ACH550

> Installation, Operation and Maintenance Manual (I, O \& M) ACH550-UH HVAC Drives (1... 550 HP)
> ACH550-BCR/BDR/VCR/VDR E-Clipse Bypass Drives (1... 400 HP) ACH550-PCR/PDR Packaged Drives with Disconnect (1.. 550 HP$)$

Safety

Use of warnings and notes

There are two types of safety instructions throughout this manual:

- Notes draw attention to a particular condition or fact, or give information on a subject.
- Warnings caution you about conditions which can result in serious injury or death and/or damage to the equipment. They also tell you how to avoid the danger. The warning symbols are used as follows:

\triangle
Electricity warning warns of hazards from electricity which can cause physical injury and/or damage to the equipment.

- WARNING! The ACH550 adjustable speed AC drive should ONLY be installed by a qualified electrician.
- WARNING! Even when the motor is stopped, dangerous voltage is present at the power circuit terminals U1, V1, W1 (L1, L2, L3) and U2, V2, W2 (T1, T2 T3) and, depending on the frame size, UDC+ and UDC-, or BRK+ and BRK-.
- WARNING! Dangerous voltage is present when input power is connected. After disconnecting the supply, wait at least 5 minutes (to let the intermediate circuit capacitors discharge) before removing the cover.
- WARNING! Even when power is switched off from the input terminals of the ACH550, there may be dangerous voltage (from external sources) on the terminals of the relay outputs.
- WARNING! When the control terminals of two or more drives are connected in parallel, the auxiliary voltage for these control connections must be taken from a single source which can either be one of the drives or an external supply.
- WARNING! Disconnect the internal EMC filter when installing the drive on an IT system (an ungrounded power system or a
high-resistance-grounded [over 30 ohm] power system).
- WARNING! Do not attempt to install or remove EM1, EM3, F1 or F2 screws while power is applied to the drive's input terminals.

General warning warns about conditions, other than those caused by electricity, which can result in physical injury and/or damage to the equipment.

- WARNING! Do not control the motor with the disconnecting device (disconnecting means); instead, use the control panel keys or commands via the I/O board of the drive. The maximum allowed number of charging cycles of the DC capacitors (i.e. power-ups by applying power) is five in ten minutes.
- WARNING! Never attempt to repair a malfunctioning ACH550; contact the factory or your local Authorized Service Center for repair or replacement.
- WARNING! The ACH550 will start up automatically after an input voltage interruption if the external run command is on.
- WARNING! The heat sink may reach a high temperature.

Note: For more technical information, contact the factory or your local ABB representative.

Contents

This manual is the Operation and Maintenance Manual for the ACH550 Drives. Complete technical details and programming information are available in the ACH550 User's Manual, publication number 3AUA0000081823.

1. To determine the type of your drive, refer to its construction code on either:

- Serial number label attached on upper part of the chokeplate between the mounting holes.
- Type code label attached on the heat sink - on the side of the enclosure.

Construction code
2. According to the construction code, proceed to your drive's installation, operation, diagnostics and maintenance information:

- UH - Below.
- VCR, VDR, BCR, BDR (E-Clipse Bypass) - page 43.
- PCR, PDR (Packaged Drives with Disconnect) - page 87.

ACH550-UH

Installation

Study these installation instructions carefully before proceeding. Failure to observe the warnings and instructions may cause a malfunction or personal hazard.

WARNING! Before you begin read Safety on page 2.

Note: Keep a minimum of 50 mm (2") of free space on each side and 200 mm (8") of free space above and below all units from non-heat producing sources. Double these distances from heat producing sources.

1. Prepare for installation

Lifting R1...R6
Lift the drive only by the metal chassis.
Lifting R7...R8
WARNING! Handle and ship floor mounted enclosures only in the upright position. These units are not designed to be laid on their backs.

1. Use a pallet truck to move the transport package/enclosure to the installation site.
2. Remove the cabinet side panels for access to the cabinet/pallet mounting bolts. (6 torx screws hold each cabinet side panel in place. Leave the side panels off until later.)
3. Remove the 4 bolts that secure the cabinet to the shipping pallet.

WARNING! Use the lifting lugs/bars at the top of the unit to lift R7/R8 drives.
4. Use a hoist to lift the drive. (Do not place drive in final position until mounting site is prepared.)

Unpack the drive

1. Unpack the drive.
2. Check for any damage and notify the shipper immediately if damaged components are found.
3. Check the contents against the order and the shipping label to verify that all parts have been received.
Tools required
To install the ACH550 you need the following:

- Screwdrivers (as appropriate for the mounting hardware used)
- Wire stripper
- Tape measure
- Drill
- Frame sizes R5...R8 with UL type 12 enclosure: Punch for conduit mounting holes
- Frame sizes R7/R8: pallet truck and hoist
- For installations involving frame size R6...R8: The appropriate crimping tool for power cable lugs.
- Mounting hardware: screws or nuts and bolts, four each. The type of hardware depends on the mounting surface and the frame size:

Frame Size	Mounting Hardware		Note
R1...R4	M5	$\# 10$	
R5	M6	$1 / 4$ in	
R6	M8	$5 / 16$ in	
R7...R8	M10	$7 / 16$	Secures free standing cabinets if required.

- For installations involving frame size R7...R8: Hoist.

WARNING! Before installing the ACH550, ensure the input power supply to the drive is off.

WARNING! Metal shavings or debris in the enclosure can damage electrical equipment and create a hazardous condition. Where parts, such as conduit plates require cutting or drilling, first remove the part. If that is not practical, cover nearby electrical components to protect them from all shavings or debris.

Flange Mounting Instructions

Frame size	IP21 I UL type 1		IP54 / UL type 12	
	Kit	Code (English)	Kit	Code (English)
R1	FMK-A-R1	100000982	FMK-B-R1	100000990
R2	FMK-A-R2	100000984	FMK-B-R2	100000992
R3	FMK-A-R3	100000986	FMK-B-R3	100000994
R4	FMK-A-R4	100000988	FMK-B-R4	100000996
R5	AC8-FLNGMT-R5	ACS800-PNTG01U-EN	-	-
R6	AC8-FLNGMT-R6		-	-

2. Prepare the mounting location

1. Mark the position of the mounting holes.

Note: Frame sizes R3 and R4 have four holes along the top. Use only two. If possible, use the two outside holes (to allow room to remove the fan for maintenance).

Note: ACH400 drives can be replaced using the original mounting holes. For R1 and R2 frame sizes, the mounting holes are identical. For R3 and R4 frame sizes, the inside mounting holes on the top of ACH550 drives match ACH400 mounts.

Note: Frame sizes R7 and R8 have mounting holes inside the enclosure base.
Where it is not possible to use either mounting hole at the back of the base, use an L-bracket at the top of the enclosure to secure the cabinet to a wall or to the back of another enclosure. Bolt the L-bracket to the enclosure using the lifting lug bolt hole on the top of the enclosure.
2. Drill holes of appropriate size in the mounting location.

3. Remove front cover

R1...R6, UL type 1

1. Remove the control panel, if attached.
2. Loosen the captive screw at the top.
3. Pull near the top to remove the cover.

R1...R6, UL type 12

1. If hood is present: Remove screws (2) holding the hood in place.
2. If hood is present: Slide hood up and off of the cover.
3. Loosen the captive screws around the edge of the cover.
4. Remove the cover.

R7...R8, Cabinet Door

1. To open the cabinet door, loosen the quarter-turn screws that hold the cabinet door closed.

R7...R8, Side Panels

The side panels were removed to take the cabinet off the pallet. Installation access is easier if these panels are kept off throughout the installation.

4. Mount the drive

R1...R6, UL type 1

1. Position the ACH550 onto the mounting screws or bolts and securely tighten in all four corners.

Note: Use mounting hardware that permits fan replacement without removal.

Note: Lift the ACH550 by its metal chassis.

2. Non-English speaking locations: Add a warning sticker in the appropriate language over the existing warning on the top of the module.

R1...R6, UL type 12
For the UL type 12 enclosures, rubber plugs are required in the holes provided for access to the drive mounting slots.

1. As required for access, remove the rubber plugs. Push plugs out from the back of the drive.
2. R5 \& R6: Align the sheet metal hood (not shown) in front of the drive's top mounting holes. (Attach as part of next step.)
3. Position the ACH550 onto the mounting screws or bolts and securely tighten in all four corners.

Note: Lift the ACH550 by its metal chassis (frame size R6 by the lifting holes on both sides at the top).

4. Re-install the rubber plugs.
5. Non-English speaking locations: Add a warning sticker in the appropriate language over the existing warning on the top of the module.
R7...R8

1. Use a hoist to move the cabinet into position.

Note: If the cabinet location does not provide access to the cabinet sides, be sure to re-mount side panels before positioning cabinet.
2. Install and tighten mounting bolts.

5. Install wiring

WARNING! Ensure the motor is compatible for use with the ACH550. The ACH550 must be installed by a competent person. If in doubt, contact your local ABB sales or service office.

Conduit kit

Wiring R1...R6 drives with the UL type 1 Enclosure requires a conduit kit with the following items:

- conduit box
- screws
- cover

The kit is included with UL type 1 Enclosures.

Connection diagrams

The following diagrams show:

- The terminal layout for frame size R3, which, in general, applies to frame sizes R1...R6, except for the R5/R6 power and ground terminals.
- The R5/R6 power and ground terminals.
- The terminal layout for R7/R8.

R1...R4 (Diagram shows the R3 frame.)

4
WARNING! To avoid danger, or damage to the drive, on IT systems and corner grounded TN systems, see section Disconnecting the internal EMC filter on page 10.

今
WARNING! To avoid danger, or damage to the drive, on IT systems and corner grounded TN systems, see section Disconnecting the internal EMC filter on page 10.

Disconnecting the internal EMC filter

On certain types of systems, you must disconnect the internal EMC filter, otherwise the system will be connected to ground potential through the EMC filter capacitors, which might cause danger, or damage the drive.

Note: When the internal EMC filter is disconnected, the drive is not EMC compatible.
The following table shows the installation rules for the EMC filter screws in order to connect or disconnect the filter, depending on the system type and the frame size. For more information on the different system types, see Floating networks on page 12 and Unsymmetrically grounded networks on page 11.
The locations of screws EM1 and EM3 are shown in the diagram on page 8. The locations of screws F1 and F2 are shown in the diagram on page 9.

Frame sizes	Screw	Symmetrically grounded TN systems (TN-S systems)	Corner grounded TN systems	IT systems (ungrounded or high-resistance- grounded [> 30 ohm])
	EM1	x	x	-
	EM3	x	\bullet	\bullet
$\mathbf{*} \mathbf{R} 4$	EM1	x	x	-
	EM3	x	\bullet	\bullet
R5...R6	F 1	x	x	-
	F 2	x	x	-

$x=$ Use the provided metal screw which may already be installed. (EMC filter(s) will be connected.)

- = Use the installed polyamide screw. (EMC output filter will be disconnected.)
- = Remove the installed metal screw. (EMC filter(s) will be disconnected.)

EM1 and EM3 screws are M4 $\times 12$
F1 and F2 screws are M4 $\times 16$

Ground connections

For personnel safety, proper operation and to reduce electromagnetic emission/pickup, the drive and the motor must be grounded at the installation site.

- Conductors must be adequately sized as required by safety regulations.
- Power cable shields must be connected to the drive PE terminal in order to meet safety regulations.
- Power cable shields are suitable for use as equipment grounding conductors only when the shield conductors are adequately sized as required by safety regulations.
- In multiple drive installations, do not connect drive terminals in series.

Unsymmetrically grounded networks

WARNING! Do not attempt to install or remove EM1 or EM3 screws while power is applied to the drive's input terminals.

Unsymmetrically grounded networks are defined in the following table. In such networks, the internal connection provided by the EM3 screw (on frame sizes R1...R4 only) must be disconnected by removing EM3. If the grounding configuration of the network is unknown, remove EM3.

Note: ACH550-UH drives are shipped with the screw removed (but included in the conduit box).

Unsymmetrically Grounded Networks - EM3 Must Be Out						
Grounded at the corner of the delta	Grounded at the mid point of a delta leg					
Single phase, grounded at an end point		Three phase "Variac" without solidly grounded neutral				

EM3 (an M4x16 screw) makes an internal ground connection that reduces electro-magnetic emission. Where EMC (electromagnetic compatibility) is a concern, and the network is symmetrically grounded, EM3 may be installed. For reference, the diagram at right illustrates a symmetrically grounded network.

Floating networks

WARNING! Do not attempt to install or remove EM1, EM3, F1 or F2 screws while power is applied to the drive's input terminals.

For floating networks (also known as IT, ungrounded, or impedance/resistance grounded networks):

- Disconnect the ground connection to the internal RFI filters:
- Frame sizes R1...R4: Remove the EM1 screw (unit is shipped with EM3 removed, see Connection diagrams on page 8).
- Frame sizes R5...R6: Remove both the F1 and F2 screws (see page 9).
- Where EMC requirements exist, check for excessive emission propagated to neighboring low voltage networks. In some cases, the natural suppression in transformers and cables is sufficient. If in doubt, use a supply transformer with static screening between the primary and secondary windings.
- Do NOT install an external RFI/EMC filter. Using an RFI filter grounds the input power through the filter capacitors, which could be dangerous and could damage the unit.

Checking motor and motor cable insulation

WARNING! Check the motor and motor cable insulation before connecting the drive to input power. For this test, make sure that motor cables are NOT connected to the drive.

1. Complete motor cable connections to the motor, but NOT to the drive output terminals (U2, V2, W2).
2. At the drive end of the motor cable, measure the insulation resistance between each motor cable phase and Protective Earth (PE): Apply a voltage of 1 kV DC and verify that resistance is greater than 1 Mohm.

R1...R6, wiring UL type 1 enclosure

1. Open the appropriate knockouts in the conduit box. (See Conduit kit on page 7.)
2. Install thin-wall conduit clamps (not supplied).
3. Install conduit box.
4. Connect conduit runs for input power, motor and control cables to the box.
5. Route input power and motor wiring through separate conduits.
6. Strip wires.
7. Connect power, motor, and ground wires to the drive terminals.

Note: For R5 frame size, the minimum power cable size is $25 \mathrm{~mm}^{2}$ (4 AWG). For R6 frame size, refer to Power terminal considerations - R6 Frame size on page 16.
8. Route the control cables through the conduit (not the same conduit as either input power or motor wiring).
9. Use available secure points and tie strap landings to permanently secure control wiring at a minimum distance of $6 \mathrm{~mm}(1 / 4$ ") from power wiring.
10. Strip the control cable sheathing and twist the copper screen into a pig-tail.
11. Connect the ground screen pig-tail for digital and analog I/O cables at X1-1. (Ground only at drive end.)
12. Connect the ground screen pig-tail for RS485 cables at X1-28 or X1-32. (Ground only at drive end.)

13. Strip and connect the individual control wires to the drive terminals.
14. Install the conduit box cover (1 screw).

R1...R6, wiring UL type 12 enclosure

1. Step depends on Frame Size:

- Frame Sizes R1...R4: Remove and discard the cable seals where conduit will be installed. (The cable seals are cone-shaped, rubber seals on the bottom of the drive.)
- Frame Sizes R4 and R5: Use punch to create holes for conduit connections as needed.

2. For each conduit run (input power, motor and control wiring must be separate), install liquid tight conduit connectors (not supplied).
3. Route the power wiring through conduit.
4. Route the motor wiring through conduit (not the same conduit as input power wiring run). Use a separate, metal conduit run for each motor.
5. Strip the wires.
6. Connect the power, motor, and ground wires to the drive terminals.

Note: For R5 frame size, the minimum power cable size is $25 \mathrm{~mm}^{2}$ (4 AWG). For R6 frame size, refer to Power terminal considerations - R6 Frame size on page 16.
7. Route the control cables through the conduit (not the same conduit as either input power or motor wiring runs).
8. Use available secure points and tie strap landings to permanently secure control wiring at a minimum distance of $6 \mathrm{~mm}(1 / 4$ ") from power wiring.
9. Strip the control cable sheathing and twist the copper screen into a pig-tail.
10. Connect the ground screen pig-tail for digital and analog I/O cables at X1-1. (Ground only at drive end.)
11. Connect the ground screen pig-tail for RS485 cables at X1-28 or X1-32. (Ground only at drive end.)
12. Strip and connect the individual control wires to the drive terminals.

13. Install the conduit box cover (1 screw).
$R 7 . . . R 8$, wiring (both enclosure types)
The figures show connections in the R7 cabinet, the R8 cabinet is similar.

1. Remove the conduit connection plate from the top of the left bay.
2. Route the input power, motor and control cables to the top of the cabinet. Each cable type (input power, motor, and control) must be in separate conduit. Use a separate, metal conduit run for each motor.
3. Use punch to create holes for conduit connections as needed.
4. UL type 12 Enclosure: For each conduit run (input power, motor and control wiring must be separate), install liquid tight conduit connectors (not supplied).

5. Connect input power and motor cables to the bus terminals.
6. Connect grounds to ground bar.
7. Use available secure points and tie strap landings to permanently secure control wiring at a minimum distance of 6 mm (1/4") from power wiring.
8. Strip the control cable sheathing and twist the copper screen into a pig-tail.
9. Connect the ground screen pig-tail for digital and analog I/O cables at X1-1. (Ground only at drive end.)
10. Connect the ground screen pig-tail for RS485 cables at X1-28 or X1-32. (Ground
 only at drive end.)
11. Strip and connect the individual control wires to the drive terminals.

Drive's power connection terminals
The following table provides specifications for the drive's power connection terminals.

Frame Size			$\begin{array}{r} \text { U1, } \\ \text { U2, } \\ \mathrm{K} \pm, \mathrm{UD} \end{array}$	$\begin{aligned} & \text { V1, W1 } \\ & \text { V2, W2 } \\ & \text { C } \pm \text { Terminals } \end{aligned}$				arthing PE	ermin	
	Min. W	Size	Max	Wire Size		que	Max	Wire Size		que
	mm^{2}	AWG	$m m^{2}$	AWG	Nm	lb -ft	mm^{2}	AWG	Nm	lb -ft
R1 ${ }^{\text {Note } 1}$	0.75	18	10	8	1.4	1	10	8	1.4	1
R2 ${ }^{\text {Note } 1}$	0.75	18	10	8	1.4	1	10	8	1.4	1
R3 ${ }^{\text {Note }} 1$	2.5	14	25	3	2.5	1.8	16	6	1.8	1.3
R4 ${ }^{\text {Note }} 1$	6	10	50	1/0	5.6	4	25	3	2	1.5
R5	6	10	70	2/0	15	11	70	2/0	15	11
R6	$95^{\text {Note } 2}$	3/0	185	350 MCM	40	30	Attach appropriate ring lugs to ground wires and mount with, up to five $13 / 32$ bolts.			
R7	16	6	185	350 MCM	40	30	Attach appropriate ring lugs to ground wires and mount with, up to five $13 / 32$ bolts.			
R8	16	6	2x240	2x500 MCM	57	42				

1) Do not use aluminum cable with frame sizes R1...R4.
2) See the following section for smaller wire sizes on frame size R6.

Power terminal considerations - R6 Frame size

WARNING! For R6 power terminals, if compression lugs are supplied, they can only be used for wire sizes that are $95 \mathrm{~mm}^{2}$ (3/0 AWG) or larger. Smaller wires will loosen and may damage the drive, and require ring lugs as described below.

On the R6 frame size, if the cable size used is less than $95 \mathrm{~mm}^{2}$ (3/0 AWG) or if no compression lugs are supplied, use ring lugs.

Drive's control connection terminals
The following table provides specifications for the drive's control terminals

Frame Size	Control			
	Maximum Wire Size		Torque	
	mm^{2}	AWG	Nm	$\mathrm{lb}-\mathrm{ft}$
All	1.5	16	0.4	0.3

Control terminal descriptions

The following full-page diagram provides a general description of the control terminals on the drive.

Note: Terminals 3, 6, and 9 are at the same potential.

Note: For safety reasons the fault relay signals a "fault" when the ACH550 is powered down.

		X1	Drive Control Terminal Description	
$\begin{aligned} & \text { O} \\ & \frac{0}{0} \\ & \frac{0}{\sigma} \\ & \frac{\bar{\sigma}}{4} \end{aligned}$	1	SCR	Terminal for signal cable screen. (Connected internally to chassis ground.)	
	2	AI1	Analog input channel 1, programmable. Default ${ }^{2}=$ external reference. Resolution 0.1%, accuracy $\pm 1 \%$.	
	3	AGND	Analog input circuit common (connected internally to chassis gnd. through $1 \mathrm{M} \Omega$).	
	4	+10 V	Potentiometer reference source: $10 \mathrm{~V} \pm 2 \%$, max. $10 \mathrm{~mA}(1 \mathrm{k} \Omega \leq \mathrm{R} \leq 10 \mathrm{k} \Omega$).	
	5	AI2	Analog input channel 2, programmable. Default ${ }^{2}=$ PID feedback. Resolution 0.1%, accuracy $\pm 1 \%$.	
	6	AGND	Analog input circuit common (connected internally to chassis gnd. through $1 \mathrm{M} \Omega$).	
	7	AO1	Analog output, programmable. Default ${ }^{2}=$ frequency. $0 . . .20 \mathrm{~mA}$ (load $<500 \Omega$). Accuracy $\pm 3 \%$ full scale.	
	8	AO2	Analog output, programmable. Default ${ }^{2}=$ current. $0 . . .20 \mathrm{~mA}$ (load $<500 \Omega$). Accuracy $\pm 3 \%$ full scale.	
	9	AGND	Analog output circuit common (connected internally to chassis gnd. through $1 \mathrm{M} \Omega$).	
Digital Inputs ${ }^{1}$	10	+24V	Auxiliary voltage output 24 VDC / 250 mA (reference to GND), short circuit protected.	
	11	GND	Auxiliary voltage output common (connected internally as floating).	
	12	DCOM	Digital input common. To activate a digital input, there must be $\geq+10 \mathrm{~V}$ (or $\leq-10 \mathrm{~V}$) between that input and DCOM. The 24 V may be provided by the ACH550 (X1-10) or by an external $12 \ldots 24 \mathrm{~V}$ source of either polarity.	
	13	DI1	Digital input 1, programmable. Default ${ }^{2}=$ start/stop.	
	14	DI2	Digital input 2, programmable. Default ${ }^{2}=$ not configured.	
	15	DI3	Digital input 3, programmable. Default ${ }^{2}=$ constant (preset) speed.	
	16	DI4	Digital input 4, programmable. Default ${ }^{2}=$ safety interlock.	
	17	DI5	Digital input 5, programmable. Default ${ }^{2}=$ not configured.	
	18	DI6	Digital input 6, programmable. Default ${ }^{2}=$ not configured.	
	19	RO1C		Relay output 1, programmable. Default ${ }^{2}=$ ReadyMaximum: $250 \mathrm{VAC} / 30 \mathrm{VDC}, 2 \mathrm{~A}$Minimum: $500 \mathrm{~mW}(12 \mathrm{~V}, 10 \mathrm{~mA})$
	20	RO1A		
	21	RO1B		
	22	RO2C	\square	Relay output 2, programmable. Default ${ }^{2}=$ Running Maximum: 250 VAC / 30 VDC, 2 A Minimum: 500 mW ($12 \mathrm{~V}, 10 \mathrm{~mA}$)
	23	RO2A		
	24	RO2B		
	25	RO3C		Relay output 3, programmable. Default ${ }^{2}=$ Fault (-1) Maximum: 250 VAC / 30 VDC, 2 A Minimum: $500 \mathrm{~mW}(12 \mathrm{~V}, 10 \mathrm{~mA})$
	26	RO3A		
	27	RO3B		

1) Digital input impedance $1.5 \mathrm{k} \Omega$. Maximum voltage for digital inputs is 30 V .
2) Default values depend on the macro used. Values specified are for the HVAC default macro.

