The following is an example of the necessary query and corresponding response for holding register 2 . In this example register 2 is the decimal value 123 Query: 010300010001 D5 CA Response: 01030200 7B F8 67
Notes:

1. The PAX2C registers can be read as holding (4 x) or input (3 x) registers.
2. The PAX2C should not be powered down while parameters are being changed. Doing so may corrupt the non-volatile memory resulting in checksum errors.

PAX2C Ver 2.0 Modbus Register Table

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
FREQUENTLY USED REGISTERS						
01	Input Process Value	N/A	N/A	N/A	Read	1 = 1 Display Unit
02	Maximum Value	-1999	9999	N/A	Read	1 = 1 Display Unit
03	Minimum Value	-1999	9999	N/A	Read	1 = 1 Display Unit
04	Active Setpoint Value	SPLO	SPHI	0	Read/Write	1 = 1 Display Unit; Limited by setpoint low/high limits
05	Setpoint 1 Value	SPLO	SPHI	0	Read/Write	1 = 1 Display Unit; Limited by setpoint low/high limits
06	Setpoint 2 Value	SPLO	SPHI	0	Read/Write	1 = 1 Display Unit; Limited by setpoint low/high limits
07	Setpoint Deviation	N/A	N/A	N/A	Read Only	1 = 1 Display Unit
08	Output Power	-1000	1000	N/A	Read/Write	Output Power: Heat/Cool; * writable only in manual mode; $1=0.1 \%$
09	Active Proportional Band	0	9999	700	Read/Write	1 = 1 Display Unit
10	Active Integral Time	0	65000	120	Read/Write	1 = 0.1 Second
11	Active Derivative Time	0	9999	30	Read/Write	1 = 0.1 Second
12	Active Power Filter	0	600	10	Read/Write	1 = 0.1 Second
13	Auto-Tune Code	0	4	2	Read/Write	0 = Very Aggressive, 1 = Aggressive, 2 = Default, 3 = Conservative, 4 = Very Conservative
14	Auto-Tune Request	0	1	0	Read/Write	```0 = Off, 1 = Invoke Auto-Tune , 2 = Auto-Tune CS1, 3 = Auto-Tune CS2, 4 = Auto-Tune CS3, 5 = Auto-Tune CS4, 6 = Auto-Tune CS5, 7 = Auto-Tune CS6```
15	Auto-Tune Phase	0	4	0	Read	0 = Off, 4 = Last Phase of Auto-Tune
16	Auto-Tune Done	0	1	0	Read	1 = Successful Auto-Tune since last power cycle.
17	Auto-Tune Fail	0	1	0	Read	0 = Off, 1 = Auto-Tune failed
18	Control Mode	0	1	0	Read/Write	0 = Automatic, 1 = Manual Mode
19	Setpoint Selection	0	1	0	Read/Write	0 = Setpoint 1, 1 = Setpoint $2 \ldots 5$ = Setpoint 6
20	Remote/Local Setpoint Selection	0	1	0	Read/Write	0 = Local, 1 = Remote
21	PID Set Selection	0	1	0	Read/Write	0 = PID Set 1 (Pri), 1 = PID Set 2(Alt), 2 = PID Set 3, 3 = PID Set 4, 4 = PID Set 5, $5=$ PID Set $6,6=$ SPSL, $7=$ Auto
22	Disable Integral Action	0	1	0	Read/Write	0 = Enabled, 1 = Disabled
23	Disable Setpoint Ramping	0	1	0	Read/Write	0 = Enabled, 1 = Disabled
24	Setpoint Ramping In Process	0	1	0	Read/Write	0 = Off, 1 = In Process
25	Setpoint Ramp Rate Value	-1999	9999	0	Read/Write	1 = 0.1 Setpoint Ramping @ Timebase unit selection
26	Alarm (1-16) Status Register	0	65535	3	Read	Bit 15 = A16, Bit $0=$ A1
27	PID Stop/Run	0	1	0	Read/Write	0 = Run PID, 1 = Stop PID (Output Power = 0\%)
28	User Input Status	0	2	0	Read	Bit 1 = User Input 2, Bit 0 = User Input 1
29	Digital Output Status	0	15	N/A	Read/Write	Status of Digital Outputs. Bit State: $0=$ Off, $1=$ On. Bit 3 = Out1, Bit $2=$ Out2, Bit $1=$ Out3, Bit $0=$ Out4. Outputs can only be activated/reset with this register when the respective bits in the Manual Mode Register (MMR) are set.
30	Output Manual Mode Register (MMR)	0	31	0	Read/Write	Bit State: $0=$ Auto Mode, 1 = Manual Mode Bit $4=\mathrm{DO} 1$, Bit $3=\mathrm{DO} 2$, Bit $2=\mathrm{DO} 3$, Bit $1=\mathrm{DO} 4$, Bit $0=$ Linear Output
31	Alarm Reset Register	0	65535	0	Read/Write	Bit State: 1 = Reset Alarm, bit is returned to zero following reset processing; Bit $15=\mathrm{A} 16$, Bit $0=\mathrm{A} 1$

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
32	Analog Output Register (AOR)	0	4095	0	Read/Write	Functional only if Linear Output is in Manual Mode.(MMR bit $0=1$) Linear Output Card written to only if Linear Out (MMR bit 0) is set.
33	Active Alarm 1 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
34	Active Alarm 2 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
35	Active Alarm 3 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
36	Active Alarm 4 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
37	Active Alarm 5 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
38	Active Alarm 6 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
39	Active Alarm 7 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
40	Active Alarm 8 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
41	Active Alarm 9 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
42	Active Alarm 10 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
43	Active Alarm 11 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
44	Active Alarm 12 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
45	Active Alarm 13 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
46	Active Alarm 14 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
47	Active Alarm 15 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
48	Active Alarm 16 Value	-1999	9999	0	Read/Write	Active List (A or B); 1 = 1 Display Unit
49	Active Alarm 1 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
50	Active Alarm 2 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
51	Active Alarm 3 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
52	Active Alarm 4 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
53	Active Alarm 5 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
54	Active Alarm 6 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
55	Active Alarm 7 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
56	Active Alarm 8 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
57	Active Alarm 9 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
58	Active Alarm 10 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
59	Active Alarm 11 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
60	Active Alarm 12 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
61	Active Alarm 13 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
62	Active Alarm 14 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
63	Active Alarm 15 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
64	Active Alarm 16 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
65	Remote SP Value	-1999	9999	0	Read Only	
66	Profile Operating Status	0	5	0	Read/Write	0 = Profile Control Mode Off; Unit will control to active setpoint, 1 = End Profile; Control per profile end action, 2 = Pause, 3 = Error Delay (status only), 4 = Run/Resume/Start, 5 = Advance Profile Segment
67	Active Profile	1	16	1	Read	(0 = Stop, 1-16 = Current Profile)
68	Active Segment	1	20	1	Read	(0 = Stop, 1-20 = Current Segment)
69	Profile Segment Type	0	1	0	Read	0 = Ramp, 1 = Hold
70	Active Profile Cycle Count Remaining	0	250	0	Read/Write	0-250; If Cycle Count is 0 unit is configured for continuous cycling
71	Active Profile Segment Time Remaining (Hi Word)	0	9999	N/A	Read/Write	1 = 0.1 Minute; Can make temporary change on the fly, however, if Active Profile Segment's Time resolution is in minutes, the least significant
72	Active Profile Segment Time Remaining (Lo Word)	0	9999	N/A	Read/Write	decade is ignored (i.e., $38=30$ minutes)
73	Profile Event Status	0	15	0	Read/Write	Bit 3 = Event 4, Bit 2 = Event 3, Bit 1 = Event 2; Bit 0 = Event 1

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS		
INPUT PARAMETERS						SEE INPUT MODULE FOR PARAMETER DESCRIPTIONS		
Analog Input Parameters								
101	Input Range	0	26	16	Read/Write	$0=250 \mu \mathrm{~A}$ $5=250 \mathrm{mV}$ $11=100 \Omega$ $17=$ TC-K $23=$ RTD 385 $1=2.5 \mathrm{~mA}$ $6=2 \mathrm{~V}$ $12=1 \mathrm{~K} \Omega$ $18=$ TC-R $24=$ RTD 392 $2=25 \mathrm{~mA}$ $7=10 \mathrm{~V}$ $13=10 \mathrm{~K} \Omega$ $19=$ TC-S $25=$ RTD 672 $3=250 \mathrm{~mA}$ $8=25 \mathrm{~V}$ $14=$ TC-T $20=$ TC-B $26=$ RTD 427 $4=2 \mathrm{~A}$ $9=100 \mathrm{~V}$ $15=$ TC-E $21=$ TC-N $10=200 \mathrm{~V}$ $16=$ TC-J $22=$ TC-C 10		
102	Square Root Linearization	0	1	0	Read/Write	$0=$ No, $1=$ Yes (Valid on Process Inputs)		
103	Temperature Scale (TC or RTD only)	0	1	1	Read/Write	$0={ }^{\circ} \mathrm{C}, 1={ }^{\circ} \mathrm{F}$		
104	Ice Point Compensation (TC only)	0	1	1	Read/Write	$0=$ Off, $1=$ On		
105	ADC Conversion Rate (samples/sec)	0	5	2	Read/Write	$0=5,1=10,2=20,3=40,4=80,5=160$		
106	Decimal Point	0	3	1	Read/Write	$0=0,1=0.0,2=0.00,3=0.000$		
107	Rounding Factor	0	6	0	Read/Write	$0=1,1=2,2=5,3=10,4=20,5=50,6=100$		
108	Input Offset Value	-1999	9999	0	Read/Write	1 = 1 Display Unit		
109	Digital Input Filter	0	250	10	Read/Write	1 = 0.1 Second		
110	Input Scaling Points in List Function	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$		
111	Display Input Units	0	1	1	Read/Write	$0=$ No, 1 = Yes		
112	Input Units Character 1	0	57	0	Read/Write		$\begin{array}{ll} Z & 36=8 \\ 0 & 37=9 \\ 1 & 38=a \\ 2 & 39=c \\ 3 & 40=e \\ 4 & 41=\mathrm{g} \\ 5 & 42=\mathrm{h} \\ 6 & 43=\mathrm{i} \\ 7 & 44=\mathrm{n} \end{array}$	$\begin{array}{ll} 45=\mathrm{m}(\mathrm{r}) & 54=] \\ 46=0 & 55=/ \\ 47=\mathrm{q} & 56=0 \\ 48=\mathrm{r} & 57=- \\ 49=\mathrm{u} & \\ 50=\mathrm{w}(\mathrm{r}) & \\ 51=- & \\ 52== & \\ 53=[& \\ \hline \end{array}$
113	Input Units Character 2			56	Read/Write	See Input Units Character 1		
114	Input Units Character 3			6	Read/Write	See Input Units Character 1		
User Input / Function Keys								
151	User Input Active State	0	1	0	Read/Write	0 = Active Low, 1 = Active High		
152	User Input 1 Action	0	29*	0	Read/Write	$0=\mathrm{NONE}$ $7=\mathrm{SPrP}$ $14=\mathrm{dLEV}$ $1=\mathrm{PLOC}$ $8=\mathrm{d}-\mathrm{HI}$ $15=\mathrm{dISP}$ $2=\mathrm{ILOC}$ $9=\mathrm{r}-\mathrm{HI}$ $16=\mathrm{LISt}$ $3=\operatorname{trnF}$ $10=\mathrm{d}-\mathrm{Lo}$ $17=\mathrm{Prnt}$ $4=\mathrm{SPSL}$ $11=\mathrm{r}-\mathrm{Lo}$ $18=\mathrm{RnSt}$ $5=\mathrm{RSPt}$ $12=\mathrm{r}-\mathrm{HL}$ $19=\mathrm{PlrS}$ $6=\mathrm{PSEL}$ $13=\mathrm{r}-\mathrm{AL}$ $20=\mathrm{PlrH}$	$\begin{aligned} & 21=\mathrm{PrrS} \\ & 22=\mathrm{PrrH} \\ & 23=\text { PStr } \\ & 24=\mathrm{Adnc} \\ & 25=\text { PAUS } \\ & 26=\text { PEnd } \\ & 27=r-E v \end{aligned}$	$\begin{aligned} & 28=\text { NA }-1 \\ & 29=\text { NA }-2 \\ & 30+=\text { FC Functions } \end{aligned}$
153	User Input 1 Alarm Mask	0	65535	0	Read/Write			
154	User Input 2 Action	0	29*	0	Read/Write	Same as User Input 1 Action		
155	User Input 2 Alarm Mask	0	65535	0	Read/Write	Same as User Input 1 Alarm Mask		
156	User F1 Key Action	0	26*	0	Read/Write	$0=\mathrm{NONE}$ $6=\mathrm{SPrP}$ $12=\mathrm{dISP}$ $18=\mathrm{PrrS}$ $24=\mathrm{r}-\mathrm{Ev}$ $1=\mathrm{ILOC}$ $7=r-\mathrm{HI}$ $13=\mathrm{LISt}$ $19=\mathrm{PrrH}$ $25=\mathrm{NA}-1$ $2=\operatorname{trnF}$ $8=\mathrm{r}-\mathrm{Lo}$ $14=\mathrm{Prnt}$ $20=\mathrm{PS}$ tr $26=\mathrm{NA}-2$ $3=\mathrm{SPSL}$ $9=r-\mathrm{HL}$ $15=\mathrm{RnSt}$ $21=\mathrm{Adnc}$ $27+=\mathrm{FC}$ Functions $4=\mathrm{RSPt}$ $10=\mathrm{r}-\mathrm{AL}$ $16=\mathrm{PlrS}$ $22=\mathrm{PAUS}$ $5=\mathrm{PSEL}$ $11=\mathrm{dLEV}$ $17=\mathrm{PlrH}$ $23=$ PEnd		
157	User F1 Key Alarm Mask	0	65535	0	Read/Write	Same as User Input 1 Alarm Mask		

