REGISTER ADDRESS	REGISTER NAME	$\begin{aligned} & \hline \text { LOW } \\ & \text { LIMIT } \end{aligned}$	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
FREQUENTLY USED REGISTERS						
40001	Process Value	N/A	N/A	N/A	Read	1 = 1 Display Unit
40002	Maximum Value	-1999	9999	N/A	Read	1 = 1 Display Unit
40003	Minimum Value	-1999	9999	N/A	Read	1 = 1 Display Unit
40004	Active Setpoint Value	SPLO	SPHI	0	Read/Write	1 = 1 Display Unit; Limited by setpoint low/high limits
40005	Setpoint 1 Value	SPLO	SPHI	0	Read/Write	1 = 1 Display Unit; Limited by setpoint low/high limits
40006	Setpoint 2 Value	SPLO	SPHI	0	Read/Write	1 = 1 Display Unit; Limited by setpoint low/high limits
40007	Setpoint Deviation	N/A	N/A	N/A	Read Only	1 = 1 Display Unit
40008	Output Power	-1000	1000	N/A	Read/Write	Output Power: Heat/Cool; * writable only in manual mode; $1=0.1 \%$
40009	Active Proportional Band	0	9999	700	Read/Write	1 = 1 Display Unit
40010	Active Integral Time	0	65000	120	Read/Write	1 = 0.1 Second
40011	Active Derivative Time	0	9999	30	Read/Write	1 = 0.1 Second
40012	Active Power Filter	0	600	10	Read/Write	$1=0.1$ Second
40013	Auto-Tune Code	0	4	2	Read/Write	$\begin{aligned} & 0=\text { Very Aggressive, } 1=\text { Aggressive, } 2 \text { = Default, } 3 \text { = Conservative, } \\ & 4 \text { = Very Conservative } \end{aligned}$
40014	Auto-Tune Request	0	1	0	Read/Write	$0=$ Off, 1 = Invoke Auto-Tune
40015	Auto-Tune Phase	0	4	0	Read	$0=$ Off, 4 = Last Phase of Auto-Tune
40016	Auto-Tune Done	0	1	0	Read	1 = Successful Auto-Tune since last power cycle.
40017	Auto-Tune Fail	0	1	0	Read	$0=$ Off, 1 = Auto-Tune failed
40018	Control Mode	0	1	0	Read/Write	0 = Automatic, 1 = Manual Mode
40019	Setpoint Selection	0	1	0	Read/Write	$0=$ Setpoint 1, 1 = Setpoint 2
40020	Remote/Local Setpoint Selection	0	1	0	Read/Write	0 = Local, 1 = Remote
40021	PID Parameter Selection	0	1	0	Read/Write	0 = Primary PID Values, 1 = Alternate PID Values
40022	Disable Integral Action	0	1	0	Read/Write	0 = Enabled, 1 = Disabled
40023	Disable Setpoint Ramping	0	1	0	Read/Write	0 = Enabled, 1 = Disabled
40024	Setpoint Ramping In Process	0	1	0	Read/Write	$0=0 \mathrm{ff}, 1=\ln$ Process
40025	Setpoint Ramp Rate Value	-1999	9999	0	Read/Write	$1=0.1$ Setpoint Ramping @ Timebase unit selection
40026	Alarm (1-16) Status Register	0	65535	0	Read	Bit 15 = A16, Bit $0=\mathrm{A} 1$
40027	Input Range Alarm	0	1	0	Read	$0=$ Off, 1 = Alarm active
40028	User Input Status	0	2	0	Read	Bit 1 = User Input 2, Bit $0=$ User Input 1
40029	Output Status	0	15	N/A	Read/Write	Status of Outputs. Bit State: $0=0 \mathrm{Off}, 1=\mathrm{On}$. Bit $3=$ Out1, Bit $2=$ Out2, Bit $1=$ Out3, Bit $0=$ Out 4 . Outputs can only be activated/reset with this register when the respective bits in the Manual Mode Register (MMR) are set.
40030	Output Manual Mode Register (MMR)	0	31	0	Read/Write	Bit State: $0=$ Auto Mode, 1 = Manual Mode Bit $4=S P 1$, Bit $3=S P 2$, Bit $2=S P 3$, Bit $1=S P 4$, Bit $0=$ Linear Output
40031	Alarm Reset Register	0	65535	0	Read/Write	Bit State: $1=$ Reset Alarm, bit is returned to zero following reset processing; Bit $15=\mathrm{A} 16$, Bit $0=\mathrm{A} 1$
40032	Analog Output Register (AOR)	0	4095	0	Read/Write	Functional only if Linear Output is in Manual Mode.(MMR bit $0=1$) Linear Output Card written to only if Linear Out (MMR bit 0) is set.
40033	Active Alarm 1 Value	-1999	9999	0	Read/Write	Active List (A or B)
40034	Active Alarm 2 Value	-1999	9999	0	Read/Write	Active List (A or B)
40035	Active Alarm 3 Value	-1999	9999	0	Read/Write	Active List (A or B)
40036	Active Alarm 4 Value	-1999	9999	0	Read/Write	Active List (A or B)
40037	Active Alarm 5 Value	-1999	9999	0	Read/Write	Active List (A or B)
40038	Active Alarm 6 Value	-1999	9999	0	Read/Write	Active List (A or B)
40039	Active Alarm 7 Value	-1999	9999	0	Read/Write	Active List (A or B)
40040	Active Alarm 8 Value	-1999	9999	0	Read/Write	Active List (A or B)

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
40041	Active Alarm 9 Value	-1999	9999	0	Read/Write	Active List (A or B)
40042	Active Alarm 10 Value	-1999	9999	0	Read/Write	Active List (A or B)
40043	Active Alarm 11 Value	-1999	9999	0	Read/Write	Active List (A or B)
40044	Active Alarm 12 Value	-1999	9999	0	Read/Write	Active List (A or B)
40045	Active Alarm 13 Value	-1999	9999	0	Read/Write	Active List (A or B)
40046	Active Alarm 14 Value	-1999	9999	0	Read/Write	Active List (A or B)
40047	Active Alarm 15 Value	-1999	9999	0	Read/Write	Active List (A or B)
40048	Active Alarm 16 Value	-1999	9999	0	Read/Write	Active List (A or B)
40049	Active Alarm 1 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40050	Active Alarm 2 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40051	Active Alarm 3 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40052	Active Alarm 4 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40053	Active Alarm 5 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40054	Active Alarm 6 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40055	Active Alarm 7 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40056	Active Alarm 8 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40057	Active Alarm 9 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40058	Active Alarm 10 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40059	Active Alarm 11 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40060	Active Alarm 12 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40061	Active Alarm 13 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40062	Active Alarm 14 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40063	Active Alarm 15 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40064	Active Alarm 16 Band/Dev. Value	-1999	9999	0	Read/Write	Active List (A or B). Applicable only for Band or Deviation Alarm Action.
40065	Remote SP Value	-1999	9999	0	Read Only	
INPUT PARAMETERS						SEE INPUT MODULE FOR PARAMETER DESCRIPTIONS
Analog Input Parameters						
40101	Input Range	0	26	16	Read/Write	$0=250 \mu \mathrm{~A}$ $5=250 \mathrm{mV}$ $11=100 \Omega$ $17=$ TC-K $23=$ RTD 385 $1=2.5 \mathrm{~mA}$ $6=2 \mathrm{~V}$ $12=1 \mathrm{~K} \Omega$ $18=$ TC-R $24=$ RTD 392 $2=25 \mathrm{~mA}$ $7=10 \mathrm{~V}$ $13=10 \mathrm{~K} \Omega$ $19=$ TC-S $25=$ RTD 672 $3=250 \mathrm{~mA}$ $8=25 \mathrm{~V}$ $14=$ TC-T $20=$ TC-B $26=$ RTD 427 $4=2 \mathrm{~A}$ 9 $=100 \mathrm{~V}$ $15=$ TC-E $21=$ TC-N $10=200 \mathrm{~V}$ $16=$ TC-J $22=$ TC-C
40102	Square Root Linearization	0	1	0	Read/Write	$0=$ No, $1=$ Yes (Valid on Process Inputs)
40103	Temperature Scale (TC or RTD only)	0	1	1	Read/Write	$0={ }^{\circ} \mathrm{C}, 1={ }^{\circ} \mathrm{F}$
40104	Ice Point Compensation (TC only)	0	1	1	Read/Write	$0=$ Off, 1 = On
40105	ADC Conversion Rate (samples/sec)	0	5	2	Read/Write	$0=5,1=10,2=20,3=40,4=80,5=160$
40106	Decimal Point	0	3	1	Read/Write	$0=0,1=0.0,2=0.00,3=0.000$
40107	Rounding Factor	0	6	0	Read/Write	$0=1,1=2,2=5,3=10,4=20,5=50,6=100$
40108	Input Offset Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
40109	Digital Input Filter	0	250	10	Read/Write	1 = 0.1 Second
40110	Input Scaling Points in List Function	0	1	0	Read/Write	$0=$ No, 1 = Yes
User Input / Function Keys						
40151	User Input Active State	0	1	0	Read/Write	0 = Active Low, 1 = Active High
40152	User Input 1 Action	0	17*	0	Read/Write	$0=$ NONE $4=\mathrm{SPSL}$ $8=\mathrm{d}-\mathrm{HI}$ $12=\mathrm{r}-\mathrm{HL}$ $16=\mathrm{LISt}$ $1=\mathrm{PLOC}$ $5=\mathrm{rSPt}$ $9=\mathrm{r}-\mathrm{HI}$ $13=\mathrm{r}-\mathrm{AL}$ $17=\mathrm{Prnt}$ $2=\mathrm{ILOC}$ $6=\mathrm{PSEL}$ $10=\mathrm{d}-\mathrm{Lo}$ $14=\mathrm{dLEV}$ $18=$ FlexCard $3=\operatorname{TrnF}$ $7=\mathrm{SPrP}$ $11=\mathrm{r}-\mathrm{Lo}$ $15=\mathrm{dISP}$ Functions
40153	User Input 1 Alarm Mask	0	65535	0	Read/Write	Bit $0=$ A1 Bit $4=$ A5 Bit $8=$ A9 Bit 12 $=$ A13 Bit 1 = A2 Bit 5 = A6 Bit 9 = A10 Bit 13 $=$ A14 Bit 2 =A3 Bit $6=$ A7 Bit 10 $=$ A11 Bit 14 $=$ A15 Bit 3 =A4 Bit $7=$ A8 Bit 11 =A12 Bit 15 $=$ A16