You can wire the digital input terminals in either a PNP or NPN configuration.

${ }^{\text {X1 }}$	+24V
11	GND
12	DCOM
13	DI1
14	DI2
15	DI3
16	DI4
17	DI5
18	DI6

NPN connection (sink)

10	+24 V
11	GND
12	DCOM
13	DI 1
14	DI 2
15	DI 3
16	DI 4
17	DI 5
18	DI 6

Serial communications

Terminals 28... 32 provide RS485 serial communication connections used to control or monitor the drive from a fieldbus controller.

6. Check installation

Before applying power, perform the following checks.

\boldsymbol{V}	Check
	Installation environment conforms to the drive's specifications for ambient conditions.
	The drive is mounted securely.
	Space around the drive meets the drive's specifications for cooling.
	The motor and driven equipment are ready for start.
	For floating networks (R1...R6): The internal RFI filter is disconnected (screws EM1 \& EM3 or F1 \& F2).
	The drive is properly grounded.
	The input power voltage matches the drive nominal input voltage range.
	The input power connections at U1, V1, and W1 are connected and tightened as specified.
	The motor connections at U2, V2, and W2 are connected and tightened as specified.
	The input power, motor and control wiring are routed through separate conduit runs.
	NO power factor compensation capacitors are in the motor cable.
	The control connections are connected and tightened as specified.
	NO tools or foreign objects (such as drill shavings) are inside the drive.
	NO alternate power source for the motor (such as a bypass connection) is connected - no voltage is applied to the output of the drive.

7. Re-install cover

8. Apply power

Always re-install the covers before turning power on.

WARNING! The ACH550 will start up automatically at power up, if the external run command is on.

Apply input power. When power is applied to the ACH550, the green LED comes on.

WARNING! Even when the motor is stopped, dangerous voltage is present at the power circuit terminals U1, V1, W1 (L1, L2, L3) and U2, V2, W2 (T1, T2, T3) and, depending on the frame size, UDC+ and UDC-, or BRK+ and BRK-.

Note: Before increasing motor speed, check that the motor is running in the desired direction. To change rotation direction, switch motor leads as shown below. Power circuit terminal designation and location varies depending on the frame size and some terminals are not used (UDC+ and UDC-, or BRK+ and BRK-). Refer to pages 8 and 9 for specific terminal layouts

9. Before Start-up

The ACH550 has default parameter settings that are sufficient for many situations. However, review the following situations. Perform the associated procedures as appropriate.
Spin motor
When first installed and started the control panel displays a welcome screen with the following options.

- Press Exit to commission the drive as described in section Start-up by changing the parameters individually on page 26.
- Press Enter to move to the following options:
- Select "Commission Drive" to commission the drive as described in section Start-Up by Start-up by using the Start-Up Assistant on page 26.
- Select "Spin Motor" to operate the motor prior to commissioning. This option operates the motor without any commissioning, except entry of the motor data as described below. Spin Motor is useful, for example, to operate ventilation fans prior to commissioning.

Note: When using Spin Motor, the motor speed is limited to the range $1 / 3 \ldots 2 / 3$ of maximum speed. Also, no interlocks are activated. Finally, once the drive is commissioned, the welcome screen and this option no longer appear.

Motor data

The motor data on the ratings plate may differ from the defaults in the ACH550. The drive provides more precise control and better thermal protection if you enter the rating plate data.

1. Gather the following from the motor ratings plate:

- Voltage
- Nominal motor current
- Nominal frequency
- Nominal speed
- Nominal power

2. Edit parameters 9905... 9909 to the correct values.

- Assistant Control Panel: The Start-Up Assistant walks you through this data entry.
- Basic Control Panel: Refer to ACH550 User's Manual, for parameter editing instructions.

Fault and alarm adjustments

The ACH550 can detect a wide variety of potential system problems. For example, initial system operation may generate faults or alarms that indicate set-up problems.

1. Faults and alarms are reported on the control panel with a number. Note the number reported.
2. Review the description provided for the reported fault/alarm:

- Use the fault and alarm listings on pages 27 and 32 respectively, or
- Press the help key (Assistant Control Panel only) while fault or alarm is displayed.

3. Adjust the system or parameters as appropriate.

Input power connections

WARNING! Do not operate the drive outside the nominal input line voltage range. Over-voltage can result in permanent damage to the drive.

Input power specifications

Input Power Connection Specifications	
Voltage (U_{1})	208/220/230/240 VAC 3-phase (or 1-phase) -15\%...+10\% for ACH550-xx-xxxx-2 units. 400/415/440/460/480 VAC 3-phase $-15 \% \ldots+10 \%$ for ACH550-xx-xxxx-4 units. 500/525/575/600 VAC 3-phase -15\%...+10\% for ACH550-xx-xxxx-6 units.
Prospective shortcircuit current (IEC 629)	Maximum allowed prospective short-circuit current in the supply is 100 kA in a second providing that the drive's input power is protected with appropriate fuses. US: 100,000 AIC.
Frequency	48... 63 Hz
Imbalance	Max. $\pm 3 \%$ of nominal phase to phase input voltage
Fundamental power factor $(\boldsymbol{\operatorname { c o s }} \varphi)$	0.98 (at nominal load)
Minimum Cable Temperature Rating	$60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ for field wiring terminals for circuits of 100 A or less. $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ for field wiring terminals for circuits over 100 A .

Branch circuit protection

The ACH550 does not include a disconnect device. A means to disconnect input power must be installed between the AC power source and the ACH550. This branch circuit protection must:

- Be sized to conform to applicable safety regulations, including, but not limited to, both National and local electrical codes.
- Be locked in the open position during installation and maintenance work.

The disconnect device must not be used to control the motor. Instead use the control panel, or commands to the I/O terminals for motor control.

Fuses

The following tables provide fuse recommendations for short circuit protection on the drive's input power.

Fuses with higher current rating than the recommended current rating must not be used. Fuses of the same class with lower current rating may be used.
208... 240 volt, fuses

ACH550-UHsee below	Input Current A	Input Fuses		
		IEC269 gG (A)	UL Class T (A)	Bussmann Type
-04A6-2	4.6	10	10	JJS-10
-06A6-2	6.6			
-07A5-2	7.5			
-012A-2	11.8	16	15	JJS-15
-017A-2	16.7	25	25	JJS-25
-024A-2	24.2		30	JJS-30
-031A-2	30.8	40	40	JJS-40
-046A-2	46.2	63	60	JJS-60
-059A-2	59.4		80	JJS-80
-075A-2	74.8	80	100	JJS-100
-088A-2	88.0	100	110	JJS-110
-114A-2	114	125	150	JJS-150
-143A-2	143	200	200	JJS-200
-178A-2	178	250	250	JJS-250
-221A-2	221	315	300	JJS-300
-248A-2	248		350	JJS-350

380... 480 volt, fuses

ACH550-UHsee below	Input Current (A)	Input Fuses		
		IEC269 gG (A)	UL Class T (A)	Bussmann Type
-03A3-4	3.3	10	10	JJS-10
-04A1-4	4.1			
-06A9-4	6.9			
-08A8-4	8.8		15	JJS-15
-012A-4	11.9	16		
-015A-4	15.4		20	JJS-20
-023A-4	23	25	30	JJS-30
-031A-4	31	35	40	JJS-40
-038A-4	38	50	50	JJS-50
-044A-4	44		60	JJS-60
-045A-4	44			
-059A-4	59	63	80	JJS-80
-072A-4	72	80	90	JJS-90
-077A-4	77		100	JJS-100
-078A-4	77			
-096A-4	96	125	125	JJS-125
-097A-4	96			

ACH550-UHsee below	Input Current (A)	Input Fuses		
		IEC269 gG (A)	UL Class T (A)	Bussmann Type
-124A-4	124	160	175	JJS-175
-125A-4	124			
-157A-4	157	200	200	JJS-200
-180A-4	180	250	250	JJS-250
-246A-4	245	315	350	JJS-350
-245A-4	245	Does Not Apply	400	JJS-400
-316A-4	316		400	JJS-400
-368A-4	368		400	JJS-400
-414A-4	414		600	JJS-600
-486A-4	486		600	JJS-600
-526A-4	526		800	JJS-800
-602A-4	602		800	JJS-800
-645A-4	645		800	JJS-800

Fuses, 500... 600 volt, fuses

ACH550-xxsee below	Input Current A	Mains Fuses		
		IEC269 gG (A)	UL Class T (A)	Bussmann Type
-02A7-6	2.7	10	10	JJS-10
-03A9-6	3.9			
-06A1-6	6.1			
-09A0-6	9	16	15	JJS-15
-011A-6	11			
-017A-6	17	25	25	JJS-25
-022A-6	22			
-027A-6	27	35	40	JJS-40
-032A-6	32			
-041A-6	41	50	50	JJS-50
-052A-6	52	60	60	JJS-60
-062A-6	62	80	80	JJS-80
-077A-6	77		100	JJS-100
-099A-6	99	125	150	JJS-150
-125A-6	125	160	175	JJS-175
-144A-6	144	200	200	JJS-200

Emergency stop devices

The overall design of the installation must include emergency stop devices and any other safety equipment that may be needed. Pressing STOP on the drive's control panel does NOT:

- Generate an emergency stop of the motor.
- Separate the drive from dangerous potential.

Operation

The ACH550 HVAC control panel (ACH-CP-B) features:

X0201

General display features

Soft key functions

The soft key functions are defined by text displayed just above each key.
Display contrast
To adjust display contrast, simultaneously press $\sqrt{ }$ and \triangle or \square, as appropriate.

HVAC control panel modes

The HVAC control panel has several different modes for configuring, operating and diagnosing the drive. To reach the Standard Display Mode, press EXIT until the LCD display shows status information. Select MENU and use UP/DOWN buttons to select other modes. The modes are:

- Standard Display Mode - Shows drive status information and operates the drive.
- Parameters Mode - Edits parameter values individually.
- Start-up Assistant Mode - Guides the start-up and configuration.
- Changed Parameters Mode - Shows changed parameters.
- Fault Logger Mode - Shows the drive fault history.
- Drive Parameter Backup Mode - Stores or uploads the parameters.
- Clock Set Mode - Sets the time and date for the drive.
- I/O Settings Mode - Checks and edits the I/O settings.
- Alarm Mode - Reporting mode triggered by drive alarms.

Operating the drive

AUTO/HAND - The very first time the drive is powered up, it is in the auto control (AUTO) mode, and is controlled from the Control terminal block X1.
To switch to hand control (HAND) and control the drive using the control panel, press and hold the \qquad or
 button.

- Pressing the HAND button switches the drive to hand control while keeping the drive running.
- Pressing the OFF button switches to hand control and stops the drive.

To switch back to auto control (AUTO), press and hold the button.
Hand/Auto/Off - To start the drive press the HAND or AUTO buttons, to stop the drive press the OFF button.
Reference - To modify the reference (only possible if the display in the upper right corner is in reverse video) press the UP or DOWN buttons (the reference changes immediately).
The reference can be modified in the local control mode (HAND/OFF), and can be parameterized (using Group 11 reference select) to also allow modification in the remote control mode.

Note: The Start/Stop, Shaft direction and Reference functions are only valid in local control (HAND/OFF) mode.

Start-up by using the Start-Up Assistant

To start the Start-Up Assistant, follow these steps:

1	Select MENU to enter the main menu.		OFF C 0.0% 0.0 A 0.0 MA 0
2	Select ASSISTANTS with the Up/Down buttons and select ENTER.		OFF CMAIN MENU-_2 PARAMETERS ASSISTANTS CHANGED PAR EXIT
3	Scroll to COMMISSION DRIVE with the Up/Down buttons.	$\begin{aligned} & \Delta \\ & \nabla \end{aligned}$	
4	Change the values suggested by the assistant to your preferences and then press SAVE after every change.	5	

The Start-Up Assistant will guide you through the start-up.

Start-up by changing the parameters individually

To change the parameters, follow these steps:

1	Select MENU to enter the main menu.	5	OFF c 0.0% 0.0 A 0.0 MAz 0
2	Select the Parameters mode with the UP/ DOWN buttons and select ENTER to select the Parameters mode.		OFF CMAIN MENU-_-1 PARAMETERS ASSISTANTS CHANGED PAR EXIT OQ:00 ENTER
3	Select the appropriate parameter group with the UP/DOWN buttons and select SEL		
4	Select the appropriate parameter in a group with the UP/DOWN buttons. Select EDIT to change the parameter value.		OFF —PARAMETERS- 9991 LANGUAGE 9902 APFLIC MACRO HWMC DEFAULT 9904 MOTOR CTRL MODE 9905 MOTOR NOH VOLT EXIT
5	Press the UP/DOWN buttons to change the parameter value.	$\begin{aligned} & \Delta \\ & \nabla \end{aligned}$	OFF CPAR EDIT-9902 APPLIC MACROHVAC DEFAULT[1] CANCEL 00:00SAVE
6	Select SAVE to store the modified value or select CANCEL to leave the set mode. Any modifications not saved are cancelled.	5	
7	Select EXIT to return to the listing of parameter groups, and again to return to the main menu.		OFF CPARAMETERS- 9901 LANGMAGE 9902 APFLIL MACRO 9904 MOTOFPLY FTRL MNODE 9905 MOTOR NOH VOLT EXIT \quad EDIT

Complete the control connections by manually entering the parameters.
Note: The current parameter value appears below the highlighted parameter. To view the default parameter value, press the UP/DOWN buttons simultaneously. To restore the default factory settings, select the application macro HVAC Default.

Diagnostics

Fault listing

Fault Code	Fault Name In Panel	Description and Recommended Corrective Action
1	OVERCURRENT	Output current is excessive. Check for and correct: - Excessive motor load. - Insufficient acceleration time (parameters 2202 AcCeler time 1 and 2205 acceler time 2). - Faulty motor, motor cables or connections. - Output disconnect device not interlocked. - Interaction with external input filter.
2	DC OVERVOLT	Intermediate circuit DC voltage is excessive. Check for and correct: - Static or transient overvoltages in the input power supply. - Insufficient deceleration time (parameters 2203 deCELER tIME 1 and 2206 deceler time 2). - Verify that overvoltage controller is ON (using parameter 2005). - Interaction with external input filter.
3	DEV OVERTEMP	Drive heatsink is overheated. Temperature is at or above limit. R1...R4 \& R7/R8: $115^{\circ} \mathrm{C}\left(239^{\circ} \mathrm{F}\right)$ R5/R6: $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ Check for and correct: - Fan failure. - Obstructions in the air flow. - Dirt or dust coating on the heat sink. - Excessive ambient temperature. - Excessive motor load.
4	SHORT CIRC	Fault current. Check for and correct: - A short-circuit in the motor cable(s) or motor. - Supply disturbances.
5	Reserved	Not used.
6	DC UNDERVOLT	Intermediate circuit DC voltage is not sufficient. Check for and correct: - Missing phase in the input power supply. - Blown fuse. - Undervoltage on mains.
7	Al1 Loss	Analog input 1 loss. Analog input value is less than AI1fLT LIMIT (3021). Check for and correct: - Source and connection for analog input. - Parameter settings for AI1FLT LIMIT (3021) and 3001 AI<MIN FUNCTION.
8	A12 LOSS	Analog input 2 loss. Analog input value is less than AI2FLT LIMIT (3022). Check for and correct: - Source and connection for analog input. - Parameter settings for AI2FLT LIMIT (3022) and 3001 AI<MIN FUNCTION.
9	MOT TEMP	Motor is too hot, based on either the drive's estimate or on temperature feedback. - Check for overloaded motor. - Adjust the parameters used for the estimate (3005...3009). - Check the temperature sensors and Group 35 parameters.

Fault Code	Fault Name In Panel	Description and Recommended Corrective Action
10	PANEL LOSS	Panel communication is lost and either: - Drive is in local control mode (the control panel displays HAND or OFF), or - Drive is in remote control mode (AUTO) and is parameterized to accept start/stop, direction or reference from the control panel. To correct check: - Communication lines and connections - Parameter 3002 PANEL COMM ERROR. - Parameters in Group 10: START/STOP/DIR and Group 11: REFERENCE SELECT (if drive operation is AUTO).
11	ID RUN FAIL	The motor ID run was not completed successfully. Check for and correct: - Motor connections - Motor parameters 9905... 9909 do not match motor nameplate.
12	MOTOR STALL	Motor or process stall. Motor is operating in the stall region. Check for and correct: - Excessive load. - Insufficient motor power. - Parameters 3010... 3012.
14	EXTERNAL FLT 1	Digital input defined to report first external fault is active. See parameter 3003 EXTERNAL FAULT 1.
15	EXTERNAL FLT 2	Digital input defined to report second external fault is active. See parameter 3004 EXTERNAL FAULT 2.
16	EARTH FAULT	Possible ground fault detected in the motor or motor cables. The drive monitors for ground faults while the drive is running and while the drive is not running. Detection is more sensitive when the drive is not running and can produce false positives. Possible corrections: - Check for/correct faults in the input wiring. - Verify that motor cable does not exceed maximum specified length. - A delta grounded input power supply and motor cables with high capacitance may result in erroneous error reports during non-running tests. To disable response to fault monitoring when the drive is not running, use parameter 3023 wIRINg fault. To disable response to all ground fault monitoring, use parameter 3017 EARTH FAULT.
17	UNDERLOAD	Motor load is lower than expected. Check for and correct: - Disconnected load. - Group 37: USER LOAD CURVE.
18	THERM FAIL	Internal fault. The thermistor measuring the internal temperature of the drive is open or shorted. Contact your local ABB sales representative.
19	OPEX LINK	Internal fault. A communication-related problem has been detected on the fiber optic link between the OITF and OINT boards. Contact your local ABB sales representative.
20	OPEX PWR	Internal fault. Low voltage condition detected on OINT power supply. Contact your local ABB sales representative.
21	CURR MEAS	Internal fault. Current measurement is out of range. Contact your local ABB sales representative.

Fault Code	Fault Name In Panel	Description and Recommended Corrective Action
22	SUPPLY PHASE	Ripple voltage in the DC link is too high. Check for and correct: - Missing mains phase. - Blown fuse. - Interaction with external input filter. Set parameter 2619 to "ON".
23	ENCODER ERR	Not used (Available only with encoder and parameter Group 50).
23	ENCODER ERR	The drive is not detecting a valid encoder signal. Check for and correct: - Encoder presence and proper connection (reverse wired, loose connection, or short circuit).
- Voltage logic levels are outside of the specified range.		
- A working and properly connected Pulse Encoder Interface Module,		
OTAC-01.		

Fault Code	Fault Name In Panel	Description and Recommended Corrective Action
35	OUTPUT WIRING	Possible power wiring error detected. When the drive is not running it monitors for an improper connection between the drive input power and the drive output. Check for and correct: - Proper input wiring - line voltageis NOT connected to drive output. - The fault can be erroneously declared if the input power is a delta grounded system and motor cable capacitance is large. This fault can be disabled using parameter 3023 WIRING FAULT.
36	INCOMP SWTYPE	The drive cannot use the software. - Internal Fault. - The loaded software is not compatible with the drive. - Call support representative.
37	CB OVERTEMP	Drive control board is overheated. Check for and correct: - Excessive ambient temperatures - Fan failure. - Obstructions in the air flow.
38	USER LOAD CURVE	Condition defined by parameter 3701 USER LOAD C MODE has been valid longer than the time defined by 3703 USER LOAD C TIME.
101	SERF CORRUPT	Error internal to the drive. Contact your local ABB sales representative and report the error number.
102	RESERVED	
103	SERF MACRO	
104	RESERVED	
105	RESERVED	
201	DSP T1 OVERLOAD	Error in the system. Contact your local ABB sales representative and report the error number.
202	DSP T2 OVERLOAD	
203	DSP T3 OVERLOAD	
204	DSP STACK ERROR	
205	RESERVED (obsolete)	
206	OMIO ID ERROR	
207	EFB LOAD ERR	
1000	PAR HZRPM LIMITS	Parameter values are inconsistent. Check for any of the following: - 2001 minimum SPEED > 2002 mAXIMUM SPEED. - 2007 MINIMUM FREQ > 2008 MAXIMUM FREQ. - 2001 MINIMUM SPEED / 9908 MOTOR NOM SPEED is outside proper range (>50) - 2002 MAXIMUM SPEED / 9908 MOTOR NOM SPEED is outside proper range (>50) - 2007 MINIMUM FREQ / 9907 MOTOR NOM FREQ is outside proper range (>50) - 2008 MAXIMUM FREQ / 9907 MOTOR NOM FREQ is outside proper range (>50)
1001	PAR PFAREFNG	Parameter values are inconsistent. Check for the following: - 2007 MINIMUM FREQ is negative, when 8123 PFA ENABLE is active.