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
158	User F2 Key Action	0	26*	0	Read/Write	Same as User F1 Key Action
159	User F2 Key Alarm Mask	0	65535	0	Read/Write	Same as User Input 1 Alarm Mask
160	User F1 Second Action	0	26*	0	Read/Write	Same as User F1 Key Action
161	User F1 Second Alarm Mask	0	65535	0	Read/Write	Same as User Input 1 Alarm Mask
162	User F2 Second Action	0	26*	0	Read/Write	Same as User F1 Key Action
163	User F2 Second Alarm Mask	0	65535	0	Read/Write	Same as User Input 1 Alarm Mask
Advanced Input Parameters						
List A	Input Scaling Points Parameters					
171	Number of Scaling Points	2	16	2	Read/Write	Number of Linearization Scaling Points
172	Reserved	N/A	N/A	N/A	N/A	
173	Scaling Pt. 1 Input Value	-1999	9999	0	Read/Write	1 = 0.001
174	Scaling Pt. 1 Display Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
175 215	Scaling Pt. 2 Input Value	-1999	9999	1000	Read/Write	1 = 0.001
176	Scaling Pt. 2 Display Value	-1999	9999	1000	Read/Write	1 = 1 Display Unit
177 thru 217 thru 202 242 203 243	Scaling Pts. 3 thru 15 Values	-1999	9999	0	Read/Write	Registers 40177-40202 and 40217-40242 hold values for Scaling Points 3 thru 15, and follow the same ordering as Scaling Point 1.
$203-243$	Scaling Pt. 16 Input Value	-1999	9999	0	Read/Write	1 = 0.001
204	Scaling Pt. 16 Display Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
OUTPUT PARAMETERS						
251	Output 1 Assignment	0	23*	1	Read/Write	$0=$ NONE $7=$ RSPt $14=$ PHLd $21=$ PEv4 $1=\mathrm{HEAt}$ $8=\mathrm{ILOC}$ $15=$ PAUS $22=\mathrm{NA}-1$ $2=\mathrm{COOL}$ $9=\mathrm{tunE}$ $16=$ PErb $23=$ NA -2 $3=$ ALr $10=\mathrm{tndn}$ $17=$ PErt $24+=$ FlexCard $4=$ MAN $11=\mathrm{tnFL}$ $18=$ PEv1 Assignments $5=$ SPSL $12=$ PCtL $19=$ PEv2 $6=$ SPrP $13=$ Prun $20=$ PEv3
252	Output 1 Logic/Alarm Logic Mode	0	2	0	Read/Write	If Out Assignment \neq ALr; $0=$ NOR, $1=$ REV If Output Assignment = ALr; $0=$ SINGLE, $1=$ AND, $2=\mathrm{OR}$
253	Output 1 Alarm Mask	0	65535	0	Read/Write	Bit $0=$ A1 Bit $4=$ A5 Bit $8=$ A9 Bit $12=$ A13 Bit 1 = A2 Bit $5=$ A6 Bit $9=$ A10 Bit 13 $=$ A14 Bit 2 =A3 Bit $6=$ A7 Bit 10 $=$ A11 Bit 14 $=$ A15 Bit 3 =A4 Bit 7 =A8 Bit 11=A12 Bit 15 =A16
254	Output 1 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
255	Output 2 Assignment	0	23*	0	Read/Write	Same as Output 1 Assignment
256	Output 2 Logic/Alarm Logic Mode	0	2	0	Read/Write	Same as Output 1 Logic/Alarm Logic Mode
257	Output 2 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
258	Output 2 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
259	Output 3 Assignment	0	23*	0	Read/Write	Same as Output 1 Assignment
260	Output 3 Logic/Alarm Logic Mode	0	2	0	Read/Write	Same as Output 1 Logic/Alarm Logic Mode
261	Output 3 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
262	Output 3 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
263	Output 4 Assignment	0	23*	0	Read/Write	Same as Output 1 Assignment
264	Output 4 Logic/Alarm Logic Mode	0	2	0	Read/Write	Same as Output 1 Logic/Alarm Logic Mode
265	Output 4 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
266	Output 4 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
Analog Output						
271	Non-Linear Analog Output Scaling	0	1	0	Read/Write	$0=$ No, 1 = Yes (Use Non-Linear Analog Output Scaling Parameters)
272	Type	0	2	1	Read/Write	$0=0-20 \mathrm{~mA}, 1=4-20 \mathrm{~mA}, 2=0-10 \mathrm{~V}$
273	Assignment	0	6*	0	Read/Write	$\begin{aligned} & 0=\text { NONE, } 1=\mathrm{PV}, 2=\mathrm{HI}, 3=\mathrm{LO}, 4=\mathrm{OP}, 5=\mathrm{SP}(\text { Active }), 6=\mathrm{dEv} \text {, } \\ & 7+=\text { FlexCard Assignments } \end{aligned}$
274	Analog Low Scale Value	-1999	9999	0	Read/Write	Display value that corresponds with $0 \mathrm{~V}, 0 \mathrm{~mA}$ or 4 mA output
275	Analog High Scale Value	-1999	9999	1000	Read/Write	Display value that corresponds with 10 V or 20 mA output

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
304	Line 1 Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
305	Line 1 Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask
306	Line 1 Red Backlight Assignment	0	25^{*}	0	Read/Write	Same as Line 1 Green Backlight Assignment
307	Line 1 Red Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
308	Line 1 Red Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask
309	Line 1 Green-Orange Backlight Assignment	0	25*	0	Read/Write	Same as Line 1 Green Backlight Assignment
310	Line 1 Green-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
311	Line 1 Green-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask
312	Line 1 Red-Orange Backlight Assignment	0	25*	0	Read/Write	Same as Line 1 Green Backlight Assignment
313	Line 1 Red-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
314	Line 1 Red-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask
315	Line 1 Red-Green Backlight Assignment	0	25*	0	Read/Write	Same as Line 1 Green Backlight Assignment
316	Line 1 Red-Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
317	Line 1 Red-Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask
Line 2						
331	Line 2 Default Display Color	0	2	0	Read/Write	0 = Grn, 1 = OrNG, 2 = rEd
332	Deprecated					See registers 111-114 for Input Unit's programming
333	Deprecated					See registers 111-114 for Input Unit's programming
334	Deprecated					See registers 111-114 for Input Unit's programming
335	Deprecated					See registers 111-114 for Input Unit's programming
336	Line 2 Bargraph Assignment	0	6*	2	Read/Write	$\begin{aligned} & 0=\text { NONE, } \quad 1=\mathrm{OP}, \quad 2=\mathrm{dEv}, \quad 3=\mathrm{SP}, \quad 4=\mathrm{OP} \text { ANy, } \quad 5=\mathrm{dEv} \mathrm{ANy}, \\ & 6=\text { SP ANy }, \quad 7+=\text { FlexCard Assignments } \end{aligned}$
337	Line 2 Bargraph Low Scale Value	0	9999	0	Read/Write	
338	Line 2 Bargraph High Scale Value	0	9999	100	Read/Write	
339	Line 2 Green Backlight Assignment	0	25*	0	Read/Write	$0=$ NONE $5=\mathrm{ALr}$ $10=\mathrm{ILOC}$ $15=$ Prun $20=$ PEv1 $25=\mathrm{NA}-2$ $1=$ Out1 $6=$ MAN $11=$ tunE $16=$ PHLd $21=$ PEv2 $26+=$ FlexCard $2=$ Out2 $7=$ SPSL $12=$ tndn $17=$ PAUS $22=$ PEv3 A Assignments = Out3 $8=$ SPrP $13=$ tnFL $18=$ PErb $23=$ PEv4
340	Line 2 Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
341	Line 2 Green Backlight Alarm Mask	0	65535	0	Read/Write	
342	Line 2 Orange Backlight Assignment	0	25*	0	Read/Write	Same as Line 2 Green Backlight Assignment
343	Line 2 Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
344	Line 2 Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 2 Green Backlight Alarm Mask
345	Line 2 Red Backlight Assignment	0	25*	0	Read/Write	Same as Line 2 Green Backlight Assignment
346	Line 2 Red Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
347	Line 2 Red Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 2 Green Backlight Alarm Mask
348	Line 2 Green-Orange Backlight Assignment	0	25*	0	Read/Write	Same as Line 2 Green Backlight Assignment
349	Line 2 Green-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
350	Line 2 Green-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 2 Green Backlight Alarm Mask
351	Line 2 Red-Orange Backlight Assignment	0	25*	0	Read/Write	Same as Line 2 Green Backlight Assignment
352	Line 2 Red-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
353	Line 2 Red-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 2 Green Backlight Alarm Mask
354	Line 2 Red-Green Backlight Assignment	0	25*	0	Read/Write	Same as Line 2 Green Backlight Assignment
355	Line 2 Red-Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
356	Line 2 Red-Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 2 Green Backlight Alarm Mask

