ISSUE 5

DIGIPLAN USER INFORMATION

IF1 & IF2 STEPPER MOTOR INTERFACES

CONTENTS
INTRODUCTION . ottt ettt ettt senenaseennonnnssoeeeenneeennnnnnns 3
SERIAL COMMUNICATION VIA RS232C....... Ce et etres e cheeeeaan 3
The serial data format................ et et y
Number of Stop bits....iiiiieiiriinnnnnnneennnnennnns y
Number of data bifs..iiiuiieinnnnnnnneenrnnnnennenns y
Parity.......c.... teteseseaereeaaaan Ceecreesasneaann 5
Echo=bacKk...vuietiiinneinnnnennnennns Cee ettt 5
Baud rate.......... et ee ettt sttt 5
Signal levels......... e s aenas cheenresassrsanae seeeb
The RS232C control lines........ Cee et ie et ceedb
Control of data transfer.....uc.uiiiee e ereneennnnnnns 6
Alternative connection methods............... ceeeen .7
INSTALLATION........ Ceeecstr s Ceeereieteeeeen e esen e 9
Power requirements.........oe0vuu.. cessecsnenna -
Fault disable L1inKS..uiiuwuiereeeerenenooeeeenneennnnnn 9
Motherboard connector identification............... ..9
Connections to RS232C port.......... cesesannae tesssese 9
Input and output signal connections................. 10
Emergency stop and limit inputs........... seecvssesse 10
Using the optically-isolated outputs...... crereeeeas 11
Optional fault OULPUL ... vttt innnnnenneenennnnnn. 12
Using the optically-isolated inputS............0..... 12

RS232C USER ' 1

CONFIGURING THE INTERFACE...eeveuivreeennnnnannosasnanoasnasall

INitialisation. .. eeeeeenseacacensosssasnsasansanassl3
Inter-character delay....eeeeeeeceessinenesnsseasaasll

SENDING BASIC MOVE INSTRUCTIONS...ceueeevsennonnessonnsaneastll

U
a5

.
I 11
.
.

ST o T=2-T I R
Start/stop speed...cceviniiicanionnsnnnn
Acceleration rate....ceiieiiiieeeinnnaas
Index mode instructions.........ceceenen
Run mode instructions........ceveeevueenn
Backlash correction.....cveenececaacnnnas

e s e e

P 1
B N
e N

e s e s e »

OUTPUT CONTROL....vcveevsnen P .

Output switching commandS........oeeeeseascaanasessalB
Combining inputs & outputs with move instructions...18

SEQUENCE MODE. . e vueeseenenrasosssosnossanesnsasesassnsonsssesl?

Programming @ SEQUEeNCEe.....coevuvevesosnsonanossssssld
Repeating parts of a SEQUENCE...ousserecacansssaesssll
Aborting a run in a sequence......... J - |
Controller intervention in a sequence...............21
Backlash correction in sequence mode.......... ceeeal22
Adding time delayS..veereeerososoncsensonnnnssssaessll

LINEAR INTERPOLATION MODE...... e esessseseenanenao s eeeesa22
Programming in the linear interpolation mode........22
Duplicating the major or minor axis move on the
third axis...oveveeiireeeenns Ceeececsasescneaasrasedl3
Constraints in linear interpolation mode............ 23
Linear interpolation in sequence mode...............23

COMMUNICATION LOCKOUT COMMANDS......co.veen. D
REPORT-BACK FUNCTIONS....... Ceet e eresesec st eaesoan -

Motion status.....eveeveennnns F -

Input status........... -4
Sequence status...... -4
Quick StaALUS .. v veeivreeesuesnessseseesoancans 5]
Busy status....eeeiiiiriinninennnenennaans eeereceesa2b
Position report-back......eouuues -4
Position report-back in linear interpolation........27

CLEARING FAULT CONDITIONS..ueeeoeensensansosnsnsennannnanosssll
DEFAULT VALUES .. . ciiveeeaeenen -3 -
USING THE BATTERY BACKUP (IF2 ONLY)..uveiievoooasaseaaoenssa28
Storing a sequence in the IF2.......0vteuvneeneesss..28
Running the stored Sequence........oeeeeesseesoecess28
Changing the sequence data.......ccovvvicnensennn .29
Breaking into a locked interface........ eeeseesaessl9
Using a computer to program the interface...........29
APPENDIX 1. FULL COMMAND LIST....... G 10
APPENDIX 2. CONNECTION DETAILS & GENERAL INFORMATION.......32
APPENDIX 3. SAMPLE PROGRAMS & CONNECTIONS.....eoeseesvssssa38
INDEX .t veveroonnasnnnens Ceere e Cehesereecear e [y~

RS232C USER 2

IF1 & IF2 STEPPER MOTOR INTERFACES

INTRODUCTION

The IF1 and IF2 Interface Cards permit up to three stepper motors to
be controlled via an RS232C serial link. The controller may be a
simple non-intelligent terminal, a microprocessor, programmable logic
controller or a mainframe computer, in fact any suitable device with
an RS232C port.

Information is transmitted to the interface in the form of a series of
commands giving the required speed, direction, distance etc. From
this information the interface generates a ramped pulse waveform
suitable for feeding directly to the clock input of a stepper drive.
The controller is then free to perform other tasks while the motor is
running.

The diagram below shows a typical two-axis system using the IF1. The
interface, stepper drives and power supplies are normally housed in a
pre~wired rack with all the interconnections between units already
made. The interface motherboard incorporates an RS232 socket for
direct connection from the controller.

X MOTOR ¥ MOTOR 1092 AC
conTRoLLER B) RANS. 0

MOTHENBOARD

"

" POWER RA22/AS232
supILY

TYPICAL SYSTEM

The IF2 is functionally identical to the IF1 but it includes a battery
backup facility, enabling a complete move sequence to be retained with
power removed and the controller disconnected.

SERIAL COMMUNICATION VIA RS232C

The IF1 receives and sends data using an RS232C port connection on a
suitable controller. The RS232C specification defines all the
essential details of the communications link like signal levels,
connector type, pin allocations and the general data format. However
there are numerous variations possible within the basic framework, and
both interface and controller must be configured to operate in the
same way. This method of communication is referred to as
"asynchronous serial". The data is transmitted one character at a
time, a character comprising a number of bits sent along the same
piece of wire one after the other. Start and stop bits mark the
beginning and end of each character. The time interval between each

RS232C USER 3

bit of the character is defined, and a number of alternative bit rates
may be used. However the whole character,including start and stop
bits, can be transmitted at any time with no reference to any kind of
timing waveform, hence the description "asynchronous".

The serial data format.

Each transmitted character has to be represented by a string of bits
which the receiver will recognise. The ASCII code is used (see
Appendix 1), and all the characters we employ can be represented by 7
bits. To take an example, the run mode command "G" is represented by
the hex code 47 (equivalent to decimal 71). The bit pattern will be:

) Hex? s Hex&
(Vo2 b o8,y16 32 64! pecimal Equivdlent
Logic ! HE [

Level 0 =\ ", "3 5 § 7 BitNo.

The least significant bit is transmitted first. Start and stop bits
are added to the character code before transmission; the start bit is
at logic 0, the stop bit at logic 1. So the transmitted data becomes:

Hex 4% .- |

However, we have to contend with variations within this "frame" in
order to match the interface to different controllers.

Number of stop bits.

Either one or two stop bits may be used. It is quite common to use
two stop bits and the interface is automatically initialised to work
with two.

Number of data bits.

All the characters needed to operate the interface may be represented
by 7 bits. However, some controllers send 8 bits and expect to
receive 8 bits. The interface can be reconfigured to operate with 8
bits, the last bit being 0, 1 or data-dependent. The latter case is
only significant in the echo-back mode or when the quick-status
function is needed (see later).

RS232C USER 4

Parity.

As a check for transmission errors, a parity bit can be included with
the option of odd or even parity. If odd parity is used, the total
number of bits at logic 1 (ignoring start and stop bits) should be
odd. Therefore if the character code contains an even number of 1's,
a parity bit is added to make the total odd. Similarly, with even
parity the parity bit is chosen to produce an even number of 1's. Our
previous example with parity added will look like this:

A B
b —
0dd Parity 1o -3 gJ
Even Parily | [i [

It can be seen that the parity bit makes the total number of bits at
logic 1 between A and B odd or even as required.

Echo back.

A parity check is a useful guard against transmission errors, but it's
not infallible. Far greater security results from using echo-back,
when each character is returned to the controller for comparison with
the transmitted data. This naturally slows down communication, but
the chance of an error remaining undetected becomes extremely small.

Baud rate.

All these variations on the basic format can be programmed into the
interface as part of the start-up procedure. However, there's
another variable parameter to mention but this one is set up automati=-
cally. Data can be sent over an RS232C link at various speeds. The
options available with the IF1 are 110,300, 600, 1200, 2400, 4800 or
9600 bits per second. A speed of 1200 bits per second is described as
1200 baud; assuming 12 bits per character (8 data bits, start, parity
and 2 stop bits), this is equivalent to 100 characters per second.

The interface senses the baud rate automatically during transmission
of a standard character from the controller. Note that speeds of 4800
and 9600 baud should only be used with echo-back.

Signal levels.

Both positive and negative voltages are used on the RS232C data lines.
The IF1 uses +12v and -12v, but in practice a fairly wide range of
voltage is acceptable because the receiver only has to distinguish
between positive and negative. The line levels are -12v for logic 1
and +12v for logic 0, as shown below:

: 1
Data 0 ! i 1

+12V
Line 0
Signal

-12V

RS232C USER 5

In the case of the control lines (DTR, CTS etc.) the positive line
level corresponds to "signal present".

The RS232C control lines.

An RS232C serial link can transmit and receive data using a minimum of
three lines, one to carry data in each direction and a ground. When
this arrangement is used, it is essential to use echo-back for
reliable communication. There are additional control lines available
which are supported by the IF1, as shown in the following list. These
lines enable both the transmitter and receiver to exercise greater
control over the transfer of data, and ensure that both units are
ready before transfer takes place.

Signal name Description Direction Pin no.
DTR Data terminal ready 0/P 20
DSR Data set ready /P 6
RTS Request to send 0/p 4
CTS Clear to send /P 5
TXD Transmit data 0/P 2
RXD Receive data /P 3
Ov. Signal Ov - 7

The line level is positive (+12v) when the signal is present, and
negative (-12v) when it is absent. The function is described as "set"
when positive and "reset" when negative.

Note that the data carrier detect function (DCD) is not supported by
the IF1.

Before the IF1 can transmit data back to the controller, all the
control lines RTS, CTS, DSR and DTR must be set. RTS and DTR are both
outputs from the interface, and these will be set prior to the start
of transmission. The interface will therefore not transmit data until
DSR and CTS are both set. The following section gives further details
on the operation of the DTR line.

Control of data transfer.

Characters sent to the IF1 are received by a UART and then loaded into
a 6U-character input buffer. Transfer from the UART to the input
buffer takes place at approximately 1mS intervals, which means that
characters can be transmitted safely at speeds up to 2400 baud. Above
this speed, it is possible for characters to be lost by being
overwritten before they get transferred to the buffer. It is
therefore essential to use echo-back at rates above 2400 baud. If the
correct character is not returned, the cancel character "# <CR>"
should be sent before retransmission is attempted.

If characters are sent to the IF1 more rapidly than they can be
processed, they will accumulate in the input buffer. Long strings of
characters sent at high speed could therefore cause the buffer to
overflow, and to guard against this the interface resets the DTR line
if the buffer becomes 80% full. DTR is set again when the buffer has
become less than 20% full. The controller should therefore interrupt
data transmission if this signal becomes reset.

RS232C USER 6

The DTR line is normally connected to the DSR input at the controller.
Not all controllers support the DSR function, and in this case the DTR
line may be connected to the CTS input at the controller (see sample
connections in appendix).

An alternative method of controlling data transfer by software is to
use the X-on, X-off mode. If the IF1 buffer is 80% full, an X-off
character (13 Hex) is transmitted to the controller to terminate data
transfer. When the buffer becomes 20% full, X-on (11 Hex) is trans-
mitted to advise the controller to resume transmission. This facility
is very useful when the controller features this form of handshake,
since only a simple 3-wire connection is required for communication.