REGISTER ADDRESS	REGISTER NAME	$\begin{aligned} & \text { LOW } \\ & \text { LIMIT } \end{aligned}$	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
40154	User Input 2 Action	0	17*	0	Read/Write	Same as User Input 1 Action
40155	User Input 2 Alarm Mask	0	65535	0	Read/Write	Same as User Input 1 Alarm Mask
40156	User F1 Key Action	0	14*	0	Read/Write	$0=$ NONE $4=r$ rSPt $8=r-L O$ $12=\operatorname{dISP}$ $1=1 \mathrm{LOC}$ $5=\mathrm{PSEL}$ $9=r-\mathrm{HL}$ $13=\mathrm{LISt}$ $2=\operatorname{TrnF}$ $6=\mathrm{SPrP}$ $10=r-\mathrm{AL}$ $14=$ Prnt $3=\mathrm{SPSL}$ $7=r-\mathrm{HI}$ $11=\mathrm{dLEV}$ $15=$ FlexCard Functions
40157	User F1 Key Alarm Mask	0	65535	0	Read/Write	Same as User Input 1 Alarm Mask
40158	User F2 Key Action	0	14*	0	Read/Write	Same as User F1 Key Action
40159	User F2 Key Alarm Mask	0	65535	0	Read/Write	Same as User Input 1 Alarm Mask
40160	User F1 Second Action	0	14*	0	Read/Write	Same as User F1 Key Action
40161	User F1 Second Alarm Mask	0	65535	0	Read/Write	Same as User Input 1 Alarm Mask
40162	User F2 Second Action	0	14^{*}	0	Read/Write	Same as User F1 Key Action
40163	User F2 Second Alarm Mask	0	65535	0	Read/Write	Same as User Input 1 Alarm Mask
Advanced Input Parameters						
List A List B	Input Scaling Points Parameters					
40171 40211	Number of Scaling Points	2	16	2	Read/Write	Number of Linearization Scaling Points
$40172{ }^{40212}$	Reserved	N/A	N/A	N/A	N/A	
4017340213	Scaling Pt. 1 Input Value	-1999	9999	0	Read/Write	$1=0.001$
40174 40214	Scaling Pt. 1 Display Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
40175 40215 thru thru 40202 40242	Scaling Pts. 2 thru 15 Values	-1999	9999	0	Read/Write	Registers 40175-40202 and 40215-40242 hold values for Scaling Points 2 thru 15, and follow the same ordering as Scaling Point 1.
4020340243	Scaling Pt. 16 Input Value	-1999	9999	0	Read/Write	$1=0.001$
40204 40244	Scaling Pt. 16 Display Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
OUTPUT PARAMETERS						
40251	Output 1 Assignment	0	11*	1	Read/Write	$0=$ NONE $4=$ P2C MAN $8=\operatorname{ILOC}$ $12=$ FlexCard $1=$ P2C Heat $5=$ SPSL $9=$ tUNE Assignments $2=$ P2C Cool $6=$ SPrP $10=$ tndn $3=$ ALr $7=$ RSP Transfer $11=$ tnFL
40252	Output 1 Logic/Alarm Logic Mode	0	2	0	Read/Write	If Out Assignment \neq ALr; $0=$ NOR, 1 = REV If Output Assignment $=$ ALr; $0=$ SINGLE, $1=A N D, 2=O R$
40253	Output 1 Alarm Mask	0	65535	0	Read/Write	
40254	Output 1 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
40255	Output 2 Assignment	0	11*	0	Read/Write	Same as Output 1 Assignment
40256	Output 2 Logic/Alarm Logic Mode	0	2	0	Read/Write	Same as Output 1 Logic/Alarm Logic Mode
40257	Output 2 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
40258	Output 2 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
40259	Output 3 Assignment	0	11*	0	Read/Write	Same as Output 1 Assignment
40260	Output 3 Logic/Alarm Logic Mode	0	2	0	Read/Write	Same as Output 1 Logic/Alarm Logic Mode
40261	Output 3 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
40262	Output 3 Cycle Time	0	600	20	Read/Write	$1=0.1$ Second
40263	Output 4 Assignment	0	11*	0	Read/Write	Same as Output 1 Assignment
40264	Output 4 Logic/Alarm Logic Mode	0	2	0	Read/Write	Same as Output 1 Logic/Alarm Logic Mode
40265	Output 4 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
40266	Output 4 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
Analog Output						
40271	Non-Linear Analog Output Scaling	0	1	0	Read/Write	$0=$ No, 1 = Yes (Use Non-Linear Analog Output Scaling Parameters)
40272	Type	0	2	1	Read/Write	$0=0-20 \mathrm{~mA}, 1=4-20 \mathrm{~mA}, 2=0-10 \mathrm{~V}$

REGISTER ADDRESS	REGISTER NAME	$\begin{aligned} & \text { LOW } \\ & \text { LIMIT } \end{aligned}$	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
40309	Line 1 Green-Orange Backlight Assignment	0	13^{*}	0	Read/Write	Same as Line 1 Green Backlight Assignment
40310	Line 1 Green-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, $2=0 \mathrm{R}$
40311	Line 1 Green-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask
40312	Line 1 Red-Orange Backlight Assignment	0	13^{*}	0	Read/Write	Same as Line 1 Green Backlight Assignment
40313	Line 1 Red-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, $2=0 \mathrm{O}$
40314	Line 1 Red-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask
40315	Line 1 Red-Green Backlight Assignment	0	13^{*}	0	Read/Write	Same as Line 1 Green Backlight Assignment
40316	Line 1 Red-Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, $2=0$ R
40317	Line 1 Red-Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask
Line 2						
40331	Line 2 Default Display Color	0	2	0	Read/Write	0 = Grn, 1 = OrNG, 2 = rEd
40332	Line 2 Units Mnemonic	0	1	0	Read/Write	$0=\mathrm{Off}, 1=\mathrm{On}$
40333	Line 2 Units Digit 1 (Left)	0	57	0	Read/Write	Same as Line 1 Units Selection
40334	Line 2 Units Digit 2 (Center)	0	57	0	Read/Write	
40335	Line 2 Units Digit 3 (Right)	0	57	0	Read/Write	
40336	Line 2 Bargraph Assignment	0	6^{*}	2	Read/Write	$\begin{array}{ll} 0=\text { NONE, } & 1=0 \mathrm{OP}, \quad 2=\mathrm{dEV}, \quad 3=\mathrm{SP}, \quad 4=\mathrm{OP} \text { ANY, } \\ 6=\text { SP ANY, } & 7+=\text { FlexCard Assignments } \end{array}$
40337	Line 2 Bargraph Low Scale Value	0	9999	0	Read/Write	
40338	Line 2 Bargraph High Scale Value	0	9999	0	Read/Write	
40339	Line 2 Green Backlight Assignment	0	13*	0	Read/Write	$0=$ NO $3=$ Out3 $6=$ MAN $9=$ RSPt $12=$ tndn $1=$ Out1 $4=$ Out4 $7=$ SPSL $10=$ ILOC $13=$ tnFL $2=$ Out2 $5=$ ALr $8=$ SPrP $11=$ tUNE $14+=$ FlexCard
40340	Line 2 Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, $2=0$ OR
40341	Line 2 Green Backlight Alarm Mask	0	65535	0	Read/Write	Bit $0=$ A1 Bit $4=$ A5 Bit $8=$ A9 Bit $12=$ A13 Bit $1=$ A2 Bit $5=$ A6 Bit $9=$ A10 Bit 13 $=$ A14 Bit 2 A Bit $6=$ A7 Bit 10 A A11 Bit 14 $=$ A15 Bit 3 =A4 Bit $7=$ A8 Bit 11 $=$ A12 Bit 15 $=$ A16
40342	Line 2 Orange Backlight Assignment	0	13^{*}	0	Read/Write	Same as Line 2 Green Backlight Assignment
40343	Line 2 Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, $2=0 \mathrm{O}$
40344	Line 2 Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 2 Green Backlight Alarm Mask
40345	Line 2 Red Backlight Assignment	0	13*	0	Read/Write	Same as Line 2 Green Backlight Assignment
40346	Line 2 Red Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{O}$
40347	Line 2 Red Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 2 Green Backlight Alarm Mask
40348	Line 2 Green-Orange Backlight Assignment	0	13^{*}	0	Read/Write	Same as Line 2 Green Backlight Assignment
40349	Line 2 Green-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{R}$
40350	Line 2 Green-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 2 Green Backlight Alarm Mask
40351	Line 2 Red-Orange Backlight Assignment	0	13^{*}	0	Read/Write	Same as Line 2 Green Backlight Assignment
40352	Line 2 Red-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
40353	Line 2 Red-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 2 Green Backlight Alarm Mask
40354	Line 2 Red-Green Backlight Assignment	0	13^{*}	0	Read/Write	Same as Line 2 Green Backlight Assignment
40355	Line 2 Red-Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, $2=0 \mathrm{O}$
40356	Line 2 Red-Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 2 Green Backlight Alarm Mask
Universal Annunciator 1						
40361	UA 1 Default Display Color	0	2	0	Read/Write	$0=\mathrm{Grn}, 1$ = OrNG, 2 = rEd
40362	UA 1 Units Mnemonic	0	1	1	Read/Write	$0=0 \mathrm{ff}, 1$ = On