Fault Code	Fault Name In Panel	Description and Recommended Corrective Action
1002	RESERVED (Obsolete)	
1003	PAR AI SCALE	Parameter values are inconsistent. Check for any of the following: - 1301 AI 1 MIN >1302 Al 1 MAX. - 1304 AI 2 MIN >1305 AI 2 MAX.
1004	PAR AO SCALE	Parameter values are inconsistent. Check for any of the following: - 1504 AO 1 min > 1505 AO 1 mAX. - 1510 AO 2 MIN > 1511 AO 2 MAX.
1005	PAR PCU 2	Parameter values for power control are inconsistent: Improper motor nominal kVA or motor nominal power. Check for the following: - $1.1 \leq\left(9906\right.$ MOTOR NOM CURR * 9905 MOTOR NOM VOLT * $\left.1.73 / P_{N}\right) \leq 3.0$ - Where: $\mathrm{P}_{\mathrm{N}}=1000$ * 9909 MOTOR NOM POWER (if units are kW) or $\mathrm{P}_{\mathrm{N}}=746$ * 9909 MOTOR NOM POWER (if units are HP, e.g. in US)
1006	EXt ROMISSING	Parameter values are inconsistent. Check for the following: - Extension relay module not connected and - 1410... 1412 RELAY OUTPUTS $4 . . .6$ have non-zero values.
1007	PAR FBUSMISSING	Parameter values are inconsistent. Check for and correct: - A parameter is set for fieldbus control (e.g. 1001 EXT1 commands $=10$ (СОМм)), but 9802 COMM PROT SEL $=0$.
1008	PAR PFAWOSCALAR	Parameter values are inconsistent -9904 MOTOR CTRL MODE must be $=3$ (SCALAR: SPEED), when 8123 PFA ENABLE is activated.
1009	PAR PCU1	Parameter values for power control are inconsistent: Improper motor nominal frequency or speed. Check for both of the following: - $1 \leq(60$ * 9907 MOTOR NOM FREQ / 9908 MOTOR NOM SPEED ≤ 16 - $0.8 \leq 9908$ MOTOR NOM SPEED / (120 * 9907 MOTOR NOM FREQ / Motor Poles) ≤ 0.992
1010	PAR PFA OVERRIDE	Both the override mode and PFA are activated at the same time. These modes are mutually incompatible, because PFA interlocks cannot be observed in the override mode.
1011	PAR OVERRIDE PARS	Overeride is enabled, but parameters are incompatible. Verify that 1701 is not zero, and (depending on 9904 value) 1702 or 1703 is not zero.
1012	PAR PFA IO 1	IO configuration is not complete - not enough relays are parameterized to PFA. Or, a conflict exists between Group 14, parameter 8117, NR OF AUX MOT, and parameter 8118, AUTOCHNG INTERV.
1013	PAR PFA IO 2	IO configuration is not complete - the actual number of PFA motors (parameter 8127, мотоRs) does not match the PFA motors in Group 14 and parameter 8118 AUTOCHNG INTERV.
1014	PAR PFA IO 3	IO configuration is not complete - the drive is unable to allocate a digital input (interlock) for each PFA motor (parameters 8120 InTERLOCKS and 8127 MOTORS).

Fault history

For reference, the last three fault codes are stored into parameters 0401, 0412, 0413. For the most recent fault (identified by parameter 0401), the drive stores additional data (in parameters 0402...0411) to aid in troubleshooting a problem. For example, parameter 0404 stores the motor speed at the time of the fault.

To clear the fault history (all of the Group 04, Fault History parameters):

1. Using the control panel in Parameters mode, select parameter 0401.
2. Press EDIT.
3. Press UP and Down simultaneously.
4. Press SAVE.

Alarm listing

The following table lists the alarms by code number and describes each.

Alarm Code	Display	Description
2001	OVERCURRENT	Current limiting controller is active. Check for and correct: - Excessive motor load. - Insufficient acceleration time (parameters 2202 ACCELER TIME 1 and 2205 AcCeler time 2). - Faulty motor, motor cables or connections. - Output disconnect device not interlocked. - Interaction with external input filter.
2002	OVERVOLTAGE	Over voltage controller is active. Check for and correct: - Static or transient overvoltages in the input power supply. - Insufficient deceleration time (parameters 2203 deceler time 1 and 2206 deceler time 2). - Interaction with external input filter.
2003	UNDERVOLTAGE	Under voltage controller is active. Check for and correct: - Undervoltage on mains.
2004	DIR LOCK	The change in direction being attempted is not allowed. Either: - Do not attempt to change the direction of motor rotation, or - Change parameter 1003 DIRECTION to allow direction change (if reverse operation is safe).
2005	I/о сомm	Fieldbus communication has timed out. Check for and correct: - Fault setup (3018 comm fault func and 3019 comm fault time). - Communication settings (Group 51 or 53 as appropriate). - Poor connections and/or noise on line.
2006	Al1 Loss	Analog input 1 is lost, or value is less than the minimum setting. Check: - Input source and connections - Parameter that sets the minimum (3021) - Parameter that sets the Alarm/Fault operation (3001)
2007	A12 LOSS	Analog input 2 is lost, or value is less than the minimum setting. Check: - Input source and connections - Parameter that sets the minimum (3022) - Parameter that sets the Alarm/Fault operation (3001)

Alarm Code	Display	Description
2008	PANEL LOSS	Panel communication is lost and either: - Drive is in local control mode (the control panel displays HAND or OFF), or - Drive is in remote control mode (AUTO) and is parameterized to accept start/stop, direction or reference from the control panel. To correct check: - Communication lines and connections - Parameter 3002 panel loss. - Parameters in Groups 10 START/STOP/DIR and 11: REFERENCE SELECT (if drive operation is AUTO).
2009	DEVICE OVERTEMP	Drive heatsink is hot. This alarm warns that a DEVICE OVERTEMP fault may be near. R1...R4 \& R7/R8: $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ R5/R6: $110^{\circ} \mathrm{C}\left(230{ }^{\circ} \mathrm{F}\right)$ Check for and correct: - Fan failure. - Obstructions in the air flow. - Dirt or dust coating on the heat sink. - Excessive ambient temperature. - Excessive motor load.
2010	MOT OVERTEMP	Motor is hot, based on either the drive's estimate or on temperature feedback. This alarm warns that a Motor Underload fault trip may be near. Check: - Check for overloaded motor. - Adjust the parameters used for the estimate (3005...3009). - Check the temperature sensors and Group 35 parameters.
2011	UNDERLOAD	Motor load is lower than expected. This alarm warns that a Motor Underload fault trip may be near. Check: - Motor and drive ratings match (motor is NOT undersized for the drive) - Settings Group 37: USER LOAD CURVE
2012	MOTOR STALL	Motor is operating in the stall region. This alarm warns that a Motor Stall fault trip may be near.
$\begin{array}{\|l} \hline 2013 \\ \text { (note 1) } \end{array}$	AUTORESET	This alarm warns that the drive is about to perform an automatic fault reset, which may start the motor. - To control automatic reset, use parameter Group 31: AUTOMATIC RESET.
$\begin{aligned} & 2014 \\ & \text { (note 1) } \end{aligned}$	AUTOCHANGE	This alarm warns that the PFA autochange function is active. - To control PFA, use parameter Group 81: PFA CONTROL
2015	PFA INTERLOCK	This alarm warns that the PFA interlocks are active, which means that the drive cannot start the following: - Any motor (when Autochange is used), - The speed regulated motor (when Autochange is not used).
2016	Reserved	
$\begin{aligned} & 2017 \\ & \text { (note 1) } \end{aligned}$	OFF BUTTON	This alarm warns that parameter 1606 LOCAL LOCK is active and the drive is in the AUTO mode. When the OFF key is pressed, the drive remains in the AUTO mode but coasts to stop.

Alarm Code	Display	\quad Description
2018 (note 1)	PID SLEEP	This alarm warns that the PID sleep function is active, which means that the motor could accelerate when the PID sleep function ends. - To control PID sleep, use parameters 4022...4026 or 4122...4126.
2019	ID RUN	Performing ID run.

1) Note 1. Even when the relay output is configured to indicate alarm conditions (e.g. parameter 1401 RELAY OUTPUT $1=5$ (ALARM) or 16 (FLT/ALARM)), this alarm is not indicated by a relay output.

Maintenance

Warning! Read Safety on page 2 before performing any maintenance on the equipment. Ignoring the safety instructions can cause injury or death.

Maintenance intervals

If installed in an appropriate environment, the drive requires very little maintenance. This table lists the routine maintenance intervals recommended by ABB.

Maintenance	Application	Interval	Instruction
Check/replace R7/R8 enclosure inlet air filter	R7/R8 UL type 12 enclosures	Check every 3 months. Replace as needed.	Frame Sizes R7/R8 - UL type 12 enclosure inlet air filter on page 38
Check/replace R7/R8 enclosure exhaust air filter.	R7/R8 UL type 12 enclosures	Check every 6 months. Replace as needed.	Frame Sizes R7/R8 - UL type 12 enclosure exhaust filters on page 40
Check and clean heatsink.	All	Depends on the dustiness of the environment (every 6...12 months)	See Heatsink below.
Check cable connections are secure and tighten as specified.	All	Every year.	See Power \& Control Connections on page 16.
Replace enclosure fan.	UL type 12 enclosures	Every three years.	See Enclosure fan replacement - UL Type 12 enclosures on page 37.
Replace drive module fan.	All	Every six years.	See Drive module fan replacement on page 36.
Change capacitor.	Frame sizes R5, R6 and R8	Every ten years.	See Capacitors on page 41.
Replace battery in the Assistant control panel	All	Every ten years.	See Control panel on page 41.

Heatsink

The heatsink fins accumulate dust from the cooling air. Since a dusty heatsink is less efficient at cooling the drive, overtemperature faults become more likely. In a "normal" environment (not dusty, not clean) check the heatsink annually, in a dusty environment check more often.

Clean the heatsink as follows (when necessary):

1. Remove power from drive.
2. Remove the cooling fan (see section Drive module fan replacement on page 36).
3. Blow clean compressed air (not humid) from bottom to top and simultaneously use a vacuum cleaner at the air outlet to trap the dust.

Note: If there is a risk of the dust entering adjoining equipment, perform the cleaning in another room.
4. Replace the cooling fan.
5. Restore power.

Drive module fan replacement

The drive module fan cools the heatsink. Fan failure can be predicted by the increasing noise from fan bearings and the gradual rise in the heatsink temperature in spite of heatsink cleaning. If the drive is operated in a critical part of a process, fan replacement is recommended once these symptoms start appearing. Replacement fans are available from ABB. Do not use other than ABB specified spare parts.

To monitor the running time of the cooling fan, see Group 29: MAINTENANCE TRIG instructions.

Frame Sizes R1...R4

To replace the fan:

1. Remove power from drive.
2. Remove drive cover.
3. For Frame Size:

- R1, R2: Press together the retaining clips on the fan cover sides, and lift.
- R3, R4: Press in on the lever located on the left side of the fan mount, and rotate the fan up and out.

4. Disconnect the fan cable.
5. Install the fan in reverse order.

6. Restore power.

Frame Sizes R5 and R6
To replace the fan:

1. Remove power from drive.
2. Remove the screws attaching the fan.
3. Remove the fan:

- R5: Swing the fan out on its hinges.
- R6: Pull the fan out.

4. Disconnect the fan cable.
5. Install the fan in reverse order.
6. Restore power.

Frame Sizes R7 and R8

Refer to the installation instructions supplied with the fan kit.

Enclosure fan replacement - UL Type 12 enclosures

UL type 12 enclosures include an additional fan (or fans) to move air through the enclosure.

Frame Sizes R1 to R4

To replace the internal enclosure fan in frame sizes R1 to R4:

1. Remove power from drive.
2. Remove the front cover.
3. The housing that holds the fan in place has barbed retaining clips at each corner. Press all four clips toward the center to release the barbs.
4. When the clips/barbs are free, pull the housing up to remove from the drive.
5. Disconnect the fan cable.
6. Install the fan in reverse order, noting that:

- The fan air flow is up (refer to arrow on fan).

- The fan wire harness is toward the front.
- The notched housing barb is located in the right-rear corner.
- The fan cable connects just forward of the fan at the top of the drive.

Frame Sizes R5 and R6

To replace the internal enclosure fan in frame sizes R5 or R6:

- Remove power from drive.
- Remove the front cover.
- Lift the fan out and disconnect the cable.
- Install the fan in reverse order.
- Restore power.

Frame Sizes R7/R8 - UL type 12 enclosures
The enclosure fan is located in the exhaust box on top of the UL type 12 enclosure.

1. Remove the left and right filter frames of the exhaust fan box by lifting them upwards.

2. Disconnect the fan's electrical connector from the cabinet roof (top right inside the cabinet).

3. Undo the four fastening screws at the corners of the fan frame. The screws are through bolts with nuts on the inside of the cabinet. (Do not drop the hardware into the drive).

4. Remove the fan and fan frame as one unit.

5. Disconnect the fan wiring and capacitor from the fan frame. Then remove the four screws attaching the fan to the fan frame. Remove the old fan.

6. Install the new fan and capacitor with the replacement part for ABB in the reverse order of the above. Ensure the fan is centered on the velocity stack and rotates freely.

Enclosure air filter replacement - UL Type 12 enclosures

Frame Sizes R7/R8 - UL type 12 enclosure inlet air filter
The inlet air filter for the R7/R8 UL type 12 enclosure is located in the enclosure front door.

1. While holding the top of the filter frame, pull up on the bottom of the frame. The filter frame will slide up approximately $3 / 4$ inch and can then safely removed by tilting away from the cabinet and lifting up.
2. Lay the filter frame on a flat work surface. Remove the 3 retaining brackets by squeezing the tabbed corners in towards the middle of each bracket until the bracket clears the filter frame. Save these brackets for replacement. Remove and inspect the filter.

3. Install the replacement filter. Be sure to tuck the filter into the grove around the entire filter frame. This is very important for proper installation.

4. Reinstall the 3 filter restraining brackets. These will prevent the filter from being pulled out of the filter frame.

- Install the center bracket first.
- Install the 2nd bracket overlapping the center bracket by $1 / 2$ to the left.

- Install the 3nd bracket overlapping the center bracket by $1 / 2$ to the right.

5. Install the filter frame back to the cabinet door. Carefully align the mounting hooks to the slots in the cabinet door. The hooks should be pointing down. Press in at the center of the filter frame with your knee and gently press down with your hands at the top of the frame. The filter frame will slide down approximately $3 / 4$ inch and should be sealed securely to the door around the entire filter frame.

Frame Sizes R7/R8 - UL type 12 enclosure exhaust filters
The exhaust filters in the R7/R8 UL type 12 enclosure are located in the exhaust box at the top of the enclosure.
There are 2 filter frames attached to the exhaust box.

1. Remove power from drive.
2. Wait 5 minutes to ensure the fan has stopped.
3. Remove each filter frame:

- Lift up on the filter frame until it slides
 approximately $3 / 4$ inch.
- Pull away from the exhaust box to remove.

4. For each filter frame, remove the wire retainers that hold the filters in place:

- Lay the filter frames on a flat work surface.
- The wire retainers have a square "U" shape. Remove by squeezing the open end of the " U " towards the middle of the
 "square" until the retainer top (open end of "U") clears the filter frame.
- Save the retainers for reinstallation.

5. Remove and inspect the filter.
6. Install clean filters.

Note: When installing DUSTLOK® filter media, the white side must face to outside of the cabinet, and the orange side faces in.
Be sure to tuck the filter edges into the groove around the entire filter frame. This detail is very important for proper operation.
7. Reinstall the filter restrainers.

- Insert the base of a retainer (bottom of " U " shape) into a filter frame channel.
- Squeeze the open end of the " U " until it clears the filter frame.
- Seat the open end of the "U"
 in the filter frame channel.
- Release the retainer to its relaxed, square shape.

8. Install each filter frame to the bonnet on top of the cabinet.

- Carefully align the frame's mounting hooks with the slots in the bonnet. (The hooks should be pointing down.)
- Press down at the top of the filter frame. (The filter frame slides down approximately $3 / 4$ inch).

- Check all around the filter frame for a secure seal to the exhaust box.

Capacitors

The drive intermediate circuit employs several electrolytic capacitors. Their life span is from $35,000 \ldots 90,000$ hours depending on drive loading and ambient temperature. Capacitor life can be prolonged by lowering the ambient temperature.
It is not possible to predict a capacitor failure. Capacitor failure is usually followed by a input power fuse failure or a fault trip. Contact ABB if capacitor failure is suspected. Replacements for frame size R5, R6 and R8 are available from ABB. Do not use other than ABB specified spare parts.

Control panel

Cleaning

Use a soft damp cloth to clean the control panel. Avoid harsh cleaners which could scratch the display window.

Battery

A battery is only used in Assistant control panels that have the clock function available and enabled. The battery keeps the clock operating in memory during power interruptions.
The expected life for the battery is greater than ten years. To remove the battery, use a coin to rotate the battery holder on the back of the control panel. Replace the battery with type CR2032.

Note: The battery is NOT required for any control panel or drive function, except the clock.

ACH550 E-Clipse Bypass

Installation - drive

Follow the Installation instructions for the drive on page 3. Failure to observe the warnings and instructions may cause a malfunction or personal hazard.

WARNING! Before you begin read Safety on page 2.

Installation - bypass

WARNING! When the ACH550 with E-Clipse Bypass is connected to the line power, the Motor Terminals T1, T2, and T3 are live even if the motor is not running. Do not make any connections when the ACH550 with E-Clipse Bypass is connected to the line. Disconnect and lock out power to the drive before servicing the drive. Failure to disconnect power may cause serious injury or death.

1. Install wiring - bypass

WARNING!

- Do not connect or disconnect input or output power wiring, or control wires, when power is applied.
- Never connect line voltage to drive output Terminals T1, T2, and T3.
- Do not make any voltage tolerance tests (Hi Pot or Megger) on any part of the unit. Disconnect motor wires before taking any measurements in the motor or motor wires.
- Make sure that power factor correction capacitors are not connected between the drive and the motor.

Enclosure Designation	Horsepower Range by Voltage Rating		
	$\mathbf{2 0 8 / 2 4 0 V}$	$\mathbf{4 8 0 V}$	$\mathbf{6 0 0 V}^{\mathbf{1}}$
V1/V2	1 to 7.5 HP	1 to 15 HP	2 to 15 HP
V3/V4	10 to 25 HP	20 to 60 HP	20 to 60 HP
B1	1 to 7.5 HP	1 to 15 HP	2 to 15 HP
B2	10 to 25 HP	20 to 60 HP	20 to 60 HP
B3	30 to 100 HP	75 to 200 HP	75 to 150 HP
B4	N / A	250 to 550 HP	N / A

1) Wye-connected networks

Connection diagrams - Vertical E-Clipse Bypass

ACH550 Vertical E-Clipse Bypass units are configured for wiring access from the bottom only. The following figure shows the Vertical E-Clipse Bypass wiring connection points.

Connection diagrams - Standard E-Clipse Bypass (wall mounted)
ACH550 Standard E-Clipse Bypass units are configured for wiring access from the top. The following figure shows the Standard E-Clipse Bypass (wall mounted) wiring connection points.

Connection diagrams - Standard E-Clipse Bypass (R8, floor mounted)
ACH550 Standard E-Clipse Bypass units are configured for wiring access from the top. The following figure shows the Standard E-Clipse Bypass (floor mounted) wiring connection points.

B4

Power connections - Vertical E-Clipse Bypass configurations

Line input connections

Connect the input power to the terminals at the bottom of the disconnect switch or circuit breaker as shown below. Also see Connection diagrams - Vertical E-Clipse Bypass on page 44. Connect the equipment grounding conductor to the ground lug near the input power connection point.
Motor connections
Connect the motor cables to the terminals at the bottom of the bypass section as shown in the figure. Also see Connection diagrams - Vertical E-Clipse Bypass on page 47. Connect the motor grounding
 conductor to the ground lug near the motor cable terminal block connection point.

Power connections - Standard E-Clipse Bypass configurations (wall mounted)

Line input connections
Connect input power to the terminals of the disconnect switch or circuit breaker. Connect the equipment grounding conductor to the ground lug at the top of the enclosure. The figure below shows the connection points for Standard E-Clipse Bypass configurations. Also see Connection diagrams - Standard E-Clipse Bypass (wall mounted) on page 45 and Connection diagrams - Standard E-Clipse Bypass (R8, floor mounted) on page 47.

Motor connections

Connect the motor cables to the output terminal block as shown in the figure below. Also see Connection diagrams - Standard E-Clipse Bypass (wall mounted) on page 45 and Connection diagrams - Standard E-Clipse Bypass (R8, floor mounted) on page 47. The motor grounding conductor can be connected to the ground lug near the terminal block.

Note: Route cables through the cable guides on the left side of the enclosure. Use separate conduits for input power and motor cables. Follow the guides to separate the cables from each other.

Note: UL Type 3R, B1/B2 enclosures are designed to be mounted on a wall. Mounting these $3 R$ enclosures on an open rack system requires the use of the supplied 3R enclosure back plates to maintain 3R integrity.

WARNING! Check the motor and motor wiring insulation before connecting the ACH550 to line power. Follow the procedure on page 12. Before proceeding with the insulation resistance measurements, check that the ACH550 is disconnected from incoming line power. Failure to disconnect line power could result in death or serious injury.

Install the control wiring
Connect control wiring to terminal block X1 on the ACH550 control board and to terminal block X2 on the E-Clipse Bypass control board. For more information on these connections, refer to the following:

- X1 terminal block location and terminal data are defined in the ACH550-UH User's Manual.
- X2 terminal block location is illustrated in the figures starting with Connection diagrams - Vertical E-Clipse Bypass on page 44.
- X2 terminal data are provided in Basic control connections for E-Clipse HVAC Default on page 62.
- Basic connections are described in the following paragraphs. Alternate configurations using the E-Clipse Bypass macro are described in the ACH550 User's Manual.
- On Terminal Block X1 inside the ACH550, analog inputs and outputs and additional digital input and relay output connections (AI1, Al2, AO1, AO2, DI1...DI6 and RO1...RO6) are available for use.

Note: The E-Clipse Bypass control circuitry uses serial communications connections (X1:28...X1:32) inside the ACH550. These connections are not available for any other purpose and must not be reconfigured.

Basic connections

The figure on page 62 shows the basic control connections for use with the EClipse Bypass HVAC Default macro. These connections are described in the following paragraphs.

In typical installations, only analog input wires connect to the ACH550 terminal block, with other control connections made on the E-Clipse Bypass control board.
Use wire ties to permanently affix control/ communications wiring to the hooked wire race tie points provided, maintaining a minimum $6 \mathrm{~mm}(1 / 4 ")$ spacing from power wiring.

Drive's power connection terminals
The following tables list power and motor cable terminal sizes for connections to an input circuit breaker or disconnect switch, a motor terminal block and ground lugs. The tables also list torque that should be applied when tightening the terminals.