Alternative connection methods.

The connection method employed will depend on the facilities available
in the controller. The 5-wire system should be used wherever possible
as this offers the greatest security, and a typical connection scheme
is shown below.

Controller 1F1 Interface
1 1 Scr
2 - 2 XD
3 > 3 RXD
4 4 RTS
5 - [:: 5 TS
; N e
20 - 20 DIR

Always check the controller manual for confirmation that these
connections are correct.

The 5-wire system may be used without echo-back at speeds up to 2400
baud. If strings of more than 64 characters are to be transmitted,
the DTR output must be monitored to check for the "buffer full"
condition. Echo-back must be implemented if higher baud rates are to
be used, however this does not guarantee that the effective data
transfer rate will be improved.

Note that if no connections are made to the two input control lines
CTS and DSR, they will be held negative (i.e. reset) by resistors R1l4
and R15 on the IF1. The interface will not transmit any data under
these conditions.

Where the controller cannot support the additional control lines, the

3-wire system may be used as shown below. As with the 5-wire system,
echo-back should be used at speeds above 2400 baud.

RS232C USER 7

Controller , IF1 Interface

1 _ 1 Scr
] >< —3 w0
L5 oo
= b
20—>—l 20 DTR

The following chart summarises the requirements of the two systems.

3-WIRE SYSTEM.

Baud rate maximum echo-back
char. string required?
up to 600 any no
1200 or <64 no
2400 >64 yes
4800 or any yes
9600

5-WIRE SYSTEM.

Baud rate max imum echo-back need to
char. string required? check DTR?
up to 600 any no no
1200 or <6U no no
2400 >64 no yes
4800 or any yes no
9600

Note that if echo-back is used it is unnecessary to monitor the DTR
line since echo-back only occurs after a character has been processed.
For this reason the use of echo-back will slow down communication to
an extent dependant on the data being sent. 1In general the fastest
communication will be achieved using a 5-wire system at 2400 baud
without echo-back, monitoring the DTR line to control data transfer.

RS232C USER 8

INSTALLATION

Power Requirements

Power required by the interface is +5V DC +/-0.1V at 900mA, +12V and -
12V 10% at 30mA. The IF1 power supply card generates fully-isolated
+5v, +12v and-12v rails to power the interface. It plugs into the IF1
motherboard and can derive its input power from the +24v drive logic
supply or from an independent +24v supply. The power supply card also
incorporates power drivers to give the five optically-isolated outputs
a switching capability of 0.5A at 30v.

When the motherboard is fitted in a standard Digiplan rack, power
connections will be made automatically via the 8-way jumper cables
connecting the interface to the drives. To use an external +24v
supply, remove links 1 and 2 from the motherboard and connect the
external supply to PL3 terminal 7 (Ov) and terminal 8 (+2U4v). If the
interface is being driven from a separate 24v rail and there is no 24v
supply available from the stepper drive, links 1 and 2 should be
inserted. This is necessary in order to power the opto-isolators on
the interface outputs.

Fault disable links.

The X and Y drive outputs include a fault connection which will halt
the interface in the event of a drive fault (the auxiliary Z axis has
no fault connection). The interface requires to see a logic low on
the X and Y axis fault inputs even if no drive is connected. To
simulate a working drive where none is fitted, fit link 3 for the X
axis and link Y4 for the Y axis.

Motherboard connector identification.

PL1 14-way connector for the auxiliary inputs and outputs

PL2 25-way D-connector for the RS232C port connection

PL3 8-way connector for emergency stop, limit and
external +24v supply connections

PLY X drive connector

PL5 Y drive connector

PL6 Z drive connector

PL7 expander connection (for future use)

Connections to the RS232C Port (PL2).

The alternative connection methods have already been discussed in the
previous section. A full list of terminal functions appears in
Appendix 2. Appendix 3 gives examples of connection schemes for
specific machines, and it is recommended to use these where
appropriate since they have been proven in practical tests.

RS232C USER 9

Input and output signal connections.

Connectors PL1 and PL3 on the motherboard are used for external signal
connections to the interface. The functions are listed below.

Connector PL1.

Terminal Function Circuit type (see appendix)

1 Output 5 D

2 Ov for output 5

3 Qutput 1 D

4 Ov for output 1

5 Output 2 D

6 Ov for output 2

7 Ov for output 3

8 OQutput 3 D

9 Qutput 4 D

10 Ov for output 4

11 External Ov connection

12 Input 1 A

13 Input 3 A

14 Input 2 A

Connector PL3.
Terminal Function Circuit type (see appendix)

Emergency stop A
Positive limit A
Negative limit A

No connection
External Ov

+24v out
Auxiliary Ov in
Auxiliary +24v in

O~ WU =W N =

Emergency stop and limit inputs.

Inputs are provided for axis limit switches and an emergency stop
switch. These inputs are optically isolated and commoned to the
"Ext.Ov" terminal. They must remain connected to +24v for the
interface to run, using normally-closed switches. If the positive
limit goes low or open-circuit, the interface can only be driven in
the negative direction and vice versa after a status request has been
made. Where more than one axis is used, connect the limit switches in
series as shown. Ensure that all positive limit switches are activa-
ted by positive movement, and that negative switches are activated by
negative movement.

The emergency stop input can be used to inhibit all movement and would
normally be a latching-type switch. Following an emergency stop
input, a Motion Status request must be made before the system can be
restarted.

Emergency stop or limit inputs will light the LED (red) on the

interface. It will turn off after Motion Status has been read and the
input removed.

RS232C USER 10

2600t . - +24V

®

PL3 PL3

®
@
®
@O

Aux OV § [Extov

|

Connections Required
if No Switches used

00RO

ov

Using the optically-isolated outputs.

The five optically-isolated outputs are buffered on the power supply
card by Darlington transistors which will deliver up to 0.5A with a
30v off-state voltage. These outputs are intended for driving devices
such as relays or small solenoids. If using the output signals for
other purposes, note that the on-state voltage may be up to 2.5v.
Ensure that inductive loads are suppressed.

Two examples of circuits using these outputs are shown below.

LY +2LV
'y Relay 0V 0/P)
PLY o) 0/P1 Coil | @ 1 Retay
oV 0IPY t Coil
®F————ov _

ov

RS232C USER 11

Optional fault output.

The LED (red) on the interface card is turned on when any fault, limit
or emergency stop condition is present. Output 5 may be reconfigured
to duplicate the function of the LED and so provide an external
signal, this may be used for instance to drive an alarm and can be
particularly useful when the IF2 is used in the battery-backup mode.
To use the output in this way, transfer link 3 from position "a" to
position "b" (nearest to capacitor C22). The output cannot be
controlled by program commands with the link in this position.

Using the optically-isolated inputs.

There are three inputs which may be used to read in signals from
switches etc. The inputs drive opto-isolators via built-in 3K3 series
resistors, and may be driven directly from +24v. The isolators are
commoned to the "Ext. Ov" terminal.

Typical connection schemes are shown below.

P
+
PLY @M PLY @ 1/Py 5_
@Yoy @|EXHOY oV

RS232C USER 12

CONFIGURING THE INTERFACE

Initialisation.

When power is first applied, the LED comes on for approximately 1
second and during this time the interface runs through its internal
initialisation routine. After this period the controller should
transmit the open bracket or parenthesis character "(" at the required
baud rate. The IF1 will receive this character and from it will
determine the baud rate. At this point the LED flashes twice per
second. The interface then transmits a "U" character at the new baud
rate which the controller should receive correctly (note that all
alpha characters are upper case). The "U" will be followed by a
carriage return, and this will in future be represented by <CR>. If
the controller misses the "U <CR>", it can transmit another open
bracket "(" and the interface will respond with another "U <CR>". This
may be repeated as often as necessary, however the interface only
detects the baud rate on the first "(" received.

The controller must now send information to set up the data format.
Two alternative formats are available to suit the requirements of
different controllers. The "U" format is terminated only by carriage
return <CR>, whilst the "V" format is terminated by carriage return
plus line feed <CR>XLF>. If the "U" format is used, the interface
expects only <CR> to terminate all subsequent messages and it will
similarly terminate all status and position data with <CR>. If the
"W" format is selected, all following instructions must be terminated
by <LF> and the interface will terminate all returned data with
<CR><LF>. 1In the latter case, the inclusion of <CR> before <LF> is
optional in messages sent from the controller.

The format control instruction will be a message of the form "U X1 X2
<CR>™ or "V X1 X2 <CR> <LF>", with X1 and X2 selected from the
following table:

X1 =1 2 3 4 5 6 7 8
Number of stop bits: 1 2 1 2 1 2 1 2
Number of data bits: 7 7 8 8 8 8 8 8
Significance of bit 8: - - * * 0 0 1 1

(* = data).
X2 = 1 2 3 4 5 6 7 8 9

Parity: None None 0dd Even 0dd Even None 0dd Even
Echo back: No Yes No No Yes Yes X-on X-on X-on

The characters transmitted for setting the data format MUST be sent in
the ordered sequence shown above. If an error is made in transmitting
any character, the whole string may be retransmitted. After the
format instruction has been sent, allow a delay of at least 5mS for
the UART to re-initialise.

NOTE: All future instruction examples shown in this manual will be

terminated by <CR>. If the "V" format has been used, this should be
interpreted as representing <CR><LF>.

RS232C USER 13

Following correct receipt of the data format message, the LED will
cease flashing and the interface is ready to receive move
instructions. If the LED comes on again, it indicates that a fault
condition has arisen which must be cleared (see later).

Inter-character delay.

If the controller operates with an inherently-slow high level language
it may only be able to receive characters slowly. 1In this case the
IF1 needs to be set up for a lower transmission rate if the data is to
be received correctly.

An inter-character delay may be programmed by sending the command "D"
followed by a number giving the required delay in multiples of 10mS.
For example, sending "D5 <CR>" will set a minimum delay of 50mS. The
maximum programmable delay is 250mS. This delay will be inserted
before each transmitted character.

SENDING BASIC MOVE INSTRUCTIONS.

There are two basic modes in which the interface can operate - index
mode, in which the number of steps is pre-determined, and run mode, in
which the motor will run continuously until commanded to stop. 1In
each case it is possible to program the final speed, start/stop speed
and acceleration rate, so these parameters will be covered first.

Note that in the instruction examples which follow, spaces have been
included for the sake of clarity. The space characters should not be
interpreted literally, but they may be transmitted to the interface if
desired -~ they will simply be ignored.

Speed.

The interface has four speed ranges in order to cater for different
translator resolutions and different applications. The following
table shows the maximum speed and resolution available in each range,
together with the ramp increment used during acceleration.

Range Max. speed Resolution Ramp increment

1 25,000 s/s 6.25 s/s 100 s/s
2 50,000 s/s 12.5 s/s 200 s/s
3 100,000 s/s 25 s/s 400 s/s
4 4,000 s/s 1 s/s 16 s/s

When a speed above the start/stop speed is programmed, the interface
accelerates in increments as shown up to the final speed within the
resolution of that range. For example, programming a speed of 503
steps/sec in range 1 will give a final speed of 500 steps/sec,
programming 504 steps/sec will give 506.25 steps/sec. The higher
speed resolution of range 4 allows speeds to be set within 1 step/sec
but with a restriction of 4000 steps/sec on the maximum speed.

To select the speed range, send the command ">" followed by the range

number 1 to 4 and <CR>, e.g. ">2 <CR>" will set up speed range 2.
The interface defaults to speed range 1 during initialisation.

RS232C USER 14

The final speed is programmed by sending the "@" character followed by
the required speed in steps/sec, e.g.

"@ 5400"

will set a speed of 5400 steps/sec. If a speed is requested which is
above the maximum for that range, the interface will indicate a "range
error" fault (see Report-back Functions). There is a limitation of 5
decades on the programmed speed, so the maximum programmable speed in
range 3 is in fact 99,999 steps/sec. However this will result in a
speed of 100,000 steps/sec due to the 25 s/s resolution.