REGISTER ADDRESS	REGISTER NAME	$\begin{aligned} & \hline \text { LOW } \\ & \text { LIMIT } \end{aligned}$	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS						
40363	UA 1 Units Digit 1 (Left)	0	57	16	Read/Write	$0=$ $1=A$ $2=b$ $3=C$	$\begin{aligned} 9 & =1 \\ 10 & =J \\ 11 & =K \\ 12 & =L \end{aligned}$	$\begin{aligned} & 18=Q \\ & 19=R \\ & 20=S \\ & 21=t \end{aligned}$	$\begin{aligned} & 27=Z \\ & 28=0 \\ & 29=1 \\ & 30=2 \end{aligned}$	$\begin{aligned} & 36=8 \\ & 37=9 \\ & 38=a \\ & 39=c \end{aligned}$	$\begin{aligned} & 45=m(r) \\ & 46=0 \\ & 47=q \\ & 48=r \end{aligned}$	$\begin{aligned} & 54=] \\ & 55=1 \\ & 56=0 \\ & 57= \end{aligned}$
40364	UA 1 Units Digit 2 (Right)	0	57	29	Read/Write	$\begin{aligned} & 4=\mathrm{d} \\ & 5=\mathrm{E} \\ & 6=\mathrm{F} \\ & 7=\mathrm{G} \\ & 8=\mathrm{H} \end{aligned}$	$\begin{aligned} & 13=M(I) \\ & 14=M(r) \\ & 15=\mathrm{N} \\ & 16=\mathrm{O} \\ & 17=\mathrm{P} \end{aligned}$	$\begin{aligned} & 22=U \\ & 23=V \\ & 24=W(I) \\ & 25=W(r) \\ & 26=Y \end{aligned}$	$\begin{aligned} & 31=3 \\ & 32=4 \\ & 33=5 \\ & 34=6 \\ & 35=7 \end{aligned}$	$\begin{aligned} & 40=\mathrm{e} \\ & 41=\mathrm{g} \\ & 42=\mathrm{h} \\ & 43=\mathrm{i} \\ & 44=\mathrm{n} \end{aligned}$	$\begin{aligned} & 49=u \\ & 50=w(r) \\ & 51=- \\ & 52== \\ & 53=[\end{aligned}$	
40365	UA 1 Units Logic Mode (Active)	0	2	0	Read/Write	$0=$ nor, 1 = rEv, $2=$ FLSh						
40366	UA 1 Units Assignment	0	13*	1	Read/Write	$0=\mathrm{N}$ $1=0$ $2=0$	$3=0$ 1 $4=0$ $5=A$	$\begin{array}{lll} \mathrm{t} 3 & 6=M \\ \mathrm{t} 4 & 7=S \\ \mathrm{r} & & 8=S \end{array}$	$\begin{aligned} & \text { AN } \\ & \hline \text { PSL } \\ & \hline \text { PrL } \end{aligned}$	$\begin{aligned} & 9=\text { RSPt } \\ & 10=\text { ILOC } \\ & 11=\text { tUNE } \end{aligned}$	$\begin{aligned} & 12=\text { tndn } \\ & 13=\text { tnFL } \\ & 14+=\text { Fle } \end{aligned}$	
40367	UA 1 Assignment Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=$ OR						
40368	UA 1 Assignment Alarm Mask	0	65535	0	Read/Write	Bit 0 = A1 Bit $4=$ A5 Bit $8=$ A9 Bit $12=$ A13 Bit $1=$ A2 Bit $5=$ A6 Bit $9=$ A10 Bit 13 $=$ A14 Bit 2 A Bit $6=$ A7 Bit $10=$ A11 Bit 14 $=$ A15 Bit 3 =A4 Bit $7=$ A8 Bit 11 $=$ A12 Bit 15 =A16						
40368	UA 1 Green Backlight Assignment	0	13*	0	Read/Write	Same as UA 1 Units Assignment						
40369	UA 1 Green Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0$ O						
40370	UA 1 Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 1 Assignment Alarm Mask						
40371	UA 1 Orange Backlight Assignment	0	13^{*}	0	Read/Write	Same as UA 1 Units Assignment						
40372	UA 1 Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, $2=0 \mathrm{O}$						
40373	UA 1 Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 1 Assignment Alarm Mask						
40374	UA 1 Red Backlight Assignment	0	13^{*}	0	Read/Write	Same as UA 1 Units Assignment						
40375	UA 1 Red Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=$ OR						
40376	UA 1 Red Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 1 Assignment Alarm Mask						
40377	UA 1 Green-Orange Backlight Assignment	0	13^{*}	0	Read/Write	Same as UA 1 Units Assignment						
40378	UA 1 Green-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{R}$						
40379	UA 1 Green-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 1 Assignment Alarm Mask						
40380	UA 1 Red-Orange Backlight Assignment	0	13*	0	Read/Write	Same as UA 1 Units Assignment						
40381	UA 1 Red-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, $2=0$ O						
40382	UA 1 Red-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 1 Assignment Alarm Mask						
40383	UA 1 Red-Green Backlight Assignment	0	13^{*}	0	Read/Write	Same as UA 1 Units Assignment						
40384	UA 1 Red-Green Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=$ OR						
40385	UA 1 Red-Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 1 Assignment Alarm Mask						
Universal Annunciator 2												
40391	UA 2 Default Display Color	0	2	0	Read/Write	0 = Grn, 1 = OrNG, $2=$ rEd						
40392	UA 2 Units Mnemonic	0	1	1	Read/Write	$0=\mathrm{Off}, 1$ On						
40393	UA 2 Units Digit 1 (Left)	0	57	1	Read/Write	Same as UA1 Units Selection						
40394	UA 2 Units Digit 2 (Right)	0	57	29	Read/Write							
40395	UA 2 Units Logic Mode (Active)	0	2	0	Read/Write	$0=n o r, 1$ = rEv, $2=\mathrm{FLSh}$						
40396	UA 2 Units Assignment	0	13*	5	Read/Write					$\begin{aligned} & 9=\text { RSPt } \\ & 10=\text { ILOC } \\ & 11=\text { tUNE } \end{aligned}$	$\begin{aligned} & 12=\text { tndn } \\ & 13=\text { tnFL } \\ & 14+=\text { FlexCard } \end{aligned}$	
40397	UA 2 Assignment Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{O}$						
40398	UA 2 Assignment Alarm Mask	0	65535	0	Read/Write	Bit $0=$ A1 Bit $4=$ A5 Bit $8=$ A9 Bit $12=$ A13 Bit 1 $~=A 2$ Bit $5=$ A6 Bit $9=$ A10 Bit 13 $=$ A14 Bit 2 A A Bit $6=$ A7 Bit 10 $=$ A11 Bit 14 $=$ A15 Bit 3 =A4 Bit $7=$ A8 Bit 11 $=$ A12 Bit 15 =A16						
40399	UA 2 Green Backlight Assignment	0	13*	0	Read/Write	Same as UA 2 Units Assignment						
40400	UA 2 Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR						
40401	UA 2 Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 2 Assignment Alarm Mask						

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
40402	UA 2 Orange Backlight Assignment	0	13*	0	Read/Write	Same as UA 2 Units Assignment
40403	UA 2 Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
40404	UA 2 Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 2 Assignment Alarm Mask
40405	UA 2 Red Backlight Assignment	0	13*	0	Read/Write	Same as UA 2 Units Assignment
40406	UA 2 Red Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
40407	UA 2 Red Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 2 Assignment Alarm Mask
40408	UA 2 Green-Orange Backlight Assignment	0	13*	0	Read/Write	Same as UA 2 Units Assignment
40409	UA 2 Green-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
40410	UA 2 Green-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 2 Assignment Alarm Mask
40411	UA 2 Red-Orange Backlight Assignment	0	13*	0	Read/Write	Same as UA 2 Units Assignment
40412	UA 2 Red-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
40413	UA 2 Red-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 2 Assignment Alarm Mask
40414	UA 2 Red-Green Backlight Assignment	0	13*	0	Read/Write	Same as UA 2 Units Assignment
40415	UA 2 Red-Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
40416	UA 2 Red-Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 2 Assignment Alarm Mask
Universal Annunciator 3						
40421	UA 3 Default Display Color	0	2	0	Read/Write	0 = Grn, 1 = OrNG, 2 = rEd
40422	UA 3 Units Mnemonic	0	1	1	Read/Write	0 = Off, 1 = On
40423	UA 3 Units Digit 1 (Left)	0	57	1	Read/Write	Same as UA1 Units Selection
40424	UA 3 Units Digit 2 (Right)	0	57	30	Read/Write	
40425	UA 3 Units Logic Mode (Active)	0	2	0	Read/Write	0 = nor, 1 = rEv, 2 = FLSh
40426	UA 3 Units Assignment	0	13*	5	Read/Write	$0=$ NO $3=$ Out3 $6=$ MAN $9=$ RSPt $12=$ tndn $1=$ Out1 $4=$ Out 4 $7=$ SPSL $10=$ ILOC $13=$ tnFL $2=$ Out2 $5=$ ALr $8=$ SPrP $11=$ tUNE $14+=$ FlexCard
40427	UA 3 Assignment Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=$ OR
40428	UA 3 Assignment Alarm Mask	0	65535	0	Read/Write	
40429	UA 3 Green Backlight Assignment	0	13*	0	Read/Write	Same as UA 3 Units Assignment
40430	UA 3 Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
40431	UA 3 Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 3 Assignment Alarm Mask
40432	UA 3 Orange Backlight Assignment	0	13^{*}	0	Read/Write	Same as UA 3 Units Assignment
40433	UA 3 Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
40434	UA 3 Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 3 Assignment Alarm Mask
40435	UA 3 Red Backlight Assignment	0	13*	0	Read/Write	Same as UA 3 Units Assignment
40436	UA 3 Red Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
40437	UA 3 Red Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 3 Assignment Alarm Mask
40438	UA 3 Green-Orange Backlight Assignment	0	13*	0	Read/Write	Same as UA 3 Units Assignment
40439	UA 3 Green-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
40440	UA 3 Green-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 3 Assignment Alarm Mask
40441	UA 3 Red-Orange Backlight Assignment	0	13*	0	Read/Write	Same as UA 3 Units Assignment
40442	UA 3 Red-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
40443	UA 3 Red-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 3 Assignment Alarm Mask
40444	UA 3 Red-Green Backlight Assignment	0	13*	0	Read/Write	Same as UA 3 Units Assignment
40445	UA 3 Red-Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
40446	UA 3 Red-Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 3 Assignment Alarm Mask
Universal Annunciator 4						
40451	UA 4 Default Display Color	0	2	0	Read/Write	0 = Grn, 1 = OrNG, 2 = rEd
40452	UA 4 Units Mnemonic	0	1	0	Read/Write	0 = Off, 1 = On
40453	UA 4 Units Digit 1 (Left)	0	57	0	Read/Write	Same as UA1 Units Selection
40454	UA 4 Units Digit 2 (Right)	0	57	0	Read/Write	