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
397	UA 2 Assignment Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
398	UA 2 Assignment Alarm Mask	0	65535	1	Read/Write	
399	UA 2 Green Backlight Assignment	0	25*	0	Read/Write	Same as UA 2 Units Assignment
400	UA 2 Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
401	UA 2 Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 2 Assignment Alarm Mask
402	UA 2 Orange Backlight Assignment	0	25*	0	Read/Write	Same as UA 2 Units Assignment
403	UA 2 Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
404	UA 2 Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 2 Assignment Alarm Mask
405	UA 2 Red Backlight Assignment	0	25^{*}	5	Read/Write	Same as UA 2 Units Assignment
406	UA 2 Red Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
407	UA 2 Red Backlight Alarm Mask	0	65535	1	Read/Write	Same as UA 2 Assignment Alarm Mask
408	UA 2 Green-Orange Backlight Assignment	0	25*	0	Read/Write	Same as UA 2 Units Assignment
409	UA 2 Green-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
410	UA 2 Green-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 2 Assignment Alarm Mask
411	UA 2 Red-Orange Backlight Assignment	0	25*	0	Read/Write	Same as UA 2 Units Assignment
412	UA 2 Red-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
413	UA 2 Red-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 2 Assignment Alarm Mask
414	UA 2 Red-Green Backlight Assignment	0	25*	0	Read/Write	Same as UA 2 Units Assignment
415	UA 2 Red-Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
416	UA 2 Red-Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 2 Assignment Alarm Mask
Universal Annunciator 3						
421	UA 3 Default Display Color	0	2	0	Read/Write	$0=$ Grn, 1 = OrNG, $2=$ rEd
422	UA 3 Units Mnemonic	0	1	1	Read/Write	0 = Off, 1 = On
423	UA 3 Units Digit 1 (Left)	0	57	1	Read/Write	Same as UA1 Units Selection
424	UA 3 Units Digit 2 (Right)	0	57	30	Read/Write	
425	UA 3 Units Logic Mode (Active)	0	2	0	Read/Write	0 = nor, 1 = rEv, 2 = FLSh
426	UA 3 Units Assignment	0	25*	5	Read/Write	$0=$ NONE $5=\mathrm{ALr}$ $10=\mathrm{ILOC}$ $15=$ Prun $20=\mathrm{PEv} 1$ $25=\mathrm{NA}-2$ $1=$ Out 1 $6=\mathrm{MAN}$ $11=$ tunE $16=$ PHLd $21=$ PEv2 $26+=$ FlexCard $2=$ Out2 $7=$ SPSL $12=$ tndn $17=$ PAUS $22=$ PEv3 Assignments $3=$ Out3 $8=$ SPrP $13=$ tnFL $18=$ PErb $23=$ PEv4 $4=$ Out4 $9=$ RSPt $14=$ PCtL $19=$ PErt $24=$ NA- 1
427	UA 3 Assignment Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
428	UA 3 Assignment Alarm Mask	0	65535	2	Read/Write	Bit $0=$ A1 Bit $4=$ A5 Bit $8=$ A9 Bit 12 $=$ A13 Bit 1 = A2 Bit $5=$ A6 Bit $9=$ A10 Bit 13 $=$ A14 Bit 2 =A3 Bit $6=$ A7 Bit 10 $=$ A11 Bit 14 $=$ A15 Bit 3 =A4 Bit $7=$ A8 Bit 11 =A12 Bit 15 =A16
429	UA 3 Green Backlight Assignment	0	25*	0	Read/Write	Same as UA 3 Units Assignment
430	UA 3 Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
431	UA 3 Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 3 Assignment Alarm Mask
432	UA 3 Orange Backlight Assignment	0	25*	0	Read/Write	Same as UA 3 Units Assignment
433	UA 3 Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
434	UA 3 Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 3 Assignment Alarm Mask
435	UA 3 Red Backlight Assignment	0	25**	5	Read/Write	Same as UA 3 Units Assignment
436	UA 3 Red Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
437	UA 3 Red Backlight Alarm Mask	0	65535	2	Read/Write	Same as UA 3 Assignment Alarm Mask
438	UA 3 Green-Orange Backlight Assignment	0	25	0	Read/Write	Same as UA 3 Units Assignment
439	UA 3 Green-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
440	UA 3 Green-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 3 Assignment Alarm Mask
441	UA 3 Red-Orange Backlight Assignment	0	25*	0	Read/Write	Same as UA 3 Units Assignment

REGISTER ADDRESS	REGISTER NAME	$\begin{aligned} & \hline \text { LOW } \\ & \text { LIMIT } \end{aligned}$	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS			
442	UA 3 Red-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=$ OR			
443	UA 3 Red-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 3 Assignment Alarm Mask			
444	UA 3 Red-Green Backlight Assignment	0	25*	0	Read/Write	Same as UA 3 Units Assignment			
445	UA 3 Red-Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR			
446	UA 3 Red-Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 3 Assignment Alarm Mask			
Universal Annunciator 4									
451	UA 4 Default Display Color	0	2	0	Read/Write	$0=\mathrm{Grn}, 1$ = OrNG, 2 = rEd			
452	UA 4 Units Mnemonic	0	1	0	Read/Write	$0=$ Off, 1 = On			
453	UA 4 Units Digit 1 (Left)	0	57	0	Read/Write	Same as UA1 Units Selection			
454	UA 4 Units Digit 2 (Right)	0	57	0	Read/Write				
455	UA 4 Units Logic Mode (Active)	0	2	0	Read/Write	$0=$ nor, 1 = rEv, $2=\mathrm{FLSh}$			
456	UA 4 Units Assignment	0	25*	0	Read/Write	$0=$ NONE $5=$ ALr $10=\mathrm{ILOC}$ $15=$ Prun $20=$ PEv1 $25=$ NA-2 $1=$ Out1 $6=$ MAN $11=$ tunE $16=$ PHLd $21=$ PEv2 $26+=$ FlexCard $2=$ Out2 $7=$ SPSL $12=$ tndn $17=$ PAUS $22=$ PEv3 Assignments $3=$ Out3 $8=$ SPrP $13=$ tnFL $18=$ PErb $23=$ PEv4 $4=$ Out4 $9=$ RSPt $14=$ PCtL $19=$ PErt $24=$ NA-			
457	UA 4 Assignment Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=$ OR			
458	UA 4 Assignment Alarm Mask	0	65535	0	Read/Write	Bit $0=$ A1 Bit $4=$ A5 Bit $8=$ A9 Bit $12=$ A13 Bit 1 $=$ A2 Bit $5=$ A6 Bit $9=$ A10 Bit 13 $=$ A14 Bit $2=$ A3 Bit $6=$ A7 Bit 10 $=$ A11 Bit 14 $=$ A15 Bit 3 =A4 Bit 7 7 A 8 Bit 11 $=$ A12 Bit 15 =A16			
459	UA 4 Green Backlight Assignment	0	25*	0	Read/Write	Same as UA 4 Units Assignment			
460	UA 4 Green Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{O}$			
461	UA 4 Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 4 Assignment Alarm Mask			
462	UA 4 Orange Backlight Assignment	0	25*	0	Read/Write	Same as UA 4 Units Assignment			
463	UA 4 Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR			
464	UA 4 Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 4 Assignment Alarm Mask			
465	UA 4 Red Backlight Assignment	0	25*	0	Read/Write	Same as UA 4 Units Assignment			
466	UA 4 Red Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, $2=$ OR			
467	UA 4 Red Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 4 Assignment Alarm Mask			
468	UA 4 Green-Orange Backlight Assignment	0	25*	0	Read/Write	Same as UA 4 Units Assignment			
469	UA 4 Green-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{R}$			
470	UA 4 Green-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 4 Assignment Alarm Mask			
471	UA 4 Red-Orange Backlight Assignment	0	25*	0	Read/Write	Same as UA 4 Units Assignment			
472	UA 4 Red-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR			
473	UA 4 Red-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 4 Assignment Alarm Mask			
474	UA 4 Red-Green Backlight Assignment	0	25*	0	Read/Write	Same as UA 4 Units Assignment			
475	UA 4 Red-Green Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=$ OR			
476	UA 4 Red-Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 4 Assignment Alarm Mask			
Mnemonics									
501	Mnemonic Default Display Color	0	2	0	Read/Write	$0=\mathrm{Grn}, 1$ = OrNG, 2 = rEd			
502	Mnemonic Green Backlight Assignment	0	25*	0	Read/Write	$0=$ NONE $5=$ ALr $10=\mathrm{ILOC}$ $15=$ Prun $20=$ PEv1 $25=$ NA-2 $1=$ Out1 $6=$ MAN $11=$ tunE $16=$ PHLd $21=$ PEv2 $26+=$ FlexCard $2=$ Out2 $7=$ SPSL $12=$ tndn $17=$ PAUS $22=$ PEv3 $3=$ Out3 $8=$ SPrP $13=$ tnFL $18=$ PErb $23=$ PEv4			
503	Mnemonic Green Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{O}$			
504	Mnemonic Green Backlight Alarm Mask	0	65535	0	Read/Write	Bit $0=$ A1 Bit $4=$ A5 Bit $8=$ A9 Bit $12=$ A13 Bit $1=$ A2 Bit $5=$ A6 Bit $9=$ A10 Bit 13 A14 Bit 2 A A3 Bit $6=$ A7 Bit 10 A11 Bit 14 =A15 Bit 3 =A4 Bit $7=$ A8 Bit 11 =A12 Bit 15 = A16			
505	Mnemonic Orange Backlight Assignment	0	25*	0	Read/Write	Same as Mnemonic Gree	n Backlight As	signment	