Below the start/stop speed, the speed will also be the nearest or next
higher multiple of the speed resolution. So in range 1, which has a
resolution of 6.25 steps/sec, 21 steps/sec programmed would run at
18.75 steps/sec, 22 programmed would run at 25. Speeds between 1 and
8 steps/sec will run at 6.25 steps/sec.

Start/stop speed.

The start/stop speed is the rate at which the clock starts when
accelerating the motor into the slew region. Below this speed, no
acceleration is applied and the clock will run at a fixed frequency.
The start/stop speed is programmable between 100 and 4000 steps/sec,
in multiples of 100 steps/sec in speed range 1. In other speed
ranges, the start/stop speed is still programmed in multiples of 100
steps/sec but the interface can only set up a rate which is a multiple
of the ramp increment for that range. For example, setting a
start/stop rate of 300 steps/sec would produce an actual rate of 300
s/s in range 1, 200 s/s in range 2, 400 s/s in range 3 and 288 s/s in
range 4.

The command character for start/stop speed is "<", therefore:
"<{12 LCR>"

will set the start/stop rate at 1200 steps/sec in speed range 1. The
optimum start/stop rate depends on a number of factors, notably the
mechanical inertia of the system. Setting it too high will result in
the motor failing to start, but if set very low it will increase the
indexing time. A useful starting point is about 400 steps/sec using a
400 step/rev translator.

Acceleration rate.

The rate at which the clock accelerates from the start/stop speed up
to the programmed speed can be set in multiples of 1000 steps/sec2 up
to 500,000 steps/sec2. The data must be preceded by the """
character, e.g.:

"7 KCRYM

will set an acceleration rate of 7000 steps/sec2. Again the optimum
setting depends largely on the system inertia.

RS232C USER 15

Note that the angular acceleration of the motor shaft will depend on
the drive resolution, so for the same angular acceleration at 1000
steps/rev the acceleration rate in steps/sec2 must be 2.5 times higher
than at 400 steps/rev. The interface will remember any programmed data
unless it is overwritten, so the speed, start/stop and acceleration
data only needs to be sent once unless it must be altered, e.g. a new
speed is required. For example:

">1 <10 "15 @ 4800 <CR>"

will select speed range 1, a start/stop speed of 1000 steps/sec,
acceleration rate of 15,000 steps/sec2 and a speed of 4800 steps/sec.
This data may be sent as part of the initialisation routine or may be
included with the first move instruction.

Note that after new acceleration, start/stop or speed range data has
been received the interface has to calculate a new ramp, this takes up
to 1 second and it will not respond during this period. However it
will still accept any characters sent to it, and will act on any
commands after calculating the new ramp.

Index mode instructions.

The axis to be moved is selected by an axis code X, Y or Z. This is
followed by the required move distance in motor steps, together with
the initialise command "$". So:

"X4000 $ <CR>"
will run the X motor 4000 steps at the programmed speed. Similarly:
"Y2500 € 1500 $ <CR>"

will run the Y motor 2500 steps at 1500 steps/sec. To change
direction, send a "-" (minus) character after the axis code, e.g.:

"X-3000 $ <CR>"

will run the X motor 3000 steps in the negative direction. A "+"
character may be used after the axis code if required, but the
positive direction is assumed if no direction command is sent.

More than one axis may be selected, e.g.:
"X+ Y- $ <CR>"

will run X positively and Y negatively the previously-programmed
distance., The maximum programmable distance is 9 decades, i.e.
999,999,999 steps.

Note that if the speed is above the start/stop rate, the clock will be
accelerated up to the programmed speed and decelerated back to rest.
The distance travelled at programmed speed will be the index length
less the total acceleration and deceleration distance. If the index
distance is less than the number of steps required to accelerate and
decelerate, the interface will calculate a profile giving a symme-
trical acceleration and deceleration with a small plateau at the top.

To cancel an index, send the cancel code "# <CR>". This will stop any
axis in motion.

RS232C USER 16

Run mode instructions.

In this mode the axis to be moved is selected as before, but no
distance is programmed and the Go command "G" is included:

"Y @ 5000 G $ <CR>"
will run the X axis continuously at 5000 steps/sec. -Similarly:
"Y- G $ <CR>M

will run the Y axis in the negative direction at the previously-
programmed speed.

To stop the motor, send the cancel code "# <CR>".

Note that the data used in a previous index will be lost if the run
mode is used, and the interface will default to zero index length.
Therefore the distance MUST be stated in a subsequent index
instruction.

Backlash correction.

The interface may be instructed to finish any index with a fixed
number of steps in a specified direction in order to eliminate any
backlash in the system. The command to store the backlash distance is
"B" followed by the required direction and distance in motor steps, up
to 255 steps. For example:

"B - 20 <CR>"

will store a backlash distance of 20 steps in the negative direction.
The correction will be applied at the programmed start/stop speed. If
this is followed by an index command such as:

"X 100 B $ <CR>"

the motor will run 120 steps in the positive direction, then reverse
and move back 20 steps in the negative direction. 1In this case there
will be no correction applied if the index is negative.

Note that the backlash direction must ALWAYS be specified, even if it
is positive. So to set a positive backlash correction of 50 steps,
send "B + 50 <CR>".

If more than one axis is moved at a time with backlash correction, the
directions must all be the same otherwise a position error will be
introduced.

A pause of at least 3mS will occur before the motor reverses, this may
be extended if the interface is being interrogated at the time.

RS232C USER 17

OUTPUT CONTROL.

Output switching commands.

The 5 optically-isolated outputs may be set high or reset low under
program control in order to activate external circuits. The buffer
transistor is turned on by the set command "S" and turned off by the
reset command "R", followed by the output number and the "$"
character. For example:

"2 $ <KCR>"
turns on output 2.
"S13 R2 $ <CR>"

turns outputs 1 and 3 on, and turns output 2 off. When combining set
and reset commands in this way, always send the set command first.

The outputs may also be driven in a pulsed fashion with a programmable
delay. The command used is "P" followed by the output number, comma
and pulse length in increments of 10mS. The maximum pulse length is
990mS. For example:

"P4, 20 $ <CR>"
will generate a pulse 200mS long on output 4. The phase of the output
pulse will depend on the prior state of the output, so if output U4 was
previously reset it will turn on for 200mS.

Combining inputs and outputs with move instructions.

Move instructions can be combined with output commands so that one or
more outputs will change state at the end of the move. In a similar

way, the inputs may be interrogated so that the move is initiated by

an input transition. Take the following simple example:

"H1 X 1000 @ 200 33 $ <CR>"

In this case, the X-axis move of 1000 steps at 200 steps/sec will
begin when input 1 goes high. At the end of the move, output 3 is set
(i.e. turned on).

When commands are combined in this way, the following format must be
followed:

Read inputs for high levels.
Read inputs for low levels.
Send index and speed data.

Set outputs (i.e. turn on).
Reset outputs (i.e. turn off).

VTEWND =
N

Stages U4 and 5 may be replaced by an output pulse command, but an
output cannot be pulsed at the same time as other outputs are set or
reset (see Sequence Mode for this type of operation).

Not all the stages shown above need be included, but the remainder

MUST be sent in the order shown. For instance, it is not permissible
to reset one output before another output is set.

RS232C USER 18

Input commands can only be used in combination with move commands. The
commands "H" and "L" are used to specify a high or low state
respectively, as shown in the following examples:

"H12 X 1000 @ 200 $ <CR>"
This move will commence when inputs 1 and 2 are high.
"H1 L3 X 1000 € 200 $ <CR>"

In this case the move starts when input 1 goes high followed by a low
on input 3.

A high-to-low transition can be specified as follows:
" H2 L2 X 1000 € 200 $ <CR>"

This move will be performed following a high-to-low transition on
input 2. Note that a low-to-high transition is not allowed within the
specified format, but the function can be performed using the Sequence
Mode. Two further examples illustrate the combination of inputs and
outputs with move commands:

"L13 X 1000 € 200 323 R5 $ <CR>"

"H1 L23 X 1000 € 200 PU4, 20 $ <CR>"
In the first example, a low on inputs 1 and 3 will start the move., At
the end of the move, outputs 2 and 3 will be turned on and output 5
will be turned off. The second move will begin when input 1 is high
followed by a low on inputs 2 and 3; following the move, output U is
pulsed for 200mS.
SEQUENCE MODE.

Programming a sequence.

The IF1 may be programmed to perform a sequence of up to 63 separate
operations, each of which can be anything from a simple command to a
complex combination as in the last two examples. The IF2 has a
battery backup facility which enables the sequence to be retained when
power is removed (this feature is described later).

The stages in a sequence are denoted by the ":" symbol. Here is a
simple example:

": X 1000 € 200 : Y : X~ : Y- : $ <CRO"

This sequence comprises four moves which cause an X-Y system to
describe a square. The sequence starts as soon as the "<CR>" is
received, and the whole sequence can be repeated by simply sending
":$<{CR>". Note that parameters such as start/stop rate, speed range
and acceleration rate cannot be placed within a sequence and must be
set up before the sequence is programmed.

RS232C USER 19

The next example illustrates a wicder variety of instructions:
": 82 : H13 L2 Z 100 @ 40 S4 R1 : P2, 50 : Y € 200 : $ <CR>"

This sequence will turn on output 2; when inputs 1 and 3 are high
followed by a low on input 2, the Z motor will run for 100 steps at 40
steps/sec, after which output 4 is turned on and ouput 1 is turned
off. Output 2 is then turned off for 500mS, and finally the Y motor
runs for 100 steps at 200 steps/sec. The format used in specifying
complex sequence-mode instructions is the same as in direct mode.

If a mistake is made when entering a sequence, terminate the incorrect
sequence by sending ": $ # {CR>". The sequence may then be re-
entered.

Repeating parts of a sequence.

It is possible to repeat parts of a sequence, or indeed the whole
sequence, without sending all the data again. The repeat command "="
is used for this purpose, followed by the number of repeats required
and the step number from which the repeat is to commence. Here is a
simple example:

": ST : X 400 @ 100 : Y : =5, 2 : R1 : § <CR>"

After output 1 has been set, X runs 400 steps at 100 steps/sec
followed by the same move in Y. The sequence is then repeated five
times from step 2, i.e. the X move, giving a total of six X moves and
six Y moves. Finally output 1 is reset. Up to 255 repeats can be
specified, so the same move or group of moves can be performed 256
times.

Subsequent parts of the sequence can also be repeated, or a more
complex routine can be programmed by nesting repeats within the
sequence. Look at the following example:

": 81 : X400 @ 100 : Y : =5, 2 : R1 : Z50 : = 24, 1 : $ <CR>"

The initial part of this sequence is the same as the previous example,
so will perform six X moves and six Y moves as before. After output 1
has been reset, the Z motor runs for 50 steps and then the entire
sequence is repeated from step 1 a further 24 times. The repeat
command can be combined with input commands, provided the following
format is followed:

. Read inputs for high levels.
. Read inputs for low levels.
3. Send repeat data.

The instruction ": H2 = 10, 4 :" would repeat the sequence ten times
from step 4, with each repetition waiting for a high level on input 2.

A sequence can be made to repeat indefinitely by programming zero for
the number of repeats, as in this example:

": X 1000 @ 400 : Y : X- : Y- : =0, 1 : $ <CR>"

Here is our X-Y system tracing out a square again, and it will
continue round until the cancel code "# <CR>" is sent. This

RS232C USER 20

terminates the sequence, and it can be restarted from step 1 by
sending ":$ <CR>". Once a sequence has been terminated, it can only
be restarted from the beginning.

An alternative way of stopping the sequence is to use one of the
inputs. If we take the previous example and add ": H1" to the
beginning, the sequence will only continue to repeat if input 1 is
high. We can therefore use a switch to turn the sequence on and off,
and in this case it will always stop at the origin.

Aborting a run-mode move in a sequence.

A run-mode move may be included within a sequence, followed by the
abort command "A" combined with an input command:

"*: X € 1000 G : H1 A : $ <CR>"

This sequence will start the X motor running at 1000 steps/sec, and
will stop it again when a high level is seen on input 1. Again the
format is:

1. Read inputs for high levels.
2. Read inputs for low levels.
3. Send abort command.

The repeat command can be combined with an abort instruction, as in
this example:

»": H3 A =2, 1 :"

When a high level is seen on input 3, the run will be aborted and the
sequence will repeat twice from step 1. The format to be used is:

. Read inputs for high levels.
. Read inputs for low levels.
. Send abort command.