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS				
40455	UA 4 Units Logic Mode (Active)	0	2	0	Read/Write	$0=n o r, 1$ = rEv, 2 = FLSh				
40456	UA 4 Units Assignment	0	13*	0	Read/Write	$\begin{array}{ll} 0 & =\text { NO } \\ 1= & \text { Out1 } \\ 2= & \text { Out2 } \end{array}$	$\begin{aligned} & 3=\text { Out3 } \\ & 4=\text { Out } \\ & 5=\text { ALr } \end{aligned}$	$\begin{array}{ll} \hline 6=\text { MAN } & 9 \\ 7=\text { SPSL } & 10 \\ 8=\text { SPrP } & 11 \end{array}$	$\begin{aligned} & 9=\text { RSPt } \\ & 10=I L O C \\ & 11=\text { tUNE } \end{aligned}$	$\begin{aligned} & 12=\operatorname{tndn} \\ & 13=\text { tnFL } \\ & 14+=\text { FlexCard } \end{aligned}$
40457	UA 4 Assignment Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{O}$				
40458	UA 4 Assignment Alarm Mask	0	65535	0	Read/Write	$\begin{array}{\|l\|l\|} \hline \text { Bit } 0=\text { A1 } \\ \text { Bit } 1=\text { A2 } \\ \text { Bit } 2=\text { A3 } \\ \text { Bit } 3=\text { A4 } \\ \hline \end{array}$	Bit 4 = A5 Bit $5=$ A6 Bit $6=A 7$ Bit $7=A 8$	$\begin{aligned} & \text { Bit } 8=\text { A9 } \\ & \text { Bit } 9=\text { A10 } \\ & \text { Bit } 10=\text { A11 } \\ & \text { Bit } 11=\text { A12 } \\ & \hline \end{aligned}$	Bit 12 Bit 13 Bit 14 Bit 15	$\begin{aligned} & =\mathrm{A} 13 \\ & =\mathrm{A} 14 \\ & =\mathrm{A} 15 \\ & =\mathrm{A} 16 \\ & \hline \end{aligned}$
40459	UA 4 Green Backlight Assignment	0	13^{*}	0	Read/Write	Same as UA 4 Units Assignment				
40460	UA 4 Green Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, 2 = OR				
40461	UA 4 Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 4 Assignment Alarm Mask				
40462	UA 4 Orange Backlight Assignment	0	13^{*}	0	Read/Write	Same as UA 4 Units Assignment				
40463	UA 4 Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{R}$				
40464	UA 4 Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 4 Assignment Alarm Mask				
40465	UA 4 Red Backlight Assignment	0	13^{*}	0	Read/Write	Same as UA 4 Units Assignment				
40466	UA 4 Red Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, 2 = OR				
40467	UA 4 Red Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 4 Assignment Alarm Mask				
40468	UA 4 Green-Orange Backlight Assignment	0	13*	0	Read/Write	Same as UA 4 Units Assignment				
40469	UA 4 Green-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, 2 = OR				
40470	UA 4 Green-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 4 Assignment Alarm Mask				
40471	UA 4 Red-Orange Backlight Assignment	0	13*	0	Read/Write	Same as UA 4 Units Assignment				
40472	UA 4 Red-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR				
40473	UA 4 Red-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 4 Assignment Alarm Mask				
40474	UA 4 Red-Green Backlight Assignment	0	13^{*}	0	Read/Write	Same as UA 4 Units Assignment				
40475	UA 4 Red-Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR				
40476	UA 4 Red-Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as UA 4 Assignment Alarm Mask				
	Mnemonics									
40501	Mnemonic Default Display Color	0	2	0	Read/Write	$0=\mathrm{Grn}, 1$ = OrNG, 2 = rEd				
40502	Mnemonic Green Backlight Assignment	0	13*	0	Read/Write	$0=$ NO $3=$ Out3 $6=$ MAN $9=$ RSPt $1=$ Out1 $4=$ Out4 $7=$ SPSL $10=$ ILOC $2=$ Out2 $5=$ ALr $8=$ SPrP $11=$ tUNE				$\begin{aligned} & 12=\text { tndn } \\ & 13=\text { tnFL } \\ & 14+=\text { FlexCard } \\ & \hline \end{aligned}$
40503	Mnemonic Green Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{O}$				
40504	Mnemonic Green Backlight Alarm Mask	0	65535	0	Read/Write	Bit $0=$ A1 Bit $4=$ A5 Bit $8=$ A9 Bit $12=$ A13 Bit $1=$ A2 Bit $5=$ A6 Bit $9=$ A10 Bit 13 $=$ A14 Bit $2=$ A3 Bit $6=$ A7 Bit $10=$ A11 Bit $14=$ A15 Bit $3=$ A4 Bit $7=$ A8 Bit $11=$ A12 Bit 15 15 A16				
40505	Mnemonic Orange Backlight Assignment	0	13^{*}	0	Read/Write	Same as Mnemonic Green Backlight Assignment				
40506	Mnemonic Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{O}$				
40507	Mnemonic Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask				
40508	Mnemonic Red Backlight Assignment	0	13^{*}	0	Read/Write	Same as Mnemonic Green Backlight Assignment				
40509	Mnemonic Red Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{O}$				
40510	Mnemonic Red Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask				
40511	Mnemonic Green-Orange Backlight Assignment	0	13^{*}	0	Read/Write	Same as Mnemonic Green Backlight Assignment				
40512	Mnemonic Green-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=$ OR				
40513	Mnemonic Green-Orange Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask				
40514	Mnemonic Red-Orange Backlight Assignment	0	13^{*}	0	Read/Write	Same as Mnemonic Green Backlight Assignment				
40515	Mnemonic Red-Orange Backlight Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=$ OR				
40516	Mnemonic Red-Orange Backlight Alarm Mask	0	65535	0	Read/Write					
40517	Mnemonic Red-Green Backlight Assignment	0	13^{*}	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask Same as Mnemonic Green Backlight Assignment				

REGISTER ADDRESS	REGISTER NAME	$\begin{aligned} & \hline \text { LOW } \\ & \text { LIMIT } \end{aligned}$	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
40518	Mnemonic Red-Green Backlight Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
40519	Mnemonic Red-Green Backlight Alarm Mask	0	65535	0	Read/Write	Same as Line 1 Green Backlight Alarm Mask
Line 2 Input LOCS						
40541	Line 2 Input Display Access	0	21	0	Read/Write	0 = LOC; Bit $0=$ dREd, Bit $2=$ PrEd, Bit4 $=$ HrEd; Other bits N/A
40542	Line 2 Maximum (Hi) Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 } 4 \text { = HrEd, Bit5 }=\text { HEnt } \end{aligned}$
40543	Line 2 Minimum (Lo) Value Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=$ dREd, Bit $1=d E n t$, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 = HrEd, Bit5 = HEnt
Line 2 Display LOCS						
40551	Display Intensity Level Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 } 4 \text { HrEd, Bit5 = HEnt } \end{aligned}$
40552	Display Contrast Level Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
Line 2 Alarm LOCS						
40561	Line 2 Alarm 1 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit } 4=\text { HrEd, Bit } 5=\text { HEnt } \end{aligned}$
40562	Line 2 Alarm 1 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit } 4=\text { HrEd, Bit } 5=\text { HEnt } \end{aligned}$
40563	Line 2 Alarm 2 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
40564	Line 2 Alarm 2 Band/Dev.Value Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=\mathrm{dREd}$, Bit $1=\mathrm{dEnt}$, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 = HrEd, Bit5 = HEnt
40565	Line 2 Alarm 3 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit } 4=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
40566	Line 2 Alarm 3 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit } 4=\text { HrEd, Bit } 5=\text { HEnt } \end{aligned}$
40567	Line 2 Alarm 4 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 } 4 \text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
40568	Line 2 Alarm 4 Band/Dev.Value Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=d R E d$, Bit $1=$ dEnt, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 = HrEd, Bit5 = HEnt
40569	Line 2 Alarm 5 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
40570	Line 2 Alarm 5 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
40571	Line 2 Alarm 6 Value Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=$ dREd, Bit $1=$ dEnt, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 = HrEd, Bit5 = HEnt
40572	Line 2 Alarm 6 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit } 4=\operatorname{HrEd}, \text { Bit } 5=\text { HEnt } \end{aligned}$
40573	Line 2 Alarm 7 Value Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=$ dREd, Bit $1=$ dEnt, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 = HrEd, Bit5 = HEnt
40574	Line 2 Alarm 7 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
40575	Line 2 Alarm 8 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit } 4=H r E d, \text { Bit5 }=\text { HEnt } \end{aligned}$
40576	Line 2 Alarm 8 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
40577	Line 2 Alarm 9 Value Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=d R E d$, Bit $1=$ dEnt, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 = HrEd, Bit5 = HEnt
40578	Line 2 Alarm 9 Band/Dev.Value Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=\mathrm{dREd}$, Bit $1=\mathrm{dEnt}$, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 = HrEd, Bit5 = HEnt

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
40579	Line 2 Alarm 10 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40580	Line 2 Alarm 10 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=d R E d, \text { Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit } 4=\text { HrEd, Bit5 = HEnt } \end{aligned}$
40581	Line 2 Alarm 11 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40582	Line 2 Alarm 11 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40583	Line 2 Alarm 12 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=d R E d, \text { Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit } 4=\text { HrEd, Bit5 = HEnt } \end{aligned}$
40584	Line 2 Alarm 12 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40585	Line 2 Alarm 13 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 } 4 \text { HrEd, Bit5 = HEnt } \end{aligned}$
40586	Line 2 Alarm 13 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=d R E d, \text { Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40587	Line 2 Alarm 14 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
40588	Line 2 Alarm 14 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 } 4 \text { HrEd, Bit5 = HEnt } \end{aligned}$
40589	Line 2 Alarm 15 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=d R E d, \text { Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40590	Line 2 Alarm 15 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40591	Line 2 Alarm 16 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=d R E d, \text { Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit } 4=\text { HrEd, Bit5 = HEnt } \end{aligned}$
40592	Line 2 Alarm 16 Band/Dev.Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
Line 2 PID LOCS						
40601	Line 2 Actual Setpoint Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40602	Line 2 Setpoint 1 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 } 4 \text { HrEd, Bit5 = HEnt } \end{aligned}$
40603	Line 2 Setpoint 2 Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
40604	Line 2 Remote Setpoint Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40605	Line 2 Output Power Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40606	Line 2 Deviation Value Access	0	42	0	Read/Write	0 = LOC; Bit $0=$ dREd, Bit 2 = PrEd, Bit4 = HrEd
40607	Line 2 Setpoint Ramp Rate Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 } 4 \text { HrEd, Bit5 = HEnt } \end{aligned}$
40608	Line 2 Remote Setpoint Ratio Value Access	0	42	0	Read/Write	$0=$ LOC, $1=\mathrm{drEd}, 2=\mathrm{dEnt}, 3=\mathrm{PrEd}, 4=\mathrm{PEnt}, 5=\mathrm{HrEd}, 6=\mathrm{HEnt}$
40609	Line 2 Remote Setpoint Bias Value Access	0	42	0	Read/Write	0 = LOC, 1 = drEd, $2=\mathrm{dEnt}, 3$ = PrEd, 4 = PEnt, 5 = HrEd, 6 = HEnt
40610	Line 2 Actual PID Offset Power Value Access	0	42	0	Read/Write	0 = LOC, 1 = drEd, 2 = dEnt, 3 = PrEd, 4 = PEnt, 5 = HrEd, 6 = HEnt
40611	Line 2 Actual PID Proportional Band Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
40612	Line 2 Actual PID Integral Time Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40613	Line 2 Actual PID Derivitive Time Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
40614	Line 2 Primary PID Offset Power Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=d R E d, \text { Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit } 4=\text { HrEd, Bit5 } 5 \text { HEnt } \end{aligned}$

