
Chapter ➃ Application Design 1 5

C H A P T E R ➃

Application Design
Chapter Objectives

The information in this chapter will enable you to the following:

❏ Recognize and understand important considerations that must be addressed
before you implement your application

❏ Understand the capabilities of the system
❏ Customize the system to meet your requirements

The X language command examples in this chapter are tailored to single-
axis operation. To use these examples for multi-axis simulation, change the
axis-specific prefix for each command (1, 2, or 3). If an axis is not specified,
the OEMØ23-AT defaults to axis #1.

Application Considerations
Successful application of a rotary indexer system requires careful
consideration of the following important factors:

❏ Mechanical resonance
❏ Ringing or overshoot
❏ Move times (calculated vs. actual)
❏ Positional accuracy and repeatability

Mechanical Resonance
Resonance, a characteristic of all stepper motors, can cause the motor to stall
at low speeds. Resonance occurs at speeds that approach the natural
frequency of the motor's rotor and the first and second harmonics of those
speeds. It causes the motor to vibrate at these speeds. The speed at which
fundamental resonance occurs is typically between 0.3 and 0.8 revs per second
and is highest for small motors and lowest for large motors.

Most full-step motor controllers jump the motor to a set minimum starting
speed to avoid this resonance region. This causes poor performance below
one rev per second. In nearly all cases, using a microstepping drive with the
OEMØ23-AT will overcome these problems.

☞ Helpful Hint
Viscous damper
manufacturer:
Ferrofluidics Corp.
40 Simon Street
Nashua, NH 03061
(603) 883-9800

Motors that will not accelerate past one rev per second may be stalling due to
resonance. The resonance point may be lowered to some extent by adding
inertia to the motor shaft. This may be accomplished by putting a drill
chuck on the back shaft. This technique is applicable only to double-shaft
motors with the shaft extending from both ends of the motor. In extreme
cases, you may also need a viscous damper to balance the load. Changing the
velocity (V command) and acceleration (A command) may resolve a
resonance problem.

1 6 OEMØ23-AT Indexer User Guide

Ringing or Overshoot
The motor's springiness, along with its mass, form an underdamped
resonant system that rings in response to acceleration transients (such as at
the end of a move). Ringing at the end of a move prolongs settling time.
Overshoot occurs when the motor rotates beyond the actual final position.
The actual settling time of a system depends on the motor's stiffness, the
mass of the load, and any frictional forces that may be present. By adding a
little friction, you can decrease the motor's settling time.

Move Times: Calculated vs. Actual
You can calculate the time required to complete a move by using the
acceleration, velocity, and distance values that you define with the A, V, and
D software commands respectively. However, you should not assume that
the values that you use will constitute the actual move time. After you issue
the Go (G) command, the OEMØ23-AT may take up to 50 ms to calculate the
move before the motor starts moving. You should also expect some time to
elapse for the motor and the load to settle.

Positional Accuracy vs. Repeatability
In positioning systems, some applications require high absolute accuracy.
Others require repeatability. You should clearly define and distinguish
these two concepts when you address the issue of system performance.

If the positioning system is taken to a fixed place and the coordinates of that
point are recorded, the only concern is how well the system repeats when you
command it to go back to the same point. For many systems, what is meant
by accuracy is really repeatability. Repeatability measures how accurately
you can repeat moves to the same position.

Accuracy, on the other hand, is the error in finding a random position. For
example, suppose the job is to measure the size of an object. The size of the
object is determined by moving the positioning system to a point on the
object and using the move distance required to get there as the measurement
value. In this situation, basic system accuracy is important. The system
accuracy must be better than the tolerance on the measurement that is
desired.

For more information on accuracy and repeatability, consult the technical
data section of the Compumotor Programmable Motion Control Catalog.

Open Loop
Accuracy

Open-loop absolute accuracy of a step motor is typically less than a
precision-grade system, but is better than most tangential drive systems.
When you close the loop with an incremental encoder, the accuracy of these
systems is equivalent to the encoder's accuracy.

The worst-case accuracy of the system is the sum of the following errors.
Accuracy = A + B.

A Uni-directional Repeatability: The error measured by repeated moves to
the same point from different distances in the same direction.

B Hysteresis: The backlash of the motor and mechanical linkage when it
changes direction due to magnetic and mechanical friction.

Chapter ➃ Application Design 1 7

Using Terminal Emulation Mode
Compumotor recommends that you become familiar with the OEMØ23-AT's
X language commands in Terminal Emulation Mode before you create your
custom programs in another language. Terminal Emulation mode is a user-
friendly menu-driven program that allows you to use X Language commands
directly. After you are familiar with the X language, you can develop custom
program routines (pre-tested in Terminal Emulation mode).

☞ Helpful Hint
Steps to enter Terminal
Emulation mode

➀ Type OEM23TRM at the OEMØ23-AT prompt.
➁ Enter device address 768.

Positioning Modes
You can use one of three positioning modes to run the motor with X language
commands—normal (preset), alternating, and continuous.

Normal (Preset) Mode
You can select preset moves by putting the OEMØ23-AT into normal mode
using the Mode Normal (MN) command. Preset moves allow you to position the
motor in relation to the motor's previous stopped position (incremental
moves) or in relation to a defined zero reference position (absolute moves).
You can select incremental moves by using the Mode Position Incremental
(MPI or FSAØ) command. You can select absolute moves using the Mode
Position Absolute (MPA or FSA1) command.

Incremental Mode
Moves

When using the Incremental mode (MPI or FSAØ), a preset move moves the
shaft of the motor the specified distance from its starting position. For
example, to move the motor shaft 1.5 revolutions, specify a preset move with a
distance of +37,500 steps (1.5 revs @ 25,000 steps/rev). Every time the indexer
executes this move, the motor moves 1.5 revs from its resting position. You
can specify the direction of the move with the optional sign (D+375ØØ or D-
375ØØ), or define it separately with the Set Direction (H) command (H+ or H-)
after the D command. If you do not specify the direction (e.g., D25ØØØ), the
unit defaults to the positive (CW) direction.

Sample
Incremental
Mode Moves

The moves below are incremental moves. The distance specified is relative
to the motor’s current position. This is the default (power-up) positioning
mode.

☞ Helpful Hint
The motor moves one CW
revolution and stops. It then
moves one more CW
revolution in the same
direction and stops. The
motor changes direction and
moves one CCW revolution.

Command Description
MPI Sets unit to Incremental Position mode
A2 Sets acceleration to 2 rps2

V5 Sets velocity to 5 rps
D25ØØØ Sets distance to 25,000 steps
G Executes the move (Go)
G Repeats the move (Go)
H Reverses direction of next move
G Executes the move (Go)

☞ Helpful Hint
The motor returns to its
original starting position.

Command Description
D-25ØØØ Sets the distance to 25,000 steps in the negative (CCW) direction
G Executes the move (Go)

☞ Helpful Hint
The motor moves 25,000
steps in the positive (CW)
direction.

Command Description
H Toggles the motor direction of the next move, but maintains existing acceleration,

velocity, and distance parameters.
G Executes the same move profile as the previous move, but in opposite direction (Go)

To load all the commands before executing them, use the Pause (PS) and
Continue (C) commands.

Command Description
PS Pauses execution until the indexer receives a Continue (C) command
G Executes a 25,000-step move (Go)
T3 Waits 3 seconds after the move
G Executes another 25,000-step move (Go)
C Cancels pause and executes the G T3 G commands

1 8 OEMØ23-AT Indexer User Guide

Absolute Preset
Mode Moves

A preset move in the Absolute mode moves the motor the distance that you
specify (in motor steps) from the absolute zero position. You can set the
absolute position to zero with the Position Zero (PZ) command, issuing the
Go Home (GH) command, or by cycling the power to the indexer.

The direction of an absolute preset move depends upon the motor position at
the beginning of the move and the position you command it to move to. For
example, if the motor is at absolute position +12,500, and you instruct the
motor to move to position +5,000, the motor will move in the negative
direction a distance of 7,500 steps to reach the absolute position of +5,000.

When you issue the Mode Position Absolute (MPA or FSA1) command, it sets
the mode to absolute. When you issue the Mode Position incremental (MPI or
FSAØ) command the unit switches to Incremental mode. The OEMØ23-AT
retains the absolute position, even while the unit is in the incremental
mode. You can use the Position Report (PR) command to read the absolute
position.

Sample
Absolute
Moves

The moves shown below are absolute mode moves. The distance specified is
relative to the OEMØ23-AT's absolute zero position.

Command Description
MN Sets the OEMØ23-AT to Normal mode
MPA Sets the OEMØ23-AT to the Absolute Positioning mode
PZ Sets the current absolute position to zero
A5 Sets acceleration to 5 rps2

V3 Sets velocity to 3 rps
D5ØØØ Sets move to absolute position 5,000
G Executes move (motor moves to absolute position 5,000)

Command Description
D1ØØØØ Sets the motor to absolute position 10,000. (Since the motor was already at

position 5,000, it will move 5,000 additional steps in the CW direction.)
G Executes the move (Go)
DØ Sets the motor to absolute position 0. (Since the motor is at absolute position

10,000, the motor will move 10,000 steps in the CCW direction.)
G Executes the move (Go)

Alternating Mode
☞ Helpful Hint
This indexing mode is not
functional when the absolute
positioning mode is selected
(MPA or FSA1).