. Send repeat data.

Controller intervention in a sequence.

The controller can intervene in a sequence by including the command
character "%"., When this command is seen the interface will transmit
"% <CR>" back to the controller and then execute any move instruction
it receives. The sequence will resume when another "% <CR>" command
is received. Take the following example:

": Y 4OO € 200 : % : Y- : $ <CR>"

Following the Y move of 400 steps, the interface transmits "% <CR>" to
the controller and another move instruction is returned. The sequence
resumes with the negative Y move when "% <CR>" is sent back to the
interface.

The instruction sent from the controller may be a move combined with
input and output commands, as well as acceleration rate and start/stop
speed data. This feature is useful where data-dependent moves must be
included in a preset sequence.

RS232C USER 21

Backlash correction in sequence mode.

A command to reset the backlash distance may be included within a
sequence, and of course this is useful if different axes require
different backlash correction. Here is an example of part of a
sequence:

": B~-20 : X 1000 B : B+ 50 : Y - 400 B : $ <CR>"
The backlash correction is initially set at 20 steps negative for the
X move, and is then changed to 50 steps positive for the Y move. Note
that the backlash direction must always be specified.

Adding time delays.

A delay of up to 990mS can be incorporated in a sequence by using the
pulse output command "P" and specifying output 0, as in this example:

": X 1000 PO, 50:"

The interface will wait for 500mS after the X move before continuing
the sequence. Delays longer than 990mS can be obtained by repeating
the pulse command, or of course controller intervention can be used
and the delay generated by the controller,

LINEAR INTERPOLATION MODE.

Linear interpolation can be performed using the IF1. The linear
interpolation function operates with any two axes at one time. The
data is presented as a long index (the major axis) and a short index
(the minor axis) together with the speed at which the major axis is to
run. The minor axis speed is calculated by the interface such that
the two axes will be in proportion to their respective index lengths.

Programming in the linear interpolation mode.

Linear interpolation can be performed between any two axes. The move
made by either the mojor or minor axis may be duplicated by the third
axis if required. The major axis move is given first, as follows:

"™ X 2000 / Y 500 @ 1000 $ <CR> "

The above instruction will cause the X axis to run for 2000 steps at
1000 steps/sec, and the Y axis to run for 500 steps at 250 steps/sec
(i.e speed ratio 4:1).

The "/" (02F hex) character denotes the linear interpolation mode.
This character always precedes the minor axis. As with normal
indexing, inputs and outputs can be combined with move instructions.
For example:

"H1 L2 X2500 / Y100 & 6000 S135 R24 $ <CR>"

\

RS232C USER 22

Duplicating the major or minor axis move on the third axis.

This is illustrated in the following examples:

1. " X 2000 / YZ 500 % 1000 $ <CR> "
2. " XY 1000 / Z 50 % 800 $ <CR>
3. " YZ / X $ <CR>

Instruction (1) will cause the X axis to move 2000 steps at a speed of
1000 steps/sec, and both Y and Z axes to run 500 steps at 250
steps/sec.

Instruction (2) will cause both the X and Y axes to run 1000 steps at
800 steps/sec, and the Z axis to run 50 steps at 40 steps/sec.

Instruction (3) duplicates the previous move with X and Z axes
interchanged.

Constraints in linear interpolation mode.

Maximum velocity: 10000 steps/sec
Minimum acceleration: 5000 steps/sec
Maximum index on major axis: 65535 steps
Speed range: Range 1 only

If any of these parameters do not comply with the above constraints,
an out-of-range flag is set in the status command (e.g. k <CR> = 128,
F <CR> = 16), and all instructions are ignored.

Linear interpolation in sequence mode.

Linear interpolation can be incorporated in a sequence operation in a
similar format to normal index instruction. For example:

"H1 X1000:L1X / Y200 % 6000 P1,20 : Y1000:=3,1: $ <CR>"

If parameters are chosen which are outside the constraints for linear
interpolation mode, the interface will fault out. A status request
must be made to reset the fault bit, and the appropriate parameter
changed before the sequence can be run.

COMMUNICATION LOCKOUT COMMANDS.

RS232 communication can be inhibited by using the lock command "[
<CR>". This will prevent the interface from receiving any further
instructions until the unlock command "] <CR>" is received, although
it will respond to status request commands. This facility is useful
if the controller must be disconnected or switched off as it prevents
the interface from receiving spurious data. Note that the unlock
command must be sent at exactly the same baud rate, number of bits
etc. as the lock command, otherwise the interface will not unlock.
However, it is possible to re-initialise the interface with a
different data format, this is explained under the Battery Backup
feature.

RS232C USER 23

REPORT~BACK FUNCTIONS.

The interface can be interrogated to establish its status at any time,
except for a period of about 1 second following receipt of new
acceleration, start/stop or speed range data. An obvious requirement
for status is in checking that motion is complete before sending
another move instruction. Status information is obtained by sending
the appropriate command and then waiting for a response terminated by
<CR>.

Motion status.
The command for motion status is "K" and the typical response could be

"41<CR>". The following table gives a list of information obtainable
from the status number.

Value Function
1 In Motion
2 At Programmed Speed
4 Accelerating
8 Decelerating
16 Drive Fault
32 Emergency Stop
64 Limit
128 Communication Fault

In the previous example 41 would indicate the interface has had an
emergency stop and is decelerating.

If the "communication fault" bit is present, then this indicates that
there is a communication or data problem. For further information on
the nature of the fault, the command "F <CR>" should be sent. The
response would then be typically "8 <CR>".

The following table gives information on data faults:-
Value Function

Parity Error

Overrun Error

Framing Error

Data Fault or Buffer Overflow
Qut-of-range Error

In Battery-Backup Mode

[\ IR Ye I — i\ IR

1
3
PARITY ERROR -~ this is set when a parity error is detected.

OVERRUN ERROR - this is set when the first character has not been
read before the next one becomes available,

FRAMING ERROR - this is set when a valid stop bit is not detected at
the end of every character.

DATA FAULT =~ this means that the correct common serial format has
not been set up on initialisation or the interface is not receiving
the correct format. It may also indicate that the input buffer is 95%
full, in which case all the characters in the buffer will be lost.

RS232C USER 24

OUT-OF-RANGE ERROR - this fault occurs if the maximum start/stop
rate, acceleration rate or speed is exceeded in a particular range.

IN BATTERY-BACKUP MODE - this is not in fact a fault condition but
simply indicates that the move or sequence data has been locked.

Note that any communication fault bits are only cleared when the "F"
command is sent, so this should always be done when "K128" is received
(see "Clearing Fault Conditions"). Failure to do this may result in
incorrect fault data being received at a later time.

Input Status.

This can be obtained in a similar way to motion status. The command
is "I" and will read all inputs to the interface. The following table
gives their values and names.

Value Name Input voltage (w.r.t Ov)
when value returned

1 Emergency Stop Low
2 X Fault High
y Y Fault High
8 I/P 1 Low
16 + Limit Low
32 - Limit Low
64 I/p 2 Low
128 I/P 3 Low

Note that all inputs return their corresponding value when there is NO
current in the diode of the opto-isolator. The two drive fault inputs
are pulled up to +24v (see pages 36 & 37), and the "no current" state
therefore corresponds to a high input voltage. If an emergency stop
input is seen, a motion status request must be made to reset the
system.

Sequence status.

The command "O" (letter O, not the number zero) is used to obtain
sequence status. Sending "O <CR>" will cause the interface to return
a number between 1 and 63 giving the current step in the sequence.

Quick Status.

The three status commands previously described will be fairly slow in
their transmission, especially if a slow baud rate is used. To enable
quick detection of motion status a special command "Q" is available.
The interface will respond by transmitting a single 8 bit byte which
will have the value 0 to FF Hex. This only applies in 8-bit mode with
bit 8 = 1 or data.

RS232C USER 25

Each bit has a significance as in the table below :-

Bit Decimal Function
significance
0 1 In Motion
1 2 At Programmed Speed
2 4 Accelerating
3 8 Decelerating
y 16 Drive Fault
5 32 Emergency Stop
6 64 Limit
7 128 Communication Fault

For example, sending "Q <CR>" we could get the response of a single
byte of value 73 decimal or 49 hex. This would indicate that a limit
input has appeared whilst an axis is in motion and decelerating.

Note: not all controllers can use this mode as the 8 bit byte may be
equivalent to an ASCII code used in the high level software, e.g. if
all axes are stationary and there are no faults present, the
equivalent ASCII code is 00 (hex) or NUL. Similarly if a drive fault
should occur whilst an axis is in motion at programmed speed, the "X-
off" character (13 hex) is returned.

Busy Status.

Another quick method of determining if the interface is occupied is by
sending the command "E". The interface will then respond by
transmitting "E <CR>" if it is busy and "C <CR>" if it is clear for
new data or commands. It will send back "[<CR>" if it is in the
battery backup mode, and "F <CR>" if there is a fault condition. Note
that the busy code "E <CR>" also encompasses "motionless" activities
such as waiting for inputs and pulsing outputs. In this respect it is
different from the "in motion" status returned by "K <CR>".

Position report-back.

If an index or run command is terminated, either from the controller
or by an external signal, the interface may be interrogated to find
the number of clock pulses sent to the motor. The command used is "N"
and this will cause the interface to return the number of steps
produced from the start of the index or run. As an example:

"N <CR>"™ sent by controller
" 527 <CR>" returned by interface.

This indicates that 527 steps were sent to the motor by the time it
came to rest. The maximum distance which can be returned is
approximately 4 x 109 steps (FFFF.FFFF hex), beyond this point the
position counter returns to zero and starts again. If motion is
stopped as a result of a drive fault, no deceleration occurs on that
axis and due to the nature of this fault the position returned is not
meaningful.

A position request may be made whilst an axis is in motion, but the
value returned will be of limited accuracy. Above the start/stop
speed, there will be an error of up to 256 steps. Below the
start/stop speed, the error will generally be small but it will depend
on motor speed and delays in R3232 communication.

RS232C USER 26

Position report-back in linear interpolation mode.

In the run mode, the maximum number of steps returned is 65535. If a
distance greater than 65535 steps has been covered, the value 65537
needs to be added to the number of steps reported back after the
initial "rollover" of 65536 steps. If the speed is below the
start/stop rate, then the position returned has a maximum value of
approximately 4 x 109.

CLEARING FAULT CONDITIONS.

If a fault, emergency stop or limit condition arises, any axis in
motion will stop and the LED on the interface will come on. Under
these conditions further movement is inhibited, apart from motion away
from a limit switch.

A status request must be made in order to establish the cause of the
problem, using either the Motion Status ("K") or Quick Status ("Q")
commands. Either of these commands will reset the relevant fault bit
provided the fault is no longer present. The LED will go out when the
fault bit has been reset.

In some instances it may be necessary to make a status request twice,
for example in the case of an emergency stop input. The first status
request will indicate an emergency stop, i.e. the interface returns
32 <CR>". However this will not reset the fault bit if the emergency
stop is still present. Once emergency stop has been removed, a
further status request will again give "32 <CR>" but this time the
fault bit will be cleared and operation can resume. If a status
request is made a third time, the interface will return "0 <CR>".

If the interface returns "128 <CR>", indicating a communication or
data problem, the controller should always respond by sending "F
<CR>". This not only serves to analyse the nature of the fault, but
also resets the corresponding fault bit. If the "F" command is not
sent, movement will not be inhibited but subsequent use of this
command may give false information.

In the case of the limit inputs, a status request will be necessary to
establish the fault and this will serve to reset the fault bit. The
system can be driven off the limit in the opposite direction and no
further status request need be made.

Note that Output 5 can be configured to serve as a Fault output and to
duplicate the function of the LED (see "Installation").

RS232C USER 27

DEFAULT VALUES.

When the power is applied to the interface, it sets up sensible
default values for speed and acceleration rate etc. The following
table gives these parameters.