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
40615	Line 2 Primary PID Proportional Band Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40616	Line 2 Primary PID Integral Time Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40617	Line 2 Primary PID Derivitive Time Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
40618	Line 2 Alternate PID Offset Power Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40619	Line 2 Alternate PID Proportional Band Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40620	Line 2 Alternate PID Integral Time Value Access	0	42	0	Read/Write	$\begin{aligned} & 0 \text { = LOC; Bit } 0=\text { dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40621	Line 2 Alternate PID Derivitive Time Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
Line 2 Function LOCS						
40631	Line 2 Setpoint Selection Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40632	Line 2 Remote Setpoint Transfer (Local/Remote)	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
40633	Line 2 Setpoint Ramping Disable	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40634	Line 2 Integral Lock Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40635	Line 2 Auto/Manual Mode Selection Value Access	0	42	0	Read/Write	$\begin{aligned} & 0 \text { = LOC; Bit } 0 \text { = dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40636	Line 2 PID Bank Selection Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40637	Line 2 Tune Selection Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40638	Line 2 Reset Max Display Access	0	21	0	Read/Write	0 = LOC; Bit 1 = dEnt, Bit 3 = PEnt, Bit5 = HEnt
40639	Line 2 Reset Min Display Access	0	21	0	Read/Write	0 = LOC; Bit 1 = dEnt, Bit 3 = PEnt, Bit5 = HEnt
40640	Line 2 Reset Max and Min Access	0	21	0	Read/Write	0 = LOC; Bit 1 = dEnt, Bit 3 = PEnt, Bit5 = HEnt
40641	Line 2 Reset Alarm Access	0	21	0	Read/Write	0 = LOC; Bit 1 = dEnt, Bit 3 = PEnt, Bit5 = HEnt
40642	Line 2 List Selection Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40643	Line 2 Print Request Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1 \text { = dEnt, Bit } 2 \text { = PrEd, Bit } 3 \text { = PEnt, } \\ & \text { Bit4 = HrEd, Bit5 = HEnt } \end{aligned}$
40644	Line 2 Reset Alarm Mask	0	65535	0	Read/Write	Bit 0 = A1 Bit $4=$ A5 Bit $8=$ A9 Bit 12 $=$ A13 Bit 1 = A2 Bit 5 = A6 Bit 9 =A10 Bit 13 $=$ A14 Bit 2 =A3 Bit $6=$ A7 Bit 10 $=$ A11 Bit 14 $=$ A15 Bit 3 =A4 Bit $7=$ A8 Bit 11 $=$ A12 Bit 15 $=$ A16
Max (HI)/Min(LO) Values						
40651	Max (HI) Capture Delay Time	0	9999	0	Read/Write	0 = Max Update Rate, $1=0.1 \mathrm{Sec}$
40652	Min (LO) Capture Delay Time	0	9999	0	Read/Write	0 = Max Update Rate, $1=0.1 \mathrm{Sec}$
Line 2 Code Configuration						
40661	Line 2 Security Code Value	0	250	0	Read/Write	
PID CONFIGURATION PARAMETERS						
Control						
40671	Assign	0	1*	0	Read/Write	0 = None, 1 = P2C PV, 2+ - Flex Card Assignments
40672	Control Type	0	2	0	Read/Write	0 = Heat, 1 = Cool, 2 = Both
40673	Control Mode	0	1	0	Read/Write	0 = Automatic, 1 = Manual
40674	Manual Power	-1000	1000	0	Read/Write	Output Power: Heat/Cool; * writable only in manual mode; $1=0.1 \%$

REGISTER ADDRESS	REGISTER NAME	$\begin{aligned} & \text { LOW } \\ & \text { LIMIT } \end{aligned}$	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
Remote Setpoint						
40676	Remote SP Assignment	0	3*	0	Read/Write	$0=$ NONE, 1 = P2C SP, $2=$ P2C PV, $3=$ P2C OP, 4+ = Flex Card Assignments
40677	Reserved for future use.					
40678	Ratio	1	9999	1000	Read/Write	$1=0.1$
40679	Bias	-1999	9999	0	Read/Write	1 = 1 Display Unit
40680	Select Local / Remote SP	0	1	0	Read/Write	0 = LOC, 1 = REM
Setpoint						
40681	Setpoint Selection	0	1	0	Read/Write	0 = Setpoint 1, 1 = Setpoint 2
40682	Sepoint 1 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
40683	Setpoint 2 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
40684	Setpoint Lo Limit Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
40685	Setpoint Hi Limit Value	-1999	9999	9999	Read/Write	1 = 1 Display Unit
40686	Ramp Timebase	0	3	0	Read/Write	$0=$ Off, 1 = Seconds, 2 = Minutes, 3 = Hours
40687	Ramp Rate	0	9999	0	Read/Write	1 = 0.1 Ramp Timebase unit
PID Parameters						
40691	PID Parameter Selection	0	1	0	Read/Write	0 = Primary PID Values, 1 = Alternate PID Values
40692	Primary Proportional Band	0	9999	700	Read/Write	1 = 1 Display Unit
40693	Primary Integral Time	0	65000	120	Read/Write	1 = 0.1 Second
40694	Primary Derivative Time	0	9999	30	Read/Write	1 = 0.1 Second
40695	Primary Power Filter Value	0	600	10	Read/Write	$1=0.1$ Second
40696	Primary Output Power Offset	-1000	1000	0	Read/Write	$1=0.1$ \%; Applicable when Primary Integral Time is 0
40697	Alternate Proportional Band	0	9999	700	Read/Write	1 = 1 Display Unit
40698	Alternate Integral Time	0	65000	120	Read/Write	$1=0.1$ Second
40699	Alternate Derivative Time	0	9999	30	Read/Write	1 = 0.1 Second
40700	Alternate Power Filter Value	0	600	10	Read/Write	$1=0.1$ Second
40701	Alternate Output Power Offset	-1000	1000	0	Read/Write	$1=0.1 \%$; Applicable when Secondary Integral Time is 0
Power Transfer						
40711	Input Fault Power Value	-1999	2000	0	Read/Write	1 = 0.1 \%
40712	Output Deadband	-1000	1000	0	Read/Write	1 = 0.1 \%
40713	Output Heat Gain	0	5000	1000	Read/Write	1 = 0.1 \%
40714	Heat Low Limit	0	2000	0	Read/Write	1 = 0.1 \%
40715	Heat High Limit	0	2000	1000	Read/Write	1 = 0.1 \%
40716	Output Cool Gain	0	5000	1000	Read/Write	1 =0.1\%
40717	Cool Low Limit	0	2000	0	Read/Write	1 = 0.1 \%
40718	Cool High Limit	0	2000	1000	Read/Write	1 = 0.1 \%
ON/OFF Control						
40741	On-Off Hysteresis	0	500	2	Read/Write	1 = 1 Display Unit
40742	On-Off Deadband	-1999	9999	0	Read/Write	1 = 1 Display Unit
Tuning						
40751	Tuning Code	0	4	2	Read/Write	$\begin{aligned} & 0=\text { Very Aggressive, } 1=\text { Aggressive, } 2=\text { Default, } 3=\text { Conservative, } \\ & 4=\text { Very Conservative } \end{aligned}$
40752	Auto-Tune Start	0	1	0	Read/Write	0 = NO 1 = YES
Slave ID / GUID						
41001-41010	Slave ID	N/A	N/A	N/A	Read Only	$\begin{aligned} & \text { <'P' 'X'> <'2' 'C'> <'1' '5'> <2020h> <2020h> <'a' 'b'> <00h 'c'> <0040h> } \\ & <0040 \mathrm{~h}><0010 \mathrm{~h}> \\ & \text { a = SP Card Status. '0'-No Card, '2'-Dual SP, '4'-Quad SP } \\ & \text { b = Linear Card Status. "0"-Not Installled, "1"-Installed } \\ & \text { c = Version Number (1.50 or higher) } \\ & \text { <0040h> <0040h> = 64 Register Writes, } 64 \text { Register Reads (Max.) } \\ & \text { <0010h> = 16 Register GUID/Scratch } \end{aligned}$
41101-41116	GUID/Scratch	N/A	N/A	N/A	Read/Write	Reserved (may be used in future RLC software)

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
FACTORY SERVICE						
41151-41156	Factory Service Registers	N/A	N/A	N/A	Read/Write	Factory Use Only - Do Not Modify
Math / Logic						
41121-1200	Reserved for Math/Logic Operations					
ALARM PARAMETERS						
Alarm 1						
41201	Assign	0	1*	1	Read/Write	0 = None, 1 = Process Input Value, 2+ = FlexCard Assignments
41202	Action	0	9	1	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdln}, 9=\mathrm{HCur} \end{aligned}$
41203	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41204	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41205	Off Time Delay	0	9999	0	Read/Write	$1=0.1$ Second
41206	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41207	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41208	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
41209	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 2×10						
41221	Assign	0	1*	1	Read/Write	0 = None, 1 = Process Input Value, 2+ = FlexCard Assignments
41222	Action	0	9	1	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdln}, 9=\mathrm{HCur} \end{aligned}$
41223	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41224	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41225	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41226	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41227	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41228	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
41229	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 3						
41241	Assign	0	1*	0	Read/Write	0 = None, 1 = Process Input Value, 2+ = FlexCard Assignments
41242	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\text { bANd, } 8=\text { bdln, } 9=\mathrm{HCur} \end{aligned}$
41243	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41244	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41245	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41246	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41247	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41248	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
41249	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 4						
41261	Assign	0	1*	0	Read/Write	0 = None, 1 = Process Input Value, 2+ = FlexCard Assignments
41262	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdln}, 9=\mathrm{HCur} \end{aligned}$
41263	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41264	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41265	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41266	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41267	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41268	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
41269	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 5						
41281	Assign	0	1*	0	Read/Write	0 = None, 1 = Process Input Value, 2+ = FlexCard Assignments

REGISTER ADDRESS	REGISTER NAME	$\begin{aligned} & \text { LOW } \\ & \text { LIMIT } \end{aligned}$	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
41282	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdln}, 9=\mathrm{HCur} \end{aligned}$
41283	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41284	On Time Delay	0	9999	0	Read/Write	$1=0.1$ Second
41285	Off Time Delay	0	9999	0	Read/Write	$1=0.1$ Second
41286	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41287	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41288	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
41289	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	$0=$ Off, 1 = On (Applies for TC or RTD input)
Alarm 6						
41301	Assign	0	1*	0	Read/Write	$0=$ None, 1 = Process Input Value, 2+ = FlexCard Assignments
41302	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdln}, 9=\mathrm{HCur} \end{aligned}$
41303	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41304	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41305	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41306	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41307	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41308	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
41309	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	$0=$ Off, 1 = On (Applies for TC or RTD input)
Alarm 7						
41321	Assign	0	1*	0	Read/Write	0 = None, 1 = Process Input Value, 2+ = FlexCard Assignments
41322	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdln}, 9=\mathrm{HCur} \end{aligned}$
41323	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41324	On Time Delay	0	9999	0	Read/Write	1 =0.1 Second
41325	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41326	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41327	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41328	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
41329	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	$0=$ Off, 1 = On (Applies for TC or RTD input)
Alarm 8						
41341	Assign	0	1*	0	Read/Write	$0=$ None, 1 = Process Input Value, $2+=$ FlexCard Assignments
41342	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdln}, 9=\mathrm{HCur} \end{aligned}$
41343	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41344	On Time Delay	0	9999	0	Read/Write	$1=0.1$ Second
41345	Off Time Delay	0	9999	0	Read/Write	$1=0.1$ Second
41346	Output Logic	0	1	0	Read/Write	$0=$ Normal, 1 = Reverse
41347	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41348	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
41349	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	$0=$ Off, 1 = On (Applies for TC or RTD input)
Alarm 9						
41361	Assign	0	1*	0	Read/Write	0 = None, 1 = Process Input Value, $2+=$ FlexCard Assignments
41362	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\mathrm{bdln}, 9=\mathrm{HCur} \end{aligned}$
41363	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41364	On Time Delay	0	9999	0	Read/Write	$1=0.1$ Second
41365	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41366	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41367	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41368	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$