You can select the Alternating mode with the MA command. Set-up for
Alternating mode is identical to that for Normal mode (MN). The difference is
that when you issue the Go (G) command, the motor shaft rotates to the
commanded position that corresponds to the value set by the D command,
and then retraces its path back to the start position. The shaft continues to
move between the start position and the command position. Normally, the
motor stops immediately when you issue an S command. However, if you
issue the SSD1 command before the G command, then when you issue the S
command, the motor completes the cycle and stops at the start position.
Another Go (G) command will repeat the same motion pattern.

Continuous Mode
The Continuous mode (MC) is useful for applications that require constant
movement of the load, when the motor must stop after a period of time has
elapsed (rather than after a fixed distance), or when the motor must be
synchronized to external events such as trigger input signals. You can
manipulate the motor movement with either buffered or immediate
commands. After you issue the G command, buffered commands are
executed in the order in which they were programmed. While the motor is in
continuous motion, you can change the velocity and acceleration by issuing
a new V and A command followed by a G command.

Chapter ➃ Application Design 1 9

Sample
Continuous
Mode Move

The following example demonstrates a continuous mode sequence.

Command Description
MC Sets to Continuous mode
A1Ø Sets acceleration to 10 rps2

V1 Sets velocity to 1 rps
G Executes the move (Go)

Motor accelerates to 1 rps and continues at that same rate until you issue the
S command, or until the load triggers an end-of-travel limit switch.

The following example demonstrates how to change the acceleration and
velocity while the motor is moving (on-the-fly) in Continuous mode.

Command Description
MC Sets all moves to the Continuous mode
A1 Sets acceleration to 1 rps2

V.5 Sets final velocity to 0.5 rps
G Executes move (motor travels at 1 rps)
A10 Sets acceleration to 10 rps2

V.4 Sets velocity to 0.4 rps
G Changes velocity to 0.4 rps at 10 rps2

V.1 Sets velocity to 0.1 rps
G Changes velocity to 0.1 rps

Move Parameters
For rotary motors, velocity and acceleration parameters are expressed in
units of motor revolutions. For accurate speed control, each axis needs to
know its motor's resolution. Use the MR command to change motor
resolution from the default (25,000 steps/rev) as required. This parameter
also controls step pulse width and velocity range. Refer to the description of
the MR command in OEMØ23-AT Software Reference Guide.

It is desirable in many applications for the distance parameter to be
specified in units other than motor steps, such as hundredths of a degree or
thousandths of an inch. If the desired units correspond to an integer number
of motor steps, the indexer's position multiplier (US command) capability
can used to scale the D command position parameter to those units for any
axis.

Example A 25,000-step/rev motor drives a 5-turn/inch lead screw. The system
resolution is 125,000 steps per inch. To express the distance parameter in
thousandths of an inch, the operator uses the US125 command to set a
distance multiplier of 125. If he then gives a distance command D1ØØØ, the
motor will move 1,000 units of 125 steps each (one inch) on the next go (G)
command. For more information, refer to the US command description in
OEMØ23-AT Software Reference Guide.

When scale factors greater than 1 are used, and an indexed move is
interrupted by a Stop (S) command or by activation of a limit switch, the
final position may not be a multiple of the scale factor. Consequently, the
repeatability of that move is lost.

2 0 OEMØ23-AT Indexer User Guide

Program Control
This section discusses the X language program control features of the
OEMØ23-AT.

Loops
You may use the Loop (L) command to repeat certain sequences. You can nest
loop commands up to 8 levels deep.

Command Description
PS Pauses command execution until the indexer receives a Continue (C) command
MPI Sets mode to incremental
A5 Sets acceleration to 5 rps2

V5 Sets velocity to 5 rps
L5 Loops 5 times
D2ØØØ Sets distance to 2,000 steps
G Executes the move (Go)
T2 Delays 2 seconds after the move
N Ends Loop structure
C Initiates command execution to resume

The example below shows how you can nest a small loop inside a major loop.
In this example, the motor makes 2 moves and returns a carriage return.
The unit repeats these procedures and will continue to repeat until you
instruct the unit to stop immediately with an S (Stop) or K (Kill) command. If
you issue a Y (Stop Loop) command, the OEMØ23-AT finishes the current
loop of commands and then stops the motor.

Command Description
PS Pauses command execution until the indexer receives a Continue (C) command

Loops indefinitely
Sends a carriage return
Loops twice
Executes 2,000-step move
Waits 0.5 seconds
Ends loop
Ends loop

LoopLoop

L
1CR
L2
G
T.5
N
N
C Cancels pause and Initiates command execution

POBs (Programmable Output Bits)
You can turn the programmable outputs on and off using the Output
(O)command. Zero (Ø) turns off a given output and one (1) turns the output
on. The outputs conduct when they are on and do not conduct when they are
off (see the O command description in the OEMØ23-AT Software
Reference Guide).

Command Description
MN Set move to Mode Normal
PS Pauses execution until indexer receives a Continue (C) command
A1Ø Sets acceleration to 10 rps2

V5 Sets velocity to 5 rps
D25ØØØ Sets move distance to 25,000 steps
O1ØXXX Sets POB 1 on and POB 2 off and leaves the rest unchanged
G Executes the move (Go)
C Cancels the Pause and executes the move

Move Completion Signals
When you complete a move, you may use the OEMØ23-AT's programming
capability to signal the end of the current move. In a preset move, you may
use one of the following commands:

❏ Carriage return (CR)
❏ Output command (O)
❏ Status request command (PR reports motor's absolute position)

Chapter ➃ Application Design 2 1

You may also use the moving/stopped bits of the status byte (SB) register to
determine if an axis has completed its move.

☞ Helpful Hint
The motor moves 12,500
steps. When the move is
complete, the OEMØ23-AT
issues a carriage return,
turns on POB #3, reports the
motor's absolute position,
and reports the encoder's
absolute position.

Command Description
PS Pauses command execution until the indexer receives a Continue (C) command
A2 Sets acceleration to 2 rps2

V.1 Sets velocity to 0.1 rps
D125ØØ Sets distance to 12,500 steps
G Executes the move (Go)
1CR Sends a carriage return over the interface
OXX1XXX Turns on Output #3 (ignores the other POBs)
1PR Report absolute position
C Cancels the Pause and executes the move

Custom Profiles
You can define a custom non-linear motion profile with the OEMØ23-AT's
Velocity Streaming modes. The three Velocity Streaming modes that the
OEMØ23-AT offers are listed below.

❏ Immediate Velocity (Q1 command)
❏ Time-Distance (Q2 command)
❏ Time-Velocity (Q3 command)

When you select Velocity Streaming mode (Q1), the OEMØ23-AT makes
immediate velocity changes based on parameters you set with Set Immediate
Velocity (RM) commands. The timing between issuing each RM command
determines the exact move profile (refer to the Immediate Velocity
Streaming section latter in this chapter).

The Time-Distance (Q2) mode allows you to specify an update period at
which the OEMØ23-AT travels the next distance that you specify.

The Time-Velocity (Q3) mode is very similar to the Time-Distance (Q2) mode,
except that the variable parameter is the velocity.

By using these modes, you can define any motion profile. You can use a
parabolic motion profile to optimize the motor's available running torque.
An S-Curve profile provides smoother handling of sensitive loads by
eliminating sudden acceleration changes.

 V f

Velocity
(rps)

 ta td ta td

Parabolic S-Curve

For more information on custom profiling modes, refer to the RM, Q2, and
Q3 commands in OEMØ23-AT Software Reference Guide.

2 2 OEMØ23-AT Indexer User Guide

Immediate Velocity Streaming Mode
In this mode, the host computer software supplies a stream of velocity data
(X language RM commands) for real-time control of motor speed. The
OEMØ23-AT has no control of acceleration. The operator controls all
velocity changes. If the motor changes too abruptly for the motor to follow,
the motor will stall or fault.

Once this operating mode is entered with the Q1 command, the OEMØ23-AT
clears out any buffered commands waiting for execution and waits for Rate
Multiplier in Velocity Streaming mode (RM) commands. With these
commands, the OEMØ23-AT makes instantaneous changes to the specified
velocity. The timing between issuing each RM command determines the
exact move profile. Sending RM commands to the OEMØ23-AT in rapid
succession provides smoother motion by virtue of an S-curve acceleration.
Testing and modification may be required to establish the correct sequence
of RM commands.

CAUTION
Do not make the velocity changes too abrupt. Abrupt velocity changes may stall the motor.

In the default high velocity range, with the default motor resolution (25,000
steps/rev) and a 25,000-step motor, a data increment of 1 produces a velocity
increment of about 15.259 steps per second.

RM commands are executed immediately. Consequently, it is not possible to
download a list of RM values to the OEMØ23-AT, and execute it afterward.

To exit Velocity Profiling mode, you must use the QØ command. When a Q1 or
QØ command is received, it is performed before any buffered commands.