Speed range - 1 (0 - 25,000 steps/sec)
Speed - 400 steps/second

Index Length - 0 steps

Backlash correction - 0 steps

Acceleration - 10,000 steps/sec2
Start/Stop - 400 steps/sec

All Direction 0/P - High (open collector)
Outputs 1-5 - Off (reset)

Pulse output - 10 (100m3)

Inter-char. delay - 0 mS

i

8 bits, 2 stop bits with bit 8 = 0;
no parity, no echo-back

RS232 data format

USING THE BATTERY BACKUP (IF2 only).

The battery backup feature enables any data or sequence sent to the
interface to be stored when power is removed. The interface then
becomes a stand-alone pre-programmed controller.

Storing a sequence in the IF2.

Sequence data is sent to the IF2 in a similar way to the IF1 (see

page 19). Having loaded the interface with the sequence statement,
the lock command "[<CR>" must then be sent before power-down,
otherwise the sequence data will be lost. It is recommended that the
sequence data begins with an input command such as ":H1:". This
command prevents the interface from executing the sequence at power-up
until the appropriate input signal is seen. The IF2 can now operate
as a stand-alone controller when power is restored.

Running the stored sequence.

A switch input may be used to start the stored sequence at power-up.
Whilst the interface is locked up, full communication cannot be
established. However, it is possible to communicate via the R3232
cable to obtain status information if the following conditions are
met:

(1) The DSR line is inactive, i.e. low. In a 3-wire system this can
be achieved by linking DSR to CTS and RTS.

(2) The controlling device is configured to transmit at the same baud
rate and data format as defined by the "U" and "V" commands issued Dby
the original programming device.

Note also that in this mode, communication is restricted to status
request codes only, and any other command instructions will be
ignored. No communication error checking is carried out whilst the
interface is locked up. This is necessary because the lock command
may also be used to ensure that the interface does not respond to
spurious data. Error checking becomes operative again as soon as the
unlock command has been received.

RS232C USER 28

If an emergency stop input is received when the interface is operating
in the battery-backup mode, power must be temporarily removed in order
to reset the system.

Changing the sequence data.

To change the stored sequence data, it is first necessary to unlock
the interface. The unlock command "] <CR>" should be sent at same
baud rate and data format as the previous lock command, otherwise the
interface will not unlock. The stored sequence can now be repro-
grammed (as outlined under storing of sequence data), by sending the
cancel command "# <CR>" followed by the new sequence data.

The baud rate and data format can be reprogrammed even if the inter-
face is in the locked-up mode. In this case the DSR line must be held
active, i.e. high. Again in a 3-wire system, this can be achieved by
linking it to DTR. The open bracket "(" must then be sent followed by
the new baud rate and data format, to establish the communication
protocol (see page 13). The IF2 will start to execute the previously-
stored sequence as soon as the "U" or "V" command has been received.

Breaking into a locked interface.

If for some reason the normal command "] <CR>" cannot unlock the
system, a simple way to overcome this problem is to issue the open
bracket "(" followed by the erase command "¥", The system becomes
operative immediately the erase command is acknowledged. The response
to the erase command is "UKCR>". This method may also be used to
erase stored sequence statements in the RAM when the EPROM issue is
up-dated.

Using a computer to program the interface.

If a long sequence needs to be programmed, it may be preferable to use
a small computer to prepare the sequence statements. A typical
program which will perform this function is shown in sample 6. 1In
this program, the state of the DSR is software-controlled via the
Basic program. The user is prompted to switch on the interface as
part of the initialisation routine. 1In order to prevent spurious
characters being detected during the power-up procedure, the program
has been designed such that the first instruction to the IF2 is
discarded. If DSR cannot be controlled by software, it may be
necessary to make a dedicated cable with DSR connected to DTR.

RS232C USER 29

APPENDIX 1.

FULL COMMAND LIST.

All commands and data are sent as ASCII codes. Characters marked with
a "phi" (¢) sign vary on certain keyboards, see next page. Note that
all alpha characters are upper case.

ASCII HEX DEC Function
<LF> 0A 10 Line feed from controller
<CR> 0D 13 Initialise direct commands
<SP> 20 32 Space Character

23 35 Cancel (¢)

$ 24 36 Index, run and sequence initialise (¢)

% 25 37 Wait for control

(28 4o Baud rate detect

* 2A 42 Erase RAM (battery backup)

+ 2B 43 Dir port high

, 2C Ly Delimiter

- 2D 45 Dir port low

/ 2F 47 Linear interpolation

: 3A 58 Sequence divider

< 3C 60 Start/stop Speed (¢)

= 3D 61 Repeat

> 3E 62 Select Speed range (¢)

e 40 64 Speed data (¢)

A 41 65 Abort in Sequence Mode

B 42 66 Backlash

D by 68 Inter character delay

E 45 69 Busy

F 46 70 Communication status

G 47 71 Run mode

H 48 72 Input high

I 49 73 Input status

K 4B 75 Motion Status

L 4c 76 Input low

N 4E 78 Number of steps run or indexed

0 4F 79 Sequence status

p 50 80 Pulse output

Q 51 81 Quick status byte

R 52 82 Reset output low

S 53 83 Set output high

U 55 85 RS232 format set (termination on <CR>

v 56 86 RS232 format set (termination on <LF>

X 58 88 X clock

Y 59 89 Y clock

A 5A 90 Z clock-

[5B 91 Communication lock (¢)

1 5D 93 Communication unlock (¢)

- 5E 94 Acceleration rate data (¢)

R3232C USER

30

APPENDIX 1 (CONT.)

Certain control characters are represented differently on non-USA
keyboards. The table below shows these variations.

USA France | Germany ux. Swaden | Hely Spein | Norway | Mether | Switzer | tceland | Spanish [Portugse! Turkey | Greece Alrics :I]
Dec | Hex londs | o Americs
35 { 23 # # # £ » L] ») L £ £ £ # £ h . £ *
36 | 24 s + 1 s s o s s o] + s] s $ é s s L 3
60 | 3C < < < < < < < < < < [} < < < 1 < < <
62 | 3E > > > > > > > > > > -] > > > t > > >
64 | 40 | @ a s <] @ ¢ e | @} ¢ [s p | @ L] e | aja
91 | 5B | ¢ s la)| | &} " ile sl clrplE]C s | n |t
92 | 5C | < B \ [<} \ Nlo \ e & 5| ¢ 2 *
93 { 50] 1] 4]] A A é '3 A 1] h] 3 a a s ~ . 3
94 | 5 | ~ ~ ~ -~ ~ 4] ~ ~ 1] ~ ~) ' N U w ~ ¢

RS232C USER

31

APPENDIX 2. EDGE CONNECTIONS TO IF1 CARD.
Row A Row C

1 +5v 1 +5v

2 Ov O/P 5 2 0/P 5

3 X Direction 3 Y Direction
4 Z Direction 4 -

5 Ov 0/P 1 5 0/P 1

6 o/P 2 6 ov o/P 2

7 Ov 0/P 3 7 0/P 3

8 0/P 4 8 Ov O/P 4

9 Ov from drive 9 Ov from drive
10 +2U4v from drive 10 +2U4v from drive
11 External Ov 11 External Ov
12 Input 1 12 Y Fault

13 X Fault 13 Em. Stop

14 RM Clock In 14 RM Clock Out
15 - 15 -

16 Input 3 16 Input 2

17 - Limit 17 + Limit

18 - 18 -

19 - 19 Z Clock

20 - 20 X Clock
21 - 21 Y Clock
22 - 22 -
23 TTL Out 23 -
24 24 -
25 - 25 -
26 TXD 26 RXD
27 DSR 27 CTS

28 DTR 28 RTS
29 - 29 -

30 +12v 30 +12v

31 -12v 31 -12Vv

32 Ov 32 Ov

RS232C USER

32

Motbherboard connector identification.

PL1 14-way connector for the auxiliary inputs and outputs
PL2 25-way D-connector for the RS232C port connection
PL3 8-way connector for emergency stop, limit and
external +24v supply connections
PL4 X drive connector
PL5 Y drive connector
PL6 Z drive connector
PL7 expander connection (for future use)
Connector PL1.
Terminal Function Circuit type (see page 37)
1 Output 5 D
2 Ov for output 5
3 Output 1 D
4 Ov for output 1
5 Output 2 D
6 Ov for output 2
7 Ov for output 3
8 Output 3 D
9 Output 4 D
10 Ov for output 4
11 External Ov connection
12 Input 1 A
13 Input 3 A
14 Input 2 A

Pin no. Function
Screen

TXD (transmitted data)
RXD (received data)

RTS (request to send)
CTS (clear to send)

DSR (data set ready)
Signal Ov

DTR (data terminal ready)

Function Circuit type (see page 34)
Emergency stop
Positive 1limit
Negative limit

Ko connection
External Ov

+24v out
Auxiliary Ov in
Auxiliary +24v in

o0
mqomnmm»—-é E OO U WN
> >

RS232C USER 33

MOTHERBOARD LAYOUT

-—

— —

~
.

d/03ALg X

| dio2ag A | | dioemigz | |

o

—

PL1Y

~T wn o~
e =1 2 & =
- - a %}

pdo) 23DjJ34u]

13

40433UU0) JZEZSY

PL2

14

Jojyauuo) yndyng 3 yndug

PL3

EM.Stop Limit & External
Power Connector

1

34

RS232C USER

MOTHERBOARD LOGIC DIAGRAM

ECHY
IRy, 1
: oips |2 I 3 . ors
| 14
. orps A2 “: : oo
20A
vt A8 1 - " 0P
224
e 8 . }"(. ov oL
ars |2 : + 0rP3
A2 184] AL 1 ovaipy
o1P3 § 'HA [
As
0iP2 T ; ” . oree
161 !
orp2 <8 ! o oo mszU
s
oy |3 } ! R ore
e 1A nAL ch oV 0IPt
- 2
A2 2 yey
1 “lura
Al Blyes
AN i 1t ov exr
| S
o3 ! Emergency Stop
a1 2 vetmn
Al 31 _VELmit
Hov p3
Sy
8 1.2evout
i B; T2V oul
A10, €10 & o LL T
tsolated
9.3 —~ 10AL
EC2 K2
30,030 1AL L v
A3LC31 s B
An.Cn2 2AL] oy 18]
ALQY ALY, sv
\
A0, C10 + 2V IromOrive
At $lzoir
[] PL6
a9 20k 2 cLock
29,9 8] ov orive
1
Al0, Ci0 +24Vfrom Drive
1
(8§74 Y Fault
TKE
A0 . 81 ov Drive
Q Slvoir PLS
P sy Y-CLock
1
A0 10 2 + 28V from Orive
Al X Fault
- 3]
A9,09 adlian 21 ovorive
Y Sixoir PLL
. 81 ¢ cloa X-CLOCK
{0 L rRwoar
Al 2lRMin RATE
3y MULTY-
A32, €32 OV pLIERS
A32,(32 ! OV Screen
A28 LS P
s 2 axd
26 tlars PL2
5 25-WAY
€1} S o RANGE
A7 $losn
THovsig
A28 L2 FOTY

RS232C USER 35

SYSTEM BLOCK DIAGRAM

SELND 320
woan () vwg f CI—]
3
won-z (1) ik /
HOLYHINID X013
[33)1 100 %301
(3t
s se @ g G
3
. dk
pon-4 (1) o oes
mw.m 124
)
{1
L0 AO @\ 3 vvl\% _E.Saua
2409 Xt
3013 -X 3dky
v @ == - (Q3%Ive
oA X3V
Ad3LIVE
sinding Ao (5Y) 241
adk HvY
0otk 13
t inding 0
2inding Ao ()
a.a»._.wuuﬁ 2 inding .9 — 8 A
¥OLYI0ST g
ending Ao (1Y) “os ~
adky 12) T
R ﬁ einding (12
4 4nding AD
0 adip 13) ﬁ 0 ROY
rinting (av)
5 4nding AQ e.lll
Q2041 10) *‘r
snding ©|||.I o
4 (H v|||| BOLVIOST
o 3R | oido =g
40 A @.ﬂﬂaﬁn LR H N xowﬂuuoca
~DHIIN
M0 QYR) Yss08
SALIQ WOLH AD T

6101
¥0LV0SI
~01d0

L0

——)
)
—— @
@

241
¥01Y10S!
- 04d0
1wol

1 Vo[123 .9

i G991 135 @
gadhL 13) @

1 v 0kL 13) @

LY

€ 4ndu]
Zindyg
e -

oy ane

{induy
anog &
fnsy X

dois W3
anug way)
30 A%Ze

AO#X3

0
[ag!}

RS232C USER

INPUT & OUTPUT CIRCUITS

— BALIQAD

EELISRTLPRIR)

. AW0O0Y
Al Y
XO AT ~
yuzi
JNAINE NI0]) s

v, msm‘um/

AL

BANQ Wody

W

20 A9+

R |

QYV0BY3HLONW Uo
YOLI3INND) 11d

0 3dAL 41m231)

[e

¥vo8 nsduo !

