 SIN- X13/7 SIN- X13/7 data line-A res. X23/9 DC supply SIN+ X13/8 SIN+ X13/8 Sin+/A+ X13/8 CLKfbk/X13/9 CLKfbk/ X13/9 Hall3 X13/9 res. X23/1 GND24V Tmot_X13/10 Tmot __X13/10 Tmot X13/10 CAN_L X23/2 COS-X13/11 COS- X13/11 COS-/B-_X13/11 -HV Power 2 GNDfb X23/3 COS+/B+ X13/12 COS+ X13/12 X13/12 CANopen COS+res. X23/4 +HV Power DATAfbk X13/13 N+ X13/13 res. X13/13 SHIELD X23/5 res. X13/14 N- X13/14 DATAfbk/X13/14 res. X23/6 GND(Vcc) X13/15 GND(Vcc) X13/15 REF-Resolver X13/15 X23: CAN_H X23/7 res. X23/8 STO1+ X14/1 res. X23/9 X43: Motor/Brake X41: AC Power supply X40 : Ballast resistor STO2+ X14/2 122 STO- X14/3 X14: -VDC X23/1 DeviceNet CAN_L X23/2 BR+ Ы 띰 Shield X23/3 +5V X15/1 CAN_H X23/4 Sensor X15/2 +VDC X23/5

In detail: The fitting of the different plugs depends on the extension level of Compax3. In part, the assignment depends on the Compax3 option implemented.

Protective covers

The user is responsible for protective covers and/or additional safety measures in order to prevent damages to persons and electric accidents.

3.4.5. Control voltage 24VDC Compax3MP (mains module)

connector X9

PIN	Designation
1	+24 V
2	Gnd 24 V

Line cross sections: minimum: 0.5mm² with contactor sleeve maximum: 6mm² with contactor sleeve (AWG: 20 ... 10)

Control voltage 24VDC Compax3MP / Compax3M

Device type	Compax3MP / Compax3M
Voltage range	21 - 27VDC
Mains module	with switch-on current limitation, due to capacitive load
Fuse	MTP miniature circuit breaker or "delayed action fuse", due to capacitive load
Current drain of the device	C3MP10D6: 0.2A
Total current drain	C3M050D6: 0.85A C3M100D6: 0.85A C3M150D6: 0.85A + Total load of the digital outputs + current for the motor holding brake
Ripple	0.5Vpp
Requirement according to safe extra low voltage (SELV)	yes
Short-circuit proof	conditional (internally protected with 3.15AT)

3.4.6. Mains supply Compax3MP (mains module)

Device protection

By cyclically switching on and off the power voltage, the input current limitation can be overloaded, which may cause damage to the device.

Wait at least one minute between two switching on processes!

Connector X41

Pin designation
PE
L3
L2
L1

Mains connection Compax3MP10D6

Device type Compax3	MP10
Supply voltage	Rated voltage 3AC 400V
	230-480VAC ±10% / 50-60Hz
Input current	22Aeff
Maximum fuse rating per device	25A
(=short circuit rating)	MTP miniature circuit breaker (ABB) Recommendation: S203-K25

Caution!

The Compax3MP10D6 devices must only be operated with three phases!

Always switch devices off before wiring them!

Dangerous voltages are still present until 5 minutes after switching off the power supply!

3.4.7. Braking resistor / temperature switch Compax3MP (mains module)

The energy generated during braking operation must be dissipated via a braking resistor.

Connector X40

PIN	Description	
+R	+ Braking resistor	no short-circuit protection!
-R	- Braking resistor	protoction.
PE	PE	
T1R	Temperature Switch	
T2R	Temperature Switch	

Braking operation Compax3MP10D6 (mains module)

Device type Compax3	MP10
Capacitance / storable energy	550µF/ 92Ws at 400V 53Ws at 480V
Minimum braking- resistance	27Ω
Recommended nominal power rating	500 1500W
Pulse power rating for 1s	22kW
Maximum permissible continuous current	13A

Braking operation Compax3MxxxD6 (axis controller)

Device type Compax3	M050	M100	M150
Capacitance / storable energy	110µF/	220µF/	220µF/
	18Ws at 400V	37Ws at 400V	37Ws at 400V
	10Ws at 480V	21Ws at 480V	21Ws at 480V

Maximum capacity in the axis combination: 2400µF

Connection of a braking resistor on Compax3MP (mains module)

Mimimum line cross section: 1.5mm²
Maximum line length: 2m
Maximum intermediate circuit 810VDC

voltage:

Switch-on threshold: 780VDC

3.4.7.1 Temperature switch Compax3MP (mains module)

Connector X40 Pin T1R, T2R

Temperature monitoring:

The temperature switch (normally closed contact) must be connected, unless an error message will be issued.

Temperature switch/relay

No galvanic separation, the temperature sensor (normally closed contact) must comply with the safe separation according to EN 60664.

If there is no temperature monitoring due to the connected braking resistor, the T1R and T2R connections must be connected by a jumper.

Without temperature monitoring, the braking resistor might be destroyed.

3.4.8. Motor / motor brake Compax3M (axis controller)

Connector X43

PIN	Designation
BR+	Motor holding brake *
BR-	Motor holding brake *
PE	PE (motor)
W	W (motor)
V	V (motor)
U	U (motor)

^{*} Please note that Compax3 will report error "open circuit at holding brake" (5481h / 2163d) if the current is < 150mA.

Requirements for Compax3M motor cable

<80m per axis (the cable must not be rolled up!

The entire length of the motor cable per axis combination may not exceed 300m. A **motor output filter** (see page 326) is required for motor cables >20m:

- ◆MDR01/04 (max. 6.3A rated motor current)
- ◆ MDR01/01 (max. 16A rated motor current)
- ♦ MDR01/02 (max. 30A rated motor current)

Shielding connection of the motor cable

The cable should be fully screened and connected to the Compax3 housing. We offer a special Shield connecting terminal as accessory item (ZBH./...). The shield of the cable must also be connected with the motor housing. The fixing (via plug or screw in the terminal box) depends on the motor type.

Motor cables (see page 332) can be found in the accessories chapter of the device description.

Motor holding brake output

Motor holding brake output	Compax3
Voltage range	21 – 27VDC
Maximum output current (short circuit proof)	1.6A
Minimum output current	150 mA
Securing of brake Compax3M	3.15A

Motor holding brake!

Connect the brake only on motors which have a holding brake! Otherwise make no brake connections at all.

Requirements cables for motor holding brake

If a motor holding brake is present, **a cable** of the motor holding brake must be fed on the device side through the toroidal core ferrite provided as accessory ZBH0x/xx (63Ω @1MHz, di=5.1mm), in order to ensure error-free switching on and off of the motor holding brake.

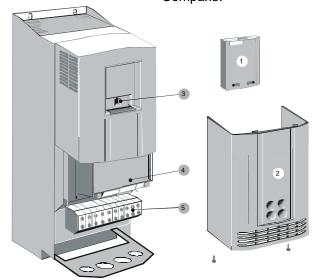
3.4.8.1 Measurement of the motor temperature of Compax3M (axis controller)

Connector X15

The acquisition of the motor temperature by the axis controller can either take place via the connection of X15 (Tmot) or via the feedback cable and the corresponding connection on X13 PIN10.

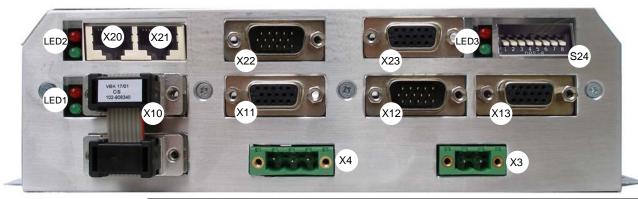
PIN	Description
1	+5V
2	Sensor

The temperature acquisition on X15 Tmot can not be connected at the same time as X13 Pin 10.


3.5 Connections of Compax3H

In this chapter you can read about:	
Compax3H plugs/connections	45
Terminal clamps – max. line cross section C3H	
Plug and pin assignment C3H	48
Motor / Motor brake C3H	
Control voltage 24 VDC C3H	51
Mains connection Compax3H	
Braking resistor / supply voltage C3H	

3.5.1. Compax3H plugs/connections


The following figure is an example for all sizes.

The fitting of the different controller plugs depends on the extension level of Compax3.

- (1): Dummy cover with display of the **external** device status LEDs.
- (2): lower clamp cover, fixed by 2 screws at the device bottom.
- (3): RS232 programming interface Connection to the PC via adapter cable SSK32/20 (furnished with the device) and standard RS232 cable SSK1.
- (4): Controlling
- (5): Power connections

Controller front plate

Х3	Motor brake	X20	HEDA in (Option)	
X4	24VDC	X21	HEDA out (Option)	
X10	RS232/RS485 with jumper to the programming interface	X22	Inputs Outputs (Option M10/12)	
X11	Analog/Encoder	X23	Bus (Option)	connector type depends on the bus system!
X12	Inputs/Outputs	S24	bus settings	
X13	Motor position feedback	LED1	Device status LEDs	
		LED2	HEDA LEDs	
		LED3	Bus LEDs	

Note on Compax3H:

The **internal** device status LEDs are only connected to the **external** housing LEDs, if the RS232 jumper at X10 is fitted to the control and the upper dummy cover is fitted.

The RS232 programming interface under the upper dummy cover is only available if the X10 jumper at the controller is fitted.

Always switch devices off before wiring them!

Dangerous voltages are still present until 5 minutes after switching off the power supply!

Caution!

If the control voltage is missing and if the X10-X10 jumper is not fitted (VBK17/01) on the control part, the availability of power voltage is not displayed.

PE connection

The PE connection is made with 10mm² via a grounding screw at the bottom of the device.

Attention hot surface!

Metal parts can heat up to a temperature of 90°C during operation.

3.5.2. Terminal clamps – max. line cross section C3H

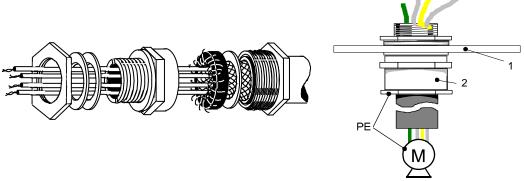
Terminal clamps - max. line cross section

The line cross sections must correspond to the locally valid safety regulations. The local regulations have always priority.

local regulations have always phonty.			
	Power clamps (minimum/maximum sec	Control lines	
C3H050V4	2.5 / 16mm²		2.5mm ²
	massive	multiwire	
C3H090V4	16 / 50mm ²	25 / 50mm ²	2.5mm ²
C3H1xxV4	25 / 95mm²	35 / 95mm²	2.5mm ²

The standard connection clamps of Compax3H090V4 and Compax3H1xxV4 are not suitable for flat line bars.

Cover plate for cable feedthrough


The cable fe	edthrough holes have the following dimensions:
C3H050V4	28.6mm for M20, PG16 and ½" NPT (America).
	37.3mm for M32, PG29 and 1" NPT (America).
C3H090V4	22.8mm for M20, PG16 and ½" NPT (America).
	28.6mm for M25, PG21 and ¾" NPT (America).
	47.3mm for M40, PG36 and 11/2"" NPT (America).
	54.3mm for M50, PG42and 11/2" NPT (America).
C3H1xxV4	22.8mm for M20, PG16 and ½" NPT (America)
	28.6mm for M25, PG21 and ¾" NPT (America)

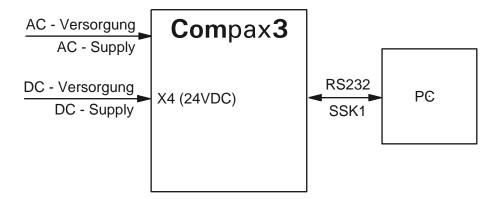
Recommended tightening torques

	High voltage supply	Braking Resistor	Grounding
C3H050V4	4Nm / 15.88kg-in	4Nm / 15.88kg-in	4.5Nm / 18.14kg-in
C3H090V4	6-8Nm / 53-70lb-in	6-8Nm / 53-70lb-in	6-8Nm / 53-70lb-in
C3H1xxV4	15-20Nm / 132-177lb-in	0.7Nm / 2.77kg-in	42Nm / 375lb-in

Cable joints

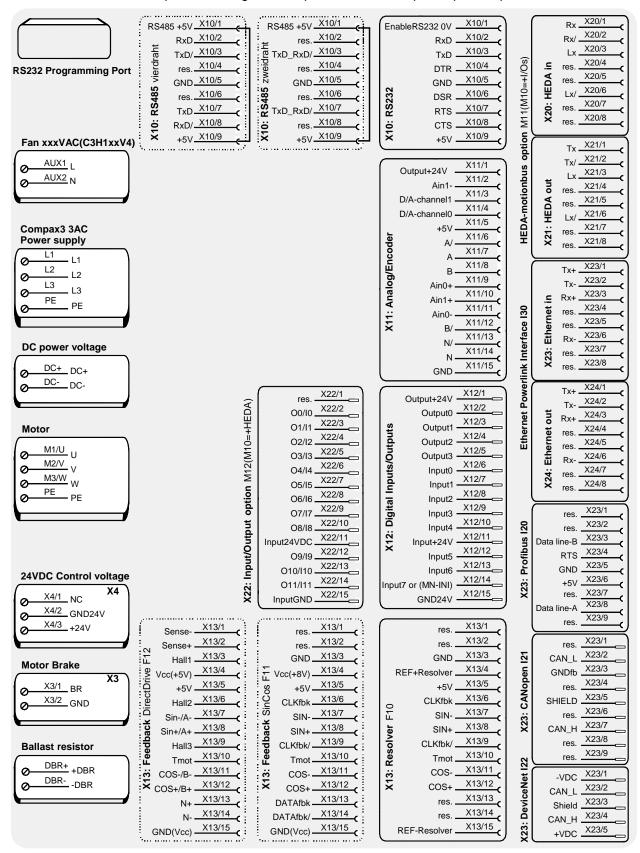
Use metallic cable joints permitting a 360° shielding in order to comply with the EMC directive.

- 1: Cable feedthrough plate
- 2: metallic joint with 360° shielding for EMC compliant design


The device must be grounded without interruption according to EN 61800-5-1. The mains supply lines must be protected with a suitable fuse or a circuit breaker (FI switches or earth fault fuses ar e not recommended).

For installation in accordance with EN 61800-5-1 mm Europe:

◆ For grounding without interruption, two separate protective leads (<10mm² cross-section) or one lead (>10mm² cross-section) are required. Each protective lead must meet the requirements according to EN 60204.


3.5.3. Plug and pin assignment C3H

Overview

Further information on the assignment of the plug mounted at the particular device can be found below!

In detail: The fitting of the different plugs depends on the extension level of Compax3. In part, the assignment depends on the Compax3 option implemented.

The RS232 programming interface under the upper dummy cover is only available if the X10 jumper at the controller is fitted.

Please note

C3H1xxV4 uses a ventilator fan which must be externally supplied via separate connections. The ventilator fan is available in two versions for single phase feed: 220/240VAC 110/120VAC

3.5.4. Motor / Motor brake C3H

Motor connection clamps

PIN	Designation
M1/U	U (motor)
M2/V	V (motor)
M3/W	W (motor)
PE	PE (motor)

Requirements for Compax3H motor cable

A motor output filter is required for motor cables >50m. Please contact us.

Shielding connection of the motor cable

The motor cable should be fully screened and connected to the Compax3 housing. The shield of the motor cable must also be connected with the motor housing. The fixing (via plug or screw in the terminal box) depends on the motor type.

Motor holding brake!

Connect the brake only on motors which have a holding brake! Otherwise make no brake connections at all.

Requirements cables for motor holding brake

If a motor holding brake is present, **a cable** of the motor holding brake must be fed on the device side through the toroidal core ferrite provided as accessory ZBH0x/xx (63Ω @1MHz, di=5.1mm), in order to ensure error-free switching on and off of the motor holding brake.

Connection of motor brake X3

PIN	Designation
1	BR
2	GND

Motor holding brake output

Motor holding brake output	Compax3
Voltage range	21 – 27VDC
Maximum output current (short circuit proof)	1.6A
Minimum output current	150 mA

3.5.5. Control voltage 24 VDC C3H

Connector X4 Pin	Description	
1	NC	NC
2	Gnd 24 V	GND
3	+24V	24 VDC (power supply)

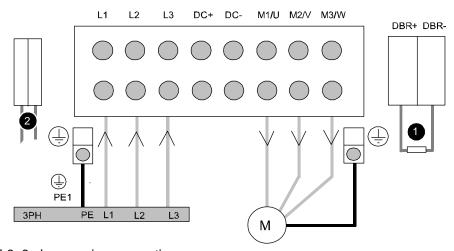
Control voltage 24VDC Compax3S and Compax3H

Controller type	Compax3
Voltage range	21 - 27VDC
Mains module	with switch-on current limitation, due to capacitive load
Fuse	MTP miniature circuit breaker or "delayed action fuse", due to capacitive load
Current drain of the device	0.8A
Total current drain	0.8 A + Total load of the digital outputs + current for the motor holding brake
Ripple	0.5Vpp
Requirement according to safe extra low voltage (SELV)	yes
Short-circuit proof	conditional (internally protected with 3.15AT)

3.5.6. Mains connection Compax3H

Device protection

Avoid permanent switching on and off so that the charging connection is not overloaded.


Mains connection Compax3HxxxV4

Controller type	H050V4	H090V4	H125V4	H155V4
Supply voltage	Three phase 3*400VAC/480VAC			
	350-528VAC / 50-60	Hz		
Input current	54Aeff	93Aeff	118Aeff	140Aeff
Maximum fuse rating per	60A	100A	125A	150A
device(=short circuit rating)	JDDZ class K5, JDRX class H	JDDZ class H5, JDRX class H		

The terminal block of the drive can be found under the front cover. It is secured with 2 screws at the bottom of the device. Remove the bottom cover in order to access the conection clamps.

Make sure that all live parts are covered by the housing after installation.

Illustration of the connection clamps exemplarily for all sizes:

L1, L2, L3: 3 phase mains connection

M1, M2, M3: Motor connections

DC+, DC-: DC link voltage

- (1) DBR+ und DBR-: Connection of external braking resistor
- (2) AUX1, AUX2: only with C3H1xxV4 external supply (AC) for device ventilator L, N
- ◆ All shields must be connected via a cable joint to the cable feedthrough plate.
- ◆ Braking resistor and cable must be shielded if they are not installed in a control cabinet.
- ◆ The standard connection clamps of C3H090V4 and C3H1xxV4 are not suitable for flat line bars.

3.5.7. Braking resistor / supply voltage C3H

The energy generated during braking operation is absorbed by the Compax3 storage capacity.

If this capacity is too small, the braking energy must be drained via a braking resistor.

3.5.7.1 Connect braking resistor C3H

Connecting the braking resistor:

PIN	Designation
DBR+	+ Braking resistor
DBR-	- Braking resistor

Braking operation of Compax3HxxxV4

Controller type	H050V4	H090V4	H125V4	H155V4
Capacitance / storable energy	2600μF / 602Ws	3150μF / 729Ws	5000μF / 1158Ws	5000μF / 1158Ws
Minimum braking- resistance	24Ω	15Ω	8Ω	8Ω
Maximum continuous current	30A	45A	83A	83A

Mimimum line cross section: 2.5mm²
Maximum line length: 2m
Maximum output voltage: 830VDC

3.5.7.2 Power supply voltage DC C3H

DC high voltage supply

PIN	Description
DC+	+ DC high voltage supply
DC-	- DC high voltage supply

"Warning: Do not connect any braking resistor on DC+/DC-!"

3.5.7.3 Connection of the power voltage of 2 C3H 3AC devices

In order to improve the conditions during brake operation, the DC power voltage of 2 servo axes may be connected.

The capacity as well as the storable energy are increased; furthermore the braking energy of one servo axis may be utilized by a second servo axis, depending on the application.

It is not permitted to connect the power voltage in order to use one brake circuit for two servo axes, as this function cannot be ensured reliably.

Note the following:

Caution! In case of non-compliance with the following instructions, the device may be destroyed!

- You can only connect two similar servo axes (same power supply; same rated currents)
- ◆ Connected servo axes must always be fed separately via the AC power supply.
- ◆ If the external pre-fuse of one of the servo axes takes action, the second servo axis must also be disconnected automatically.

Please connect as follows:

Servo axis 1 DC+ with servo axis 2 DC+ Servo axis 1 DC- with servo axis 2 DC-

3.6 Communication interfaces

In this chapter you can read about:	
RS232 / RS485 interface (plug X10)	55
Communikation Compax3M	
Ethernet Powerlink X23, X24 (Option I30)	58

3.6.1. RS232 / RS485 interface (plug X10)

Interface selectable by contact functions assignment of X10/1: X10/1=0V RS232 X10/1=5V RS485

PIN	RS232 (Sub D)
X10	
1	(Enable RS232) 0V
2	RxD
3	TxD
4	DTR
5	GND
6	DSR
7	RTS
8	CTS
9	+5V

RS485 2-wire

PIN X10	RS485 two wire (Sub D) Pin 1 and 9 jumpered externally
1	Enable RS485 (+5V)
2	res.
3	TxD_RxD/
4	res.
5	GND
6	res.
7	TxD_RxD
8	res.
9	+5V

RS485 4-wire

PIN X10	RS485 four wire (Sub D) Pin 1 and 9 externally jumpered
1	Enable RS485 (+5V)
2	RxD
3	TxD/
4	res.
5	GND
6	res.
7	TxD
8	RxD/
9	+5V

USB - RS232 converter

The following USB - RS232 converters were tested:

- ◆ATEN UC 232A
- ♦ USB GMUS-03 (available under several company names)

3.6.2. Communikation Compax3M

In this chapter you can read about:	
PC - Compax3MP (mains module)	56
Communication in the axis combination (connector X30, X31)	
Adjusting the basic address	57
Setting the axis function	57

3.6.2.1 PC - Compax3MP (mains module)

Connector X3

USB2.0

Connect your PC to the USB sleeve X3 of the mains module via an USB cable (SSK33/03).

3.6.2.2 Communication in the axis combination (connector X30, X31)

The communication in the axis combination is implemented via a SSK28 cable and double RJ45 sleeves on the device top.

Beginning with the Compax3MP (mains module) the connection is always made from X30 to X31 of the next device. On the first device (X31) and the last device (X30) in the multi-axis combination, a bus termination plug (BUS07/01) is required.

Orientation to the back side

Orientation to the front plate

. ,	3 (, 1
	Compax3MP (mains module)
X30	out
X31	in
res.	Reserved
	Compax3M (axis)
X30	out
X31	in
res.	Reserved

3.6.2.3 Adjusting the basic address

On the mains module, the basic address of the device combination is set in steps of 16 with the aid of the first three dip switches.

The mains module contains the set basic address while the axes placed at the right in the combination contain the following addresses.

Switch S1

Address setting

Basic addresses

Switch Value upon ON

1 16 2 32 3 64

Settings:

left: OFF right: ON

Settable value range: 0, 16, 32, 48, 64, 80, 96, 112

Address of the 1st Compax3M = basic address+1

The addresses of the axis controllers are newly assigned after PowerOn.

Example:

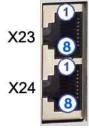
Basic address = 48; mains module with 6 Compax3M axes in the combination.

1. Axis right: Address = 49 2. Axis right: Address = 50

6. Axis right: Address = 54

3.6.2.4 Setting the axis function

Switch S10



Function setting

The value of switch S10 on the axis controller is stored in object O110.1 and can be evaluated with the aid of a program.

This helps realize a more simple function selection.

3.6.3. Ethernet Powerlink X23, X24 (Option I30)

	RJ45 (X23)	RJ45 (X24)
PIN	in	out
1	Tx +	Tx +
2	Tx -	Tx -
3	Rx +	Rx +
4	-	Reserved
5	-	Reserved
6	Rx -	Rx -
7	-	Reserved
8	-	Reserved

Wiring with Ethernet Crossover cable Cat5e (from X24 to X23 of the next device without termination); for this, we recommend ourl **SSK28** (see page 316, see page 360) interface cable.

Meaning of the RJ45 LEDs

Green LED (top): connection established (RPT_LINK/RX) Yellow LED (bottom): Traffic (exchange of data) (Transmit / Receive Data) (RPT_ERR)

3.6.3.1 Adjusting the bus address

Address setting

Values:

1: 2°; **2:** 2¹; **3:** 2²; ... **7:** 2⁶; **8:** 2⁷

Settings:

left: OFF right: ON

(The address is set to 0 in the illustration)

Range of values: 1 ... 239

3.6.3.2 Meaning of the Bus LEDs (Ethernet Powerlink)

Red LED (right): Ethernet Powerlink error

LED is influenced by the transitions of the NMT - status diagram (for further details, please refer to the $\bf Ethernet\ Powerlink\ Specification$

http://www.parker.com/euro_emd/EME/downloads/compax3/EPL/epl2.0-ds-v-1-0-0.pdf)

Error LED	Transition
off => on	NMT_CT11,NMT_GT6,NMT_MT6
on => off	NMT_CT6, NMT_GT2, NMT_CT3, NMT_MT5

Green LED (left): Ethernet Powerlink Status

LED indicates the states of the NMT - status diagram (for further details, please refer to the **Ethernet Powerlink Specification**

http://www.parker.com/euro_emd/EME/downloads/compax3/EPL/epl2.0-ds-v-1-0-0.pdf)

0.pui)			
Status LED		status	
off	off	NMT_GS_OFF, NMT_GS_INITIALISATION,	
		NMT_CS_NOT_ACTIVE / NMT_MS_NOT_ACTIVE	
flickering	flickering	NMT_CS_BASIC_ETHERNET	
single flash	Single	NMT_CS_PRE_OPERATIONAL_1 /	
	flash	NMT_MS_PRE_OPERATIONAL_1	
double flash	Double	NMT_CS_PRE_OPERATIONAL_2 /	
	flash	NMT_MS_PRE_OPERATIONAL_2	
triple flash	Triple	NMT_CS_READY_TO_OPERATE /	
	flash	NMT_MS_READY_TO_OPERATE	
on	on	NMT_CS_OPERATIONAL / NMT_MS_OPERATIONAL	
blinking	flashing	NMT_CS_STOPPED	

3.7 Signal interfaces

In this chapter you can read about:	
Resolver / Feedback (connector X13)	60
Analog / Encoder (plug X11)	61
Digital inputs/outputs (plug X12)	

3.7.1. Resolver / Feedback (connector X13)

PIN X13	Feedback /X13 H (depending on th		
	Resolver (F10)	SinCos (F11)	EnDat 2.1 (F12)
1	Reserved	Reserved	Sense -*
2	Reserved	Reserved	Sense +*
3	GND	GND	Reserved
4	REF-Resolver+	Vcc (+8V)	Vcc (+5V) * max. 350mA load
5	+5V (for temperature	e sensor)	
6	Reserved	Reserved	CLKfbk
7	SIN-	SIN-	SIN- / A- (Encoder)
8	SIN+	SIN+	SIN+ / A+ (Encoder)
9	Reserved	Reserved	CLKfbk/
10	Tmot*	Tmot*	Tmot*
11	COS-	COS-	COS- / B- (Encoder)
12	COS+	COS+	COS+ / B+ (Encoder)
13	Reserved	DATAfbk	DATAfbk
14	Reserved	DATAfbk/	DATAfbk/
15	REF-Resolver-	GND (Vcc)	GND (Vcc)

^{*}X13 Pin10 Tmot may not be connected at the same time as X15 (on Compaxx3M).

Resolver cables (see page 329) can be found in the accessories chapter of the device description.

SinCos (see page 330) can be found in the accessories chapter of the device description.

EnDat cable GBK38 (see page 331) can be found in the accessories chapter of the device description

PIN X13	Feedback /X13 High Density /Sub D
	Direct drives (F12)
1	Sense -*
2	Sense +*
3	Hall1 (digital)
4	Vcc (+5V) * max. 350mA load
5	+5V (for temperature <and_hall sensors=""></and_hall>
6	Hall2 (digital)
7	SIN-, A- (Encoder) or analog Hall sensor
8	SIN+, A+, (Encoder) or analog Hall sensor
9	Hall3 (digital)
10	Tmot*
11	COS-, B- (Encoder) or analog Hall sensor
12	COS+, B+ (Encoder) or analog Hall sensor
13	N+
14	N-
15	GND (Vcc)

^{*}X13 Pin10 Tmot may not be connected at the same time as X15 (on Compaxx3M).

Note on F12:

*+5V (Pin 4) is measured and controlled directly at the end of the line via Sense – and Sense +.

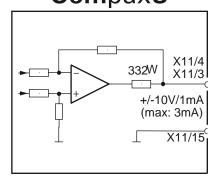
Maximum cable length: 100m

Caution!

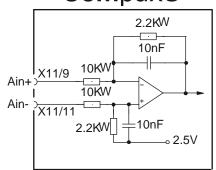
- ◆ Pin 4 and Pin 5 must under no circumstances be connected!
- ◆ Plug in or pull out feedback connector only in switched off state (24VDC switched off).

3.7.2. Analog / Encoder (plug X11)

PIN	Reference					
X11	High Density Sub D					
		Encoder	SSI			
1	+24V (output) max. 70mA					
2	Ain1 -: analog input - (14Bit; max. +/-10V)					
3	D/A monitor channel 1 (±10V, 8-bit resolut	ion)				
4	D/A monitor channel 0 (±10V, 8-bit resolut	ion)				
5	+5V (output for encoder) max. 150mA					
6	- Input: steps RS422 (5V - level)	A/ (Input / simulation)	Clock-			
7	+ Input: steps RS422 (5V - level)	A (Input / simulation)	Clock+			
8	+ Input: direction RS422 (5V - level)	B (Input / simulation)				
9	Ain0 +: analog input + (14Bit; max. +/-10V)					
10	Ain1 +: analog input + (14Bit; max. +/-10V					
11	Ain0 -: analog input - (14Bit; max. +/-10V)					
12	- Input: direction RS422 (5V - level)	B/ (Input / simulation)				
13	Reserved	N/ (Input / simulation)	DATA-			
14	Reserved	N (Input / simulation)	DATA+			
15	GND					


Input

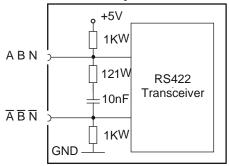
Technical data X11 (see page 374)


3.7.2.1 Wiring of analog interfaces

Compax3

Output

Compax3



Please note: with Ain- on earth and Ain+ open, 2.02V are read in.

Ain1 (X11/10 and X11/2) has the same wiring!

3.7.2.2 Connections of the encoder interface

Compax3

The input connection is available in triple (for A & /A, B & /B, N & /N)

3.7.3. Digital inputs/outputs (plug X12)

PIN X12	Input/output	High density/Sub D				
1	Output	+24VDC output (max. 400mA)				
2	O0	No Error				
3	O1	Position / velocity / gear synchronization reached (max. 100mA)	Only for "fixed assignment"			
4	O2	No power output stage current (max. 100mA)	Functions are			
5	O3	Motor stationary with current, with setpoint 0 (max. 100mA)	available, if "Fixed assignment" was			
6	10="1":	Quit (positive edge) / Energize the motor The address of the current motion set is read in new.	selected for the I/O assignment in the configuration wizard			
	10="0"	Motor deenergized with delay				
7	l1	No stop				
8	12	JOG +				
9	13	JOG -				
10	14	Reg input				
11	E	24V input for the digital outputs Pins 2 t	0 5			
12	15	Limit switch 1				
13	16	Limit switch 2				
14	17	Machine reference initiator				
15	Output	Gnd 24 V				

All inputs and outputs have 24V level.

Maximum capacitive loading of the outputs: 50nF (max. 4 Compax3-inputs can be connected)

Input-/Output extension (see page 362)

Optimization window display

The display of the digital inputs in the optimization window of the C3 ServoManager does not correspond to the physical status (24Volt=on, 0Volt=off) but to the logic status: If the function of an input or output is inverted (e.g. limit switch, negatively switching), the corresponding display (LED symbol in the optimization window) is OFF with 24Volts at the input and ON with 0 Volts at the input.

In operation via Ethernet Powerlink the inputs I0 ... I3 as well as the outputs O0 ... O3 can be freely assigned as an option.

Configurable via the C3 ServoManager (configuration: Operating mode / I/O assignment)

3.7.3.1 Connection of the digital Outputs/Inputs

Wiring of digital outputs

Compax3 24V F1 F2 X12/1 SPS/ PLC X12/11 X12/15

The circuit example is valid for all digital outputs! The outputs are short circuit proof; a short circuit generates an error.

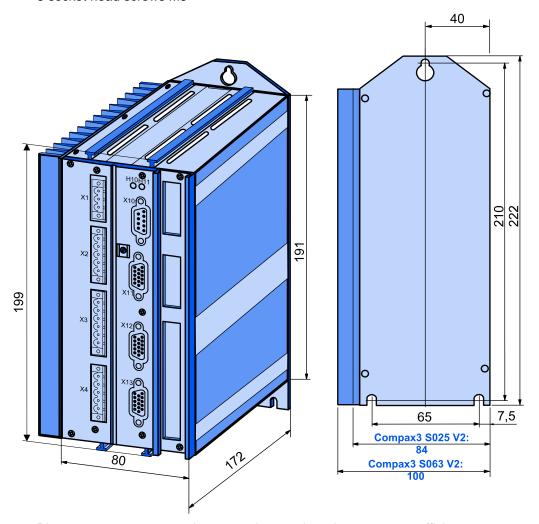
Status of digital inputs

The circuit example is valid for all digital inputs! Signal level:

- ♦> 9.15V is detected "1"
- ♦> 8.05V is detected "0"

F1: delayed action fuse

F2: quick action electronic fuse; can be reset by switching the 24VDC supply off and on again.

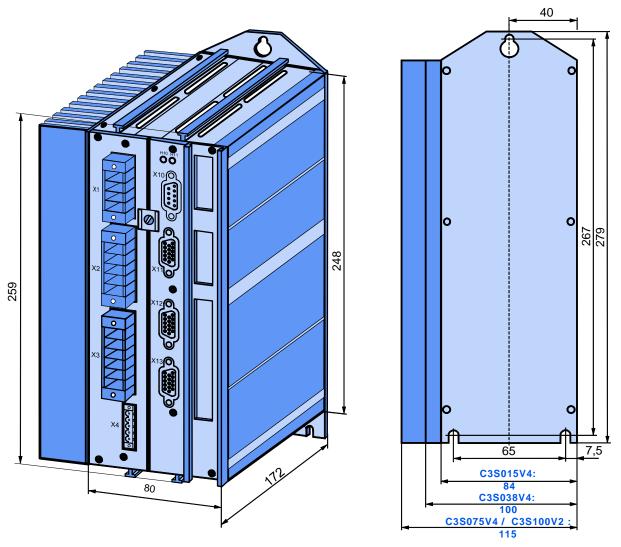

3.8 Installation and dimensions Compax3

In this chapter you can read about:	
Installation and dimensions of Compax3 S0xx V2	64
Monting and dimensions Compax3S100V2 and S0xxV4	
Monting and dimensions Compax3S150V2 and S150V4	66
Mounting and dimensions Compax3S300V4	67
Mounting and dimensions C3MP/C3M	68
Mounting and dimensions C3H	69

3.8.1. Installation and dimensions of Compax3 S0xx V2

Mounting:

3 socket head screws M5

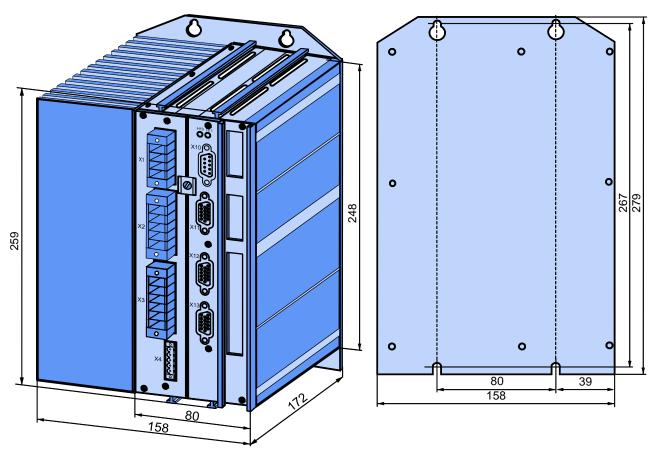

Please respect an appropriate mounting gap in order to ensure sufficient convection:

- ♦ At the side: 15mm
- ◆ At the top and below: at least 100mm

3.8.2. Monting and dimensions Compax3S100V2 and S0xxV4

Mounting:

3 socket head screws M5


Please respect an appropriate mounting gap in order to ensure sufficient convection:

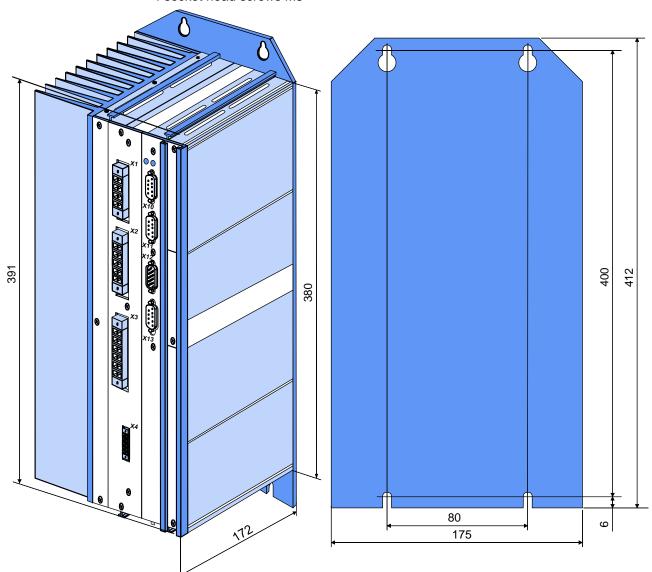
- ◆ At the side: 15mm
- ◆ At the top and below: at least 100mm

3.8.3. Monting and dimensions Compax3S150V2 and S150V4

Mounting:

4 socket head screws M5

Please respect an appropriate mounting gap in order to ensure sufficient convection:


◆ At the side: 15mm

◆ At the top and below: at least 100mm

3.8.4. Mounting and dimensions Compax3S300V4

Mounting:

4 socket head screws M5

Please respect an appropriate mounting gap in order to ensure sufficient convection:

◆ At the side: 15mm

◆ At the top and below: at least 100mm

Compax3S300V4 is force-ventilated via a fan integrated into the heat dissipator!

3.8.5. Mounting and dimensions C3MP/C3M

Ventilation:

During operation, the device radiates heat (power loss). Please provide for a sufficient mounting distance below and above the device in order to ensure free circulation of the cooling air. Please do also respect the recommended distances of other devices. Make sure that the mounting plate is not exhibited to other temperature influences than that of the devices mounted on this very plate. The devices must be mounted vertically on a level surface. Make sure that all devices are sufficiently fixed.

Compaxa3MP and Compax3M are force-ventilated via a ventilator fan fixed to the lower part of the heat dissipator!

Mounting spacing: At the top and below: at least 100mm

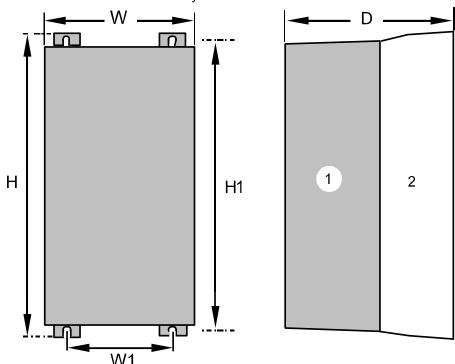
Information on

 C3MP (mains module)
 C3M (axis)

 C3MP10D6
 C3M050D6

C3M100D6 C3M150D6

Mounting:


2 socket head screws M5 50,5mm 263mm 400mm 360mm Δ Parke 46mm Tolerances: DIN ISO 2768-f

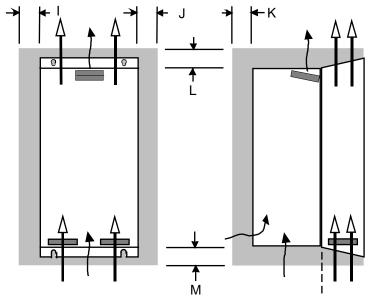
3.8.6. Mounting and dimensions C3H

In this chapter you can read about:	
Mounting distances, air currents Compax3H050V4	70
Mounting distances, air currents Compax3H090V4	70
Mounting distances, air currents Compax3H1xxV4	71

The devices must be mounted vertically on a level surface in the control cabinet.

Dimensions:

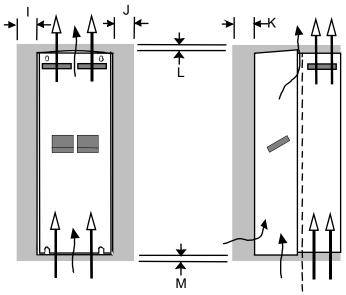
(1): Electronics(2): Head dissipator


	Н	H1	D	W	W1
C3H050V4	453mm	440mm	245mm	252mm	150mm
C3H090V4	668.6mm	630mm	312mm	257mm	150mm
C3H1xxV4	720mm	700mm	355mm	257mm	150mm

Mounting: 4 screws M6

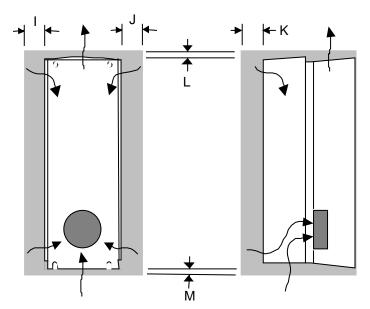
Ventilation:

During operation, the device radiates heat (power loss). Please provide for a sufficient mounting distance below and above the device in order to ensure free circulation of the cooling air. Please do also respect the recommended distances of other devices. Make sure that the mounting plate is not exhibited to other temperature influences than that of the devices mounted on this very plate. If two or more devices are combined, the mounting distances are added.


3.8.6.1 Mounting distances, air currents Compax3H050V4

in mm

	ı	J	K	L	M
C3H050V4	15	5	25	70	70


3.8.6.2 Mounting distances, air currents Compax3H090V4

in mm

	<u> </u>	5	IX.	_	IVI
C3H090V4	0	0	25	70	70

3.8.6.3 Mounting distances, air currents Compax3H1xxV4

ın	

	I	J	K	L	М
C3H1xxV4	0	0	25	70	70

3.9 Safety function – safe standstill – Compax3S

In this chapter you can read about:	
Safe standstill with Compax3 principle	72
Devices with the "Safe Standstill" safety function	
Safety instructions for the "safe standstill" function	74
Application example for "safe standstill"	75

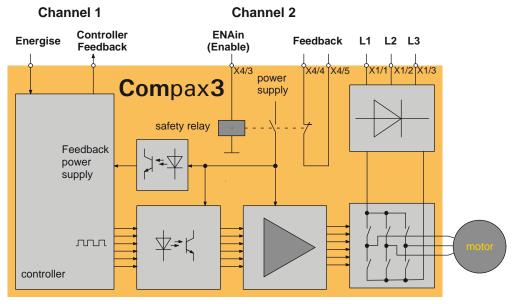
Compax3S is equipped with the "Safe Standstill" safety feature. The "protection against unexpected start-up" described in EN1037 can be implemented with this feature.

3.9.1. Safe standstill with Compax3 principle

To ensure safe protection against a motor starting up unexpectedly, the flow of current to the motor and thus to the power output stage must be prevented. This is accomplished for Compax3 with two measures independent of each other (Channel 1 and 2), without disconnecting the drive from the power supply:

Channel 1:

Activation of the power output stage can be disabled in the Compax3 controller by means of a digital input or with a fieldbus interface (depending on the Compax3 device type) (deactivation of the energize input).


Channel 2:

The power supply for optocouplers and drivers of power output stage signals is disconnected by a safety relay activated by the enable input "ENAin"(X4/3) and equipped with force-directed contacts. This prevents control signals from being transferred to the power output stage.

The "Safe Standstill" safety function as defined by EN 954-1 Category 3 is only possible if both channels are used.

Circuit diagram illustrating working principle:

Notes

◆ In normal operation of Compax3, 24 V DC of power is supplied to the "Enable" input (X4/3). The drive is then controlled by the digital inputs/outputs or the fieldbus.

When used properly, the "Safe standstill" safety function is only used when the motor is at a standstill, since it is not capable of braking a motor or bringing it to a standstill by itself.

3.9.2. Devices with the "Safe Standstill" safety function

The "Safe Standstill" safety function is implemented in the following devices:

♦ S025V2, S063V2
♦S100V2, S150V2
♦ S015V4, S038V4
♦ S075V4, S150V4
♦S300V4

and does apply only for the safety switching devices used in the application examples.

3.9.3. Safety instructions for the "safe standstill" function

- ◆ Safety functions must be tested 100%.
- Only qualified staff members are permitted to install the "Safe Standstill" feature and place it in service.
- ◆ For all applications in which the first channel of the "Safe Standstill" is implemented by means of a PLC, care must be taken that the part of the program that is responsible for current flowing to or not flowing to the drive is programmed with the greatest possible care. The "Safe Standstill" application example of Compax3 with fieldbus should be considered.

The designer and operator responsible for the system and machine must refer programmers who are involved to these safety-related points.

- ◆Terminal X4/2 (GND 24 V and at the same time the reference point for the safety relay bobbin) must be connected with the PE protective lead. This is the only way to ensure protection against incorrect operation through earth faults (EN60204-1 Section 9.4.3)!
- All conditions necessary for CE conform operation (see page 16) must be observed.
- ♦ It should be noted in connection with the "Safe Standstill" application example illustrated here that after the Emergency Power-off switch has been activated, no galvanic isolation in accordance with EN 60204-1 Section 5.5 is guaranteed. This means that the entire system must be disconnected from the mains power supply with an additional main switch or mains power contactor for repair jobs. Please note in this regard that even after the power is disconnected, dangerous electrical voltages may still be present in the Compax3 drive for about 5 minutes.
- •When using an external Emergency power-off module with adjustable delay time, (as illustrated in the "Safe Standstill" application example), it must be ensured that the delay time cannot be adjusted by persons not authorized to do so (for example by applying a lead seal).

The adjustable delay time on the Emergency Power-off module must be set to a value greater than the duration of the braking ramp controlled by the Compax3 with maximum load and maximum speed.

If the setting range for the specified Emergency power-off module is not sufficient, the Emergency power-off module must be replaced by another comparable module.

- All safety-related external leads (for example the control lead for the safety relay and feedback contact) must absolutely be laid so they are protected, for example in a cable duct. Short circuits and crossed wires must be reliably excluded!
- ◆ If there are external forces operating on the drive axes, additional measures are required (for example additional brakes). Please note in particular the effects of gravity on suspended loads!
- ♦ If the power fails, the possibility must be considered that for the application with stop category K1, such as is described in the application example, it will no longer be possible to execute the braking ramp controlled to speed 0.
- ♦ It is important to note that if the drive is being activated (Energize) by the RS232 (RS485) interface, it may not be possible to execute switch-off by a controlled braking ramp. For example, this is true when the set-up window of the C3 ServoManager is used. If set-up mode is turned on, the digital I/O interface and fieldbus interface are automatically disabled.

3.9.4. Application example for "safe standstill"

In this chapter you can read about:

Safe standstill with bus option

The application example described here corresponds to Stop Category 1 as defined by EN60204-1.

A Stop Category 0 in accordance with EN 60204-1 can be implemented, for example by setting the delay time on the Emergency power-off switch to 0. The Compax3 drive will then be turned off immediately in 2 channels and will not be able to generate any more torque. Please take into consideration that the motor will not brake and a coasting down of the motor may result in hazards. If this is the case, a "Safe Standstill" in the stop category 0 is not permitted.

3.9.4.1 Safe standstill with bus option

In this chapter you can read about:

Note:	75
Lavout:	
Circuit example	76
Description	70

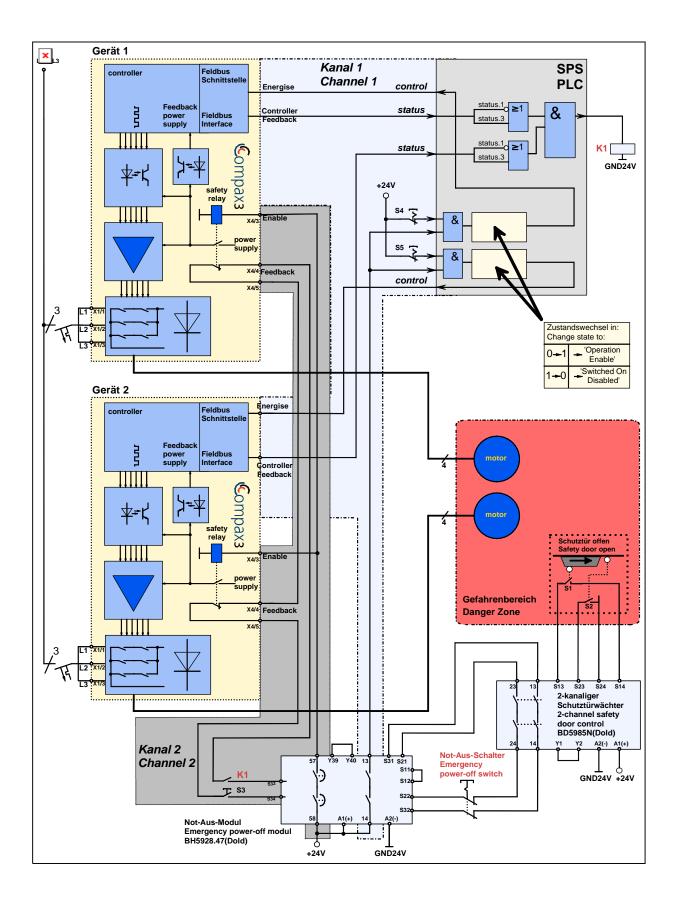
Note:

If the "safe standstill" function of Compax3 is required or used for a machine or system, the errors:

- "Motor_Stalled" and
- ◆ "Tracking"

is not to be switched off (see page 132, see page 118).

Layout:


- ◆2 Compax3 devices (the circuit example is also valid for one or multiple devices, if it is adapted accordingly)
- ◆1 Emergency Power-off module (BH5928.47 manufactured by Dold) With adjustable delayed deactivation of the Compax3 enable input. The time must be set so that all axes are at a standstill before the Compax3 controllers are deactivated.
- ◆1 safety door monitor (BD5985N made by Dold)

 Note: With safety door monitor BD5985N, the safety door must be opened and closed again every time after turning on the 24 V power supply so that the Emergency power-off module can be acknowledged and reset. To avoid this, safety door monitors with an additional simulation entry or a corresponding reset circuit can also be used.
- ◆1 Emergency power-off switch
- Hazardous area accessible via a safety door with safety door switch S1 and S2
- ♦ 3 buttons (S3, S4, S5)
- ◆1 Relay (K1)

Circuit example

- ◆2 Compax3 devices (the circuit example is also valid for one or multiple devices, if it is adapted accordingly)
- ◆1 Emergency Power-off module (BH5928.47 manufactured by Dold) With adjustable delayed deactivation of the Compax3 enable input. The time must be set so that all axes are at a standstill before the Compax3 controllers are deactivated.
- ♦ 1 safety door monitor (BD5985N made by Dold)

 Note: With safety door monitor BD5985N, the safety door must be opened and closed again every time after turning on the 24 V power supply so that the Emergency power-off module can be acknowledged and reset. To avoid this, safety door monitors with an additional simulation entry or a corresponding reset circuit can also be used.
- ♦1 Emergency power-off switch
- ◆ Hazardous area accessible via a safety door with safety door switch S1 and S2
- ♦3 buttons (S3, S4, S5)
- ◆1 Relay (K1)

Compax3 devices disabled by:

Channel 1: Energize deactivated by PLC due to open contacts of the Emergency power-off module (13 -14)

Channel 2: Enable input to "0" through open contacts of Emergency power-off module (57 -58)

Activate Emergency power-off module

Before the Compax3 can be placed in operation, the Emergency Power-off module must be activated by a pulse to Input S33/S34. Prerequisite:

- ◆S3 closed
- ◆ Safety door closed: only in this case the safety door monitor enables the emergency power off module via two channels
- ◆K1 energized via PLC (feedback channel 1: motor not energized)
- ◆The feedback contact of all Compax3 devices must be closed (channel 2). If S33 & S34 of the Emergency power-off module are briefly connected (pulse) the contacts will be closed (between 13 & 14 and between 57 & 58).

Energize Compax3 (Motor and power output stage)

- ◆ The PLC enables the Compax3 devices by means of the control word and the Emergency power-off module enables the Compax3 devices by means of the Enable input. (if an error is still pending on Compax3, it must be previously acknowledged/reset)
- ◆ The motors are energized with current.

Summary: Compax3 is only energized if the feedback functions are capable of functioning via two channels.

Switches and buttons:

S1:	Closed when the safety door is closed
S2:	Closed when the safety door is closed
S3:	Activate Emergency power-off module
S4:	Guide Device 1 to a currentless state (error acknowledge)
S5:	Guide Device 2 to a currentless state (error acknowledge)

Description

In this chapter you can read about:	
Basic functions:	79
Access to the hazardous area	

Basic functions:

Compax3 devices disabled by:

Channel 1: Energize deactivated by PLC due to open contacts of the Emergency power-off module (13 -14)

Channel 2: Enable input to "0" through open contacts of Emergency power-off module (57 -58)

Activate Emergency power-off module

Before the Compax3 can be placed in operation, the Emergency Power-off module must be activated by a pulse to Input S33/S34. Prerequisite:

- ◆S3 closed
- ◆ Safety door closed: only in this case the safety door monitor enables the emergency power off module via two channels
- ◆K1 energized via PLC (feedback channel 1: motor not energized)
- ◆The feedback contact of all Compax3 devices must be closed (channel 2). If S33 & S34 of the Emergency power-off module are briefly connected (pulse) the contacts will be closed (between 13 & 14 and between 57 & 58).

Energize Compax3 (Motor and power output stage)

- ◆ The PLC enables the Compax3 devices by means of the control word and the Emergency power-off module enables the Compax3 devices by means of the Enable input. (if an error is still pending on Compax3, it must be previously acknowledged/reset)
- ◆ The motors are energized with current.

Summary: Compax3 is only energized if the feedback functions are capable of functioning via two channels.

Access to the hazardous area

Activate Emergency power-off switch

The two-channel disconnecting at the emergency power-off switch deactivates the emergency power-off module – the contacts 13 – 14 will open immediately. The PLC evaluates this and responds as follows:

Channel 1: The Compax3 devices receive via the control word the command to guide the drive to currentless state (vi the ramp for "deenergizing" configured in the C3 ServoManager).

Channel 1 feedback: The Compax3 feedback via the status word is evaluated by the PLC and passed on to the emergency power-off module via K1.

Channel 2:After the delay time set in the Emergency power-off module, (this time must be set so that all drives are stopped after it has elapsed) the contacts between 57 & 58 open, which in turn deactivates the Enable inputs of the Compax3 devices.

Channel 2 feedback: Via the series circuit of all feedback contacts, the "Safe Standstill" status (all Compax3 devices without current) is reported. Only if the drives are all at a standstill, the safety door may be opened and the hazardous area may be accessed.

If the safety door is opened during operation and the emergency-power-off switch was not triggered before, the Compax3 drives will also trigger the stop ramp.

Caution! The drives may still move.

If danger to life and limb of a person entering cannot be excluded, the machine must be protected by additional measures (e.g. a safety door locking).

4. Setting up Compax3

In this chapter you can read about:	
Configuration	81
Configuring the signal Source	135
Optimization	

4.1 Configuration

In this chapter you can read about:	
Test commissioning of a Compax3 axis	83
Selection of the supply voltage used	83
Motor Selection	
Optimize motor reference point and switching frequency of the motor current	84
Braking Resistor	87
General Drive	
Defining the reference system	88
Defining jerk / ramps	114
Limit and Monitoring Settings	
Encoder Simulation	119
I/O Assignment	120
Position mode in reset operation	
Reg-related positioning / defining ignore zone	
Write into set table	122
Motion functions	
Error response	
Configuration name / comments	
Dynamic positioning	134

The general proceeding in order to operate an empty-running motor is described **here** (see page 83).

Configuration sequence:

Installation of the C3 ServoManager

The Compax3 ServoManager can be installed directly from the Compax3 DVD. Click on the appropriate hyperlink or start the installation program "C3Mgr_Setup_V.... .exe" and follow the instructions.

PC requirements

Recommendation:

Operating system: MS Windows XP SP2 / MS Windows 2000 as from SP4 / (MS Vista)

Browser: MS Internet Explorer 6.x

Processor: Intel Pentium 4 / Intel Core 2 Duo / AMD Athlon class as from

>=2GHz

RAM memory: >= 1024MB

Hard disk: >= 20GB available memory

Drive: DVD drive

Monitor: Resolution 1024x768 or higher

Graphics card: on onboard graphics (for performance reasons)

Interface: USB

Minimum requirements:

Operating system: MS Windows XP SP2 / MS Windows 2000 as from SP4

Browser: MS Internet Explorer 6.x

Processor: >= 1.5GHz RAM memory: 512MB

Hard disk: 10GB available memory

Drive: DVD drive

Monitor: Resolution 1024x768 or higher

Graphics card: on onboard graphics (for performance reasons)

Interface: USB

Note:

- For the installation of the software you need administrator authorization on the target computer.
- ◆ Several applications running parallelly, reduce the performance and operability.
- especially customer applications, exchanging standard system components (drivers) in order to improve their own performance, may have a strong influence on the communication performance or even render normal use impossible.
- ◆Operation under virtual machines such as Vware Workstation 6/ MS Virtual PC is not possible.
- Onboard graphics card solutions reduce the system performance by up to 20% and cannot be recommended.
- ◆ Operation with notebooks in current-saving mode may lead, in individual cases, to communication problems.

Connection between PC - Compax3

Your PC is connected with Compax3 via a RS232 cable (**SSK1** (see page 356)). Cable **SSK1** (see page 356) (COM 1/2-interface on the PC to X10 on the Compax3 or via adapter SSK32/20 on programming interface of Compax3H). Start the Compax3 servo manager and make the setting for the selected interface in the menu"Options Communication settings RS232/RS485...".

Device Selection

In the menu tree under device selection you can read the device type of the connected device (Online Device Identification) or select a device type (Device Selection Wizard).

Parker EME Setting up Compax3

Configuration

Then you can double click on "Configuration" to start the configuration wizard. The wizard will lead you through all input windows of the configuration.

Input quantities will be described in the following chapters, in the same order in which you are queried about them by the configuration wizard.

4.1.1. Test commissioning of a Compax3 axis

In the device online help, we show you at this place an animation of a test setup with the aim to move an unloaded motor.

- ◆ Simple and independent of the Compax3 device variant*
- Without overhead for configuration
- Without special knowledge in programming

Due to continuous optimization, individual monitor displays may have changed. This does however hardly influence the general proceeding.

4.1.2. Selection of the supply voltage used

Please select the mains voltage for the operation of Compax3. This influences the choice of motors available.

4.1.3. Motor Selection

The selection of motors can be broken down into:

- ◆ Motors that were purchased in Europe and
- Motors that were purchased in the USA.
- ◆ You will find non-standard motors under "Additional motors" and
- ◆ Under "User-defined motors" you can select motors set up with the C3 MotorManager.

For motors with holding brake SMHA or MHA brake delay times can be entered. For this see also **Brake delay times** (see page 268).

Please note the following equivalence that applies regarding terms to linear motors:

- ◆ Rotary motors / linear motors
- ◆ Rotations = Pitch
- ◆ rotational speed = speed
- ◆ torque = force
- → moment of inertia = load

Notes on direct drives (see page 320) (Linear and Torque – Motors)

^{*} for device specific functions, please refer to the corresponding device description.

4.1.4. Optimize motor reference point and switching frequency of the motor current

Optimization of the motor reference point

The motor reference point is defined by the reference current and the reference (rotational) speed.

Standard settings are:

- ◆ Reference current = nominal current
- ◆ Reference (rotational) speed = nominal (rotational) speed

These settings are suitable for most cases.

The motors can, however, be operated with different reference points for special applications.

- ◆ By reducing the reference (rotational) speed, the reference current can be increased. This results in more torque with a reduced speed.
- ◆ For applications where the reference current is only required cyclically with long enough breaks in between, you may use a reference current higher than I₀. The limit value is however reference current = max. 1.33*I₀. The reference (rotational) speed must also be reduced.

The possible settings or limits result from the respective motor characteristics.

Caution!

Wrong reference values (too high) can cause the motor to switch off during operation (because of too high temperature) or even cause damage to the motor.

Optimization of the switching frequency

The switching frequency of the power output stage is preset to optimize the operation of most motors.

It may, however, be useful to increase the switching frequency especially with direct drives in order to reduce the noise of the motors. Please note that the power output stage must be operated with reduced nominal currents in the case of increased switching frequencies.

The switching frequency may only be increased.

Caution!

By increasing the motor current switching frequency, the nominal current and the peak current are reduced.

This must already be observed in the planning stage of the plant!

The preset motor current switching frequency depends on the performance variant of the Compax3 device.

The respective Compax3 devices can be set as follows:

Resulting nominal and peak currents depending on the switching frequency

Compax3S0xxV2 at 1*230VAC/240VAC

Switching frequency*		S025V2	S063V2
16kHz	I _{nominal}	2.5A _{eff}	6.3A _{eff}
	I _{peak} (<5s)	5.5A _{eff}	12.6A _{eff}
32kHz	Inominal	2.5A _{eff}	5.5A _{eff}
	I _{peak} (<5s)	5.5A _{eff}	12.6A _{eff}

Compax3S1xxV2 at 3*230VAC/240VAC

Switching frequency*		S100V2	S150V2
8 kHz	I _{nominal}	-	15A _{eff}
	I _{peak} (<5s)	-	30A _{eff}
16kHz	I _{nominal}	10A _{eff}	12.5A _{eff}
	I _{peak} (<5s)	20A _{eff}	25A _{eff}
32kHz	I _{nominal}	8A _{eff}	10A _{eff}
	I _{peak} (<5s)	16A _{eff}	20A _{eff}

Compax3S0xxV4 at 3*400VAC

Switching frequency*		S015V4	S038V4	S075V4	S150V4	S300V4
8 kHz	I _{nominal}	-	-	-	15A _{eff}	30A _{eff}
	I _{peak} (<5s)	-	-	-	30A _{eff}	60A _{eff}
16kHz	I _{nominal}	1.5A _{eff}	3.8A _{eff}	7.5A _{eff}	10.0A _{eff}	26A _{eff}
	I _{peak} (<5s)	4.5A _{eff}	9.0A _{eff}	15.0A _{eff}	20.0A _{eff}	52A _{eff}
32kHz	I _{nominal}	1.5A _{eff}	2.5A _{eff}	3.7A _{eff}	5.0A _{eff}	14A _{eff}
	I _{peak} (<5s)	3.0A _{eff}	5.0A _{eff}	10.0A _{eff}	10.0A _{eff}	28A _{eff}

Compax3S0xxV4 at 3*480VAC

Switching frequency*		S015V4	S038V4	S075V4	S150V4	S300V4
8 kHz	I _{nominal}	-	-	-	13.9A _{eff}	30A _{eff}
	I _{peak} (<5s)	-	-	-	30A _{eff}	60A _{eff}
16kHz	I _{nominal}	1.5A _{eff}	3.8A _{eff}	6.5A _{eff}	8.0A _{eff}	21.5A _{eff}
	I _{peak} (<5s)	4.5A _{eff}	7.5A _{eff}	15.0A _{eff}	16.0A _{eff}	43A _{eff}
32kHz	I _{nominal}	1.0A _{eff}	2.0A _{eff}	2.7A _{eff}	3.5A _{eff}	10A _{eff}
	I _{peak} (<5s)	2.0A _{eff}	4.0A _{eff}	8.0A _{eff}	7.0A _{eff}	20A _{eff}

The values marked with grey are the pre-set values (standard values)!

^{*}corresponds to the frequency of the motor current

Resulting nominal and peak currents depending on the switching frequency

Compax3HxxxV4 at 3*400VAC

Switching frequency*		H050V4	H090V4	H125V4	H155V4
8 kHz	I _{nominal}	50A _{eff}	90A _{eff}	125A _{eff}	155A _{eff}
	I _{peak} (<5s)	75A _{eff}	135A _{eff}	187.5A _{eff}	232.5A _{eff}
16kHz	I _{nominal}	33A _{eff}	75A _{eff}	82A _{eff}	100A _{eff}
	I _{peak} (<5s)	49.5A _{eff}	112.5A _{eff}	123A _{eff}	150A _{eff}
32kHz	I _{nominal}	19A _{eff}	45A _{eff}	49A _{eff}	59A _{eff}
	I _{peak} (<5s)	28.5A _{eff}	67.5A _{eff}	73.5A _{eff}	88.5A _{eff}

Compax3HxxxV4 at 3*480VAC

Switching frequency*		H050V4	H090V4	H125V4	H155V4
8 kHz	I _{nominal}	43A _{eff}	85A _{eff}	110A _{eff}	132A _{eff}
	I _{peak} (<5s)	64.5A _{eff}	127.5A _{eff}	165A _{eff}	198A _{eff}
16kHz	I _{nominal}	27A _{eff}	70A _{eff}	70A _{eff}	84A _{eff}
	I _{peak} (<5s)	40.5A _{eff}	105A _{eff}	105A _{eff}	126A _{eff}
32kHz	I _{nominal}	16A _{eff}	40A _{eff}	40A _{eff}	48A _{eff}
	I _{peak} (<5s)	24A _{eff}	60A _{eff}	60A _{eff}	72A _{eff}

The values marked with grey are the pre-set values (standard values)! *corresponds to the frequency of the motor current

Resulting nominal and peak currents depending on the switching frequency

Compax3MxxxD6 at 3*400VAC

Switching frequency*		M050D6	M100D6	M150D6
8 kHz	Inominal	5A _{eff}	10A _{eff}	15A _{eff}
	I _{peak} (<5s)	10A _{eff}	20A _{eff}	30A _{eff}
16kHz	I _{nominal}	3.8A _{eff}	7.5A _{eff}	10A _{eff}
	I _{peak} (<5s)	7.5A _{eff}	15A _{eff}	20A _{eff}
32kHz	I _{nominal}	2.5A _{eff}	3.8A _{eff}	5A _{eff}
	I _{peak} (<5s)	5A _{eff}	7.5A _{eff}	10A _{eff}

Compax3MxxxD6 at 3*480VAC

Switching frequency*		M050D6	M100D6	M150D6
8 kHz	I _{nominal}	4A _{eff}	8A _{eff}	12.5A _{eff}
	I _{peak} (<5s)	8A _{eff}	16A _{eff}	25A _{eff}
16kHz	I _{nominal}	3A _{eff}	5.5A _{eff}	8A _{eff}
	I _{peak} (<5s)	6A _{eff}	11A _{eff}	16A _{eff}
32kHz	I _{nominal}	2A _{eff}	2.5A _{eff}	4A _{eff}
	I _{peak} (<5s)	4A _{eff}	5A _{eff}	8A _{eff}

The values marked with grey are the pre-set values (standard values)!

4.1.5. Braking Resistor

If the regenerative brake output exceeds the amount **storable energy of the servo controller** (see page 374), an error will be generated. To ensure safe operation, it is then necessary to either

- reduce the accelerations resp. the decelerations,
- ◆ or you will need an external braking resistor (see page 337).

Please select the connected braking resistor or enter the characteristic values of your braking resistor directly.

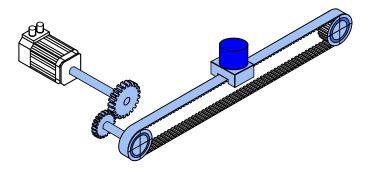
Please note that with resistance values greater than specified, the power output from the servo drive can no longer be dissipated in the braking resistor.

^{*}corresponds to the frequency of the motor current

4.1.6. General Drive

External moment of inertia / load

The external moment of inertia is required for adjusting the servo controller. The more accurately the moment of inertia of the system is known, the better is the stability and the shorter is the settle-down time of the control loop.


It is important to specify the minimum and maximum moment of inertia for best possible behavior under varying load.

If you do not know the moment of inertia, klick on "Unknown: using default values". You have then the possibility to determine the moment of inertia by means of automatic **load identification** (see page 227).

Minimum moment of inertia / minimum load

Maximum moment of inertia / maximum load

Enter minimum = maximum moment of inertia when the load does not vary.

4.1.7. Defining the reference system

The reference system for positioning is defined by:

- ◆ a unit,
- ◆ the travel distance per motor revolution,
- ◆ a machine zero point with true zero,
- positive and negative end limits.

4.1.7.1 Measure reference

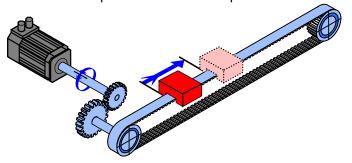
In this chapter you can read about:

You can select from among the following for the unit:

♦mm,

Unit of Travel

- ◆icrements *
- ◆ angle degrees or
- Inch

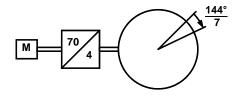

The unit of measure is always [mm] for linear motors.

*

The unit "increments" is valid only for position values. speed, acceleration and jerk are specified in this case in revolutions/s, revolutions/s² and revolutions/s³ (resp. pitch/s, pitch/s³).

Travel distance per motor revolution / pitch

The measure reference to the motor is created with the value: "travel distance per motor revolution / pitch" in the selected unit.



Input as numerator and denominator

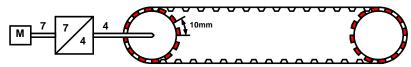
You can enter the "travel distance per motor revolution" as a fraction (numerator divided by denominator). This is useful in the case of continuous operation mode or in reset mode if the value cannot be specified as a rational number. This makes it possible to avoid long-term drifts.