REGISTER ADDRESS	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
41369	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
41381	Assign	0	1*	0	Read/Write	0 = None, 1 = Process Input Value, 2+ = FlexCard Assignments
41382	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\text { bdln, } 9=\mathrm{HCur} \end{aligned}$
41383	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41384	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41385	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41386	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41387	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41388	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
41389	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 11 L						
41401	Assign	0	1*	0	Read/Write	0 = None, 1 = Process Input Value, 2+ = FlexCard Assignments
41402	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\text { bdln, } 9=\mathrm{HCur} \end{aligned}$
41403	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41404	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41405	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41406	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41407	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41408	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
41409	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 12						
41421	Assign	0	1*	0	Read/Write	0 = None, 1 = Process Input Value, 2+ = FlexCard Assignments
41422	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\text { bdln, } 9=\mathrm{HCur} \end{aligned}$
41423	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41424	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41425	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41426	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41427	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41428	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
41429	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 13						
41441	Assign	0	1*	0	Read/Write	0 = None, 1 = Process Input Value, 2+ = FlexCard Assignments
41442	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\text { bdln, } 9=\mathrm{HCur} \end{aligned}$
41443	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41444	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41445	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41446	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41447	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41448	Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
41449	Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 14						
41461	Assign	0	1*	0	Read/Write	0 = None, 1 = Process Input Value, 2+ = FlexCard Assignments
41462	Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\text { bdln, } 9=\mathrm{HCur} \end{aligned}$
41463	Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41464	On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41465	Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second

REGISTER ADDRESS		REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
41466		Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41467		Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41468		Standby Operation	0	1	0	Read/Write	$0=\mathrm{No}, 1$ = Yes
41469		Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 15							
41481		Assign	0	1*	0	Read/Write	0 = None, 1 = Process Input Value, 2+ = FlexCard Assignments
41482		Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\text { bdln, } 9=\mathrm{HCur} \end{aligned}$
41483		Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41484		On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41485		Off Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41486		Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41487		Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41488		Standby Operation	0	1	0	Read/Write	0 = No, 1 = Yes
41489		Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
Alarm 16							
41501		Assign	0	1*	0	Read/Write	0 = None, 1 = Process Input Value, 2+ = FlexCard Assignments
41502		Action	0	9	0	Read/Write	$\begin{aligned} & 0=\mathrm{No}, 1=\mathrm{AbHI}, 2=\mathrm{AbLO}, 3=\mathrm{AUHI}, 4=\mathrm{AULO}, 5=\mathrm{dEHI}, 6=\mathrm{dELO}, \\ & 7=\mathrm{bANd}, 8=\text { bdln, } 9=\mathrm{HCur} \end{aligned}$
41503		Hysteresis Value	1	9999	2	Read/Write	1 = 1 Display Unit
41504		On Time Delay	0	9999	0	Read/Write	1 = 0.1 Second
41505		Off Time Delay	0	9999	0	Read/Write	1 =0.1 Second
41506		Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
41507		Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
41508		Standby Operation	0	1	0	Read/Write	0 = No, 1 = Yes
41509		Probe Failure Action (TC or RTD Only)	0	1	0	Read/Write	0 = Off, 1 = On (Applies for TC or RTD input)
ALARM SCALING PARAMETERS							
List A	List B	Alarm Values					
41551	41651	Alarm 1 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41552	41652	Alarm 2 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41553	41653	Alarm 3 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41554	41654	Alarm 4 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41555	41655	Alarm 5 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41556	41656	Alarm 6 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41557	41657	Alarm 7 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41558	41658	Alarm 8 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41559	41659	Alarm 9 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41560	41660	Alarm 10 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41561	41661	Alarm 11 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41562	41662	Alarm 12 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41563	41663	Alarm 13 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41564	41664	Alarm 14 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41565	41665	Alarm 15 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41566	41666	Alarm 16 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
41567	41667	Alarm 1 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
41568	41668	Alarm 2 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
41569	41669	Alarm 3 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
41570	41670	Alarm 4 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
41571	41671	Alarm 5 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
41572	41672	Alarm 6 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
41573	41673	Alarm 7 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
41574	41674	Alarm 8 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit

REGISTER ADDRESS		REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
41575	41675	Alarm 9 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
41576	41676	Alarm 10 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
41577	41677	Alarm 11 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
41578	41678	Alarm 12 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
41579	41679	Alarm 13 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
41580	41680	Alarm 14 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
41581	41681	Alarm 15 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
41582	41682	Alarm 16 Band/Dev. Value	-1999	9999	0	Read/Write	Applicable only for Band or Deviation Alarm Action. 1 = 1 Display Unit
SERIAL COMMUNICATION PARAMETERS							
41701		USB Mode	0	1	0	Read/Write	0 = Configuration, 1 = Serial
41702		Type	0	2	2	Read/Write	$0=$ RLC Protocol (ASCII), 1 = Modbus RTU, $2=$ Modbus ASCII
41703		Baud Rate	0	5	5	Read/Write	$\begin{aligned} & 0=1200,1=2400,2=4800,3=9600,4=19200, \\ & 5=38400 \end{aligned}$
41704		Data Bits	0	1	1	Read/Write	$0=7$ Bits, $1=8$ Bits
41705		Parity	0	2	0	Read/Write	0 = None, 1 = Even, 2 = Odd
41706			0	99	0	Read/Write	RLC Protocol: 0-99
		Address	1	247	247		Modbus: 1-247
41707		Transmit Delay	0	250	10	Read/Write	1 = 0.001 Second
41708		Abbreviated Transmission (RLC only)	0	1	0	Read/Write	$0=$ No, 1 = Yes (Not used when communications type is Modbus)
41709		Print Options (RLC only)	0	8191	1	Read/Write	$0=$ No, 1 = Yes (Not used when communications type is Modbus) Bit 0 Print Input Value, Bit 1 - Print SP Value, Bit 2 - Print Setpoint Ramp Rate Value, Bit 3 - Print Output Power, Bit 4 - Print Proportional Value, Bit 5 Print Integral Value, Bit 6 - Print Derivative Value, Bit 7 - Print Alarm Status, Bit 8 - Print Alarm 1 Value, Bit 9 - Print Alarm 2 Value, Bit 10 - Print Alarm 3 Value, Bit 11 - Print Alarm 4 Value, Bit 12 - Print Control Status Bits
41710		Load Serial Settings	0	1	0	Read/Write	Changing 41701-41710 will not update the PAX2C until this register is written with a 1 . After the write, the communicating device must be changed to new PAX2C settings and this register returns to 0 .

* Higher limit is applicable with FlexCard installed.

REGISTER ADDRESS †	REGISTER NAME	$\begin{aligned} & \hline \text { LOW } \\ & \text { LIMIT } \end{aligned}$	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
FREQUENTLY USED REGISTERS						
4n001	Input Process Value (Hi word)	-1999	9999	N/A	Read Only	$1=1$ Display UnitADC Overrange Value $=1048576$, Underrange Value $=-1048576$
4n002	Input Process Value (Lo word)					
4n003	Input Process Maximum (Hi word)	-1999	9999	N/A	Read Only	1 = 1 Display Unit
4n004	Input Process Maximum (Lo word)					
4n005	Input Process Minimum (Hi word)	-1999	9999	N/A	Read Only	1 = 1 Display Unit
4n006	Input Process Minimum (Lo word)					
4n007	Active SP	-1999	9999	N/A	Read/Write	1 = 0.1\%
4n008	Active Remote SP	-1999	9999	N/A	Read Only	1 = 0.1\%
4n009	Status Flags	0	255	N/A	Read Only	Bit 8 Set = ADC Underrange, Bit 7 Set = ADC Overrange. Bit 6 Set = SP Ramping Bit 5 Set = Auto Tune Fail Bit 4 Set = Auto Tune Done Bit 3:0 = Auto Tune Phase
4n010	Output Status Register	0	15	0	Read/Write	Status of Solid-State Outputs. Bit State: $0=$ OFF, $1=0 N$. Bit $3=04$, Bit $2=03$, Bit $1=02$, Bit $0=01$.
4 n 011	Heat Power	0	1000	0	Read Only	1 = 0.1\%
4n012	Cool Power	0	1000	0	Read Only	1=0.1\%
4n013-4n0024	Reserved					
4n035	Control Flags	0	1000	0	Read/Write	Bit 6: AutoTune; $0=$ NO, $1=$ YES Bit 5: MAN; $0=$ PID Auto Mode, 1 = PID Manual (User) Mode; Bit 4: PSEL; $0=$ Primary PID, 1 = Alternate PID, Bit 3: ILOC; $0=$ Enable Integral Action, 1 = Disable Integral Action; Bit 2: RSPt; $0=$ Local SP, $1=$ Remote SP; Bit 1: SPSL; $0=$ SP1, 1 = Req. SP2; Bit 0: SPrP; $0=$ SP Ramping Enable, $1=$ SP Ramping Disable
INPUT PARAMETERS						SEE INPUT MODULE FOR PARAMETER DESCRIPTIONS
Analog Input Parameters						
4n071	Input Type	0	1	0	Read/Write	$0=0$ to 10 V DC, $1=0$ to 20 mA DC
4n072	Input Square Root Linearization	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
4n073	Input Decimal Point	0	3	3	Read/Write	$0=0,1=0.0,2=0.00,3=0.000$
4n074	Input Rounding	0	6	0	Read/Write	$0=1,1=2,2=5,3=10,4=20,5=50,6=100$
4 n 075	Input Offset Value (Hi word)	-1999	9999	0	Read/Write	1 = 1 Display Unit
4n076	Input Offset Value (Lo word)					
4n077	Input Filter Value	0	250	10	Read/Write	1 = 0.1 Second
4n078	Input Filter Band Value	0	250	10	Read/Write	1 = 1 display unit
4n079	Max (HI) Capture Delay Time	0	9999	0	Read/Write	$0=$ Max Update Rate, $1=0.1 \mathrm{Sec}$
4n080	Min (LO) Capture Delay Time	0	9999	0	Read/Write	$0=$ Max Update Rate, $1=0.1 \mathrm{Sec}$
Input Scaling Point Parameters						
4n101	Number of Scaling Points	2	15	2	Read/Write	Number of Linearization Scaling Points
4n102	Reserved	N/A	N/A	N/A	N/A	Reserved for future use
4n103	Scaling Pt. 1 Input Value (Hi word)	0	9999	0	Read/Write	$1=0.001$
4n104	Scaling Pt. 1 Input Value (Lo word)					
4n105	Scaling Pt. 1 Display Value (Hi word)	-1999	9999	0	Read/Write	1 = 1 Display Unit
4n106	Scaling Pt. 1 Display Value (Lo word)					
4n107	Scaling Pt. 2 Input Value (Hi word)	0	9999	1000	Read/Write	$1=0.001$
4n108	Scaling Pt. 2 Input Value (Lo word)					