1
t
|
| 1
!
1

r——-===---"
141

| 1

| I

| 1

| nding Ao :

i

! X NOLONIHvQ
__ XDW AQE | “ 0lidiL
] ! !

i _ _

| jndyng - “ T

X WY V50 h

1 ! |

1 t 1

O | Vg |

WU ——

SELLSWILENTR

ETYRL T XTI Y P ————

XOW ASL
X0l Y WE

10ubt S §nd§N0) s

!

gadAL 41033

74-011

5

Lat}

EXE

v adif 41n3J1)

44-011

i

%St~ %04+ AN

VW
EXE

joubis

37

aALIQ WO}
20 Als

AD
1oUI4x3

1oubis
jnduy

RS232C USER

RS232C USER

CONNECTION FOR THE NEC PC-8201A

Scr
TXD
RXD
RTS
TS
DSR
Ov
DTR

Controller IF1 Interface
1 1
2 - - 2
3 — < - 3
4 4
5 =
6 6
7 7
20 20
38

SAMPLE PROGRAM 1 FOR THE NEC PC-82014

This program is for 3-wire communication and uses echoback.

460 7 OFEN NEC CONMUNICATIONS FORT
70 7 9600 baud,no parity,8 data bits,2 stop bits
80 ’

90 OFEN"COR:BNB2NN" FOR OUTFUT AS #1
100 OFEN"COM:BNB2NN" FOR INFUT AS H2
120

130 *

140 *

150 * INITIALISATION ROUTINE
160 *

170 PRINTHL," (",

175 ON ERROR GOTO 5000

180 AS=INFUTS (2, H#2)

190 B4=LEFT$(AS, 1)

200 FRINTES

210 IF B$="U" THEN 249 ELSE 220

220 FRINT "NO U" @ GOTO 5000

230 END

249 7

256 7

25% 7

260 7 SET DATA FORMAT

279 7

280 ' 8 data bits,2 stop bits no parity,with echo,with LF’s

290
295 0N ERROR BOTO 5020
300 FRINTHL, "Us2"

320 6070 580
330 7

140
350 7
360 7
379 7

ige 7

390 A$="X1000e1000%"

400 GOSUR 19030

419 RETURN

420 7

430 As="X-%"

449 GOSUR 1930

450 RETURN

460 °

470 A$="E"

480 GOSUR 1039

490 A$=INFUTS(2 H2)

495 S$=LEFT$(A%, 1)

900 IF 5$="C" THEN RETURN ELSE 470
510 7

520 As=")%"

539 GOSUR 1039

340 RETURN

550 7

560 7

COMAANDS

RS232C USER 39

379 7

380 7 INDEX LOOF

%0 7

600 FRINT"SFACE TO START TEST"
610 A$=INKEY$

620 IFA$=" " THEN 638 ELSE 6410
430 GOSUR 390 : ' FIRST INDEX
640 FOR J=1 70 10

630 GOSUB 470 * ' STATUS

660 GOSUR 430 : ' -INDEX

670 GOSUR 476 : * STATUS

689 GOSUR 520 @ * +INDEX

699 NEXT J
700 END
719 7

720 7
739 7
800 ’
819 7

820 A=LEN(A$)

830 FOR I=1 TO A

840 B$=MID$(A%, 1,1)

850 FRINTHL, RS,

860 ES=INFUT$(1,42)

879 IF P$=E$ THEN 380 ELSE 930

880 NEXT I

890 RETURN

700 7

910 '

720 '

730 7 ECHO ERROR

940 7

750 FRINT "ECHD ERROR"

760 FRINT “CHAR Mo=

$70 FRINT "TY-CHAR=";B$

780 FRINT "RX-CHAR=",L

950 END

1409 7

1410 7

1020 7

1630 ° 0/F STRING CHECKING ECHOS
1049 7

1050 GOSUR 809

10690 A%$=CHR$(13)

1970 GOSUP 800

1080 RETURN

4995 7

4996 7

4997 7

4998 ' ERROR ROUTINES

4999 7

5060 FRINT "ERROR NUMBER" , ERR

5019 CLOSE : GOTD 94

5020 FRINT "ERROR NUMBER" ; ERR

3030 END

TX CHARS AND CHECK ECHO

RS232C USER 40

This programm runs at 2400 baud without echoback.

L
-
E~4
-~
=1 =
=
Y o}
-
o .
<
= -
S —d
ar =
- <
[S [
u -
ey o]
- [=] (o)
B~ <T
Q [*5
=3 -~ =
= I ad
- Q et
n -~ =
o -
oy -~ = =
P] - =
n IEIX ~ e | =
- = w = [¥¥%)
— W o 1 ot
p—— T — o -
[o =5
(=R 8] < < — [
L D = — g &= Lad [v A <
L < Wi — () u <T M [er] W
[T a =T — = -~ —_ et d o
P —_ = Lt — w O (%8} L1 [=
D03 OOk = Rer iy <L = Lt
— o L7 O ede = = =
In ol ol o — ST o oG < da]
T OO = o= =] = DL pr] Wi
Lo e o] b > b - S Ll SR D0 il [Il
— L — ol o - O [ECRER T I- R St ol LI = so.
=™ =z = — < [t {da] < = D a2l B o L] = [Tple =S
oo =X ~= L~ ECd WD [. D104 - =z
= == o T S o [2r B—-4 < == —
EQO oA - Lot LU oW o= = s ©n ~ -~ b Lt [l e
o= o - - x s ZTT Yot et fe S B Ll & = (o L
A R =t <C = OO I e COND f=R I S - £ v —— [P v T {4
oo L e T 0D - d f= = Rl - R el - Lot
LA me e _ = e T D - = Ltrs DSOS < o< << <= = < [T
T £ Tt o Pt 0 2 A g e 3 G PN Ll = o - = > ALl » L
zo oo = =ODeohs = > et T s SE UL~ = S ot fl = -

L Lol o] T 1 T o= T == H = = PERZ S ZEIEN N ARIE =L bl
=S == e O 2L o e e T O o 2R oD T ohgoiod LI DKk DKL Ll b AR DK ==
s 2 TR R b= g at I = D DD T =D oz 2D - Iouun = 2D P O e T
s L L HON ot et wco — Ll [Zplqipldpidpidphode] Mot =]l 1] e L7 L e
=1 o B CE A L. L e e L. OO0 WO W ECl WO RUL L eselul ST)

OO~ & » » LOTELn -~ ~ ~ ~ ~ Sien » » o Tt (DL IO LI~ = & TS Cogs Tol eemieas <CoLlos ~
- N GGMM

S E S S CIMINT LI CO L v M LIO N CO O~ St CU PN U NI TS CODN S vt T PN LUNOTS O O St CI T LN PO O S i UM T DS S S
T 0 O et vt e e et b, st vt £ CC C 40 SO T TP P PP P PO RIS S S A S S ST S AT USLILILILILILD LAILIND OO DD LI

41

RS232C USER

SAMPLE PROGRAM 3 FOR THE NEC PC-8201A

This program runs at 1200 baud without echoback and includes an example of
a long sequence.

60 7 OFEN NEC COMMUNICATIONS FORT
7¢ 7 1209 baud, no parity,B8 data bits,? stop bits
80 '

90 OFEN"COM:ISNB2NN" FOR OUTFUT AS #1
100 OFEN"COM:SHA2ZHN" FOR INFUT AS #2
ite -’)
120 7

130 7

150 * INITIALISATION ROUTINE

160 ’

170 PRINTHL,"(",

175 ON ERROR GOTO Seee

180 A$=INFUTS(2,42)

190 BS$=LEFT$(A$, 1)

200 FRINTES

210 IF B$="U" THEN 260 ELSE 220

220 FRINT"NO U" @ GOTD 5000

240

259 7

259 7

260 7 SET DATA FORNAT

280 7 8 data bits,2 stop bits,no parity,echo off,with LF’'s

29
295 ON ERROR GOTO 5020

300 FRINTH1,"Vs1"

315 7

320 7 SEND COMFLETE SERGUENCE

325 7

330 FRINT "PRESS SFACE TO START SEQUENCE"

335 AS=INKEY$

340 IF A$=" " THEN 345 ELSE 335

345 GOSUR 390 : " SEND SEQUENCE

350 PRINT"SEQUENCE SENT" : END

360 ' CORMANDS

370 7

ige '

390 PRINTHL,":R12345:H1:%1000210000511X-52:Y53:Y-54:285:Z-R5:";
395 FRINTHL, "XYZIR43X-YIR3:X-Y-Z-R2:X-Y-Z~R1:=0, 1:4"
400 RETURN

2000 7

3000 FRINT "ERROR NUMBER" ; ERR

5010 CLOSE : GOTO 7¢

5020 FRINT "ERROR NUMBER" ; ERR

3630 CLOSE : FRINT "PROG ERROR" : END

RS232C USER 42

CONNECTION FOR THE EPSON HX20

On the Epson machine the RS232 connection is via an 8-way DIN socket.

(a) 3-wire, with or without echo-back.

Controller 1F1 Interface

1\ 1 Scr

- 2 TXD
LT < o
4 A RTS
5 E 5 s
6 6 DSR
7 7 ov
8 20 DTR

When using this connection scheme, note that the "control line active"
mode should be set to "F" in the "OPEN" statement as shown in the
listing. Since the Epson terminates on <CR> but sends <CR><LF>,
either "U" or "V" can be specified in line 300 of the non-echoback
program. Using "U" will speed up the communication.

(b) 5-wire with buffer control.

Controller 1F1 Interface
VTN 1 Scr
3 = o< T3 o
5 - o8 s
6 %—‘_\ 6 DSR
g N - 270 g‘T!R

The connections shown above must be used with the "control line
active" mode set to "3" in the "OPEN" statement as shown in the
listing. This will ensure that the buffer control is detected on the
CTS input of the Epson. If buffer control is not required, remove the
DTR connection to pins 4 and 5 on the Epson together.

R3232C USER 43

SAMPLE PROGRAM 4 FOR THE EPSON HX20

This program is for 3-wire communication without echoback.