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
506	Mnemonic Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
507	Mnemonic Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask
508	Mnemonic Red Backlight Assignment	0	25*	0	Read/Write	Same as Mnemonic Green Backlight Assignment
509	Mnemonic Red Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
510	Mnemonic Red Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask
511	Mnemonic Green-Orange Backlight Assignment	0	25*	0	Read/Write	Same as Mnemonic Green Backlight Assignment
512	Mnemonic Green-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
513	Mnemonic Green-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask
514	Mnemonic Red-Orange Backlight Assignment	0	25*	0	Read/Write	Same as Mnemonic Green Backlight Assignment
515	Mnemonic Red-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
516	Mnemonic Red-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask
517	Mnemonic Red-Green Backlight Assignment	0	25*	0	Read/Write	Same as Mnemonic Green Backlight Assignment
518	Mnemonic Red-Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
519	Mnemonic Red-Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask
Line 2 Profile LOCS						
531	Line 2 Profile Control Status Access	0	21	0	Read/Write	0 = LOC; Bit 0 = drEd, Bit 2 = PrEd, Bit4 = HrEd; Other bits N/A
532	Line 2 Profile Segment Time Remaining Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
533	Line 2 Profile Cycle Count Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
534	Line 2 Profile Programming Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
Line 2 Display LOCS						
541	Line 2 Input Display Access	0	21	0	Read/Write	0 = LOC; Bit $0=$ drEd, Bit 2 = PrEd, Bit4 = HrEd; Other bits N/A
542	Line 2 Maximum (Hi) Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
543	Line 2 Minimum (Lo) Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
Line 2 Display LOCS						
551	Display Intensity Level Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
552	Display Contrast Level Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
Line 2 Alarm LOCS						
561	Line 2 Alarm 1 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
562	Line 2 Alarm 1 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
563	Line 2 Alarm 2 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
564	Line 2 Alarm 2 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
565	Line 2 Alarm 3 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
566	Line 2 Alarm 3 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
567	Line 2 Alarm 4 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
568	Line 2 Alarm 4 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
569	Line 2 Alarm 5 Value Access	0	42	0	Read/Write	$\begin{aligned} & \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{array} \end{aligned}$
570	Line 2 Alarm 5 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{array}{\|l} \hline 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{array}$
571	Line 2 Alarm 6 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
572	Line 2 Alarm 6 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & \hline \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{array} \\ & \hline \end{aligned}$
573	Line 2 Alarm 7 Value Access	0	42	0	Read/Write	$\begin{aligned} & \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{array} \end{aligned}$
574	Line 2 Alarm 7 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ \text { Bit4 } 4 \text { HrEd, Bit5 = HEnt } \end{array} \\ & \hline \end{aligned}$
575	Line 2 Alarm 8 Value Access	0	42	0	Read/Write	$\begin{aligned} & \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ \text { Bit4 = HrEd, Bit5 = HEnt } \end{array} \end{aligned}$
576	Line 2 Alarm 8 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ \text { Bit4 } 4 \text { HrEd, Bit5 = HEnt } \end{array} \\ & \hline \end{aligned}$
577	Line 2 Alarm 9 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
578	Line 2 Alarm 9 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
579	Line 2 Alarm 10 Value Access	0	42	0	Read/Write	$\begin{aligned} & \hline \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{array} \\ & \hline \end{aligned}$
580	Line 2 Alarm 10 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
581	Line 2 Alarm 11 Value Access	0	42	0	Read/Write	$\begin{aligned} & \hline 0=\text { LOC; Bit } 0 \text { = drEd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
582	Line 2 Alarm 11 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
583	Line 2 Alarm 12 Value Access	0	42	0	Read/Write	$\begin{aligned} & \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{array} \end{aligned}$
584	Line 2 Alarm 12 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ \text { Bit4 } 4 \text { HrEd, Bit5 = HEnt } \end{array} \\ & \hline \end{aligned}$
585	Line 2 Alarm 13 Value Access	0	42	0	Read/Write	$\begin{aligned} & \hline 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
586	Line 2 Alarm 13 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{array} \end{aligned}$
587	Line 2 Alarm 14 Value Access	0	42	0	Read/Write	$\begin{aligned} & \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{array} \\ & \hline \end{aligned}$
588	Line 2 Alarm 14 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
589	Line 2 Alarm 15 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
590	Line 2 Alarm 15 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{array} \\ & \hline \end{aligned}$
591	Line 2 Alarm 16 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
592	Line 2 Alarm 16 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{array} \end{aligned}$
Line 2 PID LOCS						
601	Line 2 Actual Setpoint Value Access	0	42	2	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
602	Line 2 Setpoint 1 Value Access	0	42	0	Read/Write	$\begin{aligned} & \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{array} \end{aligned}$

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
603	Line 2 Setpoint 2 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
604	Line 2 Setpoint List	0	40	0	Read/Write	0 = LOC; Bit 3 = PEnt, Bit5 = HEnt
605	Line 2 Remote Setpoint Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
606	Line 2 Output Power Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
607	Line 2 Deviation Value Access	0	42	0	Read/Write	0 = LOC; Bit $0=$ drEd, Bit $2=$ PrEd, Bit4 $=$ HrEd
608	Line 2 Setpoint Ramp Rate Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
609	Line 2 Remote Setpoint Ratio Value Access	0	42	0	Read/Write	0 = LOC, 1 = drEd, 2 = dEnt, 3 = PrEd, 4 = PEnt, 5 = HrEd, 6 = HEnt
610	Line 2 Remote Setpoint Bias Value Access	0	42	0	Read/Write	0 = LOC, 1 = drEd, $2=\mathrm{dEnt}, 3=\mathrm{PrEd}, 4=\mathrm{PEnt}, 5$ = HrEd, $6=$ HEnt
611	Line 2 Actual Offset Power Value Access	0	42	0	Read/Write	0 = LOC, 1 = drEd, 2 = dEnt, 3 = PrEd, 4 = PEnt, 5 = HrEd, 6 = HEnt
612	Line 2 Actual Proportional Band Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
613	Line 2 Actual Integral Time Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
614	Line 2 Actual Derivitive Time Value Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=$ drEd, Bit $1=\mathrm{dEnt}$, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 $=\mathrm{HrEd}$, Bit5 $=$ HEnt
615	Line 2 PS1 Offset Power Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
616	Line 2 PS1 Proportional Band Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
617	Line 2 PS1 Integral Time Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
618	Line 2 PS1 Derivitive Time Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
619	Line 2 PS2 Offset Power Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
620	Line 2 PS2 Proportional Band Value Access	0	42	0	Read/Write	$\begin{aligned} & \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ \text { Bit4 } 4 \text { HrEd, Bit5 = HEnt } \end{array} \end{aligned}$
621	Line 2 PS2 Integral Time Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
622	Line 2 PS2 Derivitive Time Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
623	Line 2 PID Set Selection Value Access	0	40	0	Read/Write	0 = LOC; Bit 3 = PEnt, Bit5 = HEnt
Line 2 Function LOCS						
631	Line 2 Setpoint Selection Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
632	Line 2 Remote Setpoint Transfer (Local/Remote)	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
633	Line 2 Setpoint Ramping Disable	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
634	Line 2 Integral Lock Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
635	Line 2 Auto/Manual Mode Selection Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
636	Line 2 PID Bank Selection Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
637	Line 2 Tune Selection Value Access	0	42	0	Read/Write	$\begin{aligned} & \begin{array}{l} 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3 \text { = PEnt, } \\ \text { Bit4 } 4 \text { HrEd, Bit5 }=\text { HEnt } \end{array} \end{aligned}$
638	Line 2 Reset Max Display Access	0	21	0	Read/Write	0 = LOC; Bit 1 = dEnt, Bit 3 = PEnt, Bit5 = HEnt
639	Line 2 Reset Min Display Access	0	21	0	Read/Write	0 = LOC; Bit 1 = dEnt, Bit 3 = PEnt, Bit5 = HEnt

REGISTER ADDRESS	REGISTER NAME	$\begin{aligned} & \hline \text { LOW } \\ & \text { LIMIT } \end{aligned}$	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
640	Line 2 Reset Max and Min Access	0	21	0	Read/Write	0 = LOC; Bit 1 = dEnt, Bit $3=$ PEnt, Bit5 $=$ HEnt
641	Line 2 Reset Alarm Access	0	21	0	Read/Write	0 = LOC; Bit 1 = dEnt, Bit 3 = PEnt, Bit5 = HEnt
642	Line 2 List Selection Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=$ drEd, Bit $1=$ dEnt, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 = HrEd, Bit5 = HEnt
643	Line 2 Print Request Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=$ drEd, Bit $1=d E n t$, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 $=$ HrEd, Bit5 $=$ HEnt
644	Line 2 Reset Alarm Mask	0	65535	0	Read/Write	Bit $0=$ A1 Bit $4=$ A5 Bit $8=$ A9 Bit $12=$ A13 Bit $1=$ A2 Bit $5=$ A6 Bit $9=$ A10 Bit 13 $=$ A14 Bit $2=$ A3 Bit $6=$ A7 Bit $10=$ A11 Bit $14=$ A15 Bit $3=$ A4 Bit $7=$ A8 Bit $11=$ A12 Bit 15 $=$ A16
645	Line 2 PID Run/Stop Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
646	Line 2 Profile Reset Event Access	0	21	0	Read/Write	0 LOC; Bit 1 = dEnt, Bit 3 = PEnt, Bit5 $=$ HEnt
647	Line 2 Profile Reset Event Mask	0	15	0	Read/Write	Bit $0=$ Ev1, Bit $1=$ Ev2, Bit $2=$ Ev3, Bit $3=$ Ev4
Max (HI)/Min(LO) Values						
651	Max (HI) Capture Delay Time	0	9999	10	Read/Write	$0=$ Max Update Rate, $1=0.1 \mathrm{Sec}$
652	Min (LO) Capture Delay Time	0	9999	10	Read/Write	$0=$ Max Update Rate, $1=0.1 \mathrm{Sec}$
Line 2 Code Configuration						
661	Line 2 Security Code Value	0	250	0	Read/Write	
PID CONFIGURATION PARAMETERS						
Control						
671	Assign	0	1*	1	Read/Write	$0=$ NONE, 1 = PV, 2+ = Flex Card Assignments
672	Control Type	0	2	0	Read/Write	$0=\mathrm{HEAt}, 1$ = COOL, $2=$ both
673	Control Mode	0	1	0	Read/Write	$0=$ Auto, 1 = MAN
674	Manual Power	-1000	1000	0	Read/Write	Output Power: Heat/Cool; * writable only in manual mode; $1=0.1 \%$
Remote Setpoint						
676	Remote SP Assignment	0	4*	0	Read/Write	$0=$ NONE, $1=$ SP, $2=\mathrm{PV}, 3=\mathrm{OP}, 4=\mathrm{ScSP}, 5+=$ Flex Card Assignments
677	Reserved for future use.					
678	Ratio	1	9999	1000	Read/Write	$1=0.1$
679	Bias	-1999	9999	0	Read/Write	1 = 1 Display Unit
680	Select Local / Remote SP	0	1	0	Read/Write	0 = LOC, 1 = REM
Setpoint						
681	Setpoint Selection	0	5	0	Read/Write	$0=\mathrm{SP} 1,1$ = SP2, $2=\mathrm{SP} 3,3=\mathrm{SP} 4,4=\mathrm{SP} 5,5=\mathrm{SP6}$, $6=\mathrm{SPu}$
682	Sepoint 1 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
683	Setpoint 2 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
684	Setpoint Lo Limit Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
685	Setpoint Hi Limit Value	-1999	9999	9999	Read/Write	1 = 1 Display Unit
686	Ramp Timebase	0	3	0	Read/Write	$0=$ Off, 1 = Seconds, 2 = Minutes, 3 = Hours
687	Ramp Rate	0	9999	0	Read/Write	1 = 0.1 Ramp Timebase unit
PID Parameters						
691	PID Parameter Selection	0	1	0	Read/Write	0 = PS1 PID Values, 1 = Alternate PID Values
692	PS1 Proportional Band	0	9999	700	Read/Write	1 = 1 Display Unit
693	PS1 Integral Time	0	65000	120	Read/Write	$1=0.1$ Second
694	PS1 Derivative Time	0	9999	30	Read/Write	1 =0.1 Second
695	PS1 Power Filter Value	0	600	10	Read/Write	$1=0.1$ Second
696	PS1 Output Power Offset	-1000	1000	0	Read/Write	$1=0.1$ \%; Applicable when PS1 Integral Time is 0
697	PS2 Proportional Band	0	9999	700	Read/Write	1 = 1 Display Unit
698	PS2 Integral Time	0	65000	120	Read/Write	1 = 0.1 Second
699	PS2 Derivative Time	0	9999	30	Read/Write	1 = 0.1 Second
700	PS2 Power Filter Value	0	600	10	Read/Write	$1=0.1$ Second
701	PS2 Output Power Offset	-1000	1000	0	Read/Write	1 = 0.1 \%; Applicable when PS2 Integral Time is 0