Syntax, Range, and Output Control for RM Commands
The syntax for RM commands is RMn1n2n3n4 where n1n2n3n4 represents a
4-digit hexadecimal number. The most significant bit of n1 is interpreted as
a direction bit. If the most significant bit =1, the motor will turn CW. If the
most significant bit = Ø, the motor will turn CCW.

For example, issuing RMØ666 changes the velocity of Axis #1 to 24,994 Hz
(666 Hex ❏ 15.259 Hz) in the CCW direction. This assumes a motor
resolution of 25,000 steps/rev.

To change the direction, you must enter a zero (Ø) point (RMØØØØ if the motor
was traveling CCW or RM8ØØØ if the motor was traveling CW). If you do not
enter the zero point, the new RM data point will be ignored. The following
table summarizes the RM command parameter range.

CW Rotation CCW Rotation
Parameter Decimal Hex Decimal Hex
Zero 32,768 8000 0 000
Maximum 65,523 FFF3 32,755 7FF3

The hex values 7FF4 through 7FFF, and FFF4 through FFFF are not listed
above. These are special function values that do not produce a motor speed
value. Instead, they provide signals on the programmable outputs in the
middle of the velocity profiling operation. These values may be inserted in the
data stream to generate a signal when the OEMØ23-AT gets to critical points in
the process. The functions of these values are shown in the following table.

Output To set low To set high
POB #1 7FF4 or FFF4 7FF5 or FFF5
POB #2 7FF6 or FFF6 7FF7 or FFF7
POB #3 7FF8 or FFF8 7FF9 or FFF9
POB #4 7FFA or FFFA 7FFB or FFFB
POB #5 7FFC or FFFC 7FFD or FFFD

Chapter ➃ Application Design 2 3

Immediate Streaming Example
Command Description
Q1 Enter Velocity Profiling mode
RMØØ11 Go to RM velocity of 249 Hz in CCW direction
RMØØ55 Go to RM velocity of 1,105 Hz in CCW direction
RMØ1ØØ Go to RM velocity of 3,906 Hz in CCW direction
RMØØ55 Go to RM velocity of 1,105 Hz in CCW direction
RMØØ11 Go to RM velocity of 249 Hz in CCW direction
RMØØØØ Go to zero velocity (mandatory) to change direction
RM8Ø11 Go to RM velocity of 249 Hz in CW direction
RM8Ø55 Go to RM velocity of 1,105 Hz in CW direction
RM81ØØ Go to RM velocity of 3,906 Hz in CW direction
RMFFF5 Set Output #1 high
RM8Ø55 Go to RM velocity of 1,105 Hz in CW direction
RM8Ø11 Go to RM velocity of 249 Hz in CW direction
QØ Exit velocity profiling mode

Timed Data Streaming Modes
The Timed Data Streaming modes allow precise multi-axis distance and
velocity control. Timed Data Streaming is accomplished by dividing the
profile into small straight-line segments, allowing greater accuracy and
control of the profile shape.

❏ Time-distance streaming allows control over the number of steps output over a
given period of time.

❏ Time-velocity streaming allows control over the frequency of steps output over
a given period of time.

In both time-distance and time-velocity streaming modes, outputs can be
turned on or off on-the-fly (while the motor is in motion). Wait-on-trigger
and looping are also possible in these timed data streaming modes. To
produce a data streaming profile, complete the following steps.

☞ Helpful Hint
* Steps ➃ and ➄ can be
reversed, refer to Continuous
Streaming section.

➀ Enter the timed data streaming mode for the appropriate axes.
➁ Define the update interval for each axis.
➂ Identify the clock source for each axis.
➃ Provide the time-distance or time velocity streaming data.*
➄ Start the master clock.*
➅ Exit the timed data streaming mode after the motion is completed.

➀ Enter Timed Data Streaming Mode
There are two modes associated with timed data streaming. They are time-
distance streaming and time-velocity streaming.

To enter the Time-Distance Streaming mode, enter the Q2 command for the
appropriate axes. For example, entering 1Q2 and 2Q2 puts axes one and two
in the time-distance streaming mode.

To enter the Time-Velocity Streaming mode, enter the Q3 command for the
appropriate axes. For example, entering 2Q3 and 3Q3 puts axes two and
three in the time-velocity streaming mode.

CAUTION
When either the Q2 or Q3 mode is entered, motion stops and the command buffers are cleared
on the specified axes.

➁ Define the Update Interval
The update interval is defined with the TDnn command, where nn is the
update period ranging from 2 to 50 ms in 2-ms increments. Smaller update
intervals produce finer discrete line segments. For example, issuing 1TD50
and 2TD50 establishes an update interval of 50 ms for axes one and two. The
default update interval is 10 ms for each axis.

CAUTION
All axes in a master/slave relationship (using the MSL command) must have the same update
interval and the same minimum pulse width (set with the MR command).

2 4 OEMØ23-AT Indexer User Guide

➂ Identify Clock Source
Using the MSL command, you must specify the clock source for each axis. In
doing this, you determine the master/slave relationship of the axes to one
another or to other boards. The MSL command must be specified in the form
MSLn1n2n3, where each nn value represents the clock source for axes ➀
through ➂.

Axis #1 For Axis #1, the possible values for n1 are as follows:

1 If axis #1 uses its own internal clock (master)
2 If axis #1 uses axis #2's internal clock (slave to axis #2)
3 If axis #1 uses axis #3's internal clock (slave to axis #3)
X If axis #1 is not in Data Streaming mode
Ø If axis #1 uses an external clock connected to pins 1 and 2 on the RMCLK slave-to-

external connector (refer to Chapter ➄ Hardware Reference for connections)

Axis #2 For Axis #2, the possible values for n2 are as follows:

1 If axis #2 uses axis #1's internal clock (slave to axis #1)
2 If axis #2 uses its own internal clock (master)
3 If axis #2 uses axis #3's internal clock (slave to axis #3)
X If axis #2 is not in Data Streaming mode
Ø If axis #1 and #2 uses an external clock (via the RMCLK connector)

Axis #3 For Axis #3, the possible values for n3 are as follows:

1 If axis #3 uses axis #1's internal clock (slave to axis #1)
2 If axis #3 uses axis #2's internal clock (slave to axis #2)
3 If axis #3 uses its own internal clock (master)
X If axis #3 is not in Data Streaming mode
Ø If axis #1, #2, and #3 uses an external clock (via the RMCLK connector)

CAUTION
Never overlap clock sources. For instance, do not issue MSL21X, where axis #2 would use
axis #1's clock source and axis #1 would use axis #2's clock.

When using the external clock, axis #1 must always use the external clock
and be set to a data streaming mode (1Q2 or 1Q3). If the command string
1Q2 2Q2 3Q2 MSLXØØ was issued, the MSLXØØ command would be invalid
because axis 1 is not using an external clock.

The most common use of the MSL command is to specify one axis as the master
while other axes follow the master. For example, if you use the MSL111
command, axis #1 is the master and axes #2 and #3 follow axis #1.

➃ Establish Timed Data Streaming Format and Data
The Streaming Data (SD) command specifies either the distance to travel (in
the Q2 mode) or the velocity output (in Q3 mode) in one update period.
Special data points implement certain functions such as loops, setting the
POBs, and waiting for a specific trigger input pattern. Data-intensive
streaming on one axis is likely to reduce command throughput on the other
axes that are not in streaming mode.

The format for the SD command is SDnnnn(nnnn[nnnn]), where nnnn is a
2, 4, or 6 byte HEX code. If one axis is in Streaming mode, the format is
SDnnnn. If two axes are in Streaming mode, the format is SDnnnnnnnn. If
all three axes are in Streaming mode, the format is SDnnnnnnnnnnnn.

SDnnnnnnnn

axis #2 axis #3

The order of the four HEX digits corresponds from the lowest to the highest
axis number value. For example, if axes #2 and #3 are in Timed Data
Streaming mode, the order is as shown in the graphic to the left.

SDnnnnnnnn

axis #1 axis #3

If axes #1 and #3 are in Timed Data Streaming mode, the order is as shown
in the graphic to the left.

Chapter ➃ Application Design 2 5

The range of values for the four HEX digits is ØØØØ - 7EFF or 8ØØØ - FEFF.
These values can represent distance in Q2 mode or velocity in Q3 mode. HEX
digits ØØØØ - 7EFF correspond to a data range of Ø - 32511 (decimal).

The most significant bit of the four hex digits sets the direction. A 1 (binary) in
this bit position means CW. The remaining three bits specify a magnitude.
Therefore, the data range ØØØØ - 7EFF corresponds to CCW, and 8ØØØ - FEFF
corresponds to CW. For example, to specify a CW distance of 100 motor steps, the
SD command would be SD8Ø64. To specify a CCW distance of 100 steps, the SD
command would be SDØØ64 (64 hex = 100 decimal).

Distance For an axis in the normal velocity range (SSFØ), the maximum distance that
can be specified is calculated as follows: [(UPDATE INTERVAL IN MS) • 1000/ 2] - 1

For example, if the update interval is 10 ms, the maximum distance is 4,999
steps (SD1387 or SD9387).

