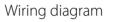
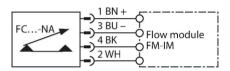



## FCS-N1/2A4-NA-H1141/L100 Flow Monitoring – Immersion Sensor without Integrated Processor





## Technical data

| ldent. no.                         | 6871016                       |
|------------------------------------|-------------------------------|
| Туре                               | FCS-N1/2A4-NA-H1141/L100      |
| Mounting                           | Immersion sensor              |
| Water Operating Range              | 1150 cm/s                     |
| Oil Operating Range                | 3300 cm/s                     |
| Stand-by time                      | typ. 8 s (215 s)              |
| Switch-on time                     | typ. 2 s (115 s)              |
| Switch-off time                    | typ. 2 s (115 s)              |
| Temperature jump, response time    | max. 12 s                     |
| Temperature gradient               | ≤ 250 K/min                   |
| Medium temperature                 | -20+80 °C                     |
| Protection class                   | IP67                          |
| Design                             | Immersion                     |
| Housing material                   | Stainless steel, V4A (1.4571) |
| Sensor material                    | Stainless steel, V4A (1.4571) |
| Max. tightening torque housing nut | 30 Nm                         |
| Electrical connection              | Connector, M12 × 1            |
| Process Pressure                   | 100 bar                       |
| Process connection                 | NPT 1⁄2"                      |
|                                    |                               |

## Features

- Sensor for liquid media
- Calorimetric functionality
- Adjustment via signal processor
- Status indicated via LED chain on signal processor
- Connector device, M12 × 1
- 4-wire connection to the processor





## Functional principle

Our insertion - flow sensors operate on the principle of thermodynamics. The measuring probe is heated by several °C as against the flow medium. When fluid moves along the probe, the heat generated in the probe is dissipated. The resulting temperature is measured and compared to the medium temperature. The flow status of every medium can be derived from the evaluated temperature difference. Thus TURCK's wear-free flow sensors reliably monitor the flow of gaseous and liquid media.