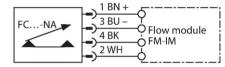


FCS-N1/2T-NA Flow Monitoring – Immersion Sensor without Integrated Processor


Technical data

ldent. no.	6871422
Туре	FCS-N1/2T-NA
Mounting	Immersion sensor
Water Operating Range	170 cm/s
Oil Operating Range	2100 cm/s
Stand-by time	typ. 60 s (40100 s)
Switch-on time	typ. 30 s (1050 s)
Switch-off time	typ. 30 s (1050 s)
Temperature jump, response time	typ. 100 s (50100 s)
Temperature gradient	≤ 1 K/min
Medium temperature	-10+70 °C
Protection class	IP68
Design	Immersion
Housing material	Plastic, PTFE
Sensor material	Plastic, PTFE
Max. tightening torque housing nut	5 Nm
Electrical connection	Cable
Cable length (L)	2 m
Cable Jacket Material	FEP
Core cross-section	4 x 0.25 mm²
Process Pressure	5 bar
Process connection	NPT ½"

Features

- Sensor for liquid media
- Calorimetric functionality
- Adjustment via signal processor
- Status indicated via LED chain on signal processor
- Sensor made of PTFE
- Cable device
- 4-wire connection to the processor

Wiring diagram

Functional principle

Our insertion - flow sensors operate on the principle of thermodynamics. The measuring probe is heated by several °C as against the flow medium. When fluid moves along the probe, the heat generated in the probe is dissipated. The resulting temperature is measured and compared to the medium temperature. The flow status of every medium can be derived from the evaluated temperature difference. Thus TURCK's wear-free flow sensors reliably monitor the flow of gaseous and liquid media.