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
Power Transfer						
711	Input Fault Power Value	-1999	2000	0	Read/Write	1 = 0.1 \%
712	Output Deadband	-1000	1000	0	Read/Write	1 = 0.1 \%
713	Output Heat Gain	0	5000	1000	Read/Write	1 = 0.1 \%
714	Heat Low Limit	0	2000	0	Read/Write	1 = 0.1 \%
715	Heat High Limit	0	2000	1000	Read/Write	1 = 0.1 \%
716	Output Cool Gain	0	5000	1000	Read/Write	1 = 0.1 \%
717	Cool Low Limit	0	2000	0	Read/Write	1 = 0.1 \%
718	Cool High Limit	0	2000	1000	Read/Write	1 = 0.1 \%
ON/OFF Control						
741	On-Off Hysteresis	0	500	2	Read/Write	1 = 1 Display Unit
742	On-Off Deadband	-1999	9999	0	Read/Write	1 = 1 Display Unit
Tuning						
751	Tuning Code	0	4	2	Read/Write	$\begin{aligned} & 0=\text { Very Aggressive, } 1 \text { = Aggressive, } 2 \text { = Default, } 3 \text { = Conservative, } \\ & 4=\text { Very Conservative } \end{aligned}$
752	Auto-Tune Start	0	1	0	Read/Write	0 = NO 1 = YES
PID Setpoints						
761	Setpoint 1 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit (Mirrors Register 682)
762	Setpoint 2 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit (Mirrors Register 683)
763	Setpoint 3 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
764	Setpoint 4 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
765	Setpoint 5 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
766	Setpoint 6 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
767	User Setpoint Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
PID Constants Sets (PSn)						
801-807	SP1 / PID Set PS1 Constants					Mirrors PS1 PID Constants, registers 692-696
801	Setpoint 1	-1999	9999	0	Read/Write	1 = 1 Display Unit
802	PS1 Proportional Band	0	9999	700	Read/Write	1 = 1 Display Unit
803	PS1 Integral Time	0	65000	120	Read/Write	1 = 0.1 Second
804	PS1 Derivative Time	0	9999	30	Read/Write	1 =0.1 Second
805	PS1 Power Filter Value	0	600	10	Read/Write	$1=0.1$ Second
806	PS1 Output Power Offset	-1000	1000	0	Read/Write	1 = 0.1 \%; Applicable when PS1 Integral Time is 0
807	PS1 Heat Gain	0	5000	1000	Read/Write	1 = 0.1 \%
808	PS1 Cool Gain	0	5000	1000	Read/Write	1 = 0.1 \%
811-817	SP2 / PID Set PS2 Constants					Same order as SP1 /PID Set PS1 Constants (Register 801-807)
821-827	SP3 /PID Set PS3 Constants					
831-837	SP4 /PID Set PS4 Constants					
841-847	SP5 /PID Set PS5 Constants					
851-857	SP6 /PID Set PS6 Constants					
Slave ID / GUID						
1001-1010	Slave ID	N/A	N/A	N/A	Read Only	```<'P' 'X'> <'2' 'C'> <'1' '5'> <2020h> <2020h> <'a' 'b'> <00h 'c'> <0040h> <0040h> <0010h> a = SP Card Status. '0'-No Card, '2'-Dual SP, '4'-Quad SP b = Linear Card Status. "0"-Not Installled, "1"-Installed c = Version Number (1.50 or higher) <0040h> <0040h> = 64 Register Writes, 64 Register Reads (Max.) <0010h> = 16 Register GUID/Scratch```
1101-1116	GUID/Scratch	N/A	N/A	N/A	Read/Write	Reserved (may be used in future RLC software)
FACTORY SERVICE						
1151-1156	Factory Service Registers	N/A	N/A	N/A	Read/Write	Factory Use Only - Do Not Modify
Math / Logic						
1121-1200	Reserved for Math/Logic Operations					

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
ALARM PARAMETERS						
Alarm 1						
1201	Assign	0	1*	1	Read/Write	0 = NONE, 1 = PV, 2+ = FlexCard Assignments
1202	Action	0	9	1	Read/Write	$\begin{aligned} & 0=\text { NONE, } 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdIn}, 9=\mathrm{HCur} \end{aligned}$
1203	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1204	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1205	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1206	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
1207	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1208	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
1209	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 2×10						
1221	Assign	0	1*	1	Read/Write	0 = NONE, 1 = PV, 2+ = FlexCard Assignments
1222	Action	0	9	1	Read/Write	$\begin{aligned} & 0=\text { NONE, } 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\text { bdIn, } 9=\mathrm{HCur} \end{aligned}$
1223	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1224	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1225	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1226	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
1227	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1228	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
1229	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 3						
1241	Assign	0	1*	0	Read/Write	0 = NONE, 1 = PV, 2+ = FlexCard Assignments
1242	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{NONE}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdIn}, 9=\mathrm{HCur} \end{aligned}$
1243	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1244	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1245	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1246	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
1247	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1248	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
1249	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 4						
1261	Assign	0	1*	0	Read/Write	0 = NONE, 1 = PV, 2+ = FlexCard Assignments
1262	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{NONE}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdIn}, 9=\mathrm{HCur} \end{aligned}$
1263	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1264	On Time Delay	0	9999	0	Read/Write	1 =0.1 Second
1265	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1266	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
1267	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1268	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
1269	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 5						
1281	Assign	0	1*	0	Read/Write	0 = NONE, 1 = PV, 2+ = FlexCard Assignments
1282	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\text { NONE, } 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\text { bANd, } 8=\text { bdIn, } 9=\mathrm{HCur} \end{aligned}$
1283	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1284	On Time Delay	0	9999	0	Read/Write	1 =0.1 Second
1285	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
1286	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
1287	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1288	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
1289	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	$0=$ Off, 1 = On (Applies for TC or RTD input)
Alarm 6						
1301	Assign	0	1*	0	Read/Write	0 = NONE, 1 = PV, $2+$ = FlexCard Assignments
1302	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\text { NONE, } 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\text { bdIn, } 9=\text { HCur } \end{aligned}$
1303	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1304	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1305	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1306	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
1307	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1308	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
1309	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	$0=$ Off, 1 = On (Applies for TC or RTD input)
Alarm 7						
1321	Assign	0	1*	0	Read/Write	0 = NONE, 1 = PV, $2+$ = FlexCard Assignments
1322	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\text { NONE, } 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdIn}, 9=\mathrm{HCur} \end{aligned}$
1323	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1324	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1325	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1326	Output Logic	0	1	0	Read/Write	$0=$ Normal, 1 = Reverse
1327	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1328	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
1329	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	$0=$ Off, 1 = On (Applies for TC or RTD input)
Alarm 8						
1341	Assign	0	1*	0	Read/Write	0 = NONE, 1 = PV, 2+ = FlexCard Assignments
1342	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\text { NONE, } 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\text { bANd, } 8=\text { bdln, } 9=\text { HCur } \end{aligned}$
1343	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1344	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1345	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1346	Output Logic	0	1	0	Read/Write	$0=$ Normal, 1 = Reverse
1347	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1348	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
1349	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	$0=$ Off, 1 = On (Applies for TC or RTD input)
Alarm 9						
1361	Assign	0	1*	0	Read/Write	$0=$ NONE, 1 = PV, $2+$ = FlexCard Assignments
1362	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\text { NONE, } 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdln}, 9=\mathrm{HCur} \end{aligned}$
1363	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1364	On Time Delay	0	9999	0	Read/Write	1 =0.1 Second
1365	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1366	Output Logic	0	1	0	Read/Write	$0=$ Normal, 1 = Reverse
1367	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1368	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
1369	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	$0=$ Off, 1 = On (Applies for TC or RTD input)
Alarm 10						
1381	Assign	0	1*	0	Read/Write	0 = NONE, 1 = PV, 2+ = FlexCard Assignments
1382	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\text { NONE, } 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\text { bANd, } 8=\text { bdln, } 9=\text { HCur } \end{aligned}$

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
1383	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1384	On Time Delay	0	9999	0	Read/Write	$1=0.1$ Second
1385	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1386	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
1387	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1388	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
1389	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 11						
1401	Assign	0	1*	0	Read/Write	0 = NONE, 1 = PV, 2+ = FlexCard Assignments
1402	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{NONE}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdIn}, 9=\mathrm{HCur} \end{aligned}$
1403	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1404	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1405	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1406	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
1407	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1408	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
1409	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 12						
1421	Assign	0	1*	0	Read/Write	0 = NONE, 1 = PV, 2+ = FlexCard Assignments
1422	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\text { NONE, } 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\text { bANd, } 8=\text { bdIn, } 9=\text { HCur } \end{aligned}$
1423	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1424	On Time Delay	0	9999	0	Read/Write	$1=0.1$ Second
1425	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1426	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
1427	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1428	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
1429	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 13						
1441	Assign	0	1*	0	Read/Write	0 = NONE, 1 = PV, 2+ = FlexCard Assignments
1442	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\text { NONE, } 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\text { bANd, } 8=\text { bdIn, } 9=\text { HCur } \end{aligned}$
1443	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1444	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1445	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1446	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
1447	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1448	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
1449	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 14						
1461	Assign	0	1*	0	Read/Write	0 = NONE, 1 = PV, 2+ = FlexCard Assignments
1462	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\text { NONE, } 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\text { bANd, } 8=\text { bdIn, } 9=\text { HCur } \end{aligned}$
1463	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1464	On Time Delay	0	9999	0	Read/Write	1 =0.1 Second
1465	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1466	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
1467	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1468	Standby Operation	0	1	0	Read/Write	0 = No, 1 = Yes
1469	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)