Example 1:

Rotary table control

Unit: Degrees

Gear transmission ratio $70:4 \Rightarrow 4 \text{ load revolutions} = 70 \text{ motor revolutions}$ Travel distance per motor revolution = 4/70 * 360° = 20.571 * 428 * 5 ...° (number cannot be represented exactly)


Instead of this number, you have the option of entering it exactly as a numerator and denominator:

Travel distance per motor revolution = 144/7

This will not result in any drift in continuous operation mode or in reset mode, even with relatively long motion in one direction.

Example 2:

Conveyor belt

Unit: mm

Gear transmission ratio 7:4 => 4 load revolutions = 7 motor revolutions

Number of pinions: 12 Tooth separation: 10mm

Travel path per motor revolution = 4/7 * 12 * 10mm = 68.571 428 5 ... mm (this number cannot be expressed exactly)

Instead of this number, you have the option of entering it exactly as a numerator and denominator:

Travel distance per motor revolution = 480/7 mm

For "travel distance per motor revolution" that can be represented exactly, enter 1 as the denominator.

Travel distance per motor revolution / pitch

Numerator

Unit: Unit of Travel	Range: depending on the chosen unit	Standard value: depending on the chosen unit
Resolution: 0.000 000 1 (7 decimal places)		
Unit of Travel	Division	Standard value
Increments*	10 1 000 000	1024
mm	0,010 000 0 2000,000 000 0	1,000 000 0
Degrees	0,010 000 0 720,000 000 0	360,000 000 0
Inch	0,010 000 2000,000 000	1,000 000

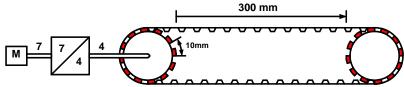
Denominator

Unit: -	Range: 1 1 000 000	Standard value: 1
Integer value		

The unit "increments" is valid only for position values. speed, acceleration and jerk are specified in this case in revolutions/s, revolutions/s² and revolutions/s³ (resp. pitch/s, pitch/s²).

Invert Motor Rotation/Direction Polarity

Unit: -	Range: no/yes	Standard value: no
Reverse direction inverts	s the sense of rotation, i.e. the direction of	f movement of the motor
is reversed in the case of	of equal setpoint.	


Reset mode

Reset mode is available for applications in which the positioning range repeats; some examples are: Rotary table applications, belt conveyor,

After the reset travel distance (can be specified exactly as **numerator and denominator** (see page 89))) the position values in Compax3 are reset to 0.

Example:

Conveyor belt (from the "Conveyor belt" example) with reset path

A reset path of 300 mm can be entered directly with numerator = 300 mm and denominator = 1.

Reset mode is not possible for linear motors.

Reset distance

Numerator

Unit: Unit of Travel	Range: depending on the chosen unit	Standard value: depending on the chosen unit
Unit of Travel	Division	Standard value
Increments	10 1 000 000	0
mm	1 2000	0
Degrees	1 720	0

Denominator

Unit: -	Range: 1 1 000 000	Standard value: 0
Integer value		

Turn off reset mode

Reset mode is turned off for numerator = 0 and denominator = 0.

4.1.7.2 Machine Zero

In this chapter you can read about:	
Absolute encoder	93
Operation with MultiTurn emulation	93
Machine zero modes overview	94
Homing modes with home switch (on X12/14)	96
Machine zero modes without home switch	104
Adjusting the machine zero proximity switch	108
Machine zero speed and acceleration	109

The Compax3 machine zero modes are adapted to the CANopen profile for Motion Control CiADS402.

Position reference point

Essentially, you can select between operation with or without machine reference. The reference point for positioning is determined by using the machine reference and the machine reference offset.

Machine reference run

In a homing run the drive normally moves to the position value 0 immediately after finding the home switch. The position value 0 is defined via the homing offset.

Positioning after homing run

The positioning made after the home switch has been found can be switched off. For this enter in the "machine zero" window in the configuration wizard "no" under "approach MN point after MN run".

A machine reference run is required each time after turning on the system for operation with machine reference.

Please note:

During homing run the software end limits are not monitored.

If the homing mode is active, there will always be a **homing run** (see page 122) with the first start after each configuration download (with the aid of the C3 ServoManager).

Absolute encoder

Using a SinCos® or EnDat Multiturn absolute value sensor as feedback system, the absolute position can be read in over the entire travel range when switching on the Compax3. This means that a machine zero run is not necessary after the switchig on (feedback may not be shifted by the absolute range while switched off). In this case the reference only needs to be established once

- ◆ at initial commissioning time
- after an exchange of motor / feedback system
- after a mechanical modification and
- after an exchange of device (Compax3); does not apply for the "Store absolute position in feedback" function.
- ◆after a configuration download

by carrying out a machine zero run.

The homing mode 35 "MN at the current position (see page 104)" is appropriate for this, because it is therewith possible to operate without proximity switch, but any other homing mode is possible too - if the hardware prerequisites are fulfilled. When you have once re-established the reference, reset the homing mode to "without homing run".

Operation with MultiTurn emulation

You can simulate the function of a Multiturn over the entire travel distance by the aid of a Multiturn emulation. A resolver or a SinCos® / EnDat Singleturn feedback is sufficient as a feedback signal from the motor.

It differs from the physical Multiturn in the way that the motor may not be moved by more than half a turn if Compax3 (24VDC) is switched off – unless the absolute position is lost.

Besides that, the Multiturn emulation offers the same function as the physical Multiturn feedback.

You can switch on the Multiturn emulation directly in the wizard.

You can assign the maximum permissible motor angle via the Multiturn validity window

If Compax3 states after switching on that this value is not exceeded, then das "Referenziert" gesetzt (Zustandswort Bit 12 oder Ausgang M.A8).

Compax3 restores nevertheless the absolute position, the motor angle is correct, the absolute position is however not correct, if the motor was moved by more than the validity window while currentless.

Machine reference run

For a unique machine zero run the same conditions apply as for the use of an absolute encoder (Multiturn).

Machine zero modes overview

Selection of the machine zero modes (MN-M)

Machine home switch on X12/14:	Without motor reference point MN-M 1930	without direction reversal switches: MN-M 19, 20 (see page 97), MN-M 21, 22 (see page 98)
MN-M 3 14, 19 30		with reversal switches: MN-M 23, 24, 25, 26 (see page 99), MN-M 27, 28, 29, 30 (see page 100)
	With motor reference point MN-M 3 14	without direction reversal switches: MN-M 3, 4 (see page 101), MN-M 5, 6 (see page 102)
		with reversal switches: MN-M 7, 8, 9, 10 (see page 103), MN-M 11,12,13, 14 (see page 103)
Without machine zero	Without motor reference point	MN-M 35: at the current Position (see page 104)
initiator on X12/14:	MN-M 17, 18, 35, 128, 129	MN-M 128, 129: while moving to block (see page 104)
MN-M 1, 2, 17, 18, 33 35, 128, 129, 130 133		With limit switch as machine zero: MN-M 17, 18 (see page 105)
55, 125, 125, 166 III 166	With motor reference point	Only motor reference: MN-M 33, 34 (see page 106), MN-M 130, 131 (see page 106)
	MN-M 1, 2, 33, 34, 130 133	With limit switch as machine zero: MN-M 1, 2 (see page 107), MN-M 132, 133 (see page 108)

Definition of terms / explanations:

Direction reversal

switches:

Motor zero point Zero pulse of the feedback

Motor feedback systems such as resolvers or SinCos® / EnDat give

one pulse per revolution.

Some motor feedback systems of direct drives do also have a zero

pulse, which is generated once or in defined intervals.

By interpreting the motor zero point (generally in connection with the

machine zero initiator) the machine zero can be defined more

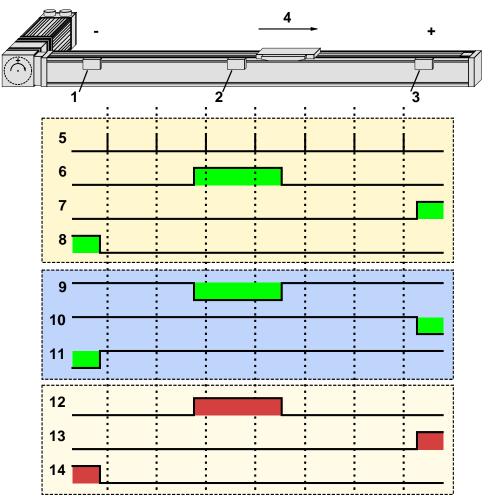
exactly.

Machine zero initiator: For creating the mechanical reference

Has a defined position within or on the edge of the travel range.

Initiators on the edge of the travel range, which are used only with a machine zero run in order to detect the end of the travel range.

In some cases, the function "direction reversal via Stromschwelle" is also possible, then you will need no initiator, Compax3 detects the


end of the travel range via the threshold. Please observe the

respective notes.

During operation, the direction reversal switches are often used as

limit switches.

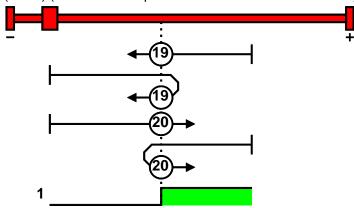
Example axis with the initiator signals

- Direction reversal / end switch on the negative end of the travel range (the assignment of the reversal / end switch inputs (see page 113) to travel range side can be changed).
- 2: Machine zero initiator (can, in this example, be released to 2 sides)
- 3: Direction reversal / end switch on the positive end of the travel range (the assignment of the reversal / end switch inputs (see page 113) to travel range side can be changed).
- 4: Positive direction of movement
- 5: Signals of the motor zero point (zero pulse of the motor feedback)
- 6: Signal of the machine zero initiator (without inversion of the initiator logic (see page 113)).
- 7: Signal of the direction reversal resp. end switch on the positive end of the travel range (without inversion of the initiator logic).
- 8: Signal of the direction reversal / resp. end switch on the negative end of the travel range (without inversion of the initiator logic).
- Signal of the machine zero initiator (with inversion of the initiator logic (see page 113)).
- 10: Signal of the direction reversal / resp. end switch on the positive end of the travel range (with inversion of the initiator logic).
- 11: Signal of the direction reversal / resp. end switch on the negative end of the travel range (with inversion of the initiator logic).
- 12: Logic state of the home switch (independent of the inversion)
- 13: Logic state of the direction reversal resp. end switch on the positive end of the travel range (independent of the inversion)
- 14: Logic state of the direction reversal resp. end switch on the negative end of the travel range (independent of the inversion)

The following principle images of the individual machine zero modes always refer to the logic state (12, 13, 14) of the switches.

In this chapter you can read about:
Debouncing the machine zero input (X12/14)
Debouncing the machine zero input (X12/14)
A majority gate is used for debouncing. The signal is sampled every 0.5ms The debounce time determines the number of scans the majority gate will perform If the level of more than half of the signals was changed, the internal status will change. The debounce time can be set in the configuration wizard within the range of 0 20ms. The value 0 deactivates the debouncing.
Without motor reference point
In this chapter you can read about:
Without direction reversal switches
Without direction reversal switches
In this chapter you can read about:
MN-M 3.4: MN-Initiator = 1 on the positive side
In this chapter you can read about:

Parker EME Setting up Compax3


MN-M 19.20: MN-Initiator = 1 on the positive side

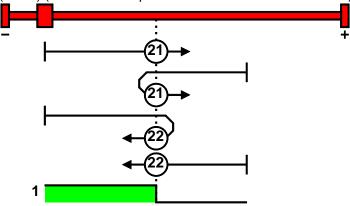
The MN initiator can be positioned at any location within the travel range. The travel range is then divided into 2 contiguous ranges: one range with deactivated MN initiator (left of the MN initiator) and one range with activated MN initiator (right of the MN initiator).

When the MN initiator is inactive (signal = 0) the search for the machine reference is in the positive travel direction.

Without motor zero point, without direction reversal switches **MN-M 19:**The negative edge of the MN proximity switch is used directly as MN (home) (the motor zero point remains without consideration).

MN-M 20: The positive edge of the MN proximity switch is used directly as MN (home) (the motor zero point remains without consideration).

1: logic state


MN-M 21.22: MN initiator = 1 on the negative side

The MN initiator can be positioned at any location within the travel range. The travel range is then divided into 2 contiguous ranges: one range with deactivated MN initiator (positive part of the travel range) and one range with activated MN initiator (negative part of the travel range).

When the MN initiator is inactive (signal = 0) the search for the machine reference is in the negative travel direction.

Without motor zero point, without direction reversal switches **MN-M 21:**The negative edge of the MN proximity switch is used directly as MN (home) (the motor zero point remains without consideration).

MN-M 22: The positive edge of the MN proximity switch is used directly as MN (home) (the motor zero point remains without consideration).

1: logic state

With direction reversal switches

In this chapter you can read about:
MN-M 1.2: Limit switch as machine zero
In this chapter you can read about:
in this chapter you can read about.
MN-M 70.10: Direction reversal switches on the positive side
In this chapter you can read about:
MN-M 230.26: Direction reversal switches on the positive side
travel range and can be deactivated to both sides.
The assignment of the direction reversal switches (see page 113) can be

Function Reversal via <current_following error_threshold>

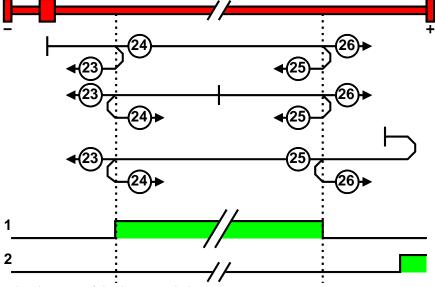
If no direction reversal switches are available, the reversal of direction can also be performed during the machine zero run via the function "direction reversal via <current_following error_shreshold>"

Here the drive runs towards the mechanical limit mounted at the end of the travel range.

When the settable <current_following error_threshold> is reached, the drive is braked and changes the travel direction.

changed.

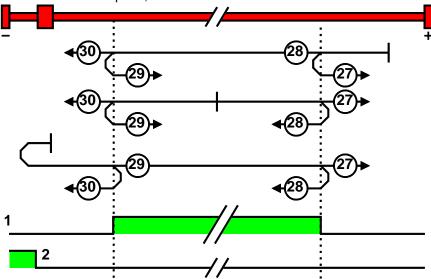
Caution!


Wrong settings can cause hazard for man and machine.

It is therefore essential to respect the following:

- ◆ Choose a low machine zero speed.
- Set the machine zero acceleration to a high value, so that the drive changes direction quickly, the value must, however, not be so high that the limit threshold is already reached by accelerating or decelerating (without mechanical limitation).
- ◆ The mechanical limitation as well as the load drain must be set so that they can absorb the resulting kinetic energy.

MN-M 23..0.26: Direction reversal switches on the positive side


Without motor zero point, with direction reversal switches

- 1: Logic state of the home switch
- 2: Logic state of the direction reversal switch

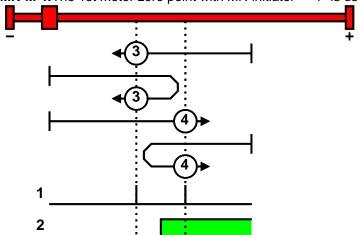
MN-M 27..0.30: With direction reversal switches on the negative side

Without motor zero point, with direction reversal switches

- Logic state of the home switch
 Logic state of the direction reversal switch

With motor reference point

In this chapter you can read about:	
Without direction reversal switches	101
With direction reversal switches	102

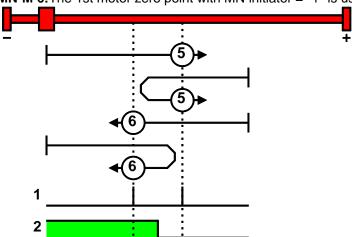

Without direction reversal switches

MN-M 3.4: MN-Initiator = 1 on the positive side

The MN initiator can be positioned at any location within the travel range. The travel range is then divided into 2 contiguous ranges: one range with deactivated MN initiator (left of the MN initiator) and one range with activated MN initiator (right of the MN initiator).

When the MN initiator is inactive (signal = 0) the search for the machine reference is in the positive travel direction.

With motor zero point, without direction reversal switches **MN-M 3:**The 1st motor zero point with MN initiator = "1" is used as MN. **MN-M 4:**The 1st motor zero point with MN initiator = "1" is used as MN.


- 1: Motor zero point
- 2: Logic state of the home switch

MN-M 5.6: MN initiator = 1 on the negative side

The MN initiator can be positioned at any location within the travel range. The travel range is then divided into 2 contiguous ranges: one range with deactivated MN initiator (positive part of the travel range) and one range with activated MN initiator (negative part of the travel range).

When the MN initiator is inactive (signal = 0) the search for the machine reference is in the negative travel direction.

With motor zero point, without direction reversal switches **MN-M 5:**The 1st motor zero point with MN proximity switch = "0" is used as MN. **MN-M 6:**The 1st motor zero point with MN initiator = "1" is used as MN.

- 1: Motor zero point
- 2: Logic state of the home switch

With direction reversal switches

Machine zero modes with a home switch which is activated in the middle of the travel range and can be deactivated to both sides.

The assignment of the direction reversal switches (see page 113) can be changed.

Function Reversal via <current_following error_threshold>

If no direction reversal switches are available, the reversal of direction can also be performed during the machine zero run via the function "direction reversal via <current_following error_shreshold>"

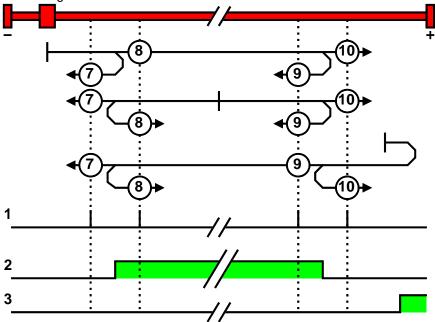
Here the drive runs towards the mechanical limit mounted at the end of the travel range.

When the settable <current_following error_threshold> is reached, the drive is braked and changes the travel direction.

Caution!

Wrong settings can cause hazard for man and machine.

It is therefore essential to respect the following:

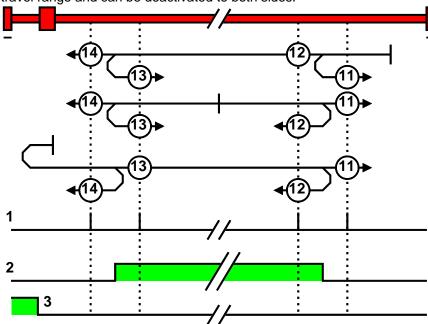

- ◆ Choose a low machine zero speed.
- ◆ Set the machine zero acceleration to a high value, so that the drive changes direction quickly, the value must, however, not be so high that the limit threshold is already reached by accelerating or decelerating (without mechanical limitation).
- ◆ The mechanical limitation as well as the load drain must be set so that they can absorb the resulting kinetic energy.

Parker EME Setting up Compax3

MN-M 7..0.10: Direction reversal switches on the positive side

With motor zero point, with direction reversal switches

Machine zero modes with a home switch which is activated in the middle of the travel range and can be deactivated to both sides.



- 1: Motor zero point
- 2: Logic state of the home switch
- 3: Logic state of the direction reversal switch

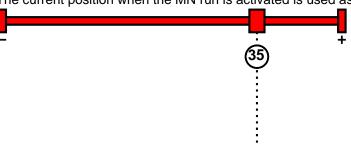
MN-M 11...14: With direction reversal switches on the negative side

With motor zero point, with direction reversal switches

Machine zero modes with a home switch which is activated in the middle of the travel range and can be deactivated to both sides.

- 1: Motor zero point
- 2: Logic state of the home switch
- 3: Logic state of the direction reversal switch

Machine zero modes without home switch


In this chapter you can read about:	
Without motor reference point	104
With motor reference point	106

Without motor reference point

In this chapter you can read about:	
MN-M 35: MN at the current position	104
MN-M 128/129: <current_following error_threshold=""> when moving to block</current_following>	104
MN-M 17.18: Limit switch as machine zero	105

MN-M 35: MN at the current position

The current position when the MN run is activated is used as an MN.

MN-M 128/129: <Current_following error_threshold> when moving to block

Without a MN (machine zero) initiator, an end of travel region (block) is used as MN (machine zero).

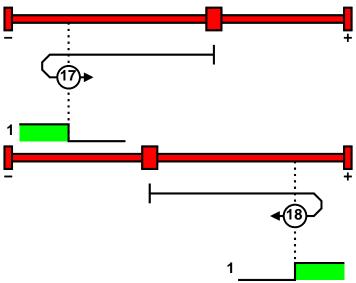
For this the Stromschwelle> is evaluated if the drive pushes against the end of the travel region. If the limit is exceeded, the MN is set. During the machine zero run (MN), the error reaction "following error" is deactivated.

Please observe:

The homing offset must be set so that the home (reference point) for positioning lies within the travel range.

MN-M 128:Travel in the positive direction to the end of the travel region

MN-M 129:Travel in the negative direction to the end of the travel region


Caution!

Wrong settings can cause hazard for man and machine.

It is therefore essential to respect the following:

- ◆ Choose a low machine zero speed.
- ◆ Set the machine zero acceleration to a high value, so that the drive changes direction quickly, the value must, however, not be so high that the limit threshold is already reached by accelerating or decelerating (without mechanical limitation).
- ◆ The mechanical limitation as well as the load drain must be set so that they can absorb the resulting kinetic energy.

MN-M 17.18: Limit switch as machine zero

1: Logic state of the direction reversal switch

Function Reversal via <current_following error_threshold>

If no direction reversal switches are available, the reversal of direction can also be performed during the machine zero run via the function "direction reversal via <current_following error_shreshold>"

Here the drive runs towards the mechanical limit mounted at the end of the travel range.

When the settable <current_following error_threshold> is reached, the drive is braked and changes the travel direction.

Caution!

Wrong settings can cause hazard for man and machine.

It is therefore essential to respect the following:

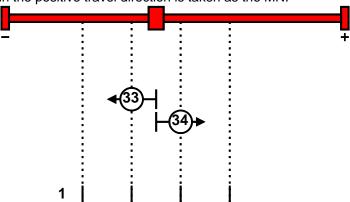
- ◆ Choose a low machine zero speed.
- ◆ Set the machine zero acceleration to a high value, so that the drive changes direction quickly, the value must, however, not be so high that the limit threshold is already reached by accelerating or decelerating (without mechanical limitation).
- ◆The mechanical limitation as well as the load drain must be set so that they can absorb the resulting kinetic energy.

With motor reference point

In this chapter you can read about:	
Machine zero only from motor reference	

Machine zero only from motor reference

In this chapter you can read about:	
MN-M 33,34: MN at motor zero point	106
MN-M 130, 131: Determine absolute position via distance coding	106


MN-M 33,34: MN at motor zero point

The motor reference point is now evaluated (no MN initiator):

Without home switch

MN-M 33:For a MN run, starting from the current position, the next motor zero point in the negative travel direction is taken as the MN.

MN-M 34:For a MN run, starting from the current position, the next motor zero point in the positive travel direction is taken as the MN.

1: Motor zero point

MN-M 130, 131: Determine absolute position via distance coding

Only for motor feedback with distance coding (the absolute position can be determined via the distance value).

Compax3 determines the absolute position from the distance of two signals and then stops the movement (does not automatically move to position 0).

1: Signals of the distance coding

With direction reversal switches

Machine zero modes with a home switch which is activated in the middle of the travel range and can be deactivated to both sides.

The assignment of the direction reversal switches (see page 113) can be changed.

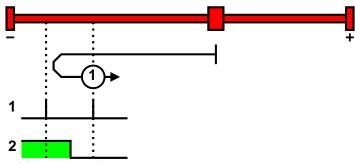
Function Reversal via <current_following error_threshold>

If no direction reversal switches are available, the reversal of direction can also be performed during the machine zero run via the function "direction reversal via <current_following error_shreshold>"

Here the drive runs towards the mechanical limit mounted at the end of the travel range.

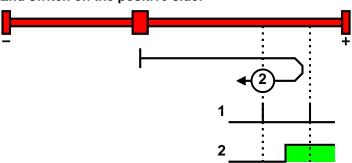
When the settable <current_following error_threshold> is reached, the drive is braked and changes the travel direction.

Caution!


Wrong settings can cause hazard for man and machine.

It is therefore essential to respect the following:

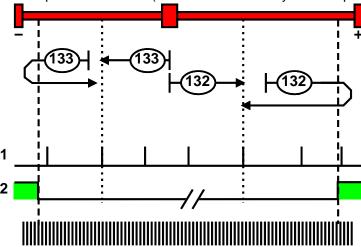
- ◆ Choose a low machine zero speed.
- ◆ Set the machine zero acceleration to a high value, so that the drive changes direction quickly, the value must, however, not be so high that the limit threshold is already reached by accelerating or decelerating (without mechanical limitation).
- ◆ The mechanical limitation as well as the load drain must be set so that they can absorb the resulting kinetic energy.


MN-M 1.2: Limit switch as machine zero

End switch on the negative side

- 1: Motor zero point
- 2: Logic state of the direction reversal switch

End switch on the positive side:

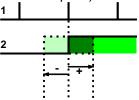


- 1: Motor zero point
- 2: Logic state of the direction reversal switch

MN-M 132, 133: Determine absolute position via distance coding with direction reversal switches

Only for motor feedback with distance coding (the absolute position can be determined via the distance value).

Compax3 determines the absolute position from the distance of two signals and then stops the movement (does not automatically move to position 0).



- 1: Signals of the distance coding
- 2: Logic state of the direction reversal switches

Adjusting the machine zero proximity switch

This is helpful in some cases with homing modes that work with the home switch and motor reference point.

If the motor reference point happens to coincide with the position of the MN initiator, there is a possibility that small movements in the motor position will cause the machine reference point to shift by one motor revolution (to the next motor reference point).

- 1: Motor zero point
- 2: Logic state of the home switch

A solution to this problem is to move the MN initiator by means of software. This is done using the value initiator adjustment.

Initiator adjustment

Unit: Motor angle in degrees	Range: -360 360	Standard value: 0
Move the machine reference initiator using software		

Machine reference offset

The machine reference offset is used to determine the actual reference point for positioning.

That is: Zero point = Machine zero + Machine zero offset

Note: If the machine zero proximity switch is at the positive end of the travel range, the machine zero offset must be = 0 or negative.

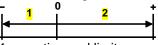
A change in the machine reference offset does not take effect until the next machine reference run.

Machine zero speed and acceleration

With these values you can define the motion profile of the machine zero run.

4.1.7.3 Travel Limit Settings

Software end limits

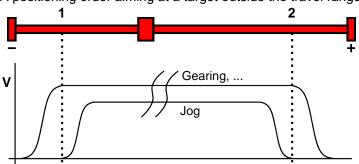

The error reaction when reaching the software end limits can be set: Possible settings for the error reaction are:

- ♦ No response
- ◆ downramp / stop
- ◆ Downramp / stromlos schalten (standard setting)

If "no reaction" was set, no software limits must be entered.

Software end limits:

The travel range is defined via the negative and positive end limits.



1: negative end limit

2: positive end limit

Software end limit in absolute operating mode

The positioning is restricted to the range between the travel limits. A positioning order aiming at a target outside the travel range is not executed.

- 1: negative end limit
- 2: positive end limit

The reference is the position reference point that was defined with the machine reference and the machine reference offset.

Software end limits in reset mode

The reset mode does not support software end limits

Software end limit in continuous mode

Each individual positioning is confined within the travel limits.

A positioning order aiming at a target outside the software end limits is not executed.

The reference is the respective current position.

Error when disregarding the software end limits

A software end limit error is triggered, if the position value exceeds an end limit.

For this, the position setpoint value is evaluated in energized state; in currentless state, the actual position value is evaluated.

Hysteresis in disabled state:

If the axis stands currentless at an end limit, another error may be reported due to position jitter after acknowledging the end limit error. To avoid this, a hysteresis surrounding the end limits was integrated (size corresponds to the size of the positioning window).

Only if the distance between axis and the end limits was larger than the positioning window, another end limit error will be detected

Error codes (see page 312) of the end limit errors:

0x7323 Error when disregarding the positive software end limit.

0x7324 Error when disregarding the negative software end limit.

Activating / deactivating the end limit error:

In the C3 ServoManager under configuration: End limits, the error can be (de)activated.

For IEC-programmable devices with the "C3 ErrorMask" module.

Behavior after the system is turned on

The end limits are not active after switching on. The end limits do not refer to the position reference point until after a machine reference run.

During homing run the end limits are not monitored.

With a Multiturn encoder or with active Multiturn emulation, the limit is valid immediately after switching on.

Behavior outside the travel range

1. If the software end limit errors are deactivated, all movements are possible.

2. if the software end limit errors are activated:

After disregarding the software end limits, an error is triggered. First of all, this error must be acknowledged.

Then a direction block is activated: only motion commands in the direction of the travel range are executed. These will not trigger another error.

Motion commands inciting a movement in the opposite direction of the travel range are blocked and will trigger another error.

1: negative end limit

2: positive end limit

Notes on special feedback systems (Feedback F12)

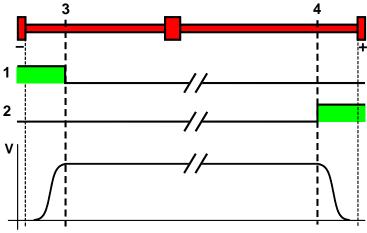
During automatic commutation, the end limit monitoring is deactivated!

Behavior with software end limits of a referenced axis

	Position within target outside	Position outside target outside and aiming in the opposite direction of the travel range	Position outside target within or aiming in the direction of the travel range
JOG +/-	◆ Positioning up to the end limits◆ No Error	◆ No positioning ◆ No Error	◆ Positioning
MoveAbs, MoveRel, RegSearch, RegMove	◆ No positioning ◆ Error	◆ No positioning ◆ Error	◆ Positioning
Gearing	◆ Positioning up to the end limits◆ Error	◆No positioning ◆Error	◆No positioning ◆Error
Velocity	◆ Positioning up to the end limits◆ Error	◆ No positioning ◆ Error	◆ Positioning

Hardware end limits

The error reaction when reaching the hardware end limits can be set:


Possible settings for the error reaction are:

- ◆ No response
- ◆ downramp / stop
- ◆ Downramp / stromlos schalten (standard setting)

Hardware end limits are realized with the aid of end switches.

These are connected to X12/12 (input 5) and X12/13 (input 6) and can be (de)activated separately in the C3 ServoManager under Configuration: End limits. After a limit switch has been detected, the drive decelerates with the ramp values set for errors (error code 0x54A0 at X12/12 active, 0x54A1 at X12/13 active) and the motor is switched to currentless.

Please make sure that after the detection of the end switch there is enough travel path left up to the limit stop.

- 1: Limit switch E5 (X12/12)
- 2: Limit switch E6 (X12/13)
- 3: Limit switch position E5 (X12/12)
- 4: Limit switch position E6 (X12/13)

The assignment of the end switches (see page 113) can be changed!

Please note:

The limit switches must be positioned so that they cannot be released towards the

side to be limited.

Limit switch / direction reversal switch Limit switches functioning as direction reversal switches during homing run, will not trigger a limit switch error.

Behavior in the case of an active limit switch

The error can be acknowledged with activated limit switch.

The drive can then be moved out of the end switch range with a normal positioning.

The direction of the movement is verified!

Only the direction towards the travel range is allowed.

Debouncing the limit switches

A majority gate is used for debouncing.

The signal is sampled every 0.5ms

The debounce time determines the number of scans the majority gate will perform. If the level of more than half of the signals was changed, the internal status will change.

The debounce time can be set in the configuration wizard within the range of 0 ... 20ms.

The value 0 deactivates the debouncing.

4.1.7.4 Change assignment direction reversal / limit switches

If this function is not activated, the direction reversal / end switches are assigned as follows:

Direction reversal / limit switch on E5 (X12/12): negative side of the travel range Direction reversal / limit switch on E6 (X12/13): Direction reversal / limit switch on E6 (X12/13):

Change assignment of direction reversal / limit switch is

activated

If this function is activated, the direction reversal / limit switches are assigned as follows:

Direction reversal / limit switch on **E5** (X12/12): **positive side** of the travel range Direction reversal / limit switch on **E6** (X12/13): **negative side** of the travel range

4.1.7.5 Change initiator logic

The initiator logic of the limit switches (this does also apply for the direction reversal switches) and the machine zero initiator can be changed separately.

- ◆ Limit switch E5 low active
- ◆ Limit switch E6 low active
- ◆ Home switch E7 low active

In the basic settings the inversion is deactivated, so that the signals are "high active".

With this setting the inputs I5 to I7 can even be switched within their logic, if they are not used as direction reversal/limit switches or machine zero.

4.1.8. Defining jerk / ramps

In this chapter you can read about:	
Speed for positioning	114
Acceleration for positioning and velocity control	114
Acceleration / deceleration for positioning	
Jerk limit for positioning	114
Ramp upon error and de-energize	115
Jerk for STOP, JOG and error	

4.1.8.1 Speed for positioning

Standard speed for all positionings and motion functions.

The value can be changed during operation via the bus or via the motion sets.

This setting is not relevant for the "rotation speed" operating mode.

4.1.8.2 Acceleration for positioning and velocity control

Standard acceleration for all positionings and motion functions.

The value can be changed during operation via the bus or via the motion sets.

4.1.8.3 Acceleration / deceleration for positioning

Standard deceleration for all positionings and motion functions.

The value can be changed during operation via the bus or via the motion sets.

If "0" is entered, the acceleration value is accepted as deceleration.

4.1.8.4 Jerk limit for positioning

Standard jerk for all positionings and motion functions.

The value can be changed during operation via the bus or via the motion sets.

In the operating modes:

- Speed control
- Velocity and
- ◆ Gearing

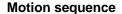
the jerk is not limited.

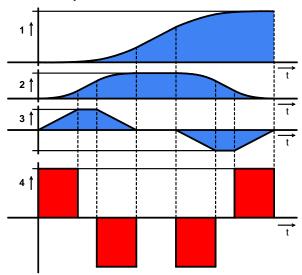
Jerk

The jerk (marked with "4" in the drawing below) describes the change in acceleration (derivation of the acceleration)

The maximum change in acceleration is limited via the jerk limitation.

A motion process generally starts from a standstill, accelerates constantly at the specified acceleration to then move at the selected speed to the target position.


The drive is brought to a stop before the target position with the delay that has been set in such a manner as to come to a complete stop at the target position. To reach the set acceleration and deceleration, the drive must change the acceleration (from 0 to the set value or from the set value to 0).

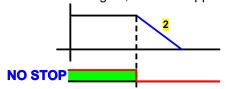

This change in speed is limited by the maximum jerk.

Without jerk according to VDI2143

According to VDI2143 the jerk is defined (other than here) as the jump in acceleration (infinite value of the jerk function).

This means that positionings with Compax3 are without jerk according to VDI2143, as the value of the jerk function is limited.

- 1: Position
- 2: Velocity
- 3: Acceleration
- 4: Jerk


High changes in acceleration (high jerks) often have negative effects on the mechanical systems involved. There is a danger that mechanical resonance points will be excited or that impacts will be caused by existing mechanical slack points. You can reduce these problems to a minimum by specifying the maximum jerk.

Jerk

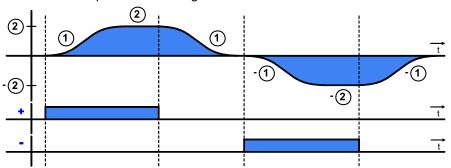
Unit: Length unit/s ³	Range: 0 10 000 000	Standard value:
		1 000 000

Deceleration on STOP

After a STOP signal, the drive applies the brakes with the delay that is set (2).

NO STOP: control.3 = "0" (Quick Stop: Transition 11 of the **Status machine** (see page 286))

4.1.8.5 Ramp upon error and de-energize


Ramp (delay) upon error and "De-energize"

3: Deceleration on error (status.3 = "1"), Disable Voltage (control.1 = "0" transition 9 of the status machine) and Enable Operation (CW.3 = "0" transition 5 of the status machine).

JOG acceleration/deceleration and speed control

You can set the motion profile for moving with JOG+ or JOG- here.

- 1: Manual acceleration / -deceleration
- 2: Manual speed
- +: Manual+ (control.4 ="1")
- -: Manual- (control.5 ="1")

Only in "manual" operating mode (Ethernet Powerlink-No.EPL No. 0x6060 (object 1100.5) = -1)

4.1.8.6 Jerk for STOP, JOG and error

The jerk set here applies for:

- ◆the STOP ramp
- ◆ Manual motion
- ◆ The ramp for the machine reference run

Description of jerk (see page 114)

Jerk

Unit: Length unit/s ³	Range: 0 10 000 000	Standard value:	
		1 000 000	

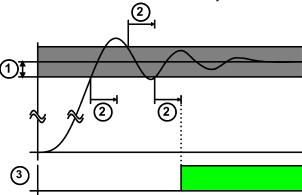
4.1.9. Limit and Monitoring Settings

In this chapter you can read about:		
Current (Torque) Limit	116	
Positioning window - Position reached	117	
Following error limit	118	
Maximum aparating apard	110	

4.1.9.1 Current (Torque) Limit

The current required by the speed controller is limited to the current limit.

4.1.9.2 Positioning window - Position reached


Position reached indicates that the target position is located within the position window.

In addition to the position window, a position window time is supported. If the actual position goes inside the position window, the position window time is started. If the actual position is still inside the position window after the position window time, "Position reached" is set.

If the actual position leaves the position window within the position window time, the position window time is started again.

When the actual position leaves the position window with Position reached = "1", Position reached is immediately reset to "0".

Position monitoring is active even if the position leaves the position window because of measures taken externally.

- 1: Positioning window
- 2: positioning window time
- 3: Setpoint position reached (state / status word 1 Bit 10 = "1") and O1 (X12/3)

Linkage to the setpoint value

The signal "position reached" can be linked to the setpoint value (can be configured in the ServoManager).

In addition, the internal setpoint value generation is evaluated.

The positioning window is only evaluated with a constant internal setpoint value.

4.1.9.3 Following error limit

The error reaction upon a following error can be set:

Possible settings for the error reaction are:

- ◆ No response
- ◆ downramp / stop
- Downramp / stromlos schalten (standard setting)

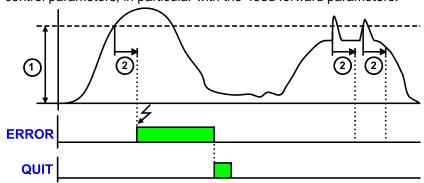
The following error is a dynamic error.

The dynamic difference between the setpoint position and the actual position during a positioning is called the following error. Do not confuse this with the static difference which is always 0; the target position is always reached exactly.

The change of position over time can be specified exactly using the parameters jerk, acceleration and speed. The integrated Setpoint value generator calculates the course of the target position. Because of the delay in the feedback loop, the actual position does not follow the setpoint position exactly. This difference is referred to as the following error.

Disadvantages caused by a following error

In joint operation of several servo controllers (e.g. master controller and slave controller), following errors lead to problems due to the dynamic position differences, and a large following error can lead to positioning overshoot.


Error message

If the following error exceeds the specified following error limit, the "following error time" then expires. If the following error is even greater than the following error limit at the end of the following error time, an error is reported.

If the following error falls short of the following error limit, a new following error time is then started.

Minimizing the following error

The following error can be minimized with the help of the extended (advanced) control parameters, in particular with the feed forward parameters.

- 1: Tracking error limit
- 2: Tracking error time

ERROR: Malfunction (state - / status word 1 Bit 3) and O0 (X12/2)

QUIT:Control word 1 Bit 7 or I0 (X12/6)

4.1.9.4 Maximum operating speed

The speed limitation is derived from the maximum operating speed. In order to ensure control margins, the speed is limited to a higher value.

The speed setpoint value is actively limited to 1.1 times the given value. If the speed actual value exceeds the preset maximum speed by 21% (="switching off limit speed"), error 0x7310 is triggered.

4.1.10. Encoder Simulation

You can make use of a permanently integrated encoder simulation feature to make the actual position value available to additional servo drives or other automation components.

Caution!

- ◆The encoder simulation is not possible at the same time as the encoder input resp. the step/direction input or the SSI interface. The same interface is used here.
- A direction reversal configured in the C3 ServoManager does not affect the encoder simulation.

The direction of rotation of the encoder simulation can, however, be changed via the feedback direction in the MotorManager.

Simulated Encoder Output Resolution

Unit: Increments per revolution / pitch	Range: 4 - 16384 Standard value: 1024
Any resolution can be set	
Limit frequency: 620kHz i. e. for:	<u>.</u>
Increments per revolution	Max. speed
1024	36000 min ⁻¹
4096	9000 min ⁻¹
16384	2250 min ⁻¹

4.1.10.1 Encoder bypass with Feedback module F12 (for direct drives)

If the feedback module F12 is used, the encoder signals can be placed directly (Bypass) to the encoder interface (X11: same assignment as encoder simulation) for further use. Sine/Cosine signals are directly converted into encoder signals, however without zero pulse.

The advantage is, that the limit frequency is 5MHz instead of 620kHz.

The direction of rotation is only defined via the encoder wiring; a direction inversion configured in the C3 ServoManager does not have any consequence.

4.1.11. I/O Assignment

- ◆ For intra-device inputs I0 .. I3 as well as the outputs O0 ... O3 you can choose between fixed or free assignment (see below).
- ◆ Control via Ethernet Powerlink does not require an M option (M10 / M12).
- ♦ If an M option is available, 12 inputs/outputs (ports) are freely assignable. These can be configured as inputs or outputs by groups of four and be activated resp. read via Object 121.2 and Object 133.3.
- ◆ The signal inputs I4 ... I7 are fixedly assigned If the respective functions are not needed, these inputs can also be used for control.

I5 and I6 can, for example, be used as free inputs if the limit switch function is deactivated.

Assignment of the intra-device inputs and outputs

PIN X12	Input/output	High density/Sub D		
1	Output	+24VDC output (max. 400mA)		
2	O0	No Error		
3	O1	Position / velocity / gear synchronization reached (max. 100mA)	Only for "fixed assignment"	
4	O2	No power output stage current (max. 100mA)	Functions are	
5	O3	Motor stationary with current, with setpoint 0 (max. 100mA)	available, if "Fixed assignment" was	
6	IO="1":	Quit (positive edge) / Energize the motor The address of the current motion set is read in new.	selected for the I/O assignment in the configuration wizard	
	10="0"	Motor deenergized with delay		
7	l1	No stop		
8	12	JOG +		
9	13	JOG -		
10	14	Reg input		
11	E	24V input for the digital outputs Pins 2 t	to 5	
12	15	Limit switch 1		
13	16	Limit switch 2		
14	17	Machine reference initiator		
15	Output	Gnd 24 V		

All inputs and outputs have 24V level.

Maximum capacitive loading of the outputs: 50nF (max. 4 Compax3-inputs can be connected)

Input-/Output extension (see page 362)

Optimization window display

The display of the digital inputs in the optimization window of the C3 ServoManager does not correspond to the physical status (24Volt=on, 0Volt=off) but to the logic status: If the function of an input or output is inverted (e.g. limit switch, negatively switching), the corresponding display (LED symbol in the optimization window) is OFF with 24Volts at the input and ON with 0 Volts at the input.

For intra-device inputs I0 .. I3 as well as the outputs O0 ... O3 you can choose between fixed or free assignment.

With fixed assignment of the intra-device inputs I0 ... I3, the respective

functions can either be triggered via the inputs or via Ethernet Powerlink It applies:

With "guiding via interface" (control word 1 bit 11 = "0")

- ◆ Enable Voltage: I0 ="1" AND control word 1 Bit 1 ="1"
- ◆ Ackn is triggered via control word 1 bit 7 ackn via I0 is not possible.
- ◆ Stop is active, if I1 = "0"
- ◆ Manual+ and Manual- Inputs I2, I3 do not have a function.

With "No guiding via interface" (control word 1 bit 11 = "1")

Control word is not effective:

- ◆ Energize motor / ackn: I0 = "1"
- ◆ Stop is active, if I1 = "0"
- ◆ Manual+ and Manual- via Inputs I2, I3.

Status word

- The status word is always updated
- ◆ O0 corresponds to status word 1 Bit 3
- ◆O1 corresponds to status word 1 bit 10
- ◆O3 corresponds to the status "operation enable"

4.1.12. Position mode in reset operation

In reset operation (activated by the configured reset distance), additional positioning functions are possible for absolute positionings:

All directions	Standard positioning mode
Positive direction	Positioning only in positive direction
Shortest path	Positioning on the shortest path
Negative direction	Positioning only in negative direction
Actual direction	Positioning by keeping the actual direction of travel

Dynamic positioning

In dynamic positioning, a decision concerning the positioning travel is not taken on the basis of the actual position, but on the basis of the braking position resulting from the motion parameters.

Please observe:

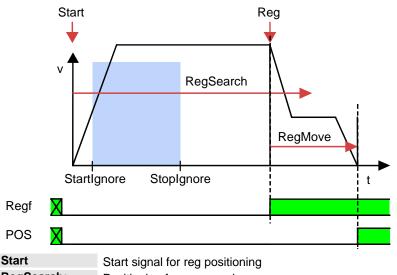
- ◆ In the event of positioning specifications below zero and higher than or equal to the reset distance, this function is deactivated.
- ◆ The positioning functions are neither effective in test movements nor in a positioning after homing travel.
- ◆ In the event of "shortest path" the motion is not defined for a positioning by half the reset distance.

4.1.12.1 Examples in the help file

In the help file you can find here examples for the functioning of the individual positioning modes.

4.1.13. Reg-related positioning / defining ignore zone

These settings are only required in connection with the function "**reg-related positioning** (see page 125)"


Within the reg window a reg signal will be ignored.

The reg window is defined by

- beginning of the ignore zone and
- ◆ End of Registration lock-out zone (StopIgnore)

Beginning and end of the ignore zone are absolute values and therefore are also valid with negative position values.

This reg window is valid for all reg position sets.

Start	Start signal for reg positioning
RegSearch:	Positioning for reg search
RegMove:	Positioning according to reg
StartIgnore:	Reg window: Beginning of Registration lock-out zone (StartIgnore)
Stoplgnore:	Reg window: End of Registration lock-out zone (StopIgnore)
Reg:	Reg signal

Regf Signal: Reg mark detected (Status word 1 Bit 15)

POS: Signal: Position reached

(Ausgang A1: X12/3 oder Zustandswort 1 Bit 9)

4.1.14. Write into set table

The motion sets are stored in a set table.

The table rows define always one motion set, in the columns the respective motion parameters of a motion set are stored.

parameters of a motion set are stored.				
	Motion param	neters		
Machine reference				
run				
Set 1				
set no. 2				
Set 31				

exact description (see page 284).

31 motion sets are possible.

The motion set to be executed is selected via Statuswort 2.

For the motion sets different motion functions with different motion parameters are available:

◆ Empty: empty motion set

◆ MoveAbs (see page 124): absolute positioning

◆ MoveReI (see page 124): relative Positioning

◆ Gearing (see page 131): electronic gearbox

◆ RegSearch (see page 125): Registration mark-related positioning

(uses 2 motion sets: RegSearch and RegMove)

◆ Velocity (see page 132): velocity control

◆ Stop: Stop movement

For each motion set you can define programmable status bits (PSBs), which will then be put out after the termination of the motion set.

Machine reference run

A start signal at address = 0 (motion set 0) triggers a machine zero run.

4.1.14.1 Programmable status bits (PSBs)

The successful execution of a motion set can be queried via the PSBs.

PSBs: Bit 12, 13 and 14 of status word 2.

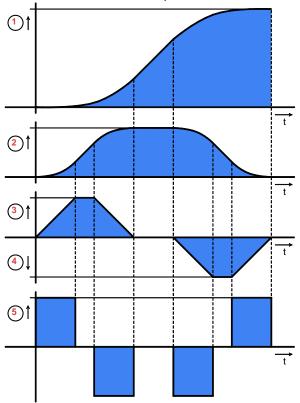
Definition of the pattern:

The settings for the PSBs are made in the respective motion set

You can set 3 assignments for the respective bits:
X: No change
Output / Bit is not influenced

0: Inactive Output / Bit is set to 0

1: Active Output / Bit is set to 1 resp. 24VDC


Storage of the PSBs (see page 284).

4.1.15. Motion functions

In this chapter you can read about:	
MoveAbs and MoveRel	124
Reg-related positioning (RegSearch, RegMove)	125
Electronic gearbox (Gearing)	131
Speed specification (Velocity)	
Stop command (Stop)	

4.1.15.1 **MoveAbs and MoveRel**

A motion set defines a complete motion with all settable parameters.

- Target position
 Travel speed
 Maximum acceleration
- 4: Maximum deceleration
- 5: Maximum Jerk (see page 114)

Motion functions MoveAbs: Absolute positioning.

MoveRel: Relative positioning

Target position / Target position of the choesen unit of measure.

distance Distance with MoveRel

Velocity Speed in length unit/s

Acceleration Acceleration in length unit/s²

Deceleration Deceleration in length unit/s²

Jerk Jerk in unit of measure/s3

You can optimize the motion profile data with the "ProfilViewer" (see page 266)

software tool!

4.1.15.2 Reg-related positioning (RegSearch, RegMove)

For registration mark-related positioning, 2 motions are defined.

RegSearch Search movements: Relative positioning in order to search for an external signal -

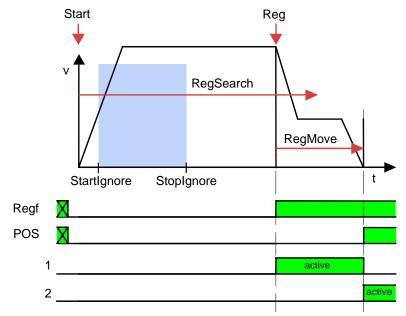
of a reg

This may, for example, be a reg on a product.

RegMove The external signal interrupts the search movement and the second movement by

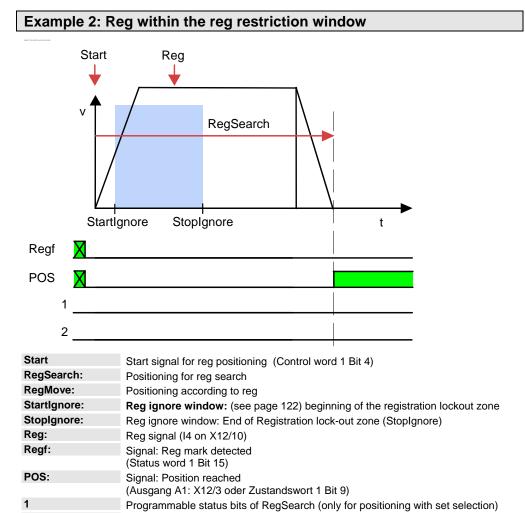
the predefined offset follows without transition. The drive comes to a standstill at

the postion of the mark signal + the configured offset.


Accuracy of the reg detection: <1µs

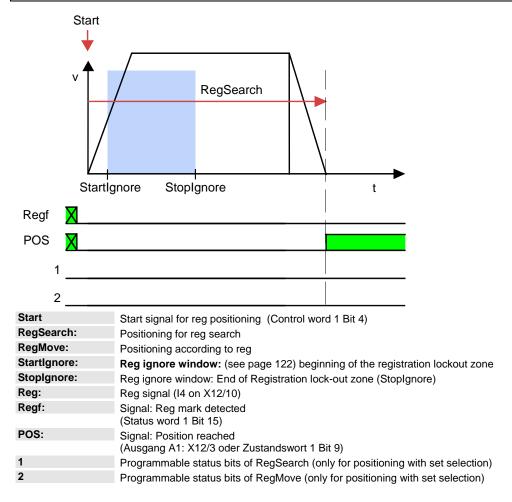
Please note:

The reg restriction window is the same for all reg motion sets!

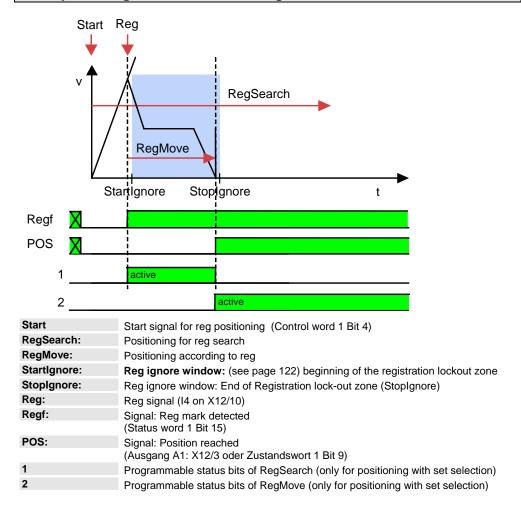

Example 1: Reg comes after the reg restriction window

Example 1: Reg comes after the reg restriction window

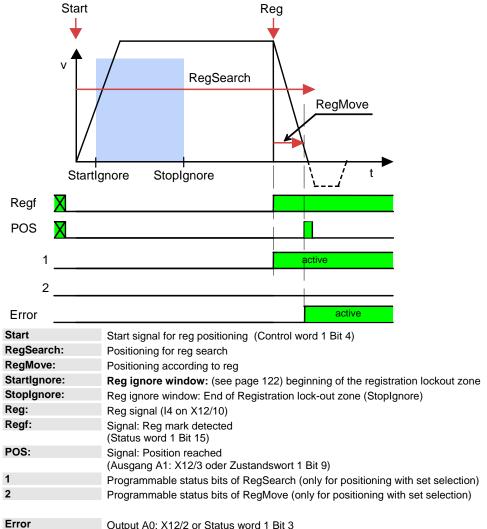
Start	Start signal for reg positioning (Control word 1 Bit 4)
RegSearch:	Positioning for reg search
RegMove:	Positioning according to reg
StartIgnore:	Reg ignore window: (see page 122) beginning of the registration lockout zone
Stoplgnore:	Reg ignore window: End of Registration lock-out zone (StopIgnore)
Reg:	Reg signal (I4 on X12/10)
Regf:	Signal: Reg mark detected
	(Status word 1 Bit 15)
POS:	Signal: Position reached
	(Ausgang A1: X12/3 oder Zustandswort 1 Bit 9)
1	Programmable status bits of RegSearch (only for positioning with set selection)
2	Programmable status bits of RegMove (only for positioning with set selection)


2

The reg is ignored; the drive moves to the target position from the RegSearch motion set.


Programmable status bits of RegMove (only for positioning with set selection)

Example 3: Reg is missing or comes after termination of the RegSearch motion set


The drive moves to the target position from the RegSearch motion set

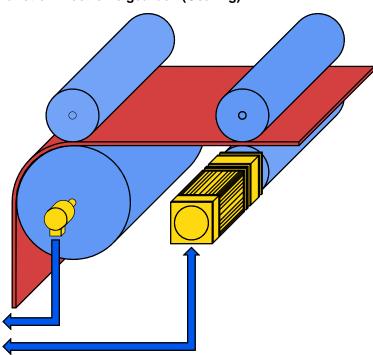
Example 4: Reg comes before the reg restriction window

As from the mark, the drive moves on relatively by the offset defined in RegMove and then stops at that position (same behavior as in exampe 1).

Example 5: The registration mark comes after the reg retriction window, registration mark can, however, not be reached without direction reversal

Output A0: X12/2 or Status word 1 Bit 3

Position reached can be activated for a short period, if the position window was not linked to the command value.


4.1.15.3 Electronic gearbox (Gearing)

The motion function "Gearing" (electronic gearbox) moves Compax3 synchronously with a leading axis.

A 1:1 synchronity or any transmission ratio can be selected via the gear factor.

A negative sign – which means reversal of direction – is permitted.

Function Electronic gearbox (Gearing)

The position of a master axis can be detected via:

- ◆+/-10V analog input
- ◆ Step / direction input (X11/6, 7, 8, 12)
- ♦ the encoder input (X11/6, 7, 8, 12) or
- ◆HEDA, if Compax3 is used as master drive.

The master signal detection is configured under synchronization.

Settings of the "Gearing" motion function

Gearing numerator / Gearing denominator:

Transmission ratio slave / master

The transmission ratio (gear factor) can be entered in "Gearing numerator" (at "Gearing denominator" = 1).

You will obtain an exact image of a non-integral transmission ratio by entering the value integrally as a fraction with numerator and denominator. This helps to avoid long-term drifts

That is:

Slave = Gearing numerator

Master Gearing

denominator

Acceleration

Here you can define the acceleration for the drive to reach the desired synchronity.

Dynamic change of the gear factor

You can switch dynamically between 2 gearing motion sets with different gear factors.

The set acceleration counts as deceleration if the gear factor is reduced.

Dynamic switching between the gearing motion function and positioning functions (MoveAbs, MoveRel, RegSearch) is possible.

Synchronicity: with the "Gear reached" signal (Ausgang A1: X12/3 oder Zustandswort 1 Bit 9) the

reaching of the synchronicity is displayed.

The signal "Gear reached" is reset if the synchronicity is exited.

The programmable status bits (PSBs) are activated via the signal "Gear reached"

difference is made up afterwards.

Note: Jerk is not limited.

4.1.15.4 Speed specification (Velocity)

This motion function is defined by velocity and acceleration.

An active motion set is interrupted by:

◆ Stop or

Start of a different set.

As soon as the setpoint speed is reached, "speed reached" (Ausgang A1: X12/3 oder Zustandswort 1 Bit 9) as well as the defined status bits (PSBs) are activated.

Note: Position control is active, i.e. the following error caused by limitations will be made

up.

Jerk is not limited.

4.1.15.5 Stop command (Stop)

The Stop set interrupts the current motion set (Stop with interruption).

This motion function is defined by the deceleration and the jerk of the drive when coming to a standstill.

As soon as the drive is at standstill "position reached" (Ausgang A1: X12/3 oder Zustandswort 1 Bit 9) as well as the defined status bits (PSBs) are activated.

Note: The stop command (as motion function) is not effective during the machine zero

run.

4.1.16. Error response

Under "configuring: Under "configuration: error reaction" you can change the error reaction for individual **errors** (see page 312) (the error no. which can be influenced is displayed).

Possible settings for the error reaction are:

- ◆ No response
- downramp / stop
- Downramp / stromlos schalten (standard setting)

Note on Compax3H:

The error reaction upon the "low voltage DC" error (0x32229 is fixed to "downramp/deenergize" for Compax3H.

4.1.17. Configuration name / comments

Here you can name the current configuration as well as write a comment. Then you can download the configuration settings or, in T30 or T40 devices, perform a complete Download (with IEC program and curve).

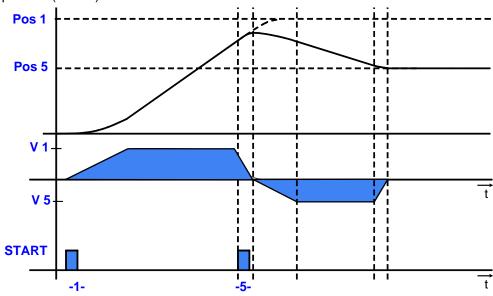
Caution!

Deactivate the drive before downloading the configuration software! ${\bf N.B.!}$

Incorrect configuration settings entail danger when activating the drive. Therefore take special safety precautions to protect the travel range of the system.

Mechanical limit values!

Observe the limit values of the mechanical components! Ignoring the limit values can lead to destruction of the mechanical components.


4.1.18. Dynamic positioning

You can change over to a new motion set during a positioning process. Thereby the following conditions apply:

- Acceleration and deceleration remain constant independent of the values predefined in the new motion set.
- ◆ The jerk, too, remains constant.
- ◆ The velocity of the new motion set is activated.
- ◆The drive moves to the target position defined in the new motion set.
- ◆ The new motion set address must not equal 0.

Example:

MoveAbs (Target position POS1) is interrupted by a new MoveAbs with target position (POS 5)

The following dynamic transitions are supported:

Motion function in progress	Possible dynamic change to the motion function:
MoveAbs, MoveRel, RegSearch, RegMove, Velocity	MoveAbs, MoveRel, Velocity, RegSearch, Gearing
Gearing	MoveAbs, MoveRel, RegSearch, Gearing (other gearing factor)
Stop	-

Prerequisite:

Prerequisite for dynamic positioning is:

Control word 1 Bit 5 = "1" (Change Set immediately)

4.2 Configuring the signal Source

In this chapter you can read about:
Select signal source for Gearing
Load control

4.2.1. Select signal source for Gearing

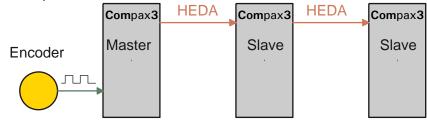
In this chapter you can read about:	
Signal source HEDA	136
Encoder A/B 5V, step/direction or SSI feedback as signal source	
±/-10V analog speed setpoint value as signal source	138

Here the signal source is configured for the motion function "Gearing" (electronic gearbox).

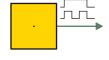
Available are:

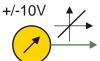
Gearing input signal source

- ◆The HEDA real-time bus (M10 or M11 option) directly from a Compax3 master axis
- ◆an encoder signal A/B 5V
- ◆a step/direction signal 5V or
- ◆ a velocity as analog value +/-10V


HEDA operating mode **HEDA** as Master

Under signal source gearing "not configured" must be set!


If an existing HEDA option (M10 or M11) is not used as signal source, you can transmit the following signals for a slave axis via HEDA:


- ◆ Process setpoint position (Object 2000.1)
- ◆ Process actual position (Object 2200.2)
- Position from external setpoint (object 2020.1)
 Signal read in via analog output 0, encoder input or step / direction input in the master.

Principle:

Step / Direction

Attention in the case of a configuration download with master-slave coupling (electronic gearbox, cam)

Switch Compax3 to currentless before starting the configuration download: Master and Slave axis

4.2.1.1 Signal source HEDA

Signal source is a Compax3 master axis in which the HEDA operating mode "HEDA master" is set.

Please enter besides the desired error reaction an individual HEDA axis address in the range from 1 ...32.

The dimensional reference to the master is established via the following settings:

- ◆ Travel path per motor revolution master axis numerator
 With denominator = 1 the value can be entered directly.
 Long-term drift can be avoided by entering non-integral values integrally as a fraction with numerator and denominator.
- ◆ Travel distance per motor revolution master axis denominator If required the direction of rotation of the master axis read in can be changed.

4.2.1.2 Encoder A/B 5V, step/direction or SSI feedback as signal source

Caution!

- ◆The encoder simulation is not possible at the same time as the encoder input resp. the step/direction input or the SSI interface. The same interface is used here.
- A direction reversal configured in the C3 ServoManager does not affect the encoder simulation.

The direction of rotation of the encoder simulation can, however, be changed via the feedback direction in the MotorManager.

The dimensional reference to the master is established via the following settings:

- ◆Travel path per motor revolution master axis numerator
 With denominator = 1 the value can be entered directly.
 Long-term drift can be avoided by entering non-integral values integrally as a fraction with numerator and denominator.
- ◆ Travel distance per motor revolution master axis denominator
- ◆Increments per revolution of the master axis

If required the direction of rotation of the master axis read in can be changed.

Example: Electronic gearbox with position detection via encoder

Reference to master axis

The reference to the master axis is established via the increments per revolution and the travel path per revolution of the master axis (corresponds to the circumference of the measuring wheel).

The rule for this is:

MasterPos: Master Position

Master I: master increments read in

I_M: Increments per revolution of the master axis

External signal source

Encoder with 1024 increments per master revolution and a circumference of the measuring wheel of 40mm.

Settings: Travel path per revolution of the master axis numerator = 40
Travel path per revolution of the master axis denominator = 1

Increments per revolution of the master axis = 1024

Configuration Reference system of Slave axis: Unit of measure [mm]

wizard: Travel path per revolution numerator = 1

Travel path per revolution denominator = 1

Gearing: Gearing numerator = 2 Gearing denominator = 1

This results in the following interrelations:

If the measuring wheel moves by 40mm (1 master revolution), the slave axis will move by 80mm.

(1) set into (2) and with numerical values results with 1024 increments read in (=1 Master revolution):

Slave unit = 1024 *
$$\frac{1}{1024}$$
 * $\frac{40 \text{mm}}{1}$ * $\frac{2}{1}$ = 80 mm

Master - Position = +40mm => Slave - Position = +80mm

Structure:

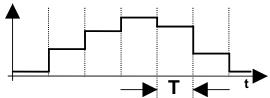
Master	Z1	Mast	erPos	Gearing numerator	Slave -	N2	Slave_U	Gearbox	Load
	N1			Gearing	Units	Z2	to motor		
				denominator]
				etailed structure ima	age				
			W	/ith:					
MD =	MD = Z1 * Travel Distance per Master Axis revolution Entry in the "configuration"								
			` _	its/rev)			of the signa	I source" w	izard
	N1 Travel Distance per Master Axis revolution								
			- Deno	minator					
SD =	Z	2 *		path per revolution	slave axis		Entry in the	_	tion
			numer				of the signa	al source"	
	N:	2		path per revolution	slave axis		wizard		
			denon	ninator					
-	Feed of the master axis								
SD:	SD: Feed of the slave axis								

4.2.1.3 +/-10V analog speed setpoint value as signal source

The velocity of the master is read in via the analog channel 0 (X11/9 and X11/11). From this value a position is internally derived, from which then the motion of the drive is derived with reference to the transmission ratio.

Without limitation effect applies:

Velocity of the master * (Gearing numerator / gearing denominator) = velocity of the slave


The reference to the master is established with the velocity at 10V.

If required the direction of rotation of the master axis read in can be changed.

Zeitraster Signalquelle Master

Averaging and a following filter (interpolation) can help to avoid steps caused by discrete signals.

If the external signal is analog, there is no need to enter a value here (Value = 0). For discrete signals e.g. from a PLC, the scanning time (or cylce time) of the signal source is entered.

This function is only available if the analog interface +/-10V is used!

4.2.2. Load control

In this chapter you can read about:	
Configuration of load control	.141
Error: Position difference between load mounted and motor feedback too high	
Load control signal image	.142
3.	

The load control can be activated via an additional feedback system for the acquisition of the actual position of the load.

This helps for example compensate the slip between material and roller or non-linearities of the mechanic parts.

The load position is set to the demand position.

Please note:

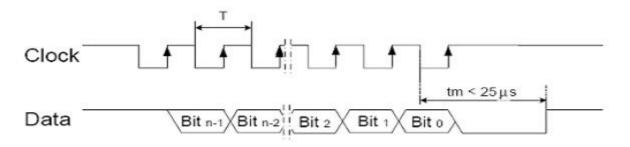
- ◆This function is not available in the C3I10T10 and C3I11T11 devices.
- ◆ As a sensor signal, Encoder (see page 379) with A/B track, Step/Direction signal or SSI - sensor is supported.
- This controller structure improves the stationary precision at the load after the decay of all control movements.
 An increase of the dynamic precision (faster transient response) can in general

not be reached with the "load control" structure variant.

Notes on the SSI sensor

- ◆With Multiturn: Number of sensor rotations with absolute reference
- ◆Word length: Gives the telegram length of the sensor.
- ◆ Baud rate/step: Max. transmission rate of the path measurement system.
- ◆ Gray code: Sensor gray code coded yes/no (if no binary coded).

Note:


The absolute position is not evaluated! It is available in the objects 680.24 (load position) and 680.25 (master position) (C3T30, C3T40).

General requirements for supported SSI feedbacks

◆Baud rate: 350k ... 5MBaud

♦ Word length: 8 ... 32 Bit

- ◆ Binary or gray code (start value = 0)
- ◆Initialization time after PowerOn: < 1.1s</p>
- ◆ Signal layout:

The most significant bit must be transmitted the first!

Caution! Feedback systems, transmitting data containing error or status bits are not supported!

◆ Examples of supported SSI feedback systems:

- ♦IVO / GA241 SSI;
- ◆Thalheim / ATD 6S A 4 Y1;
- ◆Hübner Berlin / AMG75;
- ◆Stegmann / ATM60 & ATM90;
- ♦ Inducoder / SingleTurn: EAS57 & Multiturn: EAMS57

4.2.2.1 Configuration of load control

Configuration in the "configure signal source" wizard under "load feedback system":

- ◆ The selection of the feedback signal activates the acquisition and the signals are available as Status values (see page 142).
- ◆ Rotatory or linear feedback systems are supported.
- ◆Input values for rotatory feedback systems:
 - ◆ Increments per feedback revolution (physical, without quadruplication)
 - ◆ Direction reversal

Attention! With wrong sense of direction and active load control, you will get a positive feedback; the motor will accelerate in an uncontrolled way Solution: Before the load control is activated, the signals must be checked with the aid of the **status values** (see page 142) and secure against a wrong sense of direction with the aid of a "maximum difference to motor position.

- ◆ Load travel per feedback revolution: Is used for establishing the measure reference between load- and motor position. The value can be configured very precisely by entering numerator and denominator.
- ◆Input values for linear feedback system
 - Feedback resolution (physical, without quadruplication)
 Position difference, which corresponds to a cycle duration of the feedback signal.
 - ◆ Direction reversal

Attention! With wrong sense of direction and active load control, you will get a positive feedback; the motor will accelerate in an uncontrolled way Solution: Before the load control is activated, the signals must be checked with the aid of the **status values** (see page 142) and secure against a wrong sense of direction with the aid of a "maximum difference to motor position.

- Scaling factor for an additional adaptation of the feedback signal (is normally not required = 1)
- ◆ Maximum difference tot he motor position
 Upon exceeding this value, Compax3 will report error 7385hex (see page 142) (29573dez)
- Activate / Deactivate load control

IAttention!

The load control is active immediately after the configuration download! Therefore do only activate if the load position signal (scaling, direction, value) was verified before.

Alignment of the load control:

There is an **Alignment of the position values** of motor and load under the following operating conditions (Load position = Motor position):

- During a Machine zero run the load control is deactivated until the position value 0 (defined via the machine zero offset) was approached.
 Then an alignment of the position values is performed and the load control is activated.
- After switching on Compax3.
- ♦ When writing "1" into object 2201.2
- ◆ When activating the load control.

Continuous mode

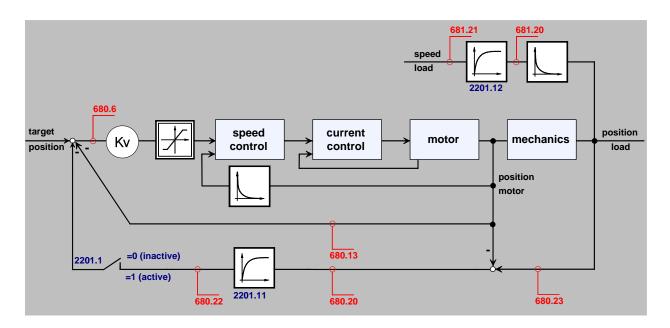
In continuous operation (object 111.8 <> 0) an alignment of the position values of motor and load (load position = motor position) takes place upon each new positioning command.