1o’ USING THE EFSON WITH IF1 (3 WIRE)
20 185 4 - EFSON FROG WRITTEN 91/05/86

60 ' smxxexs OFEN EFSON COMMUNICATIONS FORT #zxsex
708 7 2400 baud , no parity , 8 data bits, 2 stop bits
80 OFEN"0" H#1,"CONG: (58N2F)"

99 OFEN"I™, H2,"CON9:(S9N2F)"

130 7 #xsxxx INITIALISATION ROUTINE sxxxsx

159 FRINTHL, "(",

160 ON ERROR GOTO 5000

179 IHFUTHZ, A%

180 FRINTAS

190 IF A$="U" THEN 250 ELSE 200

209 FRINT "NO U" : GOTO 5000

216 STOF

250 ' zxxsex SGET DATA FORMAT sxxxss

27@ ON ERROR GOTO 5920

280 ’ 8 data bits , 2 stop bits , no parity , no echo
300 PRINT #1 "Uét",
305 FRINTHI CHR3(13);

330 7 xxxzxs INDEX LOOF wxsesxs

359 FRINT "FRESS SFACE TO START TEST"
360 AS=INKEY$:

370 IF A%$=" " THEN 380 ELSE 340

386 GOSUB 510 : ” FIRST INDEX

390 FOR J=1 70 10

400 GOSUR 590 STATUS
419 GOSUB 556 : ' -INDEX
42D GOSUR 550 : 7 STATUS
430 GOSUB 650 : * +INDEX
440 NEXT J

450 GOSUB 596 : ' STATUS
460 STOP

479 7

488 ' zrxxxx COMMANDS sxxszs

510 A$= "X19D0E1009%"

320 FRINTHL A%

330 RETURN

549 7

550 At="X-gn

360 PRINTHL A$

579 RETURN

580

370 At="g"

600 PRINTHI A

610 INFUTH2, 5%

620 IF S$="E" THEN 590

230 IF 8%="C" THEN RETURN ELSE FRINT "INTERFACE FAULT" : STOF
49 7

650 A$="Ys"

650 FRINTHL, AS

679 RETURN

799

720 ' xxxexx ERROR ROUTINES swxsxs

3000 PRINT"ERROR MUMBER" ; ERR

5018 CLOSE : 60TO g6

7020 FRINT"ERROR NUMBER™ ; ERR

5030 CLOSE : FRINT "FROG ERROR" : STOF

RS232C USER 4y

SAMPLE PROGRAM 5 FOR THE EPSON HX20

This program is for 3-wire communication using echoback.

79 OFEN EFSON COMMUNICATIONS
80 " 4800 baud,no parity,8 data bits,? stap bits
70 7

100 OFEN"0" #1,"CONG: (4BN2F)"

110 OFEN"I" W2, "COND: (4BN2F)™

120 *

130 °

140 INITIALISATION ROUTINE
150 °

160 PRINTHL, (",

145 ON ERROR GOTD 5000

170 INFUTHD? 0%

180 B3=LEFTS(AS, 1)

190 FRINT B$

200 IF R$="U" THEN 260 ELSE 200
210 FRINT "NO U" : 6OTO 5000

230

240
259
260
279
280
290

295 ON ERROR GOTO 5029
360 FRINTHL, 042",

310 FRINTHI,CIR$(12),
370 GOTO 539

330

340
350

SET DATA FORMRAT

B data bits,? stop bits,no parity,echo on

340
37¢
3ge '
70 A$="Y10001210004"

400 GOSUR 1030

410 RETURN

420 7

430 At="Y-3"

446 GOSUE 1930

459 RETURN

440 7

479 A%="E"

489 GOSUR 1030

485 AS=INFUTH(2 42)

486 S$=LEFT3(A%,1)

500 IF S$="C" THEN RETURN ELSE 479
319 7

G20 As="X4M

330 GOsle 193¢ N

340 RETURN

530 '

560 7

CORNANDS

RS232C USER 45

4] T

344

q8e ! INDEX LOOF

%0 7

600 FRINT "FRESS SFACE TO START TEST"
619 A$=INKEY$

620 IF A$=" " THEN 630 ELSE 410

630 GOSUR 390 : 7 FIRST INDEX

640 FOR J=1 TD 190

659 GOSUR 478 : 7 STATUS

6460 GOSUR 430 :+ ' -~INDEX

670 GOSUR 470 : 7 STATUS

680 GOSUR 520 : * +INDEX

690 NEXT J

495 7

76@ STOF

718 7
729 7
730 '
800 ’
aie -’

820 A=LEN(AS)

830 FOR I=1 TO A

849 BE=NIDS (A% T1.1)

850 FRINTHI, RS,

860 E¢=INFUT$(1,42)

870 IF B$=E$ THEN 880 ELSE 930

880 MNEXT 1

899 RETURN

700 ’

710 7

720 7

930 ' ECHO ERROR

749 7

950 PRINT "ECHOD ERROR"

960 FRINT "CHAR No=",I

970 FRINT "TX-CHAR=";P$

789 FRINT “RX-CHAR=",E%

7% STOF

109¢ 7

ie1e '

1020 7

1629 0/F STRING CHECKING ECHUS
1649 7

1050 GOSUR Bee

1840 A$=CHR$(13)

1070 GOSUR #o0

1080 RETURN

4995 7
4994
4997
4998
4997 7

3080 FRINT "ERROR NUMBER"™;ERR
9819 CLOSE @ GOTO 99

3820 PRINT'EREOR NUMBER",ERR
50390 STOF

TX CHARS AND CHECK ECHO

. o~

ERROR ROUTINES

RS232C USER 46

SAMPLE PROGRAM 6 FOR THE EPSON HX20

This program is for 5-wire communication with buffer control.

10 ’Program to install a battery backed up sequence on the IF2
20 7’

30 7 OPEN EPSON COMMUNICATIONS PORT
40 2400 baud,no parity,8 data bits,2 stop bits
60

70 OPEN"O",#1,"COMO: (58N23)"

80 OQFEN"I",#2,"COMO:(58N23)"

90

100 PRINT "SWITCH ON IF2"

110 INPUT " PRESS CR TO CONTINUE", A$
120

130 7 INITIALISATION ROUTINE

150 PRINT#1,"(";

160 INPUT#2,A$: REM INPUT AND DISCARD
170 PRINT#1, *": REM CLEAR ALL CONTENTS OF BATTERY RAM
180 ON ERROR GOTO 550

190 INFUT#2,A$

200 PRINTAS$

210 IFA$="U" THEN 270 ELSE 220

220 PRINT "NO U" :GOTO 550

230 STOP

240

270 SET DATA FORMAT

290 ON ERROR GOTO 570

300 ’ B8 data bits,2 stop bits,no parity,echo off.
310 7

320 PRINT#1,"V61"

330

340 SEND COMPLETE SEQUENCE

360 PRINT#1,"E"

370 INPUT#2,S5%

380 IF S = "E" THEN 360

390 GOSUB 420

400 PRINT"SEQUENCE SENT":STOP

410 °

420 ° COMMANDS

440 PRINT#1,":R12345:H1:X1000@100051:X~52:YS3:Y~-54:285:Z-Rb:";
450 PRINT#1, "XYZR4:X-YR3:X-Y-ZR2:X-Y-ZR2:X-Y-Z-R1:+0,1:¢"
460 PRINT#1,"[" : REM LOCK THE SYSTEM
470 RETURN

480

530 ° ERROR ROUTINES

550 PRINT "ERROR NUMBER" ; ERR

560 CLOSE : GOTO 80

570 PRINT "ERROR NUMBER" ; ERR

580 CLOSE :PRINT"PROGRAM ERROR" :STOP

RS232C USER 47

CONNECTIONS FOR THE IBM PC

(a) 3-wire with or without echo-back.

Controller " IF1 Inferface

? y 0
2 »- e

3 << >3 RXD
L, —<—14 RTS
5 t—s s
6 L ¢ DSR
7 7 Ov

20 20 DR

This connection mode assumes that all "control line active" checking
is suppressed as specified in the "OPEN" statement (see sample listing
line 90).

(b) 5-wire with buffer control.

Confrollér IF1 Interface

Scr
XD
RXD
RTS
cTs
DSR
Ov
DTR

3

Buouvnrwn-

3

SBuouvnsrwn-
y :‘} \]

L

y

This connection mode assumes that "CTS line active" is specified in
the "OPEN" statement (see sample listing line 90). The timeout on CTS
can be varied, thew minimum value can be found experimentally by
sending a long string of characters to the IF1. The sample listing
gives a suggested timeout period.

RS232C USER 48

SAMPLE PROGRAM 7 FOR THE IBM PC

This program is for 3-wire communication without echoback.

20 ’ P.K.S.- DIGIPLAN LTD. 08 Jan 1987

30 ’ Power up the IF1 before running program

40 ’

50 ’

60 °’ OPEN COMMUNICATIONS PORT

70 ’ 2400 Baud,No parity,8 Data bits,2 Stop bits

80 COM(1) ON

90 OPEN"COM1:2400,N,8,2,RS5,CS,DS,CD" AS #1
100 ON ERROR GOTO 5000 : ’ This is to empty the IBM input buffer

110’ INITIALISATION ROUTINE

120 CLS:PRINT "PLEASE WAIT"

130 ON ERROR GOTO 4000

140 PRINT#1,"(";

150 ON ERROR GOTO 5000

160 INPUT #1,B$

170 PRINT B$

180 IF B$="U" THEN 220 ELSE 190
190 PRINT" NO U":GOTO 5000

220 SET DATA FORMAT

240 ’ B Data Bits,2 Stop Bits,No Parity,No Echoback.

260 PRINT #1,"U61"

270 FOR W = 1 TO 10000:NEXT:’ Wait for initial ramp calculation.

280
290 ° SOME EXAMPLE MOVES
300 °
310 PRINT #1, "X1000@1000°10%"

320 GOSUB 1000: ’ Check Motion Status.

330 PRINT #1,"Yg$"
340 GOSUB 1000

350 PRINT #1,"X-g"
360 GOSUB 1000

370 PRINT #1,"Y-$"
380 GOSUB 1000

390

400 ’

410 CLOSE: ’ CLOSE COMMS PORT BEFORE ENDING PROGRAM

420 °’
430 END : END OF PROGRAM

440 ’ Note. Before running program again reset IF1 by powering down!!!!

450
1000 MOTION AND FAULT CHECK ROUTINE
1010 PRINT #1,"E" : ’ Check Busy Status

1020 INPUT #1,S$

1030 IF S$ = "E" THEN 1010 '’ Loop until not Busy

1040 IF S$ = "C" THEN RETURN : ' Motion Stopped return for next move
1050 IF 8$ = "F" THEN PRINT "INTERFACE FAULT": GOTO 5000

1060 ’ END OF MOTION AND FAULT CHECK ROUTINE

4000 ’ IGNORE INPUT BUFFER NULL CHARACTER

4010 IF ERR = 57 THEN 140 ELSE GOTO 5000

'’ Input Status Byte

5000 ERROR CHECKING ROUTINE

5010 PRINT "ERROR NUMBER";ERR
5020 CLOSE :END

RS232C USER

49

SAMPLE PROGRAM 8 FOR THE 1B PC

This program is for 3-wire communication using echoback.

10
20
30
40
50
&0
70
80
2?0

100
110

* COMM IBM-PC TO IF1 IS5 4 -~ WITH ECHO-BACK (3 WIRE).
* IBM PROG IS5 1 15/05/86
7 THIS ASSUMES IF1 IS ALREADY POWERED UP
TORRRARREXNHXR OPEN IBM COMMUNICATIONS PORT #9303 5 935955333 % % 1 3
? 9600 baud,no parity,8 data bits,2 stop bits
COM(1) ON
OPEN"COM1:9600,N, 8, 2,RS,CS,DS,CD" AS #1
TOREENRRRNANXHE INITIALISATION ROUTINE 3383030555000 8 M 305090030309
PRINT#1, " ("3 g’ SEND BAUD DETECT COMMAND

ON ERROR GOTO S80)

INPUT#1,B%: PRINT B%$:” READ AND PRINT BAUD SET CHARACTER

120 IF B$="U" THEN 140 ELSE 130

130 PRINT" NO U" : 60OTO S80 : > IF "U" IS NOT RECEIVED RETRY.

140 7 HRXREXXNXAAAXE SET DATA FORMAT 3360630309 36986 3 536 56 36 39 3 96 36 3.6 36 % % % %
150 > 8 data bits,2 stop bits,no parity,echo on

160 PRINT#1,"Us2": * SEND DATA FORMAT COMMAND

170 GOTO 300 :* SEND COMMANDS TO INTERFACE.

180 7 H3HRHARXXUXX COMMANDS 33630336033 036 5333633396909 30- 3630 36 36 363036 636 363626
190 A$="X1000@1000%" 1’ SEND POSITIVE INDEX

