Flow monitoring
Immersion sensor with integrated processor
FCS-G1/2A4-AP8X-H1141/L080

Type code	FCS-G1/2A4-AP8X-H1141/L080
Ident-No.	6870008
Ident-No (TUSA)	M6870008

Mounting	insertion style sensor
Water Operating Range	$1 \ldots .150 \mathrm{~cm} / \mathrm{s}$
Oil Operating Range	$3 \ldots .300 \mathrm{~cm} / \mathrm{s}$
Stand-by time	$\operatorname{typ} .8 \mathrm{~s}(2 \ldots .15 \mathrm{~s})$
Switch-on time	$\operatorname{typ} .2 \mathrm{~s}(1 \ldots .15 \mathrm{~s})$
Switch-off time	$\operatorname{typ} .2 \mathrm{~s}(1 \ldots .15 \mathrm{~s})$
Temperature jump, response time	max. 12 s
Temperature gradient	$\leq 250 \mathrm{~K} / \mathrm{min}$
Medium temperature	$-20 \ldots 80^{\circ} \mathrm{C}$

Operating voltage	$21 \ldots 26 \mathrm{VDC}$
Current consumption	$\geq 70 \mathrm{~mA}$
Output function	PNP, NO contact
Rated operational current	0.4 A
Voltage drop at I_{e}	$\leq 1.5 \mathrm{~V}$
Short-circuit protection	yes
Reverse polarity protection	yes

Housing material	stainless steel, V4A (1.4571)
Sensor material	stainless steel, AISI 316Ti
Max. tightening torque housing nut	30 Nm
Connection	male, M12 $\times 1$
Pressure resistance	100 bar
Process connection	$\mathrm{G} 1 / 2^{\prime \prime}$

Switching state	LED chain green / yellow / red
Flow state display	LED chain
Indication: Drop below setpoint	LED red
Indication: Setpoint reached	LED yellow
Indication: Setpoint exceeded	$4 \times$ LEDs green

- Flow sensor for liquid media
- Calorimetric principle
- Adjustment via potentiometer
- LED band
- Sensor length 80 mm
- 3-wire DC, 21... 26 VDC
- NO contact, PNP output
- Plug-in device, M12 x 1

Wiring diagram

Functional principle

Our insertion - flow sensors operate on the principle of thermodynamics. The measuring probe is heated by several ${ }^{\circ} \mathrm{C}$ as against the flow medium. When fluid moves along the probe, the heat generated in the probe is dissipated. The resulting temperature is measured and compared to the medium temperature. The flow status of every medium can be derived from the evaluated temperature difference. Thus TURCK's wear-free flow sensors reliably monitor the flow of gaseous and liquid media.