Application: e.g. roller feed

4.2.2.2 Error: Position difference between load mounted and motor feedback too high

The (unfiltered) position difference between motor feedback and load feedback has exceeded the "maximum difference to motor position" value (O410.6)

The load position in the position controller is deactivated.


In order to re-activate the function (after eliminating the cause of the error), you have the following possibilities:

- ◆ Activate function in configuration and perform configuration download or write 1 into O2201.1
- ◆ Perform Ackn and/or Homing (function becomes effective after homing run).

Caution!

The position difference is aligned to zero when switched on again, i.e. the original position reference is lost. Therefore it is adviseable to approach the reference point again in this case (Machine zero run or Homing)

4.2.2.3 Load control signal image

Object for the load control (overview)

No.	Object name	Object	Format	PD	Valid begin ning
410.6	C3.LimitPosition_LoadControlMaxPosDiff	Position difference load-motor (error threshold)	C4_3	no	VP
680.23	C3.StatusPosition_LoadControlActual	Actual position of the load	C4_3	no	-
680.20	C3.StatusPosition_LoadControlDeviation	Position difference load-motor (unfiltered)	C4_3	no	-
680.22	C3.StatusPosition_LoadControlDeviationFiltered	Position difference load-motor (filtered)	C4_3	no	-
680.21	C3.StatusPosition_LoadControlDeviationMax	Maximum position difference load-motor	C4_3	no	-
681.20	C3.StatusSpeed_LoadControl	Speed of the load feedback (unfiltered)	C4_3	no	-
681.21	C3.StatusSpeed_LoadControlFiltered	Speed of the load feedback (filtered)	C4_3	no	-
2201.2	C3Plus.LoadControl_Command	Load control command mode	l16	no	Immed iately
2201.1	C3Plus.LoadControl_Enable	Enable load control	l16	no	Immed iately
2201.11	C3Plus.LoadControl_FilterDenominator	Time constant of position difference filter	U32	no	VP
2201.3	C3Plus.LoadControl_Status	Load control status bits	I16	no	-
2201.12	C3Plus.LoadControl_VelocityFilter	Time constant of the load-speed filter for the load feedback	I16	no	VP

Objects for load control

Detailed information on the topic of "objects for load control" can be found in the online help of the device.

4.3 Optimization

In this chapter you can read about:	
Optimization window	145
Scope	146
Controller optimization	155
Signal filtering with external command value	221
Input simulation	222
Setup mode	224
Load identification	227
Alignment of the analog inputs	229
C3 ServoSignalAnalyzer	231
ProfileViewer for the optimization of the motion profile	266
Turning the motor holding brake on and off	268

- ◆ Select the entry "Optimization" in the tree.
- ◆ Open the optimization window by clicking on the "Optimization Tool" button.

Parker EME Setting up Compax3

4.3.1. Optimization window

Layout and functions of the optimization window

Segmentation Functions (TABs)

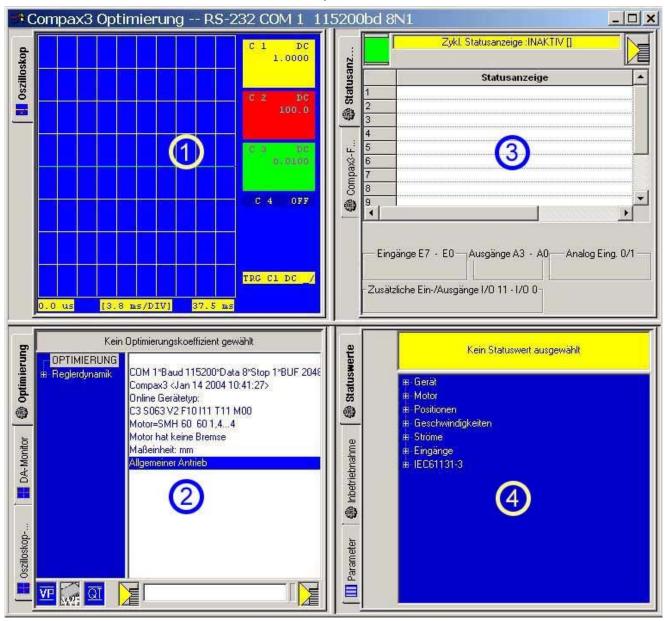
Window 1: ◆Scope (see page 146)

Window 2:
• Optimization: Controller optimization

◆ D/A Monitor (see page 311): Output of status values via 2

analog outputs

◆ Scope Settings
Window 3: ◆ Status Display


◆ Compax3 Error History

Window 4: ◆ Status values

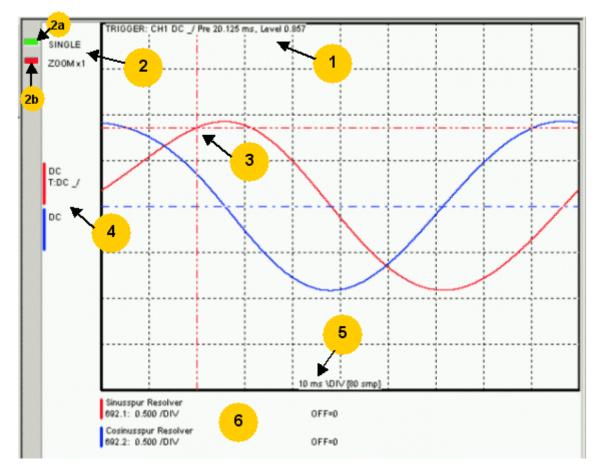
◆ Commissioning: **Setup mode** (see page 224) with **load**

identification (see page 227)

 Parameters for commissioning, test movements (relative & absolute) and for load identification.

4.3.2. Scope

In this chapter you can read about:	
Monitor information	147
User interface	148
Example: Setting the Oscilloscope	

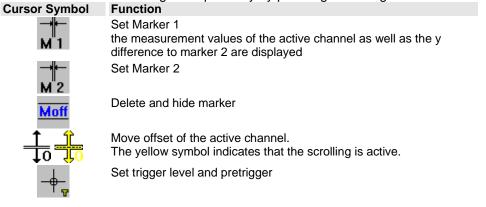

The integrated oscilloscope function features a 4-channel oscilloscope for the display and measurement of signal images (digital and analog) consisting of a graphic display and a user interface.

Special feature:

in the single mode you can close the ServoManager after the activation of the measurement and disconnect the PC from Compax3 and upload the measurement into the ServoManager later.

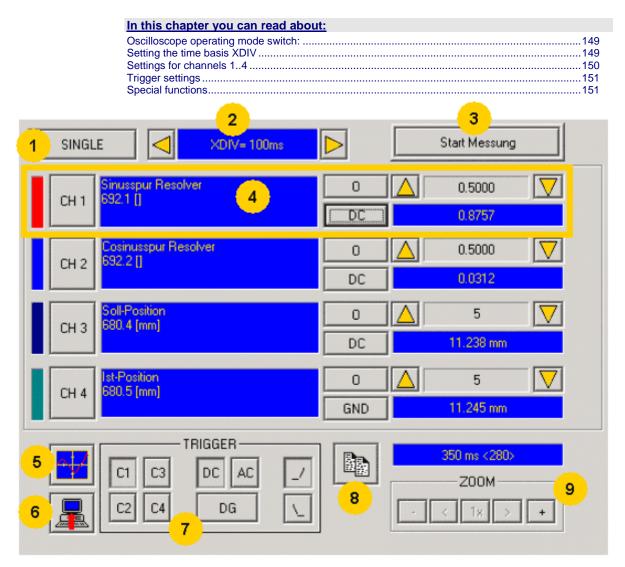
Parker EME Setting up Compax3

4.3.2.1 Monitor information



- 1: Display of the trigger information
- 2: Display of the operating mode and the zoom setting
- ◆2a: Green indicates, that a measurement is active (a measurement can be started or stopped by clicking here).
- ◆ 2b: Active channel: the active channel can be changed sequentially by clicking here (only with valid signal source).
- 3: Trigger point for Single and Normal operating mode
- 4: Channel information: Type of display and trigger settiing
- 5: X-DIV: X deviation set
- 6: Single channel sources

Cursormodes/-functions


Depending on the operating mode, different cursor functions are available within the osci monitor.

The functions can be changed sequentially by pressing on the right mouse button.

In the ROLL operating mode, marker functions and set trigger level positions are not available.

4.3.2.2 User interface

- 1: Operating mode switch (see page 149) (Single / Normal / Auto / Roll)
- 2: Setting the time basis (see page 149)
- 3: Starting / Stopping the measurement (prerequisites are valid channel sources and if necessary valid trigger settings.)
- 4: **Setting channel** (see page 150) (Channels 1 ...4)
- 5: **Special functions** (see page 151) (Color settings; memorizing settings and measurement values)
- 6: Loading a measurement from Compax3: in the single mode you can close the ServoManager after the activation of the measurement and disconnect the PC from Compax3 and upload the measurement later.
- 7: Setting triggering (see page 151)
- 8: Copy osci display to clipboard
- 9: Zoom of the osci display (1, 2, 3, 8, 16 fold) with the possibility to move the zoom window (<,>)

Oscilloscope operating mode switch:

Oscilloscope operating mode switch:

SINGLE

Selection of the desired operating mode: SINGLE, NORMAL; AUTO and ROLL by clicking on this button.

Changing the operating mode is also permitted during a measurement. The current measurement is interrupted and started again with the changed settings.

The following operating modes are possible:

Operating mode Short description

SINGLE Single measurements of 1-4 channels with trigger on a freely

selectable channel

NORMAL Like Single, but after each trigger event, the measurement is

started again.

AUTO No Trigger. Continuous measuring value recording with the

selected scanning time or XDIV setting

ROLL Continuous measuring value recording of 1 .. 4 channels with

selectable scanning time and a memory depth of 2000 measuring

values per channel.

With SINGLE / NORMAL / AUTO, the meansurement is made in Compax3 and is then loaded into the PC and displayed.

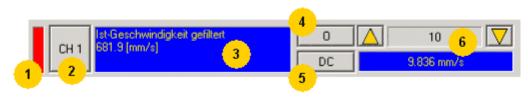
With ROLL, the measuring values are loaded into the PC and displayed continuously.

Setting the time basis XDIV

Setting the time basis XDIV

Depending on the selected operating mode, the time basis can be changed via the arrow keys.

For the operatiing modes SINGLE, NORMAL and AUTO, the following XDIV time settings are possible:


XDIV	Mode	Scanning time	Samples DIV/TOTAL	Measuring time
0.5ms	1	125us	4/40	5ms
1.0ms	2	125µs	8/80	10ms
2.0ms	3	125µs	16/160	20ms
5.0ms	4	125µs	40/400	50ms
10.0ms	5	125µs	80/800	100ms
20.0ms	6	250µs	80/800	200ms
50.0ms	7	625µs	80/800	500ms
100.0ms	8	1.25ms	80/800	1s
200.0ms	9	2.50ms	80/800	2s
500.0ms	10	6.25ms	80/800	5s
1s	11	12.50s	80/800	10s
2s	12	25.00ms	80/800	20s
5s	13	62.50ms	80/800	50s
10s	14	125.00ms	80/800	100s

For the operating ROLL, the following XDIV time settings are possible:

XDIV	Mode	Scanning time	Samples DIV/TOTAL
2 ms	54	125us	200/2000
2ms	54	125µs	200/2000
4ms	55	125µs	200/2000
10ms	56	125µs	200/2000
20ms	57	125µs	200/2000
40ms	58	125µs	200/2000
100ms	59	250µs	200/2000
200ms	60	625µs	200/2000

Changing the time basis is also permitted during an OSCI measuring sequence. This means, however, that the current measurement is interrupted and started again with the changed settings.

Settings for channels 1..4

1: Select channel color

2: Open menu for channel-specific settings

- Reset Channel CH 1..4 all channel settings are deleted.
 Please note: Channels can only be filed with sources one after the other. It is, for example, not possible to start a measurement which has only a signal source for
- channel 2!

 Select channel color: Here you can change the color of the channel...
- ◆ show/hide channel: Hide/show display of the channel.
- ◆ Change logic display mask: Mask bits in logic display.
- auto scaling Calculation of YDIV and Offset: The program calculates the best settings for YDIV and channel offset in order to display the complete signal values optimally.

3: Set signal source with object name, number and if necessary unit

◆ Define source: Draw the desired status object with the mouse (drag & drop) from the "Status value" window (right at the bottom) into this area.

4: Set Channel offset to 0

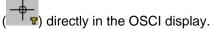
5: Select channel display (GND, DC, AC, DIG)


- ◆ DC: Display of the measurement values with constant component
- AC: Display of the measurement values without constant component
- ◆ DIG: Display of the individual bits of an INT signal source. The displayed bits can be defined via the logic display mask.
- ◆ GND: A straight line is drawn on the zero line.

6: Set Y-amplification (YDIV)

Change of the Y amplification YDIV in the stages 1,2,5 over all decades. Arrow upwards increases YDIV, arrow downwards diminishes YDIV. the standard value is 1 per DIV.

The measurement value of the channel at the cursor cross is displayed.


Trigger settings

Select trigger channel: Buttons C1, C2, C3, C4

Select trigger mode: DC, AC, DG Select trigger edge: rising_/ or falling _

the pretrigger as well as the trigger level are set by clicking on the trigger cursor

Special functions

Menu with special oscilloscope functions such as memorizing or loading settings.

Functions:

- ◆ Select background color: Adapt background color to personal requirements.
- Select grid color: Adapt grid color to personal requirements.
- ◆ Memorize OSCI settings in file: The settings can be memorized in a file on any drive. The file ending is *.OSC.
- ◆ The format corresponds to an INI file and is presented in the appendix.
- ◆ open OSCI settings from file. Loading a memorized set of settings. The file ending is *.OSC.
- ◆ Memorizing OSCI settings in the project: Up to four sets of OSCI settings can be memorized in the current C3 ServoManager project. .
- ◆ open OSCI settings from project. If settings were memorized in the project, they can be read in again.
- Memorize OSCI measurement in file: Corresponds to memorizing the setting; the measurement values of the measurement are stored in addition. Thus it is possible to memorize and read measurements completely with settings. The file ending is *.OSM.
- ◆ Exporting measurement values into a CSV file: e.g. for reading into Excel.

Parker EME Setting up Compax3

4.3.2.3 Example: Setting the Oscilloscope

SINGLE measurement with 2 channels and logic trigger on digital inputs

The order of the steps is not mandatory, but provides a help for better understanding.

As a rule, all settings can be changed during a measurement. This will lead to an automatic interruption of the current measurement and to a re-start of the measurement with the new settings:

Assumption: A test movement in the commissioning mode is active.

1.) Select OSCI operating mode

2.) Select Time basis XDIV

- 3.) Select channel 1 signal source digital inputs 120.2 from status tree with the aid of Drag & Drop
- 4.) Select channel 2 (filtered actual speed) via "Drag and drop" from the status tree

5.) Set trigger to channel 1 and DG.

Input of the mask in HEX

Triggering a rising edge to input I1.

BIT 0 (value 1) = 10

BIT 1 (value 2) = I1

BIT 2 (value 4) = 12 etc.

Trigger to input	10	l1	12	13	14	15	16	17
Trigger mask in hex	1	2	4	8	10	20	40	80

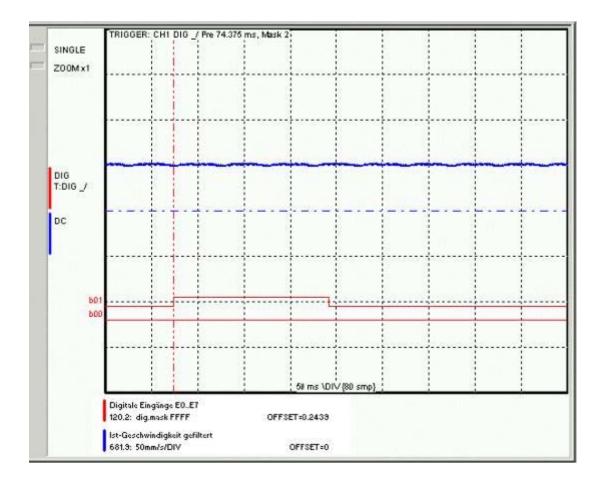
The masks can also be combined so that the trigger is only active, if several inputs are active. Example: Triggering to I2 and I5 and I6 -> 4h + 20h + 40h = 64h The mask for input I1 is in this case 2.

select rising edge.

Note: If the trigger mask DG (digital) is selected for a channel, the display mode of the trigger channel is automatically set to DIG display.

6.) Start measurement

7.) Set pretrigger in the OSCI window


Note: There is no level for the DIG trigger The the event lomit determines the mask If a trigger event occurs, the measurement values are captured until the measurement is completed.

Afterwards, the measurement values are read from the Compax3 and displayed. The display mask of trigger channel 1 was not yet limited, therefore it shows all 16 bit tracks (b0...b15). In order to limit it to 8 bit tracks, you must call up the menu for channel 1 via [CH1] and select "change logic of display mask [H].

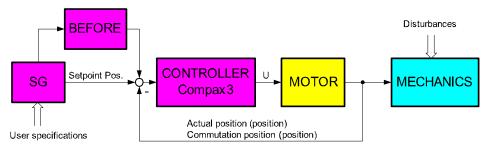
Limit the display mask to 8 bit tracks with Mask FFh.

In the display the bit tracks b0 to b7 are now shown:

Example: Only b0 and b1 are to be displayed: Set display mask to 03

4.3.3. Controller optimization

In this chapter you can read about:	
Introduction	156
Configuration	159
Automatic controller design	
Setup and optimization of the control	

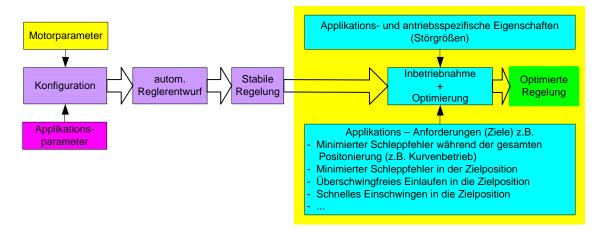

4.3.3.1 Introduction

n this chapter you can read about:	
Basic structure of the control with Compax3	156
Proceeding during configuration, setup and optimization	
Software for supporting the configuration, setup and optimization	

Basic structure of the control with Compax3

Compax3 is an intelligent servo drive for different applications and dynamic motion sequences.

Basic structure of a control with the Compax3 servo drive

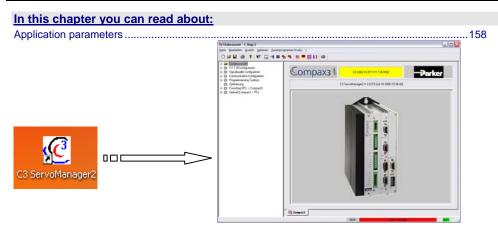


SG: Command value generator BEFORE: Feed Forward

As shown in the above figure, the programmed motion sequences are generated by the internal Compax3 setpoint generator. The setpoint position as well as the other status values of the feedforward control are made available to the position controller in order to keep the following error as small as possible.

For the control, Compax3 requires on the one hand the actual position and on the other hand the commutation position, which represents the reference between the mechanic feedback position and the motor magnet.

Proceeding during configuration, setup and optimization


Overview of the processes during configuration and setup of the Compax3 drive system

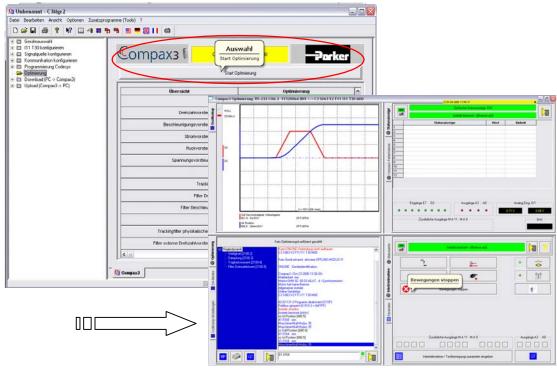
The controller default settings are calculated from the configured motor and application parameters with the aid of the automatic controller design which runs in the background.

These controller presettings provide normally for a stable and robust control. Due to continually rising application requirements, this presetting is often not sufficient, so that further optimization of the control behavior is necessary.

This manual describes the setup and optimization procedure for Compax3. In order to better understand the correlations and interactions, we will describe in the first step the individual correlations and physical values, that are req_uired for the configuration and the prespecification of the control loops. In the following, the manual will then describe the function blocks for the optimization implemented in the servo controller as well as the setup tool.

Software for supporting the configuration, setup and optimization

The entry of the motor and application parameters is made with the C3 ServoManager2 (C3Mgr2.exe):

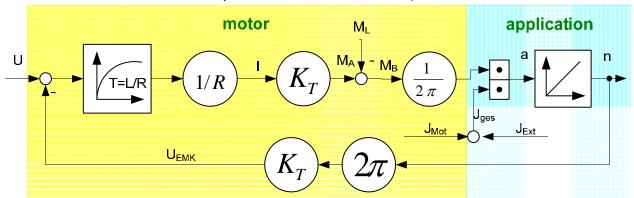

The configuration requires:

Application parameters

The wizard guided entry of the application parameters takes place directly in the ServoManager.

Carefully verify the entries and default values in order to detect entry errors in the run-up.

After the configuration download, the drive can be set up and be optimized if needs be. For this, please open the optimization window of the ServoManager:



4.3.3.2 Configuration

In this chapter you can read about:	
Control path	159
Motor parameters relevant for the control	160
Mass inertia	160
Nominal point data	160
Saturation values	162
Quality of different feedback systems	162
Typical problems of a non optimized control	163
Feedback error compensation	164
Commutation settings	166
I ² t - monitoring of the motor	166
Relevant application parameters	169

Control path

For the motors, the knowledge of the mathematical model is a prerequisite. Mathematically idealized model of the control path:

U:	Cotrol voltage
U _{EMC} :	electromagnetically generated voltage in the motor
T:	electric time constant of the motor winding
L:	Winding Inductance
R:	Winding Resistance
M _A :	Drive torque of the motor
M _L :	Load torque
M _B :	Acceleration torque
I:	Actual current r.m.s. (torque-producing)
K _T :	Torque constant
J _{mot} :	Motor mass moment of inertia
J _{ext} :	External mass moment of inertia
J _{total} :	Total mass moment of inertia
a:	Acceleration
n:	Velocity

Explanation:

The motor is controlled by the servo drive with control voltage U. During motion of the motor, an internal back e.m.f U_{EMC} is induced. This antagonizes the control voltage and is therefore deduced in the motor model. The difference is available for the acceleration of the motor.

The first order delay component represents the delaying property of the motor winding with the time constant T=L/R. According to Ohm's Law, a current I=U/R results.

The drive torque of the motor is calculated by multiplying the current with the motor torque constant K_{τ} . This is antagonized by the load torque of the machine.

The remaining acceleration torque accelerates the motor.

The resulting acceleration depends on the total mass moment of inertia (= motor + load moment of inertia).

The integration of the acceleration (sum of the acceleration over time) results in the velocity of the motor, which influences the amplitude of the induced EMC voltage.

Motor parameters relevant for the control

All motor parameters relevant for the control quality will be explained below. Wizard guided entry of the motor parameters in the MotorManager.

Electromotoric countercheck EMC

A non-energized synchronous motor iduces an induction voltage, the so-called EMC voltage during an armature movement.

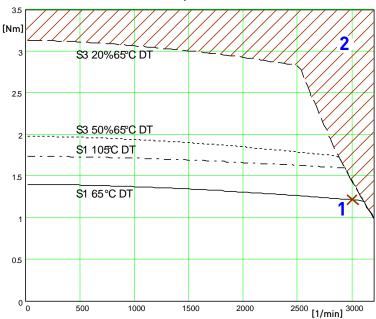
The EMC constant (motor EMC) states the value of the induced voltage subject to velocity.

The EMC constant corresponds to the motor torque constant K_T , which represents the correlation between the torque-producing current and the drive torque, however in a different unit.

The EMC voltage antagonizes the control voltage of the servo drive. As the control voltage of the drive is not unlimited, it must be taken into consideration that the drive may approach the voltage limit at high velocities and therefore high EMC voltages.

The EMC constant is important with respect to the velocity control design. The motor EMC is entered in the "motor characteristics" wizard window of the MotorManager. You may choose between different units. Please note the information on the motor type specification plate.

Mass inertia


The mass moment of inertia (moment of inertia) is also an important motor parameter for the design of the velocity control loop. For the velocity control design, this parameter is effective in correlation with the external mass moment of inertia of the load. The external load is entered in the C3 ServoManager. With the "load identification" function of the C3 ServoManager, the mass inertia can be determined, if it is not yet known.

Nominal point data

In this chapter you can read about:	
Motor characteristic line of a synchronous servo motor (torque via velocity)	161 e motor. ne C3

Motor characteristic line of a synchronous servo motor (torque via velocity)

SMH 60 30 1,4 ...2ID...4: 3000rpm at 400VAC

[Motorkennlinie.emf /.jpg]

- 1: Nominal point
- 2: Forbidden range

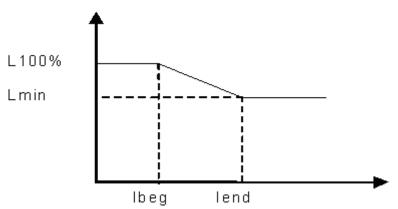
Calculation of the reference current from the characteristic line.

$$I = \frac{M[Nm]}{EMK} \bullet 85,5 = \frac{M[Nm]}{K_T}$$

or for linear motors

$$I = \frac{M[Nm]}{EMK\upsilon} \bullet \frac{\sqrt{2}}{\sqrt{3}} = \frac{M[Nm]}{Kf}$$

In the MotorManager, a motor can be defined for different operating modes (230V, 400V and 480V) without having to create several entities.


Additional parameters of a motor are:

- ◆ Standsill current [mA_{r.m.s.}]
- ◆ Pulse current [in % of the nominal current] The pulse current can be provided by the Compax3 for the duration of the pulse current time (as far as the device current permits). The thermal pulse load of the motor rises due to the pulse current. This pulse load is monitored by the i²t monitoring in the Compax3.

Saturation values

A motor may show a saturation behavior at higher currents due to iron saturation. This results in the reduction of the winding inductance at higher currents. As the inductance value of the winding enters directly into the P term of the current controller, the saturation at higher currents will result in too fast current control. This behavior can be countersteered with saturation values (entered in the "motor characteristics" wizard window of the MotorManager).

Consideration of the saturation values with the aid of a linear characteristic line

L 100% Entered value of the nominal inductance

Lmin Minimum winding inductance [% of the nominal inductance].

Value to which the inductance of the winding sinks at Ifinal.

lbeg End of the saturation [% of the nominal inductance].

Ifinal Beginning of the saturation [% of the nominal inductance].

For the determination of the saturation values please see chapter 0.

Quality of different feedback systems

In this chapter you can read about:	
Interface	162
Resolution	163
Kining	400

The controller quality depends to a great extent on the signal quality of the position feedback and its signal acquisition. It is therefore important to select a suitable measurement system for the individual application.

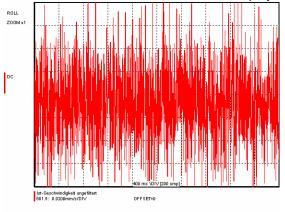
In the rotary range, a resolver is mostly used for reasons of economics. The single pole resolver provides one sine/cosine period per revolution. In very demanding applications, the performance of the resolver is often not satisfactory, so that a SinCos feedback with a higher resolution must be used. The typical resolution of a SinCos feedback is 1024 periods/revolution.

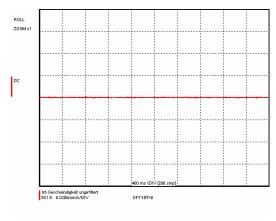
Other position feedbacks which are often used in the linear range, differ with respect to the reading principle. High-quality optical position measuring systems offer the highest resolution and accuracy.

Interface

An additional distinctive feature is the electric interface between servo controller and feedback. Analog sine/cosine signals or digital encoder signals (RS422 standard) are used to transmit the incremental position information. Due to the high interpolation rate (approx. 14 bits) of the Compax3 servo controller, an analog sine/cosine signal is in most cases preferable to digital encoder signals.

Resolution


The less precise the resolution, the higher the quantization noise on the velocity signal.


Noise

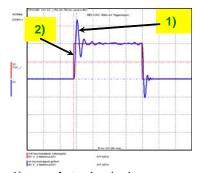
The feedbacks have different levels of analog noise, which have a negative effect on the control. The noise can be dampened with the aid of filters in the actual value acquisition, however at the cost of the controller bandwidth.

For comparison, the noise of the actual velocity value at standstill of two different

feedbacks is displayed.

Resolver: 1 period/revolution

SinCos: 1024periods/revolution


Typical problems of a non optimized control

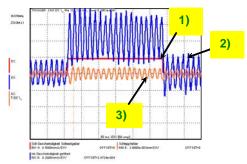
In this chapter you can read about:

Too high overshoot on	velocity	163
Increased following erro	r	164
Inctable behavior		164

Upon first setup of a control, the controller is normally not able to meet all application requirements at once. Typical problems may be:

Too high overshoot on velocity

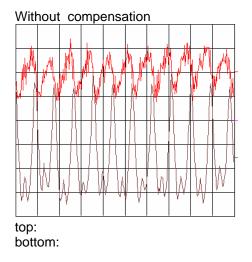
- 1) Actual velocity
- 2) Setpoint velocity

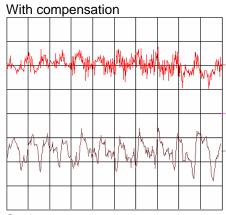

Increased following error

Increased following error when approaching the target position or the reduction of the following error takes too long

- 1) Following error
- 2) Setpoint velocity
- 3) Actual velocity

Instable behavior


- 1) Setpoint velocity
- Actual velocity
- 2) 3) Following error


Feedback error compensation

Feedbacks with sine/cosine tracks may have different errors. The feedback error compensation supported by Compax3 elinimates offset and gain errors on both tracks online.

The feedback error compensation is activated in the MotorManager:

"Feedback system" wizard under "feedback error compensation".

Scale: Current = 50mA/Div Speed = 0.2mm/s/Div Time = 3.8ms/Div

Type of motor: Parker LMDT 1200-1 ironless linear motor Linear encoder: Renishaw RGH 24B with 20µm resolution

Servo controller: Compax3

In order to accept the changes in the MotorManager in the project, the individual configuration pages must be clicked through. In order to make the changes made in the MotorManager effective in the device, the configuration download in the C3Manager must be executed.

In the event of formal errors, the feedback error compensation may however be disadvantageous; therefore it is switched off as a default.

Commutation settings

Another prerequisite for a good control quality is the correct motor commutation. This comprises several settings.

- ◆The commutation angle describes the relation of the feedback position with respect to the motor pole pair position.
- ◆ Commutation direction reversal describes the correlation between the position of the feedback and the commutation position.
- ◆ Feedback direction reversal describes the direction correlation between the defined positive direction of the drive and the feedback position.
- ◆ If the commutation direction does not match the defined direction of rotation, this will result in a subsequent error with the error message "following error" or "motor stalled".
- ◆ A faulty commutation angle value results in increased current and following error. Therefore the voltage limit is reached faster. If the value of the commutation error exceeds 90°, the motor will spin due to the positive feedback effect.

These 3 settings can be automatically acquired with the MotorManager. With the aid of the automatiac commutation acquisition, the commutation settings can be determined and plausibility checks can be made. You will be guided through the individual wizard pages and the MotorManager will issue a prompt to define the positive direction of the drive. The wizard pages supporting the user depend on the feedback system as well as from the motor type (linear or rotary).

This function is activated in the MotorManager:

"Feedback system" wizard under "automatic commutation settings".

Hint The motor should be operated without load (=> no load torque e.g. weight force of a z-axis).

Additional setting of hte commutation for incremental feedback:

This function is activated in the MotorManager:

"Feedback system" wizard under "feedback resolution".

In the event of an incremental feedback (Sine/cosine or RS424 encoder) the commutation must be defined in addition, in order to find the position reference to the winding.

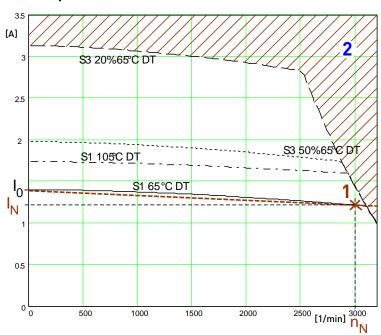
- ◆ Automatic commutation with movement
- Commutation with digital hall sensors

I2t - monitoring of the motor

destruction. For this, knowledge on the load bearing capacity of the motor is required. This information van be taken from the manufacturer documentation (motor parameters). Compax3 monitored:

- ◆ Continuous usage of the motor (motor usage)
- Pulse usage of the motor (motor pulse usage)

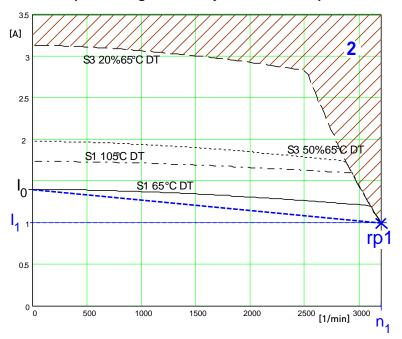
Motor continuous usage


In this chapter you can read about:

Linearized motor characteristic lien for different operating points167

This kind of monitoring watches over the continually deliverable torque (continuous current). This continuous current depends on the velocity and is acquired online from the linearization of the motor characteristic line.

Linearized motor characteristic lien for different operating points


Nominal point

- I₀ Continual stall current
- 1: Nominal point
- I_N: Nominal current (defined in the MotorManager)
- n_N: Nominal speed
- 2: Forbidden range

For monitoring the continuous usage, the linearized characteristic line between I_0 und I_N / n_N is used as a threshold.

Reference point 1: higher velocity at reduced torque

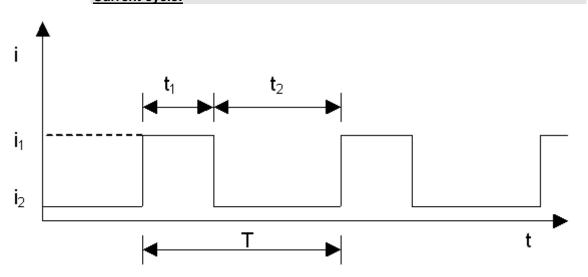
I_o Continual stall current

rp1: Reference point 1 (defined in the C3 ServoManager)

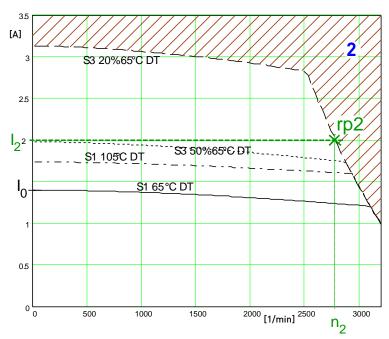
I₁: Reference current to reference point 1

n₁: Reference velocity to reference point 1

2: Forbidden range


For monitoring the continuous usage, the linearized characteristic line between I_0 and I_1 / I_0 is used as a threshold.

Motor pulse usage


This monitoring watches over the duration of the defined pulse current. The permitted duration for the pulse current is defined by the pulse current time constant.

If the acceleration current exceeds the nominal current for a defined time t1, a sufficient break time t2 is required. If the current remains in average above the nominal current, the "monitoring motor pulse usage" [0x7180] error is triggered. Upon a high pulse usage, the error will occurr almost without delay.

Current cycle:

Reference point 2: Increased torque thanks to additional cooling

- I₀ Continual stall current
- 1: Nominal point
- rp2: Reference point 2 (defined in the C3 ServoManager)
- I₂: Reference current to reference point 2
- n₂: Reference velocity to reference point 2
- 2: Forbidden range

In order to monitor the continous usage, the velocity-idenpendent current limit I_2 is used.

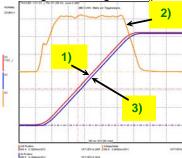
If a r.m.s. current over the valid straight flows continually in the motor, the I²t monitoring will issue the "effective motor current monitoring" error message [0x5F48]. The period of time until the error occurs depends on the thermal time constant of the motor defined in the motor parameters. The electronic temperature monitoring simulates approximately the temperature behavior of the motor. By defining a reference point different from the motor nominal data, the I²t monitoring of the motor can be adapted to changed thermal ambient conditions (e.g. air stream caused aby a ventilator fan).

Relevant appication parameters

In this chapter you can read about:	
Switching frequency of the motor current / motor reference point	169
External Moment of Inertia	172
Limit and Monitoring Settings	173
Application parameters relevant for the control (C3 ServoManager)	
Compax3 is configured with the aid of the C3 ServoManager. Here yo	u can make

application dependant settings. Among these are also parameters, that are relevant for the control. They will be explained below.

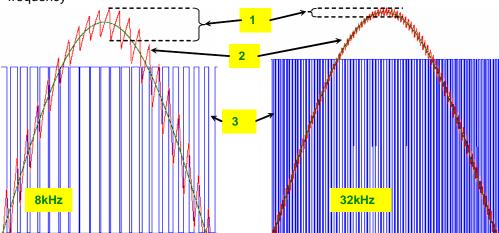
Switching frequency of the motor current / motor reference point


In this chapter you can read about:	
Following Error (Position Error)	170
Reduction of the current ripple	
Motor parameters	
Changing the switching frequency and the reference point	172
The literature of the first free first and the literature of the second	

The higher the switching frequency, the better the quality of the current control. The higher switching frequency reduces the dead time of the current control path as

> well as the current control noise. Furthermore, thermal losses caused by current ripple are reduced at higher switching frequencies.

Following Error (Position Error)

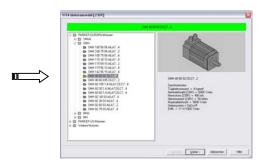

Too high following error (position error) during a movement

- Setpoint Position 1)
- 2) 3) Position deviation = following error
- Actual position

Reduction of the current ripple

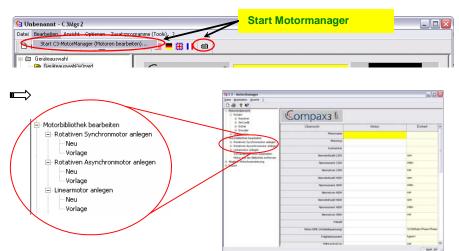
Reduction of the current ripple of the phase current due to the higher switching frequency

- 1: Current ripple
- 2: Phase current
- 3: PWM control


Please note that a high switching frequency means also high switching losses in Hint the power output stage of the controller. For this reason, you must consider derated data of the servo controller for the drive design with higher switching frequencies.

Motor parameters

In this chapter you can read about:	
Parker Motor	171
Other motor	171
Supported motor types	171


Parker Motor

If a Parker motor is used for the application, the parameters are already contained in the installed software. You can just select one of the available motors from the first configuration page.

Other motor

When using a motor from a different manufacturer, you will have to enter the relevant data. This process is supported by the MotorManager software tool, which can be called up from the ServoManager:

After doubleklicking on "new", the individual motor parameters are queried by the MotorManager.

Be careful to respect the units of the individual parameters when making your entries!

Furthermore you can use the MotorManager to edit motors already available. In addition, the import and export of motor data entities in XML format is supported.

Supported motor types

Compax3 supports the following motor types:

- Permanently excited synchronous rotaty motors
- ◆ Permanently excited synchronous linear motors
- Asynchronous rotary motors

In general, rotary and linear motors do have the same signal flow chart. The difference consists solely in the basic physical values, which refer to circular

movement resp. the linear motion laws of physics. For this, the following analogies can be established:

Rotary driv	ve [unit]		ear drive [unit] ary drive [unit] Linear drive [unit]
[rev]	Path x	[m]	Mass moment of inertia J
[kgm²]	Mass m	[kg]	Velocity n Angular velocity ω
[rps] [1/s]	Velocity v	[m/s]	Torque constant Kt
[Nm/Arms]	Force constant KF	[N/Arms]	Torque M
[Nm]	Force F	[N]	For reasons of clarity, we will in the following refer to the rotary motor, which will represent both drive types.
			An asnchrnonous motor is set up in the same way as a synchronous motor. The only differences are varying motor parameters.

Changing the switching frequency and the reference point

The switching frequency and the reference point are activated in the ServoManager: "Motor reference point" wizard

A reference point differing from the nominal data may also be entered on the wizard page displayed above.

Please activate "activate changing the reference point", then you may enter the new reference velocity as well as the new reference current.

Motor reference point

A reference point differing from the nominal data may also be entered on the wizard page displayed above.

Please activate "activate changing the reference point", then you may enter the new reference velocity as well as the new reference current.

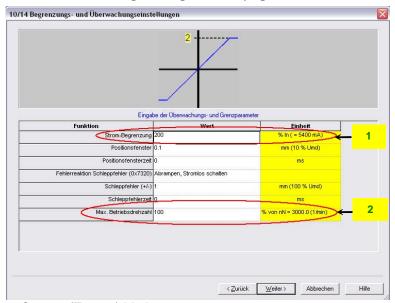
External Moment of Inertia

The external mass moment of inertia is set against the moment of inertia of the rotor to form the total moment of inertia. The total moment of inertia is used for the controller design.

If you do not know or have only a vague knowledge of the external mass moment of inertia, the mass inertia can be determined via the load identification.

Configuration of an unknown external mass inertia:

The load identification is activated in the ServoManager:


Wizard "External moment of inertia" "unknown: using default values".

The correct values can be determined later via the load identification!

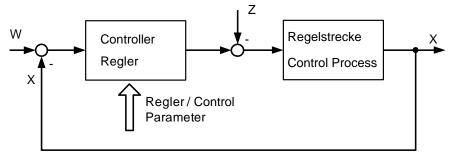
Limit and Monitoring Settings

On the "limit and monitoring settings" wizard page, you can set among others the current and velocity limits in % of the nominal values. The nominal values are motor parameters resulting from the motor library or from shifting the reference point on the "motor reference point" wizard page.

Limit and Monitoring Settings wizard page:

- 1: Current (Torque) Limit
- 2: Velocity limit

4.3.3.3 Automatic controller design


In this chapter you can read about:	
Dynamics of a control	174
Cascade control	181
Stiffness	182
Automated controller design	184
Controller coefficients	

Dynamics of a control

In this chapter you can read about: Structure of a control 174 Oscillating plant 174 stability, attenuation 175 Velocity, bandwidth 176 Setpoint and disturbance behavior of a control loop 178 response 180 Limitation behavior 181

A change in the input value of a dynamic transmission element causes a change of its output value. The change of the output value is however not immediately effective, but takes a certain time, the transient response. The course of the transient response is characteristic for certain kinds of transmission behavior. For this reason, a complete description of the transmission properties of a control comprises the stationary behavior (all setpoint, actual and disturbance values in settled state), as well as the dynamic behavior.

Structure of a control

The basic task of a control is the generation and maintaining of a desired state or sequence in spite of interfering disturbances. It is essential that the effects of the disturbances are balanced with the correct force and at the correct time. In the above figure, the setpoint value W represents the desired state and the disturbance value Z represents the interfering disturbance. The actual value X represents the generated and maintained state.

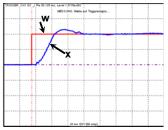
Oscillating plant

Oscillating control paths are control paths that respond with attenuated or unattenuated oscillation to an abrupt change in the setpoint value. Part of this class are for instance:

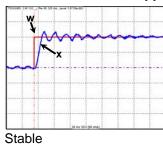
- ◆Linear actuators with toothed belts, as a toothed belt represents an elasticity.
- ◆ A mechanic shaft with an external mass moment of inertia, as the shaft represents an elasticity due to its torsional properties. In general this kind of elasticity is due to a high ratio between J_{Load}/J_{Motor}, as the shaft is normally not designed for this high external load and which may lead to a considerable distorsion.

stability, attenuation

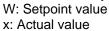
In this chapter you can read about: Stability problem in the high-frequency range: 175 Stability problem in the low-frequency range: 175

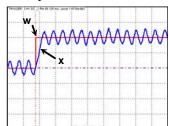

In general, two stability problems may occur in a servo drive control:

Stability problem in the high-frequency range:


The "control structure" figure shows that the reverse effect in the control loop (negative feedback) is a prerequisite for the functioning of a control system. Due to the delay in signal transmission, the effect of the negative feedback is diminished or even compensated. The reason is that the corrective measures of the controller are also delayed in the event of delayed signal transmission. This results in a typical oscillating course of the control variable. In the worst case, the deviation of the control variable and the effect of the corrective measures get in phase, if the delays reach a defined value. The negative feedback passes into positive feedback. If the product of the gain factors of all control loop components is higher than 1, the oscillation amplitude will continually rise.

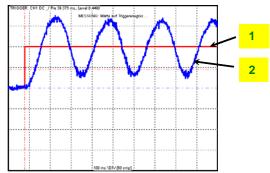
In this case the control loop is unstable. In the total gain of 1 the oscillation keeps its amplitude and the control loop is within the limits of stability. The transient response can be characterized by the attenuation and the transient time (velocity).


Step response of a stable controller and of a controller approaching the stability limit



Stable Well attenuated

Poorly attenuated

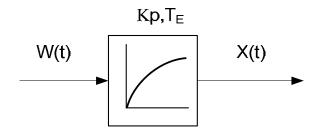


Stability limit not attenuated

Stability problem in the low-frequency range:

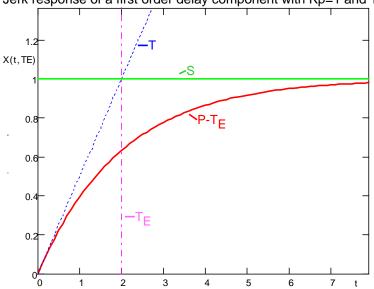
In this case the controller was set for a very inert control path, while the actual control path is much more dynamic. The controller reacts to a disturbance variable with a much too strong corrective measure so that the disturbance variable is overcompensated and even an increasing oscillation may be the result. In this case the mechanic system of the control path may be destroyed.

Velocity jerk response (low-frequency stability limit)


- 1: Setpoint speed value
- 2: Actual speed value

Velocity, bandwidth

In this chapter you can read about: P-TE - Symbol 176 Jerk response of a delay component 176 Approximation of a well-attenuated control loop 176 Frequency response of the P-TE component (value and phase) 178


A well attenuated control loop can, under certain conditions, be approximated in order to simplify the controller design with a first order delay component (P-TE component) with the replacement time constant TE and the total gain Kp. A P-TE component represents a first order delay component and is a simple dynamic basic component.

P-TE - Symbol

Jerk response of a delay component

Jerk response of a first order delay component with Kp=1 and TE=2.0s

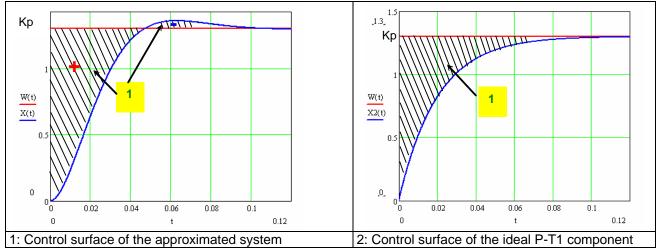
T: Tangent S: Input jerk

P-TE: Output value of the P-TE component

TE: Time constant of the P-TE component

The definition of the delay time constant is displayed in the above figure. The time of intersection of the tangent and the jerk function itself is by definition the delay time constant (called filter time constant for filters) of a P-TE component. At this point in time the value of the jerk response is approx. 63% of the final value. In practice the jerk response corresponds, for instance, to the voltage charge curve of a capacitor.

Approximation of a well-attenuated control loop

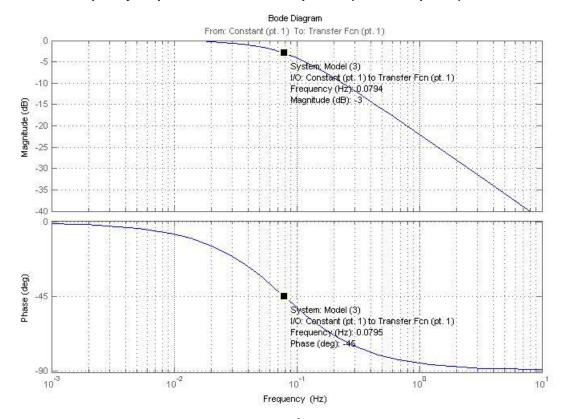

The approximation of a well-attenuated control loop is based on the sameness of the control surface of the ideal first order delay component (P-T1 component) and the approximated system (P-TE component).

The control surface is a measure for the velocity of a system and is defined in the following figure. If the surface of the approximated system corresponds to the

Parker EME Setting up Compax3

surface of the ideal system, the approximated system can be described, up to a certain frequency, with the transmission function of the P-T1 component.

Determination of the control surface from the transmission behavior of a P-TE component.


The velocity of a dynamic system can also be described in the frequency range. In the frequency range, the system behavior is analyzed to sinusoidal inputs signals of different frequencies (frequency response).

Input and output signals of a dynamic transmission component at a defined frequency f=f1

The bode diagram represents the behavior of a dynamic system (in our case of the P-TE component) against the input signal frequency with respect to amplitude and phase.

Frequency response of the P-TE component (value and phase)

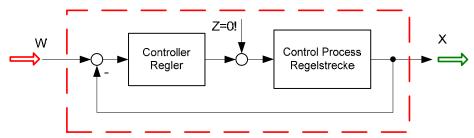
$$f_0 = \frac{1}{2\pi \cdot T_E} = 0,0795Hz$$

The cutt-off frequency

is the

frequency where the input signal is attenuated by 3dB (-3dB attenuation). The phase shift between the output and the input is -45° at this frequency. Precisely this cut-off frequency is called the bandwidth of a control loop.

Setpoint and disturbance behavior of a control loop

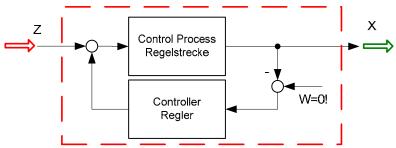

In this chapter you can read about:	
Demand behavior	179
Disturbance behavior	179
Test functions	179
Characteristics of a control loop setpoint response	180

The setpoint behavior is the behavior of the control loop for the setpoint variable W. We assume that the disturbance variable Z=0.

The disturbance behavior describes the behavior of the control loop for disturbance variable Z. In this case, we assume, in analogy to the setpoint behavior, that the setpoint variable W=0.

Parker EME Setting up Compax3

Demand behavior



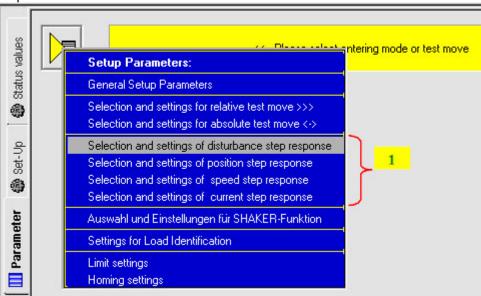
W: Setpoint value

X: Actual value

Z: Disturbance variable

Disturbance behavior

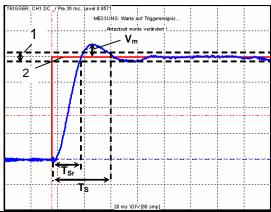
W: Setpoint value


X: Actual value

Z: Disturbance variable

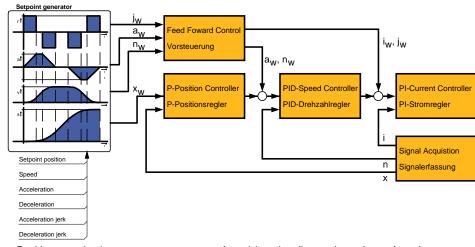
In order to examine the disturbance and setpoint behavior, the Compax3 setup software offers 4 jerk functions.

Test functions


Test functions for the analysis of disturbance and setpoint behavior of the control loops

1: 4 jerk functions

The properties of the setpoint behavior of the velocity controller can be acquired from the velocity jerk response.



- T_{Sr}: Response time. (Time elapsing until the control variable reaches one of the +-5% tolerance limits for the first time)
 T_S: Settling time. (Time elapsing until the control variable ultimately enters the +-5% range)
 V_m: maximum overshoot width
- Tolerance range +-5%
- 2 Setpoint value

response

The response of the controller is the behavior of the actual value with respect to the calculated profile of the setpoint generator. the kinematic status variables, speed, acceleration and jerk are fed into the cascade as feedforward signals. The feedforward signals work with calculated factors and contribute to an improved contour constancy due to the minimization of the following error.

Compax3 servo controller structure

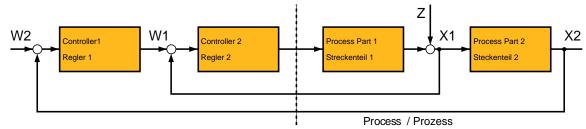
- x: Position actual value
- : Actual (rotational) speed
- Actual current value

- x_w: Setpoint position value
- n_w: Velocity setpoint value
- : Jerk setpoint value

a_w: Acceleration setpoint value

Limitation behavior

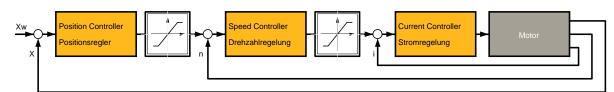
Each control variable is limited by the control (actuating) element. If the control variable demanded by the controller is within the linear range (without limitation), the control loop shows the behavior defined by the design. If the controller demands however a higher control variable than permitted by the limitation, the control variable is limited and the controller slows down.


Hint You should therefore make sure that the control variable (output) of the controller does not remain within the limitation or only for a very short time.

Cascade control

In drive technology, a cascading structure with several controllers (normally 3) is often used. This improves the control behavior. For this, additional sensors must be fixed within the control path. You will get the structure of a cascade control.

Structure of a cascade control


- W1 Setpoint value (setpoint) for the superposed controller 2
- W2 Setpoint value (setpoint) for the subordinate controller 1
- X2: Actual variable (actual value) for controller 2
- X1: Actual variable (actual value) for controller 1

The cascade control offers the following advantages:

- ◆ Disturbances occurring within the control path, can be compensated in the subordinate control loop. Therefore they must not pass through the entire control path and are therefore compensated earlier.
- ◆ The delay times within the path can be reduced for the superposed controller.
- ◆ The limitation of the intermediate variables can be made by the control variable limitation of the superposed controller rather easily .
- ◆ The effects of the non-linearity for the superposed controllers can be reduced by the subordinate control loops.

In the Compax3 servo controller, a triple cascade control is implemented with the following controllers - position controller, velocity controller and current controller.

Cascade structure of Compax3

Stiffness

In this chapter you can read about:	
Static stiffness	182
Dynamic stiffness	182
Correlation between the terms introduced	

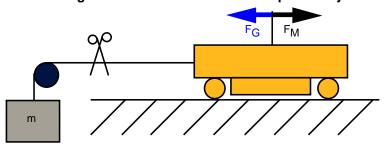
The stiffness of a drive represents an important characteristic. The faster the disturbance variable can be compensated in the velocity control path and the smaller the oscillation caused, the higher the stiffness of the drive. With regard to stiffness, we distinguish static and dynamic stiffness.

Static stiffness

The static stiffness of a direct drive is comparable with the spring rate D of a mechanical spring, and indicates the excursion of the spring in the event of a constant interference force. It is the ratio between the constant force FDmax of the motor and a position difference. Due to the I term in the velocity controller, the static stiffness is therefore infinitely high in theory, as the I term is integrated until the control difference vanishes. In a digital control the static stiffness is above all limited by the finite resolution of the position signal (the error must be at least one quantization step, so that it can be detected by the reading system) and by numerical resolution. Additional effects are for instance mechanical stiffness of the mechanic components in the control path (e.g. load connection, guiding system) as well as measurement errors of the measurement system.

Dynamic stiffness

In this chapter you can read about: Traditional generation of a disturbance torque/force jerk 182 Electronic simulation of a disturbance torque jerk with the disturbance current jerk 183 Disturbance jerk response 183

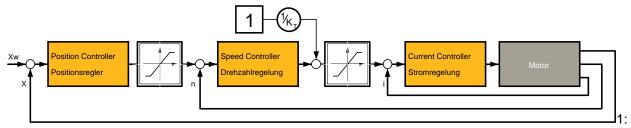

The dynamic stiffness is described by the ratio between the change in load torque or in load force and the resulting position deviation (following error):

$$\frac{-\Delta M_L}{\Delta x}$$

The higher this ratio (=dynamic stiffness), the higher the necessary change is loard torque in order to generate a defined following error.

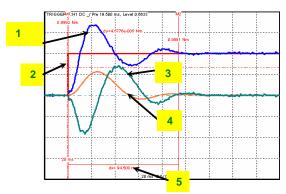
The dynamic stiffness can be acquired from the disturbance jerk response.

Traditional generation of a disturbance torque/force jerk



In settled state of the control, the motor force FM corresponds exactly to the load force FG=m×g.

If the cord is cut through, the load force is eliminated abruptly and the controller must first of all settle to the new situation.


In order to simulate this load jerk electronically, a disturbance current jerk is fed to the Compax3 as a variable proportional to the disturbance torque at the velocity controller output. Parker EME Setting up Compax3

Electronic simulation of a disturbance torque jerk with the disturbance current jerk

Feeding in of a disturbance current jerk, which corresponds to a disturbance torque jerk. The maximum amplitude an the settling time of the following error decline with rising dynamic stiffness. The settling behavior of the following error is furthermore a measure for the attenuation and the bandwidth of the control.

Disturbance jerk response

- 1: Compensation torque of the controller
- 2: Simulated disturbance torque
- 3: Actual speed
- 4: Following error
- 5: Settling time

Correlation between the terms introduced

The introduced terms:

- ◆ stability
- Attenuation
- ◆ velocity
- ◆ bandwidth
- ◆ setpoint and disturbance behavior
- Control variable limitation
- ◆ Replacement time constant
- Stiffness

are related as follows:

- A well-attenuated control features a stable control behavior.
- ◆ The velocity of a control loop is a measure for the reaction rate of the controller to the disturbance variable (disturbance behavior) as well as to the setpoint variable (setpoint behavior).
- ◆ The faster the control, the higher its bandwidth.
- ◆ The term replacement time constant is an approximation and is only valid in a defined scope1. In this scope, the control is always stable and well-attenuated.
- ◆ If the controller does not work in the linear range, but the control variable of the controller is within the limitation, the control slows down and the control difference rises.
- ◆The stiffness represents the bandwidth of the velocity control. The higher the stiffness value of the velocity control, the higher the bandwidth of the velocity controller and the stiffer the drive.

Automated controller design

In this chapter you can read about:

Jerk response of the velocity loop depending on the optimization paramter "atto	enuation" and "stiffness"
	185
D-term	185
Postition loop	

The controller design takes place after the configuration immediately before the configuration download into the device. The controller coefficients are preassigned according to the design method of cross-ratios so that a stable control is achieved. The automatic, robust controller design calculates the P and I terms of the individual controllers (current, velocity, position) on the basis of the configured motor and application parameters.

Please observe:

Faulty motor and application parameters may lead under certain circumstances to instable controllers.

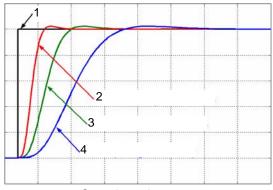
The controller parameters are not directly available for the optimization. Instead, they can be changed with the aid of the following optimization parameters:

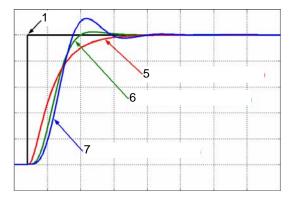
Optimization of the current controller dynamics:

Optimization of the velocity loop

dynamics:

- ◆ Current loop bandwidth in %
- ◆ "Attenuation of current loop" in %
- ◆ "Stiffness" in %
- ◆ "Attenuation" in %
- ◆ Velocity loop "D" term in %


The bandwidth parameter states the actually effective % of the calculated default velocity. The default bandwidth of the controller is fixed to approx. fGR=531Hz. In reverse this signifies that each motor delivers the same jerk response. The prerequisite is, of course, that you keep out of the control signal limitation (voltage limitation). The attenuation characterizes the controller's tendency to oscillate with respect to an excitation signal (see below). The stiffness (of the velocity loop,


corresponds to the bandwidth of the current loop) describes the velocity of the velocity loop (see below).

<u>Jerk response of the velocity loop depending on the optimization paramter</u> "attenuation" and "stiffness"

Attenuation = 100%

Stiffness = 100%

- 1: Setpoint value
- 2: Actual value (stiffness = 200%)
- 3: Actual value (stiffness = 100%)
- 4: Actual value (stiffness = 50%)
- 5: Actual value (attenuation = 500%)
- 6: Actual value (attenuation = 100%)
- 7: Actual value (attenuation = 50%)

D-term

The D-term parameter (of the velocity loop) activates existing control oscillations of drives with elastic coupling (e.g. toothed belt drives). The D-term is not automatically designed and must therefore be set manually.

Postition loop

The position controller is automatically adapted depending on the stiffness of the velocity loop.

Controller coefficients

In this chapter you can read about:

Velocity Loop "P" Term186D-term of the KD velocity controller186P-term KV position loop186

Dependance of the controller coefficients from th optimization objects
The controller coefficients are influenced by the optimization objects such as
"stiffness" and/or "attenuation". The dependency is displayed below.

I-term KI in the velocity loop

$$K_{I} = \frac{St[\%]}{100 \cdot T_{EGD}}$$

$$\Rightarrow K_i \sim St$$

 T_{EGD} : the replacement time constant of the closed velocity loop.

St Stiffness

Velocity Loop "P" Term

$$K_{PV} = \frac{St[\%]}{100 \cdot T_{EGD}} \cdot \frac{Tm[\%]}{100} \cdot T_N \cdot \frac{100}{EMK[\%]} \cdot \frac{30 + 0.14 \cdot Dp[\%]}{20}$$

$$\Rightarrow K_{PV} \sim St \wedge K_{PV} \sim Tm/EMK \wedge K_{PV} = f_{LIN}(Dp)$$

 $\begin{array}{ll} T_{EGD} : & \text{the replacement time constant of the closed velocity loop.} \\ T_{N} : & \text{The mechanical integration time constant of the motor.} \\ f_{LIN}() : & \text{Linear function (straight) between attenuation and KPV} \end{array}$

Tm Moment of Inertia

St Stiffness
Dp Attenuation

D-term of the KD velocity controller

$$K_D = \frac{Dterm[\%]}{100} \cdot K_{D_-100\%}$$

$$\Rightarrow K_{\scriptscriptstyle D} \sim D term$$

KD_100 The defined 100% coefficient

%

Dterm D-term

P-term KV position loop

$$K_{V} = \frac{St[\%]}{100 \cdot T_{EGD}} \cdot \frac{20}{30 + 0.14 \cdot Dp[\%]} \cdot T_{X}$$

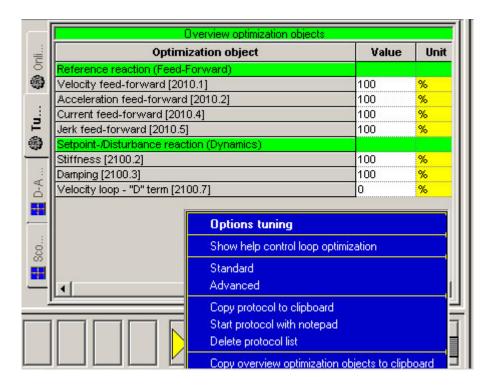
$$\Rightarrow K_V \sim St[\%] \wedge K_V = f_{LIN}(1/Dp[\%])$$

T_{EGD}: the replacement time constant of the closed velocity loop.

 T_X : The position integration time constant of the motor.

St Stiffness
Dp Attenuation

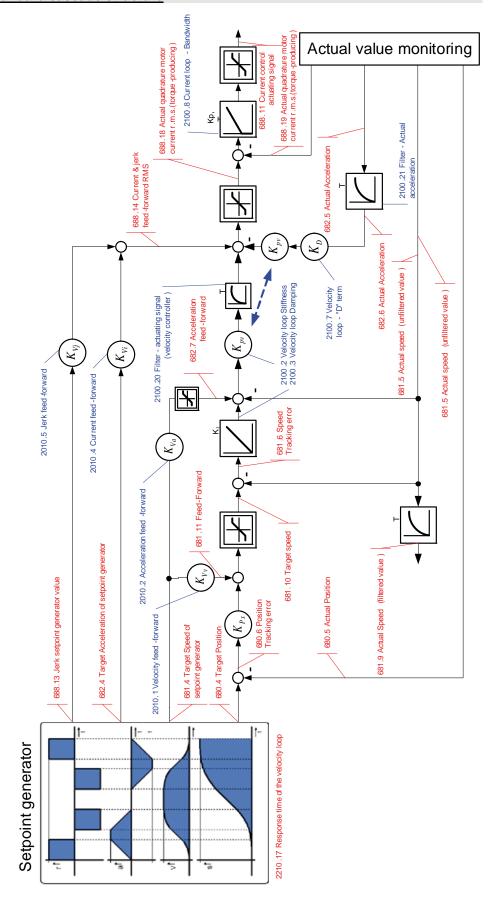
 f_{LIN} (): Linear function (straight) between 1/attenuation and KV


4.3.3.4 Setup and optimization of the control

In this chapter you can read about:	
Standard	187
Advanced	194
Commissioning window	210
Proceeding during controller optimization	

For the setup and optimization of the control loops, the optimization window is available.

The Compax3 control functionality is divided into 2 sections, standard and advanced; the advanced functionality does however incorporate the entire standard functionality. The switching can be made in the optimization window.


Switching between standard and advanced

Standard

In this chapter you can read about:	
standard cascade structure	188
Standard optimization parameters	189
Control signal limitations	
Feedforward channels	191
Control signal filter / filter of actual acceleration value	193

standard cascade structure

Symbol	Description
(K_p)	Proportional term
(\mathbf{K}_p)	signal is multiplied with K _p
T1	First order delay component (P-T1 component)
κ,	Integration block (I-block)
Kp,T _N	PI-block
$\overline{\mathbb{H}}$	Limitation block (signal limitation)
f p	Notch filter (band elimination filter)
0	Addition block
blue	Optimization objects
description	(simple pointer line)
red	Status objects
description	(pointer line with vertical stroke)

Standard optimization parameters

Overview optimization objects		
Optimization object	Value	Unit
Reference reaction (Feed-Forward)		
Velocity feed-forward [2010.1]	100	%
Acceleration feed-forward [2010.2]	100	%
Current feed-forward [2010.4]	100	%
Jerk feed-forward [2010.5]	100	%
Setpoint-/Disturbance reaction (Dynamics)	, manufacturing	
Stiffness [2100.2]	100	%
Damping [2100.3]	100	%
Velocity loop - "D" term [2100.7]	0	%

The above figure shows the parameters for the standard group. With the aid of these parameters, you can optimize the standard cascade structure.

Control signal limitations

In this chapter you can read about:	
Limitation of hte setpoint velocity	190
Limitation of the setpoint current	190
Limitation of the control voltage	190

The cascade structure shows that a limitation block is available in the control signal sector of each controller. The limitations of the position and velocity loops are calculated from the set limitations in the configuration and the motor parameters of the selected motor.

Limitation of hte setpoint velocity

Limitation of the setpoint velocity in the control signal sector of the position loop: This limitation value is calculated from the maximum mechanical velocity of the motor and the set value in the configuration in % of the nominal velocity. The smaller of the two values is used for the limitation.

Example

MotorManager

maximum mechanical velocity of the motor: n_{max} =3100rpm Rated speed of the motor: n_{N} =2500rpm

C3 ServoManager

Maximum Operating Speed: n_{bmax} =200% of n_N

=> 5000rpm

Velocity limitation value = $MIN(n_{max}, n_{bmax}*n_{N}/100)=$

3100rpm

Limitation of the setpoint current

Limitation of the setpoint current in the control signal sector of the velocity loop: This limitation value is calculated from the device peak current, the pulse current of the motor and the set value in the configuration in % of the nominal current. The smaller of the three values is used for the current limitation.

Example

Device

C3 S063 V2 F10 T30 M00 device peak current: I_{Gmax}=12.6A_{ms}

MotorManager

Rated current of the motor: $I_N=5.5 Arms$ Peak Current: $I_{imp}=300 \% I_N$ => $16.5 A_{ms}$

C3 ServoManager

Current (Torque) Limit: I_{bmax}=200% of I_N

=> 11A_{rms}

Current limitation value = 11A_{eff}

 $MIN(I_{Gmax}, I_{imp}*I_{N}/100, Ibmax*I_{N}/100)=$

Limitation of the control voltage

Limitation of the control voltage in the control signal sector of the current loop: This limitation is fixed and cannot be influenced by the user. The limitation value depends on the DC voltage of the device.

Please note!

In the event of highly dynamic motion cycles it is necessary to make sure not to enter the control signal limitation (or, if so only for a very short time) as the drive is then not in the position to follow the set dynamics due to the slow drive physics and the limited control signal range.

Feedforward channels

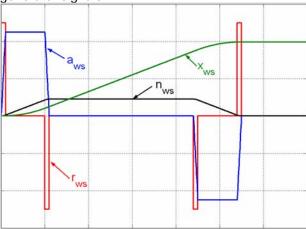
In this chapter you can read about:	
Influence of the feedforward measures	.191
Motion cycle without feedforward control	.192
Motion cycle with feedforward measures	.192

The feedforward channels are used for the specific influence of the guiding behavior of a control. The calculated and evaluated status variables are coupled into the corresponding places within the controller cascade. In practice, the feedforward control offers the following advantages:

- Minimal following error
- ◆ Improves the transient response
- ◆ Gives greater dynamic range with lower maximum current

The Compax3 servo controller disposes of four feedforward measures (see in the standard cascade structure):

- ◆ Velocity feed-forward
- ◆ Acceleration feed-forward
- ◆ Current feed-forward
- ◆ Jerk feed-forward

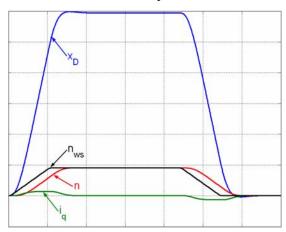

The above order represents at the same time the effectiveness of the individual feedforward measures. The influence of the jerk feedforward may be, depending on the profile and the motor, negligeably small.