Vertical enclosure terminals

HP	Type Code ${ }^{1}$	Frame Size	Maximum Power Wiring Data			
			Circuit Breaker	Disconnect Switch	Motor Termination	Ground Lugs
208... 240 Volt						
1	ACH550-VxR-04A6-2	R1	\#10 62 in-lbs	$\begin{gathered} \# 10 \\ 55 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 6 \\ 11-13 \text { in-lbs } \end{gathered}$	$\begin{gathered} \text { \#4 } \\ 35 \text { in-lbs } \end{gathered}$
1.5	ACH550-VxR-06A6-2	R1				
2	ACH550-VxR-07A5-2	R1				
3	ACH550-VxR-012A-2	R1				
5	ACH550-VxR-017A-2	R1	\#8 62 in-lbs	\#6 55 in-lbs		
7.5	ACH550-VxR-024A-2	R2				
10	ACH550-VxR-031A-2	R2		\#4 55 in-lbs	\#1 35 in-lbs	\#2 50 in-lbs
15	ACH550-VxR-046A-2	R3	\#2 62 in-Ibs	\#2 55 in-lbs	$\begin{gathered} \# 2 / 0 \\ 110 \mathrm{in}-\mathrm{lbs} \end{gathered}$	
20	ACH550-VxR-059A-2	R3		\#1 55 in-Ibs		
25	ACH550-VxR-075A-2	R4		$\begin{gathered} \# 1 / 0 \\ 75 \mathrm{in}-\mathrm{lbs} \end{gathered}$		
480 Volt						
1	ACH550-VxR-03A3-4	R1	\#12 62 in-lbs	\#10 55 in-lbs	$\begin{gathered} \# 6 \\ 11-13 \text { in-lbs } \end{gathered}$	\#4 35 in-lbs
1.5	ACH550-VxR-03A3-4	R1				
2	ACH550-VxR-04A1-4	R1				
3	ACH550-VxR-06A9-4	R1				
5	ACH550-VxR-08A8-4	R1				
7.5	ACH550-VxR-012A-4	R1				
10	ACH550-VxR-015A-4	R2	\#10 62 in-lbs	\#8 55 in-lbs		
15	ACH550-VxR-023A-4	R2		\#6 55 in-Ibs		
20	ACH550-VxR-031A-4	R3	$\begin{gathered} \text { \#8 } \\ 62 \text { in-lbs } \end{gathered}$	\#4 55 in-lbs	$\begin{gathered} \# 1 \\ 35 \text { in-lbs } \end{gathered}$	\#2 50 in-lbs
25	ACH550-VxR-038A-4	R3		\#3 55 in-lbs		
30	ACH550-VxR-045A-4	R3				
40	ACH550-VxR-059A-4	R4	\#2 62 in-lbs	\#2 55 in-lbs	$\begin{gathered} \# 2 / 0 \\ 110 \mathrm{in}-\mathrm{lbs} \end{gathered}$	
50	ACH550-VxR-072A-4	R4		\#1 55 in-lbs		
60	ACH550-VxR-078A-4	R4		$\begin{gathered} \# 1 / 0 \\ 75 \text { in-lbs } \end{gathered}$		

HP	Type Code ${ }^{1}$	Frame Size	Maximum Power Wiring Data			
			Circuit Breaker	Disconnect Switch	Motor Termination	Ground Lugs
600 Volt 2						
2	ACH550-VxR-02A7-6	R2	$\begin{gathered} \# 10 \\ 62 \text { in-lbs } \end{gathered}$	\#10 55 in-lbs	$\begin{gathered} \# 6 \\ 11-13 \text { in-lbs } \end{gathered}$	$\begin{gathered} \text { \#4 } \\ 35 \text { in-lbs } \end{gathered}$
3	ACH550-VxR-03A9-6	R2				
5	ACH550-VxR-06A1-6	R2				
7.5	ACH550-VxR-09A0-6	R2				
10	ACH550-VxR-011A-6	R2				
15	ACH550-VxR-017A-6	R2		\#6 55 in-lbs		
20	ACH550-VxR-022A-6	R3			\#1 35 in-lbs	\#2 50 in-lbs
25	ACH550-VxR-027A-6	R3		\#4 55 in-lbs		
30	ACH550-VxR-032A-6	R4	$\begin{gathered} \# 6 \\ 62 \text { in-lbs } \end{gathered}$			
40	ACH550-VxR-041A-6	R4		\#3 55 in-lbs		
50	ACH550-VxR-052A-63	R4	\#2 62 in-lbs	\#2 55 in-lbs	\#2/0	
60	ACH550-VxR-062A-6	R4	\#1 62 in-lbs	\#1 62 in-lbs	110 in-lbs	

1) "VxR" represents both VCR and VDR.
2) VCR is rated $600 \mathrm{Y} / 347 \mathrm{~V}$ unless otherwise specified. For use on a solidly grounded Wye source only.
3) VCR supports Delta network configuration.

Standard enclosure terminals

			Maximum Power Wiring Data							
HP	Type Code ${ }^{1}$	$\begin{aligned} & \text { Base } \\ & \text { Drive } \\ & \text { Frame } \\ & \text { Size } \end{aligned}$	Circuit Breaker UL Typel NEMA 1 \& 12	Circuit Breaker UL Typel NEMA 3R	Disconnect Switch UL Typel NEMA 1 \& 12	Disconnect Switch UL Typel 3R	Motor Terminals UL Typel NEMA $1 \& 2$		Ground Lugs UL Type/ NEMA 1 \& 2	$\begin{aligned} & \text { Ground } \\ & \text { Lugs } \\ & \text { UL Typel } \\ & \text { NEMAA } \\ & \text { 3R } \end{aligned}$
208... 240 Volt										
1	ACH550-BxR-04A6-2	R1	$\begin{gathered} \# 12 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 12 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 10 \\ 55 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 10 \\ 55 \text { in-lbs } \end{gathered}$	$\begin{gathered} \text { \#6 } \\ \text { 11-13 } \\ \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 6 \\ 11-13 \\ \text { in-lbs } \end{gathered}$	$\begin{gathered} \text { \#4 } \\ 35 \text { in-lbs } \end{gathered}$	$\begin{gathered} \text { \#4 } \\ 35 \text { in-lbs } \end{gathered}$
1.5	ACH550-BxR-06A6-2	R1								
2	ACH550-BxR-07A5-2	R1								
3	ACH550-BxR-012A-2	R1								
5	ACH550-BxR-017A-2	R1		\#8 62 in-lbs	\#6 55 in-lbs	\#6 55 in-lbs				
7.5	ACH550-BxR-024A-2	R2								
10	ACH550-BxR-031A-2	R2	$\begin{gathered} \# 6 \\ 62 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 6 \\ 62 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 4 \\ 55 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 4 \\ 55 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 1 \\ 35 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 1 \\ 35 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 2 \\ 50 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 2 \\ 50 \text { in-lbs } \end{gathered}$
15	ACH550-BxR-046A-2	R3	$\begin{gathered} \# 2 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 2 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 2 \\ 55 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 2 \\ 55 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 2 / 0 \\ 110 \mathrm{in}-\mathrm{lbs} \end{gathered}$			
20	ACH550-BxR-059A-2	R3			$\begin{gathered} \# 1 \\ 55 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 1 \\ 55 \mathrm{in}-\mathrm{lbs} \end{gathered}$		$\begin{gathered} \# 2 / 0 \\ 110 \mathrm{in}-\mathrm{lbs} \end{gathered}$		
25	ACH550-BxR-075A-2	R4			$\begin{gathered} \# 1 / 0 \\ 75 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 1 / 0 \\ 75 \mathrm{in}-\mathrm{lbs} \end{gathered}$				
30	ACH550-BxR-088A-2	R4	$\begin{aligned} & \# 1 / 0 \\ & 124 \\ & \text { in-lbs } \end{aligned}$	$\begin{aligned} & \# 1 / 0 \\ & 124 \\ & \text { in-lbs } \end{aligned}$	$\begin{gathered} \# 2 / 0 \\ 275 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 2 / 0 \\ 275 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 20 / 0 \\ 71 \mathrm{in-lbs} \end{gathered}$	$\begin{gathered} \# 2 / 0 \\ 71 \text { in-lbs } \end{gathered}$	$\begin{gathered} 2 \times \# 3 / 0 \\ 250 \mathrm{in}-\mathrm{lbs} \end{gathered}$	
40	ACH550-BxR-114A-2	R4			$\begin{gathered} \# 4 / 0 \\ 275 \text { in-lbs } \end{gathered}$	\#4/0 275 in-lbs	300 MCM 301 in-lbs	300 MCM 301 in-Ibs		
50	ACH550-BxR-143A-2	R6	$\begin{aligned} & \# 3 / 0 \\ & 124 \\ & \text { in-lbs } \end{aligned}$	$\begin{gathered} \# 3 / 0 \\ 124 \\ \text { in-lbs } \end{gathered}$	300 MCM 275 in-lbs	300 MCM 275 in-lbs	$\begin{aligned} & 500 \mathrm{MCM} \\ & 372 \text { in-lbs } \end{aligned}$	500 MCM 372 in-lbs		$\begin{gathered} \# 2 / 0 \\ 375 \text { in-lbs } \end{gathered}$
60	ACH550-BxR-178A-2	R6			250 MCM 275 in-lbs	250 MCM 275 in-lbs				
75	ACH550-BxR-221A-2	R6	$\begin{gathered} 373 \text { MCM } \\ 274 \\ \text { in-lbs } \end{gathered}$	$\begin{aligned} & 373 \text { MCM } \\ & 274 \\ & \text { in-lbs } \end{aligned}$	$\begin{gathered} 2 \times 500 \\ \text { MCM } \\ 274 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} 2 \times 500 \\ \text { MCM } \end{gathered}$ 274 in-lbs	$\begin{array}{\|c\|} \hline 2 \times 500 \\ \text { MCM } \\ 375 \mathrm{in}-\mathrm{lbs} \end{array}$	$\begin{gathered} 2 \times 500 \\ \text { MCM } \\ 372 \mathrm{in}-\mathrm{lbs} \end{gathered}$		350 MCM $100 \mathrm{in}-\mathrm{lbs}$
100	ACH550-BxR-248A-2	R6								

			Maximum Power Wiring Data							
HP	Type Code ${ }^{1}$	$\begin{gathered} \text { Base } \\ \text { Drive } \\ \text { Frame } \\ \text { Size } \end{gathered}$	Circuit Breaker UL Typel NEMA $1 \& 12$	Circuit Breaker UL Typel NEMA 3R	Disconnec Switch UL Typel NEMA 1 \& 12	Disconnect Switch UL Typel NEMA 3R	Motor Terminals UL Typel NEMA 1 \& 2		Ground Lugs UL Typel NEMA 1 \& 2	$\begin{gathered} \text { Ground } \\ \text { Lugs } \\ \text { UL Typel } \\ \text { NEMA } \\ \text { 3R } \end{gathered}$
480 Volt										
1	ACH550-BxR-03A3-4	R1	\#12 62 in-lbs	$\begin{gathered} \# 12 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 10 \\ 55 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 10 \\ 55 \text { in-lbs } \end{gathered}$	$\begin{gathered} \text { \#6 } \\ 11-13 \\ \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 6 \\ 11-13 \\ \text { in-lbs } \end{gathered}$	$\begin{gathered} \text { \#4 } \\ 35 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 4 \\ 35 \text { in-lbs } \end{gathered}$
1.5	ACH550-BxR-03A3-4	R1								
2	ACH550-BxR-04A1-4	R1								
3	ACH550-BxR-06A9-4	R1								
5	ACH550-BxR-08A8-4	R1								
7.5	ACH550-BxR-012A-4	R1								
10	ACH550-BxR-015A-4	R2	$\begin{gathered} \text { \#10 } \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 10 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 8 \\ 55 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 8 \\ 55 \mathrm{in-lbs} \end{gathered}$				
15	ACH550-BxR-023A-4	R2			$\begin{gathered} \# 6 \\ 55 \mathrm{in-lbs} \end{gathered}$	$\begin{gathered} \# 6 \\ 55 \mathrm{in-lbs} \end{gathered}$				
20	ACH550-BxR-031A-4	R3	$\begin{gathered} \text { \#8 } \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \text { \#8 } \\ 62 \mathrm{in-lbs} \end{gathered}$	$\begin{gathered} \# 4 \\ 55 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 4 \\ 55 \text { in-lbs } \end{gathered}$	$\stackrel{\text { \#1 }}{35 \mathrm{in}-\mathrm{lbs}}$	$\begin{gathered} \# 1 \\ 35 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 2 \\ 50 \mathrm{in-lbs} \end{gathered}$	$\begin{gathered} \text { \#2 } \\ 50 \text { in-lbs } \end{gathered}$
25	ACH550-BxR-038A-4	R3			\#3	\#3				
30	ACH550-BxR-045A-4	R3			55 in-lbs	55 in-lbs				
40	ACH550-BxR-059A-4	R4	$\begin{gathered} \# 2 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 2 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 2 \\ 55 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 2 \\ 55 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 2 / 0 \\ 110 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 2 / 0 \\ 110 \mathrm{in}-\mathrm{lbs} \end{gathered}$		
50	ACH550-BxR-072A-4	R4			$\begin{gathered} \# 1 \\ 55 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 1 \\ 55 \text { in-lbs } \end{gathered}$				
60	ACH550-BxR-078A-4	R4			$\begin{gathered} \# 1 / 0 \\ 75 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 1 / 0 \\ 75 \mathrm{in}-\mathrm{lbs} \end{gathered}$				
75	ACH550-BxR-097A-4	R4	$\begin{gathered} \# 1 / 0 \\ 124 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 1 / 0 \\ 124 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 3 / 0 \\ 275 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 3 / 0 \\ 275 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 2 / 0 \\ 71 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 2 / 0 \\ 71 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} 2 \times \# 3 / 0 \\ 250 \text { in-lbs } \end{gathered}$	
100	ACH550-BxR-125A-4	R5	$\begin{gathered} \# 2 / 0 \\ 124 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 2 / 0 \\ 124 \text { in-lbs } \end{gathered}$	$\begin{aligned} & 250 \mathrm{MCM} \\ & 275 \mathrm{in}-\mathrm{lbs} \end{aligned}$	$\begin{aligned} & 250 \text { MCM } \\ & 275 \text { in-lbs } \end{aligned}$	$\begin{aligned} & 300 \mathrm{MCM} \\ & 301 \mathrm{in}-\mathrm{lbs} \end{aligned}$	$\begin{aligned} & 300 \mathrm{MCM} \\ & 301 \mathrm{in}-\mathrm{lbs} \end{aligned}$		
125	ACH550-BxR-157A-4	R6	$\begin{array}{\|c} \# 3 / 0 \\ 124 \text { in-lbs } \end{array}$	$\begin{gathered} \# 3 / 0 \\ 124 \text { in-lbs } \end{gathered}$	300 MCM 275 in-lbs	300 MCM 275 in-lbs	500 MCM 372 in-lbs	500 MCM 372 in-lbs		$\begin{gathered} \# 2 / 0 \\ 375 \mathrm{in}-\mathrm{lbs} \end{gathered}$
150	ACH550-BxR-180A-4	R6								
200	ACH550-BxR-246A-4	R6	$\begin{aligned} & 350 \mathrm{MCM} \\ & 274 \text { in-lbs } \end{aligned}$	350 MCM 274 in-lbs	350 MCM 274 in-lbs	350 MCM 274 in-lbs	$\begin{gathered} 2 \times 500 \\ \text { MCM } \\ 372 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} 2 \times 500 \\ \text { MCM } \\ 372 \mathrm{in}-\mathrm{lbs} \end{gathered}$		350 MCM 100 in-lbs

			Maximum Power Wiring Data							
HP	Type Code ${ }^{1}$	$\begin{gathered} \text { Base } \\ \text { Drive } \\ \text { Frame } \\ \text { Size } \end{gathered}$	Circuit Breaker UL Type/ NEMA 1 \& 12	Circuit Breaker UL Typel NEMA 3R	Disconnect Switch UL Typel NEMA 1 \& 12	Disconnect Switch UL Typel NEMA 3R	Motor Terminals UL Typel NEMA $1 \& 2$		Ground Lugs UL Typel NEMA 1 \& 2	$\begin{aligned} & \text { Ground } \\ & \text { Lugs } \\ & \text { UL Typel } \\ & \text { NEMA } \\ & \text { 3R } \end{aligned}$
600 Volt 2										
2	ACH550-BxR-02A7-6	R2	$\begin{gathered} \# 12 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 12 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 10 \\ 55 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 10 \\ 55 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 6 \\ 11-13 \\ \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 6 \\ 11-13 \\ \text { in-lbs } \end{gathered}$	$\begin{gathered} \text { \#4 } \\ 35 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 4 \\ 35 \text { in-lbs } \end{gathered}$
3	ACH550-BxR-03A9-6	R2								
5	ACH550-BxR-06A1-6	R2								
7.5	ACH550-BxR-09A0-6	R2								
10	ACH550-BxR-011A-6	R2								
15	ACH550-BxR-017A-6	R2	$\begin{gathered} \# 10 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 10 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 6 \\ 55 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 6 \\ 55 \text { in-lbs } \end{gathered}$				
20	ACH550-BxR-022A-6	R3					$\begin{gathered} \# 1 \\ 35 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 1 \\ 35 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 2 \\ 50 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 2 \\ 50 \text { in-lbs } \end{gathered}$
25	ACH550-BxR-027A-6	R3			\#4 55 in-lbs	$\# 4$55 in-lbs				
30	ACH550-BxR-032A-6	R4	$\begin{gathered} \# 6 \\ 62 \text { in-lbs } \end{gathered}$	\#6 62 in-lbs						
40	ACH550-BxR-041A-6	R4			$\begin{gathered} \# 3 \\ 62 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 3 \\ 62 \mathrm{in}-\mathrm{lbs} \end{gathered}$				
50	ACH550-BxR-052A-6 ${ }^{3}$	R4	$\begin{gathered} \# 2 \\ 62 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 2 / 0 \\ 110 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 2 / 0 \\ 110 \mathrm{in}-\mathrm{lbs} \end{gathered}$					
60	ACH550-BxR-062A-6	R4	$\begin{gathered} \# 1 \\ 62 \text { in-lbs } \end{gathered}$	\#1 62 in-lbs	$\begin{gathered} \# 1 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 1 \\ 62 \text { in-lbs } \end{gathered}$				
75	ACH550-BxR-077A-64	R6	$\begin{gathered} \# 1 / 0 \\ 62 \text { in-lbs } \end{gathered}$	\#1/0 62 in-lbs	$\begin{gathered} \# 1 / 0 \\ 275 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 1 / 0 \\ 275 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 2 / 0 \\ 71 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 2 / 0 \\ 71 \text { in-lbs } \end{gathered}$	$\begin{gathered} 3 \times \# 3 / 0 \\ 250 \mathrm{in}-\mathrm{lbs} \end{gathered}$	
100	ACH550-BxR-099A-64	R6	$\begin{gathered} \# 3 / 0 \\ 124 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 3 / 0 \\ 124 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 3 / 0 \\ 275 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 3 / 0 \\ 275 \mathrm{in}-\mathrm{lbs} \end{gathered}$				
125	ACH550-BxR-125A-64	R6	$\begin{aligned} & 250 \mathrm{MCM} \\ & 124 \mathrm{in}-\mathrm{lbs} \end{aligned}$	$\begin{aligned} & 250 \mathrm{MCM} \\ & 124 \mathrm{in}-\mathrm{lbs} \end{aligned}$	$\begin{aligned} & 250 \text { MCM } \\ & 275 \text { in-lbs } \end{aligned}$	$\begin{aligned} & 250 \text { MCM } \\ & 275 \text { in-lbs } \end{aligned}$	300 MCM 301 in-lbs	$\begin{aligned} & 300 \mathrm{MCM} \\ & 301 \text { in-lbs } \end{aligned}$		$\begin{gathered} \# 2 / 0 \\ 375 \text { in-lbs } \end{gathered}$
150	ACH550-BxR-144A-64	R6			300 MCM 275 in-lbs	$\begin{aligned} & 300 \text { MCM } \\ & 275 \mathrm{in}-\mathrm{lbs} \end{aligned}$	$\begin{aligned} & 500 \mathrm{MCM} \\ & 372 \text { in-lbs } \end{aligned}$	$\begin{array}{\|l\|} 500 \mathrm{MCM} \\ 372 \text { in-lbs } \end{array}$		

1) "BxR" represents both BCR and BDR.
2) BCR is rated $600 \mathrm{Y} / 347 \mathrm{~V}$ unless otherwise specified. For use on a solidly grounded Wye source only.
3) BCR supports Delta network configuration.
4) BDR is rated $600 \mathrm{Y} / 347 \mathrm{~V}$ unless otherwise specified. For use on a solidly grounded Wye source only.

Branch circuit protection

Input power is connected to the ACH550 with E-Clipse Bypass through a door interlocked disconnect switch or circuit breaker. Neither of these inputs are fused. The branch circuit that provides power to the ACH550 with E-Clipse Bypass with disconnect switch must include required external fuse to provide short circuit and ground fault protection for the motor in the bypass mode. When connected to a 240 V or 480 V power source, the ACH550 with E-Clipse with the circuit breaker is suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical amperes. When connected to a 600V power source, the ACH550 with E-Clipse Bypass with the circuit breaker option is suitable for use on a circuit capable of delivering not more than 10,000 RMS symmetrical amperes.
Fuses

Note: The UL listed drive fuses in the table are provided in the purchased product

- Replacement fuses are required to be of the same class, current rating, and voltage rating. Fuses from other manufacturers can be used if they meet the specifications given in the table.
- Fuses with higher current rating than specified must not be used.

Vertical unit fuse requirements

HP	Type Code ${ }^{1}$	Frame Size	Internal Drive Fuse Rating		External Fuse for Disconnect Option	
			Class	Current Rating	Class	Max Current Rating
208... 240 Volt						
1	ACH550-VxR-04A6-2	R1	Class CC	15A	Class J	15A
1.5	ACH550-VxR-06A6-2	R1	Class CC	15A	Class J	15A
2	ACH550-VxR-07A5-2	R1	Class CC	15A	Class J	20A
3	ACH550-VxR-012A-2	R1	Class CC	15A	Class J	25A
5	ACH550-VxR-017A-2	R1	Class CC	30A	Class J	40A
7.5	ACH550-VxR-024A-2	R2	Class CC	30A	Class J	45A
10	ACH550-VxR-031A-2	R2	Class T	40A	Class J	60A
15	ACH550-VxR-046A-2	R3	Class T	80A	Class J	100A
20	ACH550-VxR-059A-2	R3	Class T	80A	Class J	100A
25	ACH550-VxR-075A-2	R4	Class T	100A	Class J	100A

HP	Type Code ${ }^{1}$	Frame Size	Internal Drive Fuse Rating		External Fuse for Disconnect Option	
			Class	Current Rating	Class	Max Current Rating
480 Volt						
1	ACH550-VxR-03A3-4	R1	Class CC	15A	Class J	15A
1.5	ACH550-VxR-03A3-4	R1	Class CC	15A	Class J	15A
2	ACH550-VxR-04A1-4	R1	Class CC	15A	Class J	15A
3	ACH550-VxR-06A9-4	R1	Class CC	15A	Class J	15A
5	ACH550-VxR-08A8-4	R1	Class CC	15A	Class J	20A
7.5	ACH550-VxR-012A-4	R1	Class CC	15A	Class J	25A
10	ACH550-VxR-015A-4	R2	Class CC	30A	Class J	35A
15	ACH550-VxR-023A-4	R2	Class CC	30A	Class J	45A
20	ACH550-VxR-031A-4	R3	Class T	40A	Class J	60A
25	ACH550-VxR-038A-4	R3	Class T	60A	Class J	60A
30	ACH550-VxR-045A-4	R3	Class T	60A	Class J	60A
40	ACH550-VxR-059A-4	R4	Class T	80A	Class J	100A
50	ACH550-VxR-072A-4	R4	Class T	90A	Class J	100A
60	ACH550-VxR-078A-4	R4	Class T	100A	Class J	100A
600 Volt						
2	ACH550-VxR-02A7-6	R2	Class CC	30A	Class J	15A
3	ACH550-VxR-03A9-6	R2	Class CC	30A	Class J	15A
5	ACH550-VxR-06A1-6	R2	Class CC	30A	Class J	15A
7.5	ACH550-VxR-09A0-6	R2	Class CC	30A	Class J	20A
10	ACH550-VxR-011A-6	R2	Class CC	30A	Class J	25A
15	ACH550-VxR-017A-6	R2	Class CC	30A	Class J	40A
20	ACH550-VxR-022A-6	R3	Class T	40A	Class J	50A
25	ACH550-VxR-027A-6	R3	Class T	40A	Class J	60A
30	ACH550-VxR-032A-6	R4	Class T	40A	Class J	60A
40	ACH550-VxR-041A-6	R4	Class T	50A	Class J	100A
50	ACH550-VxR-052A-6	R4	Class T	80A	Class J	100A
60	ACH550-VxR-062A-6	R4	Class T	80A	Class J	100A

1) "VxR" represents both VCR and VDR.