$\begin{aligned} & \hline \text { REGI } \\ & \text { ADD } \end{aligned}$	$\begin{aligned} & \text { STER } \\ & \text { ESSS } \end{aligned}$	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
Alarm 15							
1481		Assign	0	1*	0	Read/Write	0 = NONE, 1 = PV, 2+ = FlexCard Assignments
1482		Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{NONE}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdIn}, 9=\mathrm{HCur} \end{aligned}$
1483		Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1484		On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1485		Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1486		Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
1487		Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1488		Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
1489		Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 16							
1501		Assign	0	1*	0	Read/Write	0 = NONE, 1 = PV, 2+ = FlexCard Assignments
1502		Action	0	9	0	Read/Write	$\begin{aligned} & 0=\text { NONE, } 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdIn}, 9=\mathrm{HCur} \end{aligned}$
1503		Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
1504		On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1505		Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
1506		Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
1507		Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
1508		Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
1509		Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
ALARM SCALING PARAMETERS							
List A	List B	Alarm Values					
1551	1651	Alarm 1 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1552	1652	Alarm 2 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1553	1653	Alarm 3 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1554	1654	Alarm 4 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1555	1655	Alarm 5 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1556	1656	Alarm 6 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1557	1657	Alarm 7 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1558	1658	Alarm 8 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1559	1659	Alarm 9 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1560	1660	Alarm 10 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1561	1661	Alarm 11 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1562	1662	Alarm 12 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1563	1663	Alarm 13 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1564	1664	Alarm 14 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1565	1665	Alarm 15 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1566	1666	Alarm 16 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
1567	1667	Alarm 1 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
1568	1668	Alarm 2 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
1569	1669	Alarm 3 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
1570	1670	Alarm 4 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
1571	1671	Alarm 5 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
1572	1672	Alarm 6 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
1573	1673	Alarm 7 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
1574	1674	Alarm 8 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
1575	1675	Alarm 9 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
1576	1676	Alarm 10 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
1577	1677	Alarm 11 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit

REGISTER ADDRESS		REGISTER NAME	$\begin{aligned} & \hline \text { LOW } \\ & \text { LIMIT } \end{aligned}$	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
1578	1678	Alarm 12 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
1579	1679	Alarm 13 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
1580	1680	Alarm 14 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
1581	1681	Alarm 15 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
1582	1682	Alarm 16 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
SERIAL COMMUNICATION PARAMETERS							
1701		USB Mode	0	1	0	Read/Write	0 = Configuration, 1 = Serial
1702		Type	0	2	2	Read/Write	$0=$ RLC Protocol (ASCII), 1 = Modbus RTU, $2=$ Modbus ASCII
1703		Baud Rate	0	5	5	Read/Write	$\begin{aligned} & 0=1200,1=2400,2=4800,3=9600,4=19200, \\ & 5=38400 \end{aligned}$
1704		Data Bits	0	1	1	Read/Write	$0=7$ Bits, 1 = 8 Bits
1705		Parity	0	2	0	Read/Write	0 = None, 1 = Even, 2 = Odd
1706			0	99	0	Read/Write	RLC Protocol: 0-99
		Address	1	247	247		Modbus: 1-247
1707		Transmit Delay	0	250	10	Read/Write	$1=0.001$ Second
1708		Abbreviated Transmission (RLC only)	0	1	0	Read/Write	$0=$ No, $1=$ Yes (Not used when communications type is Modbus)
1709		Print Options (RLC only)	0	8191	1	Read/Write	$0=$ No, $1=$ Yes (Not used when communications type is Modbus) Bit $0-$ Print Input Value, Bit 1 - Print SP Value, Bit 2 - Print Setpoint Ramp Rate, Bit 3 - Print Output Power, Bit 4 - Print Proportional Value, Bit 5 - Print Integral Value, Bit 6 - Print Derivative Value, Bit 7 - Print Alarm Status, Bit 8 - Print Alarm 1 Value, Bit 9 - Print Alarm 2 Value, Bit 10 - Print Alarm 3 Value, Bit 11 - Print Alarm 4 Value, Bit 12 - Print Control Status Bits
1710		Load Serial Settings	0	1	0	Read/Write	Changing 41701-41710 will not update the PAX2C until this register is written with a 1 . After the write, the communicating device must be changed to new PAX2C settings and this register returns to 0 .
PROFILE CONTROL							
5001		Profile 1 Cycle Count	1	250	1	Read/Write	1-249 = Number of times to run profile, $250=$ Run Profile continuously
5002		Profile 1 Link to Profile	0	16	0	Read/Write	$0=$ No; 1-16 = Profile 1 to 16
5003		Profile 1 Deviation Error Value	0	9999	50	Read/Write	$1=1$ process unit
5004		Profile 1 Error Time	0	9999	0	Read/Write	$1=0.1$ Minute
5005		Profile 1 Power Cycle Status	0	2	0	Read/Write	$0=$ End per PEnd, 1 = Cont (Continue /Resume), 2 = Strt (Start)
5006		Profile 1 PS2 SP Assignment	0	0^{*}	0	Read/Write	0 = NONE; $1+=$ FlexCard PID (Pid)
5007		Profile 1 PS2 Process Deviation Error Value	0	9999	50	Read/Write	$1=1$ process unit
5008		Profile 1 PID Select	0	8	0	Read/Write	$0=$ NO; $1=$ PS1 $\ldots .6=$ PS6, $7=$ SPSL, $8=$ Auto
5009		Profile 1 End Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{End}, 1=\mathrm{StOP}, 2=\mathrm{OFF}, 3=\mathrm{SP} 1,4=\mathrm{SP} 2,5=\mathrm{SP} 3,6=\mathrm{SP} 4,7=\mathrm{SP} 5, \\ & 8=\mathrm{SP6}, 9=\mathrm{SPu} \end{aligned}$
5010		Profile 1 End Segment	1	20	20	Read/Write	Last Segment to be used
5011		Profile 1 Last Profile	0	1	0	Read/Write	0 = NO (read only); 1 = yES
5021		Profile 2 Registers					See Profile 1
5041		Profile 3 Registers					See Profile 1
5061		Profile 4 Registers					See Profile 1
5081		Profile 5 Registers					See Profile 1
5101		Profile 6 Registers					See Profile 1
5121		Profile 7 Registers					See Profile 1
5141		Profile 8 Registers					See Profile 1
5161		Profile 9 Registers					See Profile 1
5181		Profile 10 Registers					See Profile 1
5201		Profile 11 Registers					See Profile 1
5221		Profile 12 Registers					See Profile 1
5241		Profile 13 Registers					See Profile 1

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
5261	Profile 14 Registers					See Profile 1
5281	Profile 15 Registers					See Profile 1
5301	Profile 16 Registers					See Profile 1
Profile Segment Registers						To calculate specific register number of Segment y, for Profile x use formula: Profile x Segment y register $=6000+(x-1)^{*} 100+(y-1) 5+$ Offset
6001	Profile 1 Segment Registers					
6101	Profile 2 Segment Registers					
6201	Profile 3 Segment Registers					
6301	Profile 4 Segment Registers					
6401	Profile 5 Segment Registers					
6501	Profile 6 Segment Registers					
6601	Profile 7 Segment Registers					
6701	Profile 8 Segment Registers					
6801	Profile 9 Segment Registers					
6901	Profile 10 Segment Registers					
7001	Profile 11 Segment Registers					
7101	Profile 12 Segment Registers					
7201	Profile 13 Segment Registers					
7301	Profile 14 Segment Registers					
7401	Profile 15 Segment Registers					
7501	Profile 16 Segment Registers					
	Offset					
1	Profile ($x+1$) PS1 Setpoint Value	-1999	9999	0	Read/Write	1 = 1 process unit; Limited by Setpoint Limit Low and Setpoint Limit High
2	Profile ($x+1$) PS2 Setpoint Value	-1999	9999	0	Read/Write	1 = 1 process unit; Limited by Setpoint Limit Low and Setpoint Limit High
3	Profile ($x+1$) Time Value/Ramp Rate	0	9999	0	Read/Write	1 = 0.1 minute or 1 = 1 PV Display Unit/Min (when Ramp/Rate)
4	Profile ($x+1$) Mode Register	0	0	4032 (0xFC0)	Read/Write	Bit 11: Event Flag 4 State; $1=0 N, 0=O F F$ Bit 10: Event Flag 3 State; $1=\mathrm{ON}, 0=\mathrm{OFF}$ Bit 9: Event Flag 2 State; $1=\mathrm{ON}, 0=\mathrm{OFF}$ Bit 8: Event Flag 1 State; $1=\mathrm{ON}, 0=\mathrm{OFF}$ Bit 7: $1=0.1 \mathrm{Min}$; $0=1 \mathrm{Min}$ Bit 6: 1 = Start Point Adjust; $0=$ Start Point Adjust disabled Bit 5: Bit 4: 1 = Use Ramp Rate (Reg 3 is Ramp Rate); $0=$ Reg 3 is Time Value Bit 3: 1 = Error Delay when PS2 PV is above ScSP + Sc Error Value Bit 2: 1 = Error Delay when PS2 PV is below ScSP - Sc Error Value Bit 1: 1 = Error when PV above SP + Er-V Bit 0: 1 = Error when PV below SP - Er-V

* Higher limit is applicable with FlexCard installed.