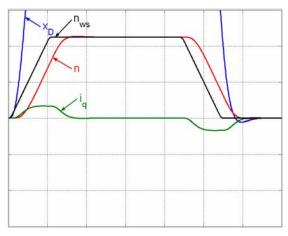
Please note!

But the principle of feedforward control fails in limiting the motor current or the motor speed during the acceleration phase!

Influence of the feedforward measures

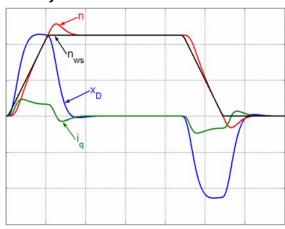
Following error minimization by feedforward control / course of the setpoint generator signals

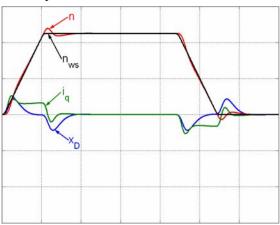

xws: Position setpoint value of the setpoint generator


nws: Velocity setpoint - setpoint generator

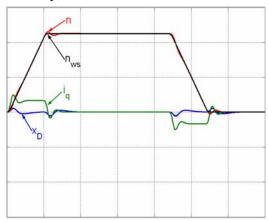
aws: Acceleration setpoint value setpoint generator

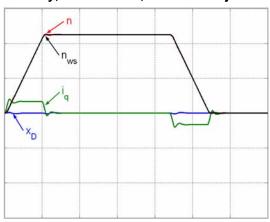
rws: Jerk setpoint value setpoint generator


Motion cycle without feedforward control



Motion cycle with feedforward measures


Velocity feedforward


Velocity and acceleration feedforward

Velocity, acceleration and current feedforward

Velocity, acceleration, current and jerk feedforward

Control signal filter / filter of actual acceleration value

The filters in the Compax3 firmwar are implemented as P-T1 filters (first order delay component see chapter 0)

The two "control signal filter (velocity loop)" (Object 2100.20) and "acceleration value filter" (Object 2100.21) are set in μ s. The value range for these filters is 63... 8 300 000 μ s. Depending on the replacement time consant of the closed velocity loop, we can make recommendations for the setting.

Setting recommendation for "control signal filter (velocity loop)":

 $O2100.20 = O2210.17[\mu s] / 5$

for O2210.17 \geq 10 000 μ s

 $O2100.20 = O2210.17[\mu s] / 3 - 1333\mu s$

for $4000\mu s \ge O2210.17 < 10~000$

O2210.20 = 0

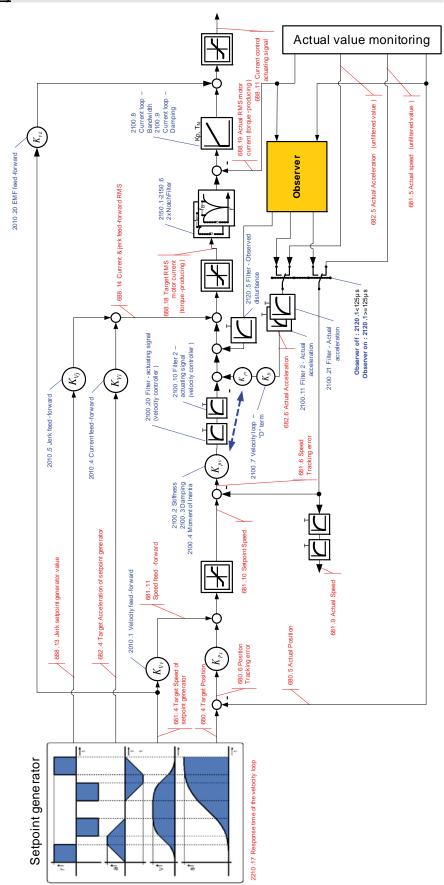
for $O2210.17 < 4000 \mu s$

O2210.17: Object recplacement time constant of the velocity loop in µs.

O2100.20: Object control signal filter (velocity loop) in µs.

Please note!

It cannot be excluded that the filter may have a destabilizing effect even though set according to the above recommendation. In this case the filter time constant must be reduced.


Advanced

In this chapter you can read about:	
Extended cascade (structure variant 1)	195
Extended cascade structure (structure variant 2 with disturbance variable observer)	197
Optimization parameter Advanced	198
EMC feedforward	199
Motor parameters	199
Filter "External Command Interface"	
Voltage decoupling	199
Load control	199
Luenberg observer	199
Commutation settings of the automatic commutation	201
Notch filter	206
Saturation behavior	208
Control measures for drives iinvolving friction	209

Extended cascade (structure variant 1) Actual value monitoring 688.11 688 .19 Actual RMS motor current (torque -producing) 2100 .8 Current loop -Band width 2100 .9 Current loop -Damping 681.5 Actual speed (unfiltered value) Observer 2010.20 EMF feed-forward 2150 .1-2150 .6 2xNotchFilter 688.14Current & jerk feed -forward RMS 688 .18 Target RMS motor current Observer off: 2120.1<125μs Observer on: 2120.1>=125μs 2100.21 Filter - Actual 2100.20 Filter – actuating signal (velocity controller) 682.6 Actual Acceleration 2100.7 Velocity / loop - "D" term 2100 .10 Filter 2 actuating signal (velocity controller) K_{Vj} 2100 .2 Stiffness 2100 .3 Dam ping 2100 .4 Moment of Inertia 2010.5 Jerk feed-forward 2010.4 Currentfeed -forward X 681.9 Actual Speed 681.11 Speed feed -forward 2010.2 Acceleration feed -forward 681 .10 Setpoint Speed 688.13 Jerk setpoint generator value 2010 .1 Velocity feed -forward 681.4 Target Speed of setpoint generator 680.4 Target Posi 2210 .17 Response time of the velocity loop Setpoint generator

Symbol	Description
(K_p)	Proportional term
$\binom{\mathbf{K}_p}{}$	signal is multiplied with K _p
T1	First order delay component (P-T1 component)
κ,	Integration block (I-block)
Kp,T _N	PI-block
X	Limitation block (signal limitation)
f B	Notch filter (band elimination filter)
0	Addition block
blue	Optimization objects
description	(simple pointer line)
red	Status objects
description	(pointer line with vertical stroke)

Extended cascade structure (structure variant 2 with disturbance variable observer)

Symbol	Description
(K_p)	Proportional term
(\mathbf{K}_p)	signal is multiplied with K _p
T1	First order delay component (P-T1 component)
K,	Integration block (I-block)
Kp,T _N	PI-block
	Limitation block (signal limitation)
	Notch filter (band elimination filter)
d B	, ,
<u> </u>	
0	Addition block
blue	Optimization objects
description	(simple pointer line)
red	Status objects
description	(pointer line with vertical stroke)

Optimization parameter Advanced

Optimization object	Value	Unit
Reference reaction (Feed-Forward)		
Velocity feed-forward [2010.1]	100	%
Acceleration feed-forward [2010.2]	100	%
Current feed-forward [2010.4]	100	%
Jerk feed-forward [2010.5]	100	%
Setpoint-/Disturbance reaction (Dynamics)		
Stiffness [2100.2]	100	%
Damping [2100.3]	100	%
Moment of Inertia [2100.4]	100	%
Velocity loop - "D" term [2100.7]	0	%
Filter - Actual velocity [2100.5]	100	%
Filter 2 - actuating signal (velocity controller) [2100.10]	0	us
Filter - Actual acceleration [2100.6]	0	%
Filter 2 - Actual acceleration [2100.11]	0	us
Current loop - Bandwidth [2100.8]	50	%
Current loop - Damping [2100.9]	100	%
Observer		
Time Constant [2120.1]	0	us
Filter - Observed disturbance [2120.5]	1000	us
Enable Disturbance Compensation [2120.7]	0	
Filter external signal source		
Filter - Ext. velocity feed-forward [2011.1]	500	%
Filter - Ext. accel. feed-forward [2011.2]	500	%
Trackingfilter HEDA [2109.1]	0	500us
Filter setpoints		
Trackingfilter [2110.1]	1	500us
Filter velocity [2110.3]	0	%
Filter acceleration [2110.4]	0	%
Analog Input		
Offset [170.4]	0	
Gain [170.2]	1	

EMC feedforward

The EMC feedforward compensates the electromagnetically generated back e.m.f. of the motor U_{EMC} . This signal is proportional to velocity and is deduced from the setpoint velocity of the setpoint generator.

Motor parameters

Furthermore you can re-optimize the motor parameters inductance, resistance and EMC (or Kt) in the advanced mode. The LdLqRatio parameter is the ratio of the smallest and the highest inductance value of the winding, measured during one motor revolution.

Filter "External Command Interface"

For explanations on this group of parameters please see chapter 0

Voltage decoupling

In the current control path there is a velocity and current proportional voltage disturbance variable, which must be compensated by the current loop. Due to limited controller dynamics, this disturbance variable can not always be entirely compensated by the current loop. The influence of this disturbance variable may however be minimized by activating the voltage decoupling.

Load control

If a second position feedback is available for the acquisition of the load position, the load control can be activated.

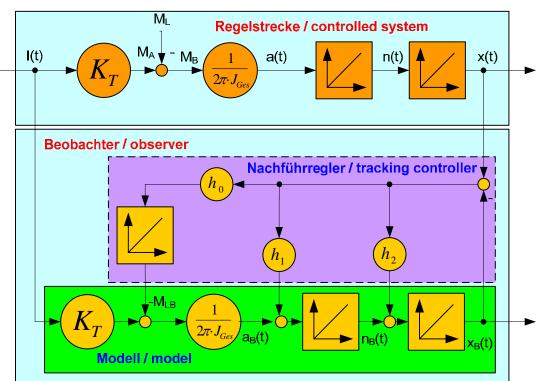
For more detailed information on the load control see device help for T30/T40 devices in the setup chapter Compax3\load control.

Luenberg observer

Introduction observer

A high signal quality of the actual signal value is of high significance in the control of the motor velocity n or the motor speed v. By means of oversampling and transmitter error compensation, a high-quality position signal can be produced for speed determination. As a rule the motor speed is determined by numeric differentiation of the motor position. In this case the quantisation noise QvD of the digital speed signal depends on the quantisation Qx of the position signal and the sampling time TAR of the digital control loop:

Quantisation - speed signal QvD


$$Q_{vD} = \frac{Q_x}{T_{AR}}$$

The quantisation of the speed signal is inversely proportional to the sampling time TAR. Hence the demands for the lowest possible sampling time and the minimum quantisation noise oppose each other in the determination of speed by numeric differentiation. The noise superimposed by the digital speed signal may be reduced by the low-pass filter, however this is always at the cost of the stability margin of the digital control loop. An alternative method is to determine the speed by integration of the acceleration. The dependence of the quantisation noise QvD of the digital speed signal on the quantisation Qx of the position signal and the sampling time TAR of the digital control loop is shown by the following correlation. Quantisation — speed signal QvI

$$Q_{_{VI}} = Q_{_{\!a}} \cdot T_{_{\!AR}}$$

The observer technology offers the advantage that the velocity can be calculated with the aid of integration. The idea of the observer principle is to connect a mathematical model of the control path parallel to the section observed and with the same transfer behaviour. In this case, the controller also has the intermediate variables (state variables) of the control path available. However in the presence of model deviations (in structure or parameters), different signal values occur between the model and the control path. For this reason, the technique cannot be employed in this way in practice. However, the model contains the measurable output signal of the control section as a redundant quantity. By comparing the two variables, a tracking control can be used to adapt the model state variables to the state variables of the control path. As the model deviations have become minor in this case due to the simple mechanical drive train, the observer now has an efficient aid available to increase the signal quality. Increase in signal quality in the observer means that the noise components decrease, and the dynamics improve as the observed speed is feedforward-controlled undelayed by the current and is not just calculated delayed from the position signal using simple differentiation.

Signal flow chart Luenberg observer

I(t): Torque-forming motor current

Kt: Torque constant

ML(t): External disturbance torque

Jtotal: Total mass moment of inertia (motor + load)

a(t): Acceleration n(t): Velocity x(t): Position

Index b: Observed signal quantities

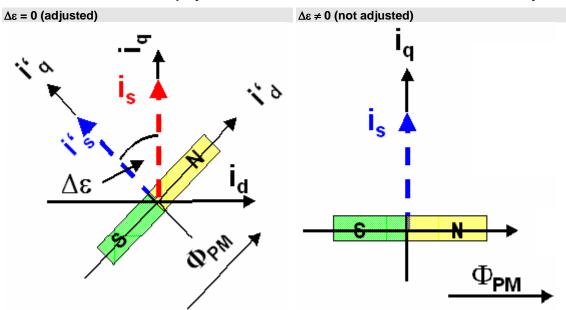
h0...h2: Controller coefficients of the tracking controller

Why are the arterial team country in the companion control with the companion control with the control with

Here the quantisation of the speed signal is proportional to the sampling time TAR, hence there is no longer any conflict between the requirements for minimum sampling time and minimum quantisation noise. For the integral velocity acquisition, the motor current variable, which is proportional to the acceleration, can be used. This approach is particularly advantageous in direct drive engineering; due to the absence of a mechanical drive train, there is a very good match between the mathematical model of the observer and the real physical control section in the fundamental frequency range of the control. This applies in

particular to direct drive systems with fixed moving masses, as otherwise the mismatch between model and the physical drive system has a destabilising influence on the transfer behaviour of the speed control. A remedy is to increase the observer dynamics, however this increases the noise of the observed signals. Therefore in the case of variable moving masses a compromise has to be found between the dynamics of the observer and the maximum stiffness of the drive.

Commutation settings of the automatic commutation


In this chapter you can read about:	
Display of the commutation error in incremental feedback systems	202
Prerequisites for the automatic commutation	203
Course of the automatic commutation function	203

Permanently excited synchronous motors can only be operated with an absolute feedback system (at least for electric motor rotation). The reason is the necessary commutation information (position assignment of the magnet field generated by the motor to the motor magnets). Without the commutation information, there is inevitably the possibility of a positive feedback between position and velocity loop ("running away" of the motor) or of bad motor efficiency (reduced force constant). Digital hall sensors are the most common aid to prevent this. Due to the mechanical design it is however impossible or very hard to integrate these sensors in some motors. The Compax3 automatic commutation function (in the F12 direct drive device) described below allows however to use incremental feedback systems without hall sensors.

The functionality implemented in the servo controller establishes the necessary reference between motor stator field and permanent magnetic field without additional aids.

The incremental feedback devices are, in contrast to absolute feedback devices, able to acquire relative distances. It is true that any position can be approached from a starting point, there would be however no consistency between these position values and a fixed virtual absolute system. Other than with an absolute feedback, the correlation between rotor and stator is lost if the position acquisition is switched off ("the position acquisition zero is lost"). When switching on, the actual position is randomly taken as zero. A commutation angle error can therefore absolutely not be excluded. Even a system adjusted before, would show an angular error, for example after a current failure. Therefore the angular error occurring randomly upon each new switching on must always be compensated in an incremental system.

Display of the commutation error in incremental feedback systems

Rotor was turned in switched-off state.

blue: ideal position

red: unfavourable position

PM: magnetic flux of the permanent magnets

 $\begin{array}{ll} i_s \colon & \text{Current pointer} \\ \Delta \epsilon & \text{Commutation error} \\ i' \colon & \text{ideal position} \end{array}$

i_q: Quadrature current (torque forming)

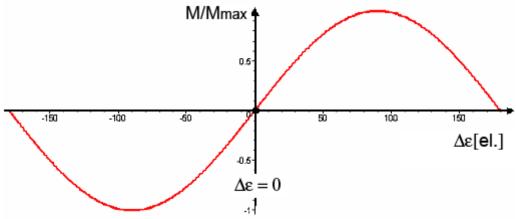
The automatic commutation function (AK) in Compax3 uses the position dependent sinusoidal torque course of permanently excited AC synchronous motors. If the motor windings are energized with DC voltage for instance, the motor develops a sinusoidal torque depending on the rotor position, which can be used for example by evaluating the resulting movement in order to determine the correct motor commutation.

The automatic commutation with movement in the Compax3 has the following properties:

- ◆ The motor movement occurring during the commutation is, with correctly parameterized function, very small. It is typically in the range smaller than 10° electrical revolution (=10°/motor poles physically or 10°/360°*motor pitch for a linear motor).
- ◆ The precision of the acquired commutation angle depends on the external conditions, however lies normally in the range better than 5° electrical revolution.
- The time until the termination of the commutation acquisition is typically below 10s.

Prerequisites for the automatic commutation

- ◆ A movement of the motor must be permitted. The movement actually occurring depends greatly on the motor (friction conditions) itself, as well as on the load moved (inertia).
- ◆ Applications requiring a motor brake, i.e. applications where active load torques are applied at the motor (e.g. vertical actuator, slopoe) are not permitted.
- ◆ Due to the function principle, high static friction or load torques will deteriorate the result of automatic commutation.
- ♦ When performing automatic commutation, a motion of at least ±180° must be electically possible (no mechanic limitation)! The implemented automatic commutation function with motion cannot be used for applications with limit or reversal switches.
- ◆ With the exception of missing commutation information, the controller/motor combination is configured and ready for operation (parameters correctly assigned for the drive/linear motor). Feedback direction and effective direction of the field of rotation must be identical (automatic commutation performed in the MotorManager).

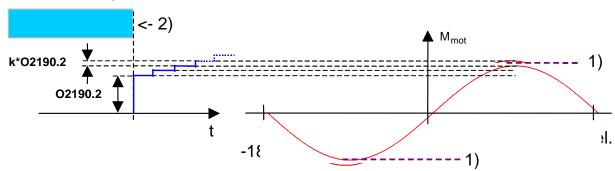

Course of the automatic commutation function

If "automatic commutation with movement" is selected as source of commuttion, the automatic commutation sequence runs once if the power stage is enabled. If the power stage is enabled or disabled afterwards, the automatic commutation will be left out. If an error occurs during the execution, the automatic commutation is aborted. A new "attempt to enable" the power stage will trigger a new automatic commutation.

Function principle of the automatic commutation with movement

The implemented method with movement is based on the sinusoidal dependence of the provided motor currents and the resulting movement on the effective commutation error. The acceleration performed by the motor (-> movement) in the event of constantly maintained current is a measure for the actual change in the commutation angle in the way that it disappears upon a change of exactly 0° and is, for other angles, the acceleration and its direction in dependance of the sign and value of the angular error (-180° .. 180°).

Acceleration torque depending on the commutation error.



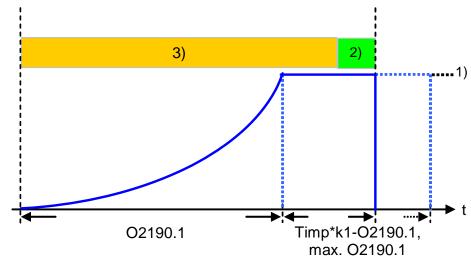
Δε:	Commutation error
Μ/Μμαξ	normalized acceleration torque

Searching for the torque maxima (phase 1)

If the sum of the actual and the estimated error angle is ±90° electrically, the motor torque is maximal for the provided current. If you gradually increase the provided motor current, the motor will, from a defined value on, surpass its friction torque and exceed a motion threshold defined by O2190.3:

Illustration of the first phase

1): Motion threshold O2190.32): Waiting for standstill


O2190.2: Starting current

Parker EME Setting up Compax3

Latching of the motor (phase 2)

Here, the drive is brought to the position with the provided motor torque=0, where the angular error is either +-180° or 0°.

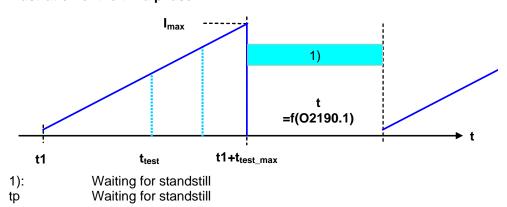
Current rise in the second phase.

O2190.1: Rising time of latching current

- Maximum current from controller or motor
- 2) Monitoring on 5° electrical movement
- 3) Monitoring on 60° electrical movement

Motion reduction:

It is possible, to considerably reduce the motor movement occuring during the fine angle search with the aid of the "motion reduction" parameter (O2190.4). Please respect also that the acquired commutation result may be slightly worse than without this measure.


Hint As a current well above the nominal motor current is provided here, there may be saturation effects on ironcore motors, which might lead to an instable current loop (-> highly frequent "creaking noises" during the automatic commutation). This can be avoided by activating the saturation characteristic line in the motor data.

Test for positive feedback (phase 3)

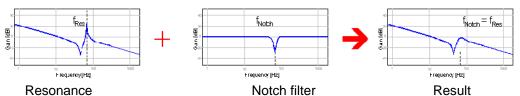
Here it is verified, if the motor performs a motion in the expected positive direction in the event of positive current in the torque maximum. The same motion threshold (defined via O2190.3) as in phase 1 is valid. The test is repeated several times.

A current course in ramp form is specified (target: minimum movement). The break between the tests varies with the current rise time O2191.1.

Illustration of the third phase

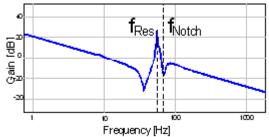
Other

◆ During the sequence (time according to parameterization>>1s) the automatic commutation is externally visualized by a LED blinking code (green permanent and red blinking).

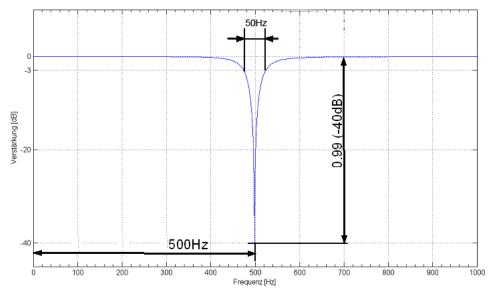

- ◆ Device errors will lead to an abort of the automatic commutation.
- ◆ During automatic commutation, no motion commands are accepted.
- ◆ The controller cascade entirely deactivated during automatic commutation, with the exception of the current loop.
- In multi-axis applications, the axes to be automatically commutated must be awaited (output of the MC Power block must deliver "True")!
- ◆ The automatic commutation is only started if the drive is at standstill.
- ◆ After the occurring and achnowledgement of a feedback error or a configuration change of the feedback system, the automatic commutation must be performed again, as it might be that the position entrainment in the servo controller is interrupted (commutation information is lost).

Notch filter

In this chapter you can read about: Effect of the notch filter 206 Wrongly set notch filter 206 Frequency response of the notch filter 207 Parameterization by 3 objects 207


Notch filters are small-band band elimination filters which slope in a wedge form towards the center frequency. The attenuation of this center frequency is extremely high in most cases. With the aid of the notch filters it is possible to purposefully eliminate the effects of mechanical resonance frequencies. With this, the mechanical resonance point is not activated itself, but the excitation of this point of resonance is avoided by the control.

Effect of the notch filter


As can be seen in the figure, the notch filter is only useful in cases where the set frequency of the notch filter is exacly the same as the disturbing frequency. The notch filter as well as the resonance point are very narrowband. If the resonance point does only minimally change (e.g. by changing the masses involved), it is not sufficiently activated by the notch filter.

Wrongly set notch filter

In the Compax3, two notch filters which are independent of each other are implemented.

Frequency response of the notch filter.

Center frequency = 500Hz Bandwitdh = 50Hz Depth = 0.99 (-40dB)

Parameterization by 3 objects.

In this chapter you can read about:	
Frequency filter 1 (O2150.1) / frequency filter 2 (O2150.4)	207
Bandwidth filter 1 (O2150.2) / bandwidth filter 2 (O2150.5)	207
Depth filter 1 (O2150.3) / depth filter 2 (O2150.6)	208

Frequency filter 1 (O2150.1) / frequency filter 2 (O2150.4)

This defines the frequency at which the notch filter attenuation is highest. In practice it shows that notch filters can only sensibly be used if the distance between the controller bandwidth (velocity loop) and the center frequency is long enough (at least factor 5). This permits to deduce the following recommendation:

$$O2150.x \ge \frac{5000000}{2\pi \cdot O2210.17[\mu s]}$$

x = 1 or x = 4

Obj2210.17: Recplacement time constant of the velocity loop in µs.

Note: If this distance is too small, the stability of the control can be very negatively influenced!

Bandwidth filter 1 (O2150.2) / bandwidth filter 2 (O2150.5)

This defines the width of the notch filter.

The value refers to the entire frequency band, where the attenuation of the filter is higher than (-)3dB.

In practice it shows that even if there is enough distance towards the control, it can be negativley influenced by too high bandwidths (higher than 1/4 of the center frequency).

$$O2150.x \le \frac{O2150.1/4}{4}$$

x = 2 or x = 5

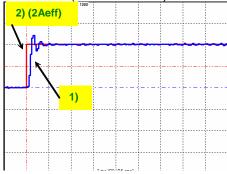
Depth filter 1 (O2150.3) / depth filter 2 (O2150.6)

With this the size of the attenuation of the filter must be at the position of the center frequency. One stands here for complete attenuation ($-\infty$ dB) and zero for no attenuation.

$$O2150.x = 1 - 10^{-\left(\frac{D[dB]}{20}\right)}$$

x = 3 or x = 6

D [dB]: The desired attenuation at the center frequency in dB


Saturation behavior

Current jerk response

Current jerk response of a motor to 2 different currents (1Arms / 2Arms)

- 1) Actual current
- 2) Setpoint current

In the above figure we can see from the settling response that the drive shows a distinctive tendency to oscillate at doubled current. The saturation characteristic line, which is used to linearly reduce the P-term of the current loop depending on the current, helps against such a saturation behavior.

If you respect the saturation for the above example with the aid of the saturation characteristic line, the tendency to oscillate of the current loop can again be activated.

Current jerk response with the activated saturation characteristic line

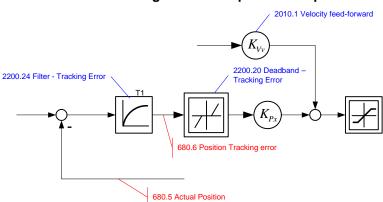
The paramterization of the characteristic line is made in the MotorManager.

Note:

- ♦ In order to accept the changes in the MotorManager in the project, the entire configuration must be confirmed.
- ◆ In order to make the changes from the MotorManager effective in the device, the configuration download must be executed.

Control measures for drives iinvolving friction

In this chapter you can read about:

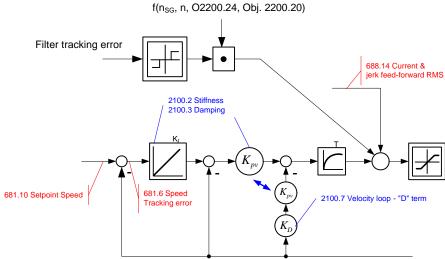

Deadband following error	209
Friction compensation	210

Some drives, which involve much friction due to their guiding system, may show permanent oscillation at standstill. The transition between static friction (standstill) and kinetic friction (very low speed) is very steep. The controller can not longer follow the friction characteristic line at this position. The I-term integrates until the control variable pulls free the drive and the drive moves too far. This procedure is repeated in the opposite direction and a control oscillation occurs (so-called limit cycle). In order to eliminate this control oscillation, the following control functions were implemented:

- ◆ Deadband following error (Obj. 2200.20)
- ◆ Filter following error (Obj. 2200.24)
- ◆ Friction compensation (Obj. 2200.20)

Deadband following error

Deadband/filter following error in the position loop



The deadband does no longer supply a velocity setpoint value (zero) for the subordinate velocity loop at small following error. The integrator of the velocity loop stops integrating and the system comes to a standstill.

In order to prevent that the velocity loop is excited by the noise on the following error, the following error should be filtered before the deadband, which will lead, however, to delays in the position loop. The deadband to be set depends on the friction behavior (amplitude of the limit cycle) and on the noise on the following error (the noise must remain within the deadband).

Friction compensation

The activation of the friction compensation (end of the velocity loop)

The friction compensation helps the control to surmount static friction at low setpoint speeds. The non linear characteristic line is partly compensted by this and a smaller deadband can be chosen, which will increase the position accuracy. The amplitude of the friction compenstion depends on the application and must be calculated if needed. If the value is set too high, corrective movements may result and the tendency to oscillate is increased.

Commissioning window

In this chapter you can read about: Load identification 210 Setpoint generation 210 Commissioning window

With the aid of the setup window, the drive can be set up in a simple way.

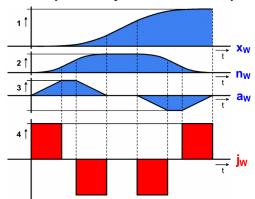
Load identification

If you do not know the mass moment of inertia, it can be determined. For this, you click on the corresponding button (see setup window no. 13). After the following parameter entry, the identification can be started via the same button.

- ◆ For more detailed information on the load identification, see the device help, chapter "load identification".
- ◆This measurement requires the correct EMC or torque constant value Kt.

Setpoint generation

In this chapter you can read about:	
Internal setpoint generation	210
External setpoint generation	212
The setpoints for the control loops are provided in two diffe	erent ways - internally or


The setpoints for the control loops are provided in two different ways - internally or externally. The setpoint generation depends on the technology option of the device.

Internal setpoint generation

The internal setpoint generation can be used for the technology option s>T10. In this case, the internal setpoint generator generates the entire motion profile with position, velocity, acceleration and jerk.

Parker EME Setting up Compax3

Motion profile at jerk-controlled setpoint generation

xw Position

n_w Velocity

aw Acceleration

j_w Jerk

The drive cannot move randomly through hard profiles, as certain physical limits exist for the acceleration ability due to the motor physics and the limitation of the control variable. You must therefore make sure that the set movement corresponds to the real physics of the motor and of the servo drive.

As a support you can take the following physical correlation.

The calculation of the physically possible acceleration

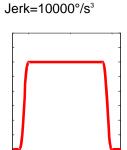
rotary drives

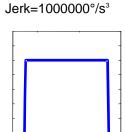
$$a[rps^{2}] = \frac{M_{A}[Nm] - M_{L}[Nm]}{2\pi \cdot J_{ges}[kgm^{2}]}$$

 $\begin{array}{ll} M_A \colon & \text{Drive torque of the motor} \\ M_L \colon & \text{Load torque of the motor} \\ J_{\text{total}} \colon & \text{entire mass moment of inertia} \\ a \colon & \text{possible acceleration} \end{array}$

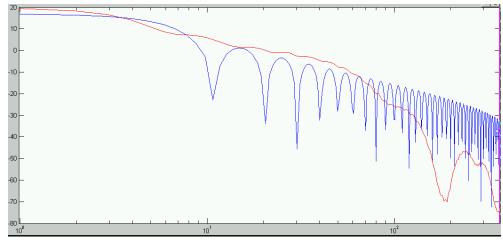
Linear drives

$$a\left[\frac{m}{s^2}\right] = \frac{F_A[N] - F_L[N]}{m_{ges}[kg]}$$


 $\begin{array}{ll} F_A: & \text{Drive force of a linear motor} \\ F_L: & \text{Load force of a linear motor} \\ m_{ges}: & \text{Total mass of a linear motor} \end{array}$


The generation of the setpoint profile is jerk-controlled and jerk-limited by the specification of the jerk.

In practice, jerk-limited setpoint generation is important if the items to be moved must be handled gently. In addition, the service life of the mechanical guiding system will be extended. A separate setting of jerk and slope of the deceleration phase also permits overshoot-free positioning in the target position. For this reason, it is common practice to use higher values for acceleration and jerk in the acceleration phase than in the deceleration phase. In consequence a higher cycle rate can be achieved.


An additional important reason for the jerk limitation is the excitation of higher frequencies due to the too high jerk in the power density spectrum of the velocity function.

Time function:

Time function and power density spectrum of Compax3 setpoint generator with different jerk settings

Power density over the frequency

The profile can be simply calculated and displayed for control purposes.

External setpoint generation

During external setpoint generation, the necessary feedforward signals are calculated from the externalsetpoint with the aid of numerical differentiation and final filtering.

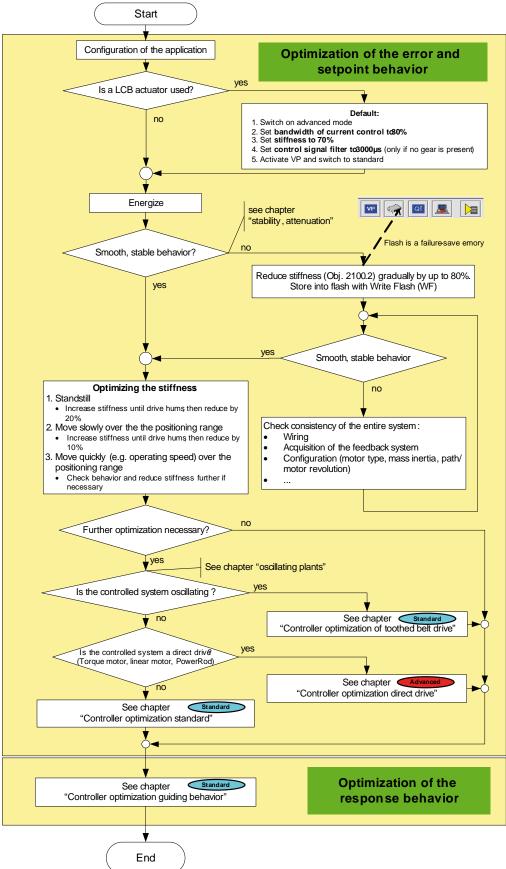
Hint

For more detailed information on the external setpoint generation see device help for T11/T30/T40 devices in the "setup" chapter Compax3\optimization\controller dynamics\signal filtering at external setpoint specification"

Test Move

In order to evaluate the behavior of the drive, test movements can be defined. For this you jump into the parameter entry either with the aid of the "enter setup/test movement parameters" or by selecting the parameter tab. Via the "setup settings" menu you access the settings for the desired test movement.

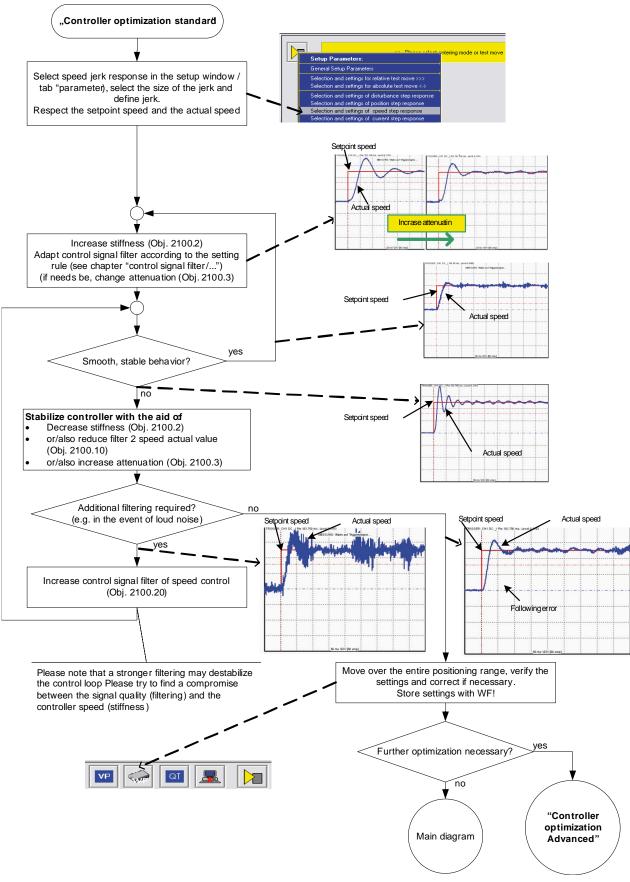
The desired motion profile can be set via the parameters in the following window.

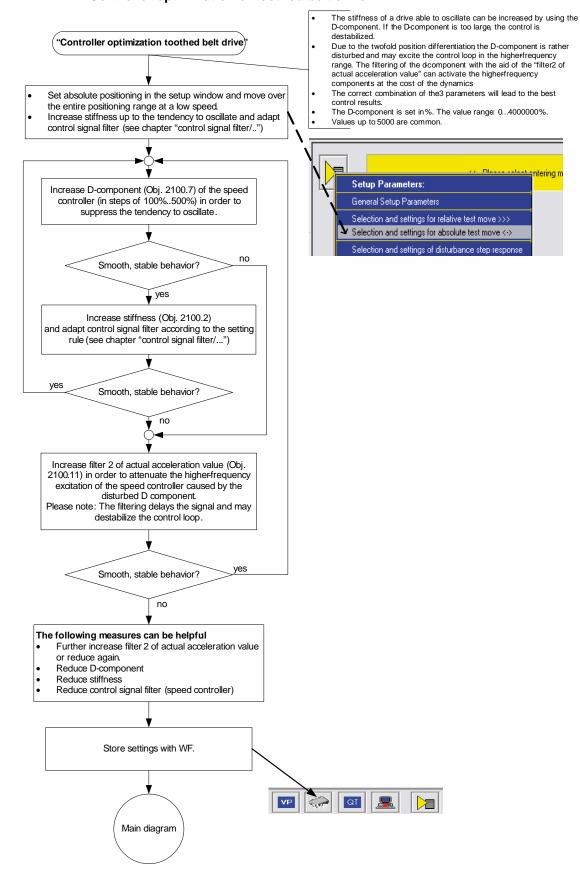

Proceeding during controller optimization

In this chapter you can read about:	
Main flow chart of the controller optimization	213
Controller optimization disturbance and setpint behavior (standard)	
Controller optimization disturbance and setpint behavior (advanced)	217
If the control behavior is not sufficient for the present application, a	n optimization is
required. We recommend the following approach:	

Overview on the approach to setup a+optimization

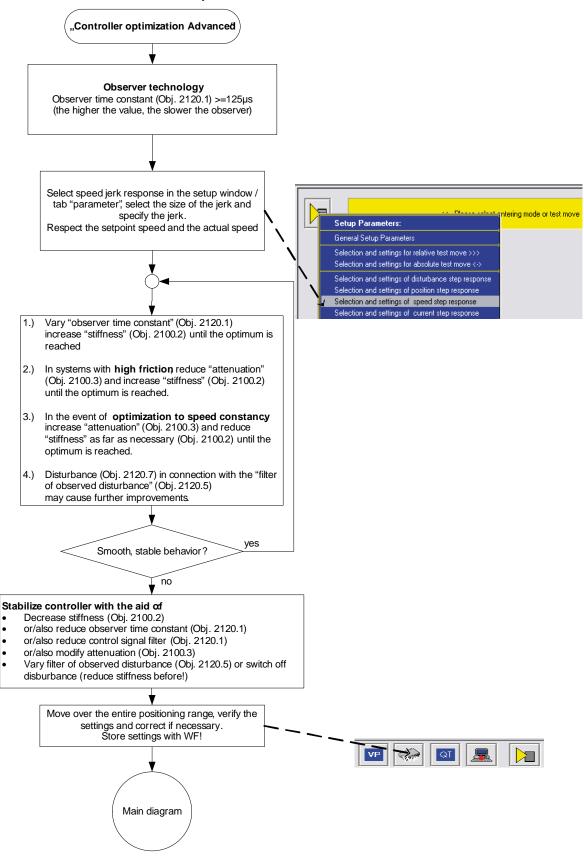
- ◆ At first, the disturbance and setpoint behavior of the velocity loop at standstill and at different displacement velocities is optimized (stiffness, attenuation, filter).
- ◆ After that, the necessary motion profiles are set via the setup tool and the desired guiding behavior in the entire velocity range is set via the feedforward control (motion profiles, feedforward).


Main flow chart of the controller optimization Start


Controller optimization disturbance and setpint behavior (standard)

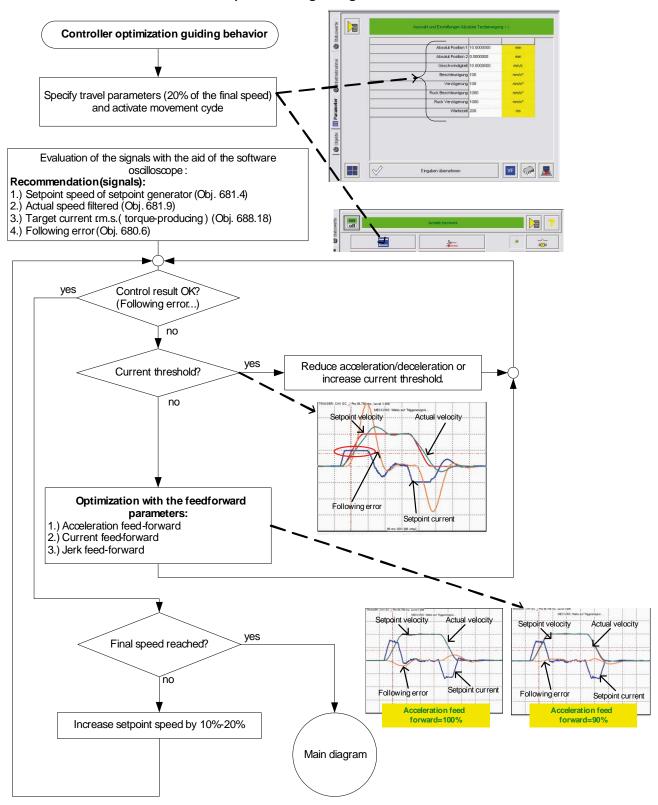
In this chapter you can read about:	
Controller optimization standard	215
Controller optimization of toothed belt drive	

Controller optimization standard


Controller optimization of toothed belt drive

Controller optimization disturbance and setpint behavior (advanced)

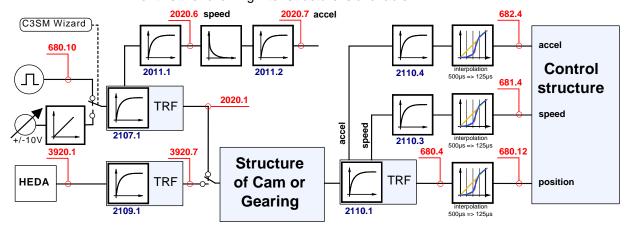
In this chapter you can read about:	
Controller optimization Advanced	218
Flow chart controller optimization of a direct drive	219
Controller optimization guiding transmission behavior	220

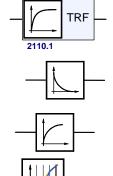

Controller optimization Advanced

Flow chart controller optimization of a direct drive

"Controller optimization direct drive See chapters: -"Control measures for drives iinvolving friction" ves Is it a PowerRod? no Default settings for PowerRod 1.) "following error filter" (Obj. 2200.21) = 1470µs Status controller with disturbance torque "Observer time constant" (Obj. 2120.1) >=125µs "following error dead zone" (Obj. 2200.20) = 0.025 mm (the higher the value, the slower the observer) 3.) "Friction feedforward" (Obj. 2200.21) = 0 mA "Activate disturbance value" (Obj. 2120.7)=1 Vary the default settings if needs be. "Controller Select speed jerk response in the setup window / tab optimization "parameter), select the size of the jerk and define jerk. standard" Respect the setpoint speed and the actual speed ntering mode or test move Setup Parameters: General Setup Parameters 1.) "Observer time constant" (Obj. 2120.1) and Vary filter of Selection and settings for relative test move >>> observed disturbance (Obj. 2120.5) increase "stiffness" Selection and settings for absolute test move <-> (Obj. 2100.2) until the optimum is reached Selection and settings of disturbance step response Selection and settings of position step response 2.) In systems with **high friction** reduce "attenuation" (Obj. 2100.3) and increase "stiffness" (Obj. 2100.2) until the Selection and settings of speed step response Selection and settings of current step response optimum is reached. 3.) In the event of optimization to speed constancy increase "attenuation" (Obj. 2100.3) and reduce "stiffness" as far as necessary (Obj. 2100.2) until the optimum is reached. yes Smooth, stable behavior? no Stabilize controller with the aid of Decrease stiffness (Obj. 2100.2) or/also reduce observer time constant (Obj. 2120.1) or/also reduce control signal filter (Obj. 2120.1) or/also modify attenuation (Obj. 2100.3) Move over the entire positioning range, verify the settings and correct if necessary. Store settings with WF! Main diagram

Controller optimization guiding transmission behavior




Parker EME Setting up Compax3

4.3.4. Signal filtering with external command value

The command signal read in from an external source (via HEDA or physical input) can be optimized via different filters.

For this the following filter structure is available:

Trackingfilter

The displayed filter influences all outputs of the tracking filter.

Number: Object number of the filter characteristic

Differentiator

Output signal = d(input signal)/dt

The output signal is the derivation (gradient) of the input signal

Filter

Number: Object number of the filter characteristic

Interpolation

Linear Interpolation.

Values in the 500µs grid are converted into the more exact time grid of 125µs.

Note:

- ◆The objects 2020.6 and 2020.7 are status values, which can be used for control purposes in the IEC program.
- ◆ The objects 680.12, 681.4 and 682.4 are input characteristics which can also be found in the controller structure.
 - A command jerk setpoint generator is not required for an external command value.
- ◆ The description of the objects can be found in the object list.

4.3.5. Input simulation

In this chapter you can read about:	
Calling up the input simulation	222
Functionality	

Function

The input simulation is used for the performance of tests without the complete input/output hardware being necessary.

The digital inputs (standard and inputs of M10/M12 option) as well as the analog inputs are supported.

The following operating modes are available for digital inputs:

- ◆ The physical inputs are deactivated, the digital inputs are only influenced via the input simulation.
- ◆ The digital inputs and the physical inputs are logically or-linked. This necessitates very careful action, as the required function is, above all with low-active signals, no longer available.

The pre-setting of an analog input value is always made in addition to the physical analog input.

the function of the inputs depends on the Compax3 device type; please refer to the respective online help or the manual.

The input simulation is only possible if the connection with Compax3 is active and if the commissioning mode is deactivated!

4.3.5.1 Calling up the input simulation

Open the optimization window (double klick in the C3 ServoManager tree entry: Optimization).

Activate the Tab "Setup" in the right lower window.

Clicking on the following button will open a menu; please select the input simulation.

Parker EME Setting up Compax3

4.3.5.2 Functionality

Window Compax3 InputSimulator:

1st series: Standard inputs I7 ... I0 = "0" button not pressed; = "1" switch pressed

2nd series:Optional digital inputs (M10 / M12)

Green field: port 4 is defined as input Red field: port 4 is defined as output

the least significant input is always on the right side

3rd series:if the button "deactivating physical inputs" is pressed, all physical, digital

inputs are deactivated; only the input simulation is active.

If both sources (physical and simulated inputs) are active, they are or-linked!

Caution!

Please consider the effects of the or-linking; above all on low-active functions.

4th series: Simulation of the analog inputs 0 and 1 in 100mV – steps. The set value is added to the value on the physical input.

After the input simulation has been called up, all simulated inputs are on "0".

When the input simulation is left, the physical inputs become valid.

4.3.6. Setup mode

The setup mode is used for moving an axis independent of the system control The following functions are possible:

- ◆ Machine reference run
- ◆ Jog+ / Jog-
- Activation / deactivation of the motor holding brake.
- Acknowledging errors
- Defining and activating a test movement
- Activating the digital outputs.
- ◆ Automatic determination of the load characteristic value (see page 227)
- ◆ Setup (see page 226) of the load control (see page 139)

Activating the setup mode

By activating the setup mode, the the device function is deactivated; the system function of the device is no longer available.

Access via an interface (RS232/RS485, Profibus, CANopen,...) and via digital inputs is deactivated.

Attention! The "safe standstill according to EN954-1, category 3" is not guaranteed during setup mode!

- In the Commissioning window (left at the bottom) the commissioning mode is activated.
- ◆ Then parameterize the desired test movement in the Parameter window. You can accept changed configuration settings into the current project.
- ◆ Now energize drive in the commissioning window and start the test movement.

Caution! Safeguard the travel range before energizing!

Deactivating the setup mode

If the setup mode is left, the drive is deactivated and the the device function is re-activated.

Note:

◆ The parameters of the setup window are saved with the project and are loaded into Compax3 if the setup mode is activated (see below).

4.3.6.1 Motion objects in Compax3

The motion objects in Compax3 describe the active motion set.

The motion objects can be influenced via different interfaces.

The following table describes the correlations:

Source active motion objects		Compax3 device	
	==>	describe	
	<==	read	
	==>	◆ With the "accept entry" button.	
Set-Up (working with the commissioning		◆The current project gets a motion set. Download by activating the motion	Active motion objects
window)	<==	◆When opening the commisisoning	◆ Position [O1111.1]
		window of a new project for the first time.	◆ Speed [O1111.2]
		◆ Activated via the "Upload settings fromdevice" button (bottom at the left	◆ Acceleration [O1111.3]
		side).	◆ Deceleration
O	==>	◆C3lxxT11: via an activated motion set	[O1111.4]
Compax3 ServoManager project		◆C3I2xT11: via a configuration download	◆ jerk* [O1111.5] (Acceleration)
	<==	For Compax3 I2xT11:	◆ Jerk* [O1111.6] (Deceleration)
		♦ in the commissioning window via "accept configuration"	* for IxxT11 - devices, both jerk
	==>	◆ Changing the motion objects directly	values are identical
Fieldbus (Compax3 I2xTxx)	<==	◆ Reading the motion objects	
IEC61131-3 program	==>	◆ via positioning modules	
(Compax3 lxxT30, lxxT40)			

4.3.6.2 Commissioning the load control

If a load control was configured,I the following buttons are displayed in the Commissioning window :

- Status of the load control yellow =>off green => on
- 2 Activate / Deactivate load control
- 3 Alignment of the position values of motor and load (Load position = Motor position) Only if the load control is deactivated!

Please note the explanations for the load control (see page 139)!

Parker EME Setting up Compax3

4.3.7. Load identification

In this chapter you can read about:	
Principle	227
Boundary conditions	
Process of the automatic determination of the load characteristic value (load identification)	228
Tins	229

Automatic determination of the load characteristic value:

- of the mass moment of inertia with rotary systems
- ◆ of the mass with linear systems

4.3.7.1 Principle

The load characteristic value is automatically determined.

For this it is necessary to excite the system additionnally with a signal (excitation signal = noise).

The excitation signal is fed into the control loop. The control loop dampens the excitation signal. Therefore, the superimposed control loop is set so slowly by reducing the stiffness, that the measurement is not influenced.

A superimposed test movement is additionally possible. This helps to eliminate possible mechanical effects such as rubbing caused by friction.

4.3.7.2 Boundary conditions

If the control is instable before the beginning of the measurement, please reduce the stiffness (in the optimization window at the left bottom)

The following factors can disturb a measurement:

- ◆ Systems with high friction (e.g. linear actuators with sliding guide)

 Here,the systems where the static friction is considerably higher than the kinetic friction (slip-stick effect) are especially problematic.
- Systems with significant slack points (play)
- ◆ Systems with "too light" or susceptible to oscillation bearing of the total drive (rack).

Formation of rack resonances. (e.g. with gantries,...)

 Non constant disturbance forces which influence the speed development. (e.g. extremely strong slot moments)

The effects of the factors one to three on the measurement can be reduced by using a test movement.

caveat emptor (exclusion of warranty)

Due to multiple possibilities for disturbing influences of a real control path, we cannot accept any liability for secondary damages caused by faultily determined values. Therefore it is essential to verify all values automatically determined before loading them into the control loop.

4.3.7.3 Process of the automatic determination of the load characteristic value (load identification)

- ◆ Please click on "unknown: default values are used" in the configuration wizard in the "External moment of inertia" window.
- ◆ After the configuration download, you can enter directly, that the optimization window is to be opened.
- In the Commissioning window (left at the bottom) change to commissioning mode.
- ◆ Finally enter the values of the excitation signal and of the test movement in the parameter window.

Parameters of the excitation signal:

- ◆ Amplitude of the excitation signal in % of the motor reference current Only an amplitude value causing a distinct disturbance can give a usable result.
- ◆ Permissible following error In order to avoid a following error caused by the excitation signal, the permissible following error must be increased for the measurement if necessary.
- ◆ Selection of the test movement: inactive, reverse, continuous
- ◆ Parameterizing of the test movement if necessary
- Now energize drive in the commissioning window and open load identification window.

Caution! Safeguard the travel range before energizing!

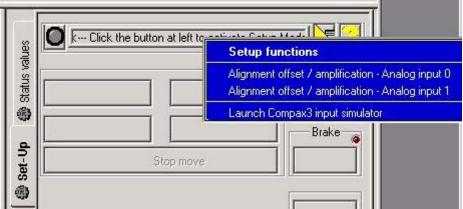
◆ Starting the load identification.

Caution! The drive will perform a jerky movement during load identification!

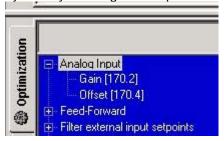
◆ After the measurement, the values can be accepted. Depending on the application, 2 measurements for minimum external load and maximum external load are recommended.

4.3.7.4 Tips

Tip	Problem	Measures
1	Speed too low (with reverse operation)	Increase maximum speed and adapt travel range*
2	Speed too low (with continuous operation)	Increase maximum speed
3	Test movement missing	A test movement is important for drives with high friction or with mechanical slack points (play).
4	No error detected	Please note the boundary conditions. (see page 227)
5	Speed too low and amplitude of the excitation signal too small (with reverse operation)	Increase amplitude of the excitation signal; increase maximum speed and adapt travel range*
6	 ◆ Speed too low and ◆ amplitude of the excitation signal too small (with continuous operation) 	Increase amplitude of the excitation signal; increase maximum speed.
7	◆ Test movement missing ◆ amplitude of the excitation signal too small	 ◆ Increase amplitude of the excitation signal or / and ◆ activate an appropriate test movement
8	amplitude of the excitation signal too small	Increase the amplitude of the excitation signal.
9	Following error occurred	Increase the parameter "permissible following error" or decrease the amplitude of the excitation signal.


^{*}if the travel range is too short, the speed is not increased, as the drive does not reach the maximum speed.

4.3.8. Alignment of the analog inputs


There are two possibilities to align the analog inputs in the optimization window:

 wizard-guided under commissioning: commissioning functions (click on the yellow triangle with the left mouse button:

or

◆ by directly entering under optimization: Analog Input

4.3.8.1 Offset alignment

Performing an offset alignment when working with the ±10V analog interface in the optimization window under optimization: Analog input Offset [170.4].

Enter the offset value for 0V input voltage.

The currently entered value is shown in the status value "analog input" (optimizing window at the top right) (unit: $1 \equiv 10V$). Enter this value directly with the same sign as offset value.

The status value "analogue input" shows the corrected value.

4.3.8.2 Gain alignment

Performing an offset alignment when working with the ±10V analog interface in the optimization window under optimization: Analog Input: Gain [170.4].

A gain factor of 1 has been entered as default value.

The currently entered value is shown in the status value "analogue input" (optimising window at the top right).

The status value "analogue input" shows the corrected value.

4.3.9. C3 ServoSignalAnalyzer

In this chapter you can read about:	
ServoSignalAnalyzer – function range	231
Signal analysis overview	
Installation enable of the ServoSignalAnalyzer	233
Analyses in the time range	
Measurement of frequency spectra	
Measurement of frequency responses	241
Overview of the user interface	248
Basics of frequency response measurement	
Examples are available as a movie in the help file	265

4.3.9.1 ServoSignalAnalyzer – function range

The function range of the ServoSignalAnalyzer is divided into 2 units:

Analysis in the time range

This part of the function is freely available within the Compax3 ServoManager. The Compax3 ServoManager is part of the Compax3 servo drive delivery range.

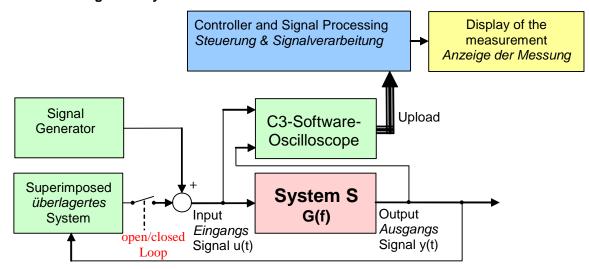
Analysis in the frequency range

This part of the function requires a licence key which you can buy (see page 233)

.

The licence is a company licence and must only be bought once per company. For each PC you need however an individual key, which you can request individually.

4.3.9.2 Signal analysis overview


The ServoSignalAnalyzer offers three basic methods of analyzing systems:

- Analysis in the time range by measuring the step response
- Spectral analysis of individual signals
- ◆ Measurement of frequency response (Bode diagram) of the position control or of individual parts of the control as well as of the control path

These functions are available in the Compax3 ServoManager after the **activation** (see page 233) with the aid of a system-dependent key.

You do not require expensive and complex measurement equipment -> a Compax3 device and a PC will do!

Basic structure of the signal analysis

Systems / signals

Depending on the kind of measurement, the SignalAnalyzer can help analyze the most different signals and systems.

Signal generator

This allows to inject different excitation signals (step, sine and noise signals) into the control loop.

Superposed system

For different analyses, superposed systems must be manipulated in order to allow a measurement. After the measurement, the changes made for this purpose are reset

C3 software oscilloscope

With the aid of the software oscilloscope, the contents of different objects can be registered and be loaded into the PC for further analysis.

Control and signal processing

The control of the entire measurement as well as the processing of the uploaded sample data are made in the PC.

4.3.9.3 Installation enable of the ServoSignalAnalyzer

In this chapter you can read about:	
Prerequisites	233
Installation	
Activation	

Prerequisites

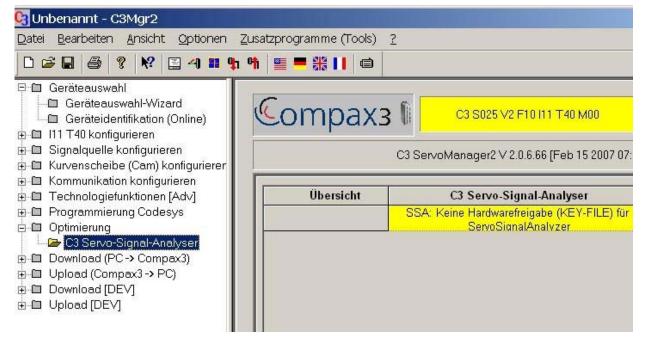
- ◆ Compax3 with up-to-date controller board (CTP 17)
- ◆ Firmware version R06-0 installed

Installation

- ◆ Execution of the C3 ServoManager Setup (on CD)
- ♦ If the firmware is too old => update with the aid of the firmware from the CD

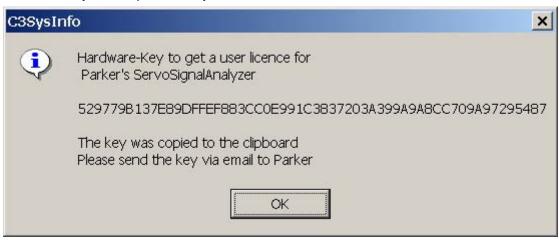
Activation

In order to being able to use the analysis functions in the frequency range (for example frequency response measurement), a software activation is required.


Please observe:

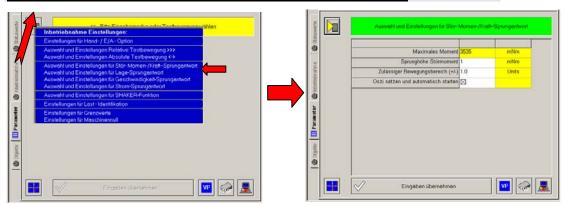
The activation is only valid for the PC on which it was performed!

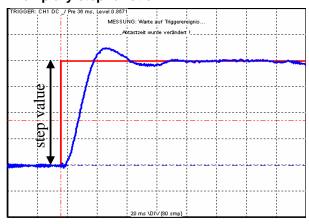
Caution! : If the PC disposes of network adapters which are removed at times (e.g. PCMIA cards or notebook docking stations), these adapters should be removed before generating the key!


In order to activate the ServoSignalAnalyzer, please follow these steps:

Start the Compax3 ServoManager.

◆ Select the C3 ServoSignalAnalyzer in the function tree under optimization. In the right part of the window you can see the note that no key file was found.


◆ A double click on the preselected C3 ServoSignalAnalyzer will generate a system-dependent key.


- ◆ Acknowledge with OK and enter the key, which is on your clipboard, into an e-mail, which you please send to eme.ssalicence@parker.com (mailto:eme.ssalicence@parker.com).
- ◆ After receipt of the reply, copy the attached file "C3_SSA.KEY" into the C3 ServoManager directory (C:\Programs\Parker\C3Mgr2\).
- ♦=> the software is activated.

4.3.9.4 Analyses in the time range

Selection and parameterization of the desired analysis function

Exemplary step function

The following functions are available:

Position demand value step: For analysis of the demand value behavior of the position control

Step value < (admissible motion range / 2)

=> even a 100% overshoot does not incite an error message

Speed demand value step: For analysis of the demand value behavior of the speed control

The position control is switched off during the measurement, this might lead in exceptioal cases to a slow drift of the position.

Furthermore you should make sure that the selected speed step value corresponds to the parameterized admissible motion range.

Step value < (admissible motion range / time of measurement)

with time of measurement > 2s

<u>Current demand value step:</u> For analysis of the demand value behavior of the current control

The current setpoint jerk is set at the end of the oscilloscope recording time, but is reset to 0 after max. 50mS.

Caution!

- Many systems are not stable without control!
- Position as well as speed control are switched off during measurement ==>

no measurement on z-axes!

disturbance torque- / force step response: For analysis of the disturbance value behavior of the control

The step of an external disturbance force is simulated and the reaction of the controller is registered.

Shaker function

For this, a sine signal is injected to the current which is used to excite the mechanic system. This allows to analyze the oscillation behavior - what oscillates at which frequency.

Basic settings of the analysis functions:

Maximum torque / maximum current / maximum speed (display):

This is used as a lead for the selection of a suitable step value and indicates which maximum step value is possible.

Step value:

Gives the value of a step.

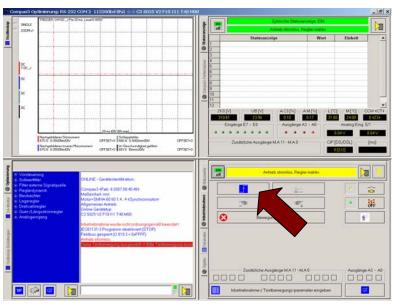
permissible motion range (+/-):

- ◆ Indicaton, in which position window the axis may move during the analysis.
- ◆This range is not left even in the event of an error.

- ◆ If the drive approaches the limits of the motion range, the controller will decelerate so that the drive will come to a standstill within the permitted motion range. The maximum permitted velocity is used to calculate the deceleration ramp, therefore the drive stops even before reaching the range limits and reports an error.
- ◆ Please make sure that a sufficiently large movement is set for the measurement and that it will be reduced by a high maximum permitted velocity.
- ◆ The motion range monitoring is especially important during current step responses, as position as well as speed control are deactivated during the measurement.

Max permitted speed

When exceeding this value, an error is triggered, the controller decelerates and reports an error.


When measuring the velocity setpoint jerk, the maximum permitted velocity is set to twice the step height.

Setting and automatic start of the oscilloscope:

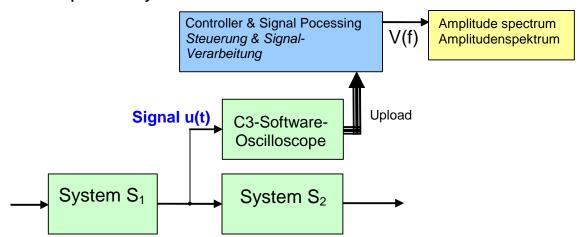
After pressing "accept entries", the parameters of the oscilloscope (such as scanning time and the assignment of the individual channels) are automatically set to default values according to the respective step value.

When starting the step function, the oscilloscope is automatically started.

Start of the measurement

The start of the step function is made with the aid of the highlighted button.

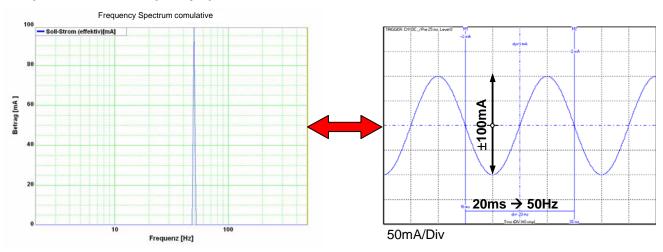
4.3.9.5 Measurement of frequency spectra


In this chapter you can read about:

Functionality of the measu	rement	238
Leak effect and windowing]	239

Please note that you require a licence hey (see page 233, see page 231) for this application!

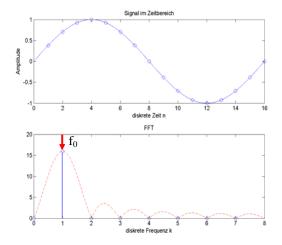
Functionality of the measurement


Measurement of the spectral analysis

During the spectral analysis of scanned signals with the aid of the discrete Fourier transformation, a so-called frequency resolution (Df) results, Df being =fA/N, independently of the scanning frequency (fA) and of the number of measurement values used (N).

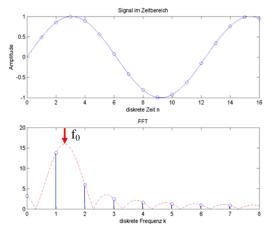
The spectra of scanned signals are only defined for frequencies, which are an integer multiple of this frequency resolution.

Interpretation of the frequency spectrum


Parker EME Setting up Compax3

Leak effect and windowing

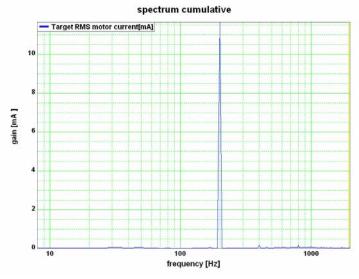
If frequencies not corresponding to the frequency resolution are present in the analyzed spectrum, the so-called leak effect can be caused.


Display of the leak effect with the aid of a 16 point discrete Fourier transformation

Complete oscillation period in the scanning period

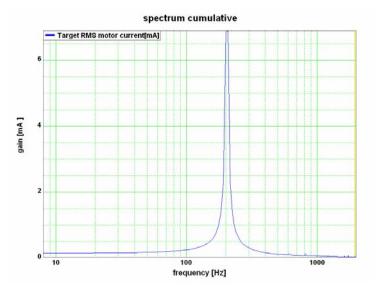
Envelope without leak effect

Non complete oscillation period in the scanning period



Envelope with leak effect

Sine at 200Hz without windowing


Consequence of the leak effect shown at the example of a sine signal. (fA=4000Hz; N=500; => Δ f=8Hz

f0=200Hz = 25*∆f frequency corresponds to the frequency-resolution

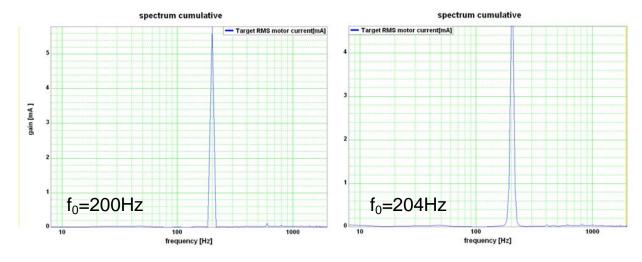
The sine frequency is exactly on a multiple of the frequency resolution (200Hz / 8Hz=25). The spectre is clearly separated and there are no leak effects visible.

Sine at 204Hz

 Δf =8Hz / f0=204Hz = 25,5· Δf / frequency does not correspond to the frequency resolution!

The sine frequency has only minimally changed, due to which it does, however, no longer match the frequency resolution (204Hz/8Hz=25,5) => leak effect Two consequences are visible:

The spectre is faded in the ranges at the right and at the left of the sine frequency. In this range, an amplitude is displayed, even though these frequencies are not contained in the real signal.


◆ The height of the peak of the sine frequency is reduced, => it seems as if the signal energy is leaking out and distributing over the spectre. This explains the term leak effect.

Windowing

With the aid of the windowing, leak effects can be avoided. There are many different kinds of windowing, who do all have the same restrictions.

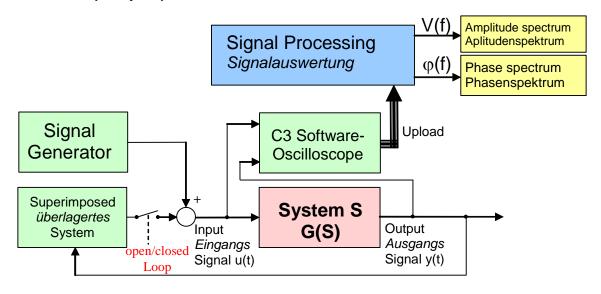
- ◆ windowing reduces the total energy of the analyzed signal, which results in a reduced amplitude of all measured frequencies.
- ◆Individual frequency peaks do not appear so sharp and narrow as with measurements without windowing.

Sine at 200Hz and 204Hz with Hanning windowing

4.3.9.6 Measurement of frequency responses

In this chapter you can read about:	
Safety instructions concerning the frequency response measurement	241
Functionality of the measurement	
Open/Closed Loop frequency response measurement	243
Excitation Signal	
Non-linearities and their effects	245

Please note that you require a licence hey (see page 233, see page 231) for this application!


Safety instructions concerning the frequency response measurement

During the measurement of the frequency response, the control is changed and influenced in multiple ways. You should therefore respect the following notes:

- ◆ During the measurement, the entire system is excited via a broad frequency spectrum. This might damage especially sensitive components (such as lenses) The risk increases with the extent of the excitation. In addition, natural mechanical frequencies may cause an increased excitation of individual components.
- ◆The measurement of the frequency response can only be made in the setup mode with energized controller.
- ◆ During the current measurement (between start and stop of the measurement), no write flash may be executed.
- ◆ In the event of a break in communication during the measurement, the controller must be switched off and then on again in order to reestablish the original status.
- ◆ Changes of the controller parameters during the measurement are not permitted. Those may be overwritten by standard values when the measurement is terminated.