Box unit fuse requirements

HP	Type Code ${ }^{1}$	Base Drive Frame Size	Internal Drive Fuse Rating		External Fuse for Disconnect Option	
			Class	Current Rating	Class	Max Current Rating
208... 240 Volt						
1	ACH550-BxR-04A6-2	R1	Class CC	15A	Class J	15A
1.5	ACH550-BxR-06A6-2	R1	Class CC	15A	Class J	15A
2	ACH550-BxR-07A5-2	R1	Class CC	15A	Class J	20A
3	ACH550-BxR-012A-2	R1	Class CC	15A	Class J	25A
5	ACH550-BxR-017A-2	R1	Class CC	30A	Class J	40A
7.5	ACH550-BxR-024A-2	R2	Class CC	30A	Class J	60A
10	ACH550-BxR-031A-2	R2	Class T	40A	Class J	60A
15	ACH550-BxR-046A-2	R3	Class T	80A	Class J	100A
20	ACH550-BxR-059A-2	R3	Class T	80A	Class J	100A
25	ACH550-BxR-075A-2	R4	Class T	100A	Class J	100A
30	ACH550-BxR-088A-2	R4	Class T	110A	Class J	200A
40	ACH550-BxR-114A-2	R4	Class T	150A	Class J	300A
50	ACH550-BxR-143A-2	R6	Class T	200A	Class J	300A
60	ACH550-BxR-178A-2	R6	Class T	250A	Class J	300A
75	ACH550-BxR-221A-2	R6	Class T	300A	Class J	400A
100	ACH550-BxR-248A-2	R6	Class T	350A	Class J	400A

HP	Type Code ${ }^{1}$	Base Drive Frame Size	Internal Drive Fuse Rating		External Fuse for Disconnect Option	
			Class	Current Rating	Class	Max Current Rating
480 Volt						
1	ACH550-BxR-03A3-4	R1	Class CC	15A	Class J	15A
1.5	ACH550-BxR-03A3-4	R1	Class CC	15A	Class J	15A
2	ACH550-BxR-04A1-4	R1	Class CC	15A	Class J	15A
3	ACH550-BxR-06A9-4	R1	Class CC	15A	Class J	15A
5	ACH550-BxR-08A8-4	R1	Class CC	15A	Class J	20A
7.5	ACH550-BxR-012A-4	R1	Class CC	15A	Class J	25A
10	ACH550-BxR-015A-4	R2	Class CC	30A	Class J	35A
15	ACH550-BxR-023A-4	R2	Class CC	30A	Class J	50A
20	ACH550-BxR-031A-4	R3	Class T	40A	Class J	60A
25	ACH550-BxR-038A-4	R3	Class T	60A	Class J	60A
30	ACH550-BxR-045A-4	R3	Class T	60A	Class J	60A
40	ACH550-BxR-059A-4	R4	Class T	80A	Class J	100A
50	ACH550-BxR-072A-4	R4	Class T	90A	Class J	100A
60	ACH550-BxR-078A-4	R4	Class T	100A	Class J	NA
75	ACH550-BxR-097A-4	R4	Class T	150A	Class J	225A
100	ACH550-BxR-125A-4	R5	Class T	200A	Class J	300A
125	ACH550-BxR-157A-4	R6	Class T	225A	Class J	300A
150	ACH550-BxR-180A-4	R6	Class T	300A	Class J	300A
200	ACH550-BxR-246A-4	R6	Class T	350A	Class J	400A

HP	Type Code ${ }^{1}$	Base Drive Frame Size	Internal Drive Fuse Rating		External Fuse for Disconnect Option	
			Class	Current Rating	Class	Max Current Rating
600 Volt						
2	ACH550-BxR-02A7-6	R2	Class CC	15A	Class J	15A
3	ACH550-BxR-03A9-6	R2	Class CC	15A	Class J	15A
5	ACH550-BxR-06A1-6	R2	Class CC	15A	Class J	15A
7.5	ACH550-BxR-09A0-6	R2	Class CC	15A	Class J	20A
10	ACH550-BxR-011A-6	R2	Class CC	15A	Class J	25A
15	ACH550-BxR-017A-6	R2	Class CC	30A	Class J	40A
20	ACH550-BxR-022A-6	R3	Class T	40A	Class J	50A
25	ACH550-BxR-027A-6	R3	Class T	40A	Class J	60A
30	ACH550-BxR-032A-6	R4	Class T	40A	Class J	60A
40	ACH550-BxR-041A-6	R4	Class T	50A	Class J	100A
50	ACH550-BxR-052A-6	R4	Class T	80A	Class J	100A
60	ACH550-BxR-062A-6	R4	Class T	80A	Class J	100A
75	ACH550-BxR-077A-6	R6	Class T	100A	Class J	175A
100	ACH550-BxR-099A-6	R6	Class T	150A	Class J	225A
125	ACH550-BxR-125A-6	R6	Class T	175A	Class J	300A
150	ACH550-BxR-144A-6	R6	Class T	200A	Class J	300A

1) "BxR" represents both BCR and BDR.

Basic control connections for E-Clipse HVAC Default

Speed Reference / Process Setpoint

Parameters Changed Relative to E-Clipse HVAC Default

Parameter Number	Description	Setting

* Smoke Control (Override1) is a fixed input. Closing Digital Input 6 will place the E-Clipse Bypass in Smoke Control mode which may reassign the function of the other Digital Inputs. Refer to the Smoke Control (Override1) documentation.

2. Check installation - bypass

Control panel settings and checks

Apply power to the E-Clipse Bypass unit. The ACH550 Control Panel should show the operating status of the drive. If the E-Clipse Bypass Control Panel displays a PHASE SEQ (Phase Sequence) fault, remove power, wait at least 5 minutes and then swap any two input phase wires. If the motor is a standard $208 \mathrm{~V}, 60 \mathrm{~Hz}$ motor connected to a 208 V drive or a $460 \mathrm{~V}, 60 \mathrm{~Hz}$ motor connected to a 480 V drive, the default parameter settings should be suitable for the initial tests described below. If the motor's rating is not 208 V or $460 \mathrm{~V}, 60 \mathrm{~Hz}$, the MOTOR NOM VOLT and MOTOR NOM FREQ parameters will need to be properly set before proceeding. Refer to the ACH550-UH User's Manual and set the parameters as required.

Note: The settings for ALL external serial communication between the ACH550 with E-Clipse Bypass and any Building Automation System are configured using the E-Clipse Bypass operator panel. DO NOT attempt to configure the external serial communication connection using the ACH550 operator panel!

The settings for internal communication between the ACH550 and the E-Clipse Bypass are configured at the factory and require no adjustment.

Drive Link recovery procedure
If the ACH550 Drive communication settings are unintentionally changed during setup a "Drive Link Fault", "Drive Link Error" or "Drive Setup" alarm may be displayed. Should this occur, accomplish the following steps in order.

Using the ACH550 Drive Keypad

1. Set Parameter 9802 to "STD MODBUS"
2. Set Parameter 9902 to "E-CLIPSE"
3. Cycle Power

Following the above steps, in order, should restore proper communications between the ACH550 Drive and the E-Clipse Bypass. Should the E-Clipse Keypad continue to display a "Drive Link Fault", "Drive Link Error" or "Drive Setup" alarm, check the following parameter settings to ensure they have been recovered. If necessary, individually set the correct parameter settings as indicated below and cycle power.
The only ACH550 Drive macro that provides the proper configuration settings by default is the E-Clipse Bypass macro. If any other ACH550 Drive macro is used, that macro should be selected after completing the initial tests. When using any other macro the following ACH550 Drive parameter values must be set and power cycled or the E-Clipse Bypass will not function properly:

- Parameter 9802 must be set to "STD MODBUS"
- Parameter 1001 must be set to "Comm"
- Parameter 1002 must be set to "Comm"
- Parameter 1601 must be set to "Comm"
- Parameter 1608 must be set to "Comm"
- Parameter 5303 must be set to " 76.8 kb/s"
- Parameter 5304 must be set to "8 EVEN 1"
- Parameter 5305 must be set to "DCU PROFILE"
- Parameter 5310 must be set to "103"
- Parameter 5311 must be set to " 104 "
- Power must be cycled

Refer to the ACH550-UH User's Manual for additional information.

Note: Run motor from drive before attempting bypass operation.

System check: motor connected to ACH550 with E-Clipse Bypass
After performing the control panel checks and setting the ACH550 Drive Start-up Data parameters, check the operation of the ACH550 Drive with E-Clipse Bypass with the motor connected as follows:

1. Disconnect and lock out power to the E-Clipse Bypass unit, wait at least five minutes before disconnecting power.
2. Connect the motor to the output terminals.

CAUTION: If the Advanced Override (Override 2) input contact is closed, the motor will start across the line as soon as power is applied.
If the Safety Interlock and Run Enable input contacts are closed and the Smoke Control (Override 1) input contact is closed, the motor will start across the line as soon as power is applied.
If the Start/Stop, Safety Interlock and Run Enable input contacts are closed and the system is in the Bypass mode and in either Hand or Auto, the motor will start across the line as soon as power is applied.
If the Start/Stop, Safety Interlock and Run Enable input contacts are closed and the system is in the Drive mode with the drive in either Hand or Auto mode, the motor will start on the drive as soon as power is applied.

In order to prevent the motor from starting, the system should be in the Drive mode and the drive should be OFF when the power is disconnected at the end of the previous series of control panel settings and checks.

In order to prevent the motor from running without disconnecting the motor, open the Run Enable and Safety Interlock contacts on bypass control board terminals X2:2, X2:3 and X2:4 before applying power. Set the bypass to Drive mode and the drive to OFF.
3. Apply power to the E-Clipse Bypass unit. The ACH550 Control Panel display should be illuminated. On the bypass control panel, both the display and Enabled LED should be illuminated. If the Enabled LED is not illuminated solid green, check to see that closed contacts or jumpers connect terminal $\mathrm{X} 2: 3$ to $\mathrm{X} 2: 4$ and $\mathrm{X} 2: 2$ to $\mathrm{X} 2: 7$ on the bypass control board.
4. The Drive Selected LED should be illuminated. If not, press the Drive Select key to switch to Drive mode. Leave the system in the Drive mode when proceeding to the next step.
5. Press the Hand key on the ACH550 Control Panel. Press and hold the UP key until the motor just starts rotating.

Note: If the ACH550 Control Panel displays an OVERCURRENT or EARTH FAULT, disconnect and lock out power to the E-Clipse Bypass unit. Wait at least 5 minutes. Disconnect the motor leads from the E-Clipse Bypass unit and Megger each motor lead to ground to determine if the motor is good. Check the power leads from the Drive / Bypass to the motor for damaged or improper wiring. If the ACH550 Control Panel displays any other drive faults, correct the fault condition before proceeding to the next step.

CAUTION: Check motor rotation direction as soon as the motor begins to move. If motor does not rotate in the correct direction, shut down the drive, disconnect and lock out power to the drive and wait five minutes. Swap any two motor output wires (T1, T2, and T3). Incorrect motor rotation direction may cause equipment damage.
6. Increase the speed to 60 Hz or the highest safe operating speed.
7. Press the OFF key on the drive control panel. The motor should stop.

If the drive does not operate according to these steps, refer to the ACH550-UH User's Manual.

If the drive operates according to these steps, your ACH550 with E-Clipse Bypass is ready to use with preset or modified macro settings.

Note: The settings for ALL external serial communication between the ACH550 with E-Clipse Bypass and any Building Automation System are configured using the E-Clipse Bypass operator panel. DO NOT attempt to configure the external serial communication connection using the ACH550 operator panel!

The settings for internal communication between the ACH550 and the E-Clipse Bypass are configured at the factory and require no adjustment.

Note: Both the ACH550 Drive and the E-Clipse Bypass include preset application macros. The only ACH550 Drive macro that provides the proper configuration settings by default is the E-Clipse HVAC Default macro (9902 = 15). If any other ACH550 drive macro or any modified setting of the E-Clipse HVAC Default macro is used the following ACH550 Drive parameter values must be set and power cycled or the E-Clipse Bypass will not function properly:

- Parameter 9802 must be set to "STD MODBUS"
- Parameter 1001 must be set to "Comm"
- Parameter 1002 must be set to "Comm"
- Parameter 1601 must be set to "Comm"
- Parameter 1608 must be set to "Comm"
- Parameter 5303 must be set to " 76.8 kb/s"
- Parameter 5304 must be set to " 8 EVEN 1"
- Parameter 5305 must be set to "DCU PROFILE"
- Parameter 5310 must be set to " 103 "
- Parameter 5311 must be set to "104"
- Power must be cycled

Refer to the ACH550-UH User's Manual for programming instructions.

Note: Run motor from drive before attempting bypass operation.
System check: motor disconnected from the ACH550 with E-Clipse Bypass
If you are familiar with the E-Clipse Bypass operation, you may skip the following section. Otherwise, after performing the system checks and setting the ACH550 Drive Start-up Data parameters, become familiar with the operation of the ACH550 Drive with E-Clipse Bypass without the motor connected as follows:

1. Disconnect and lock out power to the E-Clipse Bypass unit, wait at least five minutes after disconnecting power.
2. Disconnect the motor from the E-Clipse Bypass unit.
3. Apply power to the E-Clipse Bypass unit by turning on the branch circuit disconnect device and the bypass disconnect switch or circuit breaker.
4. The ACH550 Control Panel display should be illuminated. On the E-Clipse Bypass control panel, both the display and Enabled LED should be illuminated. If the Enabled LED is not illuminated solid green, check to see that closed contacts or jumpers connect terminal $\times 2: 3$ to $\times 2: 4$ and $\times 2: 2$ to $\times 2: 7$ on the bypass control board.
5. On the E-Clipse Bypass control panel, either the Drive Selected or Bypass Selected LED should be illuminated. Pressing the Drive Select or Bypass Select key should switch the bypass back and forth between the Drive mode and the Bypass mode as indicated by the LEDs above each button. Check that the bypass control panel switches the system between modes. Leave the system in the Bypass mode when proceeding to the next step.
6. Check to see that pressing the:

- Auto key on the bypass control panel causes the bottom line on the E-Clipse Bypass display to indicate "Bypass in Auto"
- Hand key on the bypass control panel generates a Motor Phase Fault.
- Under normal conditions (motor connected) pressing the Hand key on the bypass control panel causes the bottom line on the E-Clipse Bypass display to indicate "Hand \#A Run"
- OFF key on the bypass control panel causes the bottom line on the E-Clipse Bypass display to indicate "Off Stop"

7. For Steps 8 through 14, ACH550 Drive Parameter 9904 must be set to "Scalar: Freq". After successful completion of Step 13, Parameter 9904 may be set to "Vector: Speed" if very specific application requirements make it necessary to use this type of motor control. Operation using the "Vector: Speed" setting is unnecessary for control of almost all fan and pump applications. Refer to the ACH550-UH User's Manual for details on setting parameters.
8. Press the Drive Select key on the E-Clipse Bypass control panel. The Drive Select LED should be illuminated.
9. Check to see that pressing the:

- Auto key on the bypass control panel causes the E-Clipse Bypass display to indicate "Bypass in Auto"
- Hand key on the bypass control panel causes no change to the E-Clipse Bypass display
- OFF key on the bypass control panel causes the E-Clipse Bypass display to indicate "Bypass in Off"

10. Press the HAND key on the drive control panel. Note that the top line of the control panel display indicates "HAND" and run as a clockwise rotating arrow. The Drive Run LED on the E-Clipse Bypass control panel should be illuminated.
11. Press the UP arrow on the drive control panel. Note that the speed reference indication in the top line of the drive control panel display increases from " 0.0% SP."
12. In the middle line of the drive control panel display, the output current indication should indicate "0.0 A."
13. Press the DOWN arrow on the drive control panel until the speed and frequency indications return to "0.0."
14. Press the OFF key on the drive control panel. Note that the bottom line of the drive contol panel display indicates "Off."

If the ACH550 Drive and E-Clipse Bypass operate according to these steps, and you have familiarized yourself with their operation, disconnect and lock out power to prepare for the next test.

WARNING! Wait at least five minutes after disconnecting power from the drive before you attempt to service the drive. Bus capacitors in the intermediate DC circuit must discharge before servicing the drive. Using a meter rated for 1000 VDC, check for zero volts at:

- Terminals BRK+ to GND and BRK- to GND (frame size R1/R2)
- Terminals UC+ and UC- (frame size R3...R8).

If the drive does not operate according to these steps, refer to the ACH550-UH User's Manual.

3. Check jumpers and switches

The settings described in this section are factory set and, for most situations, do not require adjustment. However, it is a good practice to review these settings to confirm that they are appropriate for the configuration installed.

Jumper and switch locations

The figure below shows the locations of the SW1 DIP switch on the E-Clipse Bypass control board. The function and setting of this switch is explained in the following paragraph.

DIP switch settings
The DIP switch is used to configure the serial communications termination resistors.
To reduce noise on the serial communications network, terminate the EIA-485 network using 120 ohm resistors at both ends of the network. Use the DIP switches to connect or disconnect the on-board termination resistors. Both switches must be positioned in the ON or OFF position to correctly configure the termination resistors.

Note: When using embedded protocols, set SW1 in the OFF position.

Circuit breaker settings
On some ACH550 E-Clipse Bypasses, the circuit breaker has adjustable settings for instantaneous current protection. The factory default settings are practical for most applications. Refer to the "ABB SACE Instruction Sheet" (supplied with these units) for additional information on the adjustment of these settings.

Operation

E-Clipse bypass configurations

The ACH550 with E-Clipse Bypass is an ACH550 AC adjustable frequency drive in an integrated UL type 1, UL type 12 or UL type 3R package with a bypass motor starter. The ACH550 with E-Clipse Bypass provides:

- Disconnect switch or circuit breaker with door mounted control lever. The lever can be padlocked in the OFF position (padlock not supplied).
- Bypass starter.
- Motor overload protection.
- Local operator panel with indicating lights and multifunction display.
- Provisions for external control connections.
- Embedded communications for major BMS protocols including BACnet, Johnson Controls International N2, Siemens Building Technologies FLN, and Modbus
- Optional fieldbus adapters for connection to additional BMS protocols including LonWorks and Ethernet
- Optional drive service switch (drive input disconnect), the functional equivalent of a three-contactor bypass arrangement.

The following shows the front view of the ACH550 E-Clipse Bypass vertical configuration, and identifies the major components.

The following shows the front view of the ACH550 E-Clipse Bypass standard configurations, and identifies the major components.

The following is a typical power diagram.

Bypass control

The bypass control panel features:

Ready (Power On) Indication
The Ready (Power On) indication is provided by the bypass control panel. The bypass control panel display will be illuminated and text will be displayed when the disconnect switch or circuit breaker is closed and control power is applied to the bypass.

Enabled LED

The Enabled LED is illuminated green under the following conditions:

- Both the Safety Interlock(s) and Run Enable contacts are closed.
- The Safety Interlock contact(s) are closed with no Start command present.

The Enabled LED flashes green if the Run Enable contact is open and when the Safety Interlock contact(s) are closed and a Start command is present.
The Enabled LED is illuminated red when the Safety Interlock contact(s) are open.

Motor Run LED

The Motor Run LED is illuminated green when the motor is running in either bypass mode or in drive mode. The Motor Run LED flashes green to indicate the system has been placed in an Override condition.
Bypass Faulted LED
The Bypass Faulted LED is illuminated or flashes red when the motor or bypass protection functions have shut down the bypass. The specific nature of the fault is indicated on the bypass control display. Refer to the Diagnostics section of this manual for more details.

Drive Selected LED

The Drive Selected LED is illuminated green when the drive has been selected as the power source for the motor and no drive fault is present.

Bypass Selected LED

The Bypass Selected LED is illuminated or flashes green when the bypass has been selected as the power source for the motor and no bypass fault is present.

Drive Faulted LED

The Drive Faulted LED is illuminated red when the bypass has lost its communications link with the drive or when the motor or drive protection functions have shut down the drive. The specific nature of the fault is indicated on the drive control panel display. Refer to the Diagnostics section on page 75 of the ACH550-UH User's Manual for more details.

Automatic Transfer

The Automatic Transfer indication is provided on the bypass control panel. The bypass control display will continuously flash an alarm to indicate the system has automatically transferred to Bypass after a Drive fault. The Bypass Selected LED flashes green when the system has automatically transferred to bypass operation. The bypass event log will also record this event.

Auto Indication

The Auto Indication is provided on the bypass control panel default display when the bypass control panel Auto key is pressed. Normally this indicates that the Auto Start contact or serial communications has been selected as the means for starting and stopping the motor in the bypass mode.

Off Indication

The Off Indication is provided on the bypass control panel default display when bypass control panel Off key is pressed.

Hand Indication

The Hand Indication is provided on the bypass control panel default display when the motor has been started manually in the bypass mode.
Drive Select Key
The Drive Select Key selects the drive as the power source for the motor.

Bypass Select Key

The Bypass Select Key selects the bypass as the power source for the motor.

Off/Reset Key

The Off/Reset Key may be used to manually stop the motor if the motor has been running on bypass power. The Off/Reset key also resets most bypass faults. It may take several minutes before the bypass can be reset after an overload trip. If a bypass fault condition is present the second press of this key places the bypass in the OFF mode.

Auto Key

The Auto Key selects the Auto Start contact or serial communications as the means for starting and stopping the motor in the bypass mode.

Hand Key

The Hand Key can be used to manually start the motor when the bypass has been selected as the power source for the motor.

Bypass control panel modes

The HVAC Bypass Control Panel has several different modes for configuring, operating and diagnosing the bypass. Select MENU and use the UP/DOWN buttons to select modes. The modes are:

- Default Display mode - Provides (HAND/OFF/AUTO) indication of the bypass operating control mode.
- Bypass Status mode - Provides status indications of the current system operating conditions.
- Start-Up Parameter Mode - Provides a list of parameters or operating conditions that may be configured or viewed during startup.
- Parameter List mode - Used to edit parameter values individually.
- Changed Parameter mode - Displays changed parameters.
- Bypass Fault Display mode - If there is an active bypass fault, the control panel will flash the fault number and fault diagnostic indication in English.
- Bypass Alarm Display mode - If there is an active bypass alarm, the control panel will flash the alarm number and alarm diagnostic indication in English.