For an axis in the low velocity range (SSF1), the maximum distance that can
be specified is calculated as follows: [(UPDATE INTERVAL IN MS) • 100/ 2] - 1

For example, if the update interval is 10 ms, the maximum distance is 499
steps (SDØ1F3 or SD81F3).

Velocity For an axis in the normal velocity range, the velocity value for nnnn in
the SDnnnn command is determined by dividing the desired velocity by
15.259 Hz (15.259 steps/rev). For example, to achieve 1,526 steps/sec CW, use
the SD8Ø64 command (1,526/15.259 = 100 = 64rps HEX). If you wanted to
move CCW, you would use the SDØØ64 command.

For an axis in the low velocity range, the velocity value for nnnn in the
SDnnnn command is determined by dividing the desired velocity by 1.526
Hz (1.526 steps/rev). For example, to achieve 153 Hz (steps/sec) CW, use the
SD8Ø64 command (153/1.526 = 100 = 64 HEX) for one update interval. If you
wanted to move CCW, you would use the SDØØ64 command.

CAUTION
When specifying consecutive data points that are different in direction, you must insert a zero
(Ø) data point between the two non-zero data points that are different in direction. If this is not
done, Timed Data Streaming mode for this axis will be exited.

Special Data
Points

The maximum value for a normal data point is 7EFF or FEFF. The range of
values 7FØØ - 7FFF and FFØØ - FFFF performs specialized functions. Data
values in this range are interpreted not as data, but as special commands.

Loops SD7FØ1 thru SD7F7F and SDFFØ1 thru SDFF7F are loop commands with
the loop count as the two least significant hex digits. SD7F8Ø and SDFF8Ø
are endloop commands. The most significant bit corresponds to the
direction. Use SD7FØØ through SD7F8Ø for loops beginning CCW. Use
SDFFØØ through SDFF8Ø for loops beginning CW.

The loop count range is 1 - 127. SD7FØØ (CCW) and SDFFØØ (CW) are loop
commands with an infinite loop count.

+ Helpful Hint:
To create an infinite loop
that outputs 100 steps for
each update period, use
the following commands.

Command Description
SDFFØØ Loop an infinite number of times
SD8Ø64 Move CW 100 steps
SDFF8Ø End loop

+ Helpful Hint:
For a finite loop count of 5,
you could issue the
following commands

Command Description
SD7FØ5 Loop 5 times
SDØØ64 Move CCW 100 steps
SD7F8Ø End loop

Any loop can be terminated on a loop boundary by sending another endloop
data point. For instance, if the OEMØ23-AT was half way through the third
cycle of a 5-cycle loop and you issued another SD7F8Ø (or SDFF8Ø) command,
the OEMØ23-AT would finish the current loop cycle and then stop.

2 6 OEMØ23-AT Indexer User Guide

Outputs SD7FCØ thru SD7FFF commands set or clear POBs 1 - 5. In the SD data point,
bit positions Ø thru 5 correspond to POBs 1 - 6 respectively as follows:

SD Bit: 7 6 5 4 3 2 1 Ø
POB #: X X X 5 4 3 2 1

To set or clear a POB, two POB data points are required: a set/clear mask and
a don't care mask, specifying which bits are to be affected by the set/clear
mask and which ones are to be unaffected.

When a pair of POB set/clear and don't care mask data points are
encountered after the POB action is taken, the next distance or velocity data
point is taken from the data buffer. This means that only 1 POB data
point pair is allowed per update interval. If you specify more
than one POB data point pair, the motion may not be smooth.

+ Helpful Hint:
This example
demonstrates how to
calculate the two POB
data points needed to set
and clear POBs 1 - 5.

Desired outcome: POB1 = Ø POB2 = 1 POB3 = 1
POB4 = X POB5 = X

➀ Calculate the first SD7Fnn command (set/clear mask). The set/clear mask
specifies which bits (outputs) are not being turned off (output = Ø).

a Since there are only five outputs, put 111 on the front of the POB pattern (1,
1, 1, POB5, POB4, POB3, POB2, POB1). This is done to make two hex
characters. The result is 111XX11Ø.

b Replace Xs with 1s. The result is 1111111Ø.
c Convert the 8-bit binary number to HEX (result is FE).
d Thus, you should specify the data point as SD7FE.

➁ Calculate the second SD7Fnn command (don't care mask). The don't care mask
specifies which bits (outputs) are to be left in their current state (output = X).
a Replace 1s with Øs, and Xs with 1s in the POB pattern—Ø11ØØØ.
b Put 11 on the front of the new POB pattern (to make two hex characters).

The result is 11111ØØØ.
c Convert the 8-bit binary number to HEX (result is F8).
d Thus, you should specify the data point as SD7FD8.

When axes are in a master/slave arrangement via the MSL command, SD
data alignment is based on valid data points and not on Trigger, POB, or
Loop/Endloop data points. The following commands will output 100 steps
on each axis for the first update interval.

+ Helpful Hint:
POB #1 will be high and
both axes will output 50
steps during the second
update interval.

Command Description
SD8Ø648Ø64 Move both axes CW 100 steps
SD7FFF7FFF Set POB #1 high—leave the rest SD7FFE7FFE unchanged (equivalent to 1XXXXX)
SD8Ø328Ø32 Move both axes CW 50 steps

Triggers The SDFFCØ - SDFFFF commands implement a buffer pausebased on the
pattern of trigger bits 1 - 6. Buffer pause repeats the previous data value until
the trigger condition is met. In the SD data point bit, positions Ø - 5
correspond to triggers 1 - 6 respectively (i.e., bit Ø is trigger bit 1).

To implement a buffer wait function, two trigger data points are required. A
wait mask and a don't care mask specify which bits are to be affected by the
wait mask and which ones are to be unaffected. The calculations to compute
each mask are performed just like the output mask calculations discussed in
the previous section.

Once a valid trigger wait pair of data points is encountered, data points in the
buffer are not fetched in subsequent update intervals (buffer-paused) until
the pattern is satisfied. For example, to wait for trigger bits 2 and 3 to be set
and bit 1 to be cleared while ignoring bits 4, 5, and 6, the following SD
commands would be used.
Command Description
SDFFFE Wait for bit 1 to clear, bits 2 & 3 to be set, and SDFFF8 ignore bits 4, 5, & 6 (011XXX)

➄ Start Master Clock
The Master/Start (MSS) command initiates the start of the clock for the
pulse generation circuitry on any axis that is designated as a master.

Chapter ➃ Application Design 2 7

Data Streaming Restrictions
The following are restrictions to be considered when using the Timed Data
Streaming mode:

❏ If the master/slave relationship with another board is desired, then axis #1
must be included as a streaming axis, and must use the external clock.

❏ The minimum motor resolution required is 5,000 steps/rev.
❏ All master/slave axes must have the same velocity range (SSF command).
❏ If a limit is hit while in Timed Data Streaming mode (Q2 or Q3), Timed Data

Streaming mode is exited for that axis only (equivalent to a QØ command).
❏ For update periods of 6 ms or less, binary input mode is recommended (see

below).
❏ While streaming in a master/slave relationship, all slave axes should be exited

first, before the master axis. For example, when operating axis 1 through 3
under the command MSL111, you should exit as follows: 3QØ ... 2QØ ... 1QØ.

❏ Discrete data streaming is limited by the OEMØ23-AT buffer size (see
Continuous Streaming discussed later in this chapter).

Time-Distance Streaming Example
An application requires axes #1 and #2 to run in the Time-Distance
Streaming mode and axis #3 to be independent.

Command Description
3A1Ø Acceleration = 10 rps2

3V1Ø Velocity = 10 rps
3D25ØØØ Distance = 25000 steps
3L2ØØ Loop 200 times
3G Start motion
3T1 Pause 1 second
3H Change direction
3G Start motion
3H Change direction
3T2 Pause 2 seconds
3N End loop
1Q2 Enter streaming mode axis #1
2Q2 Enter streaming mode axis 2
MSL22X Synchronize axis 1 clock to axis 2, axis 3 independent
1TD1Ø Axis 1 update interval = 10 ms
2TD1Ø Axis 2 update interval = 10 ms
SDØØ64ØØ96 Move axis #1 100 steps CCW, move axis #2 150 steps CCW
SDØØØØØØØØ Stop axis 1 and 2 - required to change direction
SD8Ø6481CA Move axis 1 100 steps CW, move axis 2 458 steps C
SDFFØ5FFØ5 Loop axes 1 and 2, 5 times CW
SD8Ø648Ø64 Move axes 1 and 2 100 steps CW
SD7FF67FF6 Two commands required to
SD7FDØ7FDØ Set POBs (X,5,4,3,2,1) to XX0110
SD8Ø968Ø96 Move axis 1 and 2 150 steps CW
SD7FD97FD9 Two commands required to
SD7FDØ7FDØ Set POBs (X,5,4,3,2,1) to XX1001
SDFF8ØFF8Ø End loop
SDØØØØØØØØ Stop axes 1 and 2
SD7F7F7F7F Loop axis 1 and 2, 127 times CCW
SDØ1ØØØØFF Move axis 1 256 steps CCW, move axes 2 255 steps CCW
SDØØØØØØØØ Stop axis 1 and 2
SDFFFFFFFF Both axes wait on trigger (6,5,4,3,2,1,)
SDFFFBFFFB To be XXX1XX
SD7F8Ø7F8Ø End loop
SDØØØØØØØØ Stop axis 1 and 2
MSS Start master clock. Computer time delay needed (e.g., 1400 ms)
1QØ Exit streaming on axis 1
2QØ Exit streaming on axis 2

2 8 OEMØ23-AT Indexer User Guide

Time-Velocity Streaming Example
An application requires axis #1 and axis #3 to run in Time-Velocity
Streaming mode and axis #2 to run independently.