Functionality of the measurement

Basic structure of a frequency response measurement

In general, the analysis of the dynamic behavior of a system is made by analyzing the input and output signals.

If you transform the input signal as well as the output singal of a system into the range (Fourier transformation) and then divide the output singnal by the input signal, you get the complex frequency response of the system.

$$G(s) = \frac{Y(s)}{U(s)} \qquad y(t) \xrightarrow{F} Y(s)$$
with $u(t) \xrightarrow{F} U(s)$

A problem are, however, superimposed systems (the control) Course of the measurement

- ◆ superimposed controls are switched of (open Loop) or attenuated
- ◆ The excitation signal is injected in front of the system to be measured with the aid of the signal generator. Wait, until the system settled.
- ◆ Execution of the measurement: Registration of input and output signal with the aid of the oscilloscope.
- ◆ Upload of the measurement values from the controller into the PC.
- ◆ Processing of the measurement values into a frequency response
- ◆ If a cumulated measurement is configured: Averaging over several frequency responses.

During cumulated measurement, an average is taken over all measurements in the result memory and the result is then put out.

Open/Closed Loop frequency response measurement

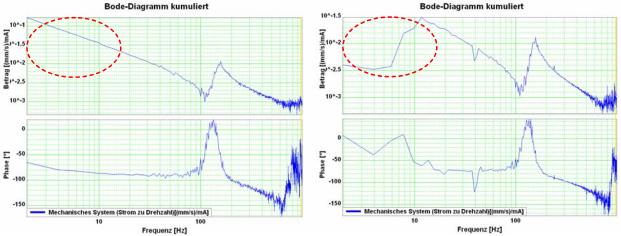
In order to be able to analyze the transmission behavior of subordinate systems (such as for example speed control, current control or mechanical system), the influence of the superposed controls on the measurement must be avoided.

Influence of a superposed system on the frequency response measured

In the simplest case, the superposed controls are switched off completely (Open Loop) This provides the best measurement results due to the elimination of any influence caused by the superposed controls.

This is, however, rarely possible for reasons of safety or feasibility.

Caution!


- Many systems are not stable without control!
- Position as well as speed control are switched off during measurement ==>

no measurement on z-axes!

If you want to analyze for example the mechanic system of a z-axis, the position control as well as the speed control must remain active.

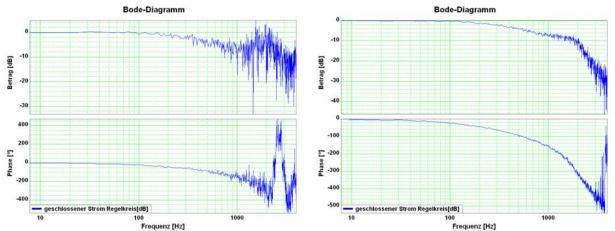
In systems subject to friction it may be necessary in order to improve the quality of the measurement, to **move the system with a superimposed speed** (see page 246), which is howeveronly possible with a closed loop measurement.

Influence of an active superposed control on the result of the measurement

At the left without, at the right with the influence of the superposed control

In order to attenuate the influence of the superposed controls, the controller bandwidth is reduced to such an extent, that their influence on the measurement is negligible.

Excitation Signal


In order to be able to analyze the behavior of the system at individual frequencies, it is necessary that these frequencies can be measured in the input signal as well as in the output signal. For this, a signal generator excites all frequencies to be measured. For this applies, that the signal noise distance of the measurement is the larger, the larger the excitation of the system.

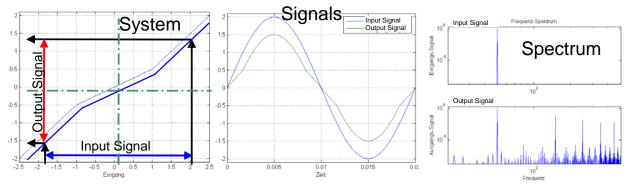
High noise distance => low influence of disturbances on the measurement.

For this, an excitation signal is injected in front of the system to be measured.

The power (amplitude) of the excitation signal can be set. Start with a small amplitude and increase the amplitude slowly during the current measurement until the result of the measurement shows the desired quality.

Influence of the excitation amplitude on the quality of the measurement results

left: too small amplitude of the excitation signal (7.3mA) right: suitable ampitude of the excitation signal (73mA)

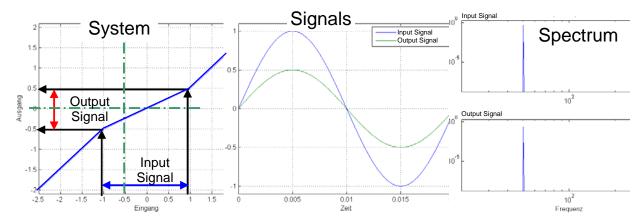

In the case of non-linearities in the system, an increase in the excitation may however lead to a **decline of the quality of the measurement** (see page 245)

Non-linearities and their effects

In this chapter you can read about:

Non-linearities in mechanical systems are for example due to friction, backlash or position-dependent transmissions (cams and crankshaft drives). In general, the frequency response is only defined for linear systems (see **Linear Systems 7.2** (see page 261)). What happens in the frequency range in the event of a non-linear system, is shown below.

Signal amplitude too high => non-linearity in the signal range


Due to the non-linear transmission behavior of the system, many "new" frequencies were generated in the output signal. In the frequency response, only one change of the frequency present in the input signal can be displayed meaningfully.

=> The frequencies generated in the spectre of the output signal lead to a deterioration of the measured frequency response.

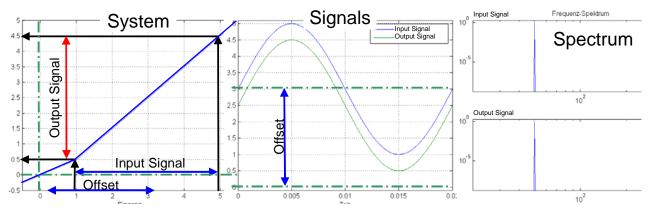
There are however two possibilities to make successful measurements of frequency responses in spite of non-linearities present:

Attenuation of the excitation amplitude

Signal amplitude too small => no non-linearity in the signal range

The signal range is reduced so that approximately linear conditions are valid. The results of the measurement will then display the dynamic behavior at the working point.

Example cam drive:

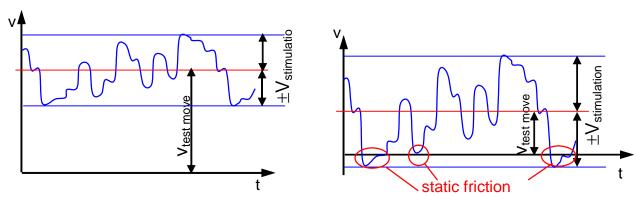

If the drive moves considerably (e.g. 180°) during the measurement, the behavior of the system will change greatly over this range => caused by non-linearities in the signal range.

An inexact measurement is the result.

If the excitation is reduced so that the drive will move only by a few degrees, the behavior of the system at this working point will be approximately constant. An exact measurement is the result.

Shifting the working point into a linear range

Signal amplitude large with offset => no non-linearity in the signal range


For this, the signal range is shifted so that approximately linear conditions are valid => the results of the measurement show the dynamic behavior at the working point.

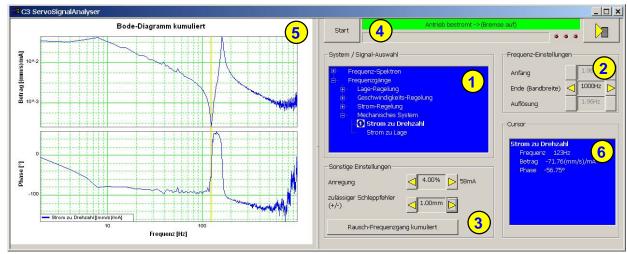
Example rubbing caused by friction:

In systems subject to a distinct transition between rubbing caused by friction and sliding friction, the rubbing force will reduce abuptly as soon as the drive is moved (v>0). With a motor at standstill, the excitation signal will cause a multiple passing through the range of rubbing friction during measurement. Due to the non-linearity in the signal range, the resulting measurement will be inexact.

If the drive moves, however, fast enough during the measurement, so that the speed will not become zero during the measurement, the system remains in sliding friction and a precise measurement can be obtained.

Optimal measurement with rubbing friction

 $V_{\text{test move}}$: Speed of the test movement $V_{\text{stimulation}}$: Speed of the excitation signal


Example backlash: (for example in gearboxes)

Here, non-linearities are caused, if the tooth edges will turn from one side to the other during measurement. The reason for this is a change of the sign of the force transmitted by the gearbox.

In order to avoid this, you can try to transmit a constant torque by keeping a constant speed and to avoid a change of the sign during the measurement by choosing a relatively small excitation amplitude.

4.3.9.7 Overview of the user interface

In this chapter you can read about:	
Selection of the signal or system to be measured.	248
Frequency settings	
velocity control	252
Other settings	
Operating and status field	256
Display of the measurement result	258
Dispaly of the measurement point at the cursor position	259

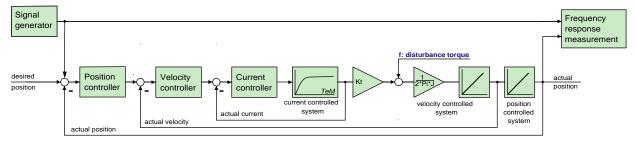
- (1) Selection of the signal or system to be measured (see page 248)
- (2) Frequency settings (see page 252)
- (3) Other settings (see page 254)
- (4) Operating and status field (see page 256)
- (5) Display of the measurement result (see page 258)
- (6) Dispaly of the measurement point at the cursor position (see page 259)

Selection of the signal or system to be measured.

In this chapter you can read about:	
Position control	249
Current control	250
Mechanical system	

With the aid of the tree structure, you may select what you want to measure. Here, the selection is made, if a frequency spectrum or a frequency response is to be measured.

The shown structures are simplified in such as all feedbacks are displayed without special transmission behavior. This is surely not the case in reality, serves however a better overview.

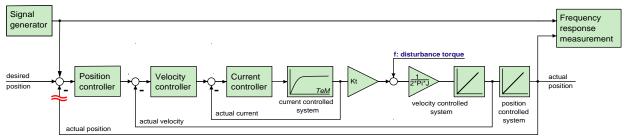

Parker EME Setting up Compax3

Position control

Closed position control

Shows the dynamic behavior of the closed position control.

=> How a signal on the position demand value is transmitted to the position actual value.

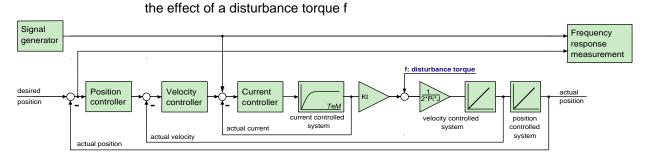

Application:

for the design of superposed controllers or systems.

- ◆ For the verification of the obtained controller speed during optimization
- for the revision of the controller design of the position control

open position control

Shows the dynamic behavior of all components in the position control loop, but without closing it.



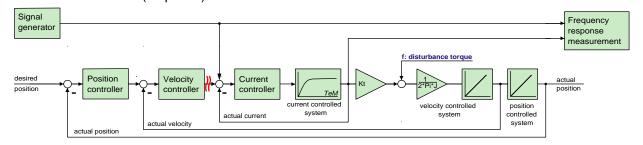
Application:

◆ For the graphic design of the position control.

Compliance of Position control

Shows the dynamic disturbance value behavior of the position control. => which dynamic influence does a disturbance torque have on the following error. The disturbance toque is injected as disturbance current => this corresponds to

use:


- ◆ Verification of the dynamic disturbance value behavior of the position control.
- ♦ Which following error generates a sinusoidal disturbance torque / disturbance current with the frequency fZ ?
- ◆ The frequency response of the compliance corresponds to the disturbance step response in the time range

Current control

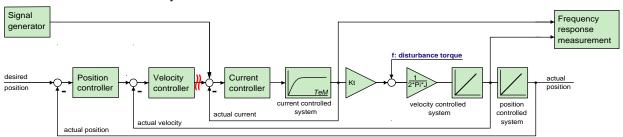
Closed current control

Shows the dynamic behavior of the closed current control.

=> How a signal on the current demand value is transmitted to the current actual value. (response)

Application:

During the optimization of the current control for verification

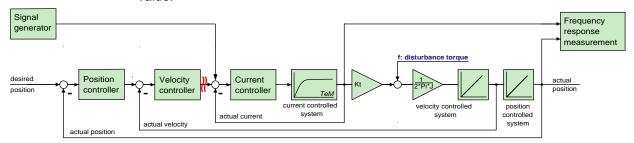

• for the design of superposed controllers.

Parker EME Setting up Compax3

Mechanical system

Current to velocity

Shows the dynamic behavior between the measured current actual value and the velocity actual value


Reflects the transmission behavior between the acceleration at the motor and the acceleration at the load to be moved.

Application:

◆ for the analysis of the dynamic behavior of the mechanic system

Current to position

Shows the dynamic behavior between current actual value and position actual value.

use:

 \bullet for the analysis of the dynamic behavior of the mechanic system

Frequency settings

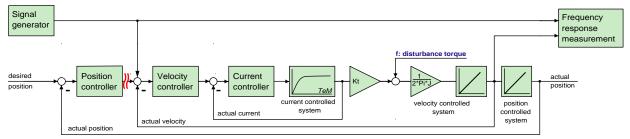
(1) start frequency

◆This is the smallest frequency at which is still measured. During the measurement of frequency spectrum and noise frequency response this results automatically from the bandwidth and is only displayed as an information.

(2) End (bandwidth)

This corresponds to the highest frequency which is measured. Start frequency as well as the frequency resolution can be varied with the aid of the bandwidth for frequency spectrum and noise frequency response.

(3) Frequency resolution (see page 238)

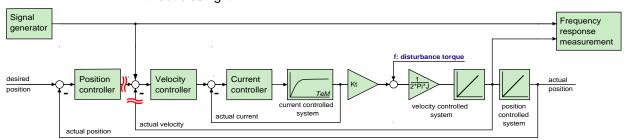

 During the measurement of frequency spectrum and noise frequency response this results automatically from the bandwidth and is only displayed as an information.

velocity control

Closed velocity control

Shows the dynamic behavior of the closed velocity control.

=> How a signal on the velocity demand value is transmitted to the velocity actual value.


Parker EME Setting up Compax3

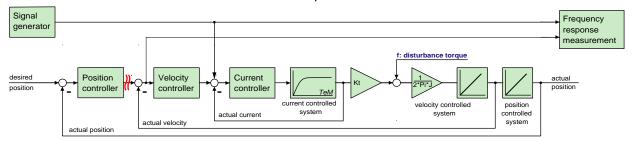
use:

- ◆ During the optimization of the velocity control for verification
- for the design of superposed controllers.

Open velocity control

Shows the dynamic behavior of all components in the velocity control loop, but without closing it.

use:


For the graphic design of the velocity control.

Compliance of velocity control

Shows the dynamic disturbance value behavior of the velocity control.

=> which dynamic influence does a disturbance torque have on the control deviation of the velocity control.

The disturbance toque is injected as disturbance current => this corresponds to the effect of a disturbance torque f

Application:

- ◆ Verification of the disturbance value behavior of the velocity control
- ♦ Which velocity deviation generates a sinusoidal disturbance torque / disturbance current with the frequency fZ ?
- ◆ The frequency response of the compliance corresponds to the disturbance step response in the time range

Other settings

(1) Excitation

Serves to set the excitation signal of the frequency response measurement.

(2) Permissible following error (only for frequency response measurement)

The resulting following error is increased by the injection of the excitation signal during the frequency response measurement. In order to allow for this, the permissible following error window can be enlarged so that the measurement can be made. After the end of the measurement, this is reset to the original value.

(3) Selection of the kind of analysis of the measurement results

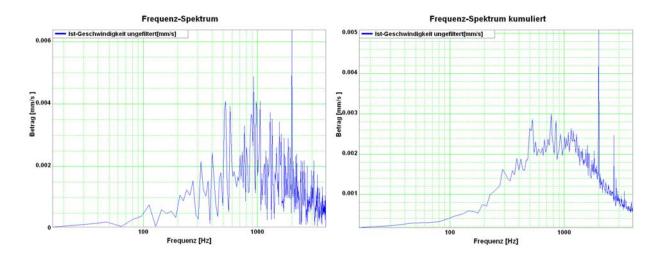
Depending on the fact whether frequency spectra or frequency responses are measured, the following types of analyses are available:

For frequency spectra:

- ♦ (a) Spectrum
- (b) Spectrum cumulated
- (c) cascade diagram

For frequency responses:

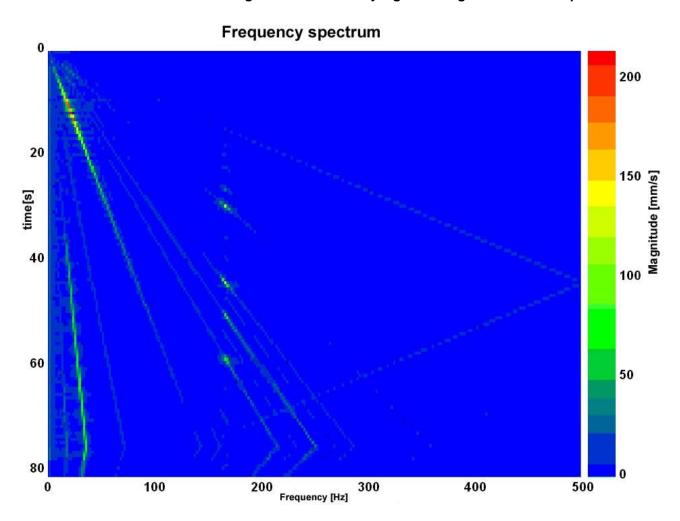
- ◆(d) noise frequency response
- ◆ (d) noise frequency response cumulated


Non cumulated measurement (a & d)

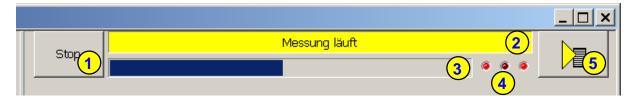
The measured data are displayed directly. This is especially suitable if you wish to analyze the effects of changes on the measurement results directly and promptly. The disadvantage is however a smaller noise distance (quality) and an increased sensitiveness of the measurement towards unique disturbances.

Cumulated measurement (b & e)

An average is taken from all measurements in the result memory. This reduces the influence of random signals and disturbances extremely (improvement of the quality). The number of measurements from which the average is taken, is set with the **Size of the result memory** (see page 256).


Comparison of two frequency spectra without and with cumulation

cascade diagram (c)

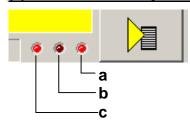

Frequency spectra are displayed subject to time. The information on the value of the signal is color-coded.

Cascade diagrams of the velocity signal during an acceleration process

This kind of display is suitable for the analysis of temporal changes in the measured spectrum.

Operating and status field

(1) Start and Stop of the measurement


(2) Status display

Current status of the measurement or of the controller (if no measurement is taking place).

(3) Progress of the registration of the signals in the controller

The time of registration of the signals in the controller itself can, depending on the bandwidth and the kind of measurement, take up to one minute.

(4) status of the activity of the different partitions of the measurement

- a: Registration of the measurement in the controller
- b: Upload of the measurement from the controller to the PC
- c: Processing the measurement in the PC

(5) Different settings and options

Functions available in a pull-down menu:

Open superposed control loops (see page 243)

accept load force

This serves, when opening the velocity controller, to accept the load which the controller has provided at the time of switching off => a z-axis does not drop down abruptly.

Measurement synchronous to the test movement

if this option is selected, it is ensured during the measurement, that the sampling does not take place in the turning point during a movement.

Unless frequencies are generated due to the deceleration/acceleration of the drive, which influence the measurement.

Result memory

In the result memory, the results of the N last measurements are kept. This is important for the display of the cumulated measurement and for the cascade diagram. The larger the memory, the "older" the results still used. When the contents is deleted, all old measurements are discarded and do no longer influence the new results.

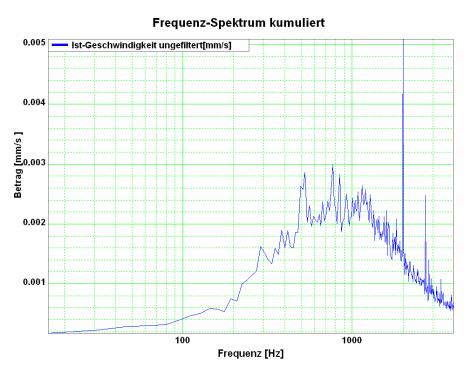
Windowing (see page 239)

Here you can select different windowing modes for the measurement of frequency spectra. As default, no window is used.

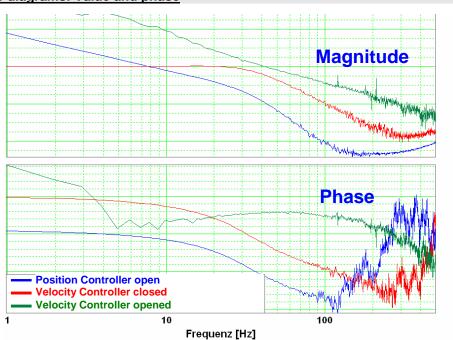
Save measure to file

The currently displayed measurement result is stored and can be uploaded later into the ServoSignalAnalyzer. This does, however, not apply to the cascade diagram display.

Open measure from file

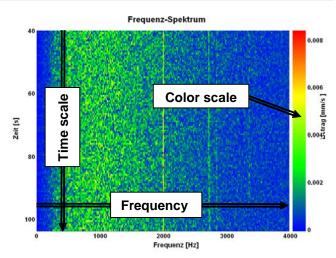

Here you can reload the measurements memorized before. You have the possibility to load up to four measurements subsequently and display them together in a graphic display.

Copy measurement to clipboard as graphic display.


The currently displayed measurement result is copied as pixel graphic (e.g. BMP) to the clipboard.

Display of the measurement result

Frequency spectra


Bode diagrams: Value and phase

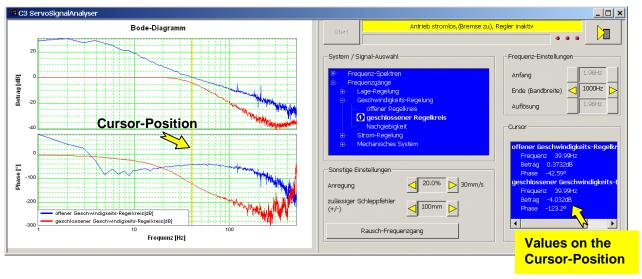
Parker EME Setting up Compax3

By clicking with the left mouse button on the legend, this can be shifted by 90°. By clicking on the color bar, the color of the respective graph can be modified.

Cascade diagrams

By clicking with the left mouse button on the color scale, you can change between autoscale mode and fixscale mode.

AutoScaleMode:


In this mode, the scaling of hte color scale is adapted automatically so that all values can be displayed.

FixScaleMode:

Here, the scaling is fixed.

=> If, for instance, a considerably higher value than before is to be displayed, it is simply displayed like the former maximum (red).

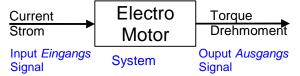
Dispaly of the measurement point at the cursor position

The cursor is set by clicking on the left mouse button. All measurement data of the selected cursor position (frequency) are displayed in the "cursor" operating field.

4.3.9.8 Basics of frequency response measurement

In this chapter you can read about:	
Distinction between signals and systems	260
Linear Systems (LTI System)	
Mechanical system	262
Resonance points and their causes	263

In the drive and control technology, the display of signals and systems in the frequency range is often the best possibility to solve different tasks.


Distinction between signals and systems

Defined objects and their interactions that can be combined to a whole by a plausible distinction from their environment (i.e. the complex reality) are called a system.

Example electric motor

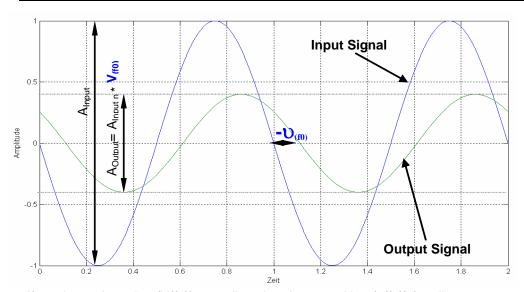
This consists of a multitude of different components, but the function and the behavior of a motor can be described as a whole without describing each individual component and their interactions separately.

If the motor is energized, it will generate a torque at the motor shaft.

Current is therefore a signal, which causes at the input of the system motor a change of its output signal torque.

In order to register and process such signals in the controller, they are digitized and read in withthe so-called scanning frequency (fA). Thus the physical signal was converted into a finite sequence of numbers, which can be processed in the controller.

Linear Systems (LTI System)

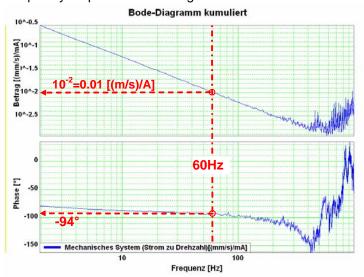

Further explanations are based on the concept of so-called linear systems. This means that doubling the input value means that the portion of the output value influenced by it is also doubled. this, for instance, is not the case in the event of influence due to limitations, friction and backlash.

=> those are called non-linear systems, which can not be analyzed with the methods described here (or only with difficulties).

One of the most important properties of linear systems is that a sine signal, which is put through a linear system, is still a sine signal at the output, which differs from the input signal only in value and phase.

When a signal passes a LTI system, no new frequencies are generated.

Input and output signals of a linear system

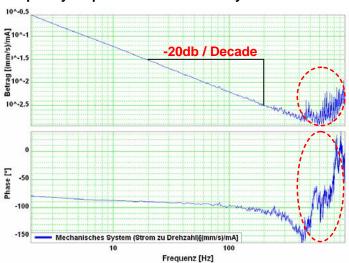


If you know the value (V(f0)) as well as the phase position (u(f0)) for all frequencies, the LTI system is completely defined.

Such a graph of value and phase position in dependance of the frequency, is called frequency response or bode diagram.

=> only LTI systems can be analyzed with the aid of frequency responses.

Frequency response / bode diagram

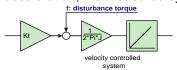


The frequency response shows the amplification (value) and the phase shift (phase), which a signal is submittedd to when passing through a system.

The displayed bode diagram allows the following conclusions: If a sine with 60Hz and an amplitude of 1A is present at the input, a sine delayed by 94° and an amplitude of 0.01m/s will result at the output.

Mechanical system

Frequency response of a mechanic system: Current - velociy of a motor

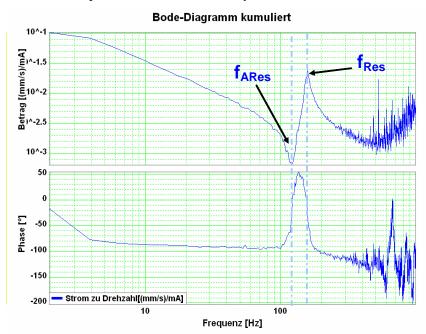

The outlined course at the end of the measurement range does not permit statements on the system measured due to disturbances. Due to the attenuation of the signals increasing with the frequency, the sensitiveness of the measurement to disturbances (signal to noise ratio) increases with a rising frequency. The value as well as the phase response of the displayed frrquency response are "disturbed" at the same intensity, this shows, that disturbances are the reason.

The value response consists basically of a straight, which declines with a slope of -20dB/decade (-20dB/decade => per tenfold increase of the frequency, the value decreases also by factor ten.)

the phase response remains however almost constantly at -90 $^{\circ}$ over a relatively large range.

In control technology, this is called integrating behavior (I-behavior). the I-behavior can be explained as follows.

The measured current is proportional to the motor force and thus also to the acceleration of the driven mass. As the velocity is calculated from the integrated acceleration, the measured system looks as follows:

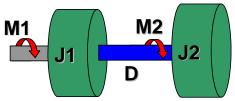


Input value is the current actual value, output value is the velocity actual value

Resonance points and their causes

In this chapter you can read about:	
Rotary two mass system	264
Linear two mass system	
Toothed belt drive as two mass system	

Mechanical system with a resonance point



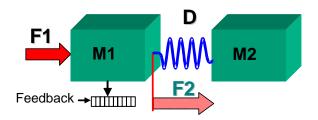
fARes: Anti resonance frequency fRes: Resonance frequency

The displayed change of the frequency response (resonance point), has its cause in a so-called two mass system (caused by the elastic coupling of two masses).

Hint As, upon closer examination, each mechanic coupling shows a certain elasticity, it is no the question if there is a resonance point, but at which frequency it is and how well it is attenuated.

Rotary two mass system

The shown system corresponds for instance to a motor with a flywheel coupled via a shaft. Hereby J1 corresponds to the motor moment of inertia and J2 to the moment of inertia of the flywheel.


Calculation of the resonance frequencies in the rotary system with a hollow shaft as elastic coupling element

$$D = \int_{r_l}^{r_A} \frac{2 \cdot \pi \cdot G}{l} \cdot r^3 \cdot dr = \frac{G \cdot \pi \cdot (r_A^4 - r_I^4)}{2 \cdot l}$$

$$f_{\text{ARe}\,s} = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{D}{J_2}} \qquad f_{\text{Re}\,s} = \frac{1}{2 \cdot \pi} \cdot \sqrt{D \cdot \left(\frac{1}{J_1} + \frac{1}{J_2}\right)}$$

G	Shear modulus of the material used [N/m²] (e.g. approx. 80750N/mm² for steel)
D	Torsional rigidity in [m/rad]
rA	Outer radius of the hollow shaft
rl	Inner radius of the hollow shaft
I	Length of the hollow shaft

Linear two mass system

Resonance frequencies in the linear system

$$f_{A \operatorname{Re} s} = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{D}{m_2}}$$

D	Rigidity in [N/m]
m1	e.g. motor mass
m2	e.g. load mass

$$f_{\text{Re}\,s} = \frac{1}{2 \cdot \pi} \cdot \sqrt{D \cdot \left(\frac{1}{m_1} + \frac{1}{m_2}\right)}$$

Parker EME Setting up Compax3

Toothed belt drive as two mass system

In toothed belt drives, the toothed belt is the elastic coupling element. Its rigidity depends directly on the lengths I1 and I2 and changes in dependance of the position of the moved mass.

$$\begin{split} D_{spez} &= \frac{F_{\text{max}}}{0,004}; \qquad I_2 = 2 \cdot I_{Achse} - I_1 \\ D_1 &= \frac{D_{spez}}{I1}; \qquad D_2 = \frac{D_{spez}}{I2}; \qquad D = D_1 + D_2 = \frac{2 \cdot D_{spez}}{I_1 \cdot \left(2 - \frac{I_1}{I_{Achse}}\right)} \end{split}$$

$$f_{\text{ARes}} = \frac{1}{2\pi} \cdot \sqrt{\frac{D}{m2}} \qquad f_{\text{Res}} = \frac{1}{2\pi} \cdot \sqrt{D \cdot \left(\frac{1}{m_2} + \frac{\left(r_{\text{Zahnrad}}\right)^2}{J_1 \cdot \left(i_{\text{Getriebe}}\right)^2}\right)}$$

D	Total spring constant of the toothed belt drive				
Dspez	pecific spring constant of the toothed belt used				
D1	oring rate of the belt length I1				
D2	Spring rate of the belt length I2				
iGearbox	Transmission ratio of the gearbox				
IAxis	Length of the axis				
J1	Moment of inertia of motor and gearbox				
m2	translatory moved mass				
rToothed wheel	Radius of the drive pinion				

4.3.9.9 Examples are available as a movie in the help file

Here you can find examples as a movie in the help file.

4.3.10. ProfileViewer for the optimization of the motion profile

In this chapter you can read about:	
Mode 1: Time and maximum values are deduced from Compax3 input values	66
Mode 2: Compax3 input values are deduced from times and maximum values	67

You will find the ProfileViewer in the Compax3 ServoManager under the "Tools" Menu:

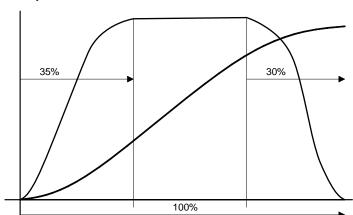
4.3.10.1 Mode 1: Time and maximum values are deduced from Compax3 input values

- ◆ The motion profile is calculated from Position, Speed, Acceleration, Deceleration, Acceleration Jerk and Deceleration Jerk
- ◆ As a result you will get, besides a graphical display, the following characteristic values of the profile:
 - ◆ Times for the acceleration, deceleration and constant phase
 - ◆ Maximum values for acceleration, deceleration and speed

Parker EME Setting up Compax3

4.3.10.2 Mode 2: Compax3 input values are deduced from times and maximum values

- ◆ A jerk-limited motion profile is calculated from the positioning time and the maximum speed / acceleration
- ◆ As a result you will get, besides a graphical display, the following characteristic values of the profile:
 - ◆ the parameters Position, Speed, Acceleration, Deceleration, Acceleration Jerk and Deceleration Jerk
 - ◆ Times for the acceleration, deceleration and constant phase
 - ◆ Maximum values for acceleration, deceleration and speed


Set deceleration and acceleration phase

The profile can be defined more exactly by entering the segmentation into deceleration and acceleration phase.

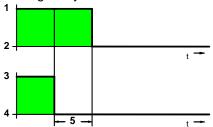
When setting 50% and 50%, a symmetrical design will result, the values for triangular operation are calculated, which is limited by the maximum speed. The total of the percentage values may not exceed 100.

The percentage entries refer to the total positioning time.

Example:

4.3.11. Turning the motor holding brake on and off

Compax3 controls the holding brake of the motor and the power output stage. The time behavior can be set.

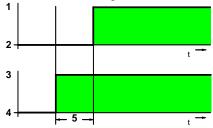

Application:

For an axis to which torque is applied in the stationary state (e.g. for a z-axis) the drive can be switched on and off in a manner such that no load movement takes place. The drive thereby remains energized during the holding brake response time. This is adjustable.

The power output stage current is de-energized by:

- ◆ Error or
- ◆ the control word
- ◆ the ServoManager

Thereafter the motor is braked to zero rotation speed on the set ramp. When zero speed is reached, the motor is de-energized with the delay "brake closing delay time".



- 1: Motor powered
- 2: Motor de-energized
- 3: Brake open
- 4: Engage the brake
- 5: brake closing delay time

The power output stage is enabled by:

- ◆ Acknowledge (after error) with the control word
- ◆ the ServoManager

The motor is energized with the delay "delay time for brake release".

- 1: Motor powered
- 2: Motor de-energized
- 3: Brake open
- 4: Engage the brake
- 5: Delay time for brake release

5. Communication

In this chapter you can read about:	
COM port protocol	270
Remote diagnosis via Modem	
Ethernet Powerlink	279

Here you will find the description of the fieldbus interfaces, which can be configured in the Compax3 ServoManager under the tree entry "configuring the communication".

Please note:

The configuration of the process data (Mapping) is made wizard-guided with the Compax3 ServoManager.

If you perform the mapping directly via the master, you must go through this fieldbus wizard once; the Compax3 ServoManager will perform the necessary initializations.

5.1 COM port protocol

In this chapter y	you can re	ead about:
-------------------	------------	------------

RS485 setting values	270
ASCII - record	270
Binary record	

You can communicate with Compax3 in order to read or write objects via plug X10 (or X3 on the mains module of Compax3M) on the front via a COM port (max. 32 nodes).

As a rule 2 records are possible:

- ASCII record simple communication with Compax3
- ◆ Binary record: fast and secure communication with Compax3 by the aid of block securing.

Switching between the ASCII and the binary record via automatic record detection.

interface settings (see page 379)

Wiring

RS232: **SSK1** (see page 356)

RS485: like **SSK27** (see page 357) / RS485 is activated by +5V on X10/1.

USB: SSK33/03 (only for Compax3M)

5.1.1. RS485 setting values

If "Master=Pop" was selected, only the settings compatible with the Pops (Parker Operator Panels) made by Parker are possible.

Please note that the connected Pop has the same RS485 setting values.

You can test this with the "PopDesigner" software.

"Master=General" makes all Compax3 settings possible.

Multicast Address You can use this address to allow the master to access multiple devices

simultaneously

simultaneously.

Device Address The device address of the connected Compax3 can be set here.

Baud rate Adjust the transfer speed (baud rate) to the master.

Connection Type Please choose between **two-wire and four-wire RS485** (see page 55).

Protocol Adjust the protocol settings to the settings of your master.

5.1.2. ASCII - record

The general layout of a command string for Compax3 is as follows:

[Adr] command CR

	RS232: no address RS485: Compax3 address in the range 0 99 Address settings can be made in the C3 ServoManager under "RS485 settings"
Command	valid Compax3 command
CR	End sign (carriage return)

Command

A command consists of the representable ASCII characters (0x21 .. 0x7E). Lower cases are converted automatically into capitals and blanks (0x20) are deleted, if they are not placed between two quotation marks.

Separator between places before and after the decimal is the decimal point (0x2E). A numeric value can be given in the Hex-format if it is preceded by the "\$" sign. Values can be requested in the Hex-format if the CR is preceded additionally by the "\$" sign.

Answer strings

All commands requesting a numeric value from Compax3 are acknowledged with the respective numeric value in the ASCII format followed by a CR without preceding command repetition and following statement of unit. The length of these answer strings differs depending on the value.

Commands requesting an Info-string (e.g. software version), are only acknowledged with the respective ASCII character sequence followed by a CR, without preceding command repetition. The length of these answer strings is here constant.

Commands transferring a value to Compax3 or triggering a function in Compax3 are acknowledged by:

>CR

if the value can be accepted resp. if the function can be executed at that point in time.

If this is of the case or if the command syntax was invalid, the command is acknowledged with

!xxxxCR

The 4 digit error number **xxxx** is given in the HEX format; you will find the meaning in the **appendix** (see page 312).

RS485 answer string

When using RS485, each answer string is preceded by a *" (ASCII - character: 0x2A).

Compax3 commands

Read object

RS232: O [\$] Index , [\$] Subindex [\$]

RS485: Address O [\$] Index , [\$] Subindex [\$]

The optional "\$" after the subindex stands for "hex-output" which means that an object value can also be requested in hex;

e.g. "O \$0192,2\$": (Object 402.2)

Write object

RS232: O [\$] Index , [\$] Subindex = [\$] Value [; Value2 ; Value3 ; ...]

RS485: Address O [\$] Index , [\$] Subindex = [\$] Value [; Value2 ; Value3 ; ...]

The optional "\$" preceding Index, Subindex and value stands for "Hex-input" which means that Index, Subindex and the value to be transferred can also be entered in hex (e.g. **O \$0192,2=\$C8**).

5.1.3. Binary record

The binary record with block securing is based on 5 different telegrams:

- ◆2 request telegrams which the control sends to Compax3 and
- ◆3 response telegrams which Compax3 returns to the control.

Telegram layout

Basic structure:

Start code	address	Number of data bytes - 1	Data		block securing		
SZ	Α	L	D0	D1		Crc(Hi)	Crc(Lo)
						n	

The start code defines the frame type and is composed as follows:

Bit			6	5	4	3	2	1	0
Frame type		Fran	Frame identification		PLC		Gateway	address	
RdObj	Read object	1	0	1	0	х	1	х	х
WrObj	Write object	1	1	0	0	х	1	х	х
Rsp	Answer	0	0	0	0	0	1	0	1
Ack	Positive command acknowledgement	0	0	0	0	0	1	1	0
Nak	Negative command acknowledgement	0	0	0	0	0	1	1	1

Bits 7, 6, 5 and 4 of the start code form the telegram identification; Bit 2 is always "1" $^{"}$

Bits 3, 1 and 0 have different meanings for the request and response telegrams. The address is only necessary for RS484.

Request telegrams

-> Compax3

- the address bit (Bit 0 = 1) shows if the start code is followed by an address (only for RS485; for RS232 Bit 0 = 0)
- ♦ the gateway bit (Bit 1 = 1) shows if the message is to be passed on. (Please set Bit 1 = 0, as this function is not yet available)
- ◆ the PLC bit (Bit 3 = 1) allows access to objects in the PLC/Pop format U16, U32: for integer formats (see bus formats: Ix, Ux, V2) IEEE 32Bit Floating Point: for broken formats (bus formats: E2_6, C4_3, Y2, Y4; without scaling)

With Bit 3 = 0 the objects are transmitted in the DSP format.

DSP formats:

24 Bit = 3 Bytes: Integer INT24 or Fractional FRACT24

48 Bit = 6 Bytes: Real REAL48 (3 Byte Int, 3 Byte Fract) / Double Integer DINT48 / Double Fractional DFRACT48

Response telegram

Compax3>

- ◆ Bits 0 and 1 are used to identify the response
- ◆ Bit 3 is always 0

The maximum number of data bytes in the request telegram is 256, in the response telegram 253.

The block securing (CRC16) is made via the CCITT table algorithm for all characters.

After receiving the start code, the timeout monitoring is activated in order to avoid that Compax3 waits in vain for further codes (e.g. connection interrupted) The timeout period between 2 codes received is fixed to 5ms (5 times the code time at 9600Baud)

Write object - WrObj telegram

SZ	Adr	L	D0	D1	D2	D3 Dn	Crc(Hi)	Crc(Lo)
0xCX		n	Index(Hi)	Index(Lo)	Subindex	Value	0x	0x

Describing an object by a value.

Positive acknowledgement - Ack-telegram

SZ	L	D0	D1	Crc(Hi)	Crc(Lo)
0x06	1	0	0	0x	0x

Answer from Compax3 if a writing process was successful, i.e. the function could be executed and is completed in itself.

Negative acknowledgement - Nak - telegram

SZ	L	D0	D1	Crc(Hi)	Crc(Lo)
0x07	1	F-No.(Hi)	F-No.(Lo)	0x	0x

Answer from Compax3 if access to the object was denied (e.g. function cannot be executed at that point in time or object has no reading access). The error no. is coded according to the DriveCom profile resp. the CiA Device Profile DSP 402.

Read object - RdObj - telegram

SZ	Adr	L	D0	D1	D2	D3	D4	D5	 Dn	Crc(Hi)	Crc(Lo)
0xAX		n	Index1(Hi)	Index1(Lo)	Subindex1	Index2(Hi)	Index2(L	Subindex2	 	0x	0x
							o)				

Reading one or several objects

Answer - Rsp - telegram

SZ	L	D0 Dx-1	Dx Dy-1	Dy-D	D D	D Dn	Crc(Hi)	Crc(Lo)
0x05	n	Value1	Value 2	Value 3	Value	Value n	0x	0x

Answer from Compax3 if the object can be read.

If the object has no reading access, Compax3 answers with the Nak - telegram.

Example:

Reading object "StatusPositionActual" (o680.5):

Request: A5 03 02 02 A8 05 E1 46

Response: 05 05 FF FF FF FF FE 2D 07 B4

Writing into an Array (01901.1 = 2350)

Request: C5 02 08 07 6D 01 00 09 2E 00 00 00 95 D5

Response: 06 01 00 00 BA 87

Block securing:

Checksum calculation for the CCITT table algorithm

The block securing for all codes is performed via the following function and the corresponding table:

The "CRC16" variable is set to "0" before sending a telegram.

Function call:

```
CRC16 = UpdateCRC16(CRC16, Character);
```

This function is called up for each Byte (Character) of the telegram.

The result forms the last two bytes of the telegram

Compax3 checks the CRC value on receipt and reports CRC error in the case of a deviation.

Function

```
const unsigned int _P CRC16_table[256] = {
   0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
   0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
   0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
   0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
   Oxa56a, Oxb54b, Ox8528, Ox9509, Oxe5ee, Oxf5cf, Oxc5ac, Oxd58d,
   0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
   0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
   0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
   Oxc9cc, Oxd9ed, Oxe98e, Oxf9af, Ox8948, Ox9969, Oxa90a, Oxb92b,
   0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
   Oxdbfd, Oxcbdc, Oxfbbf, Oxeb9e, Ox9b79, Ox8b58, Oxbb3b, Oxab1a,
   0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
   Oxedae, Oxfd8f, Oxcdec, Oxddcd, Oxad2a, Oxbd0b, Ox8d68, Ox9d49,
   0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3el3, 0x2e32, 0x1e51, 0x0e70,
   0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
   0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
   0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
   0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
   0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
   0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
   0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
   0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
   0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
   0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
   Oxcb7d, Oxdb5c, Oxeb3f, Oxfb1e, Ox8bf9, Ox9bd8, Oxabbb, Oxbb9a,
   0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
   Oxfd2e, OxedOf, Oxdd6c, Oxcd4d, Oxbdaa, Oxad8b, Ox9de8, Ox8dc9,
   0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
   0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};
unsigned int UpdateCRC16(unsigned int crc,unsigned char value) {
unsigned int crc16;
crc16 = (CRC16_table[(crc >> 8) & 0x00FF] ^ (crc << 8)</pre>
  ^ (unsigned int)(value));
return crc16;
```

You will find this function on the Compax3 CD under RS232_485\Function UpdateCRC16.txt!

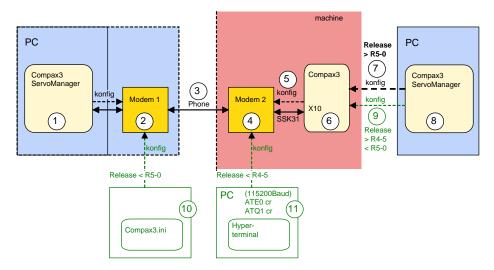
5.2 Remote diagnosis via Modem

In this chapter you can read about:	
Structure	275
Configuration of local modem 1	276
Configuration of remote modem 2	277
Recommendations for preparing the modem operation	278

Caution!

As the transmission via modem may be very slow and interference-prone, the operation of the Compax3 ServoManager via modem connection is on your own risk!

The function setup mode as well as the ROLL mode of the oscilloscope are not available for remote diagnosis!


It is not recommended to use the logic analyzer in the Compax3 IEC61131-3 debugger due to the limited bandwidth.

Requirements:

For modem operation, a direct and stable telephone connection is required. Operation via a company-internal telephone system is not recommended.

5.2.1. Structure

Layout and configuration of a modem connection ServoManager - Compax3:

The green part of the drawing shows the proceeding for Compax3 release versions < R5-0!

The proceeding for Compax3 release versions < R5-0 is described in an application example (.../modem/C3_Appl_A1016_*language*.pdf on the Compax3 CD).

Connection Compax3 ServoManager <=> Compax3

The Compax3 ServoManager (1) establishes a RS232 connection with modem 1 (PC internal or external).

Modem 1 dials modem 2 via a telephone connection (3).

Modem 2 communicates with Compax3 (6) via RS232.

Configuration

Modem 1 is configured via the Compax3 ServoManager (1)

Modem 2 can be configured via Compax3 (on place), triggered by putting **SSK31** (see page 361) on X10. For this, the device must be configured before. This can be made locally before the system / machine is delivered with the aid of the Compax3 ServoManager (8).

The transmission was tested with a TD33 modem made by "**Westermo** http://www.westermo.com". The configuration with this standard modem is especially simple.

Other modem types are also possible.

5.2.2. Configuration of local modem 1

- ◆ Menu "Options: Communication settings RS232/RS485..." must be opened
- ◆ Select "Connection via Modem"
- ◆ Under "name" you can enter a name for the connection
- ◆ Enter the target telephone number.

 Note: If an ISDN telephone system is operated within a company network, an additional "0" may be required in order to get out of the local system into the comany network before reaching the outside line with an additional "0".
- ◆The timeout periods are set to reasonable standard values according to our experience.
- ◆ Select the modem type: "Westermo TD-33" or "user-defined modem"
 - ◆ For "Westermo TD-33", no further settings are required.
 - ◆ For "user-defined modem", additional settings are only required, if the modem does not support standard AT commands. Then you can enter special AT commands.
 - ◆ Note: When operating the local modem on a telephone system, it may be necessary to make a blind dialling. Here, the modem does not wait for the dialling tone. For the Westermo TD33, the additional command sequence is ATX3.
- Select the COM interface where the modem is connected.
- ◆ Close the window and establish the connection with button ☐ (open/close COM port).
- ◆ The connection is interrupted when the COM port is closed.
- ◆ Select the modem type: "Westermo TD-33" or "user-defined modem"
 - ◆ For "Westermo TD-33", no further settings are required.
 - ◆ For "user-defined modem", additional settings are only required, if the modem does not support standard AT commands. Then you can enter special AT commands.
 - ◆ Note: When operating the local modem on a telephone system, it may be necessary to make a blind dialling. Here, the modem does not wait for the

dialling tone. For the Westermo TD33, the additional command sequence is ATX3.

5.2.3. Configuration of remote modem 2

Settings in Compax3 under "configure communication: Modem settings":

- ◆ Modem initialization = "ON": After the SSK31 modem cable has been connected, Compax3 initializes the modem
- Modem initialization after Power On = "ON": After Power on of Compax3, the device initializes the modem
- ◆ Modem check = "ON": a modem check is performed
- ◆ The timeout periods are set to reasonable standard values according to our experience.
- ◆ Select the modem type: "Westermo TD-33" or "user-defined modem"
 - ◆ For "Westermo TD-33", no further settings are required.
 - ◆ For "user-defined modem", additional settings are only required, if the modem does not support standard AT commands. Then you can enter special AT commands.
 - ◆ Note: When operating the local modem on a telephone system, it may be necessary to make a blind dialling. Here, the modem does not wait for the dialling tone. For the Westermo TD33, the additional command sequence is ATX3.
- in the following wizard window, a specific download of the modem configuration can be made.

Note:

If a configuration download is interrupted, the original settings in the non volatile memory of the Compax3 are still available.

You have to finish the communication on the PC side and to reset the Compax3 via the 24V supply before you can start a new trial.

Reinitialization of the remote modem 2

Remove cable on Compax3 X10 and connect again!

5.2.4. Recommendations for preparing the modem operation

Preparations:

- ◆ Settings in Compax3 under "configure communication: Modem settings":
 - ◆ Modem initialization: "ON"
 - ◆ Modem initialization after Power On: "ON"
 - ◆ Modem check: "ON"
- ◆ Deposit SSK31 cable in the control cabinet.
- Install modem in the control cabinet and connect to telephone line.

Remote diagnosis required:

- ◆ On site:
 - ◆ Connect modem to Compax3 X10 via SSK31
 - Modem is automatically initialized
- ◆ Local:
 - ◆ connect modem to telephone line
 - ◆ Establish cable connection to modem (COM interface)
 - ◆ Select "connection via modem" under "options: communication settings RS232/RS485...".
 - ◆ Select modem under "selection"
 - ◆ Enter telephone number
 - ◆ Select COM interface (PC modem)
 - ◆ Establish connection with button (open/close COM port).

5.3 Ethernet Powerlink

In this chapter you can read about:	
Ethernet Powerlink - Operating mode	279
CN Controlled Node (Slave)	
Status machine	286
Controlword /Statusword	288
Acyclic parameter channel	295
Ethernet Powerlink - Communication profile	310

5.3.1. Ethernet Powerlink - Operating mode

- ◆ CN (Controlled Node) in the Velocity Mode velocity control: the target velocity is specified and actual values are read back via Ethernet Powerlink.
- ◆ CN (Controlled Node) in the Position Mode direct positioning: the target position is specified and actual values are read back via Ethernet Powerlink.
- ◆CN (Controlled Node) with set selection: Motion sets which are stored in an array are activated via Ethernet Powerlink.

Slave with configuration via machine zero (managing Node)

Select "Slave with configuration via machine zero (managing Node)". for operating mode and mapping via master.

Then run through the wizard completely.

Addtional operating modes can be set via the object "**operating mode** (see page 288)" (EPL No. 0x6060 (object 1100.5)).

5.3.1.1 CN (Controlled Node) in the Velocity Mode - velocity control

Ethernet Powerlink – Master -> Compax3

Possible assignment:

Designation	Object No.	EPL No.	Assigned words	Assignment
Controlword (Control word 1)	1100.3	0x6040	1	optional
Target velocity	1100.13	0x2044	2	optional
Operating mode	1100.5	0x6060	1	optional
Dig. Outputs (0-3)	140.3	0x6300.1	1	optional
Dig. outputs M1x option	133.3	0x6300.2	1	optional

Layout of the Control word (see page 288).

Compax3 -> Ethernet Powerlink - Master

Possible assignment:

Designation	Object No.	EPL No.	Assigned words	Assignmen
			words	L .
Statusword (Status word 1)	1000.3	0x6041	1	optional
Velocity actual value	681.5	0x606C	2	optional
Torque actual value	683.1	0x6077	1	optional
Dig. inputs (0-7)	120.3	0x6100.1	1	optional
Dig. inputs M1x option	121.2	0x6100.2	1	optional
Operating mode display	1000.5	0x6061	1	optional
LastError (current Compax3 errors)	550.1	0x603F/ 0x201D.1	1	optional

Layout of the Status word. (see page 290)

5.3.1.2 CN (Controlled Node) in the Position Mode - direct positioning

Communication between Master and Compax3 takes place via the process data objects (PDOs)

Procedure:

Selection of the motion function: Bit 15, 13, 6 of the control word 1

Start of the motion function: Bit 4 of the control word 1

Specification of the motion parameters: Objects of the PDOs

Ethernet Powerlink - Master -> Compax3

Possible assignment:

Designation	Object No.	EPL No.	Assigne	Assignment
			d words	
Controlword (Control word 1)	1100.3	0x6040	1	optional
Target position Y4 (position command value)	1100.6	0x2044	2	optional
Profile velocity (1 decimal place)	1100.14	0x2048	1	optional
Profile velocity (3 decimal places)	1100.7	0x2046	2	optional
Profile acceleration U16	1111.10	0x202D	1	optional
Profile acceleration U32	1111.3	0x6083	2	optional
Profile deceleration U16	1111.16	0x205D	1	optional
Profile decceleration U32	1111.4	0x6084	2	optional
Dig. Outputs (0-3)	140.3	0x6300.1	1	optional
Dig. outputs M1x option	133.3	0x6300.2	1	optional
Operating mode	1100.5	0x6060	1	optional
Interpolation data (Interpolation input)	3921.1	0x60C1.1	2	optional

Layout of the **Control word** (see page 288).

The setpoint movement speeds C & D do have the same function, they differ only in the word width.

The same applies for the setpoint accelerations A & B You should therefore only use one of these two values.

Attention: The meaning of position command value A changes with Gearing:

With the motion function Gearing applies:

Position setpoint = Gearing numerator

value A

Compax3 -> Ethernet Powerlink - Master

Possible assignment:

Designation	EPL No.	Object No.	Assigne d words	Assignmen t
Statusword (Status word 1)	0x6041	1000.3	1	optional
Position actual value	0x6064	680.5	2	optional
Velocity actual value	0x606C	681.5	2	optional
Velocity actual value Y2 (speed actual value) (3 decimal places)	0x2023	681.7	1	optional
Torque actual value	0x6077	683.1	1	optional
Follow error actual value	0x60F4	680.6	1	
Dig. inputs (0-7)	0x6100.1	120.3	1	optional
Dig. inputs M1x option	0x6100.2	121.2	1	optional
Operating mode display	0x6061	1000.5	1	optional
LastError (current Compax3 errors)	0x603F/ 0x201D.1	550.1	1	optional

Layout of the **status word.** (see page 290)

For values not transferred the standard values defined in the configuration wizard are valid!

The jerk can be changed for example via SDO (0x2005 & 0x2006).

5.3.1.3 CN (Controlled Node) with set selection

The communication between Master and Compax3 is made via the of the PDO Procedure:

Defining the motion sets with the Compax3 ServoManager or via the acyclic channel.

Selecting the desired motion set via control word 2

Start the motion with control word 1 Bit 4.

Ethernet Powerlink - Master -> Compax3

Possible assignment:

Designation	EPL No.	Object No.	Assigned words	Assignment
Controlword (Control word 1)	0x6040	1100.3	1	optional
Controlword2 (control word 2)	0x201B	1100.4	1	optional
Operating mode	0x6060	1100.5	1	optional
Dig. Outputs (0-3)	0x6300.1	140.3	1	optional
Dig. outputs M1x option	0x6300.2	133.3	1	optional

Layout of the Control word (see page 288).

Compax3 -> Ethernet Powerlink - Master

Possible assignment:

Designation	EPL No.	Object No.	Assigned	Assignment
			words	
Statusword (Status word 1)	0x6041	1000.3	1	optional
Statusword2 (status word 2)	0x201C	1000.4	1	optional
Position actual value	0x6064	680.5	2	optional
Velocity actual value	0x606C	681.5	2	optional
Velocity actual value Y2	0x2023	681.7	1	optional
Torque actual value	0x6077	683.1	1	optional
Follow error actual value	0x60F4	680.6	1	optional
Dig. inputs (0-7)	0x6100.1	120.3	1	optional
Dig. inputs M1x option	0x6100.2	121.2	1	optional
Operating mode display	0x6061	1000.5	1	optional
LastError (current Compax3 errors)	0x603F/ 0x201D.1	550.1		optional

Layout of the **Status word.** (see page 290)

Defining sets: Please use the Compax3 ServoManager or the acyclic channel in order to enter

the motion sets.

Layout of the **set table** (see page 284).

Layout of the set table

The motion sets are memorized in an object table. The table has 9 columns and 32 rows

A motion set is stored in a table row.

The assignment of the columns depends on the motion function.

General layout of the table:

	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8	Column 9
	Type:	Type:	Type:	Type:	Type:	Type:	Type:	Type:	Type:
	REAL	REAL	INT	INT	INT	DINT	DINT	DINT	DINT
	Objects	Objects	Objects	Objects	Objects	Objects	Objects	Objects	Objects
	O1901	O1902	O1903	O1904	O1905	O1906	O1907	O1908	O1909
Set 1	Row 1	Row 1	Row 1	Row 1	Row 1	Row 1	Row 1	Row 1	Row 1
	"Array_Col1	"Array_Col	"Array_Col	"Array_Col	"Array_Col5	"Array_Col6	"Array_Col	"Array_Col8	"Array_Col9_
	_Row1"	2_Row1"	3_Row1"	4_Row1"	_Row1"	_Row1"	7_Row1"	_Row1"	Row1"
	(1901.1)	(1902.1)	(1903.1)	(1904.1)	(1905.1)	(1906.1)	(1907.1)	(1908.1)	(1909.1)
set no. 2									
Set 3									
Set 31	Row 31	Row 31	Row 31	Row 31	Row31	Row 31	Row 31	Row 31	Row 31
	"Array_Col1	"Array_Col	"Array_Col	"Array_Col	"C3Array_C	"Array_Col6	"Array_Col	"Array_Col8	"Array_Col9_
	_Row31"	2_Row31"	3_Row31"	4_Row31"	ol5_Row31"	_Row31"	7_Row31"	_Row31"	Row31"
	(1901.31)	(1902.31)	(1903.31)	(1904.31)	(1905.31)	(1906.31)	(1907.31)	(1908.31)	(1909.31)

You will find the respective object number in brackets.

Assingment of the different motion functions

Motion	Column 1	Column 2	Column 4	Column 5	Column 6	Column 7	Column 8
function	Type: REAL Objects O1901	Type: REAL Objects O1902	Type: INT Objects O1904	Type: INT Objects O1905	Type: DINT Objects O1906	Type: DINT Objects O1907	Type: DINT Objects O1908
	Positions	Speeds	Programmable status bits (PSBs)	Mode	Acceleration s	Deceleration / denominator	Jerk
MoveAbs (see page 124)	Target position	Speed	PSBs	1 (for MoveAbs)	Accel	Decel	Jerk
MoveRel (see page 124)	Distance	Speed	PSBs	2 (for MoveRel)	Accel	Decel	Jerk
Gearing (see page 131)	-	Numerator	PSBs	3 (for Gearing)	Accel	Denominator	-
RegSearch (see page 125)	Distance	Speed	PSBs	4 (for RegSearch)	Accel	Decel	Jerk
RegMove (see page 125)	Offset	Speed	PSBs	5 (for RegMove)	-	-	-
Velocity (see page 132)	-	Speed	PSBs	6 (for Velocity)	Accel	-	-
STOP	-	-	PSBs	7 (for Stop)	-	Decel	Jerk

The columns 3 and 9 are reserved.

Definition of the states of the programmable status bits (PSBs):

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	Enable2 PSB2	Enable1 PSB1	Enable0 PSB0	Reserved	PSB2	PSB1	PSB0
	="1": Set PSB ="0": leave PSB unchanged						

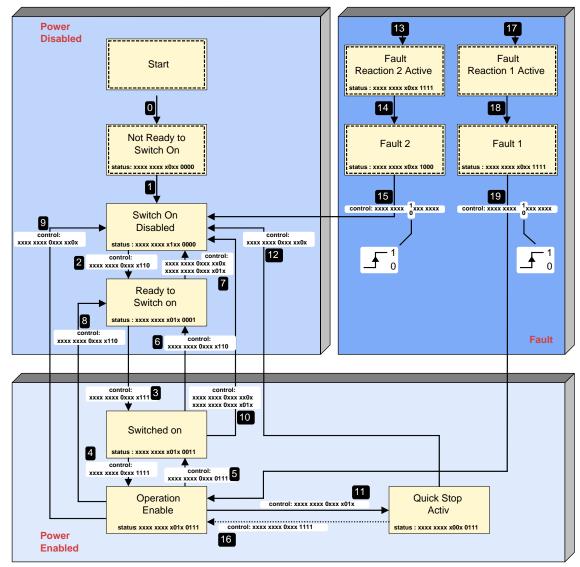
The Bits 0 ... 2 monitor the states of the status bits at the end of a motion set, if the bits were enabled via the respective Enable.

If Enable is set to "0", the respective PSB remains unchanged at the end of the motion set.

PSB0: Status word 2 Bit 12 PSB1: Status word 2 Bit 13 PSB2: Status word 2 Bit 14

5.3.1.4 Error reaction to a bus failure

Here you can adjust how Compax3 will respond to a **fieldbus error** (see page 312):


Possible settings for the error reaction are:

- ◆ No response
- ◆ downramp / stop
- Downramp / stromlos schalten (standard setting)

5.3.2. CN Controlled Node (Slave)

Compax3 is the slave of an Ethernet master; the bus configuration is made via the ServoManager

5.3.3. Status machine

O, O, O, ...: Status transitions

Status values:

Designation	Explanation
Not Ready to Switch On	Control voltage switched on
	Initialization
	Brake closed
	Not ready to turn on
Switch On Disable	Initialization completed
	Parameter values can be changed
	Power supply voltage switched off
	Travel commands not possible
Ready to Switch on	Power supply voltage can be switched on
	Parameter values can be changed
	Travel commands not possible
Switched on	Power supply voltage switched on
	Parameter values can be changed
	Travel commands not possible
	Motor de-energized
Operation enable	Motor powered
	Compax3 is ready for carrying out travel commands
	Parameter values can be changed

Quick Stop active	The "Quick Stop" function has been executed Motor powered Parameter values can be changed
Fault reaction 1 active	A fault has occurred The motor is stopped with the ERROR_decel and ERROR_jerk ramp and remains energized. Parameter values can be changed
Fault 1	Error state, motor energized, error can be read Travel commands not possible Parameter values can be changed A positive edge is expected at FAULT RESET
Fault reaction 2 active	A fault has occurred The motor is stopped with the ERROR_decel and ERROR_jerk ramp and is deenergized at standstill. Parameter values can be changed
Fault 2	Error state, motor deenergized, error can be read Travel commands not possible Parameter values can be changed A positive edge is expected at FAULT RESET

Transitions:

For various transitions, for which Compax3 leaves the status "Operation Enable" (travel commands may be active), various ramps can be set. That is:

(martin community are active); rame are ramps can be con martin.				
Transition	associated ramp objects			
5, 11	STOP_decel (Object 1113.1), STOP_jerk ((Object 1113.2)			
8	FSTOP1_decel (Object 1116.1), FSTOP1_jerk (Object 1116.2)			
9	FSTOP3_decel (Object 1118.1), FSTOP3_jerk (Object 1118.2)			
13.17	FRROR decel (Object 1125.1), FRROR jerk (Object 1125.2)			

5.3.4. Controlword /Statusword

In this chapter you can read about:	
Control word 1 (Controlword 1)	288
Statusword 1 (Statusword)	
Interpolated Position Mode	

5.3.4.1 Control word 1 (Controlword 1)

	Operating mode BA EPL	No. 0x6060 (object 1100.5)					
Bit	Direct positioning (Profile Position)	Positioning with set selection (Position Record Select)	Speed control (Profile Velocity)	Machine zero (Homing)	Manual operation (Jogging)	Interpolated Position ²⁾³⁾ (ip-mode)	
	BA = "1"	BA = "-2"	BA = "3"	BA = "6"	BA = "-1"	BA = "7"	
0	="1": Switch on						
1	="1": Enable Voltage						
2	="0": Quick stop						
3	="1": Enable Operation						
4	="1": New set-point (Start)		Reserved	="1": Homing operation start (activate homing run)	="1": Jog+ (Hand+)	="1": Enable ip mode	
5	="1": Change set immediately 1) (dynamic positioning (see page 134))		Reserved	Reserved	="1": Jog- (Hand-)		
6	Mode 2 (see below)	Reserved	Reserved	Reserved	Reserved		
7	="1": Fault reset (Quit, with	positive edge)					
8	="1": Halt (Stop without term (for Velocity and Gearing:		="1": Halt (Stop with termination)				
9	Reserved						
10	Reserved						
11	="0": Remote Control: Control word active, i.e. control Ethernet Powerlink ="1": Local Control: Control word inactive, i.e. the control word is not read; direct control via inputs (see page 120) possible.						
12	Reserved	Reserved	Reserved				
13	Mode 1 (see below)	Reserved	Reserved				
14	4 ="1": Endless (continuous operation) Reserved in normal operation (="0") homing is required						
15	Mode 0 (see below) Reserved Reserved						

¹⁾ With Bit 5 ="0" no dynamic change of record is possible - not even to a STOP record.

Only after the end of the record (position reched), the next record will be accepted.

2) Operating mode "interpolated" is not supported with DeviceNet (I22).

Gearing is not possible in the "interpolated" operating mode.

3) Interpolated Position Mode (see page 290)

The operating mode switching to "Interpolated Position Mode" takes place during operation (via the bus) and is not supported by the configuration in the ServoManager.

The command position of the "Interpolated Position mode" is preset via the bus object 3921.1 "Interpolation data". This bus object can be mapped to the telegram in the "Position Mode".

the "Interpolated Position Mode" works in SYNC operation; the cycle time is preset via bus object 0x1006; please respect the **ratings** (see page 23).

Change operating mode:

A change of the operating mode will trigger a "Stop", if the drive is still moving. Changing from "Profile Velocity" to another operating mode is only possible in currentless state.

Selection of the positioning mode in the "direct positioning" operating mode

Mode 0 CW.15	Mode1 CW.13	Mode2 CW.6	Function
0	0	0	MoveAbs (see page 124)
0	0	1	MoveRel (see page 124)
0	1	0	MoveAdd (see page 289) *
0	1	1	Velocity (see page 132)
1	0	0	Gearing (see page 131)
1	0	1	RegMove (see page 125)
1	1	0	RegSearch (see page 125)
1	1	1	Reserved

* Relative; Example

◆ Positioning mode: absolute◆ Target position = 1000

◆ Positioning mode: relative

◆ Command: Target position = 200 for actual position 500

◆ Drive travels to 700

Additive; example

◆ Positioning mode: absolute
◆ Target position = 1000
◆ Positioning mode: additive

◆ Command: Target position = 200 for actual position arbitrary

◆ Drive travels to 1200

Control word 2

In the "Positioning with set selection" operating mode, the address of the motion set is specified via control word 2

Bit	Description
0	Address 0 for set selection
1	Address 1 for set selection
2	Address 2 for set selection
3	Address 3 for set selection
4	Address 4 for set selection
5 15	Reserved

5.3.4.2 Statusword 1 (Statusword)

	Operating mode BA El	PL No. 0x6060 (object 1100.5	<u>(</u>						
Bit	Direct positioning (Profile Position)	Positioning with set selection (Position Record Select)	Speed control (Profile Velocity)	Machine zero (Homing)	Manual operation (Jogging)	Interpolated Position 2) (ip-mode)			
	BA = "1"	BA = "-2"	BA = "3"	BA = "6"	BA = "-1"	BA = "7"			
0	="1": Ready to switch on								
1	="1": Switched on								
2	="1": Operation enable								
3	="1": Fault (Compax3 rep	ports error)							
4	="0": Voltage enable								
5	="0": Quick stop								
6	="1": Switch on disable								
7	Reserved								
8	="1": Speed=0 (drive mo	tionless)							
9	="1": Remote (Paramete	rs can be changed via Ethern	et Powerlink)						
10	="1": Target reached (co	rresponds to Position / Speed	/ Gearing reached)						
11	="1": Internal limit active			_					
12	="1": Setpoint acknowledge (new setpoint value is accepted) ="1": Speed=0 ="1": Homing attained (referenced)								
13	="1": Following error		0	="1": Homing error	0				
14	0	0	0	0	0				
15	="1": Registration found	(Registration mark detected)	0	0	0				

²⁾ Operating mode "interpolated" is not supported with DeviceNet.

Status word 2

Status word 2 in the "Positioning with set selection" operating mode contains the selected set number as well as the PSBs.

