B1N360V-Q20L60-2UP6X3-H1151 Inclinometer - With two Programmable Switching Points

Technical data

Type	B1N360V-Q2OL60-2UP6X3-H1151
Ident. no.	1534051
Measuring range	0... 360°
measuring range z -axis	0... 360°
Number of measuring axes	1
Mounting conditions	Vertical
Repeat accuracy	$\leq 0.2 \%$ of full scale
Absolute accuracy (at $25^{\circ} \mathrm{C}$)	$\pm 0.5{ }^{\circ}$
Temperature coefficient typical	0.03% K
Resolution	$\leq 0.14{ }^{\circ}$
Ambient temperature	$-30 \ldots+70{ }^{\circ} \mathrm{C}$
Operating voltage	10... 30 VDC
Residual ripple	$\leq 10 \% \mathrm{U}_{\text {ss }}$
Residual current	$\leq 0.1 \mathrm{~mA}$
Isolation test voltage	$\leq 0.5 \mathrm{kV}$
Output current	$\leq 500 \mathrm{~mA}$
Response delay	500 ms
Dropout delay	350 ms
Short-circuit protection	yes / Thermal
Wire breakage/Reverse polarity protection	yes / Complete
Output function	5-pin, NO/NC, $2 \times$ PNP
	Surge protection from + Ub to (Ub-40V)
Current consumption	35 mA

Features

- Rectangular, height 20 mm
- Plastic, PC
- Indication of operating voltage and switching state
- Two programmable switching outputs
\square Switchpoints selectable in a range between 0° and 360°
- DC 4-wire, 10... 30 VDC
- M12 x 1 male connector

Wiring diagram

Functional principle

Inclination is determined by a wear-free semiconducting sensor element.

Technical data

Design	Rectangular, Q20L60
Dimensions	$60 \times 30 \times 20 \mathrm{~mm}$
Housing material	Plastic, PC
Electrical connection	Connector, M12 $\times 1$
Vibration resistance	$55 \mathrm{~Hz}(1 \mathrm{~mm})$
Shock resistance	$30 \mathrm{~g} \mathrm{(11} \mathrm{ms)}$
Protection class	$\mathrm{IP68} / \mathrm{IP69K}$
MTTF	399 years acc. to SN 29500 (Ed. 99) $40^{\circ} \mathrm{C}$
Power-on indication	LED, Green
Switching state	$2 \times$ LEDs, Yellow

Mounting instructions

Mounting instructions/Description

The switchpoints are set with the TX1-Q20L60 teach adapter
By actuating the toggle switch T1 (OUT 1), a bridge is formed between GND and pin 5 .
By actuating the toggle switch T2 (OUT 2), a bridge is formed between UB and pin 5.
The switch-on and off points are freely selectable within 360° degrees.
You can teach-in the switching points either clockwise or counter-clockwise.

Before programming the wanted switch-on and off points, move the sensor in start position. For details on programming, please see next page. Should you wish to set the switch-off point yourself, the sensor must also be positioned at this point. The sensor must be installed in vertical position.

A further programming method has already a preset range of 180°. Here, only the switch-on point must be set.

Accessories

Protective housing for Q20L60 inclinometers for protecting against mechanical impact; material:
Stainless steel

Operating Instructions

Switchpoint adjustable as NO contact counter-clockwise or as NC contact clockwise

Press T1 (T2) for 5 s
Power LED flashes
Place the sensor in the wanted start position
Press T1 (T2) for 1 s to set the switch-on point
Power LED and Output 1 (2) LED flash
Place the sensor in the wanted end position
Press T1 (T2) for 3 s to set the switch-off point
Power LED and Output 1 (2) LED flash for 3 s then turn steady
Teach process completed, sensor ready for operation.

Switchpoint adjustable as NO contact clockwise or as NC contact counter-clockwise

Press T1 (T2) for 5 s
Power LED flashes
Place the sensor in the wanted start position
Press T1 (T2) for 3 s to set the switch-on point
Power LED and Output 1 (2) LED flash fast
Place the sensor in the wanted end position
Press T1 (T2) for 1 s to set the switch-off point
Power LED and Output 1 (2) LED flash for 3 s then turn steady
Teach process completed, sensor ready for operation.

Switchpoint adjustable as NO contact counter-clockwise or as NC contact clockwise (180° default setting)

Press T1 (T2) for 5 s
Power LED flashes
Place the sensor in the wanted start position
Press T1 (T2) for 1 s to set the switch-on point
Power LED and Output 1 (2) LED flash
Press T1 (T2) for 1 s to set the travel path 180° and the hysteresis 1°
Power LED and Output 1 (2) LED flash for 3 s then turn steady
Teach process completed, sensor ready for operation.

Switchpoint adjustable as NO contact clockwise or as NC contact counter-clockwise (180° default setting)

Press T1 (T2) for 5 s
Power LED flashes
Place the sensor in the wanted start position
Press T1 (T2) for 3 s to set the switch-on point
Power LED and Output 1 (2) LED flash fast
Press T1 (T2) for 3 s to set the overtravel path 180° and the hysteresis 1°
Power LED and Output 1 (2) LED flash for 3 s then turn steady
Teach process completed, sensor ready for operation.
T1 = Switching output 1; T2 = Switching output 2
Default settings:
Travel path 180°
Hysteresis 1°

Operating Instructions

Switchpoint adjustable as NO contact counter-clockwise or as NC contact clockwise
Press T1 (T2) for 5 s
Power LED flashes
Place the sensor in the wanted start position
Press T1 (T2) for 1 s to set the switch-on point
Power LED and Output 1 (2) LED flash
Place the sensor in the wanted end position
Press T1 (T2) for 3 s to set the switch-off point
Power LED and Output 1 (2) LED flash for 3 s then turn steady
Teach process completed, sensor ready for operation.
Switchpoint adjustable as NO contact clockwise or as NC contact counter-clockwise
Press T1 (T2) for 5 s
Power LED flashes
Place the sensor in the wanted start position
Press T1 (T2) for 3 s to set the switch-on point
Power LED and Output 1 (2) LED flash fast
Place the sensor in the wanted end position
Press T1 (T2) for 1 s to set the switch-off point
Power LED and Output 1 (2) LED flash for 3 s then turn steady
Teach process completed, sensor ready for operation.
Switchpoint adjustable as NO contact counter-clockwise or as NC contact clockwise (180° default setting)
Press T1 (T2) for 5 s
Power LED flashes
Place the sensor in the wanted start position
Press T1 (T2) for 1 s to set the switch-on point
Power LED and Output 1 (2) LED flash
Press T1 (T2) for 1 s to set the travel path 180° and the hysteresis 1°
Power LED and Output 1 (2) LED flash for 3 s then turn steady
Teach process completed, sensor ready for operation.
Switchpoint adjustable as NO contact clockwise or as NC contact counter-clockwise (180° default setting)
Press T1 (T2) for 5 s
Power LED flashes
Place the sensor in the wanted start position
Press T1 (T2) for 3 s to set the switch-on point
Power LED and Output 1 (2) LED flash fast
Press T1 (T2) for 3 s to set the overtravel path 180° and the hysteresis 1°
Power LED and Output 1 (2) LED flash for 3 s then turn steady
Teach process completed, sensor ready for operation.
T1 = Switching output 1; T2 = Switching output 2
Default settings:
Travel path 180°
Hysteresis 1°