Command Description
2A1Ø Acceleration = 10 rps2

2V1Ø Velocity = 10 rps
2D1ØØØØ Distance = 10000 steps
2L2ØØ Loop 200 times
2G Start motion
2T1 Pause 1 second
2H Change direction
2G Start motion
2H Change direction
2T1 Pause 1 seconds
2N End loop
SSFØ High velocity mode (default)
1Q3 Enter streaming mode axis 1
3Q3 Enter streaming mode axis 3
MSL1X1 Synchronize axis 1 clock to axis 3, axis 2 independent
1TD2Ø Axis 1 update interval = 20 ms
3TD2Ø Axis 3 update interval = 20 ms
SD7F7F7F7F Loop axis 1 and 2, 127 times CCW
SDØØØ5ØØØ5 By end of update interval, velocity = 76.3 steps/sec
SDØØ1ØØØ1Ø By end of update interval, velocity = 244.1 steps/sec
SDØØØØØØØØ By end of update interval, velocity = 0 steps/sec
SD7F8Ø7F8Ø End loop
MSS Start master clock) computer delay needed (e.g., 60 ms)
1QØ Exit streaming mode axis 1
3QØ Exit streaming mode axis 3
SSF1 Low velocity mode
1Q3 Enter streaming mode axis 1
3Q3 Enter streaming mode axis 2
MSL1X1 Synchronize axis 1 clock with axis 3, axis 2 independent
1TD5Ø Axis 1 update interval = 50 ms
3TD5Ø Axis 3 update interval = 50 ms
SDFØØ5FØØ5 By end of update interval, velocity = 76.3 steps/sec
SD7FF67FF6 Two commands required to
SD7FDØ7FDØ Set POBs (6,5,4,3,2,1,) to 1X0110
SD7F2Ø7F2Ø Loop axes 1 and 2, 20 times CCW
SDFØØ5FØØ5 By the end of update interval velocity = 76.3 steps/sec
SD7F8Ø7F8Ø End loop
SD7FD97FD9 Two commands required to
SD7FDØ7FDØ Set POBs (6,5,4,3,2,1,) to 1X1001
SD8Ø1Ø8Ø1Ø By end of update interval, velocity = 24.41 steps/sec
SDØØØØØØØØ By end of update interval, velocity = 0 steps/sec
SD7F8Ø7F8Ø End loop
MSS Start master clock. Computer delay needed (e.g., 150 ms)
1QØ Exit streaming mode axis 1
3QØ Exit streaming mode axis 3

Motion stops when the time velocity buffer is empty.

Chapter ➃ Application Design 2 9

Discrete Data Streaming
The previous time-distance and velocity-distance examples use what is
referred to as discrete data streaming, which follows this pattern.

➀ Q2 or Q3 Enter time-distance or velocity-distance mode
➁ TD Provide time-distance update rate or period
➂ MSL Specify master/slave clock source
➃ SD Specify stream data or send distance
➄ MSS Master/slave start (start movement)
➅ QØ Exit time-distance mode

This form of streaming is useful when the number of SD data points does not
exceed the OEMØ23-AT's buffer capacity. Since each axis buffer can hold
1,000 characters, this corresponds to about 200 SD data points per axis
(1,000 bytes @ 5 bytes per SD data point).

By using discrete streaming, the standard communication handshaking can
be used (refer to TERMINAL.BAS, OEM23P.PAS, or OEM23C.C on the
support disks). Discrete streaming also allows update intervals of 2 ms to be
used without using the binary input mode or assembly language drivers.

Continuous Data Streaming
Continuous data streaming differs from discrete data streaming in that the
SD data points are sent to the OEMØ23-AT after starting the master clock,
instead of before starting the master clock. By choosing continuous
streaming over discrete streaming, you are not limited by the OEMØ23-AT
buffer. Therefore, you can send an infinite number of SD data points to the
OEMØ23-AT.

CAUTION
You must check bit 7 of the status byte to ensure that the OEMØ23-AT data buffer is able to
handle the data. The buffer cannot accept new data until bit 7 changes from Ø to 1. You can
send up to 200 data points (2 bytes per point) at one time and wait for bit 7 to change from Ø to
1 to send 200 more.

The command sequence required to conduct a continuous streaming
operation for each axis is as follows:

➀ Q2 or Q3 Enter time-distance or velocity-distance mode
➁ MSL Specify master/slave clock source
➂ TD Provide time-distance update rate or period
➃ MSS Master/slave start (start movement)
➄ SD Specify velocity or # of steps to output
➅ QØ Exit time-distance mode

Step ➄ can be accomplished in two different ways. One way is by repeatedly
using the standard OEMØ23-AT write drivers (refer to the TERMINAL.BAS,
OEM23P.PAS, or OEM23C.C programs on the support disk). The other
approach is to use the OEMØ23-AT's binary input capability (described
below)—files OEM23TDP.PAS and OEM23TDC.C.

3 0 OEMØ23-AT Indexer User Guide

Binary Input Mode
By using the binary input mode, you can use a much faster update rate.
Having a shorter update interval allows more precise control of the motion
segments. Within the binary input mode, the data points are entered as
binary words. Therefore, when you enter data this way, only two, four, or six
bytes (for one, two, or three axes) per input session are allowed. During each
input session, one SD data point (for 1, 2, or 3 axes) is transferred to the
OEMØ23-AT.

+ Helpful Hint:
The following steps are
required to support a
binary data input mode
session.

➀ Read the status byte (base address + 1) until bit 4 is set (OEMØ23-AT ready to
receive a byte).

➁ Send one byte of the 2, 4, or 6-byte data packet to the OEMØ23-AT data
register (base address).

➂ Send HEX 71 to the control byte (base address +1). This puts the OEMØ23-AT
in binary input mode and informs the OEMØ23-AT that a data byte has been
transferred to it.

➃ Read the status byte until bit 4 is cleared (data byte accepted by OEMØ23-AT)
➄ If the data byte that you sent in step 2 is the last byte of the 2, 4, or 6-byte

packet, send HEX 6Ø to the control byte (exit binary input mode). If the data
byte sent in step 2 is not the last byte, send HEX 61 (remain in binary input
mode) to the control byte and repeat steps 1 through 5.

Binary Input mode will work only in Continuous Streaming
mode.

Example Axes #1 and #2 are in the time-distance mode (Q2) with axis #1 as the master
and axis #2 as the slave, using the step pulse clock from axis #1 (i.e.,
MSL11X). The update rate is 2 ms (TD2).

To input a data point so that axis #1 outputs 100 steps CW for one update
period and axis #2 outputs 200 CW steps for the same period, two binary
words (4 bytes) are sent in one binary input mode session as follows (the
sequential order is from top to bottom).

Command Description
MSB1 HEX 80 (binary, not ASCII)
LSB1 HEX 64
MSB2 HEX 80
LSB2 HEX C8

On software support disk #2, binary input mode examples are written in two
different program languages: PASCAL and C.

Language Considerations
When creating a program in the timed data streaming mode, you must
consider the programming language you are using. Certain languages, such
as C, run considerably faster than BASIC. PASCAL also runs faster than
BASIC, even a compiled BASIC, such as Microsoft™ QuickBASIC.

On tests performed with an IBM compatible (80286 microprocessor), Borland
TURBO C 2.0 was able to run a continuous timed data streaming program
with an update interval of 6 ms (TD6). This program used the binary input
mode to communicate SD data points to the OEMØ23-AT. Using Borland
TURBO PASCAL 5.0, a similar program ran at 12 ms update intervals
(TD12). Using Microsoft Quick BASIC 4.5, a comparable program ran at 30
ms update intervals (TD3Ø).

If you require update intervals of 2 ms, you must use assembly language
binary input mode drivers. By linking these assembly language routines
into your BASIC, C, or PASCAL program, you will be able to obtain 2 ms
update intervals, even on a standard PC with an 8088 microprocessor.

Examples of how to link the assembly language binary input mode drivers
are provided on the support disk. For BASIC, reference the \BAS_ASM
subdirectory. For C, reference the \C_ASM subdirectory. For PASCAL,
reference the \PAS_ASM subdirectory.

Chapter ➃ Application Design 3 1

Communicating with the OEMØ23-AT
This section describes how the computer communicates with the OEMØ23-AT.

Read and Write Registers
To operate the OEMØ23-AT with X language commands and sequences, you must
be able to communicate with it via the computer's I/O bus. OEMØ23-AT
communication involves two pairs of registers. A register is a temporary
storage area for holding one character (or one eight-bit byte). Data transfer to
and from the register occurs one character at a time.