Bit	Description
0	Address 0 of the current set
1	Address 1 of the current set
2	Address 2 of the current set
3	Address 3 of the current set
4	Address 4 of the current set
5 11	Reserved
12	Programmable status bit 0 (PSB0)
13	Programmable status bit 1 (PSB1)
14	Programmable status bit 2 (PSB2)
15	Reserved

5.3.4.3 Interpolated Position Mode

In this chapter you can read about:	
Interpolation method	290
Synchronizations method	294

Interpolation method

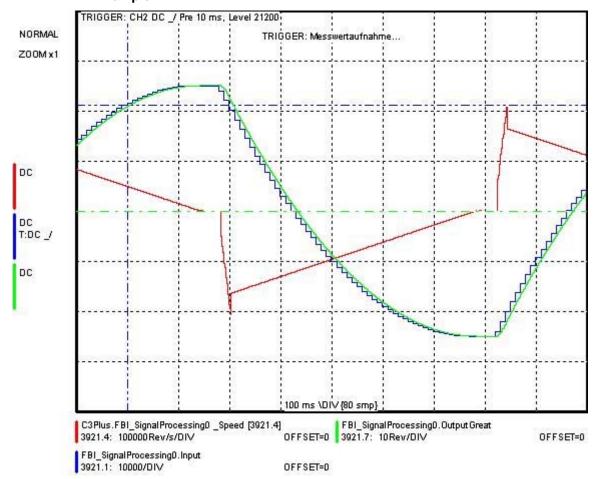
In this chapter you can read about:	
Linear Interpolation (o3925.1 = 0 oder o3925.1 = -1)	291
Quadratic interpolation (o3925.1=-2)	
Cubical interpolation (o3925.1=-3)	293

<u>Linear Interpolation (o3925.1 = 0 oder o3925.1 = -1)</u>

With the transmitted position and the position in the previous bus cycle, a straight of the $Y(t)=a^*t+b$ is calculated. The speed within a bus cycle remains constant. This method is only implemented for the PLL synchronization.

- ◆ Advantage: Support of a reset value range
- ◆ Disadvantage: During the transition to a new bus cycle, a speed leap may occur.

Example:

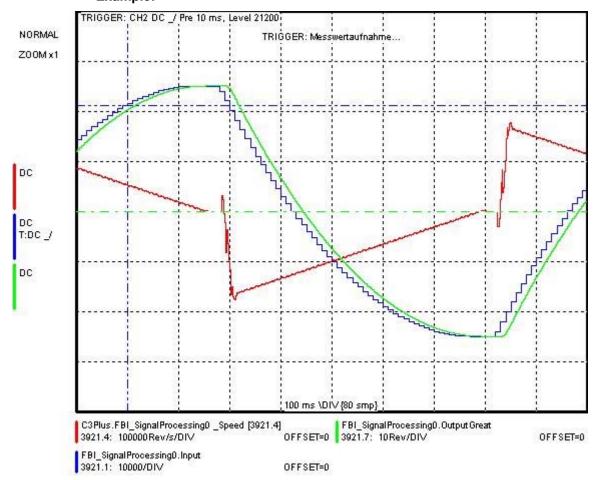

Quadratic interpolation (o3925.1=-2)

With the aid of the position received last and the positions from the two previous bus cycles, the polynomal coefficients of the polynomal

 $Y(t) = a * t^2 + b * t + c$ are determined. The speed within a bus cycle is a first order function, i.e. the acceleration is constant.

- Advantage: consistent course of speed
- ◆ **Disadvantage**: The Interpolation method does not support a reset value range.

Example:


Cubical interpolation (o3925.1=-3)

With the aid of the last position received, and the three previous values, the polynomal coefficients of the polynomal

 $Y(t) = a * t^3 + b * t^2 + c *$ are determined. The speed within a bus cycle can change quadratically, i.e. the acceleration is a first order function.

- ◆ Advantages: consistent course of speed and acceleration
- ◆ **Disadvantages:** This method may lead to overshoot in the interpolated position.. The Interpolation method does not support a reset value range.

Example:

Synchronizations method

Selection of the synchronization method

the selection is made via object 820.24. The selection is only accepted, if the bus cycle time (Bus object 0x1006) is written anew. Changes of the synchronization method and ofthe bus cycle time should only be made while the controller is deactivated.

PLL synchronization (Object 820.24 = 0)

During the PLL synchronization, the system clock of the slave device is synchronized to the system clock of the master with the aid of a phase control loop. This ensures that all devices are running in the same time frame.

Advantages: exact synchronization of the setpoint acceptance from the master, synchronized acquisition of the actual values

Disadvantages: relatively high requirements for the periodicity of the synctelegram, i.e. the jitter must be small. For CANSync on Compax3, the maximum permitted jitter is about 50µs.

Timestamp method (Object 820.24 = 1)

During the timestamp method, the slave is not synchronized to the master clock. Instead, the time between two subsequent sync-telegrams is measured. The received position demand values or the values derived from them (e.g. speed) are scaled with the measured time.

Advantages: relatively insensitive to jitter

Disadvantages: the actual value acquisition is not synchronized to the master.

This may lead to "beats".

Linear interpolation is not possible with the timestamp method.

Parker EME Communication

5.3.5. Acyclic parameter channel

In this chapter you can read about:	
Service Data Objects (SDO)	295
Object up-/download via Ethernet Powerlink	
Ethernet Powerlink Objects	298

5.3.5.1 Service Data Objects (SDO)

Asynchronous access to the object directory of Compax3 is implemented with the help of the SDOs. The SDOs serve for parameter configuration and status interrogation. Access to an individual object takes place via the Ethernet Powerlink index and subindex of the object directory.

Attention!

A SDO is a confirmed service, therefore the SDO reply telegram must always be awaited before a new telegram may be transmitted.

CiA405_SDO_Error (Abort Code): UDINT

In the case of an incorrect SDO transmission, the error cause is returned via the "abort code".

Abort Code .	Description
0x0503 0000	" Toggle Bit" was not alternated
0x0504 0000	SDO protocol "time out"
0x0504 0001	Client/server command designator invalid or unknown
0x0504 0002	Unknown block size (block mode only)
0x0504 0003	Unknown block number (block mode only)
0x0504 0004	CRC error (block mode only)
0x0504 0005	Outside of memory
0x0601 0000	Access to this object is not supported
0x0601 0001	Attempted read access to a write only object
0x0601 0002	Attempted write access to a read only object
0x0602 0000	The object does not exist in the object directory
0x0604 0041	The object cannot be "mapped" in a PDO
0x0604 0042	The size and number of the "mapped" objects exceeds the maximum PDO length
0x0604 0043	General parameter incompatibility
0x0604 0047	General incompatibility in the device
0x0606 0000	Access infringement due to a hardware error
0x0607 0010	Data type does not fit, length of the service parameter does not fit
0x0607 0012	Data type does not fit, length of the service parameter too large
0x0607 0013	Data type does not fit, length of the service parameter too small
0x0609 0011	Subindex does not exist
0x0609 0030	Outside parameter value range (only for write access operations)
0x0609 0031	Parameter value too large
0x0609 0032	Parameter value too small
0x0609 0036	Maximum value smaller than minimum value
0x0800 0000	General error
0x0800 0020	Date cannot be transmitted or saved
0x0800 0021	Date cannot be transmitted or saved due to local device management
0x0800 0022	Date cannot be transmitted or stored due to device status
0x0800 0023	Dynamic generation of the object directory is impossible or no object directory exists (the object directory is created from a file and an error occurs due to a defective file)

5.3.5.2 Object up-/download via Ethernet Powerlink

The up-/download takes place via the Ethernet Powerlink objects C3_Request (Index 0x2200) and C3_Response (Index 0x2201). These have the data type data type octet string with a length of 20 bytes (octets). Write/read of a C3 object is carried out by writing of C3_Request with the corresponding data. When a C3 object is read, the data appear in the C3_Response object .

Meaning of the data from C3_Request

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6			Byte 19	Byte 20
Request header			C3 object data (write)						
AK	Subindex	Index		D1	D2			D15	D16

AK: Job identifier; 3=read, 4= write

OD1..OD16: Object data; OD1 = High, OD16 = Low

Meaning of the data from C3_Response

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6			Byte 19	Byte 20
Reply header			C3 object data (read)						
-	-	-	-	OD1	OD2			OD15	OD16

OD1..OD16: Object data; OD1 = High, OD16 = Low

Upload

Etherne	t Powerlink	01	02	03	04	05	0 6	07	0.8		O 20	
Access	Object	C3 object request/reply					C3 object data					
1. Write	C3 object 20.2 with	the valu	ie 0									
Write	0x2200.0	4	2	0	20	0	0	0	х		х	
2. read r	next C3 object index	subinde	x in C3	object 2	0.5		•	•	•	•	•	
Write	0x2200.0	3	5	0	20	х	х	х	х		х	
Read	0x2201.0	х	х	х	Х	l_hi	I_lo	Subi	х		х	
3. read t	he C3 object with the	e in inde	x/subin	dex read	in the	C3 object	20.5	•				
Write	0x2200.0	3	Subi	l_hi	I_lo	х	х	х	х		х	
Read	0x2201.0	х	х	х	Х	D1	D2	D3	D4		D16	
4. Store	C3 object index, sub	oindex a	nd data	D1D1	6 in tab	le	ı		ı	·		
5. Repe	at steps 2 to 4 until I	_hi = l_le	o = Sub	i = 0xFF								

Download: Write the entire table of C3 objects.

Ethernet Powerlink		01	02	O 3	04	O 5	06	07	0.8		O 20	
Access	Object	C3 obje	C3 object request/reply				C3 object data					
Write C3 object from the table												
Write	0x2200.0	4	Subi	l_hi	I_lo	D1	D2	D3	D4		D16	
2. Repeat step 1 until the end of the table												

5.3.5.3	Ethernet Powerlink Objects

J		Ethernet i Owerlink Objects
		In this chapter you can read about:
		Standardized and manufacturer-specific objects sorted according to EPL No
Set o	bjects to valid	Please note that certain objects are not valid (read by Compax3) immediately after a change. This is described in the heading "Valid after". These objects are converted to internal variables by Compax3 with the command "Set objects to valid".
	Save objects permanently	It should also be noted that modified objects are not permanently stored, i.e. the changes are lost after the power (24 VDC) is turned off. With the object "Store objects permanently" the objects are stored power supply fail-safe in flash memory.

Standardized and manufacturer-specific objects sorted according to EPL No.

No.	Object name	Object	CANopen Index	Bus format	Valid begin ning
2100.20	C3.ControllerTuning_ActuatingSpeedSignalFil t_us	Control signal filter of velocity control		U16	VP
2100.21	C3.ControllerTuning_FilterAccel_us	Filter - Actual acceleration		U16	VP
2100.11	C3.ControllerTuning_FilterAccel2	Filter actual acceleration 2		U16	VP
2230.20	C3.D_CurrentController_Ld_Lq_Ratio	Ratio direct to quadrature inductance		U16	VP
2230.24	C3.D_CurrentController_VoltageDecouplingE nable	Activation of the voltage decoupling		l16	VP
990.1	C3.Delay_MasterDelay	Setpoint delay for bus master		l16	Immed iately
84.4	C3.DeviceSupervision_DeviceAdr	Current RS485 address of the C3M		U16	-
84.3	C3.DeviceSupervision_DeviceCounter	Number of devices in the C3M combination		U16	-
84.5	C3.DeviceSupervision_OperatingTime	Hours of operation of the C3MP in s		U32	-
84.2	C3.DeviceSupervision_ThisDevice	Device number in the C3M combination		U16	-
85.1	C3.Diagnostics_DeviceState	C3MP operating status		V2	-
120.2	C3.DigitalInput_Value	Status of digital inputs		V2	-
87.1	C3.ErrorHistoryNumber_1	Error 1		U16	-
86.1	C3.ErrorHistoryPointer_LastEntry	Pointer to current error		U16	-
88.1	C3.ErrorHistoryTime_1	Error point in time 1		U32	-
2020.1	C3.ExternalSignal_Position	Position from external signal source		C4_3	-
2010.20	C3.FeedForward_EMF	EMC feedforward		U16	VP
2011.5	C3.FeedForwardExternal_FilterAccel_us	Filter time constant ext. Acceleration		U16	VP
2011.4	C3.FeedForwardExternal_FilterSpeed_us	Filter time constant ext. Velocity		U16	VP
410.6	C3.LimitPosition_LoadControlMaxPosDiff	Position difference load-motor (error threshold)		C4_3	VP
2220.22	C3.Q_CurrentController_BackEMF	Parameter motor force constant		I16	VP
2220.20	C3.Q_CurrentController_Inductance	Parameter motor inductance		I16	VP
2220.21	C3.Q_CurrentController_Resistance	Parameter motor resistance		I16	VP
2210.17	C3.SpeedController_ActualBandwidth	Replacement time constant for the velocity control		132	-
2120.7	C3.SpeedObserver_DisturbanceAdditionEnab le	Switch to enable disturbance compensation		BOOL	VP
2120.5	C3.SpeedObserver_DisturbanceFilter	Time constant disturbance filter		U32	VP
2120.1	C3.SpeedObserver_TimeConstant	Rapidity of the speed monitor		U32	VP
682.5	C3.StatusAccel_Actual	Status of actual acceleration unfiltered		132	-
682.6	C3.StatusAccel_ActualFilter	Status of filtered actual acceleration		132	-
682.7	C3.StatusAccel_FeedForwardAccel	Status acceleration feed forward		C4_3	-
690.5	C3.StatusAutocommutation_Itterations	Current increase steps automatic commutation		U16	-
688.2	C3.StatusCurrent_Actual	Status of actual current RMS (torque producing)		E2_6	-
688.19	C3.StatusCurrent_ActualDINT	Actual current r.m.s.		132	-
688.8	C3.StatusCurrent_ControlDeviationIq	Status of control deviation of current control RMS		C4_3	-
688.31	C3.StatusCurrent_DecouplingVoltageUd	Signal decoupling of direct current controller		C4_3	-
688.32	C3.StatusCurrent_FeedForwardbackEMF	Signal EMC feedforward		C4_3	-
688.14	C3.StatusCurrent_FeedForwordCurrentJerk	Status of current & jerk feedforward		C4_3	-
688.9	C3.StatusCurrent_PhaseU	Status of current phase U		C4_3	-
688.10	C3.StatusCurrent_PhaseV	Status of current phase V		C4_3	-
688.1	C3.StatusCurrent_Reference	Status of setpoint current RMS (torque forming)		E2_6	-
688.18	C3.StatusCurrent_ReferenceDINT	Target current r.m.s.		132	-
688.13	C3.StatusCurrent_ReferenceJerk	Status of demand jerk setpoint generator		C4_3	-
688.11	C3.StatusCurrent_ReferenceVoltageUq	Status of current control control signal		C4_3	-
688.22	C3.StatusCurrent_ReferenceVoltageVector	Provided voltage pointer		C4_3	-

688.29 C3.StatusCurrent, VoltageUq					
CastatusDevice CheervedDisturbance Status of observed disturbance C4.3	688.30	C3.StatusCurrent_VoltageUd		C4_3	-
Sabsuls Genard position without absolute reference Sabsuls demand position without absolute reference Sabsuls Genard position without absolute reference Sabsuls Genard Procession Sabsuls G	688.29	C3.StatusCurrent_VoltageUq		C4_3	-
absolute reference Actual position LoadControlActual Actual position of the load C4,3 -	683.5	C3.StatusDevice_ObservedDisturbance	Status of observed disturbance	C4_3	-
880.20 C3.StatusPostion_LoadControlDeviation Postion difference load-motor (filtered) C4_3 -	680.12	C3.StatusPosition_DemandController		C4_3	-
Ca. SalstusPosition_LoadControlDeviationFilter Peaison difference load-motor (filtered) Ca. SalstusPosition_LoadControlDeviationMax Maximum position difference load-motor Cd. 3 -	680.23	C3.StatusPosition_LoadControlActual	Actual position of the load	C4_3	-
C3_StatusPsped_LoadControlDeviationFliter Position difference load-motor (filtered) C4_3 -	680.20		Position difference load-motor		-
	680.22		` '	C4_3	-
681.9 C. 3. StatusSpeed ActualFiltered Status actual speed filtered C4.3 - 681.12 C. 3. StatusSpeed DemandScaled Filtered actual speed C4.3 - 681.13 C. 3. StatusSpeed DemandScaled Setpoint speed of the setpoint generator C4.3 - 681.10 C. 3. StatusSpeed DemandSpeedController Status General Set Status Speed LoadControl C4.3 - 681.10 C. 3. StatusSpeed LoadControl Speed of the load feedback (intered) C4.3 - 681.20 C. 3. StatusSpeed LoadControl Speed of the load feedback (intered) C4.3 - 681.21 C. 3. StatusSpeed LoadControl Intered Speed of the load feedback (intered) C4.3 - 681.21 C. 3. StatusSpeed LoadControl Intered Speed of the load feedback (intered) C4.3 - 2190.2 C. 3Plus AutoCommutation Control_MotionRed uction Unified VP C3Plus AutoCommutation Control_PositionThr should intered action action action and the should be sh	680.21		Maximum position difference load-motor	C4 3	-
Seal		_	·		-
681.13 C3.StatusSpeed_DemandScaled Setpoint speed of the setpoint generator C4.3 - 681.10 C3.StatusSpeed_DemandSpeedController Status demand speed controller input C4.3 - 681.10 C3.StatusSpeed_LoadControl Speed of the load feedback (filtered) C4.3 - 681.20 C3.StatusSpeed_LoadControl* Speed of the load feedback (filtered) C4.3 - 2190.2 C3Plus_AutoCommutationControl_InitialCurre not automatic commutation U16 VP 2190.3 C3Plus_AutoCommutationControl_PositionThr eshold Motion reduction Automatic commutation U16 VP 2190.1 C3Plus_AutoCommutationControl_Ramptime eshold Ramp slope current slope AK U16 VP 2190.1 C3Plus_AutoCommutationControl_Ramptime eshold Ramp slope current slope AK U16 VP 2190.1 C3Plus_AutoCommutationControl_Ramptime eshold Ramp slope current slope AK U16 VP 2190.1 C3Plus_Babla Spanostics_DCbus_Current C3MP DC intermediate current I16 - 25.2 C3Plus_Babla Diagnostics_DCbus_Current C3MP DC intermediate voltage I16		· -	·		-
681.10 C3.StatusSpeed_FeedForwardSpeed Status demand speed controller input C4.3 - 681.20 C3.StatusSpeed_LoadControl Speed of the load feedback (unfiltered) C4.3 - 681.21 C3.StatusSpeed_LoadControl Flitered Speed of the load feedback (unfiltered) C4.3 - 281.21 C3.StatusSpeed_LoadControl_InitialCurre int Speed of the load feedback (filtered) C4.3 - 2190.2 C3Plus_AutoCommutationControl_InitialCurre int Wild Call Control Call Call Call Call Call Call Call Ca		•	•		-
		·			
681.20 C3.StatusSpeed_LoadControlFiltered Speed of the load feedback (unfiltered) C4_3 - C3.		·	·		
C3Plus.AutoCommutationControl_InitialCurre Speed of the load feedback (filtered) C4_3 - C3Plus.AutoCommutationControl_InitialCurre Start current of automatic commutation U16 VP VP C3Plus.AutoCommutationControl_MotionRed Motion reduction Automatic U16 VP VP C3Plus.AutoCommutationControl_PositionThr Motion limit for automatic commutation U16 VP VP C3Plus.AutoCommutationControl_PositionThr Motion limit for automatic commutation U16 VP VP C3Plus.AutoCommutationControl_Ramptime Ramp slope current slope AK U16 VP VP VP VP VP VP VP V			·		
23Plus.AutoCommutationControl_InitialCurre		·	. , ,		
Nation N		•	` ` '		\/D
cution commutation commutation commutation commutation cannot commutation cannot canno		nt			
eshold C3Plus.AutoCommutationControl_Ramptime Ramp slope current slope AK U16 VP 8.5.3 C3Plus.Diagnostics_DCbus_Current C3MP DC intermediate current I16 - 8.5.4 C3Plus.Diagnostics_RectifierLoad C3MP DC intermediate voltage I16 - 8.5.5 C3Plus.Diagnostics_TemperatureHeatSink C3MP usage in % I16 - 8.5.6 C3Plus.Diagnostics_TemperatureHeatSink C3MP usage in % I16 - 8.5.7 C3Plus.ExternalSignal_Accel_Munits Sucreor 8.5.8 C3Plus.Pagnostics_TemperatureHeatSink C3MP temperature of heat dissipator I16 - 8.5.2 C3Plus.ExternalSignal_Accel_Munits Sucreor 8.5.6 C3Plus.ExternalSignal_Accel_Munits Sucreor 8.5.7 C3Plus.ExternalSignal_Accel_Munits Sucreor 8.5.8 C3Plus.ExternalSignal_Speed_Munits Sucreor 8.5 Speed value of the external signal source Sucreor 8.5 Speed value of the external signal Sucreor		uction	commutation		
85.3 C3Plus.Diagnostics_DCbus_Current C3MP DC intermediate current I16 - 85.2 C3Plus.Diagnostics_Dcbus_Voltage C3MP DC intermediate voltage I16 - 85.4 C3Plus.Diagnostics_TemperatureHeatSink C3MP temperature of heat dissipator I16 - 2020.7 C3Plus.ExternalSignal_Accel_Munits Acceleration of the external signal source I16 - 2020.6 C3Plus.ExternalSignal_Speed_Munits Speed value of the external signal source C4_3 - 2020.1 C3Plus.HOMING_edge_position Distance MN (zero) initiator - motor zero C4_3 Immediately 2201.2 C3Plus.LoadControl_Command Load control command mode I16 Immediately 2201.1 C3Plus.LoadControl_Enable Enable load control I16 Immediately 2201.1 C3Plus.LoadControl_FilterLaggingPart Time constant of position difference filter U32 VP 2201.2 C3Plus.LoadControl_VelocityFilter Time constant of the load-speed filter I16 - 2201.2 C3Plus.NotchFilter_DepthFilter Bandwidth of notch filter 1 I16 VP		eshold	Motion limit for automatic commutation		VP
85.2 C3Plus.Diagnostics_DCbus_Voltage C3MP DC intermediate voltage 116 - 85.5 C3Plus.Diagnostics_RectifierLoad C3MP usage in % 116 - 85.4 C3Plus.Diagnostics_TemperatureHeatSink C3MP temperature of heat dissipator 116 - 82.5 C3Plus.ExternalSignal_Accel_Munits Acceleration of the external signal 132 - 82.5 - 8		•			VP
85.5 C3Plus.Diagnostics_RectifierLoad C3MP usage in % 116 -	85.3	C3Plus.Diagnostics_DCbus_Current	C3MP DC intermediate current	l16	-
85.4 C3Plus.Diagnostics_TemperatureHeatSink C3MP temperature of heat dissipator 116 - 2020.7 C3Plus.ExternalSignal_Accel_Munits Acceleration of the external signal 132 - 2020.6 C3Plus.ExternalSignal_Speed_Munits Speed value of the external signal Source C4_3 Immediately 130.13 C3Plus.HOMING_edge_position Distance MN (zero) initiator - motor zero C4_3 Immediately 130.13 C3Plus.LoadControl_Command Load control command mode 116 Immediately 116 Immediately 116 Immediately 116 Immediately 117 117 117 117 118 118 119 1	85.2	C3Plus.Diagnostics_DCbus_Voltage	C3MP DC intermediate voltage	I16	-
C3Plus.ExternalSignal_Accel_Munits Acceleration of the external signal source	85.5	C3Plus.Diagnostics_RectifierLoad	C3MP usage in %	I16	-
Source Source Speed value of the external signal Speed Speed Munits Speed value of the external signal Speed Speed Munits Speed value of the external signal Speed Value of Value Speed Value of Value Speed Value Spee	85.4	C3Plus.Diagnostics_TemperatureHeatSink	C3MP temperature of heat dissipator	I16	-
Source S	2020.7	C3Plus.ExternalSignal_Accel_Munits		132	-
2201.2 C3Plus.LoadControl_Command Load control command mode Life Immed iately	2020.6	C3Plus.ExternalSignal_Speed_Munits		C4_3	-
Enable load control Enable Enable load control I16 Immediately	1130.13	C3Plus.HOMING_edge_position	Distance MN (zero) initiator - motor zero	C4_3	
iately 2201.11 C3Plus.LoadControl_FilterLaggingPart Time constant of position difference U32 VP VP VP VP VP VP VP	2201.2	C3Plus.LoadControl_Command	Load control command mode	I16	
2201.11 C3Plus.LoadControl_FilterLaggingPart filter Time constant of position difference filter U32 VP 2201.3 C3Plus.LoadControl_Status Load control status bits I16 - 2201.12 C3Plus.LoadControl_VelocityFilter Time constant of the load-speed filter I16 VP 2150.2 C3Plus.NotchFilter_BandwidthFilter1 Bandwidth of notch filter 1 I16 VP 2150.5 C3Plus.NotchFilter_BandwidthFilter2 Bandwidth of notch filter 2 I16 VP 2150.3 C3Plus.NotchFilter_DepthFilter1 Depth of notch filter 1 I32 VP 2150.6 C3Plus.NotchFilter_DepthFilter2 Depth of notch filter 2 I32 VP 2150.1 C3Plus.NotchFilter_FrequencyFilter1 Center frequency of notch filter 1 I16 VP 2150.4 C3Plus.NotchFilter_FrequencyFilter2 Center frequency of notch filter 2 I16 VP 1211.13 C3Plus.PG2POSITION_direction Manipulation of the motion direction in reset mode I32 Immed iately 1111.13 C3Plus.PositionController_DeadBand Deadband of position controller C4_3 VP 2200.20 C3Plus.PositionController_FrictionCompensati on Friction compensation I32 VP 2200.11 C3Plus.PositionController_TrackingErrorFilter on posit	2201.1	C3Plus.LoadControl_Enable	Enable load control	l16	
2201.12C3Plus.LoadControl_VelocityFilterTime constant of the load-speed filterI16VP2150.2C3Plus.NotchFilter_BandwidthFilter1Bandwidth of notch filter 1I16VP2150.5C3Plus.NotchFilter_BandwidthFilter2Bandwidth of notch filter 2I16VP2150.3C3Plus.NotchFilter_DepthFilter1Depth of notch filter 1I32VP2150.6C3Plus.NotchFilter_DepthFilter2Depth of notch filter 2I32VP2150.1C3Plus.NotchFilter_FrequencyFilter1Center frequency of notch filter 1I16VP2150.4C3Plus.NotchFilter_FrequencyFilter2Center frequency of notch filter 2I16VP1211.13C3Plus.PG2POSITION_directionManipulation of the motion direction in reset modeI32Immed iately1111.13C3Plus.POSITION_directionManipulation of the motion direction in reset modeI32Immed iately2200.20C3Plus.PositionController_DeadBandDeadband of position controllerC4_3VP2200.21C3Plus.PositionController_FrictionCompensati onFriction compensationI32VP2200.11C3Plus.PositionController_TrackingErrorFilterFollowing error filter of the position controllerU16VP2200.24C3Plus.PositionController_TrackingErrorFilterTime constant following error filter of positon controllerU16VP670.4C3Plus.StatusTorqueForce_ActualForceStatus of actual torqueI32-	2201.11	C3Plus.LoadControl_FilterLaggingPart	l ·	U32	VP
2201.12C3Plus.LoadControl_VelocityFilterTime constant of the load-speed filterI16VP2150.2C3Plus.NotchFilter_BandwidthFilter1Bandwidth of notch filter 1I16VP2150.5C3Plus.NotchFilter_BandwidthFilter2Bandwidth of notch filter 2I16VP2150.3C3Plus.NotchFilter_DepthFilter1Depth of notch filter 1I32VP2150.6C3Plus.NotchFilter_DepthFilter2Depth of notch filter 2I32VP2150.1C3Plus.NotchFilter_FrequencyFilter1Center frequency of notch filter 1I16VP2150.4C3Plus.NotchFilter_FrequencyFilter2Center frequency of notch filter 2I16VP1211.13C3Plus.PG2POSITION_directionManipulation of the motion direction in reset modeI32Immed iately1111.13C3Plus.POSITION_directionManipulation of the motion direction in reset modeI32Immed iately2200.20C3Plus.PositionController_DeadBandDeadband of position controllerC4_3VP2200.21C3Plus.PositionController_FrictionCompensati onFriction compensationI32VP2200.11C3Plus.PositionController_TrackingErrorFilterFollowing error filter of the position controllerU16VP2200.24C3Plus.PositionController_TrackingErrorFilterTime constant following error filter of positon controllerU16VP670.4C3Plus.StatusTorqueForce_ActualForceStatus of actual torqueI32-	2201.3	C3Plus.LoadControl_Status	Load control status bits	l16	-
2150.2C3Plus.NotchFilter_BandwidthFilter1Bandwidth of notch filter 1I16VP2150.5C3Plus.NotchFilter_BandwidthFilter2Bandwidth of notch filter 2I16VP2150.3C3Plus.NotchFilter_DepthFilter1Depth of notch filter 1I32VP2150.6C3Plus.NotchFilter_DepthFilter2Depth of notch filter 2I32VP2150.1C3Plus.NotchFilter_FrequencyFilter1Center frequency of notch filter 1I16VP2150.4C3Plus.NotchFilter_FrequencyFilter2Center frequency of notch filter 2I16VP1211.13C3Plus.PG2POSITION_directionManipulation of the motion direction in reset modeI32Immed iately1111.13C3Plus.POSITION_directionManipulation of the motion direction in reset modeI32Immed iately2200.20C3Plus.PositionController_DeadBandDeadband of position controllerC4_3VP2200.21C3Plus.PositionController_FictionCompensati on onFriction compensationI32VP2200.21C3Plus.PositionController_TrackingErrorFilterFollowing error filter of the position controllerU16VP2200.24C3Plus.PositionController_TrackingErrorFilter _usTime constant following error filter of position controllerU16VP670.4C3Plus.StatusTorqueForce_ActualForceStatus of actual forceI32-670.2C3Plus.StatusTorqueForce_ActualTorqueStatus of actual torqueI32-		I .		I16	VP
2150.5C3Plus.NotchFilter_BandwidthFilter2Bandwidth of notch filter 2I16VP2150.3C3Plus.NotchFilter_DepthFilter1Depth of notch filter 1I32VP2150.6C3Plus.NotchFilter_DepthFilter2Depth of notch filter 2I32VP2150.1C3Plus.NotchFilter_FrequencyFilter1Center frequency of notch filter 1I16VP2150.4C3Plus.NotchFilter_FrequencyFilter2Center frequency of notch filter 2I16VP1211.13C3Plus.PG2POSITION_directionManipulation of the motion direction in reset modeI32Immed iately1111.13C3Plus.POSITION_directionManipulation of the motion direction in reset modeI32Immed iately2200.20C3Plus.PositionController_DeadBandDeadband of position controllerC4_3VP2200.21C3Plus.PositionController_FrictionCompensati on onI32VP2200.21C3Plus.PositionController_TrackingErrorFilterFollowing error filter of the position controllerU16VP2200.24C3Plus.PositionController_TrackingErrorFilter _usTime constant following error filter of position controllerU16VP670.4C3Plus.StatusTorqueForce_ActualForceStatus of actual forceI32-670.2C3Plus.StatusTorqueForce_ActualTorqueStatus of actual torqueI32-		•	·		VP
2150.3 C3Plus.NotchFilter_DepthFilter1 Depth of notch filter 1 I32 VP 2150.6 C3Plus.NotchFilter_DepthFilter2 Depth of notch filter 2 I32 VP 2150.1 C3Plus.NotchFilter_FrequencyFilter1 Center frequency of notch filter 1 I16 VP 2150.4 C3Plus.NotchFilter_FrequencyFilter2 Center frequency of notch filter 2 I16 VP 1211.13 C3Plus.PG2POSITION_direction Manipulation of the motion direction in reset mode I32 Immed iately 1111.13 C3Plus.POSITION_direction Manipulation of the motion direction in reset mode 2200.20 C3Plus.PositionController_DeadBand Deadband of position controller C4_3 VP 2200.21 C3Plus.PositionController_FrictionCompensati on SPlus.PositionController_TrackingErrorFilter Following error filter of the position U16 VP 2200.24 C3Plus.PositionController_TrackingErrorFilter Jus C3Plus.StatusTorqueForce_ActualForce Status of actual torque I32 - 670.2 C3Plus.StatusTorqueForce_ActualTorque Status of actual torque I32 -					
2150.6 C3Plus.NotchFilter_DepthFilter2 Depth of notch filter 2 132 VP		<u> </u>			
2150.1C3Plus.NotchFilter_FrequencyFilter1Center frequency of notch filter 1I16VP2150.4C3Plus.NotchFilter_FrequencyFilter2Center frequency of notch filter 2I16VP1211.13C3Plus.PG2POSITION_directionManipulation of the motion direction in reset modeI32Immed iately1111.13C3Plus.POSITION_directionManipulation of the motion direction in reset modeI32Immed iately2200.20C3Plus.PositionController_DeadBandDeadband of position controllerC4_3VP2200.21C3Plus.PositionController_FrictionCompensationFriction compensationI32VP2200.11C3Plus.PositionController_TrackingErrorFilterFollowing error filter of the position controllerU16VP2200.24C3Plus.PositionController_TrackingErrorFilter _ usTime constant following error filter of position controllerU16VP670.4C3Plus.StatusTorqueForce_ActualForceStatus of actual forceI32-670.2C3Plus.StatusTorqueForce_ActualTorqueStatus of actual torqueI32-		= •	·		
2150.4C3Plus.NotchFilter_FrequencyFilter2Center frequency of notch filter 2I16VP1211.13C3Plus.PG2POSITION_directionManipulation of the motion direction in reset modeI32Immed iately1111.13C3Plus.POSITION_directionManipulation of the motion direction in reset modeI32Immed iately2200.20C3Plus.PositionController_DeadBandDeadband of position controllerC4_3VP2200.21C3Plus.PositionController_FrictionCompensati onFriction compensationI32VP2200.11C3Plus.PositionController_TrackingErrorFilter on the position controllerU16VP2200.24C3Plus.PositionController_TrackingErrorFilter _ usTime constant following error filter of position controllerU16VP670.4C3Plus.StatusTorqueForce_ActualForceStatus of actual forceI32-670.2C3Plus.StatusTorqueForce_ActualTorqueStatus of actual torqueI32-		<u> </u>	·		
1211.13C3Plus.PG2POSITION_directionManipulation of the motion direction in reset modeI32Immediately1111.13C3Plus.POSITION_directionManipulation of the motion direction in reset modeI32Immediately2200.20C3Plus.PositionController_DeadBandDeadband of position controllerC4_3VP2200.21C3Plus.PositionController_FrictionCompensation onFriction compensationI32VP2200.11C3Plus.PositionController_TrackingErrorFilter on controllerFollowing error filter of the position controllerU16VP2200.24C3Plus.PositionController_TrackingErrorFilter _usTime constant following error filter of position controllerU16VP670.4C3Plus.StatusTorqueForce_ActualForceStatus of actual forceI32-670.2C3Plus.StatusTorqueForce_ActualTorqueStatus of actual torqueI32-					
1111.13 C3Plus.POSITION_direction Manipulation of the motion direction in reset mode I32 Immediately 2200.20 C3Plus.PositionController_DeadBand Deadband of position controller C4_3 VP 2200.21 C3Plus.PositionController_FrictionCompensati on Friction compensation I32 VP 2200.11 C3Plus.PositionController_TrackingErrorFilter on the position controller Following error filter of the position controller U16 VP 2200.24 C3Plus.PositionController_TrackingErrorFilter _ us Time constant following error filter of position controller U16 VP 670.4 C3Plus.StatusTorqueForce_ActualForce Status of actual force I32 - 670.2 C3Plus.StatusTorqueForce_ActualTorque Status of actual torque I32 -		• •	Manipulation of the motion direction in		Immed
2200.20 C3Plus.PositionController_DeadBand Deadband of position controller C4_3 VP 2200.21 C3Plus.PositionController_FrictionCompensation on Friction compensation I32 VP 2200.11 C3Plus.PositionController_TrackingErrorFilter controller Following error filter of the position controller U16 VP 2200.24 C3Plus.PositionController_TrackingErrorFilter _ us Time constant following error filter of position controller U16 VP 670.4 C3Plus.StatusTorqueForce_ActualForce Status of actual force I32 - 670.2 C3Plus.StatusTorqueForce_ActualTorque Status of actual torque I32 -	1111.13	C3Plus.POSITION_direction	Manipulation of the motion direction in	132	Immed
2200.21 C3Plus.PositionController_FrictionCompensati on Friction compensation I32 VP 2200.11 C3Plus.PositionController_TrackingErrorFilter controller Following error filter of the position controller U16 VP 2200.24 C3Plus.PositionController_TrackingErrorFilter _us Time constant following error filter of position controller U16 VP 670.4 C3Plus.StatusTorqueForce_ActualForce Status of actual force I32 - 670.2 C3Plus.StatusTorqueForce_ActualTorque Status of actual torque I32 -	2200.20	C3Plue PositionControllor DoodPond		C4 2	
on 2200.11 C3Plus.PositionController_TrackingErrorFilter Following error filter of the position controller 2200.24 C3Plus.PositionController_TrackingErrorFilter _ us 670.4 C3Plus.StatusTorqueForce_ActualForce Status of actual force I32 - 670.2 C3Plus.StatusTorqueForce_ActualTorque Status of actual torque I32 -			·		
2200.24 C3Plus.PositionController_TrackingErrorFilter _us Time constant following error filter of positon controller U16 VP 670.4 C3Plus.StatusTorqueForce_ActualForce Status of actual force I32 - 670.2 C3Plus.StatusTorqueForce_ActualTorque Status of actual torque I32 -		on	·		
_us positon controller		_	controller		
670.2 C3Plus.StatusTorqueForce_ActualTorque Status of actual torque I32 -		_us			VP
	670.4	·	Status of actual force	132	-
110.1 C3Plus.Switch_DeviceFunction Value of the function switch on C3M U16 -	670.2	C3Plus.StatusTorqueForce_ActualTorque	Status of actual torque	132	-
	110.1	C3Plus.Switch_DeviceFunction	Value of the function switch on C3M	U16	-

2109.1	C3Plus.TrackingfilterHEDA_TRFSpeed	Time constant tracking filter HEDA-		I16	VP
		process position			
2107.1	C3Plus.TrackingfilterPhysicalSource_TRFSpe ed	Time constant tracking filter physical source		U16	VP
2110.4	C3Plus.TrackingfilterSG1_AccelFilter	Filter effect of acceleration filter setpoint encoder		U16	VP
2110.7	C3Plus.TrackingfilterSG1_AccelFilter_us	Filter time constant acceleration setpoint generator		U16	VP
2110.3	C3Plus.TrackingfilterSG1_FilterSpeed	Filter effect of speed filter setpoint encoder		U16	VP
2110.6	C3Plus.TrackingfilterSG1_FilterSpeed_us	Filter time constant velocity setpoint generator		U16	VP
2110.1	C3Plus.TrackingfilterSG1_TRFSpeed	Time constant tracking filter setpoint encoder		l16	VP
1130.7	C3Plus.HOMING_edge_sensor_distance	Initiator adjustment	0x2000	C4_3	Immed iately
1113.2	C3Plus.STOP_jerk	Jerk for STOP	0x2001	U32	Immed iately
1116.1	C3Plus.FSTOP1_decel	Deceleration for FSTOP1	0x2002	U32	Immed
1116.2	C3Plus.FSTOP1_jerk	Jerk for FSTOP1	0x2003	U32	Immed
1118.2	C3Plus.FSTOP3_jerk	Jerk for FSTOP3	0x2004	U32	Immed
1111.5	C3Plus.POSITION_jerk_accel	Acceleration jerk for positioning	0x2005	U32	Immed
1111.6	C3Plus.POSITION_jerk_decel	Deceleration jerk for positioning	0x2006	U32	Immed
1128.1	C3Plus.JOG_accel	Acceleration for JOG +/-	0x2007	U32	Immed
1128.3	C3Plus.JOG_speed	Speed for JOG+/-	0x2008	C4_3	Immed
402.1	C3.Limit_SpeedPositive	Maximum permissible positive speed	0x2009	I16	VP
402.2	C3.Limit_SpeedNegative	Maximum permissible negative speed	0x200A	I16	VP
402.3	C3.Limit_CurrentPositive	Maximum permissible positive current	0x200B	I16	VP
402.4	C3.Limit_CurrentNegative	Maximum permissible negative current	0x200C	l16	VP
1118.1	C3Plus.FSTOP3_decel	Deceleration for FSTOP3	0x200D	U32	Immed iately
682.4	C3.StatusAccel_DemandValue	Status demand acceleration	0x200E	132	-
685.1	C3.StatusVoltage_AuxiliaryVoltage	Status of auxiliary voltage	0x200F	E2_6	-
1128.2	C3Plus.JOG_jerk	Jerk for JOG +/-	0x2010	U32	Immed iately
683.2	C3.StatusDevice_ActualDeviceLoad	Status of device load	0x2011	E2_6	-
683.3	C3.StatusDevice_ActualMotorLoad	Status of long-term motor load	0x2012	E2_6	-
684.2	C3.StatusTemperature_Motor	Status of motor temperature	0x2013	U16	-
684.1	C3.StatusTemperature_PowerStage	Status of power output stage temperature	0x2014	U16	-
1125.2	C3Plus.ERROR_jerk	Jerk upon Error	0x2015	U32	Immed iately
210.10	C3.ValidParameter_Global	Set objects to valid	0x2016.10	U16	Immed iately
20.1	C3.ObjectDir_Objekts>FLASH	Store objects permanently (bus)	0x2017	l16	Immed
1125.1	C3Plus.ERROR_decel	Deceleration upon error	0x2018	U32	Immed
1100.4	C3Plus.DeviceControl_Controlword_2	Control word 2	0x201B	V2	Immed
1000.4	C3Plus.DeviceState_Statusword_2	Status word 2	0x201C	V2	Immed
681.7	C3.StatusSpeed_Actual_Y2	Status of the actual speed in the Y2 format	0x2023	Y2	iately -
685.3	C3.StatusVoltage_AnalogInput0	Status of analog input 0	0x2025	Y2	l _
685.4	C3.StatusVoltage_AnalogInput0 C3.StatusVoltage_AnalogInput1	Status of analog input 0 Status of analog input 1	0x2025 0x2026	Y2	 -
681.6	C3.StatusVoltage_Analoginput1 C3.StatusSpeed_Error	Status or analog input 1 Status control deviation of speed	0x2026 0x2027	C4_3	 -
1100.6	C3Plus.DeviceControl_DemandValue1	Device demand value A	0x2027 0x202A/0x2	Y4	Immed
1100.6	Our lus. Device Control_Demand value i	Device demand value A	044/0x607A/	14	iately

1100.7	C3Plus.DeviceControl_DemandValue2	Device demand value D	0x202B/0x2 046/0x6081	Y4	Immed iately
1100.14	C3Plus.DeviceControl_DemandValue2_Y2	Device demand value	0x202C/0x2 068	Y2	Immed iately
1111.10	C3Plus.POSITION_accel_U16	Acceleration for Positioning in U16 Format	0x202D	U16	Immed iately
1111.16	C3Plus.POSITION_decel_U16	Deceleration for Positioning in U16 Format	0x205D	U16	Immed iately
820.24	C3.CANopen_SyncMode	Configuration of the bus synchronization process	0x205E	l16	Immed iately
3300.8	C3Plus.TouchProbe_IgnoreZone_Start	Beginning of Registration lock-out zone (StartIgnore)	0x2066	C4_3	Immed iately
3300.9	C3Plus.TouchProbe_IgnoreZone_End	End of Registration lock-out zone (StopIgnore)	0x2067	C4_3	Immed iately
1100.13	C3Plus.DeviceControl_DemandValue8	Setpoint value	0x206A/0x6 0FF	Y4	Immed iately
402.6	C3.Limit_CurrentFine	Factor for the current limits	0x2093	l16	Immed iately
683.8	C3.StatusDevice_MotorCurrent	Motor current in per thousand of the actual current limit	0x2094	l16	-
1.21	C3.Device_FirmwareRelease	Version of firmware package	0x20FF	132	Immed iately
2100.2	C3.ControllerTuning_Stiffness	Stiffness (speed controller)	0x2100.2	U16	VP
2100.3	C3.ControllerTuning_Damping	Damping (rotation speed controller)	0x2100.3	U16	VP
2100.4	C3.ControllerTuning_Inertia	Moment of Inertia	0x2100.4	U16	VP
2100.5	C3.ControllerTuning_FilterSpeed	Filter - Actual velocity	0x2100.5	U16	VP
2100.6	C3.ControllerTuning_FilterAccel	Filter - Actual acceleration	0x2100.6	U16	VP
2100.7	C3.ControllerTuning_SpeedDFactor	D-component of speed controller	0x2100.7	U16	VP
2100.8	C3.ControllerTuning_CurrentBandwidth	Current regulator bandwidth	0x2100.8	U16	VP
2100.9	C3.ControllerTuning_CurrentDamping	Current loop - Damping	0x2100.9	U16	VP
2010.1	C3.FeedForward_Speed	Velocity feed-forward	0x2101.1	U16	VP
2010.1	C3.FeedForward Accel	Acceleration feed-forward	0x2101.1	U16	VP
2010.2	C3.FeedForward Current	Current feed-forward	0x2101.2	U16	VP
2010.4	C3.FeedForward Jerk	Jerk feed-forward	0x2101.4 0x2101.5	U16	VP
2010.5	C3.FeedForwardExternal_FilterSpeed	External Speed Feed Forward Filter Time Constant	0x2101.5	U16	VP
2011.2	C3.FeedForwardExternal_FilterAccel	External Acceleration Feed Forward Filter Time Constant	0x2102.2	U16	VP
1900.1	C3Array.Pointer_Row	Pointer to table row	0x2300	U16	Immed iately
1901.1	C3Array.Col01_Row01	variable Column 1 Row 1	0x2301.1	Y4	Immed
1902.1	C3Array.Col02_Row01	variable Column 2 Row 1	0x2302.1	Y2	Immed iately
1903.1	C3Array.Col03_Row01	variable Column 3 Row 1	0x2303.1	I16	Immed iately
1904.1	C3Array.Col04_Row01	variable Column 4 Row 1	0x2304.1	I16	Immed iately
1905.1	C3Array.Col05_Row01	variable Column 5 Row 1	0x2305.1	I16	Immed iately
1906.1	C3Array.Col06_Row01	variable Column 6 Row 1	0x2306.1	l32	Immed iately
1907.1	C3Array.Col07_Row01	variable Column 7 Row 1	0x2307.1	l32	Immed iately
1908.1	C3Array.Col08_Row01	variable Column 8 Row 1	0x2308.1	l32	Immed iately
1909.1	C3Array.Col09_Row01	variable Column 9 Row 1	0x2309.1	l32	Immed iately
1910.1	C3Array.Indirect_Col01	Indirect table access Column 1	0x2311	Y4	Immed iately
550.1	C3Plus.ErrorHistory_LastError	Current error (n)	0x603F/ 0x201D.1	U16	-
1100.3	C3Plus.DeviceControl_Controlword_1	Control word CW	0x6040	V2	Immed iately
1000.3	C3Plus.DeviceState_Statusword_1	Status word SW	0x6041	V2	Immed iately

1100.20	C3Plus.DeviceControl_QuickStopMode	Quick Stop operating mode	0x605A	l16	Immed iately
1100.5	C3Plus.DeviceControl_OperationMode	Operating mode	0x6060	I16	Immed iately
1000.5	C3Plus.DeviceState_ActualOperationMode	Operating mode display	0x6061	I16	Immed iately
680.5	C3.StatusPosition_Actual	Status actual position	0x6064	C4_3	-
420.2	C3.PositioningAccuracy_FollowingErrorWindo w	Following error limit	0x6065	C4_3	VP
420.3	C3.PositioningAccuracy_FollowingErrorTimeo ut	Following Error Time	0x6066	U16	Immed iately
420.1	C3.PositioningAccuracy_Window	Positioning window for position reached	0x6067	C4_3	VP
420.7	C3.PositioningAccuracy_WindowTime	In Position Window Time	0x6068	U16	Immed iately
681.4	C3.StatusSpeed_DemandValue	Status demand speed of setpoint generator	0x606B	C4_3	-
681.5	C3.StatusSpeed_Actual	Status actual speed unfiltered	0x606C	C4_3	-
683.1	C3.StatusDevice_ActualCurrent	Status of actual current value	0x6077	E2_6	<u> </u>
685.2	C3.StatusVoltage_BusVoltage	Status DC bus voltage	0x6079	E2_6	-
1111.1	C3Plus.POSITION_position	Target position	0x607A	C4_3	Immed iately
1130.5	C3Plus.HOMING_home_offset	Machine reference offset	0x607C	C4_3	Immed iately
410.3	C3.LimitPosition_Negative	negative end limit	0x607D.1	C4_3	Immed iately
410.2	C3.LimitPosition_Positive	positive end limit	0x607D.2	C4_3	Immed iately
1111.2	C3Plus.POSITION_speed	Speed for positioning	0x6081	C4_3	Immed iately
1111.3	C3Plus.POSITION_accel	Acceleration for positioning	0x6083	U32	Immed iately
1127.1	C3Plus.SPEED_accel	Acceleration / deceleration in speed control operating mode	0x6083	U32	Immed iately
1111.4	C3Plus.POSITION_decel	Deceleration for positioning	0x6084	U32	Immed iately
1113.1	C3Plus.STOP_decel	Deceleration upon STOP	0x6085	U32	Immed iately
1130.4	C3Plus.HOMING_mode	Adjusting the homing mode	0x6098	U16	Immed iately
1130.3	C3Plus.HOMING_speed	Speed for homing	0x6099.1	C4_3	Immed iately
1130.1	C3Plus.HOMING_accel	Acceleration / deceleration homing run	0x609A	U32	Immed iately
3925.1	C3.FBI_Interpolation_SubModeSelect	Interpolation method	0x60C0.0	I16	Immed iately
680.6	C3.StatusPosition_FollowingError	Status of following error	0x60F4	C4_3	-
680.4	C3.StatusPosition_DemandValue	Status demand position	0x60FC	C4_3	-
1127.3	C3Plus.SPEED_speed	Setpoint speed in speed control operating mode	0x60FF	C4_3	Immed iately
120.3	C3.DigitalInput_DebouncedValue	Status of digital inputs	0x6100.1	V2	-
121.2	C3.DigitalInputAddition_Value	Input word of I/O option	0x6100.2	V2	-
133.3	C3.DigitalOutputAddition_Value	Output word for I/O option	0x6300.2	V2	Immed iately

Standardized and manufacturer-specific objects sorted according to object names

No.	Object name	Object	CANopen Index	Bus format	Valid begin ning
820.24	C3.CANopen_SyncMode	Configuration of the bus synchronization process	0x205E	I16	Immed iately
2100.20	C3.ControllerTuning_ActuatingSpeedSignalFil t_us	Control signal filter of velocity control		U16	VP
2100.8	C3.ControllerTuning_CurrentBandwidth	Current regulator bandwidth	0x2100.8	U16	VP
2100.9	C3.ControllerTuning_CurrentDamping	Current loop - Damping	0x2100.9	U16	VP
2100.3	C3.ControllerTuning_Damping	Damping (rotation speed controller)	0x2100.3	U16	VP
2100.6	C3.ControllerTuning_FilterAccel	Filter - Actual acceleration	0x2100.6	U16	VP
2100.21	C3.ControllerTuning_FilterAccel_us	Filter - Actual acceleration		U16	VP
2100.11	C3.ControllerTuning_FilterAccel2	Filter actual acceleration 2		U16	VP
2100.5	C3.ControllerTuning_FilterSpeed	Filter - Actual velocity	0x2100.5	U16	VP
2100.4	C3.ControllerTuning_Inertia	Moment of Inertia	0x2100.4	U16	VP
2100.7	C3.ControllerTuning_SpeedDFactor	D-component of speed controller	0x2100.7	U16	VP
2100.2	C3.ControllerTuning_Stiffness	Stiffness (speed controller)	0x2100.2	U16	VP
2230.20	C3.D_CurrentController_Ld_Lq_Ratio	Ratio direct to quadrature inductance	0,2100.2	U16	VP
2230.24	C3.D_CurrentController_VoltageDecouplingE	Activation of the voltage decoupling		116	VP
990.1	nable C3.Delay_MasterDelay	Setpoint delay for bus master		l16	Immed iately
1.21	C3.Device_FirmwareRelease	Version of firmware package	0x20FF	132	Immed iately
84.4	C3.DeviceSupervision_DeviceAdr	Current RS485 address of the C3M		U16	-
84.3	C3.DeviceSupervision_DeviceCounter	Number of devices in the C3M combination		U16	-
84.5	C3.DeviceSupervision_OperatingTime	Hours of operation of the C3MP in s		U32	-
84.2	C3.DeviceSupervision_ThisDevice	Device number in the C3M combination		U16	-
85.1	C3.Diagnostics_DeviceState	C3MP operating status		V2	-
120.3	C3.DigitalInput_DebouncedValue	Status of digital inputs	0x6100.1	V2	-
120.2	C3.DigitalInput_Value	Status of digital inputs		V2	+
121.2	C3.DigitalInputAddition_Value	Input word of I/O option	0x6100.2	V2	+
133.3	C3.DigitalOutputAddition_Value	Output word for I/O option	0x6300.2	V2	Immed iately
87.1	C3.ErrorHistoryNumber_1	Error 1		U16	-
86.1	C3.ErrorHistoryPointer_LastEntry	Pointer to current error		U16	_
88.1	C3.ErrorHistoryTime_1	Error point in time 1		U32	-
2020.1	C3.ExternalSignal_Position	Position from external signal source		C4_3	<u> </u>
3925.1	C3.FBI_Interpolation_SubModeSelect	Interpolation method	0x60C0.0	I16	Immed iately
2010.2	C3.FeedForward Accel	Acceleration feed-forward	0x2101.2	U16	VP
2010.2	C3.FeedForward_Current	Current feed-forward	0x2101.2	U16	VP
2010.4	C3.FeedForward EMF	EMC feedforward	0.2101.4	U16	VP
	inani		0v2404.5	_	
2010.5	C3.FeedForward_Jerk	Jerk feed-forward	0x2101.5	U16	VP
2010.1	C3.FeedForward_Speed C3.FeedForwardExternal_FilterAccel	Velocity feed-forward External Acceleration Feed Forward Filter Time Constant	0x2101.1 0x2102.2	U16	VP VP
2011.5	C3.FeedForwardExternal_FilterAccel_us	Filter time constant ext. Acceleration		U16	VP
2011.1	C3.FeedForwardExternal_FilterSpeed	External Speed Feed Forward Filter Time Constant	0x2102.1	U16	VP
2011.4	C3.FeedForwardExternal_FilterSpeed_us	Filter time constant ext. Velocity		U16	VP
402.6	C3.Limit_CurrentFine	Factor for the current limits	0x2093	116	Immed
402.4	C3.Limit_CurrentNegative	Maximum permissible negative current	0x200C	l16	VP
402.4	C3.Limit_CurrentPositive	Maximum permissible positive current	0x200C	116	VP
402.3	C3.Limit_SpeedNegative	Maximum permissible positive current Maximum permissible negative speed	0x200B 0x200A	I16	VP
					VP
410.6	C3.Limit_SpeedPositive C3.LimitPosition_LoadControlMaxPosDiff	Maximum permissible positive speed Position difference load-motor (error	0x2009	I16 C4_3	VP
410.3	C3.LimitPosition_Negative	threshold) negative end limit	0x607D.1	C4_3	Immed iately

410.2	C3.LimitPosition_Positive	positive end limit	0x607D.2	C4_3	Immed iately
20.1	C3.ObjectDir_Objekts>FLASH	Store objects permanently (bus)	0x2017	I16	Immed iately
420.3	C3.PositioningAccuracy_FollowingErrorTimeo ut	Following Error Time	0x6066	U16	Immed iately
420.2	C3.PositioningAccuracy_FollowingErrorWindo w	Following error limit	0x6065	C4_3	VP
420.1	C3.PositioningAccuracy_Window	Positioning window for position reached	0x6067	C4_3	VP
420.7	C3.PositioningAccuracy_WindowTime	In Position Window Time	0x6068	U16	Immed iately
2220.22	C3.Q_CurrentController_BackEMF	Parameter motor force constant		I16	VP
2220.20	C3.Q_CurrentController_Inductance	Parameter motor inductance		I16	VP
2220.21	C3.Q_CurrentController_Resistance	Parameter motor resistance		I16	VP
2210.17	C3.SpeedController_ActualBandwidth	Replacement time constant for the velocity control		132	-
2120.7	C3.SpeedObserver_DisturbanceAdditionEnab le	Switch to enable disturbance compensation		BOOL	VP
2120.5	C3.SpeedObserver_DisturbanceFilter	Time constant disturbance filter		U32	VP
2120.1	C3.SpeedObserver_TimeConstant	Rapidity of the speed monitor		U32	VP
682.5	C3.StatusAccel_Actual	Status of actual acceleration unfiltered		l32	-
682.6	C3.StatusAccel_ActualFilter	Status of filtered actual acceleration		l32	-
682.4	C3.StatusAccel_DemandValue	Status demand acceleration	0x200E	l32	-
682.7	C3.StatusAccel_FeedForwardAccel	Status acceleration feed forward		C4_3	-
690.5	C3.StatusAutocommutation_Itterations	Current increase steps automatic commutation		U16	-
688.2	C3.StatusCurrent_Actual	Status of actual current RMS (torque producing)		E2_6	-
688.19	C3.StatusCurrent_ActualDINT	Actual current r.m.s.		132	-
688.8	C3.StatusCurrent_ControlDeviationIq	Status of control deviation of current control RMS		C4_3	-
688.31	C3.StatusCurrent_DecouplingVoltageUd	Signal decoupling of direct current controller		C4_3	-
688.32	C3.StatusCurrent_FeedForwardbackEMF	Signal EMC feedforward		C4_3	-
688.14	C3.StatusCurrent_FeedForwordCurrentJerk	Status of current & jerk feedforward		C4_3	-
688.9	C3.StatusCurrent_PhaseU	Status of current phase U		C4_3	-
688.10	C3.StatusCurrent_PhaseV	Status of current phase V		C4_3	-
688.1	C3.StatusCurrent_Reference	Status of setpoint current RMS (torque forming)		E2_6	-
688.18	C3.StatusCurrent_ReferenceDINT	Target current r.m.s.		132	-
688.13	C3.StatusCurrent_ReferenceJerk	Status of demand jerk setpoint generator		C4_3	-
688.11	C3.StatusCurrent_ReferenceVoltageUq	Status of current control control signal		C4_3	-
688.22	C3.StatusCurrent_ReferenceVoltageVector	Provided voltage pointer		C4_3	-
688.30	C3.StatusCurrent_VoltageUd	Provided voltage of direct current controller		C4_3	-
688.29	C3.StatusCurrent_VoltageUq	Provided voltage of quadrature current controller		C4_3	-
683.1	C3.StatusDevice_ActualCurrent	Status of actual current value	0x6077	E2_6	-
683.2	C3.StatusDevice_ActualDeviceLoad	Status of device load	0x2011	E2_6	-
683.3	C3.StatusDevice_ActualMotorLoad	Status of long-term motor load	0x2012	E2_6	-
683.8	C3.StatusDevice_MotorCurrent	Motor current in per thousand of the actual current limit	0x2094	I16	-
683.5	C3.StatusDevice_ObservedDisturbance	Status of observed disturbance		C4_3	1-
680.5	C3.StatusPosition_Actual	Status actual position	0x6064	C4_3	-
680.12	C3.StatusPosition_DemandController	Status demand position without absolute reference		C4_3	-
680.4	C3.StatusPosition_DemandValue	Status demand position	0x60FC	C4_3	-
680.6	C3.StatusPosition_FollowingError	Status of following error	0x60F4	C4_3	-
680.23	C3.StatusPosition_LoadControlActual	Actual position of the load		C4_3	-
680.20	C3.StatusPosition_LoadControlDeviation	Position difference load-motor (unfiltered)		C4_3	-
680.22	C3.StatusPosition_LoadControlDeviationFilter	Position difference load-motor (filtered)		C4_3	-
	ou .				

681.5	C3.StatusSpeed_Actual	Status actual speed unfiltered	0x606C	C4_3	_
681.7	C3.StatusSpeed_Actual_Y2	Status of the actual speed in the Y2 format	0x2023	Y2	-
681.9	C3.StatusSpeed_ActualFiltered	Status actual speed filtered		C4_3	-
681.12	C3.StatusSpeed_ActualScaled	Filtered actual speed		C4_3	
681.13	C3.StatusSpeed_DemandScaled	Setpoint speed of the setpoint generator		C4_3	-
681.10	C3.StatusSpeed_DemandSpeedController	Status demand speed controller input		C4_3	-
681.4	C3.StatusSpeed_DemandValue	Status demand speed of setpoint generator	0x606B	C4_3	-
681.6	C3.StatusSpeed_Error	Status control deviation of speed	0x2027	C4_3	-
681.11	C3.StatusSpeed_FeedForwardSpeed	Status speed feed forward		C4_3	-
681.20	C3.StatusSpeed_LoadControl	Speed of the load feedback (unfiltered)		C4_3	-
681.21 684.2	C3.StatusSpeed_LoadControlFiltered C3.StatusTemperature_Motor	Speed of the load feedback (filtered) Status of motor temperature	0x2013	C4_3 U16	- -
684.1	C3.StatusTemperature_Ivioloi C3.StatusTemperature_PowerStage	Status of motor temperature Status of power output stage	0x2013	U16	1-
	·	temperature			
685.3	C3.StatusVoltage_AnalogInput0	Status of analog input 0	0x2025	Y2	-
685.4	C3.StatusVoltage_AnalogInput1	Status of analog input 1	0x2026	Y2	-
685.1	C3.StatusVoltage_AuxiliaryVoltage	Status of auxiliary voltage	0x200F	E2_6	-
685.2	C3.StatusVoltage_BusVoltage	Status DC bus voltage	0x6079	E2_6	-
210.10	C3.ValidParameter_Global	Set objects to valid	0x2016.10	U16	Immed iately
1901.1	C3Array.Col01_Row01	variable Column 1 Row 1	0x2301.1	Y4	Immed iately
1902.1	C3Array.Col02_Row01	variable Column 2 Row 1	0x2302.1	Y2	Immed iately
1903.1	C3Array.Col03_Row01	variable Column 3 Row 1	0x2303.1	I16	Immed iately
1904.1	C3Array.Col04_Row01	variable Column 4 Row 1	0x2304.1	l16	Immed iately
1905.1	C3Array.Col05_Row01	variable Column 5 Row 1	0x2305.1	l16	Immed iately
1906.1	C3Array.Col06_Row01	variable Column 6 Row 1	0x2306.1	l32	Immed iately
1907.1	C3Array.Col07_Row01	variable Column 7 Row 1	0x2307.1	132	Immed iately
1908.1	C3Array.Col08_Row01	variable Column 8 Row 1	0x2308.1	132	Immed iately
1909.1	C3Array.Col09_Row01	variable Column 9 Row 1	0x2309.1	132	Immed iately
1910.1	C3Array.Indirect_Col01	Indirect table access Column 1	0x2311	Y4	Immed iately
1900.1	C3Array.Pointer_Row	Pointer to table row	0x2300	U16	Immed iately
2190.2	C3Plus.AutoCommutationControl_InitialCurre nt	Start current of automatic commutation		U16	VP
2190.4	C3Plus.AutoCommutationControl_MotionRed uction	Motion reduction Automatic commutation		U16	VP
2190.3	C3Plus.AutoCommutationControl_PositionThr eshold	Motion limit for automatic commutation		U16	VP
2190.1	C3Plus.AutoCommutationControl_Ramptime	Ramp slope current slope AK		U16	VP
1100.3	C3Plus.DeviceControl_Controlword_1	Control word CW	0x6040	V2	Immed iately
1100.4	C3Plus.DeviceControl_Controlword_2	Control word 2	0x201B	V2	Immed iately
1100.6	C3Plus.DeviceControl_DemandValue1	Device demand value A	0x202A/0x2 044/0x607A/	Y4	Immed iately
1100.7	C3Plus.DeviceControl_DemandValue2	Device demand value D	0x202B/0x2 046/0x6081	Y4	Immed iately
1100.14	C3Plus.DeviceControl_DemandValue2_Y2	Device demand value	0x202C/0x2 068	Y2	Immed iately
1100.13	C3Plus.DeviceControl_DemandValue8	Setpoint value	0x206A/0x6 0FF	Y4	Immed iately
1100.5	C3Plus.DeviceControl_OperationMode	Operating mode	0x6060	l16	Immed iately
1100.20	C3Plus.DeviceControl_QuickStopMode	Quick Stop operating mode	0x605A	l16	Immed iately

1000.5	C3Plus.DeviceState_ActualOperationMode	Operating mode display	0x6061	I16	Immed iately
1000.3	C3Plus.DeviceState_Statusword_1	Status word SW	0x6041	V2	Immed iately
1000.4	C3Plus.DeviceState_Statusword_2	Status word 2	0x201C	V2	Immed iately
85.3	C3Plus.Diagnostics_DCbus_Current	C3MP DC intermediate current		I16	-
85.2	C3Plus.Diagnostics_DCbus_Voltage	C3MP DC intermediate voltage		I16	-
85.5	C3Plus.Diagnostics_RectifierLoad	C3MP usage in %		I16	-
85.4	C3Plus.Diagnostics_TemperatureHeatSink	C3MP temperature of heat dissipator		I16	-
1125.1	C3Plus.ERROR_decel	Deceleration upon error	0x2018	U32	Immed iately
1125.2	C3Plus.ERROR_jerk	Jerk upon Error	0x2015	U32	Immed iately
550.1	C3Plus.ErrorHistory_LastError	Current error (n)	0x603F/ 0x201D.1	U16	-
2020.7	C3Plus.ExternalSignal_Accel_Munits	Acceleration of the external signal source		l32	-
2020.6	C3Plus.ExternalSignal_Speed_Munits	Speed value of the external signal source		C4_3	-
1116.1	C3Plus.FSTOP1_decel	Deceleration for FSTOP1	0x2002	U32	Immed iately
1116.2	C3Plus.FSTOP1_jerk	Jerk for FSTOP1	0x2003	U32	Immed iately
1118.1	C3Plus.FSTOP3_decel	Deceleration for FSTOP3	0x200D	U32	Immed iately
1118.2	C3Plus.FSTOP3_jerk	Jerk for FSTOP3	0x2004	U32	Immed iately
1130.1	C3Plus.HOMING_accel	Acceleration / deceleration homing run	0x609A	U32	Immed iately
1130.13	C3Plus.HOMING_edge_position	Distance MN (zero) initiator - motor zero		C4_3	Immed iately
1130.7	C3Plus.HOMING_edge_sensor_distance	Initiator adjustment	0x2000	C4_3	Immed iately
1130.5	C3Plus.HOMING_home_offset	Machine reference offset	0x607C	C4_3	Immed iately
1130.4	C3Plus.HOMING_mode	Adjusting the homing mode	0x6098	U16	Immed iately
1130.3	C3Plus.HOMING_speed	Speed for homing	0x6099.1	C4_3	Immed iately
1128.1	C3Plus.JOG_accel	Acceleration for JOG +/-	0x2007	U32	Immed iately
1128.2	C3Plus.JOG_jerk	Jerk for JOG +/-	0x2010	U32	Immed iately
1128.3	C3Plus.JOG_speed	Speed for JOG+/-	0x2008	C4_3	Immed iately
2201.2	C3Plus.LoadControl_Command	Load control command mode		l16	Immed iately
2201.1	C3Plus.LoadControl_Enable	Enable load control		l16	Immed iately
2201.11	C3Plus.LoadControl_FilterLaggingPart	Time constant of position difference filter		U32	VP
2201.3	C3Plus.LoadControl_Status	Load control status bits		l16	-
2201.12	C3Plus.LoadControl_VelocityFilter	Time constant of the load-speed filter		116	VP
2150.2	C3Plus.NotchFilter_BandwidthFilter1	Bandwidth of notch filter 1		116	VP
2150.5	C3Plus.NotchFilter_BandwidthFilter2	Bandwidth of notch filter 2		116	VP
2150.3	C3Plus.NotchFilter_DepthFilter1	Depth of notch filter 1		132	VP
2150.6	C3Plus.NotchFilter_DepthFilter2	Depth of notch filter 2		132	VP
2150.0	C3Plus.NotchFilter_FrequencyFilter1	Center frequency of notch filter 1		116	VP
2150.1	C3Plus.NotchFilter_FrequencyFilter2	Center frequency of notch filter 2		116	VP
1211.13	C3Plus.PG2POSITION_direction	Manipulation of the motion direction in reset mode		132	Immed iately
44440	C3Plus.POSITION_accel	Acceleration for positioning	0x6083	U32	Immed
1111.3					iately

1111.4	C3Plus.POSITION_decel	Deceleration for positioning	0x6084	U32	Immed iately
1111.16	C3Plus.POSITION_decel_U16	Deceleration for Positioning in U16 Format	0x205D	U16	Immed iately
1111.13	C3Plus.POSITION_direction	Manipulation of the motion direction in reset mode		l32	Immed iately
1111.5	C3Plus.POSITION_jerk_accel	Acceleration jerk for positioning	0x2005	U32	Immed iately
1111.6	C3Plus.POSITION_jerk_decel	Deceleration jerk for positioning	0x2006	U32	Immed iately
1111.1	C3Plus.POSITION_position	Target position	0x607A	C4_3	Immed iately
1111.2	C3Plus.POSITION_speed	Speed for positioning	0x6081	C4_3	Immed iately
2200.20	C3Plus.PositionController_DeadBand	Deadband of position controller		C4_3	VP
2200.21	C3Plus.PositionController_FrictionCompensation	Friction compensation		l32	VP
2200.11	C3Plus.PositionController_TrackingErrorFilter	Following error filter of the position controller		U16	VP
2200.24	C3Plus.PositionController_TrackingErrorFilter _us	Time constant following error filter of positon controller		U16	VP
1127.1	C3Plus.SPEED_accel	Acceleration / deceleration in speed control operating mode	0x6083	U32	Immed iately
1127.3	C3Plus.SPEED_speed	Setpoint speed in speed control operating mode	0x60FF	C4_3	Immed iately
670.4	C3Plus.StatusTorqueForce_ActualForce	Status of actual force		132	-
670.2	C3Plus.StatusTorqueForce_ActualTorque	Status of actual torque		132	-
1113.1	C3Plus.STOP_decel	Deceleration upon STOP	0x6085	U32	Immed iately
1113.2	C3Plus.STOP_jerk	Jerk for STOP	0x2001	U32	Immed iately
110.1	C3Plus.Switch_DeviceFunction	Value of the function switch on C3M		U16	-
3300.9	C3Plus.TouchProbe_IgnoreZone_End	End of Registration lock-out zone (StopIgnore)	0x2067	C4_3	Immed iately
3300.8	C3Plus.TouchProbe_IgnoreZone_Start	Beginning of Registration lock-out zone (StartIgnore)	0x2066	C4_3	Immed iately
2109.1	C3Plus.TrackingfilterHEDA_TRFSpeed	Time constant tracking filter HEDA- process position		I16	VP
2107.1	C3Plus.TrackingfilterPhysicalSource_TRFSpe ed	Time constant tracking filter physical source		U16	VP
2110.4	C3Plus.TrackingfilterSG1_AccelFilter	Filter effect of acceleration filter setpoint encoder		U16	VP
2110.7	C3Plus.TrackingfilterSG1_AccelFilter_us	Filter time constant acceleration setpoint generator		U16	VP
2110.3	C3Plus.TrackingfilterSG1_FilterSpeed	Filter effect of speed filter setpoint encoder		U16	VP
2110.6	C3Plus.TrackingfilterSG1_FilterSpeed_us	Filter time constant velocity setpoint generator		U16	VP
2110.1	C3Plus.TrackingfilterSG1_TRFSpeed	Time constant tracking filter setpoint encoder		I16	VP

Detailed object list

A detailed object list can be found in the corresponding online help.