Start-up by changing the parameters from the start-up list

To change the parameters, follow these steps:

1	The Default Display indicates the Bypass Control mode.		DRIVE SELECTED
BYPASS IN OFF			

3	Select the Startup Params with the Up/Down arrows and press ENTER.	$\nabla \triangle$ enter	BYPASS STATUS *STARTUP PARAMS
4	Select the appropriate Parameter with the Up/Down arrows and press ENTER.	∇ Enter	*1601 START/STOP 1613 BP DISABLE
5	Press the Up/Down arrows to change the Parameter Value.	$\nabla \Delta$	$\begin{aligned} & 1601 \text { START/STOP } \\ & {\left[\begin{array}{lll} \text { [} & \text { SII } \end{array}\right.} \end{aligned}$
6	Press ENTER to store the modified value or press ESC to leave the Parameter Edit mode.	Enter or Esc	*1601 START/STOP 1613 BP DISABLE
7	Press ESC to return to the Main Menu, and again to return to the. Default Display.	ESC	DRIVE SELECTED BYPASS IN OFF

Start-up by changing the parameters individually from the parameter list
To change the parameters, follow these steps:

1	The Default Display indicates the Bypass Control mode.		DRIVE SELECTED BYPASS IN OFF
2	Press ENTER to enter the Main Menu.	Enter	*BYPASS STATUS STARTUP PARAMS
3	Select the Parameter List with the Up/ Down arrows and press ENTER.	ENTER	STARTUP PARAMS *PARAMETER LIST
4	Select the appropriate Parameter Group with the Up/Down arrows and press ENTER.	∇ ENTER	$\begin{array}{cl}14 & \text { RELAY OUT } \\ \text { * } 16 & \text { SYSTEM CTRL }\end{array}$
5	Select the appropriate Parameter in a group with the Up/Down arrows and press ENTER.		$\begin{aligned} * 1601 & \text { START/STOP } \\ 1602 & \text { RUN ENABLE } \end{aligned}$
6	Press the Up/Down arrows to change the Parameter Value.		$\begin{aligned} & 1601 \text { START/STOP } \\ & {\left[\begin{array}{lll} \text { [} & \text { I:DI } 1 \end{array}\right.} \end{aligned}$
7	Press ENTER to store the modified value or press ESC to leave the Parameter Edit mode.	ENTER or Esc	* 1601 START/STOP 1602 RUN ENABLE
8	Press ESC to return to the listing of Parameter Groups, and again to return to the Main Menu.	ESC ESC	* 16 SYSTEM CTRL 17 OVERRIDE

9	Press ESC to return to the Default Display from the Main Menu.	ESC	DRIVE SELECTED
BYPASS IN OFF			

Note: In the Parameter Edit mode the current parameter value appears below the parameter name.

Note: To view the default parameter value, press the Up/Down arrows simultaneously. Press Enter to restore the default parameter value or press ESC to leave the Parameter Edit mode.

Diagnostics

Fault listing

$\begin{array}{l}\text { Fault } \\ \text { Code }\end{array}$	$\begin{array}{c}\text { Fault Name In } \\ \text { Panel }\end{array}$	Fault	Possible Cause	Corrective Action
3001	COIL CURR FBK	$\begin{array}{l}\text { RBCU is sensing } \\ \text { abnormal current } \\ \text { feedback when neither } \\ \text { contactor should be } \\ \text { energized }\end{array}$	$\begin{array}{l}\text { Defective component } \\ \text { on RBCU }\end{array}$	Change RBCU
3002	$\begin{array}{l}\text { BYP CNTACT } \\ \text { STUCK }\end{array}$	$\begin{array}{l}\text { M2 contactor indicates } \\ \text { it is not prepared to } \\ \text { move on a power up } \\ \text { check of the contactor } \\ \text { or after contact is } \\ \text { commanded to open }\end{array}$	$\begin{array}{l}\text { Defective Contactor } \\ \text { Defective RBCU }\end{array}$	$\begin{array}{l}\text { Disconnect incoming } \\ \text { power from unit } \\ \text { Check if contactor } \\ \text { armature moves freely. }\end{array}$
If armature moves				
freely, then change the				

does not move freely,

then change individual

contactor (M2) or the

complete assembly

(RCSA-0x)\end{array}\right]\)

Fault Code	Fault Name In Panel	Fault	Possible Cause	Corrective Action
3004	$\begin{aligned} & \text { BYPASS COIL } \\ & \text { OPEN } \end{aligned}$	M2 contactor will not close when commanded to do so	Loose J8 connector on RBCU Loose wires on contactor terminals A1 and/or A2 Bad Output on RBCU Bad Contactor	Verify that J8 connector is firmly seated. With incoming power disconnected, check for tightness of A1 and A2 terminals Swap RBCU Change Contactor/ Assembly
3005	DRIVE COIL OPEN	M1 contactor will not close when commanded to do so	Loose J8 connector on RBCU Loose wires on contactor terminals A1 and/or A2 Bad Output on RBCU Bad Contactor	Verify that J8 connector is firmly seated. With incoming power disconnected, check for tightness of A1 and A2 terminals Swap RBCU Change Contactor/ Assembly
3006	UNDERVOLTAGE	Fault will be generated only if the drive is controlling the motor and the power to the bypass is removed before the drive shuts down. This fault is generated when the drive contactor opens while the drive is operating.	Loose J7 connector on RBCU unit Loose input wiring Incoming power problems	Check that J7 connector is firmly seated in RBCU Check tightness of incoming connections Check Parameter 0413 to view voltage level at time of trip Check upstream protection
3008	DRIVE AI2 LOSS	Only displayed when in Supervisory mode. Indicates that AI2 on the drive has failed.	Check ACH550 manual for AI2 loss	Check ACH550 manual for AI2 loss
3009	MTR OVERLOAD	Bypass opens on motor overload conditions defined in the drive	Drive Mode: Bad Motor Bad CT's Bad RBCU Bypass mode: Bad motor Bad CT's Bad RBCU Either mode: low input voltage	Check if overload condition exists Drive Mode: Refer to 550 manual for proper troubleshooting techniques Bypass Mode: Check that J2 connector is firmly seated in RBCU Use clamp meter to verify mtr current vs. display in parameter 0101 Check input voltage

Fault Code	Fault Name In Panel	Fault	Possible Cause	Corrective Action
3010	INP PHASE A LOSS	Fault will be generated when the bypass contactor is requested to be closed and the RBCU does not sense voltage on Phase A	Loose J7 connector Loose wiring on Contactor assembly. Blown upstream fuse	Check J7 connector Check yellow wire on input block Check incoming voltage, phase to ground
3011	INP PHASE B LOSS	Fault will be generated when the bypass contactor is requested to be closed and the RBCU does not sense voltage on Phase B	Loose J7 connector Loose wiring on Contactor assembly. Blown upstream fuse	Check J7 connector Check black wire on input block Check incoming voltage, phase to ground
3012	$\begin{aligned} & \text { INP PHASE C } \\ & \text { LOSS } \end{aligned}$	Fault will be generated when the bypass contactor is requested to be closed and the RBCU does not sense voltage on Phase C	Loose J7 connector Loose wiring on Contactor assembly. Blown upstream fuse	Check J7 connector Check red on input block Check incoming voltage, phase to ground
3013	DRIVE 1ST START	Fault generated if attempting to close the bypass contactor with out running the bypass in drive mode first.	NA	Run bypass unit in drive mode before attempting bypass mode
3014	COIL POW SUPPLY	Coil power supply has failed to reach rated voltage	Internal failure on RBCU unit Shorted contactor coil	Cycle power on bypass unit. If contactor coil is shorted, fault 3023 or 3024 will be generated. If 3023 or 3024 is generated, replace respective contactor If 3023 or 3024 is not generated on power up, replace RBCU unit.
3016	EARTH FAULT	Declared if attempting to close the bypass contactor when the drive has earth fault declared	Earth fault in motor	Refer to the fault code 16 on page 28.
3017	MTR UNDERLOAD	If motor power(\%) level falls below minimum power level establish in parameter 3003 for the time (s) set in parameter 3002 fault will be generated. Parameter 3003 is a percentage of motor power as defined in the drive via parameter 9909. Fault only applies to bypass mode	Broken belt	Check load Reset bypass keypad Check fault code 17 on page 28, for further action

Fault Code	Fault Name In Panel	Fault	Possible Cause	Corrective Action
3018	$\begin{aligned} & \text { MAX CYCLE } \\ & \text { FAULT } \end{aligned}$	Supervisory Mode only. Declared if bypass contactor is closed by supervisory control 16 times within a 1 hour period.	High and low levels of hysteresis band are too tight	Check parameters 3202-3205. Increase time delays on parameters 3204 and 3205
3019	DRIVE LINK FAULT	Supervisory Mode Only. Fault generated if RS-485 link between drive and bypass stops communicating.	Bad cable/connection between drive and bypass. Communication improperly set in drive Parameter 9802. Application Macro improperly set in drive parameter 9902.	Proper seating of cable in drive and RBCU(connector J3) Check drive parameter 9802 (Modbus) and 9902 (E-Clipse) Check drive Group 53 Follow DriveLink recovery procedure
3020	PHASE SEQ	Sequence of 3 phase voltage input is such that bypass operation will result in motor rotation opposite of drive forward operation.	Phase sequence unknown at time of wiring	Swap any two of the three input wires to the bypass unit
3021	PH A CURR FBK	Fault is generated when current in Phase A is detected and the bypass contactor is open	Loose CT connection Bad RBCU Bad CT	Check J2 connector for proper seating Check connector on Current Assembly Replace RBCU Replace RCSA unit
3022	PH C CURR FBK	Fault is generated when current in Phase C is detected and the bypass contactor is open	Loose CT connection Bad RBCU Bad CT	Check J2 connector for proper seating Check connector on Current Assembly Replace RBCU Replace RCSA unit
3023	BYP COIL SHORTED	Coil characteristics are checked only on power up and coil current is greater than allowable values	Shorted contactor coil Shorted/damaged cable Bad RBCU	Replace RBCU Replace RCSA unit
3024	DRV COIL SHORTED	Coil characteristics are checked only on power up and coil current is greater than allowable values	Shorted contactor coil Shorted/damaged cable Bad RBCU	Replace RBCU Replace RCSA unit
3027	INVALID SUB ASM	Contactor assembly as recorded in the RBCU unit does not match drive information communicated via 485 link	RBCU unit from a different size bypass used to replace a defective RBCU. Parameters not matched after Firmware change.	Contact ABB at 1-800-HELP-365 Option 4

Fault Code	Fault Name In Panel	Fault	Possible Cause	Corrective Action
3028	EXT COMM LOSS	Time between fieldbus messages has exceeded timeout interval set with parameter 3005	Incorrect Communication settings in Group 51 \& 53. Poor Connections Noise on Communication Line	Check Group 51 \& 53 Tighten Connections Check Communication Cable Grounding
3029	EFB CONFIG FILE	Error reading configuration file for embedded fieldbus	Internal Startup error	Cycle Power Replace RBCU
3030	FORCE TRIP	Fault trip forced by external fieldbus	Overriding Control System tripped E-Clipse unit via fieldbus.	Check Overriding Control System
$\begin{aligned} & \hline 3031 \\ & \ldots \\ & 3033 \end{aligned}$	EFB 1...EFB 3	Fault code reserved for embedded fieldbus.	For Bacnet: Device object instances for the drive and or bypass are set greater than 4194302 in paramters 50115017 and or 5311 5317 respectively	Check Parameters 5011, 5017 and/or 5311, 5317
3034	MTR PHASE	Detects open motor phase. Detection is done by current transformers in bypass unit.	Internal problem Cable problem Motor problem	Check wiring in E-Clipse Unit Check motor cabling Check Motor Check if 3006 is Disabled
3037	PCB TEMP	RBCU unit has reached 190 degrees Fahrenheit, 88 degrees Celsius	Cabinet cooling has failed Ambient conditions too high Bad RBCU unit	Stop drive and let cool down and restart Add additional cooling Replace RBCU
3038	NO DRIVE DATA	No drive data available (Group 112)	Bypass not able to extract drive data on initial power up due to: Bad cable/connection between drive and bypass. Communication improperly set in drive Parameter 9802. Application Macro improperly set in drive parameter 9902.	Proper seating of cable in drive and RBCU (connector J3) Check drive parameter 9802 (Modbus) and 9902 (E-Clipse) Check drive Group 53 Follow DriveLink recovery procedure then cycle power to bypass.
3039	FBA PAR CONF	Non embedded fieldbus has detected an error in Group 51 parameters	Incorrect settings in Group 51	Verify Group 51 parameters
3101	SFLASH CORRUPT	Internal checksum error	NA	Cycle power Replace RBCU Upgrade firmware

Fault Code	Fault Name In Panel	Fault	Possible Cause	Corrective Action
3102	PMAP FILE	Parameter file is corrupt		Cycle Power Contact ABB with information that preceeded fault
3201	T1 OVERLOAD	T1 program cycle is overloaded	NA	Contact ABB with information that proceeded fault Cycle Power Replace RBCU
3202	T2 OVERLOAD	T2 program cycle is overloaded	NA	Contact ABB with information that proceeded fault Cycle Power Replace RBCU
3203	T3 OVERLOAD	T3 program cycle is overloaded	NA	Contact ABB with information that proceeded fault Cycle Power Replace RBCU
3204	STACK OVERFLOW	Program cycle is overloaded	NA	Contact ABB with information that proceeded fault Cycle Power Replace RBCU
3205	UNKNOWN CB	Bypass control board type is unknown.	Firmware is not compatible with control board in RBCU.	Firmware 93F and greater compatible with all RCBU hardware. Firmware 93D and earlier can only be loaded in RBCU Rev D and earlier.
3206	UNKNOWN DRIVE	Drive reports rating not found in bypass software	Drive does not match drives configured in bypass RBCU	Replace RBCU or reload with most current firmware
3207	UNKNOWN BYPASS	NA	NA	Replace RBCU or load most current firmware Contact ABB at 1-800-HELP-365 option 4 Replace RBCU or load most current firmware

Fault History

See page 31.

Alarm listing

The following table lists the alarms by code number and describes each.

Alarm Code	Alarm Name In Panel	Alarm	Possible Cause	Corrective Action
4001	$\begin{aligned} & \text { INP PHASE A } \\ & \text { LOSS } \end{aligned}$	Alarm will occur in drive mode. In bypass, alarm will occur if bypass contactor has not closed. Unit will trip on Fault 3010 if the bypass contactor is closed	Loose J8 connector Loose wiring on Contactor assembly. Blown upstream fuse	Check J8 connector Check yellow wire on input block Check incoming voltage, phase to ground
4002	$\begin{aligned} & \text { INP PHASE B } \\ & \text { LOSS } \end{aligned}$	Alarm will occur in drive mode. In bypass, alarm will occur if bypass contactor has not closed. Unit will trip on Fault 3011 if the bypass contactor is closed	Loose J8 connector Loose wiring on Contactor assembly. Blown upstream fuse	Check J8 connector Check black wire on input block Check incoming voltage, phase to ground
4003	$\begin{aligned} & \text { INP PHASE C } \\ & \text { LOSS } \end{aligned}$	Alarm will occur in drive mode. In bypass, alarm will occur if bypass contactor has not closed. Unit will trip on Fault 3012 if the bypass contactor is closed	Loose J8 connector Loose wiring on Contactor assembly. Blown upstream fuse	Check J8 connector Check red wire on input block Check incoming voltage, phase to ground
4004	AUTO TRANSFER	Message is displayed when the drive faults and the bypass switches to bypass mode as configured in Parameter 1608	Drive fault	Check drive
4005	EXT COMM ERR	Time between fieldbus messages has exceeded timeout interval set with parameter 3005	Incorrect Communication settings in Group 51 \& 53. Poor Connections Noise on Communication Line	Check Group 51\& 53 Tighten Connections Check Communication Cable Grounding
4006	Selected by PAR 1620: RUN ENABLE DAMPER END SWITCH VALVE OPENING PRE-LUBE CYCLE	Alarm will occur when start order is given and the "RUN Enable" is not present	Run Enable condition is not satisfied. Bad 24 v supply Bad digital input	Check 24 Volts on RBCU unit Check for 24 volts on respective DI when condition is satisfied Check Parameter 0103 for status of digital input
4007	PCB TEMP	RBCU unit reached 181 degrees Fahrenheit, 83 degrees Celsius	Cabinet cooling has failed Ambient conditions too high Bad RBCU unit	Stop drive and let cool down and restart Add additional cooling Replace RBCU

Alarm Code	Alarm Name In Panel	Alarm	Possible Cause	Corrective Action
4008	DRIVE SETUP	Alarm generated when configuration of drive is such that bypass can not properly control the drive. Specifically, drive parameters 1001,1002,1601, 1608	Incorrect parameters settings	Set Parameter 1001 to "COMM" Set Parameter 1002 to "COMM" Set Parameter 1601 to "COMM" Set Parameter 1608 to "COMM"
4009	BYPASS RUN DELAY	Alarm is generated when a bypass start command is issued and there is non zero time value in bypass parameter 1614	NA	NA
4010	MTR OVERLOAD	Bypass warning if motor overload conditions exist as defined in the drive	Drive Mode: Bad Motor Bad Ct's Bad RBCU Bypass mode: Bad motor Bad CT's Bad RBCU Either mode: low input voltage	Drive Mode: Refer to 550 manual for proper troubleshooting techniques Bypass Mode: Check that J2 connector is firmly seated in RBCU Check input voltage Does overload condition exist?
4011	MTR UNDERLOAD	Alarm comes at half the time of a mtr underload fault. See fault 3017 for further text	NA	Parameter 3002 is the time Parameter 3003 is the level
4012	$\begin{aligned} & \text { BYPASS } \\ & \text { DISABLED } \end{aligned}$	Alarm will be generated if parameter 1613 is set to "Disable"	NA	NA
4013	DRIVE LINK ERROR	Same as Fault 3019 however will occur when not in supervisory mode	Bad cable between drive and bypass Communication improperly set in drive Parameter 98.02(Modbus) Application Macro in 99.02 set to 15 (text)	Proper seating of cable in drive and RBCU(connector J3) Check drive parameter 98.02 and 99.02 Check drive Group 53 Follow DriveLink recovery procedure
4014	DRIVE TEST	Alarm is generated when bypass parameter 1617 is set to "enable"	NA	NA
4015	START DRIVE 1ST	Message displayed on initial "out of box" power up sequence	NA	Run drive in Hand

Alarm Code	Alarm Name In Panel	Alarm	Possible Cause	Corrective Action
4016	$\begin{aligned} & \text { INP VOLTAGE } \\ & \text { LOW } \end{aligned}$	3-Phase input voltage has not reached a sufficient level to enable editing of parameters via the keypad. This message is generated within a few seconds of power up	NA	Loose J7 connector Low input voltage. Incoming voltage has not reached at least 155 VAC within a few seconds of powerup
4019	OVERRIDE 1	Alarm is generated when override 1 is active	NA	Check Parameter 0103 and 0104 for digital input status
4020	OVRD2 BYP	Alarm is generated when override 2 is active and the bypass is controlling the motor	NA	Check Parameter 0103 and 0104 for digital input status
4021	Selected by PAR 1621 START ENABLE 1 VIBRATION SWITCH FIRESTAT FREEZESTAT OVERPRESSURE VIBRATION TRIP SMOKE ALARM SAFETY OPEN LOW SUCTION PRES	Alarm will occur when start order is given and the "RUN Enable" is not present	Run Enable condition is not satisfied. Bad 24v supply Bad digital input 24 V common is not tied to Digital input common on bypass when using external 24 v supply	Check 24 Volts on RBCU unit Check for 24 volts on respective DI when condition is satisfied Check Parameter 0103 For status of digital input
4022	Selected by PAR 1622 START ENABLE 2 VIBRATION SWITCH LOW SUCTION PRES	Alarm will occur when start order is given and the "RUN Enable" is not present	Run Enable condition is not satisfied. Bad 24v supply Bad digital input 24 V common is not tied to Digital input common on bypass when using external 24 v supply	Check 24 Volts on RBCU unit Check for 24 volts on respective DI when condition is satisfied Check Parameter 0103 For status of digital input
4023	Selected by PAR 1623 START ENABLE 3 VIBRATION SWITCH LOW SUCTION PRES	Alarm will occur when start order is given and the "RUN Enable" is not present	Run Enable condition is not satisfied. Bad 24v supply Bad digital input 24 V common is not tied to Digital input common on bypass when using external 24 v supply	Check 24 Volts on RBCU unit Check for 24 volts on respective DI when condition is satisfied Check Parameter 0103 For status of digital input

Alarm Code	Alarm Name In Panel	Alarm	Possible Cause	Corrective Action
4024	Selected by PAR 1624 START ENABLE 4 VIBRATION SWITCH LOW SUCTION PRES	Alarm will occur when start order is given and the "RUN Enable" is not present	Run Enable condition is not satisfied. Bad 24v supply Bad digital input 24 V common is not tied to Digital input common on bypass when using external 24 v supply	Check 24 Volts on RBCU unit Check for 24 volts on respective DI when condition is satisfied Check Parameter 0103 For status of digital input
4025	LOCAL DISABLED	Alarm is displayed if MODE LOCK (16.29) is set to AUTO MODE and the Hand or Off key is pressed		
4026	AUTO DISABLED	This alarm is displayed if MODE LOCK (1629) is set to LOCAL MODE and the Auto key is pressed.		
4027	COMM CONFIG ERR	Alarm is displayed if the drive and bypass MAC addresses are equal or invalid.	E-Clipse parameters 5002(BP MAC ID) \& 5302 (DV MAC ID) are set to the same value	Change MAC address to unique values
4028	FBA PAR CONF	Non embedded fieldbus has detected an error in Group 51 parameters		Verify Group 51 parameters
4029	DRIVE FAULTED	The drive is faulted.		Reset drive
4030	OVRD2 VFD	Alarm is generated when override 2 is active and the drive is controlling the motor	NA	Check Parameter 0103 and 0104 for digital input status
4031	OVRD2 STOP	Alarm is generated when override 2 is active and both the bypass and drive output contactors are deenergized	NA	Check Parameter 0103 and 0104 for digital input status

Bypass status listing

Bypass Status (16 Characters)	Condition	Description
DRIVE/BYPASS?	DRIVE SELECTED BYPASS SELECTED	Displays which one is selected, drive or bypass
SAFETIES?	$\begin{aligned} & \text { OPEN } \\ & \text { CLOSED } \end{aligned}$	Displays if safeties (=START ENABLE 1 and/ or START ENABLE 2) have been applied, or if they are missing
RUN PERMISSIVES?	$\begin{aligned} & \text { OPEN } \\ & \text { CLOSED } \end{aligned}$	Displays if RUN ENABLE is present or not
START REQUEST?	NOT PRESENT PRESENT	Displays if start request has been applied to the system
AUTO TRANSFER?	NOT TRANSFERRED TRANSFERRED	Displays if the system is in Auto Transfer state or not. Does not reflect to PAR 16.08 AUTO XFER value itself
BYP OVERRIDE 1?	NOT ACTIVATED ACTIVATED	Status of Override 1
BYP OVERRIDE 2?	NOT ACTIVATED ACTIVATED	Status of Override 2
DRIVE FAULTED?	$\begin{gathered} \text { NO } \\ \text { YES } \end{gathered}$	Displays if drive is faulted or not
BYPASS FAULTED?	$\begin{gathered} \text { NO } \\ \text { YES } \end{gathered}$	Displays if bypass is faulted or not
SYSTEM STARTED?	$\begin{gathered} \text { NO } \\ \text { YES } \end{gathered}$	Displays if system is started or not
SYSTEM RUNNING?	$\begin{gathered} \text { NO } \\ \text { YES } \end{gathered}$	Displays if system is running or not
BYPASS ALARMS?	NO ALARMS ALARM ACTIVE	Displays if there is an active alarm(s) in bypass or not
HAND/OFF/AUTO?	OFF MODE HAND MODE AUTO MODE	Displays operating mode of the bypass OFF, HAND or AUTO

Error messages

\#	Error Message	Description
1	CAN'T EDIT PAR IS READ ONLY	Try to save value (=press the ENTER key in Parameter Edit State) of a readonly parameter. E.g. try to change value PAR 01.02 INPUT VOLT
2	CAN'T EDIT WHEN STARTED	Try to change value of a parameter, which is allowed to be changed only when system is not started. E.g. PAR 16.02 RUN ENABLE
3	CAN'T EDIT UP+DOWN ONLY	Try to change value of a "reset only" parameter other than zero. UP+DOWN buttons must be pressed simultaneoulsy for requesting default value of the PAR on the display (value zero), and after that ENTER pressed for saving it (reset the parameter). E.g. PAR 04.01 LAST FAULT
4	CAN'T EDIT INP VOLTAGE LOW	Input voltage too low. Changing of parameters prohibited since system cannot save values to nv-mem w/ insufficient voltage.
5	CAN'T EDIT PAR IS HIDDEN	Try to save value (=press the ENTER key in Parameter Edit State) of a hidden parameter. Should not be possible. If hidden parameters are turned visible, this message is not given.
6	CAN'T EDIT UNDER LO-LIMIT	Try to save value which is over LO-LIMIT of the parameter. Should not be possible when changing parameters from control panel.
7	CAN'T EDIT UNDER HI-LIMIT	Try to save value which is over HI-LIMIT of the parameter. Should not be possible when changing parameters from control panel.
8	CAN'T EDIT ENUM VAL ONLY	Try to save value which is out of enumerated value list. Should not be possible when changing parameters from control panel.
9	CAN'T EDIT NO DEFAULT	Try to request default value (=press UP and DOWN buttons simultaneously) for a parameter which is defined not to have a default value. Should not be possible when changing parameters from control panel.
10	CAN'T EDIT TRY AGAIN.	Parameter system is busy, e.g. application macro change is in process at the same time when someone is trying to save a value for a parameter. Should not be possible when changing parameters from control panel.