+ Helpful Hint:
Sample read and write
routines that access the
computer's I/O bus are on
demonstration diskettes that
accompany the OEMØ23-AT
(routines written in BASIC,
C, and PASCAL.)

Register pair #1 resides at the OEMØ23-AT's bases address set with the 8-
position DIP switch and consists of the input data buffer (IDB) and the output
data buffer (ODB). Register pair #2 resides at one address location above
the OEMØ23-AT's bases address and consists of the control byte (CB) and the
status byte (SB). The ODB and the SB are read-only registers. The IDB and
the CB are write-only registers.

Control Byte and Status Byte
X language commands are strings of ASCII characters. Sending a command
to the OEMØ23-AT requires transferring each character in the string one at a
time. Each character transfer requires the sender to notify the receiver that
a character is ready and the receiver to notify the sender that the character
has been received. This notification process involves setting or clearing
control bits (flags) in the 8- bit SB and CB registers.

❏ Set = high = binary value of 1
❏ Clear = low = binary value of Ø

Control Byte flags allow the host program to signal the OEMØ23-AT with
messages such as "A1Ø V1Ø D25ØØØ G". Status Byte flags allow the host
program to check the OEMØ23-AT’s operating conditions (e.g., motor C or
axis #2 is moving).

Control Byte (CB)
Flags

The following table shows the control byte flags available to the
programmer for signaling the OEMØ23-AT. Both this register and the status
byte communicate with the OEMØ23-AT.

Bit Definition
Ø Binary Input Mode (active high)
1 Unused
2 Stop watchdog timer (active high)
3 Acknowledge interrupt (active high)
4 IDB command character ready (active high)
5 Restart watchdog timer (active low)
6 Reset interrupt output (active low)
7 ODB message character accepted (active high)

Bit Ø When set, indicates that the binary input mode of data streaming is being used.

Bit 2 When set, causes the OEMØ23-AT's watchdog timer to time out and stop. When the
timer stops, it forces a hardware reset. The reset condition may be cleared by
cycling power or restarting the timer (see Bit 5 below).

Bit 3 When set, tells the OEMØ23-AT that its interrupt signal to the computer has been
noted and is no longer needed (see Bit 6 below).

Bit 4 When set, tells the indexer that a command character has been put into the IDB. The
OEMØ23-AT then clears Bit 4 of the status byte (SB) to indicate that the IDB is
unavailable, reads the character in the IDB , and sets Bit 4 of the SB to indicate to
the host that the IDB is ready for a new character.

Bit 5 Restarts the watchdog timer. It must first be cleared, then the timer will start up
when the bit is set again. This bit should never be toggled unless the timer has
timed out.

Bit 6 Resets the hardware interrupt latch and the interrupt output. The interrupt output
cannot be reset if the interrupt is not first acknowledged with Bit 3 above. These
bits should be cleared during Reset or Interrupt acknowledge.

Bit 7 When set, tells the OEMØ23-AT that a response character, previously placed in the
ODB by the OEMØ23-AT, has been received by the host, and a new character may
be placed in the ODB.

3 2 OEMØ23-AT Indexer User Guide

Status Byte (SB)
Flags

The status byte provides several information flags for the programmer. You
can use the status byte to assist in the communications process and to
provide run-time status information without the need to burden the indexer
with routine status request commands.

Bit Definition Power-up State
0 Axis 2 stopped (active high) Set
1 Axis 1 stopped (active high) Set
2 Axis 3 stopped (active high) Set
3 ODB ready (active high) Cleared
4 IDB ready (active high) Set
5 Board fail (active high) Cleared
6 Interrupt active (active high) Cleared
7 Timed data buffer > 1/2 full (active low) Cleared

Bits Ø, 1, & 2 Indicate whether the motors for the three axes are moving. At the beginning
of any move, the appropriate bit is cleared. Specifically, these bits indicate
whether or not the indexer is sending step pulses to the drives. These bits do
not indicate if position maintenance is in effect. Bits 3 and 4 are set when
their corresponding data buffer is ready.

Bit 3 Is set when the ODB contains an output character for the host, signaling the
host to read the information it contains.

Bit 4 Is set when the IDB is ready (computer may write a character to the IDB).

Bit 5 When set, tells the PC that the OEMØ23-AT's watchdog timer has timed out,
possibly indicating an internal failure from which it cannot recover. The only
way to clear this bit is to reset the indexer (cycle power to the OEMØ23-AT or
send hex 6Ø to the CB to restore it). Resetting the OEMØ23-AT is discussed in the
Programming section of this chapter. Running the self-test function will also
set this bit. When bit 5 is set, the drive shutdown output goes active, removing
motor torque, and generating a drive fault.

Bit 6 Indicates to the host that a conditional interrupt has been armed and that an
interrupt has occurred. If either jumper JU27 (selects interrupt 3) or JU28
(selects interrupt 4) on the indexer board is installed, then the OEMØ23-AT
has generated a hardware interrupt signal.

Bit 7 When cleared, indicates that the timed data streaming buffer is over half
full. This bit is only active when in time-velocity or time-distance
streaming mode. At all other times, the bit is cleared.

Communication Process
The following sequence of events occurs when sending a character to the
OEMØ23-AT:

➀ Read the SB until bit 4 is set.
➁ Write a byte (character) into the IDB.
➂ Write to the CB and set bits 4, 5, and 6.
➃ Read the SB until bit 4 is cleared.
➄ Write to the CB to clear bit 4 and set bits 5 and 6.

The following sequence of events occurs when receiving a character from the
OEMØ23-AT:

➀ Read the SB until bit 3 is set.
➁ Write a byte (character) from the ODB.
➂ Write to the CB and set bits 5, 6, and 7.
➃ Read the SB until bit 3 is cleared.
➄ Write to the CB to clear bit 7 and set bits 5 and 6.

Chapter ➃ Application Design 3 3

Programming
The OEMØ23-AT includes a support disk containing support routines
written in Quick BASIC, C, and PASCAL. ASSEMBLY routines to reset, read,
and write to the OEMØ23-AT are also included.

The support disk are divided logically into subdirectories. To go between
these subdirectories type: cd(subdirectory name). To back up one
subdirectory type: cd..

☞ Helpful Hint:
A terminal emulator program
is also included with the
support code. This program
(OEM23TRM.EXE) talks to
the OEMØ23-AT directly. It
is a good program to practice
making motion with the
OEMØ23-AT.

❏ The Quick BASIC support routine is contained in the QBASIC subdirectory.
❏ The C support routine is contained in the C subdirectory.
❏ The PASCAL support routine is contained in the PASCAL subdirectory.

The ASSEMBLY routines are in the QBAS_ASM, C_ASM, and PAS_ASM
subdirectories. Each of these subdirectories show how to link ASSEMBLY code
to the appropriate programming language (Quick BASIC, C, or PASCAL).

Support Disk Files
To install the support disk onto your hard drive. Type INSTALL at the DOS
prompt.

Support Disk File
Structure

OEM23

OEM23.H OEM23TRM.C SEND23.PAS CURSOR.C

OEM23C.EXE
OEM23C.C

OEM23.INC
O23ASMC.EXE
O23BWRC.OBJ
O23RDCF.OBJ
O23RSCF.OBJ
O23WRCF.OBJ
O23WRCF.ASM
O23RSCF.ASM
O23RDCF.ASM
O23BWRC.ASM
O23ASMC.C
CREATE_C.BAT

O23ASMP.EXE
O23ASMP.PAS
O23RSPF.OBJ
O23BWRP.OBJ
O23RDPF.OBJ
O23RSPF.ASM
O23RDPF.ASM
OEM23.INC
O23WRPF.ASM
O23BWRP.ASM

OEM23P.EXE
OEM23P.PAS

OEM23\C OEM23\C_ASM OEM23\PAS_ASM OEM23\PASCAL

OEM23ASM.EXE
OEM23.INC
OEM23ASM.BAS
OEM23QB.LIB
OEM23QB.QLB
CREATEQB.BAT
O23BWRQ.OBJ
O23RDQF.OBJ
O23RSQF.OBJ
O23WRQF.OBJ
O23WRQF.ASM
O23RSQF.ASM
O23RDQF.ASM
O23BWRQ.ASM
BQLB45.LIB

OEM23\QBAS_ASM

TERMINAL .BAS
TERMINAL.EXE
MOVE.EXE
MOVE.BAS

OEM23\QBASIC

OEM23TDP.EXE
OEM23TDP.PAS
OEM23TDC.EXE
OEM23TDC.C
IO3.DAT
IO2.DAT
ONEREV.DAT
IO.DAT
SQUARE.DAT
CIR.DAT

OEM23\TIMEDIST

OEM23TRM.EXE SEND23.EXE OEM23.C

Designing the Computer Program
Users are responsible for creating computer programs. Writing an interactive
program is not difficult for an experienced programmer. If you are not a
programmer, it would be prudent to seek advice or assistance from someone
familiar with both programming and your computer.

The OEMØ23-AT is designed to operate motor axes in a fashion largely
independent of the computer, requiring only a small number of high level
commands and interaction. This interaction is almost exclusively in the
form of characters and strings rather than numbers. The programmer will
need knowledge of string handling in the programming language to be used.
Regardless of the intended purpose of the program, it must include
subroutines or procedures to do the following (in order of importance).