In this chapter you can read about:	
Integer formats	309
Unsigned - Formats	
Fixed point format E2_6	309
Fixed point format C4_3	309
Bit sequence V2	310
Byte string OS	

Integer formats

Twos complement representation;

The highest order bit (MSB) is the bit after the sign bit (VZ) in the first octet.

VZ == 0: positive numbers and zero; VZ == 1: negative numbers

Туре	Bit	8	7	6	5	4	3	2	1
Integer 8		VZ	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2°
length: 1 Byte									
Integer 16	MSB	VZ	214	2 ¹³	212	211	2 ¹⁰	2 ⁹	2 ⁸
Length: 1 Word	LSB	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2°
Integer 32	MSB	VZ	230	2 ²⁹	2 ²⁸	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴
Length: 2 Words		2 ²³	2 ²²	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
		2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸
	LSB	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2º

Unsigned - Formats

Туре	Bit	8	7	6	5	4	3	2	1
Unsigned 8 Length: 1 Byte		27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 °
Unsigned 16	MSB	2 ¹⁵	214	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸
Length: 1 Word	LSB	27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Unsigned 32	MSB	2 ³¹	2 ³⁰	2 ²⁹	228	2 ²⁷	2 ²⁶	2 ²⁵	2 ²⁴
Length: 2 Words		2 ²³	222	2 ²¹	2 ²⁰	2 ¹⁹	2 ¹⁸	2 ¹⁷	2 ¹⁶
		2 ¹⁵	2 ¹⁴	2 ¹³	2 ¹²	2 ¹¹	2 ¹⁰	2 ⁹	2 ⁸
	LSB	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 °

Fixed point format E2_6

Linear fixed point value with six binary places after the decimal point. 0 corresponds to 0, 256 corresponds to 2¹⁴ (0x4000).

Twos complement representation;

MSB is the bit after the sign bit

VZ == 0: positive numbers and zero;

VZ == 1: negative numbers

VZ == 1: negative nambers									
Туре	Bit	8	7	6	5	4	3	2	1
E2_6	MSB	VZ	2 ⁸	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²
Length: 1 Word	LSB	2 ¹	2°	2-1	2-2	2 ⁻³	2-4	2 ⁻⁵	2 ⁻⁶

Fixed point format C4_3

Linear fixed point value with three decimal places after the decimal point. 0 corresponds to 0 and 0,001 corresponds to 2° (0x0000 0001).

Structure like data type Integer32, value of the bits reduced by a factor of 1000.

Length: 2 Words

Bit sequence V2

The V2 bus format is a bit sequence with a length of 16 bits.

Byte string OS

Octet string OS: String with variable length.

5.3.6. Ethernet Powerlink - Communication profile

The communication objects described in this chapter are either set to sensible standard values or they are set under menu control with the help of the ServoManager.

The communication objects described below must be modified only for special deviating settings.

The Ethernet Powerlink communication profile can be found in the corresponding help system.

Parker EME Status values

6. Status values

In this chapter you can read about:	
D/A-Monitor	311
	311

A list of the status values supports you in optimization and commissioning. Open the optimization function in the C3 ServoManager (double-click on optimization in the tree)

You will find the available status values in the lower right part of the window under selection (TAB) "Status values"

You can pull them into the oscilloscope (upper part of the left side) or into the status display (upper part of the right side) by the aid of the mouse (drag and drop). The status values are divided into 2 groups (user levels):

standard: here you can find all important status values

advanced: advanced status values, require a better knowledge

Switching of the user level

The user level can be changed in the optimization window (left hand side lower part under selection (TAB) "optimization") with the following button.

6.1 D/A-Monitor

A part of the status values can be output via the D/A monitor channel 0 (X11/4) and channel 1 (X11/3). In the following status list under D/A monitor output: possible / not possible).

The reference for the output voltage can be entered individually in the reference unit of the status value.

Example: Output Object 2210.2: (actual position unfiltered)

In order to get an output voltage of 10V at 3000min⁻¹, please enter 50Umd/s (=3000min⁻¹) as "value of the signal at 10V".

Hint

The unit of measurement of the D/A monitor values differs from the unit of measurement of the status values.

6.2 Status values

Additional information on the topic of "status values" can be found in the online help of the device.

Error C3I30T11

7. Error

Standard error reactions:

Reaction 2: Downramp with "de-energize" **then apply brake** (see page 268) and finally de-energize.

For errors with standard reaction 2 the **error reaction can be changed** (see page 132).

Reaction 5: switch-off of the current immediately (without ramp), application of the brake.

Caution! A Z-axis may drop down due to the brake delay times

Most pending errors can be acknowledged with Quit!

The following errors must be acknowledged with Power on:

0x7381, 0x7382, 0x7391, 0x7392, 0x73A0

Object 550.1 displays error: value 1 means "no error".

The errors as well as the error history can be viewed in the C3 ServoManager under optimization (at the top right of the optimization window).

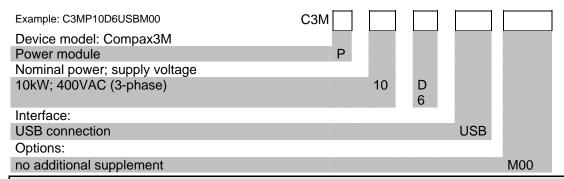
7.1 Error list

Detailed information on the topic of the "error list" can be found in the online help of the device.

8. Order code

In this chapter you can read about:	
Order code device: Compax3	
Order code for mains module: Compax3MP	

Order code C3I30T11


8.1 Order code device: Compax3

	<u> </u>					 1		
Example: C3S025V2F10I10T10M00	C3							
Device model: Compax3		_			-			
Single axis Highpower	S	_						
Multi-axis device	M							
Device currents static/dynamic; supply voltage			-					
2.5A / 5A ; 230VAC (single phase)	S	025	V2	_				
6.3A / 12.6A ; 230VAC (single phase)	S	063	V2					
10A / 20A; 230VAC (three phase)	S	100	V2	_				
15A / 30A ; 230VAC (three phase)	S S	150	V2					
1.5A / 4.5A ; 400VAC (three phase)		015	V4		_	_		
3.8A / 7.5A ; 400VAC (three phase) 7.5A / 15.0A ; 400VAC (three phase)	S S	038	V4 V4					
15.0A / 30.0A ; 400VAC (three phase)	S	150	V4 V4					
30.0A / 60.0A ; 400VAC (three phase)	S	300	V4	-	-	-		
50A / 75A; 400VAC (three phase)	Н	050	V4					
90A / 135A; 400VAC (three phase)	Н	090	V4					
125A / 187.5A ; 400VAC (three phase)*	Н	125	V4	-		-	_	
155A / 232.5A ; 400VAC (three phase)*	Н	155	V4		_	-		_
5.0A / 10.0A ; 400VAC (three phase)	М	050	D6		-	-		
10A / 20A; 400VAC (three phase)	М	100	D6		-	-		
15A / 30A; 400VAC (three phase)	М	150	D6					
Feedback:								
Resolver				F10				
SinCos© (Hiperface)				F11				
Encoder, Sine-cosine with/without hall				F12				
Interface:					140	T40	N400	
Step/direction / analog input					I10 I11	T10	M00 M00	
Positioning with inputs/outputs Positioning via I/Os or RS232 / RS485/USB					111 112	111	IVIOO	
Profibus DP V0/V1/V2 (12Mbaud)					120	-	_	_
CANopen					I21			_
DeviceNet					122			
Ethernet Powerlink					130		1400	
C3 powerPLmC (Multi-axis control) C3 powerPLmC (Multi-axis control) with Profibus					C10 C13	_	M00 M00	
					013		IVIOO	
Technology functions: Positioning						T11		
Motion control programmable according to						T30		
IEC61131-3								
Motion control programmable according to						T40		
IEC61131-3 & electronic cam extension								
Options: no additional supplement							M00	
Expansion 12 digital I/Os & HEDA (Motionbus)							M10	
HEDA (Motionbus)							M11	
Expansion, 12 digital I/Os							M12	
Safety technology only C3M: (In preparation)			D.C.					0.0
no safety technology *external voltage supply f	or ventileter	fon rocu	D6	ilabla is t	No voroion	o for oine	la phasa	S0

*external voltage supply for ventilator fan required. Available in two versions for single phase feed:

Standard: 220/240VAC: 140W, On request: 110/120VAC: 130W

8.2 Order code for mains module: Compax3MP

8.3 Accessories order code

Order Code connection set for Compax3S

						/		
for C3S0xxV2	ZBH 02/01	Ī	ZBH	0	2	/	0	1
for C3S0xxV4 / S150V4 / S1xxV2	ZBH 02/02		ZBH	0	2	/	0	2
for C3S300V4	ZBH 02/03		ZBH	0	2	/	0	3

Order Code connection set for Compax3MP/Compax3M

			/
for C3M050D6, C3M100D6, C3M150D6	ZBH 04/01	ZBH	0 4 / 0 1
for C3MP10	ZBH 04/03	ZBH	0 4 / 0 3

Order code for feedback cables

				/
for Resolver (2	for MH / SMH motors		REK	4 2 / (
for Resolver (2	for MH / SMH motors	(cable chain compatible)	REK	4 1 /(
for SinCos© – Feedback devices (2)	for MH / SMH motors	(cable chain compatible)	GBK	2 4
for EnDat 2.1 (2	for MH / SMH motors	(cable chain compatible)	GBK	3 8 /(
Encoder – Compax3			GBK	2 3 /
for LXR linear motors		(cable chain compatible)	GBK	3 3 /(
for BLMA linear motors		(cable chain compatible)	GBK	3 2 /(

Order code for motor cables⁽²⁾

						/	
for SMH / MH56 / MH70 / MH105 ⁽³	(1.5mm ² ; up to 13.8A)		MOK	5	5	/	(
for SMH / MH56 / MH70 / MH105 ⁽³	(1.5mm ² ; up to 13.8A)	(cable chain compatible)	MOK	5	4	/	 (
for SMH / MH56 / MH70 / MH105 ⁽³	(2.5mm ² ; up to 18.9A)		MOK	5	6	/	 (
for SMH / MH56 / MH70 / MH105 ⁽³	(2.5mm ² ; up to 18.9A)	(cable chain compatible)	MOK	5	7	/	 (
for MH145 / MH205 ⁽⁴	(1.5mm ² ; up to 13.8A)		MOK	6	0	/	1

Order code C3I30T11

for MH145 / MH205 ⁽⁴	(1.5mm ² ; up to 13.8A)	(cable chain compatible)	MOK	6 3 /(
for MH145 / MH205 ⁽⁴	(2.5mm ² ; up to 18.9A)		MOK	5 9 /(
for MH145 / MH205 ⁽⁴	(2.5mm ² ; up to 18.9A)	(cable chain compatible)	MOK	6 4 /(
for MH145 / MH205 ⁽⁴	(6mm ² ; up to 32.3A)	(cable chain compatible)	MOK	6 1 /(
for MH145 / MH205 ⁽⁴	(10mm ² ; up to 47.3A)	(cable chain compatible)	MOK	6 2 /(

Order Code braking resistors

					/		
for C3S063V2 or C3S075V4	56Ω / $0.18kW_{cont}$	BRM	0	5	/	0	1
for C3S075V4	56Ω / $0.57kW_{cont}$	BRM	0	5	/	0	2
for C3S025V2 or C3S038V4	100Ω / $60W_{cont}$	BRM	0	8	/	0	1
for C3S150V4	47Ω / 0.57 k W_{cont}	BRM	1	0	/	0	1
for C3S150V2 and C3S300V4	$4/01:15\Omega$ / $_{0.57kWcont}$ $4/02:15\Omega$ / $_{0.74kWcont}$	BRM	0	4	/	0	
for C3S300V4	$4/03:15\Omega$ / $1.5kW_{cont}$						
for C3S100V2	22Ω / 0.45 k W_{cont}	BRM	0	9	/	0	1
for C3H0xxV4	27Ω / $3.5kW_{cont}$	BRM	1	1	/	0	1
for C3MP10D6	30Ω / 0.5 k W_{cont}	BRM	1	3	/	0	1
for C3MP10D6, $2x15\Omega$ in series	15Ω / 0.5 k W_{cont}	BRM	1	4	/	0	1
for C3H1xxV4	18Ω / 4.5kW _{cont}	BRM	1	2	/	0	1

Order code mains filter Compax3S / Compax3H

] [/		
for C3S025V2 or S063V2	NFI	C	1	_ /	0	1
for C3S0xxV4, S150V4 or S1xxV2	NFI	C	1	/	0	2
for C3S300V4	NFI	C	1	/	0	3
for C3H050V4	NFI	C	2	/	0	1
for C3H090V4	NFI	C	2	/	0	2
for C3H1xxV4	NFI	C	2	1	0	3

Order code mains filter Compax3MP

					/			l
for C3MP10	Reference axis combination 3x480V 25A 6x10m motor cable length	NFI	0	3	/	0	1	
for C3MP10	Reference axis combination 3x480V 25A	NFI	0	3	/	0	2	

Order code for motor output filter (for Compax3S, Compx3M >20m motor cable)

					/		1
up to 6,3 A rated motor current	MDR	0	1	1	/	0	4
Up to 16 A rated motor current	MDR	0		1	/	0	1
up to 30 A rated motor current	MDR	0	1	1	/	0	2

Order code for interface cables and plugs

					/	L	
PC - Compax3 (RS232)		SSK	0	1	Ţ,	/	 1
PC - Compax3MP (USB)		SSK	3	3	3	/ .	
on X11 (Ref/Analog) and X13 at C3F001D2	with flying leads	SSK	2	1	.	/ .	 ····(

on X12 / X22 (I/Os digital) on X11 (Ref /Analog)	with flying leads		
on X11 (Ref /Analog)	with flying loads	SSK	2 2 /(
	for I/O terminal block	SSK	2 3 /
on X12 / X22 (I/Os digital)	for I/O terminal block	SSK	2 4 /
PC ⇔ POP (RS232)		SSK	2 5 /
Compax3 ⇔ POP (RS485) for s	several C3H on request	SSK	2 7 //(
Compax3 HEDA ⇔ Compax3 I30 ⇔ Compax3 I30 ⇔	HEDA or PC ⇔ C3powerPLmC or C3M-multi-axis communication	SSK	2 8 //′
Compax3 X11 ⇔ Compax3 X11		SSK	2 9 /
Compax3 X10 ⇔ Modem		SSK	3 1 /
	SK01 (length 15cm, delivered with the device)	SSK	3 2 / 2 0
•	· · · · · · · · · · · · · · · · · · ·		
·	tion control \Leftrightarrow Programming interface (delivered with the device		1 7 / 0 1
,	1st and last Compax3 in the HEDA Bus/or multi-axis system).	BUS	0 7 / 0 1
Profibus cable ⁽²	non prefabricated	SSL	0 1 /(
Profibus plug		BUS	0 8 / 0 1
CAN-Bus cable (2	non prefabricated	SSL	0 2 /
CANbus connector		BUS	1 0 / 0 1
Operating module (for Compax3	3S)	BDM	0 1 / 0 1
_	,		0 1 7 0 1
Order Code terminal blo	ock		
	· - · ·		
((V44 V40 V00		
for I/Os without luminous indicat	, ,	EAM	0 6 / 0 1
for I/Os with luminous indicator	for X12, X22	EAM	0 6 / 0 2
Order Code decentralize	ed input terminals		
PIO 2DI 24VDC 3.0ms	2-channel digital input terminal	PIO	
			4 0 0
PIO 4DI 24VDC 3.0ms	4-channel digital input terminal	PIO	4 0 0 4 0 2
PIO 4DI 24VDC 3.0ms PIO 8DI 24VDC 3.0ms	4-channel digital input terminal 8-channel digital input terminal		
PIO 8DI 24VDC 3.0ms PIO 2AI DC ± 10V differential input		PIO	4 0 2
PIO 8DI 24VDC 3.0ms PIO 2AI DC ± 10V differential	8-channel digital input terminal	PIO PIO	4 0 2 4 3 0
PIO 8DI 24VDC 3.0ms PIO 2AI DC ± 10V differential input	8-channel digital input terminal 2 channel analog input terminal (± 10V differential input)	PIO PIO PIO	4 0 2 4 3 0 4 5 6
PIO 8DI 24VDC 3.0ms PIO 2AI DC ± 10V differential input PIO 4AI 0-10VDC S.E. PIO 2AI 0 -20mA differential input	8-channel digital input terminal 2 channel analog input terminal (± 10V differential input) 4 channel analog input terminal (0-10V signal voltage) 2 channel analog input terminal (0 -20mA differential input)	PIO PIO PIO	4 0 2 4 3 0 4 5 6 4 6 8
PIO 8DI 24VDC 3.0ms PIO 2AI DC ± 10V differential input PIO 4AI 0-10VDC S.E. PIO 2AI 0 -20mA differential	8-channel digital input terminal 2 channel analog input terminal (± 10V differential input) 4 channel analog input terminal (0-10V signal voltage) 2 channel analog input terminal (0 -20mA differential input)	PIO PIO PIO	4 0 2 4 3 0 4 5 6 4 6 8
PIO 8DI 24VDC 3.0ms PIO 2AI DC ± 10V differential input PIO 4AI 0-10VDC S.E. PIO 2AI 0 -20mA differential input Order Code decentralize	8-channel digital input terminal 2 channel analog input terminal (± 10V differential input) 4 channel analog input terminal (0-10V signal voltage) 2 channel analog input terminal (0 -20mA differential input) ed output terminals	PIO PIO PIO PIO	4 0 2 4 3 0 4 5 6 4 6 8 4 8 0
PIO 8DI 24VDC 3.0ms PIO 2AI DC ± 10V differential input PIO 4AI 0-10VDC S.E. PIO 2AI 0 -20mA differential input Order Code decentralize PIO 2DO 24VDC 0.5A	8-channel digital input terminal 2 channel analog input terminal (± 10V differential input) 4 channel analog input terminal (0-10V signal voltage) 2 channel analog input terminal (0 -20mA differential input) ed output terminals 2 channel digital output terminal (output voltage 0.5A)	PIO PIO PIO PIO	4 0 2 4 3 0 4 5 6 4 6 8 4 8 0
PIO 8DI 24VDC 3.0ms PIO 2AI DC ± 10V differential input PIO 4AI 0-10VDC S.E. PIO 2AI 0 -20mA differential input Order Code decentralize PIO 2DO 24VDC 0.5A PIO 4DO 24VDC 0.5A	8-channel digital input terminal 2 channel analog input terminal (± 10V differential input) 4 channel analog input terminal (0-10V signal voltage) 2 channel analog input terminal (0 -20mA differential input) ed output terminals 2 channel digital output terminal (output voltage 0.5A) 4 channel digital output terminal (output voltage 0.5A)	PIO PIO PIO PIO PIO	4 0 2 4 3 0 4 5 6 4 6 8 4 8 0
PIO 8DI 24VDC 3.0ms PIO 2AI DC ± 10V differential input PIO 4AI 0-10VDC S.E. PIO 2AI 0 -20mA differential input Order Code decentralize PIO 2DO 24VDC 0.5A PIO 4DO 24VDC 0.5A PIO 8DO 24VDC 0.5A	8-channel digital input terminal 2 channel analog input terminal (± 10V differential input) 4 channel analog input terminal (0-10V signal voltage) 2 channel analog input terminal (0 -20mA differential input) ed output terminals 2 channel digital output terminal (output voltage 0.5A) 4 channel digital output terminal (output voltage 0.5A) 8 channel digital output terminal (output voltage 0.5A)	PIO PIO PIO PIO PIO PIO PIO	4 0 2 4 3 0 4 5 6 4 6 8 4 8 0
PIO 8DI 24VDC 3.0ms PIO 2AI DC ± 10V differential input PIO 4AI 0-10VDC S.E. PIO 2AI 0 -20mA differential input Order Code decentralize PIO 2DO 24VDC 0.5A PIO 4DO 24VDC 0.5A PIO 8DO 24VDC 0.5A PIO 2AO 0-10VDC	8-channel digital input terminal 2 channel analog input terminal (± 10V differential input) 4 channel analog input terminal (0-10V signal voltage) 2 channel analog input terminal (0 -20mA differential input) ed output terminals 2 channel digital output terminal (output voltage 0.5A) 4 channel digital output terminal (output voltage 0.5A) 8 channel digital output terminal (output voltage 0.5A) 2 channel analog output terminal (0-10V signal voltage)	PIO PIO PIO PIO PIO PIO PIO PIO	4 0 2 4 3 0 4 5 6 4 6 8 4 8 0 5 0 1 5 0 4 5 3 0 5 5 0
PIO 8DI 24VDC 3.0ms PIO 2AI DC ± 10V differential input PIO 4AI 0-10VDC S.E. PIO 2AI 0 -20mA differential input Order Code decentralize PIO 2DO 24VDC 0.5A PIO 4DO 24VDC 0.5A PIO 8DO 24VDC 0.5A PIO 8DO 24VDC 0.5A PIO 2AO 0-10VDC PIO 2AO 0 -20mA	8-channel digital input terminal 2 channel analog input terminal (± 10V differential input) 4 channel analog input terminal (0-10V signal voltage) 2 channel analog input terminal (0 -20mA differential input) ed output terminals 2 channel digital output terminal (output voltage 0.5A) 4 channel digital output terminal (output voltage 0.5A) 8 channel digital output terminal (output voltage 0.5A) 2 channel analog output terminal (0-10V signal voltage) 2 channel analog output terminal (0-20mA signal voltage)	PIO PIO PIO PIO PIO PIO PIO PIO PIO	4 0 2 4 3 0 4 5 6 4 6 8 4 8 0 5 0 1 5 0 4 5 3 0 5 5 0 5 5 2
PIO 8DI 24VDC 3.0ms PIO 2AI DC ± 10V differential input PIO 4AI 0-10VDC S.E. PIO 2AI 0 -20mA differential input Order Code decentralize PIO 2DO 24VDC 0.5A PIO 4DO 24VDC 0.5A PIO 8DO 24VDC 0.5A PIO 2AO 0-10VDC	8-channel digital input terminal 2 channel analog input terminal (± 10V differential input) 4 channel analog input terminal (0-10V signal voltage) 2 channel analog input terminal (0 -20mA differential input) ed output terminals 2 channel digital output terminal (output voltage 0.5A) 4 channel digital output terminal (output voltage 0.5A) 8 channel digital output terminal (output voltage 0.5A) 2 channel analog output terminal (0-10V signal voltage)	PIO PIO PIO PIO PIO PIO PIO PIO	4 0 2 4 3 0 4 5 6 4 6 8 4 8 0 5 0 1 5 0 4 5 3 0 5 5 0
PIO 8DI 24VDC 3.0ms PIO 2AI DC ± 10V differential input PIO 4AI 0-10VDC S.E. PIO 2AI 0 -20mA differential input Order Code decentralize PIO 2DO 24VDC 0.5A PIO 4DO 24VDC 0.5A PIO 8DO 24VDC 0.5A PIO 8DO 24VDC 0.5A PIO 2AO 0-10VDC PIO 2AO 0 -20mA	8-channel digital input terminal 2 channel analog input terminal (± 10V differential input) 4 channel analog input terminal (0-10V signal voltage) 2 channel analog input terminal (0 -20mA differential input) ed output terminals 2 channel digital output terminal (output voltage 0.5A) 4 channel digital output terminal (output voltage 0.5A) 8 channel digital output terminal (output voltage 0.5A) 2 channel analog output terminal (0-10V signal voltage) 2 channel analog output terminal (0-20mA signal voltage) 2 channel analog output terminal (± 10V signal voltage)	PIO PIO PIO PIO PIO PIO PIO PIO PIO	4 0 2 4 3 0 4 5 6 4 6 8 4 8 0 5 0 1 5 0 4 5 3 0 5 5 0 5 5 2
PIO 8DI 24VDC 3.0ms PIO 2AI DC ± 10V differential input PIO 4AI 0-10VDC S.E. PIO 2AI 0 -20mA differential input Order Code decentralize PIO 2DO 24VDC 0.5A PIO 4DO 24VDC 0.5A PIO 8DO 24VDC 0.5A PIO 8DO 24VDC 0.5A PIO 2AO 0-10VDC PIO 2AO 0 -20mA PIO 2AO DC ± 10V	8-channel digital input terminal 2 channel analog input terminal (± 10V differential input) 4 channel analog input terminal (0-10V signal voltage) 2 channel analog input terminal (0 -20mA differential input) ed output terminals 2 channel digital output terminal (output voltage 0.5A) 4 channel digital output terminal (output voltage 0.5A) 8 channel digital output terminal (output voltage 0.5A) 2 channel analog output terminal (0-10V signal voltage) 2 channel analog output terminal (0-20mA signal voltage) 2 channel analog output terminal (± 10V signal voltage)	PIO PIO PIO PIO PIO PIO PIO PIO PIO	4 0 2 4 3 0 4 5 6 4 6 8 4 8 0 5 0 1 5 0 4 5 3 0 5 5 0 5 5 2

Order code C3I30T11

CANopen ECO

max. vectorial sum current for bus terminals 650mA at 5V

PIO

3 4 7

⁽¹ Length code 1

Length [m]	1,0	2,5	5,0	7,5	10,0	12,5	15,0	20,0	25,0	30,0	35,0	40,0	45,0	50,0
Order code	01	02	03	04	05	06	07	08	09	10	11	12	13	14

Example:

SSK01/09: length 25m

- ⁽² Colours according to DESINA
- ⁽³ with motor plug

⁽⁵Length code 2 for SSK28

Length [m]	0,17	0,25	0,5	1,0	3,0	5,0	10,0
Order code	23	20	21	01	22	03	05

⁶ Order code: SSK27/nn/..

Length A (Pop - 1. Compax3) variable (the last two numbers according to the length code for cable, for example SSK27/nn/01)

Length B (1. Compax3 - 2. Compax3 - ... - n. Compax3) fixed 50 cm (only if there is more than 1 Compax3, i.e. nn greater than 01) Number n (the last two digits)

Examples:

SSK27/05/.. for connecting from Pop to 5 Compax3. SSK27/01/.. for connection from Pop to one Compax3

MOK55 and MOK54 can also be used for linear motors LXR406, LXR412 and BLMA.

⁽⁴ with cable eye for motor terminal box

9. Compax3 Accessories

In this chapter you can read about:	
Parker servo motors	320
EMC measures	322
Connections to the motor	328
External braking resistors	337
Connection set for Compax3S	350
Connection set for Compax3MP/Compax3M	
Operator control module BDM	353
EAM06: Terminal block for inputs and outputs	353
Interface cable	356
Options M1x	362

Compax3 Accessories C3I30T11

9.1 Parker servo motors

In this chapter you can read about:	
Direct drives	320
Rotary servo motors	

9.1.1. Direct drives

In this chapter you can read about:	
Feedback systems for direct drives	320
Linear motors	321
Torque motors	

9.1.1.1 Feedback systems for direct drives

The Feedback option F12 makes it possible to operate linear motors as well as torque motors. Compax3 supports the following feedback systems:

Special encoder systems for	
direct drives	Option F12
Analog hall sensors	◆ Sine - cosine signal (max. 5Vss ¹; typical 1Vss) 90° offset
	◆U-V Signal (max. 5Vss² ; typical 1Vss) 120° offset.
Encoder (linear or rotatory)	◆ Sine-cosine (max. 5Vss ³; typical 1Vss) (max. 400kHz) or
	♦TTL (RS422) (max. 5MHz)
	with the following modes of commutation:
	◆ automatic commutation (see page 320) or
	◆ Digital hall sensors (e.g. DiCoder®)
Digital, bidirectional interface	◆ All EnDat 2.1 or EnDat 2.2 feedback systems with incremental track (sine-cosine track)
	♦ linear or rotary
	◆ max. 400kHz Sine-Cosine
Distance coded feedback	◆ Distance coding with 1VSS - Interface
systems	◆ Distance coding with RS422 - Interface (Encoder)

The motor performs automatic commutation after:

- ◆ Power on,
- A configuration download or
- ◆An IEC program download

The time duration (typically 5-10 sec) of automatic commutation can be optimized with the start current (see in the optimization display of the C3 ServoManager; given as a percentage of the reference current). Note that values that are too high will cause Error 0x73A6 to be triggered.

Typically the motor moves by 4% of the pitch length or, with rotary direct drives 4% of 360°/number of pole pairs - maximum 50%.

¹ Max. differential input between SIN- (X13/7) and SIN+ (X13/8).

² Max. differential input between SIN- (X13/7) and SIN+ (X13/8).

³ Max. differential input between SIN- (X13/7) and SIN+ (X13/8).

Note the following conditions for automatic commutation

- ◆ During automatic commutation the end limits are not monitored.
- ◆ Actively working load torques are not permitted during automatic commutation.
- ◆ Static friction deteriorates the effect of automatic commutation.
- ♦ With the exception of missing commutation information, the controller/motor combination is configured and ready for operation (parameters correctly assigned for the linear motor/drive). The feedback and the direction of the field of rotation in effect must match.
- ◆ The auto-commutating function must be adapted to fit the mechanics if necessary during commissioning.

9.1.1.2 Linear motors

Parker offers you a number of systems of linear motor drives:

Linear motors	Feed force (continuous/dynamic)	Stroke length:
LMDT ironless linear servo motors:	26 1,463N	amost any
LMI iron-cored linear servo motors:	52 6,000N	64 999mm
Linear motors of the LXR series:	315N / 1,000N	up to 3m
Linear motor module BLMA:	605N / 1,720N	up to 6m

9.1.1.3 Torque motors

Parker offers you an extensive range of torque motors that can be adapted to your application. Please contact us for information.

Additional information can be found on the **Internet** http://www.parker-automation.com in the direct drives section.

9.1.2. Rotary servo motors

Parker offers you an extensive range of servo motors that can be adapted to your application. Please contact us for information.

Additional information can be found on the Internet

(http://www.parker.com/euro_emd/EME/Literature_List/dokumentationen/SMH_MH _Cat%20engl.pdf)

or on the CD supplied in the documentations file:

Catalogue = SMH_MH_Kat engl.pdf

User guide = SMH_MH-Manual engl.pdf

Suitable servo motors for Compax3H are available on request!

Compax3 Accessories C3I30T11

9.2 EMC measures

In this chapter you can read about:	
Mains filter	322
Motor output filter	
Mains filter	

9.2.1. Mains filter

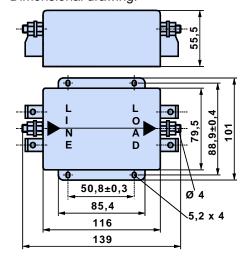
For radio disturbance suppression and for complying with the emission limit values for **CE conform operation** (see page 16)we offer mains filters:

Observe the maximum permitted length of the connection between the mains filter and the device:

- ◆ unshielded <0.5m;
 </p>
- ◆ shielded < 5m (fully shielded on ground e.g. ground of control cabinet)

Order code mains filter Compax3S / Compax3H

				/		
for C3S025V2 or S063V2	NFI	0	1	/	0	1
for C3S0xxV4, S150V4 or S1xxV2	NFI	0	1	/	0	2
for C3S300V4	NFI	0	1	/	0	3
for C3H050V4	NFI	0	2	/	0	1
for C3H090V4	NFI	0	2	/	0	2
for C3H1xxV4	NFI	0	2	1	0	3


Order code mains filter Compax3MP

					/		
for C3MP10	Reference axis combination 3x480V 25A 6x10m motor cable length	NFI	0	3	/	0	1
for C3MP10	Reference axis combination 3x480V 25A 6x50m motor cable length	NFI	0	3	/	0	2

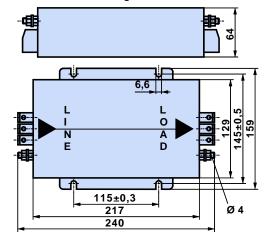
9.2.1.1 Mains filter NFI01/01

for Compax3 S025 V2 and Compax3 S063 V2

Dimensional drawing:

9.2.1.2 Mains filter NFI01/02

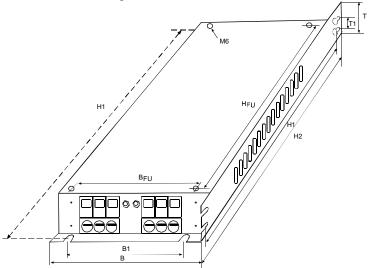
for Compax3 S0xx V4, Compax3 S150 V4 and Compax3 S1xx V2


Dimensional drawing:

9.2.1.3 Mains filter for NFI01/03

for Compax3 S300

Dimensional drawing:

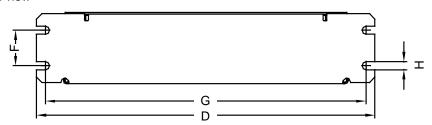


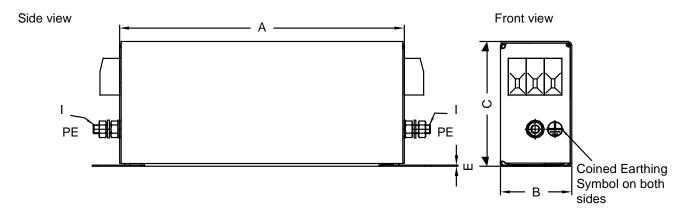
Compax3 Accessories C3I30T11

9.2.1.4 Mains filter NFI02/0x

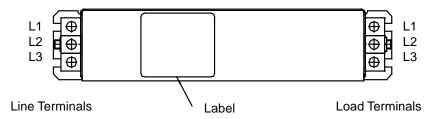
Filter for mounting below the Compax3 Hxxx V4 housing

Dimensional drawing:


Stated in mm	Filter type	Dime	nsion	s		Hole	Hole distances		Distances		Weight	Grounding	Connection clamp		
												clamp			
		В	Н	H2	Τ	B1	H1	T1	BFU	HF	kg				
										U	Ū				
C3H050V4	NFI02/01	233	515	456	70	186	495	40	150	440	4,3	M6	16mm ²		
C3H090V4	NFI02/02	249	715	649	95	210	695	40	150	630	8,5	M8	50mm ²		
C3H1xxV4	NFI02/03	249	830	719	110				150	700	15,0	M10	95mm ²		


9.2.1.5 Mains filter NFI03/01

for Compx3MP10D6


Dimensional drawing:

Bottom view

Top view

Filter type									Weight	GND(I)	Connection clamp
NFI03/01	Α	В	С	D	Е	F	G	Ι	kg		
	240	50	85	270	0,8	30	255	5,4	1,5	M5	10mm ²

Stated in mm

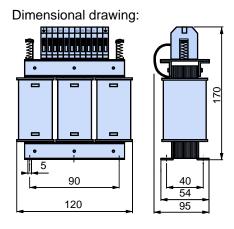
9.2.1.6 Mains filter NFI03/02

for Compx3MP10D6

Dimensional drawing: On request

9.2.2. Motor output filter

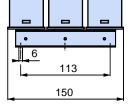
In this chapter you can read about: Motor output filter MDR01/04 326 Motor output filter MDR01/01 326 Motor output filter MDR01/02 327 Wiring of the motor output filter 327

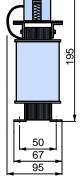

We offer motor output filters for disturbance suppression when the motor connecting cables are long (>20m):

Order code for motor output filter (for Compax3S, Compx3M >20m motor cable)

		L		/	L		ı
up to 6,3 A rated motor current	MDR	0	1	_ /	0	4	Ī
Up to 16 A rated motor current	MDR	0	1	/	0	1	
up to 30 A rated motor current	MDR	0	1	/	0	2	

9.2.2.1 Motor output filter MDR01/04

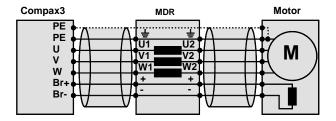

up to 6.3A nominal motor current (3.6mH)



9.2.2.2 Motor output filter MDR01/01

Up to 16 A nominal motor current (2mH)

Dimensional drawing:


9.2.2.3 Motor output filter MDR01/02

up to 30A nominal motor current (1.1mH)

Dimensional drawing:

Weight: 5.8kg

9.2.2.4 Wiring of the motor output filter

9.2.3. Mains filter

Mains filters serve for reducing the low-frequency interferences on the mains side. Further information on request.

9.3 Connections to the motor

In this chapter you can read about:	
Resolver cable	329
SinCos© cable	330
EnDat cable	331
Overview of motor cables	331
Motor cable with plug	332
Motor cable for terminal box	333
Encoder cable	336

Under the designation "REK.." (resolver cables) and "MOK.." (motor cables) we can deliver motor connecting cables in various lengths to order. If you wish to make up your own cables, please consult the cable plans shown below:

Order code for motor cables⁽²⁾

						/	
for SMH / MH56 / MH70 / MH105 ⁽³⁾	(1.5mm ² ; up to 13.8A)		MOK	5	5	/	 (
for SMH / MH56 / MH70 / MH105 ⁽³	(1.5mm ² ; up to 13.8A)	(cable chain compatible)	MOK	5	4	/	 (
for SMH / MH56 / MH70 / MH105 ⁽³⁾	(2.5mm ² ; up to 18.9A)		MOK	5	6	/	 1
for SMH / MH56 / MH70 / MH105 ⁽³	(2.5mm ² ; up to 18.9A)	(cable chain compatible)	MOK	5	7	/	 ·(
for MH145 / MH205 ⁽⁴⁾	(1.5mm ² ; up to 13.8A)		MOK	6	0	/	 1
for MH145 / MH205 ⁽⁴	(1.5mm ² ; up to 13.8A)	(cable chain compatible)	MOK	6	3	/	 ·(
for MH145 / MH205 ⁽⁴⁾	(2.5mm ² ; up to 18.9A)		MOK	5	9	/	 1
for MH145 / MH205 ⁽⁴	(2.5mm ² ; up to 18.9A)	(cable chain compatible)	MOK	6	4	/	(
for MH145 / MH205 ⁽⁴⁾	(6mm ² ; up to 32.3A)	(cable chain compatible)	MOK	6	1	/	 1
for MH145 / MH205 ⁽⁴	(10mm ² ; up to 47.3A)	(cable chain compatible)	MOK	6	2	/	 ·(

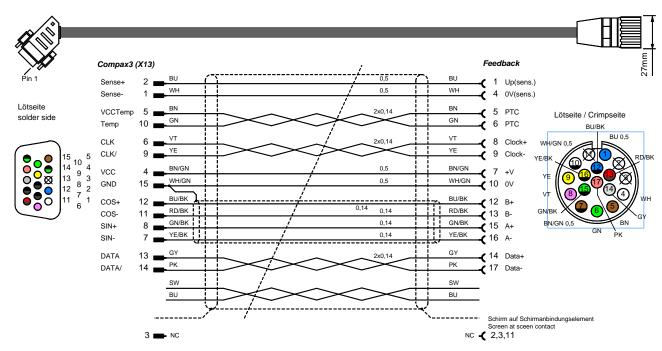
Order code for feedback cables

				/
for Resolver (2	for MH / SMH motors		REK	4 2 /(
for Resolver (2	for MH / SMH motors	(cable chain compatible)	REK	4 1 /(
for SinCos© – Feedback devices (2	for MH / SMH motors	(cable chain compatible)	GBK	2 4(
for EnDat 2.1 (2	for MH / SMH motors	(cable chain compatible)	GBK	3 8 /(
Encoder – Compax3			GBK	2 3 /
for LXR linear motors		(cable chain compatible)	GBK	3 3 /(
for BLMA linear motors		(cable chain compatible)	GBK	3 2 /(

9.3.1. Resolver cable

REK42/.. Lötseite / solder side Compax3 (X13) Resolver Crimpseite / crimp side Lötseite ΥE YΕ 2x0,25 SIN+ 2 SIN+ solder side GN GN SIN-Codiernut S = 20° SIN-BN BN 2x0,25 COS+ 11 COS+ WH wн cos-(12 cos-ΒU ΒU 2x0,25 10 REFres+ 4 Ref+ RD RD REFres- 15 7 Ref-PΚ PΚ 2x0,25 +5V 8 +Temp GΥ GΥ **Tmot** 10 9 -Temp Schirm auf Schirmanbindungselement Screen at screen contact NC NC-(NC-(NC-(NC-(23 mm NC 4 3 6 9 13 14 NC 6 mm 5 NC NC NC

The same cable (with changed conductor coloring) is available under the designation REK41/.. in a version which is suitable for cable chain systems. You will find the length code in the **accessories order code** (see page 315).

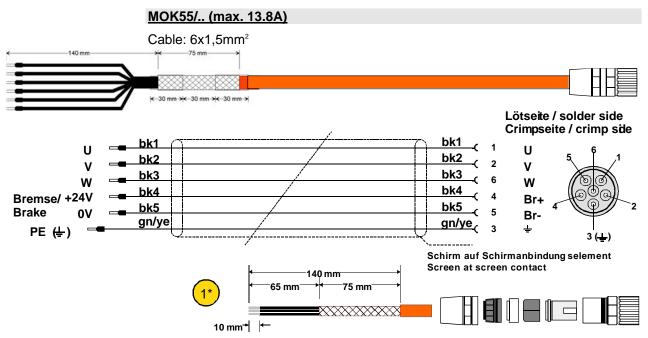

9.3.2. SinCos© cable

GBK24/..: Cable chain compatible Lötseite / solder side Crimpseite / crimp side **SinCos** Compax3 (X13) ΒU 2x0,25 8 SIN+ 1 SIN+ VT ۷T Lötseite 2 SIN-SINsolder side ΒN ΒN 2x0,25 COS+ 12 = COS+ GN GN COS- 11 -12 COS-PΚ PΚ 2x0,25 **DATA 13** 3 +485 GΥ GΥ 13 **DATA 14** ■ -485 RD RD 2x0,25 +5Vfil 5 K1 ВΚ ВΚ Tmot 10 ■ 9 K2 0,5 BN ΒN +8Vref 4 = 10 +V 0,5 WH WH **GND** GND 15 = 4 5 NC(NC(NC(Schirm auf Schirmanbindungselement Screen at screen contact NC NC NC NCC 14 NCC 15 NCC 16 NCC 17 23 mm 2 mm 6 mm

You will find the length code in the accessories order code (see page 315).

9.3.3. EnDat cable

GBK38/..: (cable chain compatible)



You will find the length code in the accessories order code (see page 315).

9.3.4. Overview of motor cables

Cross-section / max. permanent load	Motor connec SMH motors	tor	Motor terminal box MH145, MH205			
	MH56, MH70, MH105					
	standard	cable chain compatible	standard	cable chain compatible		
1.5mm ² / up to 13.8A	MOK55	MOK54	MOK60	MOK63		
2.5mm ² / up to 18.9A	MOK56	MOK57	MOK59	MOK64		
6mm ² / up to 32.3A	-	-	-	MOK61		
10mm ² / up to 47.3A			-	MOK62		

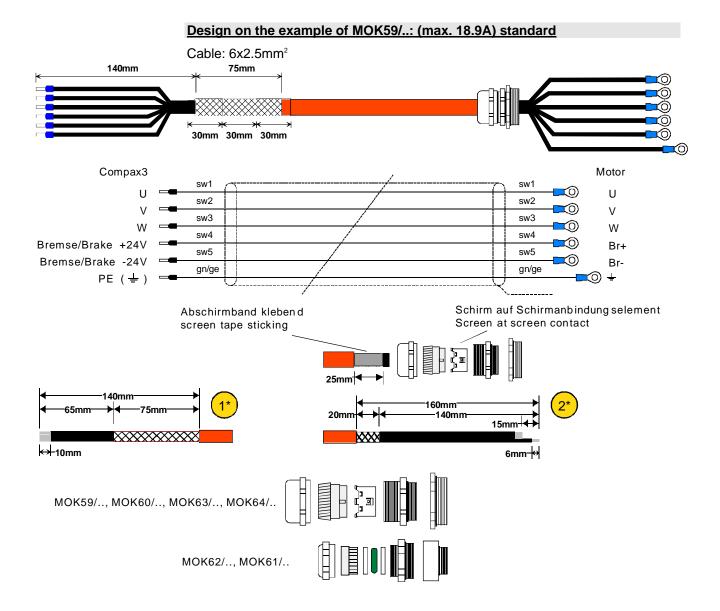
9.3.5. Motor cable with plug

- 1* ◆Strip cable on 140mm
 - ◆ Cut off shield for about 65mm, loosen, fold back over external cover (for about 75mm) and fix with insulating tape.
 - ◆ Fix 2x approx. 30mm shrinking hose (adhesive)
 - ◆ Strip ends of lines for 10mm and fix terminal sleeves 1.5

MOK54/..: (max. 13.8A) cable chain compatible

Same structure (conductor coloring may be changed) as MOK55/.. available in cable chain compatible version.

MOK56/..: (max. 18.9A)


Same structure (conductor coloring/designations may be changed) as MOK55/.. but with $6x2.5mm^2$.

MOK57/..: (max. 18.9A) cable chain compatible

Same structure (conductor coloring / designation may be changed) as MOK55, but with 4x2.5 + 2x1mm² and cable chain compatible.

You will find the length code in the accessories order code (see page 315).

9.3.6. Motor cable for terminal box

- 1* ◆Strip cable on 140mm
 - ◆ Cut off shield for about 65mm, loosen, fold back over external cover (for about 75mm) and fix with insulating tape.
 - ◆ Fix 2x approx. 30mm shrinking hose (adhesive)
 - ◆ Strip ends of lines for 10mm and fix terminal sleeves 2.5
- 2* ◆Strip cable on 160mm
 - ◆ Cut off shield for 140mm, fix rest on a length of 20mm with isolating tape (width 25mm, length 80mm)
 - ◆ Cut off bck1, bck2, bck3, bck4, bck5 by approx. 15mm (gn/ye about 15mm longer)
 - ◆ Strip end of lines for about 6mm and fix with cable eyes M6

Please note the two different shield connection elements!

Additional motor cables for the terminal box with similar layout:

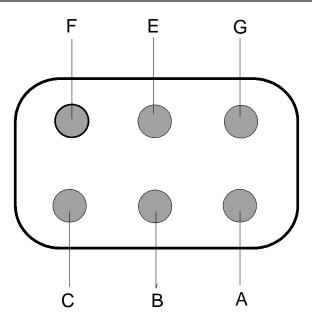
MOK62/.. (max. 47.3A) cable chain compatible with 4x10mm² + 2x1mm²

MOK61/..: (max. 32.3A) cable chain compatible with 4x6mm² + 2x1mm²

MOK60/.. (max. 13.8A) standard with 6x1,5mm²

MOK63/.. (max. 13.8A) cable chain compatible with 6x1.5mm²

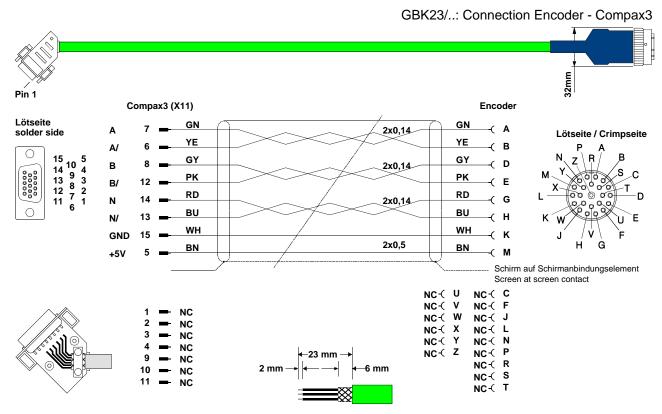
MOK64/.. (max. 18.9A) cable chain compatible with 6x2.5mm²


Designation of the conductors

The designations of the conductors varies according to the cable type:

U	U1	sw1	black
V	V2	sw2	brown
W	W3	sw3	blue
BR+	BR1	sw4	red
BR-	BR2	sw5	green

You will find the length code in the accessories order code (see page 315).


9.3.6.1 Connection of terminal box MH145 & MH205

Terminal	Assignment
Α	Phase U
В	Phase V
С	Phase W
E	PE
F	Brake (+ red for MH205)
G	Brake (- blue for MH205)

Additional designations can be found on the connection cable clamping board - motor (interal).

9.3.7. Encoder cable

You will find the length code in the accessories order code (see page 315).

9.4 External braking resistors

In this chapter you can read about:

Danger!

Hazards when handling braking resistors!

Housing temperature up to 200°C! Dangerous voltage!

The device may be operated only in the mounted state!

The external braking resistors must be installed such that contact with the human body is prevented.

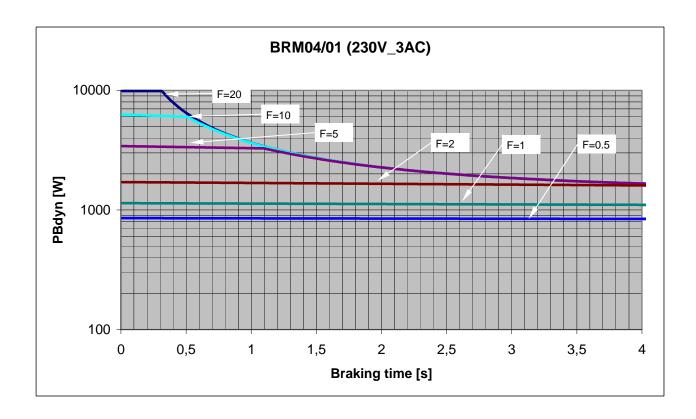
Install the connecting leads at the bottom.

Observe the instructions on the resistors (warning plate).

Please note that the length of the supply cable must not exceed 2m!

Braking resistors for Compax3

Braking Resistor (see page 337)	Device	Rated Power
BRM08/01 (100Ω)	Compax3S025V2	60W
	Compax3S015V4	
	Compax3S038V4	
BRM05/01 (56Ω)	Compax3S063V2	180W
	Compax3S075V4	
BRM05/02 (56Ω)	Compax3S075V4	570W
BRM10/01 (47Ω)	Compax3S150V4	570W
BRM04/01 (15Ω)	Compax3S300V4	570W
	Compax3S150V2	
BRM04/02 (15Ω)	Compax3S300V4	740W
	Compax3S150V2	
BRM04/03 (15Ω)	Compax3S300V4	1500W
BRM09/01 (22Ω)	Compax3S100V2	570W
BRM11/01 (27Ω)	Compax3H0xxV4	3500W
BRM13/01 (30Ω)	Compax3MP10D6	500 W
BRM14/01 (15Ω)	Compax3MP10D6*	500 W
BRM12/01 (18Ω)	Compax3H1xxV4	4500W


^{*}for Compax3MP10D6 $2x15\Omega$ in series

9.4.1. Permissible braking pulse powers of the braking resistors

In this chapter you can read about:	
Calculation of the BRM cooling time	339
Permissible braking pulse power: BRM08/01 with C3S015V4 / C3S038V4	340
Permissible braking pulse power: BRM08/01 with C3S025V2	340
Permissible braking pulse power: BRM09/01 with C3S100V2	
Permissible braking pulse power: BRM10/01 with C3S150V4	
Permissible braking pulse power: BRM05/01 with C3S063V2	342
Permissible braking pulse power: BRM05/01 with C3S075V4	342
Permissible braking pulse power: BRM05/02 with C3S075V4	343
Permissible braking pulse power: BRM04/01 with C3S150V2	343
Permissible braking pulse power: BRM04/01 with C3S300V4	344
Permissible braking pulse power: BRM04/02 with C3S150V2	344
Permissible braking pulse power: BRM04/02 with C3S300V4	
Permissible braking pulse power: BRM04/03 with C3S300V4	345
Permissible braking pulse power: BRM11/01 with C3H0xxV4	
Permissible braking pulse power: BRM12/01 with C3H1xxV4	346
Permissible braking pulse power: BRM13/01 with C3MP10D6	347
Permissible braking pulse power: BRM14/01 with C3MP10D6	347

The diagrams show the permissible braking pulse powers of the braking resistors in operation with the assigned Compax3.

9.4.1.1 Calculation of the BRM cooling time

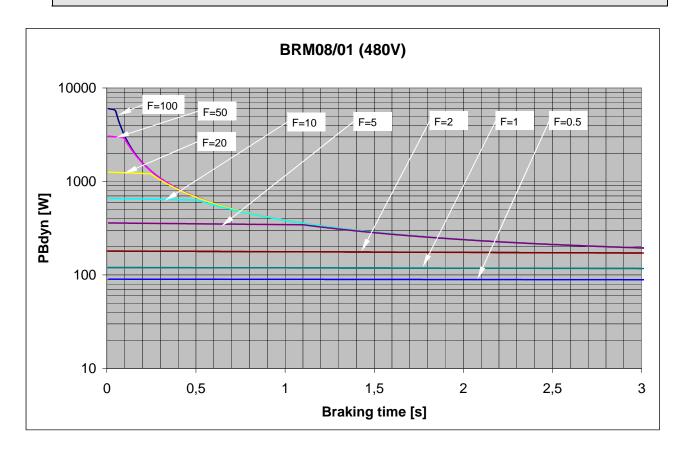
F = Factor

Cooling time = F * braking time

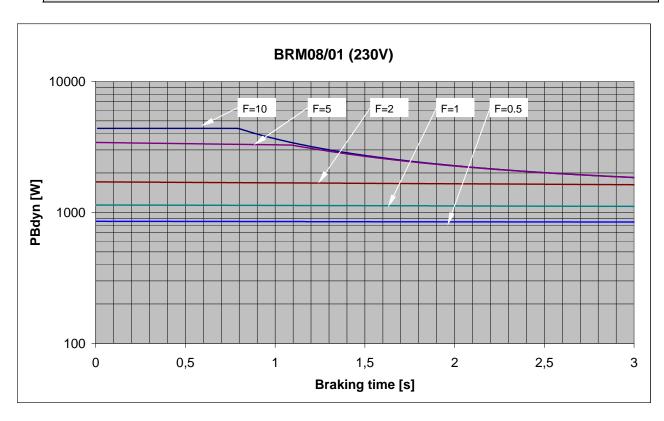
Example 1: For a braking time of 1s, a braking power of 1kW is required. The Diagram shows the following:

The required values can be found in the range between characteristic F = 0.5 and F = 1. In order to achieve operating safety, please select the higher factor, this means that the required cooling time is 1s.

F * Braking = cooling time time 1 * 1s = 1s

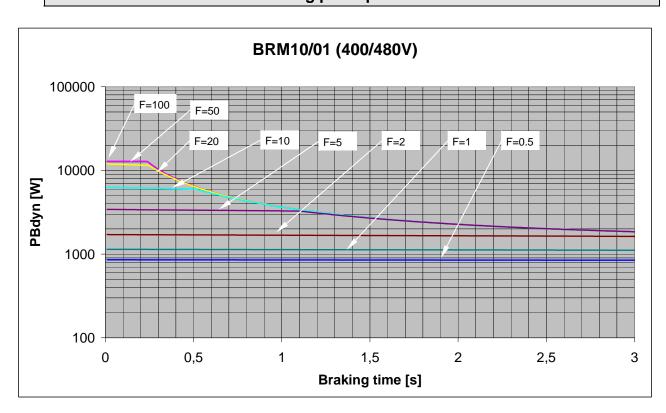

Example 2: For a braking time of 0.5s, a braking power of 3kW is required. The Diagram shows the following:

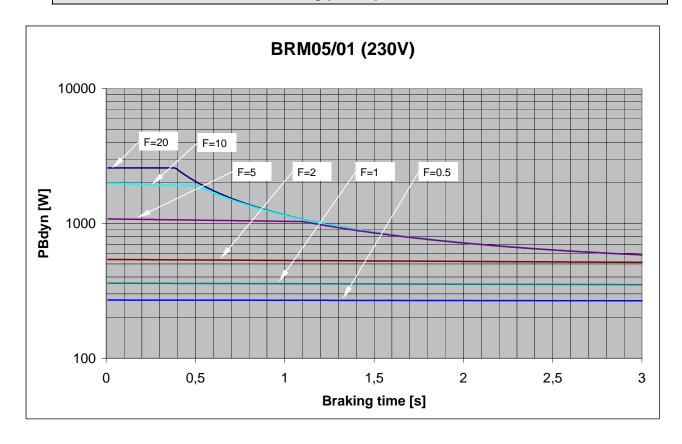
The required values can be found in the range between characteristic F = 2 and F = 5. In order to achieve operating safety, please select the higher factor, this means that the required cooling time is 2.5s.

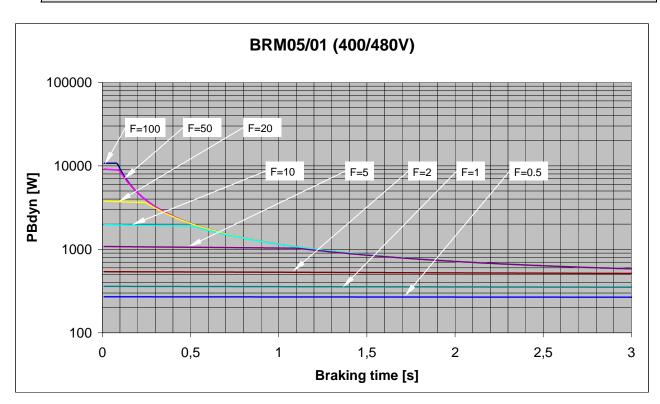

F * Braking = cooling time time

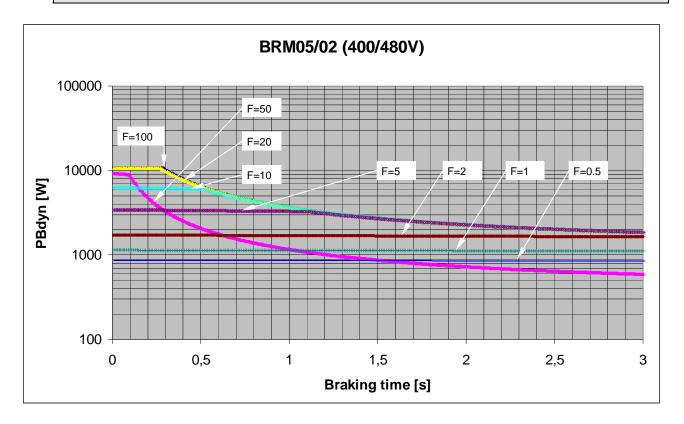
5 * 0.5s = 2.5s

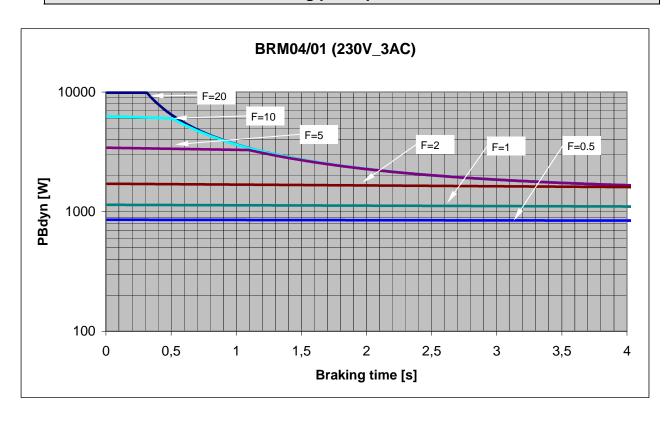
9.4.1.2 Permissible braking pulse power: BRM08/01 with C3S015V4 / C3S038V4

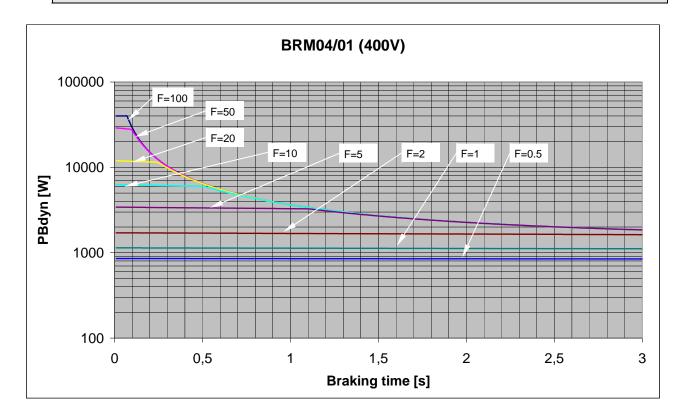

9.4.1.3 Permissible braking pulse power: BRM08/01 with C3S025V2

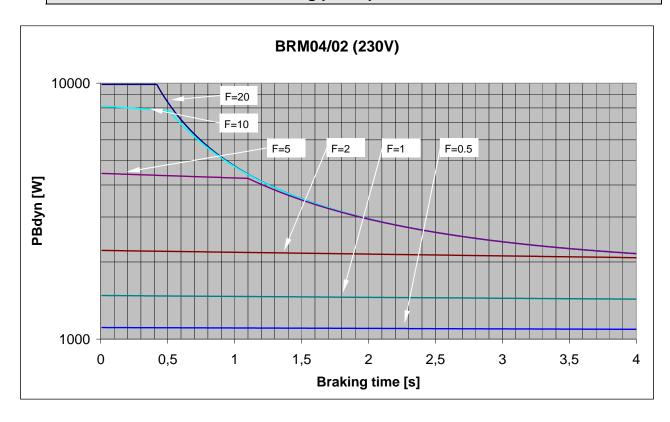

9.4.1.4 Permissible braking pulse power: BRM09/01 with C3S100V2

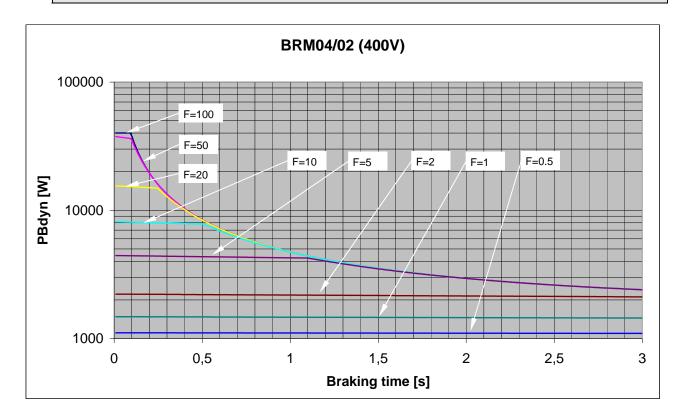

9.4.1.5 Permissible braking pulse power: BRM10/01 with C3S150V4

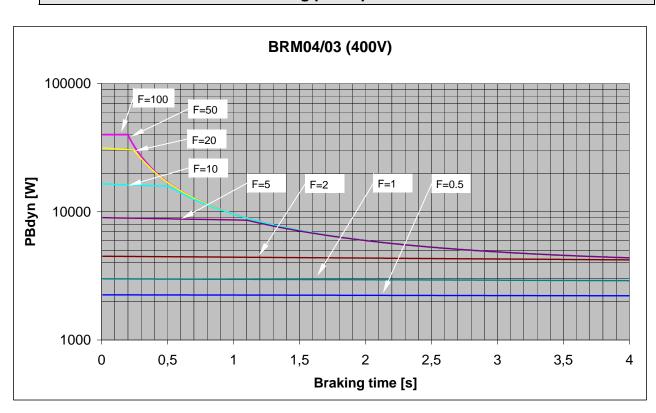

9.4.1.6 Permissible braking pulse power: BRM05/01 with C3S063V2

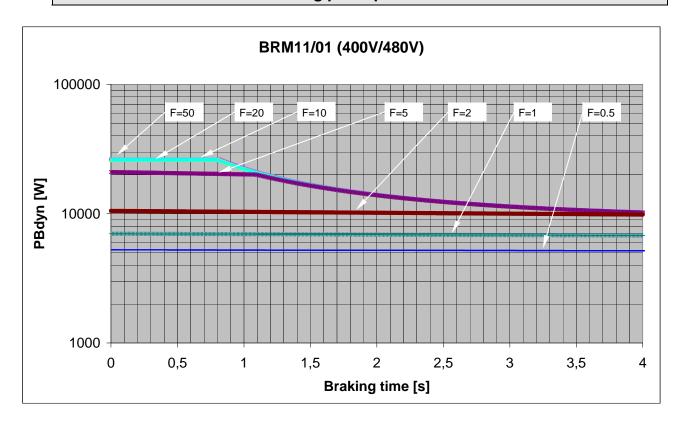

9.4.1.7 Permissible braking pulse power: BRM05/01 with C3S075V4

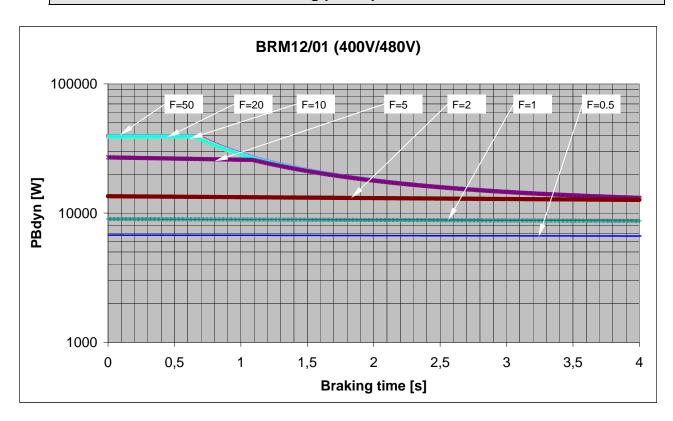

9.4.1.8 Permissible braking pulse power: BRM05/02 with C3S075V4


9.4.1.9 Permissible braking pulse power: BRM04/01 with C3S150V2


9.4.1.10 Permissible braking pulse power: BRM04/01 with C3S300V4


9.4.1.11 Permissible braking pulse power: BRM04/02 with C3S150V2


9.4.1.12 Permissible braking pulse power: BRM04/02 with C3S300V4


9.4.1.13 Permissible braking pulse power: BRM04/03 with C3S300V4

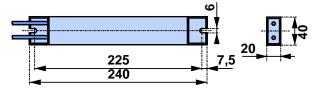
9.4.1.14 Permissible braking pulse power: BRM11/01 with C3H0xxV4

9.4.1.15 Permissible braking pulse power: BRM12/01 with C3H1xxV4

9.4.1.16 Permissible braking pulse power: BRM13/01 with C3MP10D6

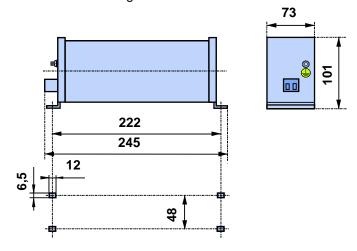
On request

9.4.1.17 Permissible braking pulse power: BRM14/01 with C3MP10D6

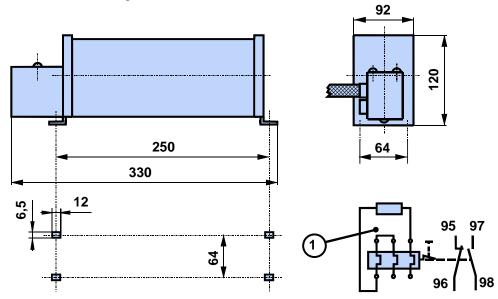

On request

9.4.2. Dimensions of the braking resistors

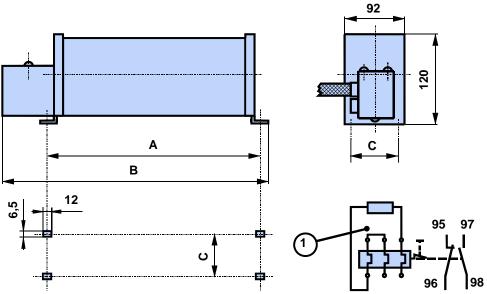
In this chapter you can read about:	
BRM8/01braking resistors	347
BRM5/01 braking resistor	347
Braking resistor BRM5/02, BRM9/01 & BRM10/01	348
Braking resistor BRM4/0x	
Braking resistor BRM11/01 & BRM12/01	349
Braking resistor BRM13/01 & BRM14/01	349


9.4.2.1 BRM8/01braking resistors

Dimensional drawing:


9.4.2.2 BRM5/01 braking resistor

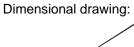
Dimensional drawing:

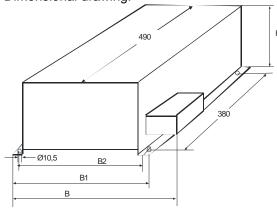

9.4.2.3 Braking resistor BRM5/02, BRM9/01 & BRM10/01

Dimensional drawing:

9.4.2.4 Braking resistor BRM4/0x

Dimensional drawing:

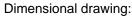


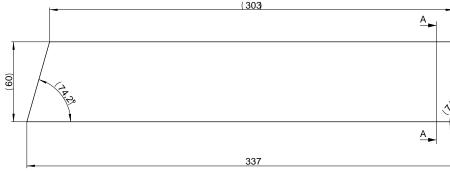

1: thermal current overload cut-off

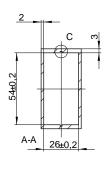
Dimensions in mm:

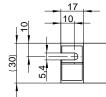
Size:	BRM4/01	BRM4/02	BRM4/03
Α	250	300	540
В	330	380	620
С	64	64	64

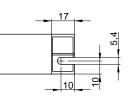
9.4.2.5 Braking resistor BRM11/01 & BRM12/01

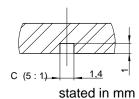




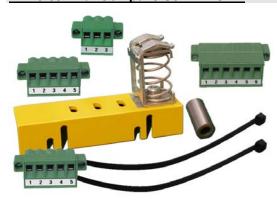

Dimensions in mm:


	BRM11/01	BRM12/02		
В	330			
B1	295			
B2	270			
Н	260			
Weight	6,0	7,0		

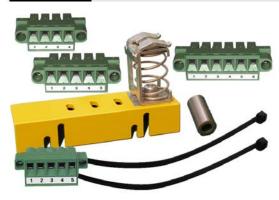

9.4.2.6 Braking resistor BRM13/01 & BRM14/01



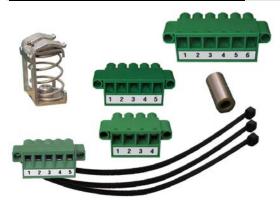
9.5 Connection set for Compax3S


The connection set which is available as accessory comprises:

- ◆a shield terminal with large contact area for the motor cable shield, and
- ◆ the mating plug connectors for the Compax3 plug connectors X1, X2, X3, and X4
- ◆ a toroidal core ferrite for a cable of the motor holding brake
- ◆ Lacing cord


Order Code connection set for Compax3S

			/
for C3S0xxV2	ZBH 02/01	ZBH	0 2 / 0 1
for C3S0xxV4 / S150V4 / S1xxV2	ZBH 02/02	ZBH	0 2 / 0 2
for C3S300V4	ZBH 02/03	ZBH	0 2 / 0 3


ZBH02/01: for Compax3 S0xx 1AC V2

ZBH02/02: for Compax3 S0xx 3AC V4, Compax3 S150 3AC V4 and Compax3 S1xx 3AC V2

ZBH02/03: for Compax3 S300 3AC V4

9.6 Connection set for Compax3MP/Compax3M

The connection set which is available as accessory comprises:

for Compx3M

- ◆ Cable clamps in different sizes for large area shielding of the motor cable, the screw for the cable clamp as well as
- ◆ the matching plug for the Compax3M connectors X14, X15, X43
- ◆ a toroidal core ferrite for a cable of the motor holding brake
- ♦ an interface cable (SSK28/23) for communication within the axis combination

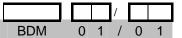
for Compx3MP

- ◆ the matching plug for the Compax3MP connectors X9, X40, X41
- ♦2 bus terminal connectors (BUS07/01) for mains module and the last axis controller in the combination

٠

Order Code connection set for Compax3MP/Compax3M

			/
for C3M050D6, C3M100D6, C3M150D6	ZBH 04/01	ZBH	0 4 / 0 1
for C3MP10	ZBH 04/03	ZBH	0 4 / 0 3


ZBH04/01: for Compax3M050-150D6

ZBH04/03: for Compx3MP10D6

9.7 Operator control module BDM

Order Code operating module

Operating module (for Compax3S)

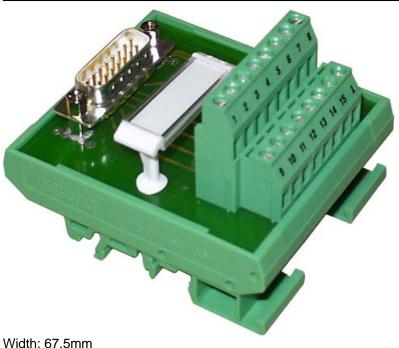
Flexible service and maintenance

Functions:

- ◆ Mobile or stationary handling: can remain on the unit for display and diagnostic purposes, or can be plugged into any unit.
- ◆ Can be plugged in while in operation
- ◆ Power supply via Compax3 servo control
- ◆ Display with 2 times 16 places.
- Menu-driven operation using 4 keys.
- Displays and changing of values.
- ◆ Display of Compax3 messages.
- ◆ Duplication of device properties and IEC61131-3 program to another Compax3 with identical hardware.
- ◆ Additional information can be found int he BDM manual This can be found on the Compax3 CD or on our Homepage: BDM-manual (http://www.parker.com/euro_emd/EME/Literature_List/dokumentationen/BDM.pd f).