REGISTER ADDRESS \dagger	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
4n109	Scaling Pt.2 Display Value (Hi word)		9999		Read/Write	
4 n 110	Scaling Pt. 2 Display Value (Lo word)	-1999	9999	1000	Read/Write	$1=1$ Display Unit
$\begin{gathered} \hline 4 \mathrm{n} 111 \\ \text { thru } 4 \mathrm{n} 162 \\ \hline \end{gathered}$	Scaling Pts. 3 thru 15 Values	$\begin{array}{\|c\|} \hline 0 \text { (input) } \\ -1999 \text { (dsp) } \\ \hline \end{array}$	9999	0	Read/Write	Registers 40111-40162 hold values for Scaling Points 3 thru 15, and follow the same ordering as Scaling Points 1 and 2.
DISPLAY CONFIGURATION PARAMETERS						
Line 2 Input LOCS Parameters						
4n201	Line 2 Input Display Access	0	21	0	Read/Write	$0=$ LOC; Bit $0=$ dREd, Bit $2=$ PrEd, Bit4 $=$ HrEd; Other bits N/A
4n202	Line 2 Maximum (Hi) Value Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=d R E d$, Bit $1=d E n t$, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 = HrEd, Bit5 = HEnt
4n203	Line 2 Maximum (Hi) Value Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=$ dREd, Bit $1=d E n t$, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 = HrEd, Bit5 = HEnt
Line 2 PID LOCS Parameters						
4 n 211	Line 2 Actual Setpoint Value Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=$ dREd, Bit $1=$ dEnt, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 = HrEd, Bit5 = HEnt
4 n 212	Line 2 Remote Setpoint Value Access	0	21	0	Read/Write	$0=$ LOC; Bit $0=$ dREd, Bit $2=$ PrEd, Bit4 $=$ HrEd; Other bits N/A
4 n 213	Line 2 Output Power Value Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=$ dREd, Bit $2=$ PrEd, Bit4 $=$ HrEd; Other bits N/A
4 n 214	Line 2 Deviation Value Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=$ dREd, Bit $2=$ PrEd, Bit4 $=$ HrEd; Other bits N/A
4 n 215	Line 2 Setpoint Ramping Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
4n216	Line 2 Remote Setpoint Ratio	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 } 4 \text { HrEd, Bit5 = HEnt } \end{aligned}$
4n217	Line 2 Remote Setpoint Bias	0	42	0	Read/Write	$0=$ LOC; Bit $0=\mathrm{dREd}$, Bit $1=\mathrm{dEnt}$, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 = HrEd, Bit5 = HEnt
4 n 218	Line 2 Active Output Power Offset Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit } 4=H r E d, \text { Bit5 }=\text { HEnt } \end{aligned}$
4n219	Line 2 Active Proportional Band Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
4n220	Line 2 Active Integral Time Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 } 4 \text { HrEd, Bit5 = HEnt } \end{aligned}$
4 n 221	Line 2 Active Derivative Time Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$
Line 2 Function LOCS Parameters						
4 n 230	Line 2 Reset Max Display Access	0	42	0	Read/Write	0 = LOC; Bit 1 = dEnt, Bit 3 = PEnt, Bit5 = HEnt; Other bits N/A
4 n 231	Line 2 Reset Min Display Access	0	42	0	Read/Write	$0=$ LOC; Bit $1=\mathrm{dEnt}$, Bit $3=$ PEnt, Bit5 $=$ HEnt; Other bits N/A
4 n 232	Line 2 Reset Max and Min Access	0	42	0	Read/Write	$0=$ LOC; Bit $1=$ dEnt, Bit $3=$ PEnt, Bit5 $=$ HEnt; Other bits N/A
4n233	Line 2 Setpoint Selection Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 } 4 \text { HrEd, Bit5 = HEnt } \end{aligned}$
4n234	Line 2 Local / Remote Transfer Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=$ dREd, Bit $1=$ dEnt, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 = HrEd, Bit5 = HEnt
4n235	Line 2 Setpoint Ramping Disable	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit } 4=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
4n236	Line 2 Integral Lock Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 } 4 \text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
4 n 237	Line 2 Auto/Manual Mode Selection Value Access	0	42	0	Read/Write	$0=$ LOC; Bit $0=$ dREd, Bit $1=$ dEnt, Bit $2=$ PrEd, Bit $3=$ PEnt, Bit4 = HrEd, Bit5 = HEnt
4 n 238	Line 2 PID Bank Selection Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 } 4 \text { HrEd, Bit5 = HEnt } \end{aligned}$
4n239	Line 2 Tune Selection Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 }=\text { HrEd, Bit5 = HEnt } \end{aligned}$

REGISTER ADDRESS †	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
OUTPUT PARAMETERS						
4n251	Output 1 Assignment	0	PAX2 Unit and FlexCard dependent	0	Read/Write	Assignments dependent on Pax2 Flex model in which card is installed. Output Assignment List order $=$ Px2, FC1, FC2, FC3 Number of PX2FCA1 Output Assignments $=0$
4 n 252	Output 1 Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{O}$
4n253	Output 1 Alarm Mask	0	65535	0	Read/Write	Bit $0=$ A1 Bit $4=$ A5 Bit $8=$ A9 Bit $12=$ A13 Bit $1=$ A2 Bit $5=$ A6 Bit $9=$ A10 Bit 13 $=$ A14 Bit $2=$ A3 Bit $6=$ A7 Bit 10 A11 Bit 14 $=$ A15 Bit 3 =A4 Bit $7=$ A8 Bit 11 $=$ A12 Bit 15 $=$ A16
4n254	Output 1 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
4 n 255	Output 2 Assignment	0	6	0	Read/Write	Same as Output 1 Assignment
4n256	Output 2 Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
4 n 257	Output 2 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
4 n 258	Output 2 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
4 n 259	Output 3 Assignment	0	6	0	Read/Write	Same as Output 1 Assignment
4 n 260	Output 3 Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{O}$
4 n 261	Output 3 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
4 n 262	Output 3 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
4 n 263	Output 4 Assignment	0	6	0	Read/Write	Same as Output 1 Assignment
4n264	Output 4 Alarm Logic Mode	0	2	0	Read/Write	$0=$ SINGLE, 1 = AND, $2=0 \mathrm{O}$
4n265	Output 4 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
4 n 266	Output 4 Cycle Time	0	600	20	Read/Write	$1=0.1$ Second
PID CONFIGURATION PARAMETERS						
Control Parameters						
4n301	Assign	0	2*	0	Read/Write	0 = None, 1 = Px2C Process Value, 2 = Px2C Out Pwr, 3+ - Flex Card PID Assignments; FCn Input, FCn OP
4 n 302	Control Type	0	2	0	Read/Write	$0=$ Heat, $1=$ Cool, $2=$ Both
4n303	Control Mode	0	1	0	Read/Write	0 = Automatic, 1 = Manual
4 n 304	Manual Power	-1999	2000	0	Read/Write	Output Power: Heat/Cool; 1=0.1\%; *-writeable only in manual mode
Remote Setpoint Parameters						
4n306	Remote SP Assignment	0	1*	0	Read/Write	$\begin{aligned} & 0=\text { NONE, } 1=\text { P2C SP, } 2=\text { P2C PV, } 3=\text { P2C OP, } 4+=\text { Flex Card } \\ & \text { Assignments } \\ & \text { FCn Input, FCn OP } \end{aligned}$
4n307	Reserved Register	-32768	-32768	N/A		Was SP Transfer Mode
4n308	Ratio	1	9999	1000	Read/Write	$1=0.1$
4n309	Bias	-1999	9999	0	Read/Write	1 = 1 Display Unit
4n310	Select Local / Remote SP	0	1	0	Read/Write	
Setpoint Parameters						
4 n 311	Setpoint Selection	0	1	0	Read/Write	0 = Setpoint 1, 1 = Setpoint 2
4n312	Sepoint 1 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
4n313	Setpoint 2 Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
4 n 314	Setpoint Lo Limit Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
4 n 315	Setpoint Hi Limit Value	-1999	9999	0	Read/Write	1 = 1 Display Unit
4n316	Ramp Timebase	0	3	0	Read/Write	$0=$ Off, 1 = Seconds, $2=$ Minutes, 3 = Hours
4 n 317	Ramp Rate	0	9999	0	Read/Write	1 = 0.1 Ramp Timebase unit
PID Parameters						
4n321	PID Parameter Selection	0	1	0	Read/Write	$0=$ Primary PID Values, 1 = Alternate PID Values
4n322	Primary Proportional Band	0	9999	40	Read/Write	1 = 1 Display Unit
4n323	Primary Integral Time	0	65000	120	Read/Write	1 = 0.1 Second
4 n 324	Primary Derivative Time	0	9999	30	Read/Write	1 = 0.1 Second
4n325	Primary Power Filter Value	0	600	10	Read/Write	1 = 0.1 Second