200 GOSUB S3I01RETURN:? CHECK ECHOBACK

210 Ag="X-s" R SEND NEGATIVE INDEX.

220 GOSUB S530:RETURN:? CHECK ECHOBACK

230 As="E" [SEND STATUS COMMAND

240 GOSUB 530 :° CHECK ECHOBACK

250 INPUT#1,S5% :PRINT S$

2560 IF S$="E" THEN 230

270 IF S$="C" THEN RETURN ELSE PRINT "INTERFACE FAULT" : END

280 As$="Xs$"

290 GOSUB 530: RETURN

300 7 HEAREXRRNRENE INDEX LOOP 53030500355 359090 36 309696969 36 303636 63036 963630 2690 98

310 PRINT "PRESS SPACE TO START TEST"
320 A$=INKEY$: IF A$<> " " THEN 320
330 GOSUB 190 3 * FIRST INDEX
340 FOR J = 1 TO 10

350 GOSUB 230 : * STATUS

360 GOSUB 210 : * —INDEX

370 GOSUB 230 : * STATUS

380 GOSUB 280 & * +INDEX

390 NEXT J

400 END

410 7 *Exaxuunia%% TX CHARS AND CHECK ECHO 3535636 36 5 359 3696 3698 3 3362 3 36 36 3 3%
420 A=LEN(AS$)

430 FOR I=1 TO A

440 B$=MID$(A%$,1,1)

450 FRINT#1,B%;

460 E$=INPUT$(1,#1)

470 IF B$=E$ THEN 480 ELSE 500

480 NEXT I

490 RETURN

SO0 7 #ERHHAARNXXANE ECHO ERROR 99 5I0900 390006055596 3 396 5-6.36 96 2696963696 96 36 36968
510 PRINT "ECHO ERROR", "CHAR NO."51,"TX-CHAR="3B$, "RX-CHAR="3E$

520 END

530 7 wxxxxxxxxwsx 0O/P STRING CHECKING ECHOS #9585 36-5 9 396 363 3 5 3.3 363 3 9%
540 GOSUB 410

S50 A$=CHR%$(13)

560 GOSUB 410

370 RETURN

580 PRINT "ERROR NUMBER" ; ERR

590 CLOSE 1 GOTO &0

RS5232C USER 50

SAMPLE PROGRAM O FOR THE IBM PC

This program is for 5-wire communication with buffer control.

220
227
228
230
240
250
260
270
280
290
300
310
320
325
330
335
340
345
350
360
370
380
390
395
400
570

v e v v e

COMM IBM-PC TO IF1 1SS 4 (S5-WIRE WITH BUFFER CONTROL)
IBM PROG 1S5 1 15/05/86
THIS ASSUMES IF1 IS ALREADY POWERED UP

OFPEN IBM COMMUNICATIONS PORT
2400 baud,no parity,8 data bits,2 stop bits
COM(1) ON
OPEN"COM1: 2400,N,8,2,C5350,D8" AS #1

.
,

»

.

’ INITIALISATION ROUTINE
.

PRINT#1," ("3

ON ERROR GOTO 5000

INPUT#1,B$

PRINT Bs

IF B$="U" THEN 260 ELSE 210

PRINT" NO U" : GOTD 5000
’

SET DATA FORMAT

>
>

»

H

»

»

* B8 data bits,2 stop bits,no parity,echo of+f
»

PRINT#1, "Ub61"
>
»

: SEND COMPLETE SEQUENCE

PRINT "PRESS SPACE TO START SEQUENCE"

A$=INKEY$

IF A$= " " THEN 345 ELSE 335

GOSUB 390 1 * SEND SERUENCE

END :

4 COMMANDS

»

’

PRINT#1, "31R12345:H11 X1000@10000511 X~82: YS§31 Y-541265:1Z2~-R51 "}

PRINT#1, "XYZR4: X~YZR3s X—~Y—-ZR2: X~Y~2-R13=0, 11 &"
RETURN
»

5000 PRINT "ERROR NUMBER" j ERR
5010 CLOSE : GOTO 80

RS232C USER

51

SAM

PLE PROGRAM 10 FOR USE WITH THE TANDY 100/102 PORTABLES

Thi

10

20

30

60

70

80

90

100
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
4a0
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590

RS2

s program 3-wire communication at 9600 baud using echoback.

' SAMPLE PROGRAM FOR THE TANDY 100/102 PORTABLES
' FOR USE WITH THE P.K.S.DIGIPLAN IF1 ISSUE 5

' JAN 12TH 1987

' OPEN TANDY COMMS PORT

' 9600 baud,no parity,8 data bits,2 stop bits

1

OPEN"COM:88N2D" FOR OUTPUTAS #1
OPEN"COM:88N2D" FOR INPUT AS #2
|

1
1

' INITIALISATION ROUTINE

]

PRINT#1,"(";

ON ERROR GOTO 5000

A$ = INPUT$(2,#2)

B$ = LEFT$(A$,1)

IF B$ = "U" THEN 260 ELSE 230

IF B$ = "U" THEN 260 ELSE 230

PRINT "NO U™ :GOTO 5000

END .

1

' SET DATA FORMAT

' 8 data bits,2 stop bits, no parity,with echo,with LF termination
A

ON ERROR GOTO 5020
PRINT #1,"U62"
GOTO 580

1

COMMANDS

1

A$ = "X1000€1000°40%"
GOSUB 1030

RETURN

1

A$="X-$"
GOSUB 1030
RETURN

1

A$="E"

GOSUB 1030

A$=INPUT$ (3, #2)

3$ = LEFT$(A$,1)

IF S$ ="C" THEN RETURN ELSE 470
A$ - "X$ "

GOSUB 1030

RETURN

1

L}
1

' INDEX LOOP
A

32C USER 52

600 PRINT "PRESS SPACE TO START TEST
610 A$=INKEYS$

620 IF A$= "™ " THEN 630 ELSE 610
630 GOSUB 390:' FIRST INDEX

640 FOR J=1 TO 10

650 GOSUB 470:' STATUS

660 GOSUB U430:' -INDEX

670 GOSUB 470:' STATUS

680 GOSUB 520:' +INDEX

690 NEXT J

700 A$ = "X5000/Y50006500%"

710 GOSUB 1030

720 GOSUB 470

730 A$ = "X-/Y-$"

740 GOSUB 1030

750 GOSUB 470

760 END
800 ' TRANSMIT CHARS. AND CHECK ECHO
810 !

820 A=LEN(A$)

830 FOR I = 1 TO A

840 B$=MID$(A$,I,1)

850 PRINT #1,B$;

860 E$=INPUT$(1,#2)

870 IF B$=E$ THEN 880 ELSE 930
880 NEXT I

890 RETURN

900 !

910 !

920 '

930 ' ECHO ERROR

9ho

950 PRINT "ECHO ERROR"

960 PRINT "CHAR. NO.";I
970 PRINT "TX. CHAR.";B$
980 PRINT "RX. CHAR.";E$
990 END

1000 !

1010

1020 '

1030 ' 0/P STRING CHECKING ECHO'S
1040

1050 GOSUB 800

1060 A$=CHR$(10)

1070 GOSUB 800

1080 RETURN

5000 ' ERROR ROUTINES

5010 PRINT "ERROR NO.";ERR
5015 CLOSE:GOTO090

5020 PRINT " ERROR NO.";ERR
5030 END

RS232C USER 53

SAMPLE PROGRAM 11 FOR THE TANDY 100/102 PORTABLES

This program uses 3-wire communication at 2400 baud without echoback.

20 ' P.K.S.~ DIGIPLAN LTD. 08 Jan 1987

30 ' Power up the IF1 before running program

4o '

50 !

60 OPEN COMMUNICATIONS PORT

70 ' 2400 Baud,No parity,8 Data bits,2 Stop bits

80 COM ON

90 OPEN"COM:68N2D"™ FOR OUTPUT AS #1

100 OPEN"COM:68N2D"™ FOR INPUT AS #2

110 ! INITIALISATION ROUTINE

120 CLS:PRINT "PLEASE WAIT"

130 ON ERROR GOTO 4000

140 PRINT#1,"(";

150 ON ERROR GOTO 5000

160 INPUT #1,B$

170 PRINT B$

180 IF B$="U" THEN 220 ELSE 190

190 PRINT"™ NO U":GOTO 5000

220 ' SET DATA FORMAT

240 ' 8 Data Bits,2 Stop Bits,No Parity,No Echoback.
260 PRINT #1,"v61"

270 FOR W = 1 TO 10000:NEXT:' Wait for data configuration
280

290 ! SOME EXAMPLE MOVES

300 !

310 PRINT #1,"X1000€1000~10¢$"

320 GOSUB 1000: ' Check Motion Status.

330 PRINT #1,"Y$"

340 GOSUB 1000

350 PRINT #1,"X-$"

360 GOSUB 1000

370 PRINT #1,"Y-$"

380 GOSUB 1000

385 PRINT #1,"X5000/Y50086500$"

386 GOSUB1000

387 PRINT #1,"X-/Y-3"

388 GOSUB1000

390

4o0

ﬁTO CLOSE: ' CLOSE COMMS PORT BEFORE ENDING PROGRAM
20 !

430 END : END OF PROGRAM

440 ' Note. Before running program again reset IF1 by powering
down!!!!

450

1000 ' MOTION AND FAULT CHECK ROUTINE

1010 PRINT #1,"E" : ' Check Busy Status

1020 INPUT #1,S$: ' Input Status Byte

1030 IF S$ = "E" THEN 1010 : ' Loop until not Busy

1040 IF S$ = "C" THEN RETURN : ' Motion Stopped return for next move
1050 IF S$ = "F" THEN PRINT "INTERFACE FAULT": GOTO 5000

1060 END OF MOTION AND FAULT CHECK ROUTINE

5000 ' ERROR CHECKING ROUTINE
5010 PRINT "ERROR NUMBER";ERR
5020 CLOSE :END

RS232C USER 54

INITIALISATION FLOWCHART

»

Set DTR

No
Yes
LED on ‘or isec
Sense ("
Send back y
<CR>at new .
baud Setupprevious
3 baudrate & data format

FlashLED 1Hz

Read in |

Read in
ey

Clears
out RAM

Read in

UX]XZ <(R> or
VX1X1<[R> <LF>

(EMerMuin Loop ’

RS232C USER 55

INPUT BUFFER STROBE FLOWCHART

Read Buffer

Any Chars™\No

in Buffer?

|
Set DTR

Main Loop

Yes

Is Buffer
> 20%Full?

Is Buffer Yes

Z 80% Full?

Is Buffer

SetDTR >95% Full?

Reself DTR

Set DATA FAULT

bitin F Com.
Read Character l
from Buffer Sel DTR
Yes Flush Buffer

Echoback?

Returnto
Main Loop

Echo
Character

l

No
‘ Process Char.)

RS232C USER 56

FLOWCHART FOR TRANSMITTING DATA FROM IF1

(Transmit Ch.)

Set RTS

" DSRand No
CTS Set?

Yes

Transmit Char.

Reset RTS

RS232C USER 57

INDEX
Acceleration rate 15

Backlash correction 17
Battery backup 28

Baud rate 5

Block diagram, IF1 36
Busy status 26

Cancel command 6, 17
Carriage return command 13
Command list 30
Communication status 23
Connection methods 7

Data format 4, 13

Data transfer control 6
Default values 28
Direction control 16

Echo-back 5, 13
Edge connections, IF1 32
Emergency stop input 10

Fault conditions, clearing 27
Fault disable links 9

Fault output 12

Flowcharts, IF1 56

Format, RS232C 13

Index mode 16

Initialisation 13

Input status 25

Inputs, circuits 37
commands 18
connections 10, 12

Installation 9

Inter-character delay 14

LED function 14, 25

Limit inputs 10

Line feed command 13

Linear interpolation 22
constraints 23
programming 22
sequence mode 23

Lockout commands 28

Motherboard, connector identification ¢, 33
logic diagram 35
Motion status 24

Outputs, circuits 37
combining with move instructions 18
connections 10
switching commands 18

RS232C USER 58

Parity 5

Power requirements 9

Position report-back 26

Program examples 39 Quick status 25

RS232C control lines 6
RS232C port connections 9
Report back functions 24
Run mode 17

Sequence mode, aborting run 21
backlash correction 22
controller intervention
programming 19
repeating steps 20
time delays 22
status 25

Serial data format 4

Signal levels, RS232C 5

Speed command 14

Speed ranges 14

Start/stop speed 15

Stop bits 4, 13

RS232C USER 59

21