9.8 EAM06: Terminal block for inputs and outputs

Order Code terminal block

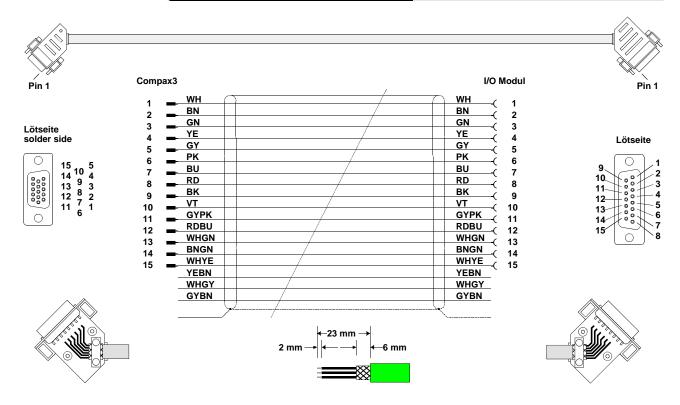

			/
for I/Os without luminous indicator	for X11, X12, X22	EAM	0 6 / 0 1
for I/Os with luminous indicator	for X12, X22	EAM	0 6 / 0 2

> The terminal block EAM06/.. can be used to route the Compax3 plug connector X11 or X12 for further wiring to a terminal strip and to a Sub-D plug connector.

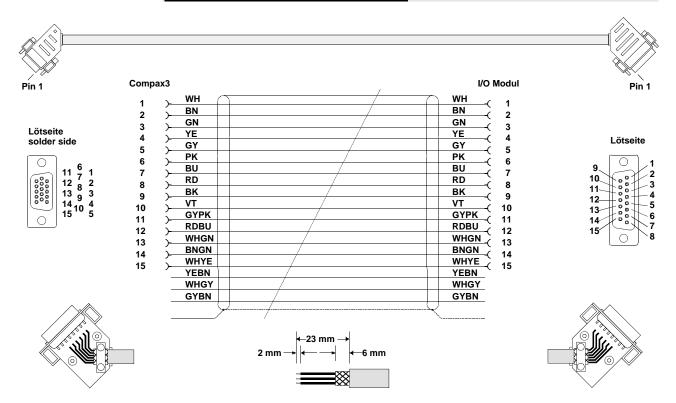
Via a supporting rail (Design: or or) the terminal block can be installed on a mounting rail in the control cabinet. EAM06/ is available in 2 variants:

- ◆ EAM06/01: Terminal block for X11, X12, X22 without luminous indicator
- ◆EAM06/02: Terminal block for X12, X22 with luminous indicator Corresponding connecting cables EAM06 - Compax3 are available:
- ♦ from X11 EAM06/01: SSK23/..
- ♦ from X12, X22 EAM06/xx: SSK24/..

EAM6/01: Terminal block without luminous indicator for X11, X12 or X22



EAM6/02: Terminal block with luminous indicator for X12, X22

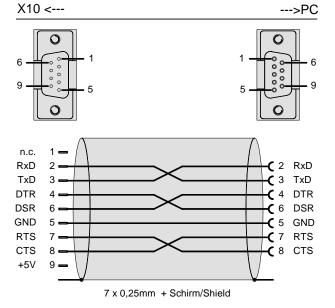


Width: 67.5mm

Cable plan SSK23/..: X11 to EAM 06/01

Cable plan SSK24/..: X12 to EAM 06/xx

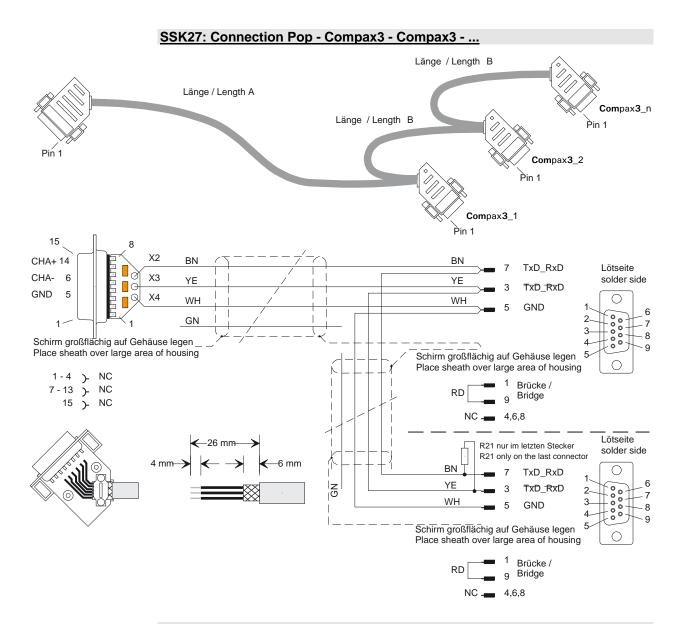
9.9 Interface cable


In this chapter you can read about:	
RS232 cable	356
RS485 cable to Pop	
I/O interface X12 / X22	
Ref X11	359
Encoder coupling of 2 Compax3 axes	360
Modem cable SSK31	

Order code for interface cables and plugs

					/		
PC - Compax3 (RS232)		SSK	0	1	/		(1
PC - Compax3MP (USB)		SSK	3	3	/		
on X11 (Ref/Analog) and X13 at C3F001D2	with flying leads	SSK	2	1	/		(1
on X12 / X22 (I/Os digital)	with flying leads	SSK	2	2	/		(1
on X11 (Ref /Analog)	for I/O terminal block	SSK	2	3	/		(1
on X12 / X22 (I/Os digital)	for I/O terminal block	SSK	2	4	/		(1
PC ⇔ POP (RS232)		SSK	2	5	/		(1
Compax3 ⇔ POP (RS485) for several C3H on request		SSK	2	7	/	/	(6
Compax3 HEDA ⇔ Compax3 HEDA or PC ⇔ C3powerPLmC Compax3 I30 ⇔ Compax3 I30 or C3M-multi-axis communicati		SSK	2	8	/	/	(5
Compax3 X11 ⇔ Compax3 X11 (encoder coupling of 2 axes)		SSK	2	9	/		(1
Compax3 X10 ⇔ Modem		SSK	3	1	/		
Compax3H adapter cable ⇔ SSK01 (length 15cm, delivered v	vith the device)	SSK	3	2	/	2	0
Compax3H X10 RS232 connection control ⇔ Programming in	terface (delivered with the device)	VBK	1	7	/	0	1
Bus terminal connector (for the 1st and last Compax3 in the H	EDA Bus/or multi-axis system).	BUS	0	7	/	0	1
Profibus cable ⁽²	non prefabricated	SSL	0	1	/		(1
Profibus plug		BUS	0	8	/	0	1
CAN-Bus cable (2	non prefabricated	SSL	0	2	/		(1
CANbus connector		BUS	1	0	/	0	1

9.9.1. RS232 cable


SSK1/..

356

You will find the length code in the accessories order code (see page 315).

9.9.2. RS485 cable to Pop

6 Order code: SSK27/nn/..

Number n (the last two digits)

Length A (Pop - 1. Compax3) variable (the last two numbers according to the length code for cable, for example SSK27/nn/01)
Length B (1. Compax3 - 2. Compax3 - ... - n. Compax3) fixed 50 cm (only if there is more than 1 Compax3, i.e. nn greater than 01)

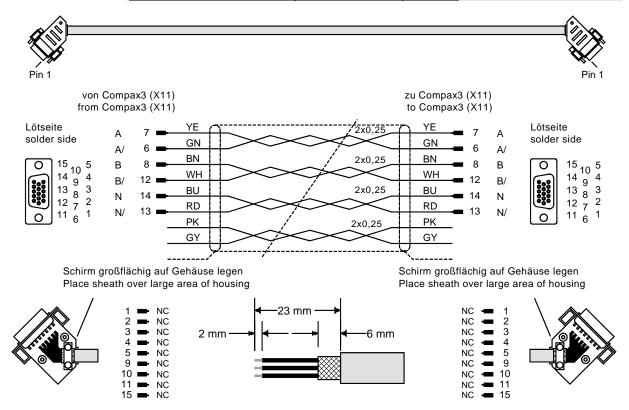
Examples:

SSK27/05/.. for connecting from Pop to 5 Compax3. SSK27/01/.. for connection from Pop to one Compax3

9.9.3. I/O interface X12 / X22

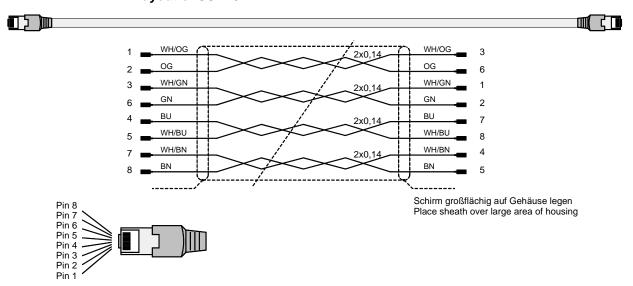
SSK22/..: Cable for X12 / X22 with flying leads Compax3 WH WH BN BN 2 Lötseite solder side GN GN 3 YΕ GΥ GΥ 11 ⁶ 1 12 ⁸ 2 13 ⁹ 3 14 10 ⁴ 15 ⁵ PK PK ΒU BU RD RD 8 9 BK BK VT ۷T 10 GYPK GYPK 11 RDBU RDBU 12 WHGN WHGN 13 14 15 BNGN WHYE BNGN WHYE YEBN WHGY YEBN WHGY GYBN GYBN Screen 2 mm 6 mm

You will find the length code in the accessories order code (see page 315).


9.9.4. Ref X11

SSK21/..: Cable for X11 with flying leads Compax3 WH WH BN BN 2 3 4 5 6 7 8 9 GN GN ΥE ΥE solder side GΥ GΥ PK PK 15 5 14 10 4 13 9 3 12 7 1 6 RD RD VT VT 10 GYPK GYPK 11 12 RDBU RDBU WHGN WHGN 13 BNGN BNGN 14 WHYE WHYE 15 YEBN YEBN WHGY WHGY GYBN GYBN → Screen

You will find the length code in the accessories order code (see page 315).


9.9.5. Encoder coupling of 2 Compax3 axes

SSK29/..: Cable from Compax3 X11 to Compax3 X11

You will find the length code in the accessories order code (see page 315).

Layout of SSK28:

Parker EME Compax3 Accessories

9.9.6. Modem cable SSK31

SSK31/.. Lötseite solder side Lötseite solder side Compax3 (X10) Modem ΒN RxD TxD ΥE ΥE TxD RxD WH WH GND GND GN GN Schirm großflächig auf Gehäuse legen Place sheath over large area of housing Schirm großflächig auf Gehäuse legen Place sheath over large area of housing brücken (Litze 0,25) connect (wire 0,25) brücken (Litze 0,25) connect (wire 0,25) 26 mm NC - 1,6,7,9 1,6,7,9 NC 4 mm

You will find the length code in the accessories order code (see page 315).

Compax3 Accessories C3I30T11

9.10 Options M1x

In this chapter you can read about:	
Input/output option M12	362
HEDA (motion bus) - Option M11	
Option M10 = HFDA (M11) & I/Os (M12)	

9.10.1. Input/output option M12

An optional input/output extension is available for Compax3. This option is named M12 and offers 12 digital 24V inputs/outpus (Ports) on X22.

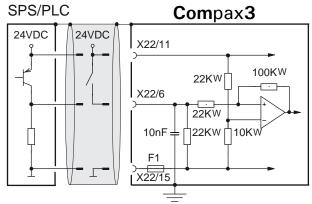
The use of the option as inputs or outputs is programmable in groups of 4 (via the object 133.4).

The outputs are written via the object 133.3 "Output word for the I/O option"; this applies only for the ports defined as output.

The inputs are read via the object 121.2 " Input word for the I/O option"; all ports are being read, also the outputs.

9.10.1.1 Assignment of the X22 connector

PIN X22/	Input/output	I/O /X22 High density/Sub D	Access via IEC module:	
1	n.c.	Reserved		
2	O0/I0	Output 0 / Input 0 - adjustable	C3_IOAddition_0	
3	O1/I1	Output 1 / Input 1 - adjustable		
4	O2/I2	Output 2 / Input 2 - adjustable		
5	O3/I3	Output 3 / Input 3 - adjustable		
6	O4/I4	Output 4 / Input 4 - adjustable	C3_IOAddition_1	
7	O5/I5	Output 5 / Input 5 - adjustable		
8	O6/I6	Output 6 / Input 6 - adjustable		
9	O7/I7	Output 7 / Input 7 - adjustable		
10	O8/I8	Output 8 / Input 8 - adjustable	C3_IOAddition_2	
11	E	24 VDC power supply	(not 24VDC)	
12	O9/I9	Output 9 / Input 9 - adjustable		
13	O10/I10	Output 10 / Input 10 - adjustable		
14	O11/I11	Output 11 / Input 11 - adjustable]	
15	E	Gnd 24 V	·	

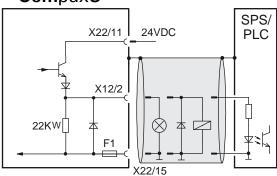

The assignment can be adjusted. All inputs and outputs have 24V level.

Maximum load on an output: 100mA

Maximum capacitive load: 50nF (max. 4 Compax3 inputs)

Caution! The 24VDC power supply (X22/11) must be supplied from an external source and must be protected by a 1.2A delayed fuse!

Input wiring of digital inputs



The circuit example is valid for all digital inputs!

F1: quick action electronic fuse; can be reset by switching the 24VDC supply off and on again.

Output wiring of digital outputs

Compax3

The circuit example is valid for all digital outputs!

The outputs are short circuit proof; a short circuit generates an error.

F1: quick action electronic fuse; can be reset by switching the 24VDC supply off and on again.

Compax3 Accessories C3I30T11

9.10.2. HEDA (motion bus) - Option M11

	RJ45 (X20)	RJ45 (X21)
PIN	HEDA in	HEDA out
1	Rx	Tx
2	Rx/	Tx/
3	Lx	Lx
4	-	Reserved
5	-	Reserved
6	Lx/	Lx/
7	-	Reserved
8	-	Reserved

Function of the HEDA LEDs

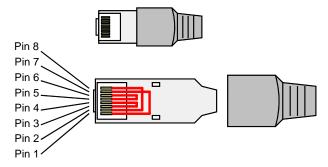
Green LED (left)

HEDA module energized

Red LED (right)

Error in the receive area Possible causes:

- ◆ at the Master
 - ◆ no slave sending back
 - ◆ Wrong cabling
 - ◆Terminal plug is missing
 - several masters are sending in the same slot
- ◆ at the slave
 - ◆ several masters in the system
 - ◆ no master active
 - ◆Terminal plug is missing
 - no transmission from one or several receive slots (neither by the master nor by another slave)


HEDA-wiring:

Layout of SSK28 (see page 316, see page 360)

Parker EME Compax3 Accessories

Design of the HEDA bus terminator BUS 07/01:

Jumpers: 1-7, 2-8, 3-4, 5-6

Function of the HEDA LEDs

Green LED (left)

HEDA module energized

Red LED (right)

Error in the receive area Possible causes:

- ◆ at the Master
 - ◆ no slave sending back
 - ◆ Wrong cabling
 - ◆Terminal plug is missing
 - ◆ several masters are sending in the same slot
- ◆ at the slave
 - ◆ several masters in the system
 - ◆ no master active
 - ◆ Terminal plug is missing
 - ◆ no transmission from one or several receive slots (neither by the master nor by another slave)

9.10.3. Option M10 = HEDA (M11) & I/Os (M12)

The M10 option includes the M12 input/output option and the HEDA M11 option.

10. Technical data

Mains connection Compax3S0xxV2 1AC

Controller type	S025V2	S063V2	
Supply voltage	Single phase 230VAC/240VAC		
	80-253 VAC/50-60Hz		
Input current	6Aeff 13Aeff		
Maximum fuse rating per device (=short circuit rating)	10 A (circuit breaker K)	16 A (circuit breaker K)	

Mains connection Compax3S1xxV2 3AC

Controller type	S100V2	S150V2	
Supply voltage	Three phase 3* 230VAC/240VAC		
	80-253 VAC/50-60Hz		
Input current	10Aeff 13Aeff		
Maximum fuse rating per device (=short circuit rating)	16 A (circuit breaker K) 20 A (circuit breaker K)		

Mains connection Compax3SxxxV4 3AC

Controller type	S015V4	S038V4	S075V4	S150V4	S300V4
Supply voltage	Three phase 3*400VAC/480VAC				
	80-528VAC / 50-60Hz				
Input current	3Aeff	6Aeff	10Aeff	16Aeff	22Aeff
Maximum fuse rating per	6A	10A	16A	20A	25A
device(=short circuit rating)	MTP miniature circuit breaker			D*	

^{*} for **UL conform operation** (see page 19): MTP miniature circuit breaker S273-K.

Mains connection Compax3MP10D6

Device type Compax3	MP10
Supply voltage	Rated voltage 3AC 400V
	230-480VAC ±10% / 50-60Hz
Input current	22Aeff
Maximum fuse rating per device	25A
(=short circuit rating)	MTP miniature circuit breaker (ABB) Recommendation: S203-K25

Mains connection Compax3HxxxV4

Controller type	H050V4	H090V4	H125V4	H155V4	
Supply voltage	Three phase 3*400VAC/480VAC				
	350-528VAC / 50-60Hz				
Input current	54Aeff	93Aeff	118Aeff	140Aeff	
Maximum fuse rating per	er 60A 100A 125A 150A				
device(=short circuit rating)	JDDZ class K5, JDRX class H	JDDZ class H5, JDRX class H			

Control voltage 24VDC Compax3S and Compax3H

Controller type	Compax3	
Voltage range	21 - 27VDC	
Mains module	with switch-on current limitation, due to capacitive load	
Fuse	MTP miniature circuit breaker or "delayed action fuse", due to capacitive load	
Current drain of the device	0.8A	
Total current drain	0.8 A + Total load of the digital outputs + current for the motor holding brake	
Ripple	0.5Vpp	
Requirement according to safe extra low voltage (SELV)	yes	
Short-circuit proof	conditional (internally protected with 3.15AT)	

Control voltage 24VDC Compax3MP / Compax3M

Device type	Compax3MP / Compax3M
Voltage range	21 - 27VDC
Mains module	with switch-on current limitation, due to capacitive load
Fuse	MTP miniature circuit breaker or "delayed action fuse", due to capacitive load
Current drain of the device	C3MP10D6: 0.2A
Total current drain	C3M050D6: 0.85A C3M100D6: 0.85A C3M150D6: 0.85A + Total load of the digital outputs + current for the motor holding brake
Ripple	0.5Vpp
Requirement according to safe extra low voltage (SELV)	yes
Short-circuit proof	conditional (internally protected with 3.15AT)

Output data Compax3S0xx at 1*230VAC/240VAC

Controller type	S025V2	S063V2
Output voltage	3x 0-240V	3x 0-240V
Nominal output current	2.5Aeff	6.3Aeff
Pulse current for 5s	5.5Aeff	12.6Aeff
Power	1kVA	2.5kVA
Switching frequency	16kHz	16kHz
Power loss for In	30W	60W

Output data Compax3S1xx at 3*230VAC/240VAC

Controller type	S100V2	S150V2
Output voltage	3x 0-240V	3x 0-240V
Nominal output current	10Aeff	15Aeff
Pulse current for 5s	20Aeff	30Aeff
Power	4kVA	6kVA
Switching frequency	16kHz	8kHz
Power loss for In	80 W	130W

Output data Compax3Sxxx at 3*400VAC

Controller type	S015V4	S038V4	S075V4	S150V4	S300V4
Output voltage	3x 0-400V				
Nominal output current	1.5Aeff	3.8Aeff	7.5 Aeff	15Aeff	30Aeff
Pulse current for 5s	4.5Aeff	9.0Aeff	15Aeff	30Aeff	60Aeff
Power	1kVA	2.5kVA	5kVA	10kVA	20kVA
Switching frequency	16kHz	16kHz	16kHz	8kHz	8kHz
Power loss for In	60W	80 W	120W	160W	350W

Output data Compax3Sxxx at 3*480VAC

Controller type	S015V4	S038V4	S075V4	S150V4	S300V4
Output voltage	3x 0-480V				
Nominal output current	1.5Aeff	3.8Aeff	6.5Aeff	13.9Aeff	30Aeff
Pulse current for 5s	4.5Aeff	7.5 Aeff	15Aeff	30Aeff	60Aeff
Power	1.25kVA	3.1kVA	6.2kVA	11.5kVA	25kVA
Switching frequency	16kHz	16kHz	16kHz	8kHz	8kHz
Power loss for In	60W	80 W	120W	160W	350W

Output data Compax3Mxxx at 3*400VAC

Device type Compax3	M050D6	M100D6	M150D6
Output voltage	3x 0-400V		
Nominal output current	5Aeff	10Aeff	15Aeff
Pulse current for 5s *	10Aeff	20Aeff	30Aeff
Power	3.33kVA	6.66kVA	10kVA
Switching frequency	8 kHz	8 kHz	8 kHz
Power loss for In	60W+**	80W+**	110W+**

^{*}Turning frequency for pulse current: f>5Hz

Output data Compax3Mxxx at 3*480VAC

Device type Compax3	M050D6	M100D6	M150D6	
Output voltage	3x 0-480V			
Nominal output current	4Aeff	8Aeff	12.5Aeff	
Pulse current for 5s *	8Aeff	16Aeff	25Aeff	
Power	3.33kVA	6.66kVA	10kVA	
Switching frequency	8 kHz	8 kHz	8 kHz	
Power loss for In	60W+**	80W+**	110W+**	

^{*}Turning frequency for pulse current: f>5Hz

^{**} Losses microelectronics (24VDC): 10.3W without option card, 15W_{max} with option card.

^{**} Losses microelectronics (24VDC): 10.3W without option card, $15W_{max}$ with option card.

Output data Compax3Hxxx at 3*400VAC

Controller type	H050V4	H090V4	H125V4	H155V4		
Output voltage	3x 0-400V					
Nominal output current	50Aeff	90Aeff	125Aeff	155Aeff		
Pulse current for 5s *	75Aeff	135Aeff	187.5Aeff	232.5Aeff		
Power	35kVA	62kVA	86kVA	107kVA		
Switching frequency	8 kHz	8 kHz	8 kHz	8 kHz		
Power loss for In	880W	900W	1690W	1970W		

^{*} during low speeds, the overload time is reduced to 1s. Limit:

Output data Compax3Hxxx at 3*480VAC

Controller type	H050V4	H090V4	H125V4	H155V4	
Output voltage	3x 0-480V				
Nominal output current	43Aeff	85Aeff	110Aeff	132Aeff	
Pulse current for 5s *	64.5Aeff	127.5Aeff	165Aeff	198Aeff	
Power	35kVA	70kVA	91kVA	109kVA	
Switching frequency	8kHz	8kHz	8kHz	8kHz	
Power loss for In	850W	1103W	1520W	1800W	

^{*} during low speeds, the overload time is reduced to 1s. Limit:

< 2.5 electric rev/s (= actual revolutions/s * number of pole pairs) resp. > 2.5 Pitch/s

< 2.5 electric rev/s (= actual revolutions/s * number of pole pairs) resp. > 2.5 Pitch/s

Resulting nominal and peak currents depending on the switching frequency

Compax3S0xxV2 at 1*230VAC/240VAC

Switching		S025V2	S063V2
frequency*			
16kHz	Inominal	2.5A _{eff}	6.3A _{eff}
	I _{peak} (<5s)	5.5A _{eff}	12.6A _{eff}
32kHz	I _{nominal}	2.5A _{eff}	5.5A _{eff}
	I _{peak} (<5s)	5.5A _{eff}	12.6A _{eff}

Compax3S1xxV2 at 3*230VAC/240VAC

Switching frequency*		S100V2	S150V2
8 kHz	I _{nominal}	-	15A _{eff}
	I _{peak} (<5s)	-	30A _{eff}
16kHz	I _{nominal}	10A _{eff}	12.5A _{eff}
	I _{peak} (<5s)	20A _{eff}	25A _{eff}
32kHz	I _{nominal}	8A _{eff}	10A _{eff}
	I _{peak} (<5s)	16A _{eff}	20A _{eff}

Compax3S0xxV4 at 3*400VAC

Switching frequency*		S015V4	S038V4	S075V4	S150V4	S300V4
8 kHz	I _{nominal}	-	-	-	15A _{eff}	30A _{eff}
	I _{peak} (<5s)	-	-	-	30A _{eff}	60A _{eff}
16kHz	I _{nominal}	1.5A _{eff}	3.8A _{eff}	7.5A _{eff}	10.0A _{eff}	26A _{eff}
	I _{peak} (<5s)	4.5A _{eff}	9.0A _{eff}	15.0A _{eff}	20.0A _{eff}	52A _{eff}
32kHz	I _{nominal}	1.5A _{eff}	2.5A _{eff}	3.7A _{eff}	5.0A _{eff}	14A _{eff}
	I _{peak} (<5s)	3.0A _{eff}	5.0A _{eff}	10.0A _{eff}	10.0A _{eff}	28A _{eff}

Compax3S0xxV4 at 3*480VAC

Switching frequency*		S015V4	S038V4	S075V4	S150V4	S300V4
8 kHz	I _{nominal}	-	-	-	13.9A _{eff}	30A _{eff}
	I _{peak} (<5s)	-	-	-	30A _{eff}	60A _{eff}
16kHz	I _{nominal}	1.5A _{eff}	3.8A _{eff}	6.5A _{eff}	8.0A _{eff}	21.5A _{eff}
	I _{peak} (<5s)	4.5A _{eff}	7.5A _{eff}	15.0A _{eff}	16.0A _{eff}	43A _{eff}
32kHz	I _{nominal}	1.0A _{eff}	2.0A _{eff}	2.7A _{eff}	3.5A _{eff}	10A _{eff}
	I _{peak} (<5s)	2.0A _{eff}	4.0A _{eff}	8.0A _{eff}	7.0A _{eff}	20A _{eff}

The values marked with grey are the pre-set values (standard values)!

^{*}corresponds to the frequency of the motor current

Resulting nominal and peak currents depending on the switching frequency

Compax3MxxxD6 at 3*400VAC

Switching frequency*		M050D6	M100D6	M150D6
8 kHz	Inominal	5A _{eff}	10A _{eff}	15A _{eff}
	I _{peak} (<5s)	10A _{eff}	20A _{eff}	30A _{eff}
16kHz	I _{nominal}	3.8A _{eff}	7.5A _{eff}	10A _{eff}
	I _{peak} (<5s)	7.5A _{eff}	15A _{eff}	20A _{eff}
32kHz	I _{nominal}	2.5A _{eff}	3.8A _{eff}	5A _{eff}
	I _{peak} (<5s)	5A _{eff}	7.5A _{eff}	10A _{eff}

Compax3MxxxD6 at 3*480VAC

Switching frequency*		M050D6	M100D6	M150D6
8 kHz	I _{nominal}	4A _{eff}	8A _{eff}	12.5A _{eff}
	I _{peak} (<5s)	8A _{eff}	16A _{eff}	25A _{eff}
16kHz	I _{nominal}	3A _{eff}	5.5A _{eff}	8A _{eff}
	I _{peak} (<5s)	6A _{eff}	11A _{eff}	16A _{eff}
32kHz	Inominal	2A _{eff}	2.5A _{eff}	4A _{eff}
	I _{peak} (<5s)	4A _{eff}	5A _{eff}	8A _{eff}

The values marked with grey are the pre-set values (standard values)!

^{*}corresponds to the frequency of the motor current

Resulting nominal and peak currents depending on the switching frequency

Compax3HxxxV4 at 3*400VAC

Switching frequency*		H050V4	H090V4	H125V4	H155V4
8 kHz	I _{nominal}	50A _{eff}	90A _{eff}	125A _{eff}	155A _{eff}
	I _{peak} (<5s)	75A _{eff}	135A _{eff}	187.5A _{eff}	232.5A _{eff}
16kHz	I _{nominal}	33A _{eff}	75A _{eff}	82A _{eff}	100A _{eff}
	I _{peak} (<5s)	49.5A _{eff}	112.5A _{eff}	123A _{eff}	150A _{eff}
32kHz	I _{nominal}	19A _{eff}	45A _{eff}	49A _{eff}	59A _{eff}
	I _{peak} (<5s)	28.5A _{eff}	67.5A _{eff}	73.5A _{eff}	88.5A _{eff}

Compax3HxxxV4 at 3*480VAC

Switching frequency*		H050V4	H090V4	H125V4	H155V4
8 kHz	I _{nominal}	43A _{eff}	85A _{eff}	110A _{eff}	132A _{eff}
	I _{peak} (<5s)	64.5A _{eff}	127.5A _{eff}	165A _{eff}	198A _{eff}
16kHz	I _{nominal}	27A _{eff}	70A _{eff}	70A _{eff}	84A _{eff}
	I _{peak} (<5s)	40.5A _{eff}	105A _{eff}	105A _{eff}	126A _{eff}
32kHz	I _{nominal}	16A _{eff}	40A _{eff}	40A _{eff}	48A _{eff}
	I _{peak} (<5s)	24A _{eff}	60A _{eff}	60A _{eff}	72A _{eff}

The values marked with grey are the pre-set values (standard values)!

Resolution of the motor position

:	
For option F10: Resolver	◆ Position resolution: 16Bit (= 0.005°)
	◆ Absolute accuracy: ±0,167°
For option F11: SinCos®	◆ Position resolution: 13.5Bit/Encoder sine period => 0.03107°/encoder resolution
For option F12:	◆ Maximum position resolution
	◆Linear: 24 Bits per motor magnet spacing
	◆Rotary: 24 bits per motor revolution
	 Resolution for analog hall sensors with 1Vss signal (e.g. EnDat): 13.5 bits / graduation of the scale of the encoder
	♦ For RS 422 encoders: 4x encoder resolution
	◆ Accuracy of the feedback zero pulse acquisition =
	accuracy of the feedback resolution
	◆ Resolution for analog hall sensors with 1Vss signal: 13.5 bits / motor magnet spacing

Precision

The exactitude of the position signal is above all determined by the exactitude of the feedback system used.

^{*}corresponds to the frequency of the motor current

Motors and feedback systems supported

Motors Direct drives Linear motors Torque motors Position encoder (Feedback)	 ◆ Sinusoidal commutated synchronous motors ◆ Maximum rotating field frequency: 1,000Hz ◆ Max. velocity at 8 pole motors: 15000min⁻¹. ◆ General max. speed: 60*1000/number of pole pairs in [min⁻¹]. ◆ Sinusoidal commutated asynchronous motors ◆ Maximum rotating field frequency: 1,000Hz ◆ Max. speed: 60*1000/number of pole pairs - slip in [min⁻¹]. ◆ Field suppression: typically up to triple (higher on request). ◆ Temperature sensor: KTY84-130 (insulated according to EN60664-1 or IEC60664-1) ◆ 3 phase synchronous direct drives
LTN:	◆JSSBH-15-E-5
	◆JSSBH-21-P4
	◆ RE-21-1-A05
Tamagawa:	◆RE-15-1-B04 ◆2018N321 E64
Siemens:	
Siemens.	◆23401-T2509-C202
	Option F11: SinCos®
	◆ Singleturn (SICK Stegmann)
	◆ Multiturn (SICK Stegmann) Absolute position up to 4096 motor revolutions.
	◆Rotary feedback with HIPERFACE® interface: e.g.: SRS50, SRM50, SKS36, SKM36, SEK52

C3I30T11 Technical data

Special encoder systems for	
direct drives	Option F12
Analog hall sensors	◆ Sine - cosine signal (max. 5Vss ⁴ ; typical 1Vss) 90° offset
	◆U-V Signal (max. 5Vss ⁵ ; typical 1Vss) 120° offset.
Encoder (linear or rotatory)	◆ Sine-cosine (max. 5Vss ⁶ ; typical 1Vss) (max. 400kHz) or
	◆TTL (RS422) (max. 5MHz)
	with the following modes of commutation:
	◆ automatic commutation (see page 320) or
	◆ Digital hall sensors (e.g. DiCoder®)
Digital, bidirectional interface	◆ All EnDat 2.1 or EnDat 2.2 feedback systems with incremental track (sine-cosine track)
	♦ linear or rotary
	◆ max. 400kHz Sine-Cosine
Distance coded feedback	◆ Distance coding with 1VSS - Interface
systems	◆ Distance coding with RS422 - Interface (Encoder)

Feedback error compensation

Feedback error compensation	Automatic feedback error compensation (offset & amplification) for analog hall sensors and sine-cosine encoder can be activated in the
	MotorManager.

Motor holding brake output

Motor holding brake output	Compax3
Voltage range	21 – 27VDC
Maximum output current (short circuit proof)	1.6A
Minimum output current	150 mA
Securing of brake Compax3M	3.15A

Braking operation Compax3S0xxV2 1AC

Controller type	S025V2	S063V2
Capacitance / storable energy	560μF / 15Ws	1120μF / 30Ws
Minimum braking- resistance	100Ω	56Ω
Recommended nominal power rating	20 60W	60 180W
Maximum continuous current	8A	15A

374

 $^{^4}$ Max. differential input between SIN- (X13/7) and SIN+ (X13/8). 5 Max. differential input between SIN- (X13/7) and SIN+ (X13/8). 6 Max. differential input between SIN- (X13/7) and SIN+ (X13/8).

Braking operation Compax3S1xxV2 3AC

Controller type	S100V2	S150V2
Capacitance / storable energy	780μF / 21Ws	1170μF / 31Ws
Minimum braking- resistance	22Ω	15Ω
Recommended nominal power rating	60 450W	60 600W
Maximum continuous current	20A	20A

Braking operation Compax3SxxxV4 3AC

Controller type	S015V4	S038V4	S075V4	S150V4	S300V4
Capacitance / storable energy	235μF / 37Ws	235μF / 37Ws	470μF / 75Ws	690μF / 110Ws	1100μF / 176Ws
Minimum braking- resistance	100Ω	100Ω	56Ω	33Ω	15Ω
Recommended nominal power rating	60 100W	60 250W	60 500 W	60 1000 W	60 1000 W
Maximum continuous current	10A	10A	15A	20A	30A

Braking operation Compax3MxxxD6 (axis controller)

Device type Compax3	M050	M100	M150
Capacitance / storable energy			220µF/ 37Ws at 400V 21Ws at 480V

Braking operation of Compax3HxxxV4

Controller type	H050V4	H090V4	H125V4	H155V4
Capacitance / storable energy	2600μF / 602Ws	3150μF / 729Ws	5000μF / 1158Ws	5000μF / 1158Ws
Minimum braking- resistance	24Ω	15Ω	8Ω	8Ω
Maximum continuous current	30A	45A	83A	83A

Braking resistors for Compax3

Braking Resistor (see page 337)	Device	Rated Power
BRM08/01 (100Ω)	Compax3S025V2	60W
	Compax3S015V4	
	Compax3S038V4	
BRM05/01 (56Ω)	Compax3S063V2	180W
	Compax3S075V4	
BRM05/02 (56Ω)	Compax3S075V4	570W
BRM10/01 (47Ω)	Compax3S150V4	570W
BRM04/01 (15Ω)	Compax3S300V4	570W
	Compax3S150V2	
BRM04/02 (15Ω)	Compax3S300V4	740W
	Compax3S150V2	
BRM04/03 (15Ω)	Compax3S300V4	1500W
BRM09/01 (22Ω)	Compax3S100V2	570W
BRM11/01 (27Ω)	Compax3H0xxV4	3500W
BRM13/01 (30Ω)	Compax3MP10D6	500 W
BRM14/01 (15Ω)	Compax3MP10D6*	500 W
BRM12/01 (18Ω)	Compax3H1xxV4	4500W

^{*}for Compax3MP10D6 $2x15\Omega$ in series

Size / weight of Compax3S

Controller type	Dimensions HxWxD [mm]	Weight [kg]
Compax3S025V2	191 x 84 x 172	2.0
Compax3S063V2	191 x 100 x 172	2.5
Compax3S015V4	248 x 84 x 172	3.1
Compax3S100V2	248 x 115 x 172	4.3
Compax3S150V2	248 x 158 x 172	6.8
Compax3S038V4	248 x 100 x 172	3.5
Compax3S075V4	248 x 115 x 172	4.3
Compax3S150V4	248 x 158 x 172	6.8
Compax3S300V4	380 x 175 x 172	10.9

Minimum mounting distance: 15mm at the sides, above & below 100mm

Protection type IP20

Drawings, Mounting (see page 64)

Size / weight of Compax3MP/Compax3M

Device type	Dimensions HxWxD [mm]	Weight [kg]
Compax3MP010D6	360 x 50 x 263	3,95
Compax3M050D6	360 x 50 x 263	3,5
Compax3M100D6	360 x 50 x 263	3,6
Compax3M150D6	360 x 50 x 263	3,6

Protection type IP20

Size / weight of Compax3H

Controller type	Dimensions HxWxD [mm]	Weight [kg]
Compax3H050V4	453 x 252 x 245	17,4
Compax3H090V4	668.6 x 257 x 312	32,5
Compax3H125V4	720 x 257 x 355	41
Compax3H155V4	720 x 257 x 355	41

Protection class IP20 when mounted in a control cabinet (not for Compax3H1xxxV4)

Drawings, Mounting (see page 64)

Safety technology Compax3S

Safe torque-off as per EN954-1, category 3 Certified: (BG-PRÜFZERT certification number: 0403005)	◆For implementation of the "protection against unexpected start-up" function described in EN1037.
·	◆Note the circuit examples circuit examples (see page 72).

Safety technology Compax3MP / Compax3M

Safety technology as an option State-of-the-art safety technology EN ISO 13849	◆ Please respect the stated safety technology on the type designation plate (see page 11) and the circuitry examples
--	---

UL certifiction for Compax3S

conform to UL:	◆according to UL508C
Certified	◆E-File_No.: E235 342

The UL certification is documented by a "UL" logo on the device (type specification plate).

"UL" logo

Insulation requirements

Protection class	Protection class I according to EN60664-1	
Protection against human contact with dangerous voltages	According to En 61800-5-1	
Overvoltage category	Voltage class III according to EN 60664-1	
Degree of contamination	Degree of contamination 2 according to EN 60664-1 and EN 61800-5-1	

Environmental conditions Compax3S and Compax3H

General ambient conditions	According to EN 60 721-3-1 to 3-3 Climate (temperature/humidity/barometric pressure): Class 3K3	
Permissible ambient temperature:		
Operation Storage Transport	0 to +45 C Class 3K3 -25 to +70 C Class 2K3 -25 to +70 C Class 2K3	
Tolerated humidity:	No condensation	
Operation Storage Transport	<= 85% class 3K3 <= 95% class 2K3 <= 95% class 2K3	(Relative humidity)
Elevation of operating site	<=1000m above sea level for 100% load ratings <=2000m above sea level for 1% / 100m power reduction Please inquire for greater elevations	
Mechanic resonances:	EN 60068-2-6 (sinusoidal excitation)	
Sealing	IP20 protection class according to EN 60 529	

Cooling Compax3S and Compax3H

Cooling mode:	C3S025V2 S150V4: Convection C3S300V4 & C3H: Forced air ventilation with fan in the heat dissipator	
	Air flow rate: 459m³/h (C3H)	
Supply:	C3S300V4, C3H050, C3H090 internal C3H125, C3H155 external	
	220/240VAC: 140W, 2.5μF, Stator - 62Ω	
	Optionally on request:	
	110/120VAC: 130W, 10μF, Stator - 16Ω	
	Circuit breaker: 3A	

EMC limit values Compax3S and Compax3H

EMC interference emission	Limit values according to EN 61 800-3, Limit value class C3/C4 without additional mains filter: Information on C2 limit value classes (see	
EMC disturbance immunity	page 16) Industrial area limit values in accordance with	
	EN 61 800-3	

Environmnental conditions Compax3MP / Compax3M

a 1 11 1 111		
General ambient conditions	According to EN 60 721-3-1 to 3-3	
	Climate (temperature/humidity/barometric pressure): Class 3K3	
Permissible ambient temperature:		
Operation Storage Transport	0 to +40 C Class 3K3 -25 to +70 C -25 to +70 C	
Tolerated humidity:	No condensation	
Operation Storage Transport	<= 85% class 3K3 <= 95% <= 95%	(Relative humidity)
Elevation of operating site	<=1000m above sea level for 100% load ratings <=2000m above sea level for 1% / 100m power reduction Please inquire for greater elevations	
Sealing	IP20 protection class according to EN 60 529	
Mechanic resonances:	Class 2M3, 20m/s ² ;8-200Hz	

Cooling Compax3MP / Compax3M

Cooling mode:	Forced air ventilation with fan in the heat
	dissipator

EMC limit values Compax3MP/Compax3M

	Limit values according to EN 61 800-3, Limit value class C3 with mains filter.
EMC disturbance immunity	Industrial area limit values in accordance with EN 61 800-3

EC directives and harmonised EC norms

Low voltage directive 2006/95/EC	EN 61800-5-1, Standard for electric power drives with settable speed; requirements to electric safety EN 60664-1, isolation coordinates for electricale equipment in low-voltage systems EN 60 204-1, machinery standard partly applied
EC-EMC-directive 2004/108/EC	EN 61 800-3, EMC norm Product standard for variable speed drives

COM ports

RS232	◆115200 baud
	◆Word length: 8 bits, 1 start bit, 1 stop bit
	◆ Hardware handshake XON, XOFF
RS485 (2 or 4-wire)	◆9600, 19200, 38400, 57600 or 115200 baud
	♦ Word length 7/8 bit, 1 start bit, 1 stop bit
	◆ Parity (can be switched off) even/odd
	◆2 or 4-wire
USB (Compax3M)	◆USB 2.0 Full Speed compatible

Load position control

Dual Loop Option	◆2. Feedback system for the control of the load
	position (see page 139) is possible.

Signal interfaces

Signal inputs / signal sources	Freeder input trook A/R (RC422)
Olgilai ilipato / Olgilai coaroco	◆Encoder – input track A/B (RS422)
	◆up to max. 10MHz
	 internal quadrature of the resolution
	◆Step / direction input (24V-level)
	Max. 300kHz at ≥50Ω source impedance and minimum pulse width of 1,6μs.
	+/-10V analog input14Bit; 62.5µs scanning rate.
	◆SSI Feedback
Signal outputs	◆ Encoder simulation
	◆116384 increments/revolution or pitch
	◆Limit frequency 620kHz
	◆Bypass function with encoder feedback with feedback module F12.(Limit frequency 5MHz).
Signal transmission	HEDA (option M10 or M11)
	Exchange of process values:
	◆from Slave to Master
	◆from Slave to Master and
	◆from Slave to Slave.

Ethernet Powerlink - characteristics

Profile	◆ Motion Control CiADS402
Baud rate	◆100MBits (FastEthernet)
EDS file	◆C3_EPL_cn.EDS
Service data object	◆SDO
Cycle time	<200µs, up to 240 nodes
Synchronicity precision of the SYNC telegram	◆ maximum jitter: +/-25µs
teregram	◆Typical cycle times: >= 1ms
Typical cycle times	→>= 1ms
Deviations from the Device Profile DSP402	◆ For the velocity mode profile the setpoint acceleration is also applicable when braking.
	◆Only one rotation speed is possible for machine zero run start (objects 0x6099.1 and .2 are the same).

Functions

Operating modes:	◆Speed control
	◆ Direct positioning (position control)
	◆ Positioning with set selection
Speed control	◆ Cyclic predefined Setpoint value
	◆Up to 2 cyclic actual values
Direct positioning	◆Cyclic predefined Setpoint value
	◆Cyclic actual values
	◆ Different motion functions
Positioning with set selection	◆up to 31 motion sets possible.
	◆ Different motion functions
Motion functions	◆ Absolute positioning
	◆ Relative positioning
	◆ Electronic Gearbox (Gearing)
	Reg-related positioning (precision < 1µs)
	◆Speed control
	◆Stop - Set
	◆ Defining status bits for the sequence control
	◆ Specification of speed, acceleration, deceleration and jerk
	◆ Different machine zero modes
	◆ Absolute / continuous operation
Actual position	◆ Encoder Simulation
	◆ Resolution: 1 - 16384 increments / revolution
Signal monitor	◆2 channels ±10 V analog
	◆Resolution: 8 Bit

Parker EME Index

11.Index

+ +/-10V analog speed setpoint value as signal source • 138	Braking resistor / temperature switch Compax3MP (mains module) • 42 Braking resistor BRM11/01 & BRM12/01 • 349 Braking resistor BRM13/01 & BRM14/01 • 349
Α	Braking resistor BRM4/0x • 348 Braking resistor BRM5/02, BRM9/01 &
Absolute encoder • 93	BRM10/01 • 348
Acceleration / deceleration for positioning • 114	BRM5/01 braking resistor • 347
Acceleration for positioning and velocity control • 114	BRM8/01braking resistors • 347 Byte string OS • 310
Access to the hazardous area • 79	C
Accessories order code • 315 Activation • 233	C3 ServoSignalAnalyzer • 231
Acyclic parameter channel • 295	C3Sxxx V2 • 30
Adjusting the basic address • 57	C3Sxxx V4 • 33
Adjusting the bus address • 58	Calculation of the BRM cooling time • 339
Adjusting the machine zero proximity switch •	Calculation of the reference current from the
108	characteristic line. • 161
Advanced • 194	Calling up the input simulation • 222
Alignment of the analog inputs • 229	Cascade control • 181
Analog / Encoder (plug X11) • 61	Cascade structure of Compax3 • 181
Analogue Inputs/Outputs • 311	Change assignment direction reversal / limit
Analyses in the time range • 235	switches • 113
Application example for • 75	Change initiator logic • 113 Changing the switching frequency and the
Application parameters • 158	reference point • 172
Approximation of a well-attenuated control loop	Characteristics of a control loop setpoint
• 176	response • 180
ASCII - record • 270 Assignment of the X22 connector • 362	CiA405_SDO_Error (Abort Code)
Attenuation of the excitation amplitude • 245	UDINT • 296
Automated controller design • 184	Circuit example • 76
Automatic controller design • 174	CN (Controlled Node) in the Position Mode -
В	direct positioning • 281
D	CN (Controlled Node) in the Velocity Mode -
Bandwidth filter 1 (O2150.2) / bandwidth filter 2	velocity control • 280
(O2150.5) • 207	CN (Controlled Node) with set selection • 283
Basic functions: • 79	CN Controlled Node (Slave) • 285 COM port protocol • 270
Basic structure of the control with Compax3 •	Commissioning the load control • 226
156	Commissioning window • 210
Basics of frequency response measurement •	Communication • 269
260	Communication in the axis combination
Binary record • 271	(connector X30, X31) • 56
Bit sequence V2 • 310	Communication interfaces • 55
Boundary conditions • 227 Brake delay times • 268	Communikation Compax3M • 56
Braking Resistor • 31, 87, 374	Commutation settings • 166
Braking resistor / high voltage DC C3S	Commutation settings of the automatic
connector X2 • 31	commutation • 201
Braking resistor / high voltage supply	Compax3 Accessories • 319
connector X2 for 3AC	Compax3 device description • 24
400VAC/480VAC_C3S devices • 34	Compax3 Xxxx I30T11 Introduction • 22
Braking resistor / high voltage supply plug X2	Compax3H plugs/connections • 45
for 1AC 230VAC/240VAC devices • 31	Compax3MP/Compax3M connections • 36
Braking resistor / high voltage supply plug X2	Compax3S connectors • 25 Conditions of utilization • 16
for 3AC 230VAC/240VAC devices • 32	Conditions of utilization for CE-conform
Braking resistor / supply voltage C3H • 52	operation • 16

Index C3I30T11

Conditions of utilization for UL certification Current jerk response • 208 Compax3S • 19 Current jerk response with the activated Configuration • 81, 159 saturation characteristic line • 208 Configuration name / comments • 133 Current on the mains PE (leakage current) • 20 Configuration of load control • 141 Configuration of local modem 1 • 276 Configuration of remote modem 2 • 277 D/A-Monitor • 311 Configuring the signal Source • 135 Deadband following error • 209 Connect braking resistor C3H • 53 Debouncing the limit switches • 113 Connection of a braking resistor • 32, 34 Debouncing the machine zero input (X12/14) • Connection of terminal box MH145 & MH205 • 335 Defining jerk / ramps • 114 Connection of the digital Outputs/Inputs • 63 Defining the reference system • 88 Connection of the power voltage of 2 C3H 3AC Demand behavior • 179 devices • 54 Depth filter 1 (O2150.3) / depth filter 2 Connection of the power voltage of 2 C3S 3AC (O2150.6) • 208 devices • 35 Description • 79 Connection set for Compax3MP/Compax3M • Detailed object list • 308 Device assignment • 10 Connection set for Compax3S • 350 Devices with the • 73 Connections of Compax3H • 45 Digital Inputs/Outputs • 63 Connections of Compax3S • 25 Digital inputs/outputs (plug X12) • 62 Connections of the axis combination • 38 Dimensions of the braking resistors • 347 Connections of the encoder interface • 62 Direct drives • 320 Connections on the device bottom • 37 Dispaly of the measurement point at the cursor Connections to the motor • 328 position • 259 Connector and pin assignment • 39 Display of the commutation error in Connector and pin assignment C3S • 26 incremental feedback systems • 202 Control measures for drives iinvolving friction • Display of the measurement result • 258 209 Distinction between signals and systems • 260 Control path • 159 Disturbance behavior • 179 Control signal filter / filter of actual acceleration Disturbance jerk response • 183 value • 193 D-term • 185 Control signal limitations • 189 D-term of the KD velocity controller • 186 Control voltage 24 VDC • 28 Dynamic positioning • 134 Control voltage 24 VDC C3H • 51 Dynamic stiffness • 182 Control voltage 24VDC / enable connector X4 Dynamics of a control • 174 C3S • 28 E Control voltage 24VDC Compax3MP (mains module) • 41 EAM06 Control word 1 (Controlword 1) • 288 Terminal block for inputs and outputs • 353 Control word 2 • 289 Effect of the notch filter • 206 Controller coefficients • 185 Electronic gearbox (Gearing) • 131 Controller optimization • 155 Electronic simulation of a disturbance torque Controller optimization Advanced • 218 jerk with the disturbance current jerk • 183 Controller optimization disturbance and setpint EMC feedforward • 199 behavior (advanced) • 217 EMC measures • 322 Controller optimization disturbance and setpint Encoder A/B 5V, step/direction or SSI behavior (standard) • 214 feedback as signal source • 136 Controller optimization guiding transmission Encoder bypass with Feedback module F12 behavior • 220 (for direct drives) • 119 Controller optimization of toothed belt drive • Encoder cable • 336 216 Encoder coupling of 2 Compax3 axes • 360 Controller optimization standard • 215 Encoder Simulation • 119 Controlword / Statusword • 288 EnDat cable • 331 Correlation between the terms introduced • Error • 312 184 Position difference between load mounted and Course of the automatic commutation function motor feedback too high • 142 • 203 Error list • 312 Cubical interpolation (o3925.1=-3) • 293 Error reaction to a bus failure • 285 Current (Torque) Limit • 116 Error response • 132 Current control • 250 Ethernet Powerlink • 279

Parker EME Index

Ethernet Powerlink - Communication profile •	G
310	
Ethernet Powerlink - Operating mode • 279	Gain alignment • 230 General Drive • 88
Ethernet Powerlink Objects • 298 Ethernet Powerlink X23, X24 (Option I30) • 58	General hazards • 13
Example	11
Electronic gearbox with position detection via	Н
encoder • 137	Hardware end limits • 112
Setting the Oscilloscope • 153	HEDA (motion bus) - Option M11 • 364
Example 1 Reg comes after the reg restriction window •	Homing modes with home switch (on X12/14) • 96
126	-
Example 2	I
Reg within the reg restriction window • 127	I/O Assignment • 120
Example 3	I/O interface X12 / X22 • 358
Reg is missing or comes after termination of the RegSearch motion set • 128	l ² t - monitoring of the motor • 166
Example 4	Ignore zone (example) • 122 Increased following error • 164
Reg comes before the reg restriction window •	Influence of the feedforward measures • 191
129	Input simulation • 222
Example 5	Input wiring of digital inputs • 363
The registration mark comes after the reg retriction window, registration mark can,	Input/output option M12 • 362 Instable behavior • 164
however, not be reached without direction	Installation • 233
reversal • 130	Installation and dimensions Compax3 • 64
Examples are available as a movie in the help	Installation and dimensions of Compax3 S0xx
file • 265 Examples in the help file • 121	V2 • 64
Excitation Signal • 244	Installation enable of the ServoSignalAnalyzer • 233
Extended cascade (structure variant 1) • 195	Integer formats • 309
Extended cascade structure (structure variant	Interface • 162
2 with disturbance variable observer) • 197	Interface cable • 356
External braking resistors • 337 External Moment of Inertia • 172	Internal setpoint generation • 210
external position correction • 139	Interpolated Position Mode • 290 Interpolation method • 290
External setpoint generation • 212	Introduction • 10, 156
F	Introduction observer • 199
	J
Feedback error compensation • 164	
Feedback systems for direct drives • 320 Feedforward channels • 191	Jerk for STOP, JOG and error • 116
Ferrite • 29	Jerk limit for positioning • 114 Jerk response of a delay component • 176
Filter • 199	Jerk response of the velocity loop depending
Fixed point format C4_3 • 309	on the optimization paramter • 185
Fixed point format E2_6 • 309 Flow chart controller optimization of a direct	Jerk value • 114
drive • 219	L
Following Error (Position Error) • 170	Layout of the set table • 284
Following error limit • 118	Layout: • 75
Frequency filter 1 (O2150.1) / frequency filter 2	Leak effect and windowing • 239
(O2150.4) • 207 Frequency response of the notch filter. • 207	LEDs • 24
Frequency response of the P-TE component	Level • 63
(value and phase) • 178	Limit and Monitoring Settings • 116, 173 Limitation behavior • 181
Frequency settings • 252	Limitation of hte setpoint velocity • 190
Friction compensation • 210 Front connector • 36	Limitation of the control voltage • 190
Function principle of the automatic	Limitation of the setpoint current • 190
commutation with movement • 203	Linear Interpolation (o3925.1 = 0 oder o3925.1 = -1) • 291
Functionality • 223	Linear motors • 321
Functionality of the measurement • 238, 241	Linear Systems (LTI System) • 261
	Linear two mass system • 264

Index C3I30T11

Linearized motor characteristic lien for different MN-M 23..0.26 operating points • 167 Direction reversal switches on the positive side Load control • 139, 199 Load control signal image • 142 MN-M 27..0.30 Load identification • 210, 227 With direction reversal switches on the Luenberg observer • 199 negative side • 100 MN-M 3.4 M MN-Initiator = 1 on the positive side • 101 MN-M 33.34 Machine Zero • 92 MN at motor zero point • 106 Machine zero modes overview • 94 MN-M 35 Machine zero modes without home switch • MN at the current position • 104 104 MN-M 5.6 Machine zero only from motor reference • 106 MN initiator = 1 on the negative side • 102 Machine zero speed and acceleration • 109 MN-M 7..0.10 Main flow chart of the controller optimization • Direction reversal switches on the positive side 213 • 103 Main voltage supply C3S connector X1 • 30 Mode 1 Mains connection Compax3H • 52 Time and maximum values are deduced from Mains filter • 322, 327 Compax3 input values • 266 Mains filter for NFI01/03 • 323 Mode 2 Mains filter NFI01/01 • 322 Compax3 input values are deduced from times Mains filter NFI01/02 • 323 and maximum values • 267 Mains filter NFI02/0x • 324 Modem cable SSK31 • 361 Mains filter NFI03/01 • 325 Monitor information • 147 Mains filter NFI03/02 • 325 Monting and dimensions Compax3S100V2 Mains supply Compax3MP (mains module) • and S0xxV4 • 65 41 Monting and dimensions Compax3S150V2 Mass inertia • 160 and \$150V4 • 66 Maximum operating speed • 118 Motion cycle with feedforward measures • 192 Meaning of the Bus LEDs (Ethernet Powerlink) Motion cycle without feedforward control • 192 Motion functions • 124 Meaning of the status LEDs - Compax3 axis Motion objects in Compax3 • 225 controller • 24 Motion profile at jerk-controlled setpoint Meaning of the status LEDs - Compax3MP generation • 211 (mains module) • 24 Motion set • 225 Measure reference • 89 Motor / Motor brake (C3S connector X3) • 29 Measurement of frequency responses • 241 Motor / Motor brake C3H • 50 Measurement of frequency spectra • 238 Motor / motor brake Compax3M (axis Measurement of the motor temperature of controller) • 43 Compax3M (axis controller) • 44 Motor cable for terminal box • 333 Mechanical system • 251, 262 Motor cable with plug • 332 MN-M 1.2 Motor characteristic line of a synchronous Limit switch as machine zero • 107 servo motor (torque via velocity) • 161 MN-M 11...14 Motor Connection • 29 With direction reversal switches on the Motor continuous usage • 167 negative side • 103 Motor holding brake • 29 MN-M 128/129 Motor output filter • 326 <Current following error threshold> when Motor output filter MDR01/01 • 326 moving to block • 104 Motor output filter MDR01/02 • 327 MN-M 130, 131 Motor output filter MDR01/04 • 326 Determine absolute position via distance Motor parameters • 171, 199 coding • 106 Motor parameters relevant for the control • 160 MN-M 132, 133 Motor pulse usage • 168 Determine absolute position via distance Motor reference point • 172 coding with direction reversal switches • Motor Selection • 83 108 Mounting and dimensions C3H • 69 MN-M 17.18 Mounting and dimensions C3MP/C3M • 68 Limit switch as machine zero • 105 Mounting and dimensions Compax3S300V4 • MN-M 19.20 MN-Initiator = 1 on the positive side • 97 Mounting distances, air currents MN-M 21.22

MN initiator = 1 on the negative side • 98

Compax3H050V4 • 70

Parker EME Index

Mounting distances, air currents	BRM08/01 with C3S025V2 • 340
Compax3H090V4 • 70	BRM09/01 with C3S100V2 • 341
Mounting distances, air currents	BRM10/01 with C3S150V4 • 341
Compax3H1xxV4 • 71 MoveAbs and MoveRel • 124	BRM11/01 with C3H0xxV4 • 346
MoveAbs and MoveRei • 124	BRM12/01 with C3H1xxV4 • 346 BRM13/01 with C3MP10D6 • 347
N	BRM14/01 with C3MP10D6 • 347
Noise • 163	Permissible braking pulse powers of the
Nominal point • 167	braking resistors • 338
Nominal point data • 160	Plug and pin assignment C3H • 48
Non-linearities and their effects • 245	Plug assignment Compax3S0xx V2 • 28, 29,
Notch filter • 206	30, 31, 55, 60
Note: • 75	Position control • 249 Position correction • 139
0	Position measurement external • 139
	Position mode in reset operation • 121
Object for the load control (overview) • 143	Positioning after homing run • 92
Object up-/download via Ethernet Powerlink • 297	Positioning window - Position reached • 117
Objects for load control • 143	Postition loop • 185
Offset alignment • 230	Power supply • 30
Open/Closed Loop frequency response	Power supply connector X1 for 3AC 400VAC/480VAC-C3S devices • 33
measurement • 243	Power supply plug X1 for 1 AC
Operating and status field • 256	230VAC/240VAC devices • 30
Operation with MultiTurn emulation • 93	Power supply plug X1 for 3AC
Operator control module BDM • 353 Optimization • 144	230VAC/240VAC devices • 31
Optimization • 144 Optimization parameter Advanced • 198	Power supply voltage DC C3H • 53
Optimization window • 145	Prerequisites • 233
Optimize motor reference point and switching	Prerequisites for the automatic commutation •
frequency of the motor current • 84	203 Principle • 227
Option M10 = HEDA (M11) & I/Os (M12) • 365	Proceeding during configuration, setup and
Options M1x • 362	optimization • 156
Order code • 313 Order code device	Proceeding during controller optimization • 212
Compax3 • 314	Process of the automatic determination of the
Order code for mains module	load characteristic value (load identification)
Compax3MP • 315	• 228
Oscillating plant • 174	ProfileViewer for the optimization of the motion profile • 266
Oscilloscope operating mode switch: • 149	Programmable status bits (PSBs) • 123
Other • 206	P-TE - Symbol • 176
Other motor • 171	P-term KV position loop • 186
Other settings • 254 Output wiring of digital outputs • 363	•
Overview of motor cables • 331	Q
Overview of the user interface • 248	Quadratic interpolation (o3925.1=-2) • 292
D.	Quality of different feedback systems • 162
P	R
Packaging, transport, storage • 12	
Parameterization by 3 objects. • 207	Ramp upon error and de-energize • 115
Parker Motor • 171	Recommendations for preparing the modem operation • 278
Parker servo motors • 320	Reduction of the current ripple • 170
PC - Compax3MP (mains module) • 56 Permissible braking pulse power	Ref X11 • 359
BRM04/01 with C3S150V2 • 343	Reference point 1
BRM04/01 with C3S300V4 • 344	higher velocity at reduced torque • 168
BRM04/02 with C3S150V2 • 344	Reference point 2
BRM04/02 with C3S300V4 • 345	Increased torque thanks to additional cooling •
BRM04/03 with C3S300V4 • 345	169 Pag-related positioning (PagSearch
BRM05/01 with C3S063V2 • 342	Reg-related positioning (RegSearch, RegMove) • 125
BRM05/01 with C3S075V4 • 342 BRM05/02 with C3S075V4 • 343	Reg-related positioning / defining ignore zone •
BRM08/01 with C3S015V4 / C3S038V4 • 340	122

Index C3I30T11

Relevant appication parameters • 169 Special safety instructions • 14 Remote diagnosis via Modem • 275 Speed for positioning • 114 Resolution • 163 Speed specification (Velocity) • 132 Resolver • 60 Stability problem in the high-frequency range: • Resolver / Feedback (connector X13) • 60 Resolver cable • 329 Stability problem in the low-frequency range: • Resonance points and their causes • 263 response • 180 stability, attenuation • 175 Rotary servo motors • 321 Standard • 187 Rotary two mass system • 264 standard cascade structure • 188 RS232 / RS485 interface (plug X10) • 55 Standard optimization parameters • 189 RS232 cable • 356 Standardized and manufacturer-specific RS232 plug assignment • 55 objects sorted according to EPL No. • 299 RS485 cable to Pop • 357 Standardized and manufacturer-specific RS485 plug assignment • 55 objects sorted according to object names . RS485 setting values • 270 304 Static stiffness • 182 S Status LEDs • 24 Status machine • 286 Safe standstill • 72 Status values • 311 Safe standstill with bus option • 75 Status word 2 • 290 Safe standstill with Compax3 principle • 72 Statusword 1 (Statusword) • 290 Safety function - safe standstill - Compax3S • Stiffness • 182 72 Stop command (Stop) • 132 Safety Instructions • 13 Structure • 275 Safety instructions concerning the frequency Structure of a cascade control • 181 response measurement • 241 Structure of a control • 174 Safety instructions for the • 74 Supply networks • 21 Safety-conscious working • 13 Supported motor types • 171 Saturation behavior • 208 Switching frequency of the motor current / Saturation values • 162 motor reference point • 169 Scope • 146 Synchronizations method • 294 Select signal source for Gearing • 135 Selection of the signal or system to be Т measured. • 248 Selection of the supply voltage used • 83 Technical data • 366 Service Data Objects (SDO) • 295 Temperature switch Compax3MP (mains ServoSignalAnalyzer - function range • 231 module) • 43 Setpoint and disturbance behavior of a control Terminal clamps – max. line cross section C3H loop • 178 Test commissioning of a Compax3 axis • 83 Setpoint generation • 210 Setting the axis function • 57 Test functions • 179 Setting the time basis XDIV • 149 The calculation of the physically possible Setting up Compax3 • 81 acceleration • 211 Settings for channels 1..4 • 150 Time function and power density spectrum of Setup and optimization of the control • 187 Compax3 setpoint generator with different Setup mode • 224 jerk settings • 212 Shifting the working point into a linear range • Tips • 229 Too high overshoot on velocity • 163 Toothed belt drive as two mass system • 265 Signal analysis overview • 232 Signal filtering with external command value • Toroidal core ferrite • 29 Torque motors • 321 221 Signal flow chart Luenberg observer • 200 Trackingfilter • 221 Signal interfaces • 60 Traditional generation of a disturbance Signal source HEDA • 136 torque/force jerk • 182 SinCos© cable • 330 Travel Limit Settings • 110 Slave with configuration via machine zero Trigger settings • 151 (managing Node) • 279 Turning the motor holding brake on and off • Slip • 139 Type specification plate • 11 Software end limits • 110 Software for supporting the configuration, Typical problems of a non optimized control • setup and optimization • 157 Special functions • 151

Parker EME Index

U

Unsigned - Formats • 309 Usage in accordance with intended purpose • 13 USB - RS232 converter • 55 User interface • 148

V

velocity control • 252 Velocity Loop • 186 Velocity, bandwidth • 176 Voltage decoupling • 199

W

Warranty conditions • 15 Wiring of analog interfaces • 61 Wiring of the motor output filter • 327 With direction reversal switches • 99, 102, 107 With motor reference point • 101, 106 Without direction reversal switches • 96, 101 Without motor reference point • 96, 104 Write into set table • 122 Wrongly set notch filter • 206

X

X1 • 30 X10 • 55 X11 • 61 X13 • 60 X2 • 31

X3 • 29

X4 • 28

Ζ

Zeitraster Signalquelle Master • 138