☞ Helpful Hint:
The programs should allow a
non-programmer to change
the process being controlled
without requiring the
program to be rewritten or
compiled.

❏ Reset the indexer
❏ Send a command string to the indexer
❏ Receive a character string from the indexer
❏ Decode Status Request responses
❏ Allow input of indexer command files

The examples illustrate the recommended approach to communicate with
the indexer (not necessarily optimum for any specific application).

3 4 OEMØ23-AT Indexer User Guide

Sending and Receiving Strings
The algorithms shown in this chapter are required components for any
program. Sending command strings of varying lengths is easy because the
length of the string is easily known. Any general-purpose programming
language will have the string length and string pointer functions needed to put
together an iterative algorithm to send a string one character at a time.

Response strings are not always the same length. It is not always possible to
predict when a response will occur (some responses are strings representing
numbers and some responses are codes represented by strings).

The choice of commands will determine the data that the indexer returns.
You must make provisions to interpret the indexer responses to status
requests. When the response is a single character (@, A, B, M) etc., the
meaning of the character is a function of the requesting command.

+ Helpful Hint:
In general, it is always a
good programming
practice to precede the
status request commands
with the appropriate axis
specifier.

There is nothing inherent in a response that identifies which decoding
process should be applied to the single character of the response. Position
report responses are a function of the specific command to the OEMØ23-AT
and can be decimal, hexadecimal, or binary data, with varying zero reference
positions. In the default report format, axis #1 can respond in a format
different from the other two axes.

Receiving Status Information and Data
Reading status with an INP instruction (see below) is a simple process.

BYTE = INP(ADDRESS+1) QUICK BASIC
BYTE = INP(ADDRESS+1) MICROSOFT C, BORLAND C
BYTE = PORT(ADDRESS+1) TURBO PASCAL

The numeric variable named ADDRESS has previously been set equal to the
base address of the OEMØ23-AT. This instruction sets the numeric variable
named BYTE equal to the binary number corresponding to the bit pattern of
the OEMØ23-AT's status byte.

This instruction may be executed at any time, regardless the OEMØ23-AT’s
status. The resulting variable BYTE may serve as a regular number or as a
logic value. As a logic value, it can be logically ANDed with a mask logic
value to reset all the bits in BYTE other than the status bit of interest.

Testing Individual Status Bits
In the status byte’s (SB) definition, Bit 3 of the 8-bit status byte will be 1 if an
output character is waiting, Ø if not (bits are numbered Ø - 7). To test this bit,
set all other bits to zero by ANDing the byte with a mask and run a logical test
on the result for zero (false). Bit 3 has a binary weight of 8.

Logical Masking
Example

Suppose the OEMØ23-AT returned a status byte value of 89, Bit 3 is high.

 Dec Hex Binary

BYTE = 89 = 59 = Ø1Ø11ØØ1 \
 > logic AND = ØØØØ1ØØØ

Mask = 8 = Ø8 = ØØØØ1ØØØ / (TRUE)

If the OEMØ23-AT returns the value 7Ø, a check on Bit 3 reveals that it is low.

 Dec Hex Binary

BYTE = 7Ø = 46 = Ø1ØØØ11Ø \
 > logic AND = ØØØØØØØØ

Mask = 8 = Ø8 = ØØØØ1ØØØ / (FALSE)

☞ Helpful Hint:
This example will trap the
computer if the OEMØ23-
AT has not received a
status command.

In Quick BASIC, this check might appear as follows:

BYTE = INP (ADDRESS+1)
IF (BYTE AND 8) > Ø THEN GOTO 3Ø2Ø ELSE GOTO 3ØØØ
CHAR = INP (ADDRESS)
CHAR$ = CHR$ (CHAR)
ANSWER$ = ANSWER$ + CHAR$
etc.

This instruction sends the program back to read the OEMØ23-AT status until
a character is ready. Then the character may be read.

Chapter ➃ Application Design 3 5

Sending Control Information and Data
To write bytes to the OEMØ23-AT, use the following instructions.

OUT ADDRESS, ALPHA BASIC
OUTPORTB(ADDRESS, ALPHA); TURBO C
OUTP(ADDRESS, ALPHA); MICROSOFT C
PORT[ADDRESS]: = ALPHA; PASCAL

Resetting the OEMØ23-AT
The following are step-by-step procedures for writing your own subroutines
for resetting the OEMØ23-AT:

➀ Write 64 Hex to the Control Port (Board Address +1).
➁ Read the Status Port (Board Address +1) until the status byte and 20 Hex > 0.
➂ Write 40 Hex to the Control Byte (Board Address +1).
➃ Write 60 Hex to the Control Byte (Board Address +1).
➄ Read the Status Port (Board Address +1) until the status byte and 7F Hex = 17 Hex.
➅ Write 20 Hex to the Control Port (Board Address +1).
➆ Write 60 Hex to the Control Port (Board Address +1).

Reading
Characters From
the OEMØ23-AT

Use the following procedure to read characters from the OEMØ23-AT:

➀ Initialize the ASCII variable to null (Ø).
➁ Read the Status Port (Board Address +1) until Status Byte and 8 Hex >0.
➂ Read the Data Port (Board Address) in to the ASCII variable.
➃ Write EØ Hex to the Control Port (Board Address +1).
➄ Read the Status Port (Board Address +1) until the status byte and 8 Hex = 0.
➅ Write 60 Hex to the Control Port (Board Address +1).

Writing
Characters to a
OEMØ23-AT

Use the following procedure to write characters to the OEMØ23-AT:
➀ Convert the character to ASCII. This may not be necessary in some programming

languages such as C (except for axes in Binary Input Data Streaming mode).
➁ Read the Status Port (Board Address +1) until the Status Byte AND 10 Hex > 0.
➂ Write the ASCII character to the Data Port (Board Address+1).
➃ Write 70 Hex to the Control Port (Board Address +1).
➄ Read the Status Port (Board Address +1) until the Status Byte AND 10 Hex = 0.
➅ Write 60 Hex to the Control Byte (Board Address +1).

Program Examples
The support disk files below provide read, write, and reset routines.

❏ MOVE.BAS (written in Quick BASIC)
❏ OEM23P.PAS (written in PASCAL)
❏ OEM23C.C (written in C)

These files provide the foundation from which you can design a motion
control program for the OEMØ23-AT. The following are examples of how to
use these files to create your own OEMØ23-AT program.

BASIC Program
Example

Use the following steps as a guide to develop your custom OEMØ23-AT BASIC
program.

➀ Make a copy of MOVE.BAS.
➁ Edit the CMD$ code to fit your application’s needs.
➂ The response is returned in ANSWER$.

CMD$ = "A1 V2 D25ØØØ G123 1PR 2PR 3PR"
SEND CMDSTRING (CMD$)
PRINT CMD$
PRINT
FOR I = 1 TO 3
PRINT "POSITION OF AXIS ";
DO

BYTE = INP (ADDRESS + 1) 'READ STATUS BYTE
LOOP WHILE (BYTE AND ALDONE) <> ALDONE 'TEST FOR MOVE DONE
DO

ANSWER$ = GET RESPONSE$
LOOP UNTIL ANSWER$ <> ""
PRINT ANSWER$
NEXT I

➄ Compile and run the program.

3 6 OEMØ23-AT Indexer User Guide

C Program
Example

Use the following steps as a guide to develop your custom OEMØ23-AT C
program.
➀ Make a copy of OEM23C.C.
➁ Edit the main program of the copied file.
➂ To send a command, place the X language in message (message = A1Ø V1Ø

D25ØØØ G). Then make a call to procedure writecmd (message).
➃ To get a response from the OEMØ23-AT, use procedure readanswer (answer).

The response is returned in answer.
➄ Example: main() {

char *message,*answer;
answer="";
initialize(); /*resets OEMØ23-AT*/
message = " 1PR ";
writecmd (message);
readanswer (answer);
printf (answer);
} /* end of main*/

➅ Compile and run the program.

PASCAL Program
Example

Use the following steps as a guide to develop your custom OEMØ23-AT
PASCAL program.

➀ Make a copy of OEM23P.PAS.
➁ Edit the main program of the copied file.
➂ To send a command, place the X language commands in message (cmd = A1Ø

V1Ø D25ØØØ G). Then make a call to procedure writecmd (768,cmd) where
768 is the OEMØ23-AT board address.

➃ To get a response from the OEMØ23-AT, use procedure readanswer
(768,answer). The response is returned in answer.

➄ Example: begin
answer:='';
Initialize (768);
cmd:=' A1Ø V1Ø D25ØØØ G PR ';
Writecmd (768,cmd);
while answer='' do Readanswer (768,answer);
writeln (answer);
End

➅ Compile and run the program.

Chapter ➃ Application Design 3 7

Special Modes of Operation
This section discusses special modes of operation for the OEMØ23-AT. These
special modes include the following:

❏ Using multiple OEMØ23-ATs with one computer
❏ X-Y linear interpolation
❏ Using interrupts

Multiple OEMØ23-AT Addressing
Multiple OEMØ23-ATs can be synchronized by using one master clock. By
making the connections shown below and using the MSL command to specify
the master/slave relationship of the different axes, any number of OEMØ23-
ATs can be made synchronous.