Maintenance

See Maintenance for the ACH550-UH on page 34.

ACH550-PCR/PDR

Installation

This information is unique to ACH550 input disconnect configurations (PCR or PDR). The ACH550 with Input Disconnect is an ACH550 AC adjustable frequency drive packaged with an input disconnect switch or circuit breaker. Refer to the Installation instructions on page 3, for all other information. Failure to observe the warnings and instructions may cause a malfunction or personal hazard.

WARNING! Before you begin read Safety on page 2.

WARNING! When the ACH550 with Input Disconnect is connected to the line power, the Motor Terminals T1, T2, and T3 are live even if the motor is not running. Do not make any connections when the ACH550 with Input Disconnect is connected to the line. Disconnect and lock out power to the drive before servicing the drive. Failure to disconnect power may cause serious injury or death.

1. Install wiring

WARNING!

- Metal shavings or debris in the enclosure can damage electrical equipment and create a hazardous condition. Where parts, such as conduit plates require cutting or drilling, first remove the part. If that is not practical, cover nearby electrical components to protect them from all shavings or debris.
- Do not connect or disconnect input or output power wiring, or control wires, when power is applied.
- Never connect line voltage to drive output Terminals T1, T2, and T3.
- Do not make any voltage tolerance tests (Hi Pot or Megger) on any part of the unit. Disconnect motor wires before taking any measurements in the motor or motor wires.
- Make sure that power factor correction capacitors are not connected between the drive and the motor.

Connection diagrams - standard drive with input disconnect (wall mounted)

The following figure shows the Standard Drive with Input Disconnect (wall mounted) wiring connection points.

The alternate (HI) setting further reduces the likelihood of condensate in high humidity environments.
Disconnect Switch or Circuit Breaker

Note: Some UL Type 3R enclosures are designed to be mounted on a wall. Mounting some of these 3R enclosures on an open rack system requires the use of the supplied 3R enclosure back plates to maintain 3R integrity.

Connection diagrams - standard drive with input disconnect (floor mounted)

Floor mounted UL Type / NEMA 1 \& 12 Drive with Input Disconnect units are configured for wiring access from the top and include a removable conduit mounting plate. The following figure shows the wiring connection points.

Line input connections - standard drive with input disconnect configurations
Connect input power to the terminals of the disconnect switch or circuit breaker. Connect the equipment grounding conductor to the ground lug at the top of the enclosure. The figure below shows the connection points for Standard Drive with Input Disconnect configurations.

Dashed line is ground run.

Note: The terminals on disconnect switches for the following rated ACH550-PDR products is 7 in-lbs. Do not use a power driver or over tighten to prevent breaking screw heads or stripping the terminal.

230 VAC	460 VAC	600 VAC
$-04 A 6-2$	$-03 A 3-4$	$-02 A 7-6$
$-06 A 6-2$	$-04 A 1-4$	$-03 A 9-6$
$-07 A 5-2$	$-06 A 9-4$	$-06 A 1-6$
$-012 A-2$	$-08 A 8-4$	$-09 A 0-6$
$-017 A-2$	$-012 A-4$	$-011 A-6$
$-024 A-2$	$-015 A-4$	$-017 A-6$
$-031 A-2$	$-023 A-4$	

UL Type / NEMA 3R Enclosures

\triangle
WARNING! Check the motor and motor wiring insulation before connecting the ACH550 to line power. Follow the procedure on page 12. Before proceeding with the insulation resistance measurements, check that the ACH550 is disconnected from incoming line power. Failure to disconnect line power could result in death or serious injury.

Note: For the remainder of the wiring (motor and control wiring) refer to page 7 .

Drive with integral disconnect fuse requirements
Fuses

NOTE: Although fuses listed are similar in functional characteristics to fuses listed in the ACH550-UH User's Manual, physical characteristics may differ. Fuses from other manufacturers can be used if they meet the functional characteristics of those in these tables.

208/240 volt fuses

208/240 Volt		Frame Size	Drive Input Fuse Ratings	
HP	Type Code ${ }^{1}$		$\begin{aligned} & \hline \text { Amps } \\ & \text { (600V) } \end{aligned}$	Bussmann Type
1	ACH550-PDR-04A6-2	R1	15	KTK-R-15
1.5	ACH550-PDR-06A6-2	R1	15	KTK-R-15
2	ACH550-PDR-07A5-2	R1	15	KTK-R-15
3	ACH550-PDR-012A-2	R1	15	KTK-R-15
5	ACH550-PDR-017A-2	R1	30	KTK-R-30
7.5	ACH550-PDR-024A-2	R2	30	KTK-R-30
10	ACH550-PDR-031A-2	R2	60	JJS-60
15	ACH550-PDR-046A-2	R3	100	JJS-100
20	ACH550-PDR-059A-2	R3	100	JJS-100
25	ACH550-PDR-075A-2	R4	100	JJS-100
30	ACH550-PxR-088A-2	R4	200	170M1370
40	ACH550-PxR-114A-2	R4	200	170M1370
50	ACH550-PxR-143A-2	R6	200	170M1370
60	ACH550-PxR-178A-2	R6	315	170M1372
75	ACH550-PxR-221A-2	R6	315	170 M 1372
100	ACH550-PxR-248A-2	R6	315	170M1372

1) "PxR" represents both PCR and PDR.

480 volt fuses

480 Volt		Frame Size	Drive Input Fuse Ratings	
HP	Type Code ${ }^{1}$		$\begin{aligned} & \text { Amps } \\ & (600 \mathrm{~V}) \end{aligned}$	Bussmann Type
1/1.5	ACH550-PDR-03A3-4	R1	15	KTK-R-15
2	ACH550-PDR-04A1-4	R1	15	KTK-R-15
3	ACH550-PDR-06A9-4	R1	15	KTK-R-15
5	ACH550-PDR-08A8-4	R1	15	KTK-R-15
7.5	ACH550-PDR-012A-4	R1	15	KTK-R-15
10	ACH550-PDR-015A-4	R2	30	KTK-R-30
15	ACH550-PDR-023A-4	R2	30	KTK-R-30
20	ACH550-PDR-031A-4	R3	60	JJS-60
25	ACH550-PDR-038A-4	R3	60	JJS-60
30	ACH550-PDR-045A-4	R3	100	JJS-100
30	ACH550-PDR-044A-4	R4	100	JJS-100
40	ACH550-PDR-059A-4	R4	100	JJS-100
50	ACH550-PDR-072A-4	R4	100	JJS-100
60	ACH550-PDR-078A-4	R4	100	JJS-100
75	ACH550-PxR-097A-4	R4	200	170 M 1370
60	ACH550-PxR-077A-4	R5	125	170 M 1368
75	ACH550-PxR-096A-4	R5	125	170M1368
100	ACH550-PxR-125A-4	R5	200	170 M 1370
100	ACH550-PxR-124A-4	R6	160	170M1369
125	ACH550-PxR-157A-4	R6	200	170 M 1370
150	ACH550-PxR180A-4	R6	315	170 M 1372
200	ACH550-PxR-246A-4	R6	315	170M1372
200	ACH550-PxR-245A-4	R7	400	JJS-400
250	ACH550-PxR-316A-4	R8	400	JJS-400
300	ACH550-PxR-368A-4	R8	400	JJS-400
350	ACH550-PxR-414A-4	R8	600	JJS-600
400	ACH550-PxR-486A-4	R8	600	JJS-600
450	ACH550-PxR-526A-4	R8	800	JJS-800
500	ACH550-PxR-602A-4	R8	800	JJS-800
550	ACH550-PxR-645A-4	R8	800	JJS-800

1) "PxR" represents both PCR and PDR.

Fuses, 600 volt, fuses

600 Volt		Frame Size	Drive Input Fuse Ratings	
HP	Type Code ${ }^{1}$		Amps (600V)	Bussmann Type
2	ACH550-PDR-02A7-6	R2	15	KTK-R-15
3	ACH550-PDR-03A9-6	R2	15	KTK-R-15
5	ACH550-PDR-06A1-6	R2	15	KTK-R-15
7.5	ACH550-PDR-09A0-6	R2	15	KTK-R-15
10	ACH550-PDR-011A-6	R2	30	KTK-R-30
15	ACH550-PDR-017A-6	R2	30	KTK-R-30
20	ACH550-PDR-022A-6	R3	60	JJS-60
25	ACH550-PDR-027A-6	R3	60	JJS-60
30	ACH550-PDR-032A-6	R4	100	JJS-100
40	ACH550-PDR-041A-6	R4	100	JJS-100
50	ACH550-PDR-052A-6	R4	100	JJS-100
60	ACH550-PDR-062A-6	R4	100	JJS-100
75	ACH550-PxR-077A-6	R6	200	170M1370
100	ACH550-PxR-099A-6	R6	200	170M1370
125	ACH550-PxR-125A-6	R6	200	170M1370
150	ACH550-PxR-144A-6	R6	200	170M1370

1) "PxR" represents both PCR and PDR.

Power connection terminals

The following tables show maximum wire size and required tightening torque for incoming power, grounding and motor terminals.

	208/240 Volt		Maximum Power Wiring Data ${ }^{2}$						
HP	Type Code ${ }^{1}$	Base Drive Frame Size	Circuit Breaker UL Typel NEMA 1 \&12	Circuit Breaker UL Typel NEMA 3R	Disconnect Switch UL Typel NEMA 1\&12	Disconnect Switch UL Typel NEMA 3R	Motor Terminals	Ground Lugs UL Typel NEMA 1\&12	Ground Lugs ULTypel NEMA 3R
1	ACH550-PxR-04A6-2	R1	$\begin{gathered} \# 10 \\ 35 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 10 \\ 35 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 10 \\ 7 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 10 \\ 7 \mathrm{in} \text {-lbs } \end{gathered}$	Refer to Drive's power connection terminals	$\begin{gathered} \# 10 \\ 35 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 10 \\ 35 \text { in-lbs } \end{gathered}$
1.5	ACH550-PxR-06A6-2	R1							
2	ACH550-PxR-07A5-2	R1							
3	ACH550-PxR-012A-2	R1							
5	ACH550-PxR-017A-2	R1							
7.5	ACH550-PxR-024A-2	R2	$\begin{gathered} \# 6 \\ 45 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 6 \\ 45 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 8 \\ 7 \text { in-lbs } \end{gathered}$	$\begin{gathered} \text { \#8 } \\ 7 \text { in-lbs } \end{gathered}$		\#6	\#6
10	ACH550-PxR-031A-2	R2						35 in-lbs	35 in-lbs
15	ACH550-PxR-046A-2	R3	\#3	\#3	\#4	\#4		\#3	\#3
20	ACH550-PxR-059A-2	R3	50 in-lbs	50 in -lbs	18 in-lbs	18 in-lbs		$50 \mathrm{in}-\mathrm{lbs}$	50 in -lbs
25	ACH550-PxR-075A-2	R4	$\begin{gathered} \# 1 \\ 50 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 1 \\ 50 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 1 \\ 55 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 1 \\ 55 \mathrm{in}-\mathrm{lbs} \end{gathered}$		$\begin{gathered} \# 2 \\ 50 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 2 \\ 50 \text { in-lbs } \end{gathered}$
30	ACH550-PxR-088A-2	R4	350 MCM 274 in-Ibs	300 MCM 200 in-lbs	$\begin{gathered} \# 1 / 0 \\ 70 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 1 / 0 \\ 70 \mathrm{in}-\mathrm{lbs} \end{gathered}$			
40	ACH550-PxR-114A-2	R4			300 MCM 275 in-lbs	300 MCM 200 in-lbs			
50	ACH550-PxR-143A-2	R6						$\begin{gathered} 3 \times \# 3 / 0 \\ 250 \mathrm{in}-\mathrm{lbs} \end{gathered}$	
60	ACH550-PxR-178A-2	R6							275 in-lbs
75	ACH550-PxR-221A-2	R6	$\begin{gathered} 2 \times 500 \\ \text { MCM } \\ 274 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} 2 \times 500 \\ \text { MCM } \\ 274 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} 2 \times 500 \mathrm{MCM} \\ 274 \mathrm{in} \text {-lbs } \end{gathered}$	$\begin{aligned} & 2 \times 500 \mathrm{MCM} \\ & 274 \mathrm{in}-\mathrm{lbs} \end{aligned}$			350 MCM
100	ACH550-PxR-248A-2	R6							100 in-lbs

1) "PxR" represents both PCR and PDR.
2) Torque values shown relate to current production. Check component labels on previously installed units for required tightening torque.

3) "PxR" represents both PCR and PDR.
4) Torque values shown relate to current production. Check component labels on previously installed units for required tightening torque

	600 Volt		Maximum Power Wiring Data ${ }^{\text {2 }}$						
HP	Type Code ${ }^{1}$	Frame Size	Circuit Breaker UL Type/ NEMA 1 \&12	Circuit Breaker UL Typel NEMA 3R	Disconnect Switch UL Typel NEMA 1\&12	Disconnect Switch UL Typel NEMA 3R	Motor Terminals	Ground Lugs UL Typel NEMA 1\&12	Ground Lugs UL Typel NEMA 3R
2	ACH550-PxR-02A7-6	R2	$\begin{gathered} \text { \#6 } \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 6 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \text { \#8 } \\ 7 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \text { \#8 } \\ 7 \mathrm{in}-\mathrm{lbs} \end{gathered}$	Refer to Drive's power connection terminals	$\begin{gathered} \text { \#6 } \\ 35 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 6 \\ 35 \text { in-lbs } \end{gathered}$
3	ACH550-PxR-03A9-6	R2							
5	ACH550-PxR-06A1-6	R2							
7.5	ACH550-PxR-09A0-6	R2							
10	ACH550-PxR-011A-6	R2							
15	ACH550-PxR-017A-6	R2							
20	ACH550-PxR-022A-6	R3	$\begin{gathered} \# 3 \\ 62 \text { in-lbs } \end{gathered}$	\#3 62 in-lbs				\#3	\#3
25	ACH550-PxR-027A-6	R3						50 in -lbs	50 in -lbs
30	ACH550-PxR-032A-6	R4	$\begin{gathered} \# 1 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \text { \#1 } \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 4 \\ 18 \text { in-lbs } \end{gathered}$	$\begin{gathered} \text { \#4 } \\ 18 \text { in-lbs } \end{gathered}$		$\begin{gathered} \# 2 \\ 50 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \# 2 \\ 50 \text { in-lbs } \end{gathered}$
40	ACH550-PxR-041A-6	R4							
50	ACH550-PxR-052A-6	R4			$\begin{gathered} \# 1 \\ 55 \mathrm{in}-\mathrm{lbs} \end{gathered}$	$\begin{gathered} \text { \#1 } \\ 55 \text { in-lbs } \end{gathered}$			
60	ACH550-PxR-062A-6	R4			$\begin{gathered} \# 1 \\ 62 \text { in-lbs } \end{gathered}$	$\begin{gathered} \# 1 \\ 62 \text { in-lbs } \end{gathered}$			
75	ACH550-PxR-077A-6	R6	$\begin{aligned} & 350 \mathrm{MCM} \\ & 274 \mathrm{in}-\mathrm{lbs} \end{aligned}$	300 MCM 275 in-lbs		$\# 1 / 0$		$\begin{gathered} 3 \times \# 3 / 0 \\ 250 \mathrm{in}-\mathrm{lbs} \end{gathered}$	
100	ACH550-PxR-099A-6	R6			70 in-lbs	70 in-lbs			
125	ACH550-PxR-125A-6	R6			300 MCM 275 in-lbs	300 MCM 200 in-lbs			
150	ACH550-PxR-144A-6	R6							$\begin{gathered} \# 2 / 0 \\ 375 \text { in-lbs } \end{gathered}$

1) "PxR" represents both PCR and PDR.
2) Torque values shown relate to current production. Check component labels on previously installed units for required tightening torque.

Operation

This information is unique to ACH550 input disconnect configurations (PCR or PDR). Refer to the Operation instructions on page 24 for all other information.

Input disconnect configuration

The ACH550 with Input Disconnect is an ACH550 AC adjustable frequency drive packaged with an input disconnect switch or circuit breaker, and with a door interlocked, external operating handle. The operating handle can be padlocked in the OFF position (padlock not supplied). Enclosure options are UL Type 1, UL Type 12, and UL Type 3R (NEMA 1, NEMA 12, and NEMA 3R).

The following is a typical power diagram.

The following shows the front view of the ACH550 Drive with Input Disconnect standard configurations, and identifies the major components.

Maintenance

Maintenance intervals

If installed in an appropriate environment, the drive requires very little maintenance. This table lists the routine maintenance intervals recommended by ABB for ACH550 enclosures in addition to the intervals on page 34.

Maintenance	Configuration	Interval	Instruction
Check/replace hinged door wall mount enclosure inlet air filter	Hinged door wall mount UL Type / NEMA 12 enclosures	Check every 3 months. Replace as needed.	Enclosure air filter replacement - UL Type / NEMA 12 hinged door wall mount enclosures on page 100.
Check/replace floor mount enclosure inlet air filter	Floor mount UL Type / NEMA 12 enclosures	Check every 3 months. Replace as needed.	See Maintenance on page 37 and Enclosure air filter replacement - UL Type / NEMA 12 hinged door wall mount enclosures on page 100.
Check/replace NEMA 3R enclosure air filters	UL Type / NEMA 3R enclosures - PX3R-5 and higher	Check every 3 months. Replace as needed.	See PX3R dimensional information.
Check/replace floor mount enclosure exhaust air filter.	Floor mount UL Type / NEMA 12 enclosures	Check every 6 months. Replace as needed.	See Maintenance on page 38 and Enclosure air filter replacement - UL Type / NEMA 12 hinged door wall mount enclosures on page 100.

Enclosure air filter replacement - UL Type / NEMA 12 hinged door wall mount enclosures

Filter material

Material	Filter Type
American Air Filter $(358-35-06 \mathrm{~A}-12 \mathrm{~A})$	Polykleon White $12.7 \mathrm{~mm} \times 152.4 \mathrm{~mm} \times 304.6 \mathrm{~mm}$ stk

This procedure applies to drive with input disconnect configurations in UL Type / NEMA 12 hinged door wall mount enclosures. This filter is located at the bottom of the enclosure. Use the following procedure to check and replace filters.

1. On the enclosure, remove the screw holding the filter bracket in place.
2. Slide the filter bracket forward until the hooks on the bracket clear the slots on the enclosure base. This step allows the filter and bracket to drop free from the enclosure.

3. Lift the filter out of the filter bracket and replace as appropriate.
4. With the filter in the filter bracket, align the hooks on the bracket with the slots in the enclosure base, and press the hooks up into the slots.
5. Slide the filter bracket back, making sure that the hooks catch on the enclosure.
6. Replace the mounting screw. Tighten until the gasket on the bracket is about 50% compressed.

Enclosure air filter replacement - UL Type I NEMA 12 floor mount enclosures

Filter material

Enclosure Type	Inlet (door)	Outlet (roof)
UL Type / NEMA 12	3AUAOOOOOO6723 (qty 1)	3AUA0000006722 (qty 2)

Note: When installing the filter media, the white side must face the outside of the cabinet and the colored side must face the inside of the cabinet. Refer to page 37.

Diagnostics

Refer to the Diagnostics instructions on page 27.