REGISTER ADDRESS:	REGISTER NAME	$\begin{aligned} & \hline \text { LOW } \\ & \text { LIMIT } \end{aligned}$	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
FREQUENTLY USED REGISTERS						
4n001	Input Process Value (Hi word)	-1999	9999		Read Only	1 = 1 Display Unit ADC Overrange Value $=1048576$, Underrange Value $=-1048576$
4n002	Input Process Value (Lo word)					
4 n 003	Input Process Maximum (Hi word)	-1999	9999	N/A	Read Only	1 = 1 Display Unit
4n004	Input Process Maximum (Lo word)					
4n005	Input Process Minimum (Hi word)	-1999	9999	N/A	Read Only	1 = 1 Display Unit
4n006	Input Process Minimum (Lo word)					
4n007	Active SP	-1999	9999	N/A	Read/Write	1 = 1 Display Unit
4n008	Active Remote SP	-1999	9999	N/A	Read Only	1 = 1 Display Unit
4n009	Status Flags	0	255	N/A	Read Only	Bit 8 Set = ADC Underrange, Bit 7 Set = ADC Overrange. Bit 6 Set = SP Ramping Bit 5 Set $=$ Auto Tune Fail Bit 4 Set = Auto Tune Done Bit 3:0 = Auto Tune Phase
4n010	Output Status Register	0	15	0	Read/Write	Status of Solid-State Outputs. Bit State: $0=$ OFF, $1=0 N$. Bit $3=04$, Bit $2=03$, Bit $1=02$, Bit $0=01$.
4n011	Heat Power	0	1000	0	Read Only	1 $=0.1 \%$
$4 \mathrm{n012}$	Cool Power	0	1000	0	Read Only	1=0.1\%
4 n 013	Integral Sum				Read Only	
4 n 014	Active Proportional Band	0	9999	700	Read/Write	1 = 1 display unit
4 n 015	Active Integral Time	0	65000	120	Read/Write	1 = 0.1 Second
4 n 016	Active Derivative Time	0	9999	30	Read/Write	$1=0.1$ Second
4 n 017	Active Power Filter	0	60	10	Read/Write	$1=0.1$ Second
4 n 018	Heat Gain	0	5000	1000	Read/Write	1 = 0.1\%
4n019	Cool Gain	0	5000	1000	Read/Write	1 = 0.1\%
4n020-4n024	Reserved					
4n035	PID Control Flags	0	1000	0	Read/Write	Bit 9: Stop PID; 0=No, 1=Yes (Px2C V2+) Bit 6-8: AutoTune; $0=$ No, $1=$ Yes, $2=$ CS1 $. . .7=$ CS6 Bit 6: AutoTune; $0=$ NO, $1=\mathrm{YES}$ Bit 5: MAN; $0=$ PID Auto Mode, 1 = PID Manual (User) Mode; Bit 4: PSEL; $0=$ PS1 PID, 1 = Alternate PID, Bit 3: ILOC; $0=$ Enable Integral Action, 1 = Disable Integral Action; Bit 2: RSPt; $0=$ Local SP, $1=$ Remote SP; Bit 1: SPSL; $0=$ SP1, $1=$ Req. SP2; Bit 0: SPrP; $0=$ SP Ramping Enable, $1=$ SP Ramping Disable
4n041	Control Flags 2	0	118	0	Read/Write	Bit 4-6: PSEL; 0 = PS1 ... 5 = PS6, 6 = SPSL, 7 = Auto (PX2C V2+) Bit 0-2: SPSL; $0=$ SP1 $\ldots 5=$ SP6, $6=$ SPu (Px2C Ver 2+)
INPUT PARAMETERS						SEE INPUT MODULE FOR PARAMETER DESCRIPTIONS
Analog Input Parameters						
4n071	Input Type	0	1	0	Read/Write	$0=0$ to 10 V DC, $1=0$ to 20 mA DC
4n072	Input Square Root Linearization	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
4n073	Input Decimal Point	0	3	3	Read/Write	$0=0,1=0.0,2=0.00,3=0.000$
4 n 074	Input Rounding	0	6	0	Read/Write	$0=1,1=2,2=5,3=10,4=20,5=50,6=100$
4 n 075	Input Offset Value (Hi word)	-1999	9999	0	Read/Write	1 = 1 Display Unit
4n076	Input Offset Value (Lo word)					
4 n 077	Input Filter Value	0	250	10	Read/Write	1 = 0.1 Second

*: $\mathrm{n}=1$ + FlexCard Address

*: n = 1 + FlexCard Address

- PAX2 Unit and FlexCard dependent

REGISTER ADDRESS :	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
4n255	Output 2 Assignment	0	-	0	Read/Write	Same as Output 1 Assignment
4n256	Output 2 Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
4n257	Output 2 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
4n258	Output 2 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
4n259	Output 3 Assignment	0	*	0	Read/Write	Same as Output 1 Assignment
4n260	Output 3 Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
4n261	Output 3 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
4n262	Output 3 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
4n263	Output 4 Assignment	0	*	0	Read/Write	Same as Output 1 Assignment
4n264	Output 4 Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
4n265	Output 4 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
4n266	Output 4 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
PID CONFIGURATION PARAMETERS						
Control Parameters						
4n301	Assign	0	1*	0	Read/Write	0 = NONE, 1 = P2C Process Value, 2+ = Flex Card Assignments; FCn Input
4n302	Control Type	0	2	0	Read/Write	0 = Heat, 1 = Cool, 2 = Both
4n303	Control Mode	0	1	0	Read/Write	0 = Automatic, 1 = Manual
4n304	Manual Power	-1999	2000	0	Read/Write	Output Power: Heat/Cool; $1=0.1 \%$; *-writeable only in manual mode
Remote Setpoint Parameters						
4n306	Remote SP Assignment	0	1*	0	Read/Write	$0 \text { = NONE, } 1 \text { = P2C SP, } 2 \text { = P2C PV, } 3 \text { = P2C OP, } 4 \text { = P2C ScSP, 5+ = Flex }$ Card Assignments ; FCn SP, FCn PV, FCn OP
4n307	Reserved Register	-32768	-32768	N/A		
4n308	Ratio	1	9999	1000	Read/Write	$1=0.1$
4n309	Bias	-1999	9999	0	Read/Write	1 = 1 Display Unit
4n310	Select Local / Remote SP	0	1	0	Read/Write	
Setpoint Parameters						
4n311	Setpoint Selection	0	1	0	Read/Write	0 = Setpoint 1, 1 = Setpoint 2
4n312	Sepoint 1 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
4n313	Setpoint 2 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
4n314	Setpoint Lo Limit Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
4n315	Setpoint Hi Limit Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
4n316	Ramp Timebase	0	3	0	Read/Write	0 = Off, 1 = Seconds, 2 = Minutes, 3 = Hours
4n317	Ramp Rate	0	9999	0	Read/Write	1 = 0.1 Ramp Timebase unit
PID Parameters						
4n321	PID Parameter Selection	0	1	0	Read/Write	0 = PS1, 1 = PS2, 2 = PS3, 3 = PS4, 4 = PS5, 5 = PS6, 6 = SPSL, 7 = Auto
4n322	PS1 Proportional Band	0	9999	40	Read/Write	1 = 1 Display Unit
4n323	PS1 Integral Time	0	65000	120	Read/Write	1 = 0.1 Second
4n324	PS1 Derivative Time	0	9999	30	Read/Write	1 = 0.1 Second
4n325	PS1 Power Filter Value	0	600	10	Read/Write	1 = 0.1 Second
4n326	PS1 Output Power Offset	-1000	1000	0	Read/Write	1 = 0.1 \%; Applicable when PS1 Integral Time is 0
4n327	PS2 Proportional Band	0	9999	40	Read/Write	1 = 1 Display Unit
4n328	PS2 Integral Time	0	65000	120	Read/Write	1 = 0.1 Second
4n329	PS2 Derivative Time	0	9999	30	Read/Write	$1=0.1$ Second
4n330	PS2 Power Filter Value	0	600	10	Read/Write	$1=0.1$ Second
4n331	PS2 Output Power Offset	-1000	1000	0	Read/Write	1 = 0.1 \%; Applicable when PS2 Integral Time is 0
Power Transfer Parameters						
4n341	Input Fault Power Value	-1999	2000	0	Read/Write	1 = 0.1 \%
4n342	Output Deadband	-1000	1000	0	Read/Write	1 = 0.1 \%
4n343	Output Heat Gain	0	5000	1000	Read/Write	1 = 0.1 \%

*: $\mathrm{n}=1$ + FlexCard Address

- PAX2 Unit and FlexCard dependent

[^0]** - See Modbus Table for PAX2 unit (FlexBus model) in which card is being installe

REGISTER ADDRESS :	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS				
FREQUENTLY USED REGISTERS										
4n001	Input Process Value (Hi word)	-1999	9999	N/A	Read Only	1 = 1 Display Unit ADC Overrange Value $=1048576$, Underrange Value $=-1048576$				
4n002	Input Process Value (Lo word)									
4n003	Input Process Maximum (Hi word)	-1999	9999	N/A	Read Only	1 = 1 Display Unit				
4n004	Input Process Maximum (Lo word)									
4n005	Input Process Minimum (Hi word)	-1999	9999	N/A	Read Only	1 = 1 Display Unit				
4n006	Input Process Minimum (Lo word)									
4n007	Input Process Status Flags	0	255	N/A	Read Only	Bit 3 Set = ADC Underrange, Bit 2 Set = ADC Overrange .				
4n008	Output Status Register	0	15	0	Read/Write	Status of Solid-State Outputs. Bit State: 0=OFF, 1=ON. Bit $3=04$, Bit $2=03$, Bit $1=02$, Bit $0=01$ * only outputs configured for ASGN=NONE are writeable; otherwise writes are ignored				
INPUT PARAMETERS						SEE INPUT MODULE FOR PARAMETER DESCRIPTIONS				
Analog Input Parameters										
4n071	Heater Current Monitor	0	4*	1	Read/Write	0 = None, 1 = P2C Out1, 2 = P2C Out2, 3 = P2C Out3, 4=P2C Out4, 5+ = FlexCard Outputs				
4n072	Input Square Root Linearization	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes				
4n073	Input Decimal Point	0	3	1	Read/Write	$0=0,1=0.0,2=0.00,3=0.000$				
4n074	Input Rounding	0	6	0	Read/Write	$0=1,1=2,2=5,3=10,4=20,5=50,6=100$				
4n075	Input Offset Value (Hi word)	-1999	9999	0	Read/Write	1 = 1 Display Unit				
4n076	Input Offset Value (Lo word)									
4n077	Input Filter Value	0	250	10	Read/Write	1 = 0.1 Second				
4n078	Input Filter Band Value	0	250	10	Read/Write	1 = 1 display unit				
4n079	Max (HI) Capture Delay Time	0	9999	0	Read/Write	0 = Max Update Rate, $1=0.1 \mathrm{Sec}$				
4n080	Min (LO) Capture Delay Time	0	9999	0	Read/Write	0 = Max Update Rate, $1=0.1 \mathrm{Sec}$				
4n081	Display Input Units	0	1	0	Read/Write	0 = OFF, 1 = ON				
4n082	Input Units Character 1	0	57	0	Read/Write	Label Mnemonic Characters $0=$ $9=\mathrm{I}$ $18=\mathrm{Q}$ $1=\mathrm{A}$ $10=\mathrm{J}$ $19=\mathrm{R}$ $2=\mathrm{b}$ $11=\mathrm{K}$ $20=\mathrm{S}$ $3=\mathrm{C}$ $12=\mathrm{L}$ $21=\mathrm{t}$ $4=\mathrm{d}$ $13=\mathrm{M}(\mathrm{l})$ $22=\mathrm{U}$ $5=\mathrm{E}$ $14=\mathrm{M}(\mathrm{r})$ $23=\mathrm{V}$ $6=\mathrm{F}$ $15=\mathrm{N}$ $24=\mathrm{W}(\mathrm{I})$ $7=\mathrm{G}$ $16=\mathrm{O}$ $25=\mathrm{W}(\mathrm{r})$ $8=\mathrm{H}$ $17=\mathrm{P}$ $26=\mathrm{Y}$	$\begin{aligned} & 27=Z \\ & 28=0 \\ & 29=1 \\ & 30=2 \\ & 31=3 \\ & 32=4 \\ & 33=5 \\ & 34=6 \\ & 35=7 \end{aligned}$	$\begin{aligned} & 36=8 \\ & 37=9 \\ & 38=\mathrm{a} \\ & 39=\mathrm{c} \\ & 40=\mathrm{e} \\ & 41=\mathrm{g} \\ & 42=\mathrm{h} \\ & 43=\mathrm{i} \\ & 44=\mathrm{n} \end{aligned}$	$\begin{aligned} & 45=m(r) \\ & 46=o \\ & 47=q \\ & 48=r \\ & 49=u \\ & 50=w(r) \\ & 51=- \\ & 52== \\ & 53=[\end{aligned}$	$\begin{aligned} & 54=] \\ & 55=1 \\ & 56=0 \\ & 57= \end{aligned}$
4n083	Input Units Character 2	0	57	0	Read/Write	See Input Units Character 1				
4n084	Input Units Character 3 0 57 0 Read/Write					See Input Units Character 1				
Input Scaling Point Parameters										
4n101	Number of Scaling Points	2	15	2	Read/Write	Number of Linearization Scaling Points				
4n102	Reserved	N/A	N/A	N/A	N/A	Reserved for future use				
4n103	Scaling Pt. 1 Input Value (Hi word)	0	9999	0	Read/Write	$1=0.001$				
4n104	Scaling Pt. 1 Input Value (Lo word)									
4n105	Scaling Pt. 1 Display Value (Hi word)	-1999	9999	0	Read/Write	1 = 1 Display Unit				
4n106	Scaling Pt. 1 Display Value (Lo word)									
4n107	Scaling Pt. 2 Input Value (Hi word)	0	9999	1000	Read/Write	$1=0.001$				
4n108	Scaling Pt. 2 Input Value (Lo word)									
4n109	Scaling Pt. 2 Display Value (Hi word)	-1999	9999	1000	Read/Write	1 = 1 Display Unit				
4n110	Scaling Pt. 2 Display Value (Lo word)									