REGISTER ADDRESS \dagger	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
4n326	Primary Output Power Offset	-1000	1000	0	Read/Write	1 = 0.1 \%; Applicable when Primary Integral Time is 0
4n327	Secondary Proportional Band	0	9999	40	Read/Write	1 = 1 Display Unit
4n328	Secondary Integral Time	0	65000	120	Read/Write	1 = 0.1 Second
4n329	Secondary Derivative Time	0	9999	30	Read/Write	1 = 0.1 Second
4n330	Secondary Power Filter Value	0	600	10	Read/Write	1 = 0.1 Second
4n331	Secondary Output Power Offset	-1000	1000	0	Read/Write	1 = 0.1 \%; Applicable when Secondary Integral Time is 0
Power Transfer Parameters						
4n341	Input Fault Power Value	-1999	2000	0	Read/Write	1 = 0.1 \%
4n342	Output Deadband	-1000	1000	0	Read/Write	1 = 0.1 \%
4n343	Output Heat Gain	0	5000	1000	Read/Write	1 = 0.1 \%
4n344	Heat Low Limit	0	2000	0	Read/Write	1 = 0.1 \%
4n345	Heat High Limit	0	2000	1000	Read/Write	1 = 0.1 \%
4n346	Output Cool Gain	0	5000	1000	Read/Write	1 = 0.1 \%
4n347	Cool Low Limit	0	2000	0	Read/Write	1 = 0.1 \%
4n348	Cool High Limit	0	2000	1000	Read/Write	1 = 0.1 \%
ON/OFF Control Parameters						
4n371	On-Off Hysteresis	0	500	0	Read/Write	1 = 1 Display Unit
4n372	On-Off Deadband	-1999	9999	0	Read/Write	1 = 1 Display Unit
Tuning Parameters						
4n381	Tuning Code	0	4	2	Read/Write	$\begin{aligned} & 0=\text { Very Aggressive, } 1 \text { = Aggressive, } 2 \text { = Default, } 3 \text { = Conservative, } \\ & 4=\text { Very Conservative } \end{aligned}$
4n382	Auto-Tune Start	0	1	0	Read/Write	0 = NO, 1 = YES
PX2 USER INPUT / FUNCTION KEYS PARAMETERS				REFER TO PAX2 MANUAL FOR STARTING LOCATION OF FLEX CARD FUNCTIONS (NUMBER OF PAX2 FUNCTIONS + 1)		
**	User Input Action	0	"FlexCard Dependent"	0	Read/Write	$n+1=I L O C$ $n+4=P S L$ $n+7=r-H I$ $n+10=r-H L$ $n+2=$ TRNF $n+5=$ SPrP $n+8=d-L o$ $n+3=$ SPSL $n+6=d-H I$ $n+9=r-L o$ $n=$ Starting location for Flex Card Function List order $=$ Px2, FC1, FC2, FC3 Number of PX2FCA00 User Functions $=10$
**	User Key Action	0	"FlexCard Dependent"	0	Read/Write	$1=\mathrm{ILOC}$ $4=\mathrm{PSL}$ $7=r-$ Lo $2=\mathrm{TRNF}$ $5=\mathrm{SPrP}$ $8=r-\mathrm{HL}$ $3=\mathrm{SPSL}$ $6=r-\mathrm{HI}$ $n=$ Starting location for Flex Card Function List order $=\mathrm{Px} 2$, FC1, FC2, FC3 Number of PX2FCA00 Key Functions $=6$

$\dagger-\mathrm{n}=1+$ FlexCard Address
** - See Modbus Table for PAX2 unit (FlexBus model) in which card is being installed

REGISTER ADDRESS \dagger	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
FREQUENTLY USED REGISTERS						
4n001	Input Process Value (Hi word)	-1999	9999	N/A	Read Only	$\begin{aligned} & 1=1 \text { Display Unit } \\ & \text { ADC Overrange Value }=1048576, \text { Underrange Value }=-1048576 \end{aligned}$
4n002	Input Process Value (Lo word)					
4n003	Input Process Maximum (Hi word)	-1999	9999	N/A	Read Only	1 = 1 Display Unit
4n004	Input Process Maximum (Lo word)					
4n005	Input Process Minimum (Hi word)	-1999	9999	N/A	Read Only	1 = 1 Display Unit
4n006	Input Process Minimum (Lo word)					
4n007	Input Process Status Flags	0	255	N/A	Read Only	Bit 3 Set = ADC Underrange, Bit 2 Set = ADC Overrange.
INPUT PARAMETERS						
Analog Input Parameters						
4n071	Heater Current Monitor	0	4*	1	Read/Write	$\begin{aligned} & 0=\text { None, } 1=\text { P2C Out1, } 2=\text { P2C Out2, } 3=\text { P2C Out3, 4=P2C Out4, } 5+= \\ & \text { FlexCard 1, 2, or } 3 \text { Outputs } \end{aligned}$
4 n 072	Input Square Root Linearization	0	1	0	Read/Write	$0=\mathrm{No}, 1=\mathrm{Yes}$
4 n 073	Input Decimal Point	0	3	1	Read/Write	$0=0,1=0.0,2=0.00,3=0.000$
4n074	Input Rounding	0	6	0	Read/Write	$0=1,1=2,2=5,3=10,4=20,5=50,6=100$
4 n 075	Input Offset Value (Hi word)	-1999	9999	0	Read/Write	1 = 1 Display Unit
4 n 076	Input Offset Value (Lo word)					
4 n 077	Input Filter Value	0	250	10	Read/Write	1 =0.1 Second
4n078	Input Filter Band Value	0	250	10	Read/Write	1 = 1 display unit
4n079	Max (HI) Capture Delay Time	0	9999	0	Read/Write	$0=$ Max Update Rate, $1=0.1 \mathrm{Sec}$
4n080	Min (LO) Capture Delay Time	0	9999	0	Read/Write	$0=$ Max Update Rate, $1=0.1 \mathrm{Sec}$
Input Scaling Point Parameters						
4 n 101	Number of Scaling Points	2	15	2	Read/Write	Number of Linearization Scaling Points
4 n 102	Reserved	N/A	N/A	N/A	N/A	Reserved for future use
4 n 103	Scaling Pt. 1 Input Value (Hi word)	0	9999	0	Read/Write	$1=0.001$
4 n 104	Scaling Pt. 1 Input Value (Lo word)					
4 n 105	Scaling Pt. 1 Display Value (Hi word)	-1999	9999	0	Read/Write	1 = 1 Display Unit
4 n 106	Scaling Pt. 1 Display Value (Lo word)					
4 n 107	Scaling Pt. 2 Input Value (Hi word)	0	9999	1000	Read/Write	$1=0.001$
4n108	Scaling Pt. 2 Input Value (Lo word)					
4n109	Scaling Pt. 2 Display Value (Hi word)	-1999	9999	1000	Read/Write	1 = 1 Display Unit
4 n 110	Scaling Pt. 2 Display Value (Lo word)					
$\begin{gathered} 4 \mathrm{n} 111 \\ \text { thru } 4 \mathrm{n} 162 \\ \hline \end{gathered}$	Scaling Pts. 3 thru 15 Values	$\begin{array}{\|c\|} \hline 0 \text { (input) } \\ -1999 \text { (dsp) } \\ \hline \end{array}$	9999	0	Read/Write	Registers 40111-40162 hold values for Scaling Points 3 thru 15, and follow the same ordering as Scaling Points 1 and 2.
DISPLAY CONFIGURATION PARAMETERS						
Line 2 Input LOCS Parameters						
4n201	Line 2 Input Display Access	0	21	0	Read/Write	$0=$ LOC; Bit $0=$ dREd, Bit $2=$ PrEd, Bit4 $=$ HrEd; Other bits N/A
4n202	Line 2 Maximum (Hi) Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit4 } 4 \text { HrEd, Bit5 = HEnt } \end{aligned}$
4n203	Line 2 Maximum (Hi) Value Access	0	42	0	Read/Write	$\begin{aligned} & 0=\text { LOC; Bit } 0=\text { dREd, Bit } 1=\text { dEnt, Bit } 2=\text { PrEd, Bit } 3=\text { PEnt, } \\ & \text { Bit } 4=\text { HrEd, Bit5 }=\text { HEnt } \end{aligned}$
Line 2 Function LOCS Parameters						
4 n 230	Line 2 Reset Max Display Access	0	42	0	Read/Write	0 = LOC; Bit 1 = dEnt, Bit 3 = PEnt, Bit5 = HEnt; Other bits N/A
4 n 231	Line 2 Reset Min Display Access	0	42	0	Read/Write	0 = LOC; Bit 1 = dEnt, Bit 3 = PEnt, Bit5 = HEnt; Other bits N/A
4 n 232	Line 2 Reset Max and Min Access	0	42	0	Read/Write	0 = LOC; Bit 1 = dEnt, Bit $3=$ PEnt, Bit5 = HEnt; Other bits N/A

REGISTER ADDRESS †	REGISTER NAME	LOW LIMIT	HIGH LIMIT	FACTORY SETTING	ACCESS	COMMENTS
OUTPUT PARAMETERS						
4n250	Output 1 Assignment	0	PAX2 Unit and FlexCard dependent	0	Read/Write	Assignments dependent on Pax2 Flex model in which card is installed. Output Assignment List order = Px2, FC1, FC2, FC3 Number of PX2FCA1 Output Assignments $=0$
4n251	Output 1 Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
4n252	Output 1 Alarm Mask	0	65535	0	Read/Write	Bit 0 = A1 Bit 4 = A5 Bit 8 = A9 Bit 12 $=$ A13 Bit 1 = A2 Bit 5 = A6 Bit 9 =A10 Bit 13 $=$ A14 Bit 2 =A3 Bit $6=$ A7 Bit 10 $=$ A11 Bit 14 $=$ A15 Bit 3 =A4 Bit 7 =A8 Bit 11 =A12 Bit 15 $=$ A16
4n253	Output 1 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
4n254	Output 2 Assignment	0	6	0	Read/Write	Same as Output 1 Assignment
4n255	Output 2 Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
4n256	Output 2 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
4n257	Output 2 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
4n258	Output 3 Assignment	0	6	0	Read/Write	Same as Output 1 Assignment
4n259	Output 3 Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, $2=$ OR
4n260	Output 3 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
4n261	Output 3 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
4n262	Output 4 Assignment	0	6	0	Read/Write	Same as Output 1 Assignment
4n263	Output 4 Alarm Logic Mode	0	2	0	Read/Write	0 = SINGLE, 1 = AND, 2 = OR
4n264	Output 4 Alarm Mask	0	65535	0	Read/Write	Same as Output 1 Alarm Mask
4n265	Output 4 Cycle Time	0	600	20	Read/Write	1 = 0.1 Second
PX2 USER INPUT / FUNCTION KEYS PARAMETERS				REFER TO PAX2 MANUAL FOR STARTING LOCATION OF FLEX CARD FUNCTIONS (NUMBER OF PAX2 FUNCTIONS + 1)		
**	User Input Action	0	FlexCard Dependent	0	Read/Write	$n+0=I L O C$ $n+3=P S L$ $n+6=r-H I$ $n+9=r-H L$ $n+1=$ TRNF $n+4=S P r P$ $n+7=d-L o$ $n+2=$ SPSL $n+5=d-H I$ $n+8=r-L o$ $n=$ Starting selection number for Flex Card Function List order = Px2, FC1, FC2, FC3 Number of PX2FCA00 User Functions = 10
**	User Key Action	0	FlexCard Dependent	0	Read/Write	$n+0=I L O C$ $n+3=P S L$ $n+6=r-L o$ $n+1=$ TRNF $n+4=S P r P$ $n+7=r-H L$ $n+2=S P S L$ $n+5=r-H I$ $n=$ Starting selection number for Flex Card Function List order $=$ Px2, FC1, FC2, FC3 Number of PX2FCA00 Key Functions $=6$

$\dagger-\mathrm{n}=1+$ FlexCard Address
** - See Modbus Table for PAX2 unit (FlexBus model) in which card is being installed