Complete ACH550 Drive Parameter List

$\text { GROUP } 01$ OPERATING DATA	
101	SPEED \& DIR
102	SPEED
103	OUTPUT FREQ
104	CURRENT
105	TORQUE
106	POWER
107	DC BUS VOLTAGE
109	OUTPUT VOLTAGE
110	DRIVE TEMP
111	EXTERNAL REF 1
112	EXTERNAL REF 2
113	CTRL LOCATION
114	RUN TIME (R)
115	KWH COUNTER (R)
116	APPL BLK OUTPUT
118	DI 1-3 STATUS
119	DI 4-6 STATUS
120	Al 1
121	Al 2
122	RO 1-3 STATUS
123	RO 4-6 STATUS
124	AO 1
125	AO 2
126	PID 1 OUTPUT
127	PID 2 OUTPUT
128	PID 1 SETPNT
129	PID 2 SETPNT
130	PID 1 FBK
131	PID 2 FBK
132	PID 1 DEVIATION
133	PID 2 DEVIATION
134	COMM RO WORD
135	COMM VALUE 1
136	COMM VALUE 2
137	PROCESS VAR 1
138	PROCESS VAR 2
139	PROCESS VAR 3
140	RUN TIME
141	MWH COUNTER
142	REVOLUTION CNTR
143	DRIVE ON TIME HI
144	DRIVE ON TIME LO
145	MOTOR TEMP
150	CB TEMP
153	MOT THERM
	STRESS
158	PID COMM VALUE 1
159	PID COMM VALUE 2
174	SAVED KWH
175	SAVED MWH
176	SAVED AMOUNT 1
177	SAVED AMOUNT 2
178	SAVED CO2
GROUP 03	
FB ACTUAL SIGNALS	
301	FB CMD WORD 1
302	FB CMD WORD 2
303	FB STS WORD 1
304	FB STS WORD 2
305	FAULT WORD 1
306	FAULT WORD 2
307	FAULT WORD 3
308	ALARM WORD 1
309	ALARM WORD 2
GROUP 04	
FAULT HISTORY	
401	LAST FAULT
402	FAULT TIME 1
403	FAULT TIME 2
404	SPEED AT FLT
405	FREQ AT FLT
406	VOLTAGE AT FLT
407	CURRENT AT FLT
408	TORQUE AT FLT
409	STATUS AT FLT
410	DI 1-3 AT FLT
411	DI 4-6 AT FLT
412	PREVIOUS FAULT 1
413	PREVIOUS FAULT 2
GROUP 10	
START/STOPIDIR	
1001	EXT1 COMMANDS
1002	EXT2 COMMANDS
1003	DIRECTION

GROUP 11	1706 OVERRIDE DIR
REFERENCE	1707 OVERRIDE REF
1101 KEYPAD REF SEL	GROUP 20
1102 EXT1/EXT2 SEL	LIMITS
1103 REF1 SELECT	2001 MINIMUM SPEED
1104 REF 1 MIN	2002 MAXIMUM SPEED
1105 REF 1 MAX	2003 MAX CURRENT
1106 REF2 SELECT	2006 UNDERVOLT CTRL
1107 REF 2 MIN	2007 MINIMUM FREQ
1108 REF 2 MAX	2008 MAXIMUM FREQ
GROUP 12	2013 MIN TORQUE SEL
CONSTANT SPEEDS	2014 MAX TORQUE SEL
1201 CONST SPEED SEL	2015 MIN TORQUE 1
1202 CONST SPEED 1	2016 MIN TORQUE 2
1203 CONST SPEED 2	2017 MAX TORQUE 1
1204 CONST SPEED 3	2018 MAX TORQUE 2
1205 CONST SPEED 4	GROUP 21
1206 CONST SPEED 5	STARTISTOP
1207 CONST SPEED 6	2101 START FUNCTION
1208 CONST SPEED 7	2102 STOP FUNCTION
1209 TIMED MODE SEL	2103 DC MAGN TIME
GROUP 13	2104 DC HOLD CTL
ANALOG INPUTS	2105 DC HOLD SPEED
1301 MINIMUN AI1	2106 DC CURR REF
1302 MAXIMUM AII	2107 DC BRAKE TIME
1303 FILTER AI1	2108 START INHIBIT
1304 MINIMUM AI2	2109 EM STOP SEL
1305 MAXIMUM AI2	2110 TORQ BOOST CURR
1306 FILTER AI2	2113 START DELAY
GROUP 14	GROUP 22
RELAY OUTPUTS	ACCEL/DECEL
1401 RELAY OUTPUT 1	2201 ACC/DEC 1/2 SEL
1402 RELAY OUTPUT 2	2202 ACCELER TIME 1
1403 RELAY OUTPUT 3	2203 DECELER TIME 1
1404 RO 1 ON DELAY	2204 RAMP SHAPE 1
1405 RO 1 OFF DELAY	2205 ACCELER TIME 2
1406 RO 2 ON DELAY	2206 DECELER TIME 2
1407 RO 2 OFF DELAY	2207 RAMP SHAPE 2
1408 RO 3 ON DELAY	2208 EM DEC TIME
1409 RO 3 OFF DELAY	2209 RAMP INPUT 0
1410 RELAY OUTPUT 4	GROUP 23
1411 RELAY OUTPUT 5	SPEED CONTROL
1412 RELAY OUTPUT 6	2301 PROP GAIN
1413 RO 4 ON DELAY	2302 INTEGRATION TIME
1414 RO 4 OFF DELAY	2303 DERIVATION TIME
1415 RO 5 ON DELAY	2304 ACC
1416 RO 5 OFF DELAY	COMPENSATION
1417 RO 6 ON DELAY	2305 AUTOTUNE RUN
1418 RO 6 OFF DELAY	GROUP 25
GROUP 15	CRITICAL SPEEDS
ANALOG OUTPUTS	2501 CRIT SPEED SEL
1501 AO1 CONTENT	2502 CRIT SPEED 1 LO
1502 AO1 CONTENT MIN	2503 CRIT SPEED 1 HI
1503 AO1 CONTENT MAX	2504 CRIT SPEED 2 LO
1504 MINIMUM AO1	2505 CRIT SPEED 2 HI
1505 MAXIMUM AO1	2506 CRIT SPEED 3 LO
1506 FILTER AO1	2507 CRIT SPEED 3 HI
1507 AO2 CONTENT	GROUP 26
1508 AO2 CONTENT MIN	MOTOR CONTROL
1509 AO2 CONTENT MAX	2601 FLUX OPT ENABLE
1510 MINIMUM AO2	2602 FLUX BRAKING
1511 MAXIMUM AO2	2603 IR COMP VOLT
1512 FILTER AO2	2604 IR COMP FREQ
GROUP 16	2605 U/F RATIO
SYSTEM CONTROLS	2606 SWITCHING FREQ
1601 RUN ENABLE	2607 SW FREQ CTRL
1602 PARAMETER LOCK	2608 SLIP COMP RATIO
1603 PASS CODE	2609 NOISE SMOOTHING
1604 FAULT RESET SEL	2619 DC STABILIZER
1605 USER PAR SET CHG	2625 OVERMODULATION
1606 LOCAL LOCK	GROUP 29
1607 PARAM SAVE	MAINTENANCE TRIG
1608 START ENABLE 1	2901 COOLING FAN TRIG
1609 START ENABLE 2	2902 COOLING FAN ACT
1610 DISPLAY ALARMS	2903 REVOLUTION TRIG
1611 PARAMETER VIEW	2904 REVOLUTION ACT
1612 FAN CONTROL	2905 RUN TIME TRIG
1613 FAULT RESET	2906 RUN TIME ACT
GROUP 17	2907 USER MWH TRIG
OVERRIDE	2908 USER MWH ACT
1701 OVERRIDE SEL	GROUP 30
1702 OVERRIDE FREQ	FAULT FUNCTIONS
1703 OVERRIDE SPEED	3001 Al<MIN FUNCTION
1704 OVERR PASS CODE	3002 PANEL COMM ERR
1705 OVERRIDE	3003 EXTERNAL FAULT 1

3004	EXTERNAL FAULT 2	3605	STC
3005	MOT THERM PROT	3606	START TIME 2
3006	MOT THERM TIME	3607	STOP TIME 2
3007	MOT LOAD CURVE	3608	START DAY 2
3008	ZERO SPEED LOAD	3609	STOP DAY 2
3009	BREAK POINT FREQ	3610	START TIME 3
3010	StALL FUNCTION	3611	STOP TIME 3
3011	STALL FREQUENCY	3612	START DAY 3
3012	STALL TIME	3613	STOP DAY 3
3017	EARTH FAULT	3614	Start time 4
3018	COMM FAULT FUNC	3615	STOP TIME 4
3019	COMM FAULT TIME	3616	START DAY 4
3021	Al1 FAULT LIMIT	3617	STOP DAY 4
3022	Al2 FAULT LIMIT	3622	BOOST SEL
3023	WIRING FAULT	3623	BOOST TIME
3024	CB TEMP FAULT	3626	TIMER 1 SRC
3028	EARTH FAULT LVL	3627	TIMER 2 SRC
GROU	UP 31	3628	TIMER 3 SRC
AUTO	MATIC RESET	3629	TIMER 4
3101	NR OF TRIALS	GROU	UP 37
3102	TRIAL TIME	USER	LOAD CURVE
3103	DELAY TIME	3701	USER LOAD C
3104	AR OVERCURRENT		MODE
3105	AR OVERVOLTAGE	3702	USER LOAD C FUNC
3106	AR UNDERVOLTAGE	3703	USER LOAD C TIME
3107	AR AI<MIN	3704	LOAD FREQ 1
	AR EXTERNAL FLT	3705	LOAD TORQ LOW 1
GROU	UP 32	3706	LOAD TORQ HIGH 1
SUPE	RVISION	3707	LOAD FREQ 2
3201	SUPERV 1 PARAM	3708	LOAD TORQ LOW 2
3202	SUPERV 1 LIM LO	3709	LOAD TORQ HIGH 2
3203	SUPERV 1 LIM HI	3710	LOAD FREQ 3
3204	SUPERV 2 PARAM	3711	LOAD TORQ LOW 3
3205	SUPERV 2 LIM LO	3712	LOAD TORQ HIGH 3
3206	SUPERV 2 LIM HI	3713	LOAD FREQ 4
3207	SUPERV 3 PARAM	3714	LOAD TORQ LOW 4
3208	SUPERV 3 LIM LO	3715	LOAD TORQ HIGH 4
3209	SUPERV 3 LIM HI	3716	LOAD FREQ 5
GROU		3717	LOAD TORQ LOW 5
INFOR	RMATION	3718	LOAD TORQ HIGH 5
3301	FW VERSION	GRO	UP 40
3302	LP VERSION	PROC	CESS PID SET
3303	TEST DATE	4001	GAIN
3304	DRIVE RATING	4002	INTEGRATION TIME
3305	PARTABLE VERSION	4003	DERIVATION TIME
GROU	UP 34	4004	PID DERIV FILTER
PANE	L DISPLAY	4005	ERROR VALUE INV
3401	SIGNAL 1 PARAM	4006	UNITS
3402	SIGNAL 1 MIN	4007	DSP FORMAT
3403	SIGNAL 1 MAX	4008	0\% VALUE
3404	OUTPUT 1 DSP	4009	100\% VALUE
	FORM	4010	SET POINT SEL
3405	OUTPUT 1 UNIT	4011	INTERNAL SETPNT
3406	OUTPUT 1 MIN	4012	SETPOINT MIN
3407	OUTPUT 1 MAX	4013	SETPOINT MAX
3408	SIGNAL 2 PARAM	4014	FBK SEL
3409	SIGNAL 2 MIN	4015	FBK MULTIPLI
3410	SIGNAL 2 MAX	4016	ACT1 INPUT
3411	OUTPUT 2 DSP	4017	ACT2 INPUT
	FORM	4018	ACT1 MINIMUM
3412	OUTPUT 2 UNIT	4019	ACT1 MAXIMUM
3413	OUTPUT 2 MIN	4020	ACT2 MINIMUM
3414	OUTPUT 2 MAX	4021	ACT2 MAXIMUM
3415	SIGNAL 3 PARAM	4022	SLEEP SELECTION
3416	SIGNAL 3 MIN	4023	PID SLEEP LEVEL
3417	SIGNAL 3 MAX	4024	PID SLEEP DELAY
3418	OUTPUT 3 DSP	4025	WAKE-UP DEV
	FORM	4026	WAKE-UP DELAY
419	OUTPUT 3 UNIT		PID 1 PARAM SET
3420	OUTPUT 3 MIN	GROU	UP 41
3421	OUTPUT 3 MAX	PROC	CESS
GROU	UP 35	4101	GAIN
MOTO	R TEMP MEAS	4102	INTEGRATION TIME
	SENSOR TYPE	4103	DERIVATION TIME
3502	INPUT SELECTION	4104	PID DERIV FILTER
3503	ALARM LIMIT	4105	ERROR VALUE INV
3504	FAULT LIMIT	4106	UNITS
GROU	UP 36	4107	UNIT SCALE
TIMED	D FUNCTIONS	4108	0\% VALUE
3601	TIMERS ENABLE	4109	100\% VALUE
602	START TIME 1	4110	SET POINT SEL
3603	STOP TIME 1	4111	INTERNAL SETPNT
3604	START DAY 1	4112	SETPOINT MIN
		4113	SETPOINT MAX FBK SEL
		4115	FBK MULTIPLIER
		4116	

4117	ACT2 INPUT
4118	ACT1 MINIMUM
4119	ACT1 MAXIMUM
4120	ACT2 MINIMUM
4121	ACT2 MAXIMUM
4122	SLEEP SELECTION
4123	PID SLEEP LEVEL
4124	PID SLEEP DELAY
4125	WAKE-UP DEV
4126	WAKE-UP DELAY
GROUP	UP 42
EXT I	TRIM PID
4201	GAIN
4202	INTEGRATION TIME
4203	DERIVATION TIME
4204	PID DERIV FILTER
4205	ERROR VALUE INV
4206	UNITS
4207	DSP FORMAT
4208	0\% VALUE
4209	100\% VALUE
4210	SET POINT SEL
4211	INTERNAL SETPNT
4212	SETPOINT MIN
4213	SETPOINT MAX
4214	FBK SEL
4215	FBK MULTIPLIER
4216	ACT1 INPUT
4217	ACT2 INPUT
4218	ACT1 MINIMUM
4219	ACT1 MAXIMUM
4220	ACT2 MINIMUM
4221	ACT2 MAXIMUM
4228	ACTIVATE
4229	OFFSET
4230	TRIM MODE
4231	TRIM SCALE
4232	CORRECTION SRC
GRO	UP 45
NE	RGY SAVING
4502	ENERGY PRICE
4507	CO2 CONV FACTOR
4508	PUMP POWER
4509	ENERGY RESET
GROU	UP 51
EXT	COMM MODULE
5101	FBA TYPE
5102	FBA PAR 2... 26
5127	FBA PAR REFRESH
5128	FILE CPI FW REV
5129	FILE CONFIG ID
2130	FILE CONFIG REV
5131	FBA STATUS
5132	FBA CPI FW REV
5133	FBAAPPL FW REV
GRO	UP 52
ANE	L COMM
5201	STATION ID
5202	BAUD RATE
5203	PARITY
5204	OK MESSAGES
5205	PARITY ERRORS
5206	FRAME ERRORS
5207	BUFFER
	OVERRUNS
5208	CRC ERRORS
GRO	UP 53
EFB P	PROTOCOL
5301	EFB PROTOCOL ID
5302	EFB STATION ID
5303	EFB BAUD RATE
5304	EFB PARITY
5305	EFB CTRL PROFILE
5306	EFB OK MESSAGES
5307	EFB CRC ERRORS
5308	EFB UART ERRORS
5309	EFB STATUS
5310	EFB PAR 10-18
5319	EFB PAR 19-20
GRO	UP 64
LOAD	ANALYZER
6401	PVL SIGNAL
6402	PVL FILTER TIME
6403	LOGGERS RESET
6404	AL2 SIGNAL
6405	AL2 SIGNAL BASE
6406	PEAK VALUE
6407	PEAK TIME 1
6408	PEAK TIME 2
6409	CURRENT AT PEAK
6410	UDC AT PEAK

6411	
6412	TIME OF RESET
6413	TIME OF RESET 2
6414	AL1RANGE0TO10
6415	AL1RANGE10TO20
6416	AL1RANGE20TO30
6417	AL1RANGE30TO40
6418	AL1RANGE40TO50
6419	AL1RANGE50TO60
6420	AL1RANGE60TO70
6421	AL1RANGE70TO80
6422	AL1RANGE80TO90
6423	AL1RANGE90TO
6424	AL2RANGE0TO10
6425	AL2RANGE10TO20
426	AL2RANGE20TO30
6427	AL2RANGE30TO40
6428	AL2RANGE40TO50
6429	AL2RANGE50TO60
6430	AL2RANGE60TO70
6431	AL2RANGE70TO80
6432	AL2RANGE80TO90
6433	AL2RANG
O	P 81
	ONTROL
8103	REFERENCE
8104	REFERENCE STE
8105	REFERENCE STE
8109	START FREQ 1
8110	START FREQ 2
8111	START FREQ 3
8112	LOW FREQ 1
8113	LOW FREQ 2
8114	LOW FREQ 3
8115	AUX MOT START D
8116	AUX MOT STOP D
8117	NR OF AUX MOT
8118	AUTOCHNG INTERV
8119	AUTOCHNG LEVEL
8120	INTERLOCKS
8121	REG BYPASS CTRL
8122	PFA START DELAY
8123	PFA ENABLE
8124	ACC IN AUX STOP
8125	DEC IN AUX START
8126	TIMED AUTOCHNG
8127	MOTORS
8128	AUX START ORDER
GROUP	P 98
	NS
9802	COMM
UP	P 99
START	T-UP DAT
9901	LANGUAGE
9902	APPLIC MACRO
9904	MOTOR CTRL MODE
9905	MOTOR NOM VOLT
9906	MOTOR NOM CURR
9907	MOTOR NOM FREQ
9908	MOTOR NOM
	SPEED
9909	MOTOR NOM
	POWER
9915	MOTOR COSPHI

For E-Clipse Bypass Drive

GROUP 01
ACTUAL DATA
0101
MOTOR CURR
0102
INPUT VOLT
0103
DI STATUS
0104
RO STATUS
0105
0106
KCB TEMP HOURS
0107
COMM RO
0108
RUN TIME
0109
ON TIME 1
0110

0118 KWH SAVE H GROUP 03 STATUS	
0301	FBUS CW 1
0303	FBUS SW 1
0305	FLT WORD 1
0306	FLT WORD 2
0307	FLT WORD 3
0308	ALR WORD 1
0309	ALR WORD 2
GROUP 04	
FAUL	T LOG
0401	LAST FAULT
0402	F1 TIME 1
0403	F1 TIME 2
0404	F1 VOLTAGE
0405	F1 CURRENT
0406	F1 EVENT 1
0407	F1 E1 TIME
0408	F1 EVENT 2
0409	F1 E2 TIME
0410	FAULT 2
0411	F2 TIME 1
0412	F2 TIME 2
0413	F2 VOLTAGE
0414	F2 CURRENT
0415	F2 EVENT 1
0416	F2 E1 TIME
0417	F2 EVENT 2
0418	F2 E2 TIME
0419	FAULT 3
0420	FAULT 4
0421	FAULT 5
GROUP 05	
EVEN	T LOG
0501	LAST EVENT
0502	E1 TIME 1
0503	E1 TIME 2
0504	EVENT 2
0505	E2 TIME 1
0506	E2 TIME 2
0507	EVENT 3
0508	E3 TIME 1
0509	E3 TIME 2
0510	EVENT 4
0511	E4 TIME 1
0512	E4 TIME 2
GROUP 14	
RELA	Y OUT
1401	RO1 SELECT
1402	R1 ON DLY
1403	R1 OFF DLY
1404	RO2 SELECT
1405	R2 ON DLY
1406	R2 OFF DLY
1407	RO3 SELECT
1408	R3 ON DLY
1409	R3 OFF DLY
1410	RO4 SELECT
1411	R4 ON DLY
1412	R4 OFF DLY
1413	RO5 SELECT
1414	R5 ON DLY
1415	R5 OFF DLY
GROUP 16	
SYSTEM CTRL	
1601	START/STOP
1602	RUN ENABLE
1603	START EN 1
1604	START EN 2
1605	START EN 3
1606	START EN 4
1607	RESET SRC
1608	AUTO XFR
1609	OC TRANSFR
1610	OV TRANSFR
1611	UV TRANSFR
1612	AI TRANSFR
1613	BP DISABLE
1614	BP RUN DLY
1615	SAVE PARAM
1616	DISP ALRMS
1617	DRIVE TEST
1618	PASS CODE
1619	PAR LOCK
1620	RUN EN TXT
1621	ST EN1 TXT
1622	STEN2 TXT
1623	ST EN3 TXT
1624	ST EN4 TXT
1625	COMM CTRL
1626	\|MODE LOCK

1627 COST/KWH	5125 FBA PAR 25
1628 LEARN MODE	5126 FBA PAR 26
1629 LEARN TIME	5127 REFRESH
1630 REVERSE REQ	5128 FBA PAR 28
1631 DRV/BYPASS	5129 FBA PAR 29
GROUP 17	5130 FBA PAR 30
OVERRIDE 2	5131 FBA STATUS
1701 OVERRIDE 2	5132 FBA PAR 32
1702 RUN EN OVR	5133 FBA PAR 33
1703 ST EN1 OVR	GROUP 53
1704 ST EN2 OVR	DRIVE EFB
1706 ST EN4 OVR	5301 DV PROT ID
1707 FAULTS OVR	5302 DV MAC ID
1708 OVRD2 MODE	5303 BAUD RATE
GROUP 30	5304 EFB PARITY
FLT FUNCTION	5305 PROFILE
3001 ULACTION	5306 DV OK MSG
3002 UL TIME	5307 DV CRC ERR
3003 UL TRIP \%	5308 UART ERROR
3004 COMM LOSS	5309 DV STATUS
3005 COMM TIME	5310 DV PAR 10
3006 PHASE LOSS	5311 DV PAR 11
3007 PHASE SEQ	5312 DV PAR 12
3008 BYPASS MOL	5313 DV PAR 13
GROUP 32	5314 DV PAR 14
SUPERV CTRL	5315 DV PAR 15
3201 SUPER CTRL	5316 DV PAR 16
3202 START LVL	5317 DV PAR 17
3203 STOP LEVEL	5318 DV PAR 18
3204 START DLY	5319 DV PAR 19
3205 STOP DLY	5320 DV PAR 20
3206 FBK LOSS	GROUP 54
GROUP 33	FBA DATA IN
INFORMATION	5401 DATA IN 1
3301 FW VERSION	5402 DATA IN 2
3302 PT VERSION	5403 DATA IN 3
3303 LP VERSION	5404 DATA IN 4
3304 CB VERSION	5405 DATA IN 5
3305 TEST DATE	5406 DATA IN 6
3306 DRIVE TYPE	5407 DATA IN 7
3307 SUB ASMBLY	5408 DATA IN 8
3308 PLANT CODE	5409 DATA IN 9
3309 MFG DATE	GROUP 55
3310 UNIT NUM	FBA DATA OUT
GROUP 50	5501 DATA OUT 1
BYPASS EFB	5502 DATA OUT 2
5001 BP PROT ID	5503 DATA OUT 3
5002 BP MAC ID	5504 DATA OUT 4
5003 BAUD RATE	5505 DATA OUT 5
5004 EFB PARITY	5506 DATA OUT 6
5005 PROFILE	5507 DATA OUT 7
5006 BP OK MSG	5508 DATA OUT 8
5007 BP CRC ERR	5509 DATA OUT 9
5008 UART ERROR	5510 DATA OUT10
5009 BP STATUS	GROUP 98
5010 BP PAR 10	OPTIONS
5011 BP PAR 11	9802 COMM PROT SEL
5012 BP PAR 12	GROUP 99
5013 BP PAR 13	STARTUP DATA
5014 BP PAR 14	9902 B.P. MACRO
5015 BP PAR 15	

ABB Inc.

16250 West Glendale Drive
New Berlin, WI 53151
USA
Telephone +1 800 752-0696
Fax +1 262 785-0397
Internet www.abb.us/drives