[^1]| REGISTER ADDRESS: | REGISTER NAME | LOW LIMIT | HIGH LIMIT | FACTORY SETTING | ACCESS | COMMENTS | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { 4n111 } \\ \text { thru } 4 n 162 \end{gathered}$ | Scaling Pts. 3 thru 15 Values | $\begin{array}{\|c\|} \hline 0 \text { (input) } \\ -1999 \text { (dsp) } \\ \hline \end{array}$ | 9999 | 0 | Read/Write | Registers 40111-40162 hold values for Scaling Points 3 thru 15, and follow the same ordering as Scaling Points 1 and 2. | | | |
| DISPLAY CONFIGURATION PARAMETERS | | | | | | | | | |
| Line 2 Input LOCS Parameters | | | | | | | | | |
| 4n201 | Line 2 Input (PV) Display Access | 0 | 21 | 0 | Read/Write | 0 = LOC; Bit 0 = drEd, Bit $2=$ PrEd, Bit4 = HrEd; Other bits N/A | | | |
| 4n202 | Line 2 Maximum (Hi) Value Access | 0 | 42 | 0 | Read/Write | $\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit } 4=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$ | | | |
| 4 n 203 | Line 2 Minimum (Lo) Value Access | 0 | 42 | 0 | Read/Write | $\begin{aligned} & 0=\text { LOC; Bit } 0=\text { drEd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$ | | | |
| Line 2 Function LOCS Parameters | | | | | | | | | |
| 4n231 | Line 2 Reset Max Display Access | 0 | 42 | 0 | Read/Write | 0 = LOC; Bit 1 = dEnt, Bit $3=$ PEnt, Bit5 $=$ HEnt; Other bits N/A | | | |
| 4n232 | Line 2 Reset Min Display Access | 0 | 42 | 0 | Read/Write | $0=$ LOC; Bit $1=\mathrm{dEnt}$, Bit $3=$ PEnt, Bit5 $=$ HEnt; Other bits N/A | | | |
| 4n233 | Line 2 Reset Max and Min Access | 0 | 42 | 0 | Read/Write | 0 = LOC; Bit 1 = dEnt, Bit 3 = PEnt, Bit5 = HEnt; Other bits N/A | | | |
| Hardware Label Mnemonic | | | | | | Replaces "FCx" in main, parameter, and hidden display loops when programmed | | | |
| 4 n 246 | Hardware Label Character 1 | 0 | 57 | 0 | Read/Write | $\|$Label Mnemonic Characters
 $0=$ $9=\mathrm{I}$ $18=\mathrm{Q}$ $27=\mathrm{Z}$
 $1=\mathrm{A}$ $10=\mathrm{J}$ $19=\mathrm{R}$ $28=0$
 $2=\mathrm{b}$ $11=\mathrm{K}$ $20=\mathrm{S}$ $29=1$
 $3=\mathrm{C}$ $12=\mathrm{L}$ $21=\mathrm{t}$ $30=2$
 $4=\mathrm{C}$ $13=\mathrm{M}(\mathrm{I})$ $22=\mathrm{U}$ $31=3$
 $5=\mathrm{E}$ $14=\mathrm{M}(\mathrm{r})$ $23=\mathrm{V}$ $32=4$
 $6=\mathrm{F}$ $15=\mathrm{N}$ $24=\mathrm{W}(\mathrm{l})$ $33=5$
 $7=\mathrm{G}$ $16=\mathrm{O}$ $25=\mathrm{W}(\mathrm{r})$ $34=6$
 $8=\mathrm{H}$ $17=\mathrm{P}$ $26=\mathrm{Y}$ $35=7$ | $\begin{aligned} & 36=8 \\ & 37=9 \\ & 38=\mathrm{a} \\ & 39=\mathrm{c} \\ & 40=\mathrm{e} \\ & 41=\mathrm{g} \\ & 42=\mathrm{h} \\ & 43=\mathrm{i} \\ & 44=\mathrm{n} \end{aligned}$ | $\begin{aligned} & 45=m(r) \\ & 46=0 \\ & 47=q \\ & 48=r \\ & 49=u \\ & 50=w(r) \\ & 51=- \\ & 52== \\ & 53=[\end{aligned}$ | $\begin{aligned} & 54=] \\ & 55=1 \\ & 56=0 \\ & 57= \end{aligned}$ |
| 4n247 | Hardware Label Character 2 | 0 | 57 | 0 | Read/Write | See Hardware Label Character 1 | | | |
| 4n248 | Hardware Label Character 3 | 0 | 57 | 0 | Read/Write | See Hardware Label Character 1 | | | |
| OUTPUT PARAMETERS | | | | | | | | | |
| 4n251 | Output 1 Assignment | 0 | PAX2 Unit and FlexCard dependent | 0 | Read/Write | Assignments dependent on PAX2 model in which FlexCard is installed. Output Assignment List order = PX2, FC1, FC2, FC3
 Number of PX2FCA1 Output Assignments $=0$ | | | |
| 4n252 | Output 1 Alarm Logic Mode | 0 | 2 | 0 | Read/Write | 0 = SINGLE, 1 = AND, 2 = OR | | | |
| 4n253 | Output 1 Alarm Mask | 0 | 65535 | 0 | Read/Write | Bit $0=$ A1 Bit $4=$ A5 Bit $8=$ A9 Bit $12=$ A13
 Bit $1=$ A2 Bit $5=$ A6 Bit $9=$ A10 Bit 13 $=$ A14
 Bit 2 A Bit $6=$ A7 Bit 10 $=$ A11 Bit 14 $=$ A15
 Bit 3 A4 Bit $7=$ A8 Bit 11 $=$ A12 Bit 15 $=$ A16 | | | |
| 4 n 254 | Output 1 Cycle Time | 0 | 600 | 20 | Read/Write | $1=0.1$ Second | | | |
| 4 n 255 | Output 2 Assignment | 0 | 6 | 0 | Read/Write | Same as Output 1 Assignment | | | |
| 4n256 | Output 2 Alarm Logic Mode | 0 | 2 | 0 | Read/Write | 0 = SINGLE, 1 = AND, $2=0 \mathrm{O}$ | | | |
| 4 n 257 | Output 2 Alarm Mask | 0 | 65535 | 0 | Read/Write | Same as Output 1 Alarm Mask | | | |
| 4 n 258 | Output 2 Cycle Time | 0 | 600 | 20 | Read/Write | $1=0.1$ Second | | | |
| 4n259 | Output 3 Assignment | 0 | 6 | 0 | Read/Write | Same as Output 1 Assignment | | | |
| 4n260 | Output 3 Alarm Logic Mode | 0 | 2 | 0 | Read/Write | $0=$ SINGLE, 1 = AND, $2=0 \mathrm{O}$ | | | |
| 4n261 | Output 3 Alarm Mask | 0 | 65535 | 0 | Read/Write | Same as Output 1 Alarm Mask | | | |
| 4n262 | Output 3 Cycle Time | 0 | 600 | 20 | Read/Write | 1 = 0.1 Second | | | |
| 4n263 | Output 4 Assignment | 0 | 6 | 0 | Read/Write | Same as Output 1 Assignment | | | |
| 4n264 | Output 4 Alarm Logic Mode | 0 | 2 | 0 | Read/Write | $0=$ SINGLE, 1 = AND, $2=0 \mathrm{O}$ | | | |
| 4 n 265 | Output 4 Alarm Mask | 0 | 65535 | 0 | Read/Write | Same as Output 1 Alarm Mask | | | |
| 4 n 266 | Output 4 Cycle Time | 0 | 600 | 20 | Read/Write | $1=0.1$ Second | | | |

REGISTER ADDRESS :	REGISTER NAME	$\begin{aligned} & \hline \text { LOW } \\ & \text { LIMIT } \end{aligned}$	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
PX2 USER INPUT / FUNCTION KEYS PARAMETERS				REFER TO PAX2 MANUAL FOR STARTING LOCATION OF FLEXCARD FUNCTIONS (NUMBER OF PAX2 FUNCTIONS + 1)		
**	User Input Selection	0	FlexCard Dependent	0	Read/Write	$n+1=d-H I$ $n+3=d-L O$ $n+5=r-H L$ $n+2=r-H I$ $n+4=r-L o$ $n+6=N A-1$ $\mathrm{n}=$ Starting location for Flex Card Function List order = PAX2, FC1, FC2, FC3 Number of PX2FCA01 User Functions $=6$
**	User Key Selection	0	FlexCard Dependent	0	Read/Write	$\begin{aligned} & \mathrm{n}+1=r-\mathrm{HI} \quad \mathrm{n}+2=r-\mathrm{Lo} \quad \mathrm{n}+3=r-\mathrm{HL} \quad \mathrm{n}+4=\text { NA-1 } \\ & \mathrm{n}=\text { Starting location for Flex Card } \\ & \text { Function List order = PAX2, FC1, FC2, FC3 } \\ & \text { Number of PX2FCA01 Key Functions }=4 \end{aligned}$

*: $\mathrm{n}=1$ + FlexCard Address
** - See Modbus Table for PAX2 unit (FlexBus model) in which card is being installed

[^0]: *: $\mathrm{n}=1+$ FlexCard Address

[^1]: *: n = 1 + FlexCard Address

