

8 Important Considerations when Utilizing Cooling Units

- The refrigeration capacity should exceed the dissipation loss from the installed components by approximately 10%.
- The enclosure should be sealed to prevent the inflow of ambient air.
- Use the door contact switch to impede operation with open doors and consequent excessive accumulation of condensation.
- Use cooling units with maximum clearance between air inflow and air outflow to prevent poor circulation.
- Make sure that the air inflow and air outflow in the external circuit is not hindered, preventing proper heat exchanging at the condenser.
- hen using top-mounted cooling units, make sure that components with their own fans do not expel the air directly into the cooling units cool air outflow.
- Make sure unit is level.
- Setting the temperature to the lowest setting is not the optimal solution due to the condensation issues. The value we have preset on the cooling unit is a sound compromise between cooling the inside of the enclosure and the accumulation of condensation.

How do Pfannenberg Cooling Units Operate?

Pfannenberg closed loop cooling units operate on the principle of the Carnot cycle. This means that the cooling unit functions as a heat pump that "pumps" the thermal energy transferred from the electronic cabinet (heat dissipated from the components) up to a higher level of temperature (the ambient temperature can reach levels as high as + 55 °C). The air inside the enclosure is cooled down by the evaporator and at the same time dehumidified.

How do you know if a cooling unit is the right product for your application?

- If the ambient temperature is greater than the target internal temperature of the enclosure, active cooling is required.
- If a NEMA Type 12 to 4x rating is required closed loop systems can maintain the NEMA Type rating of the cabinet

Logic, Inc. 800-676-8805 <u>logic-control.com</u>