Master OEMØ23-AT Output Slave OEMØ23-AT Input
❏ RMCLK+ (2) on J1 ❏ XMRMCLK+ (32) on J3
❏ RMCLK- (4) on J1 ❏ XMRMCLK- (34) on J3

Connections Master Slave #1 Slave #2
RMCLK+ (2) on J1 ➞ XMRMCLK+ (32) on J3 ➞ XMRMCLK+ (32) on J3…
RMCLK- (4) on J1 ➞ XMRMCLK- (34) on J3 ➞ XMRMCLK- (34) on J3…

+ Helpful Hint:
The table below lists parts
and tools needed to make
a synchronization cable.

20-22 AWG Wire
AMP Connectors
Tools:

Manual tool for double row connector
Conversion kit for single row connector
Single row 4 position (cover)
Single row 4 position (housing)
Double row 8 position (kit)

X-Y Linear Interpolation
To move multiple orthogonal linear axes in a straight line, you must make
all the axes start, finish accelerating, start decelerating, and stop, in a
synchronized fashion.

The simplest case involves producing a 45° angle line of movement with two
axes. Both axes (X and Y) are given the same velocity, acceleration, and
distance parameters (to produce other angles, these three parameters must be
proportionally scaled).

Typically, the task is to derive appropriate move parameters to get from the
current location to a new location, where each position is specified by a set of
Cartesian coordinates. Linear acceleration and velocity are specified.

In the following example, the incremental distance parameter for each axis
is the difference between the target position coordinate and the current
position coordinate for that axis. The ratio of incremental distance for one
axis to that of the next establishes the ratio of the respective accelerations
and velocities. Linear acceleration and velocity is the vector sum of these
components. The Pythagorean theorem provides the formula for calculating
the velocity.

Example The two-axis X-Y positioning system must move from its current position to
a new position at a linear speed of 1 inch/second (VL = 1). A motor velocity of
4 rps translates to 1 inch per second (ips) on both axes. Acceleration on any
axis must not exceed 100 rps2.

3 8 OEMØ23-AT Indexer User Guide

+ Helpful Hint:
The following procedure is
used to determine the
move parameters.

Current Position: X0 = -60,000 Target Position: X1 = 180,000
Y0 = 200,000 Y1 = 20,000

➀ Determine incremental distances (D) and the ratio:

X axis distance = X1 - X0 = +240,000 = D+24ØØØØ

Y axis distance = Y1 - Y0 = -180,000 = D-18ØØØØ

Ratio = Y/X = -0.75

➁ Determine the velocity (V) settings:

Velocity ratio = VY = 0.75(VX)
Pythagoras = VL2 = VX2 + VY2

Substitution = VL2 = VX2 + (0.75(VX))2 = 1.56(VX2)
VX

2 = VL
2/1.56 = 0.8006ips = 3.20rps = V3.20

VY = 0.75(VX) = 0.6004ips = 2.40rps = V2.40

+ Helpful Hint:
Specific proportional
acceleration values may be
calculated in the same way the
velocity is calculated above

➂ Determine the acceleration (A) settings:
Acceleration ratio = AY = 0.75(AX)
AX = 100 rps

2 = A1ØØ

AY = 75 rps
2 = A75

➃ Enter the commands derived from steps ➀ through ➂ above:

+ Helpful Hint:
Once these commands are
entered, the OEMØ23-AT is
ready to make the synchronous
move (by issuing the G12
synchronous Go command)
subject to the requirements
discussed below.

Command Description

1A1ØØ Set acceleration on axis 1 to 100 rps2

1V3.Ø24 Set velocity on axis 1 to 3.024 rps
1D24ØØØØ Set distance on axis 1 to 240,000 steps CW
2A75 Set acceleration on axis 2 to 75 rps2

2V2.268 Set velocity on axis 2 to 2.268 rps
2D-18ØØØØ Set distance on axis 2 to 180,000 steps CCW

When polar coordinates are used, the distance to the endpoint (radius) and
the angle from the X axis are known. In this case, the distance (D) for the X
axis is equal to the radius multiplied by the cosine of the angle. The distance
for the Y axis is equal to the radius multiplied by the sine of the angle. The X
and Y velocity and acceleration parameters may be derived from linear
parameters in the same way.

Using Interrupts
The OEMØ23-AT has one interrupt signal available to be activated upon
specific conditions. This interrupt signal can be directed at either of two
interrupt request lines, IRQ3 or IRQ4. Jumper 27/28, located just above the
edge connector on the OEMØ23-AT indexer card, determines which interrupt
request line is activated. Installing a jumper on the JU27 pins selects IRQ3,
and installing a jumper on the JU28 pins selects IRQ4.

You, the user, are responsible to enable the 8259 interrupt controller chip in
the PC to accept the interrupt request. You must also set the corresponding
interrupt vectors to accommodate the interrupt request.

8259 Interrupt
Controller Chip

Use the following procedure to enable the 8259 interrupt controller chip:

➀ Read in the current interrupt mask register (IMR) at the I/O address (21 HEX).
➁ Clear the proper bit to enable interrupt hardware (IRQ3 = bit #3, IRQ4 = bit #4).
➂ Write the IMR back to the 8259 chip.

unsigned char int_8259; /* Byte to read IMR into */
int_8259 = inportb(0x21); /* Read IMR for current settings */
int_8259 = int_8259 & 0xF7; /* Clear bit 3 */
outportb(0x21,int_8259); /* Write new IMR */

Chapter ➃ Application Design 3 9

Interrupt Vector The IRQ3 interrupt corresponds to the 11th interrupt vector. Since each
vector is 4 bytes long, the user must modify the 4 bytes located at memory
address ØØØØ:ØØ2C to point to the interrupt service routine. For IRQ4,
modify the 4 bytes at memory address ØØØØ:ØØ3Ø.

Usually, IRQ3 and IRQ4 are assigned to the computer's serial ports, COM 2
and COM 1 respectively. Therefore, when making changes to these vectors.
Avoid conflicts with communication cards that may require these vectors.

The following is an example of changing the interrupt vector for IRQ3:
VOID INTERRUPT(*OLDVECT) (); /* VARIABLE TO HOLD ORIGINAL INTERRUPT VECTOR */
VOID INTERRUPT_IRQ3_SERV(VOID); /* FUNCTION PROTOTOPE FOR INTERRUPT ROUTINE */

OLDVECT = GETVECT(ØXB); /* GET ORIGINAL VECTOR AND STORE */
SETVECT (ØXB, IRQ3_SERV); /* SET VECTOR TO POINT TO INTERRUPT ROUTINE */

SETVECT (ØXB, OLDVECT); /* BEFORE EXITING PROGRAM, RESET ORIGINAL VECTOR */

Interrupt
Commands

You can activate the OEMØ23-AT's interrupt output based on several
conditions for each axis. The QS command allows you to enable or disable
the interrupt-on-condition functions. No hardware interrupt will be
generated until a specific QS command has been issued and the
corresponding condition is met. The possible interrupt-on-condition
functions are listed below.

❏ Interrupt on Trigger #1 high (QSA command)
❏ Interrupt on Move Complete (QSB command)
❏ Interrupt on Encountered Limit Switch (QSD command)
❏ Interrupt on Ready to Respond (QSE command)
❏ Interrupt on Command Buffer Full (QSG command)
❏ Interrupt on Motor Stall (QSH command)

The QR command reports which interrupt-on-condition functions have been
selected with the QSA - QSH commands. The QI command reports which
interruptible conditions are active. The QI command always shows a
response to in position (QSB1), even if the interrupt is not enabled (QSBØ).

You can take advantage of the OEMØ23-AT's interrupt capabilities without
actually generating any host interrupts. This is done by arming whatever
interrupt conditions are desired for each axis, and then polling the status
byte (SB) to see if the Interrupt Active bit (bit #6) is set. Then, each axis must
be polled with the QI command to determine the source of the signal.

Clearing the
Interrupt Signal

Once an interrupt signal is generated, two steps are required to remove that
signal. First, the hardware device (latch) that holds the signal must be
cleared (toggle the Reset Interrupt Output bit (bit #6) in the control byte (CB).
Second, the host must acknowledge the interrupt. This calls for toggling the
OEMØ23-AT's Interrupt Acknowledge bit (bit #3) in the CB.

+ Helpful Hint:
The following is example
code used to clear an
interrupt.

#INCLUDE <CONIO.H>
MAIN()
INT PC21ADDR = ØX3ØØØ;
OUTP(PC21ADDR+1, ØX68); /* ACKNOWLEDGE INTERRUPT */
WHILE(INPORTB(PC21ADDR+1) & ØX4Ø); /* WAIT FOR INTERRUPT SIGNAL TO GO LOW */
OUTP(ØX2Ø, ØX2Ø); /* SEND END OF INTERRUPT SIGNAL TO 8259 */
}

When your interrupt service routine is complete, remember to send an EOI
(end-of-interrupt) signal to the 8259 chip, as shown below:

outportb(Øx2Ø, Øx2Ø); /* clear interrupt from 8259 chip */

