Flow monitoring Immersion sensor with integrated processor FCS-M18-LIX

ſ

	ED Pot. 3	
Tuna aada		
Ident-No	FCS-INTO-LIX 6870707	
Ident-No. (TUSA)	M6870707	
	W0070707	
Mounting	insertion style sensor	
Air Operating Range	0.5…15 m/s	
Setting time	typ. 2 s (120 s)	
Temperature gradient	≤ 200 K/min	
Medium temperature	-2070 °C	
Operating voltage	21 26VDC	
Output function	analog output	
Short-circuit protection	yes	
Reverse polarity protection	yes	
Current output	420mA	
Load	\leq 500 Ω	
IP Rating	IP67	
Housing material	metal, CuZn	
Sensor material	brass, brass, nickel-plated	
Connection	cable	
Cable length	2 m	
Cable cross section	3 x 0.5 mm ²	
Pressure resistance	3 bar	
Process connection	M18 x 1	
Power on display	LED, green	

- Flow sensor for gaseous media
- Calorimetric principle
- Adjustment via potentiometer
- LED "power on" indication
- Chrome-plated brass sensor
- 3-wire DC, 21...26 VDC
- 4...20 mA analog output

Wiring diagram

Functional principle

Our insertion - flow sensors operate on the principle of thermodynamics. The measuring probe is heated by several °C as against the flow medium. When fluid moves along the probe, the heat generated in the probe is dissipated. The resulting temperature is measured and compared to the medium temperature. The flow status of every medium can be derived from the evaluated temperature difference. Thus TURCK's wear-free flow sensors reliably monitor the flow of gaseous and liquid media.

